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Ischemic strokes are categorized by permanent or transient obstruction of blood flow,

which impedes delivery of oxygen and essential nutrients to brain. In the last decade,

the therapeutic window for tPA has increased from 3 to 5–6 h, and a new technique,

involving the mechanical removal of the clot (endovascular thrombectomy) to allow

reperfusion of the injured area, is being used more often. This last therapeutic approach

can be done until 24 h after stroke onset. Due to this fact, more acute ischemic stroke

patients are now being recanalized, and so tMCAO is probably the “best” model to

address these patients that have a potential good outcome in terms of survival and

functional recovery. However, permanent occlusion patients are also important, not only

to increase survival rate but also to improve functional outcomes, although these are

more difficult to achieve. So, both models are important, and which target different

stroke patients in the clinical scenario. Hippocampus has a vital role in memory and

cognition, is prone to ischemic induced neurodegeneration. This study was designed to

delineate the molecular, pathological, and neurological changes in rat models of t-MCAO,

permanent MCAO (pMCAO), and pMCAO with diabetic conditions in hippocampal

tissue. Our results showed that these three models showed distinct discrepancies at

numerous pathological process, including key signaling molecules involved in neuronal

apoptosis, glutamate induced excitotoxicity, neuroinflammation, oxidative stress, and

neurotrophic changes. Our result suggests that the two commonly used MCAO models

exhibited tremendous differences in terms of neuronal cell loss, glutamate excitotoxic
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related signaling, synaptic transmission markers, neuron inflammatory and oxidative

stress molecules. These differences may reflect the variations in different models, which

may provide valuable information for mechanistic and therapeutic inconsistences as

experienced in both preclinical models and clinical trials.

Keywords: ischemic stroke, hippocampus, diabetes, transient and permanent cerebral ischemia,

neurodegeneration, glutamate receptor, inflammation, ROS

INTRODUCTION

Stroke accounts for great number of death and disability across
the globe. The frequency of stroke varies with demographic
location, and generally considered to be the 2nd leading cause of
mortality in industrialized countries. Ischemic stroke represents
the frequently encounter stroke type, caused by thrombosis or
dislodged emboli. The characteristic events in ischemic stroke
include extensive depolarization, release of excitatory glutamate,
opening of voltage gated ion channels, and intracellular Ca2+

buildup. Induced by intraluminal suture, focal cerebral ischemia
is a well-established animal stroke model of clinical relevance,
comprising of transient (t-MCAO) and permanent (p-MCAO). t-
MCAO is extensively employed in about 88% basic experimental
MCAO models from 2014 to 2015 (1). Despite of several
advantages (2–4), many consistent studies suggested some
shortfall to t-MCAO (5, 6). Contrary, p-MCAO mimics the
large vessel occlusion (LVO) due to no reperfusion process, and
is equally important. However, permanent occlusion is more
difficult to achieve and it is associated with increase mortality
attributed to higher swelling and intracranial pressure. So, both
models are important, and target different stroke patients in the
clinical scenarios.

Pathological changes of both t-MCAO and p-MCAO models
included core region where blood flow dropped from 10 to 25%
and is composed of neuronal necrosis, surrounded by penumbra
region where brain tissue suffered from mild to moderate
ischemic damage. The infarcted region in rat comprised
primarily of cortex, striatum, thalamus and hypothalamus, while
in mice the infarction also extent to hippocampus (7, 8).
Moreover, sensitivity of different brain regions to ischemia varies
based on collateral circulation, rodent strain, and experimental
set up such as t-MCAO and p-MCAO (9–11). Many studies
confined ischemic core to striatum when MCA occluded for
30min, increasing ischemic interval will proportionally expends
core and penumbral boundaries (12, 13). As a result, t-MCAO

Abbreviations: MCAO, middle cerebral artery occlusion; I/R, ischemic

reperfusion; Casp-3, caspase 3; HSP70, heat shock protein; BDNF, brain

derived neurotrophic factor; NMDAR, N-methyl-d-aspartate receptor; TTC,

2,3,5-triphenyltetrazolium chloride; BCA, bicinchoninic acid; PVDF, poly-

vinylidene fluoride; TBST, tris-buffered saline containing 0.1% Tween-20; CST,

cell signaling technology; DAB, 3, 3′-diaminobenzidine tetra hydrochloride;

SNAP-25, synaptosomal associated protein 25; GSK-3β, glycogen synthase kinase-

3β; Glu, glutamate; BDP, break down products; PSD95, post-synaptic density

protein; NR2a, N-methyl D-aspartate 2A; NR2b, N-methyl D-aspartate 2b; ERK,

extracellular-signal-regulated kinase; FJB, Fluoro-Jade B; Synapto, synaptophysin;

NFKB, nuclear factor kappa-light-chain-enhancer of activated B cells; TNFα,

tumor necrosis factor alpha; COX2, cyclooxygenase; ROS, reactive oxygen

species; GFAP, glia fibrillary acid binding protein; VEGF, vascular endothelial

growth factor.

and p-MCAO models represented different advantages coherent
to both the clinical scenario and underlying mechanisms.

There are limited studies on hippocampus as per our
information and literature study using permanent MCAO (p-
MCAO) approach. Few studies demonstrated morphological and
biochemical variations in hippocampus following p-MCAO (14–
16) The hippocampus in rodents is supplied by anterior choroidal
artery (a branch form ICA) and posterior hippocampal artery
(branch arising from posterior communication artery, PcomA)
(17). As such, the intraluminal blockage will hinder blood supply
in choroidal artery, with minimum effect on flow in posterior
hippocampal artery. Moreover, various factors influencing the
extent of ischemic stroke, such as suture/nylon filament diameter
(3–0, 4–0), length of filament, coating by (silicone or poly-L-
lysine), and tip of filament (18–20). Among, duration of artery
occlusion has a more pronounced effect on volume of infarction
(12, 13).

In the present study, we have compared the molecular
changes in rat models of t-MCAO, p-MCAO, and p-
MCAO with diabetic condition in hippocampus. Diabetes
is an independent risk factor and important comorbid of
stroke, which not only increased the risk of ischemic stroke
to 1.5–3 times, but also worsened the stroke outcomes
with increased aggravated neurological deficits, functional
disabilities, and mortality (21, 22). Our objective is to determined
hippocampus response after transient and permanent ischemia
and secondly to delineate inconsistencies in neuronal apoptosis,
excitotoxicity, neuroinflammation, and neurogenesis in rat
models of t-MCAO, p-MCAO, and p-MCAO with diabetic
condition as these discrepancies may partially explain
repetitive failures of experimental findings during clinical
trials. Thus, further characterizing the detailed molecular
and cellular processes will unveil the complex pathological
processes and will provide the basis for more coherent
clinical interventions.

EXPERIMENTAL PROCEDURES

Animals Grouping and Drug Treatment
Adult male Sprague–Dawley rats weighing 200–230 g (8–9
weeks) were purchased from Guangdong Medical Laboratory
Animal Center, China. The experimental animals were housed at
Laboratory Animal Research Center, Peking University Shenzhen
Graduate School, under 12 h light/12 h dark cycle at 18–22◦C
and had free access to diet and tap water throughout the study.
The experimental procedures were set in such a way to minimize
rats suffering. All experimental procedures were carried out
according to the protocols approved by Institutional Animal Care
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and Use Committee of Peking University Shenzhen Graduate
School. We did not use any blind allocation or randomization of
rats, instead we adhered the criteria to keep similar weight animal
to same group under the same experimental condition. The rats
were randomly divided into 4 groups (n= 15/group) containing:
Sham operated control group; transient middle cerebral artery
occlusion for 90min followed by reperfusion group (I/R-
MCAO); permanent middle cerebral artery occlusion group (p-
MCAO); permanent middle cerebral artery occlusion in diabetic
rat group (Dia p-MCAO). Streptozotocin (40 mg/kg, Sigma, St.
Louis, MO, U.S.A.) dissolved in citrate buffer (0.1mM, pH 4.2)
and injected intraperitoneally to induce diabetic symptoms (23).
Blood glucose levels were determined using (Accu-Chek-Roche
Diagnostics, Mannheim, Germany) and diabetes was defined as
fasting blood glucose >300 mg/dL.

MCAO Surgery
MCAO procedure were operated as previously described (24–
26). Briefly, rats were anesthetized by mixture of xylazine and
ketamine (1:3.2, I/P). The body temperatures of rats were
maintained at 37 ± 1◦C by using blanket and heating lamps.
Briefly, a cervical incision was achieved on ventral side, keeping
the incision laterally toward right region. The underlying tissues
were carefully dissected to locate the right common carotid artery
(CCA), and which was further set free from thin vagus nerve run
laterally to CCA. The two bifurcating branches of CCA, external
and internal carotid artery were identified and set free from
surrounding tissues. The thin smaller arteries, occipital artery,
and superior thyroid artery arising from external carotid artery
were ligated with black silk (6/0) and subsequently pierced. A
permanent knot was applied to external carotid artery above the
origin of superior thyroid artery near hyoid bone. Moreover,
the external carotid artery was cut by a sharp scissor near
the bifurcating point, and immediately a thick nylon silk with
dimension (3/0) having length 3 cm while keeping the tip of the
silk round manually by heat, was inserted from the opening of
external carotid artery and advanced further into internal carotid
artery to the origin of middle cerebral artery (MCA), whereas
a small resistance indicated the occlusion of MCA. Twenty-
four hours after occlusion, all animals were killed for sample
collection. The sham group was exposed to similar measures
but with no nylon insertion. The filament remained in placed
in rats undergoing p-MCAO but removed 90min later after
stroke onset in transient ischemic rats (Figure 1A). All ischemic
rats were returned to the cages and were observed for 24 h.
Ten rats were died during the experiment including 3 from p-
MCAO group, 2 from t-MCAO, 5 from Dia + p-MCAO, which
we excluded from the study. Various methodologies are being
used for stroke induction, broadly classified into craniotomies
methods using photothrombosis and electrocoagulation. Both
kind of transient and permanent occlusion can be induced by
this. A major disadvantage associated with these procedures
are large craniotomies and sometimes damage to skin and
skull structures. Moreover, the intraluminal method using blue
nylon silk is widely used in experimental procedures, though
the major limitation associated with this model is subarachnoid
hemorrhage due to vessel rupturing and hyperthermia.

TTC Staining
TTC staining was performed as previously described (27).
Briefly, brain tissues were carefully removed and washed with
cold PBS. Three to four millimeter-thick coronary sections
were cut by using sharp blade from frontal lobe. These
coronal slices were incubated in 2% TTC for 10–20min, until
a thorough demarcation was observed for MCAO operated
rats; while sham operated rats were stained deep red. ImageJ
software was used to quantitatively determine infarcted area by
optimizing background of image to threshold intensity and then
calculated infarct area from total brain area. To compensate for
brain edema, the corrected brain infarction was calculated as
follow:Corrected infarct area = left hemisphere area – (right
hemisphere area – infarct area).

Western Blot
For Western blot analysis, the samples were dissolved in
lysis buffer (1M Tris–HCI, 5M sodium chloride, 0.5% sodium
deoxycholate, 10% sodium dodecyl sulfate, 1% sodium azide,
10% NP-40) (28). The homogenate was sonicated, centrifuged
and protein concentration was determined by BioRad protein
assay kit (BioRad Laboratories, CA, and USA) according to
guidelines provided by manufacturer. Equal amount of protein
(i.e., 30 µg per sample) were electrophoresed on 10% SDS-PAGE
gels followed by immunoblotting for transferring the protein
to poly-vinylidene fluoride (PVDF) membranes (Millipore,
Billerica, MA, USA). PVDF was washed in Tris-buffered saline
containing 0.1% Tween-20 (TBST) and then incubated with
primary antibodies overnight at 4◦C. The membranes were then
incubated with appropriate secondary antibody, and protein
band were detected using an ECL detection reagent according to
the manufacturer’s instructions (Amersham Pharmecia Biotech,
Uppsala, Sweden). The X-ray films were scanned, and optical
densities of the bands were analyzed through densitometry using
computer-based ImageJ program.

The antibodies used include anti-HSP70 (SC-66048), anti-
Bcl2 (SC-2960), anti-Caspase3 (SC-7148), anti-NRF2 (SC-722),
anti- HO-1 (SC-136961), anti-p-JNK (SC-6254), anti-JNK (SC-
7345), anti-P38 (SC-7972), anti-ERK (SC-135900), anti-NR2a
(SC-1468), anti-NR2b (SC-1469), anti-PSD95 (SC-71933), anti-
GluR1 (SC-55509), anti-p-GluR1 serine831 (SC-16313), anti
SNAP25 (SC-7538), anti-Synaptophysin (SC-17750), anti-BDNF
(SC-546), anti-VEGF (SC-7269), anti-p-NFkB, anti-TNF (SC-
52746), anti-GFAP (SC-33673), anti-COX2 (SC-7951), and anti-
β-Actin from (Santa Cruz, Biotechnology, CA, USA) at dilution
of 1:1,000. Anti-p-P38 (Cat # 4511), anti-p-ERK (Cat # 8544),
and anti-p-GluR1serine845 (Cat # 8084) were purchased from
Cell Signaling.

Immunohistochemistry
Brain tissues were fixed in 4% paraformaldehyde and embedded
in paraffin, and 4µm coronary sections were cut using a
rotary microtome (29). Tissue sections on coated slides were
de-paraffinized, with three different absolute xylenes and were
rehydrated with ethyl alcohol [from 100% (absolute) to 70%].
The slides were rinsed with distilled water and immersed in
0.01M phosphate-buffered saline (PBS) for 10min. The slides

Frontiers in Neurology | www.frontiersin.org 3 November 2019 | Volume 10 | Article 1178

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Shah et al. Pathological Comparisons of t-MCAO and p-MCAO

FIGURE 1 | Relative effect of ischemia on brain infarction and cell apoptosis (A) Flow chart of experiment. (B) Brain coronal sections were stained with TTC, which

distinguishes between ischemic and non-ischemic areas, one ways ANOVA followed by post-hoc bonferroni multiple comparison test using graph-pad prism-5

software (n = 7/group). *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. (C) Western blot analysis of Casp-3, Bcl2, HSP70. Densitometric analysis was

expressed in relative to β-Actin (n = 5/group). *p < 0.05 and #p < 0.05 relative to sham group, θp < 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia

p-MCAO. θθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of p-MCAO and Dia p-MCAO to

I/R, and its value is p < 0.001, ππshows significant difference of I/R MCAO to sham, and its value is p < 0.01, ηηηshows significant difference between p-MCAO and

Dia p-MCAO, and its value is p < 0.001. (D) Representative images of HSP70 immunofluorescence staining in CA1 and CA3 region of hippocampus (n = 5/group).

Scale bar = 100µm. *p < 0.05 and #p < 0.05 relative to sham group, θp < 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia p-MCAO. **p < 0.01,

***p < 0.001, ##p < 0.01, and ###p < 0.001.
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were processed for antigen retrieval step using a heat method.
The slides were allowed to cool and washed with PBS twice
times. After antigen retrieval, the slides were incubated with
3% hydrogen peroxidase to quench endogenous peroxidase and
were subsequently blocked with 5% serum depending upon the
sources of secondary antibodies used. After blocking, the slides
were incubated overnight in mouse anti-VEGF (SC-7269, Santa
Cruz Biotechnology) at 1:100 dilution. followed by treatment
with appropriate biotinylated secondary antibodies for 2 h and
successively with ABC reagents (Santa Cruz Biotechnology)
for 1 h at room temperature. The sections were washed with
PBS and stained in 3, 3′-Diaminobenzidine tetrahydrochloride
solution; they were then washed with distilled water, dehydrated
in graded ethanol (70, 95, and 100%), fixed in xylene, and
cover-slipped by a mounting medium. Immunohistochemical
results were analyzed by a light microscope (Olympus,
Japan), which was connected to a digital photomicroscopy
system. ImageJ software was used to quantitatively determine
hyperactivated VEGF, by optimizing background of image to
threshold intensity and analyzing cytoplasmic VEGF positive
cells at the same threshold intensity for all groups and was
expressed as the relative integrated density of the samples
relative to the sham.

Fluoro-Jade B Staining
The slides were immersed in a solution of 1% sodium
hydroxide, graded ethanol, and then in distilled water. Slides
were transferred into a coplin jar and were washed with 0.06%
potassium permanganate solution for 10min. The slides were
rinsed with distilled water, and then transferred to a 0.01%
Fluoro-Jade B solution containing 0.1% acetic acid. The slides
were then washed with distilled water and air dried. The
slides were incubated with DAPI and cover slipped with non-
fluorescent mounting media and photographed. ImageJ software
was used to quantitatively determine fluorescence intensity of
hippocampus/total area for all groups. The immunofluorescence
intensity was expressed as the relative integrated density of the
samples relative to the sham.

Immunofluorescence Analysis
After de-paraffinization of sections, the slides were autoclaved in
0.1M sodium citrate pH 6 for antigen retrieval step (30). The
slides were allowed to cool and washed with PBS twice times.
Slides were incubated with 5% normal serum depending upon
the source of secondary antibody used. The slides were incubated
with primary antibodies at 4◦C overnight (HSP70, 8-oxoguanine
p-JNK, COX2, GFAP) from Santa Cruz Biotechnology at 1:100
dilution. Next morning, after washing with PBS, fluorescent
labeled secondary antibodies (Santa Cruz Biotechnology) as 1:50
dilution were used for signal amplification in dark chamber,
followed by mounted with UltraCruz mounting medium (Santa
Cruz Biotechnology). The slides were pictured with confocal
scanning microscopes (Flouview FV 1000, Olympus, Japan) and
fluorescence intensity was quantitatively analyzed by ImageJ
and expressed as the relative integrated density of the samples
relative to the sham.

Statistical Analysis
Western blot bands and morphological data were quantified
using ImageJ software (Image J 1.30; // https://imagej.nih.gov/
ij/) and analyzed by GraphPad Prism 5 software. Data were
presented as means ± SD. Data were analyzed by one ways
ANOVA followed by post-hoc Bonferroni Multiple Comparison
test using graph-pad prism-5 software. Symbols ∗ or # or π or
θ or η represent significant difference values p < 0.05. Symbols
∗, # and π shows significant difference relative to sham. Symbol
θ shows significant difference relative to I/R MCAO, η shows
significant difference between p-MCAO and Dia p-MCAO.

RESULTS

Evaluation of Neurodegeneration in
Ischemic Models
Cerebral ischemia brings robust neuronal changes in the
core brain areas where dramatic blood flow reduction caused
irreversible cell death. Neuronal apoptosis could be seen after
MCAO in the ischemic penumbra or peri-infarct zone, where
blood flow is less severely reduced. Sham group showed no
infarction, while extensive infarction was observed for different
MCAO operated rats (Figure 1B). A significant inter group
variability was observed, whereas Dia p-MCAO and p-MCAO
group showed extensive infarction, than I/R MCAO group
relative to sham group. Further calculations of corrected %
infarcted area were higher for Dia p-MCAO (28.35 ± 4.3)
than p-MCAO (22.71 ± 3.9 %) and I/R-MCAO (11.4 ± 3.5).
Unlikely no noticeable infarction was observed at hippocampus
in any ischemic group (Figure 1B). The apoptotic (Caspase-
3) and anti-apoptotic protein marker (Bcl2) expression were
also evaluated to validate the relative expression in different
ischemic models (Figure 1C). No significant alterations were
noticed in I/R group for these markers, contrary to p-
MCAO (Figure 1C). Furthermore, Heat shock proteins (HSP)
are physiological sensors that delineate extent of injury
in core, penumbral and peri-infarct tissue. We therefore
examined HSP70 expression by western blot. The results
showed elevated expression of HSP70 in permanent and diabetic
ischemic group relative to sham (Figure 1C), implies that peri-
infarct waves spread more sporadically in p-MCAO than I/R
MCAO. Moreover, western blot results were also validated by
immunofluorescence findings (Figure 1D) in CA1 and CA3
region of hippocampus.

NMDA Receptor Signaling
Several reports reiterated NMDA excitotoxicity to be the
fundamental cause of ischemic induced neuronal damage.
Synaptic NR2a activation mediates NR2a/AKT signaling kinases,
linked to CREB activation for neuronal survival (31). BDNF
also demonstrated to activate several kinases including AKT
(32). Our result suggested attenuated expression of NR2a
and NR2b receptor subunit expression. These results further
provide support to the previous observations, delineating
MCAO induced calpain degradation with concurrent lower
expression of neuronal survival pathways downward of NR2a
(33). Moreover, calpain induced degradation and decreased
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FIGURE 2 | Effect of ischemia on NMDA receptor related molecule changes (A) Representative Western blot of p-AKT, AKT, matu-BDNF, NR2a, NR2b, PSD95. (B)

Histograms indicating comparative expression of various glutamate receptors in hippocampus. Densitometric analysis was expressed in relative to β-Actin (n =

5/group). *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. θp < 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia p-MCAO. ***p < 0.001

and ###p < 0.001. ππshows significant difference of I/R MCAO to sham, and its value is p < 0.01, πππshows significant difference of I/R MCAO to sham, and its

value is p < 0.001, θθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of p-MCAO and Dia

p-MCAO to I/R, and its value is p < 0.001, ηηshows significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.01, ηηηshows significant

difference between p-MCAO and Dia p-MCAO, and its value is p < 0.001.

expression of full length NR2a in MCAO can be reversed
by increased interaction of PSD95/NR2a (34). NR2a and
NR2b were differentially expressed in these ischemic models,
whereas NR2a significantly downregulated in I/R and dia p-
MCAO (Figure 2), compare to p-MCAO. Unlikely, for NR2b,
I/R group showed maximum cleavage than other ischemic
group. The results of PSD95 is in line with NR2a expression
for I/R group and p-MCAO, as PSD95 did not change in
I/R, which may suggest increase susceptibility of NR2a to
cleavage, while hyperexpression of PSD95 in p-MCAO may
hypothetically be explained for promoting NR2a downward
survival pathway.

Expression of MAPK Family Protein in
Ischemic Models
Several studies demonstrated association of P38 MAPK, and
c-Jun-N-terminal kinases (JNKs) to apoptotic cell death.
Western blot analysis demonstrated elevated expression of
activated p38 and JNK (p-JNK) in permanent and in diabetic
ischemic group compared to sham and I/R operated group
(Figure 3A). Furthermore, immunohistochemistry results were
validated by western blot findings for p-JNK in permanent
and diabetic ischemic models (Figure 3B). Both neuroprotective
and neurotoxic effects are attributed to ERK activation (35,
36). ERK is linked to neuronal injury in ischemic brain
model (36). We found hyperactivated ERK in permanent

and in diabetic ischemic group compared to sham operated
group (Figure 3A).

Moreover, Fluoro-Jade B (FJB) staining was performed to
examine apoptotic cell death. Significant numbers of FJB-
positive cells were noticed in CA1, CA2, and CA3 region
of hippocampus in permanent and diabetic ischemic group
(Figure 3C). The sham and I/R group did not exhibit significant
positive staining. The FJB data is parallel to Figure 1A,
where no significant changes were observed in I/R group for
Caspase-3 and Bcl2.

Glutamate Neurotransmission and Axonal
Degeneration
AMPA receptor activation is triggered by glutamate
accumulation following cerebral ischemia. In line with previous
reports, we observed significantly down expression of glutamate
receptor (AMPA, GluR-1) receptor in p-MCAO groups compare
to I/R operated group in hippocampus (Figure 4). We also
studied the phosphorylation of AMPA (GluR1) at serine 831 and
845. A marked increase at serine 831 were observed in p-MCAO
groups (Figure 4), while no change was observed in I/R group.
Moreover, serine 845 was found with aberrant expression in
permanent MCAO group, and with decrease expression in
diabetic and I/R (Figure 4).

Synaptosomal associated protein 25 (SNAP-25), and
synaptophysin acts as synaptic marker for neuronal
differentiation. To examine the detrimental effect of ischemic
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FIGURE 3 | Ischemia induced cell stress and death related signaling changes (A) Representative Western blots of p-JNK, JNK, p-P38, P38, p-ERK, ERK.

Densitometric analysis was expressed in relative to β-Actin (n = 5/group). (B) Representative images of p-JNK immunoreactivity in CA1, CA2, and CA3 regions of

hippocampus in I/R, p-MCAO and Dia p-MCAO group (n = 5/group). scale bar = 100µm. (C) Representative images of FJB histochemistry showing apoptotic cells;

scale bar = 30µm. Significant neuronal apoptosis in CA1, CA2 and CA3 region of hippocampus was observed in p-MCAO and Dia p-MCAO group (n = 5/group). θp

< 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia p-MCAO. *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. ***p < 0.001, **p < 0.01,
###p < 0.001, and ##p < 0.01. θθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of

p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.001, ηηshows significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.01, ηηηshows

significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.001.

damage on synaptic proteins following cerebral ischemia, we
studied the expression of synaptophysin, and synaptosomal-
associated protein-25 (SNAP-25) (Figure 4). It was observed
that expression of SNAP-25 decreased in all ischemic operated
animals (Figure 4), while no significant changes were observed in
expression of synaptophysin except for dia p-MCAO (Figure 4).

Effect on Inflammatory Markers
Reports have consistently supported TLR4 activated downstream
inflammatory mediators such as p-NF-κB, iNOS, and COX2

in ischemic brain injury. To evaluate whether these mediators
could also be activated in hippocampus in different ischemic
models, we performed western blotting. Moreover, the activation
of TLR4 is linked to many downstream effects including
activation of p-NF-κB, iNOS, and COX2. Western blot results
showed elevated expression of these mediators in permanent
ischemic brain (Figure 5). Furthermore, the western blot
data was validated by immunostaining findings for COX2
(Figure 5B). Activation of p-NF-κB encodes the bulk of
inflammatory mediators that exacerbate ischemic brain injury.
Ischemic stroke is characterized by reactive gliosis in which
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FIGURE 4 | Expression of glutamate neurotransmission and synaptic changes in various ischemic models western blot analysis of GluR1, p-GluR1 (Ser845, Ser831),

SNAP25, Synaptophysin. Densitometric analysis was expressed in relative to β-Actin (n = 5/group). θp < 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and

Dia p-MCAO. *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. ***p < 0.001, **p < 0.01, ###p < 0.001, and ##p < 0.01. θθshows significant

difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.001,
ππshows significant difference of I/R MCAO to sham, and its value is p < 0.01, πππshows significant difference of I/R MCAO to sham, and its value is p < 0.001,
ηηshows significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.01.

the resident microglia and astrocytes assume a characteristics
cellular appearance to mediate progression of ischemic injury.
These activated hypertrophic cells work as resident machinery
for generating inflammatory mediators. We investigated the
expression of astrocytes in ischemic hippocampus (GFAP
reactive cells) following 24 h of permanent ischemia (Figure 5C).
Immunofluorescence results revealed a significant increase in
the number of GFAP reactive cells in (MCAO) compared to
sham (Figure 5C).

Effect on Oxidative Stress
To further estimate oxidative stress in hippocampus, we used
fluorescent dye 8-oxoguanine as oxidative stress marker. Our
result demonstrated elevated expression of 8-oxoguanine

particularly in diabetic ischemic group (Figure 6A). Moreover,

the ubiquitously expressed nuclear erythroid 2-related factor-2
(Nrf2) is an endogenous antioxidant enzyme, translocate to
nucleus for stimulating several downstream antioxidant proteins
such as HO-1, superoxide dismutase (SOD) and glutathione
(GSH) (37). Western blot results demonstrated elevated
expression of Nrf2 and HO-1 in diabetic group (Figure 6B).
VEGF is specific endothelial growth factor, implicated both in
disease and normal condition. Several studies demonstrated
linkage of reduced VEGF in neurodegeneration (38). Moreover,
VEGF signaling, and angiogenesis are modulated by ROS
formation (39). Previous studies suggested the pro-angiogenetic

effect of NRF2 and down regulation of NRF2 abrogated NRF2
induced vascular sprouting (40).

To observe the expression of these growth factors in
hippocampus at different ischemic intervals, we performed
western blot analysis 24 h after MCAO (Figure 6B).
Moreover, immunohistochemistry results further validate
western blot findings for VEGF in permanent ischemic
models (Figure 6C).

DISCUSSION

Stroke is the most devastating human health condition. Different
kind of animal models are used in the laboratory to mimic
human ischemic stroke with addition of different occlusion
periods. Necrotic cell death primarily occurs in ischemic core,
while apoptotic cell death mostly targets the penumbral tissues.
The demarcation between these tissues largely depends on time
of occlusion. Several studies confirmed apoptotic cell death
in hippocampus after 24 h of ischemia in different rat strain
(15, 41, 42). Our results are parallel to previous published
reports, found apoptotic cell death in hippocampus after 24 h
of ischemia (41, 43). Moreover, these authors found no changes
in Caspase and Bcl-2 expression in hippocampus using I/R
model. Likely, we found no changes in I/R group, but these
proteins were significantly disturbed in diabetic and permanent
ischemic group.

Frontiers in Neurology | www.frontiersin.org 8 November 2019 | Volume 10 | Article 1178

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Shah et al. Pathological Comparisons of t-MCAO and p-MCAO

FIGURE 5 | Effect of ischemia on inflammatory related molecules in the hippocampus (A) Western blot analysis of p-NFκB, NFκB, TNFα, GFAP, and COX2.

Densitometric analysis was expressed in relative to β-Actin (n = 5/group). (B) Representative photos of immunohistochemistry for COX2, scale bar = 100µm, and (C)

GFAP; scale bar = 30µm, (n = 5/group). The CA1, CA2, and CA3 segments in p-MCAO and Dia p-MCAO showing elevated expression of COX2 and GFAP. θp <

0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia p-MCAO. *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. ***p < 0.001, **p < 0.01,
###p < 0.001, and ##p < 0.01. θθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of

p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.001, ηηshows significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.01, ηηηshows

significant difference between p-MCAO and Dia p-MCAO, and its value is p < 0.001, ππshows significant difference of I/R MCAO to sham, and its value is p < 0.01.
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FIGURE 6 | Effect of ischemia on oxidative distress (A) Representative immunofluorescence images of 8-oxoguanine staining indicate comparative expression of ROS

in various CA1, CA2, and CA3 region of hippocampus (n = 5/group, Scale bar = 100µm). (B) Western blot analysis of NRF2, HO-1, matu-VEGF. Densitometric

analysis was expressed in relative to β-Actin (n = 5/group) (C) Representative images of VEGF immunohistochemistry; scale bar = 50µm. The CA1, CA2, and CA3

segments in p-MCAO and Dia p-MCAO showing elevated expression of VEGF (n = 5/group). θp < 0.05 relative to I/R MCAO, ηp < 0.05 between p-MCAO and Dia

p-MCAO. *p < 0.05, #p < 0.05, and πp < 0.05 relative to sham group. ***p < 0.001, **p < 0.01, and ###p < 0.001. θθshows significant difference of p-MCAO and

Dia p-MCAO to I/R, and its value is p < 0.01, θθθshows significant difference of p-MCAO and Dia p-MCAO to I/R, and its value is p < 0.001, ηηshows significant

difference between p-MCAO and Dia p-MCAO, and its value is p < 0.01, ππshows significant difference of I/R MCAO to sham, and its value is p < 0.01.
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In the current manuscript, we found significant differences
in protein expression among t-MCAO, p-MCAO, and diabetic

p-MCAO at hippocampus. Our result suggested that peri-infarct

localization can extend to hippocampus after 24 h of p-MCAO,

as shown by HSP70 expression (Figures 1B,C). Hyperglycemics

condition exacerbate MCAO induced brain damage by
compromising vascular permeability and exacerbating neuronal
toxicity. Likely, the protein expression and morphological
findings in this study showed severe disturbances in diabetic and
permanent ischemic group than t-MCAO. Overexpressed HSP70
indicates compromised protein synthesis due to reduced blood
supply in hippocampus (44), in addition it reflects potential
tissue damage (45). It is previously demonstrated that protein
synthesis in penumbral and peri-infarct tissue is inhibited within
hours after ischemia (46, 47). Induced HSP70 could also serve as
endogenous protector to cope against denatured protein induced
by ischemia (48).

Several reports consistently pointed out glutamate (Glu)
excitotoxicity to be the fundamental hallmark of ischemic
induced neurodegeneration (49). Previous results demonstrated
that glutamate neurotoxicity can be observed within 2–4 h of
ischemic occlusion (50, 51). In I/R MCAO models, glutamate
restores to basal level quickly. However, this alteration in
glutamate level can be observed for a prolonged period due to
collapse of exchange pumps in p-MCAO models (51, 52). The
role of NMDA in ischemic brain injury is not clearly known
due to conflicted results (49, 53, 54). It was suggested that
NR2a subunit of NMDA lead to neuronal survival while NR2b
is linked to neuronal apoptosis (33, 49). Furthermore, calpain
is activated by ischemic injury, which degrades a large array of
molecules including NMDA receptor subunits NR2a and NR2b
(55). Interestingly, our results found different response patterns
of NR2a and NR2b and the downstream signaling of AKT,
suggesting that NMDA receptors may underlie distinct processes
of glutamate transmission.

Ischemic stroke rigorously disrupts synaptic networks
in hippocampus tissue. A transient ischemic occlusion is
responsible for closure of about 30% synapses in hippocampus
region (56). Some reports also suggested synaptic remolding
after ischemic damage in hippocampus with correspondingly
increased synapse formation (57, 58). AMPA receptor activity
is controlled by several mechanisms including phosphorylation
and calpain mediated cleavage of GluR1 subunit (59). In
line with previous reports, we observed down expression of
GluR1 in ischemic hippocampus. Phosphorylation at serine
845 is involved in the translocation of AMPA to neuronal
membrane and such AMPAR phosphorylation can boost
synaptic plasticity for learning and memory (60). Ischemic
brain injury impairs trafficking of AMPA by down regulating
(GluR1 serine 845) phosphorylation. Synaptophysin and
SNAP-25 level was compromised in ischemic brain injury
significantly in permanent and diabetic ischemic group similar
to previous observation (61). Moreover, PSD95 showed high
expression in permanent and diabetic ischemic as observed
previously (56, 62).

Neurotropic factors are linked to neuroplasticity which
accelerates neuronal repairment during ischemic brain injury.
Brain derived neurotrophic factor (BDNF), vascular endothelial

growth factor (VEGF) are categorized as neurotrophins having
important pleiotropic effects on brain structuring. Studies
suggested that BDNF and VEGF governs neurogenesis and
improve functional outcomes after ischemic stroke (63, 64). In
line with previous research, our results demonstrated hyperactive
VEGF and BDNF in hippocampus. The induction of VEGF
after cerebral ischemia represents inherent defense mechanism,
whereby expressed VEGF leads to vascularization and sprouting
of blood vessel to cope with the severe demand of energy.

Release of inflammatory proteins further exacerbate ischemic
stroke injury by several mechanisms, such as activation of Toll
like receptor (TLR-4) on glial cells stimulates stress kinases
like (JNK and P38-MAPK) (65). Activation of these pathways
triggers mitochondrial apoptotic pathway while inhibiting these
kinases attenuates inflammatory cytokines (66). Cytokines are
integral component of inflammation and produced largely by
activated microglia, astrocytes, and neurons immediately within
hour after ischemic injury. Twenty-four hours after permanent
ischemia, higher expression of NF-KB can trigger iNOS, COX-
2 production; both are toxic mediators of inflammatory cascade
(67, 68). Besides its role in neuron inflammation, NF-KB is
also involved in oxidative stress via the activation of NRF2, a
ubiquitous transcription factor that modulates the expression
of various oxidant and antioxidant process related proteins,
such as HO-1 and superoxide dismutase (SOD). Our results
demonstrated elevated expression of Nrf2 and HO-1 in all
three models, showing that the exacerbating effects of prolonged
ischemic time and diabetic conditions.

In conclusion, our result suggests that hippocampus is
adversely affected by ischemic injury after 24 h of intraluminal
occlusion using 3/0 nylon silk. We noticed ischemic driven
alteration in protein expression and histological changes in
various segments of hippocampus. Furthermore, the most
two commonly used MCAO models exhibited tremendous
differences in terms of neuronal cell loss and neurological deficits,
glutamate excitotoxic related signaling, synaptic transmission
markers, neuron inflammatory and oxidative stress molecules.
These differences may reflect the variations in different models,
which may provide valuable information for mechanistic and
therapeutic inconsistences as experienced in both preclinical
models and clinical trials. More interestingly, the pathological
profiles of p-MCAO in diabetic rats showed that a wide array
of molecular processes are involved in the devastating effects of
hyperglycaemia other than proposed changes of oxidative stress
and neuron inflammation.
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