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RESEARCH ARTICLE

Hapke‑based computational method 
to enable unmixing of hyperspectral data 
of common salts
Fares M. Howari1*, Gheorge Acbas1, Yousef Nazzal1 and Fatima AlAydaroos2

Abstract 

Environmental scientists are currently assessing the ability of hyper-spectral remote sensing to detect, identify, and 
analyze natural components, including minerals, rocks, vegetation and soil. This paper discusses the use of a nonlinear 
reflectance model to distinguish multicomponent particulate mixtures. Analysis of the data presented in this paper 
shows that, although the identity of the components can often be found from diagnostic wavelengths of absorption 
bands, the quantitative abundance determination requires knowledge of the complex refractive indices and average 
particle scattering albedo, phase function and size. The present study developed a method for spectrally unmixing 
halite and gypsum combinations. Using the known refractive indexes of the components, and with the assistance of 
Hapke theory and Legendre polynomials, the authors develop a method to find the component particle sizes and 
mixing coefficients for blends of halite and gypsum. Material factors in the method include phase function param-
eters, bidirectional reflectance, imaginary index, grain sizes, and iterative polynomial fitting. The obtained Hapke 
parameters from the best-fit approach were comparable to those reported in the literature. After the optical constants 
(n, the so-called real index of refraction and k, the coefficient of the imaginary index of refraction) are derived, and 
the geometric parameters are determined, single-scattering albedo (or ω) can be calculated and spectral unmixing 
becomes possible.

Keywords:  Reflectance spectroscopy, Halite, Gypsum, Reflectance parameters, Unmixing
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Introduction
Interest has grown in hyperspectral imaging and remote 
sensing for environmental analysis as it is inexpensive 
and fast and does not harm the environment in com-
parison to tradition soil analysis methods [1–3]. The 
hyper-spectral technique collects light absorbance and 
transmittance data from materials. The various earth 
materials differ from each other in their chemical and 
physical properties, leading to differences in their reflec-
tance and absorption of light at different wavelengths. 
These differences are the basis for analyzing and clas-
sifying these material [4–7]. Experimental earth mate-
rial models have been used to better understand their 

spectral signatures and to answer some related questions. 
Salt and evaporite minerals are common earth materials 
that can be investigated for their reflectance parameters 
[1, 4–6]. There is much interest in them since they have 
simple mineralogy yet significant environmental impacts 
on soils and plants. However, collected spectral data can-
not be directly visually interpreted. Spectral pretreat-
ment techniques, such as data normalization, continuum 
removal, etc., must be applied to smooth spectral graphs.

One of the outstanding problems facing hyperspectral 
methods is the purity issue, i.e. how to relate the spectral 
properties of mixtures to the diagnostic characteristics 
of their components. Spectral unmixing is the procedure 
by which the spectrum of a mixed pixel is decomposed 
into a collection of constituent spectra or end members 
and a set of corresponding fractions or abundances of 
components. To solve this, two approaches are usually 
used (1) the semantic approach by tracing the diagnostic 
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spectral features such as the location, shape and depth 
of the absorption bands for the pure components (end-
members), and relating these diagnostic features to the 
spectrum of the mixture of the components [3, 7–9]; and 
(2) the mathematical and statistical approach through 
equations or models that describe the reflectance pro-
cess in terms of the variables that control light reflections 
[10–13]. Figure  1 shows the taxonomic tree of different 
unmixing techniques, which are presented and discussed 
in the literature [14]. The present study will briefly review 
linear mixing, with an emphasis on the Hapke model. For 
fractional mixtures, the linear mixing model is widely 
used. The linear mixing model assumes a well-defined 
proportional table of materials with a single reflection of 
the illuminating solar radiation. The observed spectrum 
‘Y’ for any pixel can be expressed as: 

Ai: fractional abundance of the ith endmember spec-
trum; Sx: xth end member spectrum; Y: observed 

(1)

Y = A1S1 + A2S2 + · · · + AxSx +W

=
m
∑

i=1

AxSx +W

= AS + W

spectrum; W: error term for additive noise; S: matrix of 
end members.

If we have K spectral bands, and we denote the xth 
endmember spectrum as Sx and the abundance of the 
ith endmember as Ai, the observed spectrum is Y for 
any pixel, accounting for additive noise (including sensor 
noise, endmember variability, and other model inadequa-
cies). This model for pixel synthesis is the linear mixing 
model (LMM).

For example, consider deciduous reflectance (Rdec) is 
10% and spruce reflectance (Rspr) is 50% and reflectance 
measured for the pixel (Rpix) is 30. The mixing model for 
this example will be as:

Substitute values:

Recognizing that all fractions must sum to 1 i.e. 
(Adec + Aspr) = 1; one can rearrange, substitute and solve 
via:

On the other hand, for intimate mixtures, the non-lin-
ear mixing approach has been tested and used [9]. The 
arrangement of components is not in an order because 

(2)Rpix = (Adec ∗ Rdec) +
(

Aspr ∗ Rspr

)

(3)30 = (Adec ∗ 10) +
(

Aspr ∗ 50
)

(4)Aspr = 1− Adec

Fig. 1  Taxonomic tree of the different unmixing techniques presented in literature [14]
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the components comprising the medium are not organ-
ized proportionally on the surface. The intimate mixture 
of materials results when each component is randomly 
distributed in a homogeneous way. Non-linear mixing is 
described by Hapke theory.

In Hapke theory, the isotropic multiple scattering 
approximation (IMSA) is often used to derive the diffuse 
reflectance of an intimate mixture, and combines two 
terms: the contribution of singly scattered light is given 
exactly, while the multiply scattered light is described by 
an approximate solution to the radiative transfer equation 
(RTE) for isotopically scattering particles [14]. One solves 
the RTE in an infinitely thick half-space of dispersed 
particulate matter. The derivation assumes that the par-
ticles are much larger than the wavelength of light, and 
uses geometrical optics arguments to solve the radiative 
transfer integral equations. IMSA considers large phase 
angles, B(g) = 0 and isotropic scattering, p(g). The objec-
tive of the present study is to use Hapke parameters from 
literature and fitting techniques to simulate and unmix 
spectra of a simple salt or evaporite system. The selected 
system is gypsum and halite and their mixtures. These 
salts have been selected because they are very commonly 
present in the soils of arid and semi-arid regions.

It was predicted that an intimate mixture of powders 
may be linearized in the single-scattering albedo [15]. For 
example, various mixtures of olivine, anorthite, enstatite 
and magnetite were studied [4]. This research [4] esti-
mated the single-scattering albedo from bi-directional 
reflectance measurements, and converted the estimated 
mixing coefficients to mass fractions using the density 
of the endmembers. While other researchers demon-
strated this technique for plagioclase-dominated min-
erals, computing the density from electron microprobe 
measurements [16]. Similarly, Hapke model was applied 
as a basis for unmixing of various mineral mixtures [17]. 
They replaced the measurement of density with further 
reflectance measurements. Other studies used the real 
and imaginary part of the optical constant to compute 
a quantitative abundance estimate [10]. This study pro-
vides a quantitative estimate of the abundance of halite 
and gypsum from spectral reflectance data, using Hapke 
model.

Methodology
Experimental design
In this study, laboratory experiments have been car-
ried out under controlled conditions for the preparation 
of pure gypsum and halite crusts and their mixtures. 
Analytical grade compounds of NaCl (halite), and 
CaSO4·2H2O (gypsum) were used specifically. The weight 
fraction, grain size, type of mixing and mixing ratios are 
the main experimental variables.

Data presentation
Different approaches of data processing were considered. 
The traditional method of graphing the spectral data was 
used. This method involves plotting the percent of reflec-
tance against wavelength for the entire spectral region. 
Another method is the continuum removal, which is of 
significance in the study of the absorption features [9]. 
The continuum is the background absorption onto which 
the absorption features are superimposed. The contin-
uum removal method implies the removal of the absorp-
tion features in the spectra, by plotting the intensities or 
band depths of the absorption features against the associ-
ated wavelengths. This technique of spectral reconstruc-
tion can isolate the spectral features and set them on a 
level, so that comparisons can be made [9].

Unmixing model
The Hapke model describes the interaction of light with 
a medium, consisting of closely packed and randomly 
oriented particles (grains) [19]. In this model the bidirec-
tional reflectance (the ratio of scattered irradiance to the 
source irradiance) is given below:

The variables μ and μ0 are the cosines of the reflec-
tion and incidence angles; g is the phase angle; B(g) is 
the back-scattering function, which defines the increase 
in brightness of a rough surface with decreasing phase; 
P(g) is the single-particle phase function; and the H(μ) is 
the isotropic scattering function. The main parameter is 
ω, the single scattering albedo, defined as the probabil-
ity that the radiation would be scattered by the particle 
(power scattered to total power absorbed and scattered). 
The single scattering albedo can be expressed in term of 
optical constants n, k and the effective grain size 〈D〉 (the 
average distance traveled by rays that traverse the particle 
once, without being internally scattered); ω would thus 
be dependent on the wavelength of radiation (through n 
and k) and the shape and size of the particles (〈D〉 ≅ 0.9D 
for spherical particles, and departures from sphericity 
will decrease 〈D〉 further).

where R(0) is the surface reflection coefficient for exter-
nally incident light:

(5)

r
(

µ,µ0, g
)

= S
ω

4π(µ+ µ0)
{[

1+ B
(

g
)]

P
(

g
)

+H(µ)H(µ0)− 1
}

(6)ω = Se + (1− Se)
1− Si

1− Si�
�



Page 4 of 15Howari et al. Chemistry Central Journal  (2018) 12:90 

Equation 7 is the specular reflection coefficient at nor-
mal incidence. An approximate expression for Se, valid if 
k is small, can be found by adding 0.05 to the specular 
reflection. If k is not small a more general expression for 
Se is given by

Si the reflection coefficient for internally scattered light 
is given by:

And Θ the transmission function of the grain is given 
by:

Internal bi-hemispherical reflectance is ri and α is 
internal absorption coefficient, while � is the wavelength 
of the photons.

H is Chandrasekhar integral multiple scattering 
function:

B is the backscattering function:

(7)R(0) =
(n− 1)2 + k2

(n+ 1)2 + k2

(8)Se = 0.0587+ 0.8543 R(0) + 0.0870 R(0)2

(9)Si = 1−
4

n(n+ 1)2

(10)� =
ri + exp

(

−
√
α(α + s)�D�

)

1+ ri + exp
(

−
√
α(α + s)�D�

)

(11)α =
4kπ

�

(12)ri =
1−

√

α
α+s

1+
√

α
α+s

(13)H(x) =
1

1− ωx
[

r0 + 1−2r0x
2 ln

(

1+x
x

)]

(14)r0 =
1−

√
1− ω

1+
√
1− ω

(15)B(G) =
B0

1+ 1
h
tan

( g
1

)

h (0 ≤ h ≤ 1) is the angular width and B0 (0 ≤ B0 ≤ 1) the 
amplitude of the opposition effect.

P(g) is the particle scattering phase function and 
describes the angular pattern into which the power is 
scattered. Where g = i − e is the phase angle. This func-
tion can be modeled by Legendre polynomials:

Or a double Henyey-Greenstein function:

where b (0 ≤ b ≤ 1) characterizes the anisotropy of the 
scattering lobe: b = 0 isotropic case, b = 1 single direc-
tion diffuser and c(0 ≤ c ≤ 1) backscattering fraction, 
characterizes the main direction of the diffusion, c < 0.5 
representing forward scattering, and c > 0.5 representing 
backward scattering. In an intimate mixture of differ-
ent minerals, bidirectional reflectance r

(

µ,µ0, g
)

 would 
depend nonlinearly on the abundances of each mineral 
component. On the other hand, the single-scattering 
albedo of a mixture of grains ωmix, is a linear combination 
of the single-scattering albedos of its individual endmem-
bers, ωi:

fi is fractional relative cross section of component i:

mi is mass abundance, ρi is density, Di is the grain size of 
component i in the mixture. Thus, the reflectance spec-
tra can be inverted to determine the mass abundance 
and grain sizes of the endmembers in the mixture. These 
equations and associated python code are provided in the 
Additional files 1, 2 and 3.

The Hapke model can be considered as an optimiza-
tion problem through which we try to fit the data to a 
model that depends on a set of parameters. Since there 

(16)

P
(

g
)

= 1+ b cos
(

g
)

+ c
[

1.5 cos
2
(

g
)

− 0.5

]

or

P(g) = L0(cos(g))+ b ∗ L1(cos(g))+ c ∗ L2(cos(g)), as
L0 = 1, L1 = x and L2 = 1/2(3x2 − 1), c < b

(17)

P
(

g
)

= (1− c)
1− b2

(

1+ 2b cos
(

g
)

+ b2
)
3
2

+ c
1− b2

(

1− 2b cos
(

g
)

+ b2
)
3
2

(18)ωmix =
∑

i

fiωi

(19)fi =
σi

∑

i σi

(20)σi =
mi

ρiDi
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are so many parameters it is practical to use optical and 
literature data to reduce the indeterminacies (over-fit-
ting). Phase function parameters from measurements of 
the bi-directional reflectance at several phase angles are 
often used to determine some geometric parameters. To 
this end, one must measure the same reference sample 
in seven or more geometries, varying the incidence and 
emergent angles. This, however, is time consuming. For 
gypsum we used related results in Mustard and Pieters 
[4]. For halite the same geometrics values were assumed. 
Reducing the uncertainties in these values yields better 
fits and reduces the uncertainties in the statistical results, 
but does not significantly change the results for these 
samples. However, while optimizing the Hapke model, 
each grain size parameter usually requires separate meas-
urements for gypsum [12] and for halite [18]. The method 
of Robertson et al. [10] was used, i.e. n was assumed to be 
known and the reflectance model was inverted to derive 
the effective grain size D and k. Also, with n values, 
Kramers–Kronig relations could be used to obtain the 
real and imaginary index of refraction from bidirectional 
reflectance measurements, though this requires larger 
spectra extending to UV and MIR. Since we had one ref-
erence sample with unknown grain sizes, D and k were 
kept free, but the starting k values were taken from the 
literature for gypsum. This provided starting values for 
effective grain size. Because of this approach, k values dif-
fer slightly from those in the literature, as the values also 
depend on other factors, e.g. hydration. For halite, k has 
not been sufficiently well studied in the literature. Halite 
is problematic, and is unique in that the single scatter-
ing albedo and the absorption values place it in a region 
where uncertainties are large. To determine the k values 
for halite the same procedure was used, again keeping 
the effective grain size as a free parameter. The difference 
is that the grain size of gypsum was taken as a starting 
parameter, assuming the two samples were prepared in 
the same way, to plot the results.

Inversion algorithms
If the optical material parameters n and k, internal scat-
tering s, the porosity S and the phase function parameters 
b and c are given, the reflectance spectra can be inverted 
to determine the mass abundance and grain sizes of the 
endmembers in the mixture. The phase function param-
eters b and c are determined by taking measurements 
of bidirectional reflectance at several angles, g [4]. Also, 
the wavelength-dependent real and imaginary indices of 
refraction can be obtained from bidirectional reflectance 
of samples with different grain sizes [13]. There are two 
general algorithms which were used to extract the mass 
abundances and the grain sizes of the endmembers in the 
mixture, from the model and measured reflectance.

The first approach [15, 19–21] is to find best fitting 
parameters mi, Di that minimize the root mean square of 
the difference between the model and data reflectance. 
The second method is the probabilistic method [6], that 
uses a Markov Chain Monte Carlo algorithm and Bayes 
Theorem to estimate the probability density functions 
of the model parameters, given the reflectance data and 
model relationship between parameters. One of the 
advantages of the probabilistic model is that the detection 
noise model (which can be non-Gaussian for low count 
photons per pixel) can be accounted in the calculations.

While the first approach supplies a single set of data for 
the endmember mass fractions and particles sizes, the 
probabilistic model gives a range of values and, in prin-
ciple, can account for non-unique solutions in the model 
parameters.

Results and discussion
Figures  2 and 3 show the spectral profiles of halite and 
gypsum and their mixtures at different ratios. The profile 
shape for each endmember is unique and is easily dis-
tinguishable, one from the other. The differences in the 
shapes of the spectral profiles mainly result from differ-
ences in grain size and impurities. In the endmember 
spectra, gypsum has multiple absorption bands in the 
300–2500 nm wavelength range, making it easily identifi-
able [8, 9]. The spectral frequencies are associated with 
the vibrational modes of the water molecules in the min-
eral structure. Similarly, the molecular vibration of water 
(O–H bonds vibrations) leads to absorption dips in the 
reflectance spectra of halite. However, there are noted 
differences between the two spectra making the distinc-
tion between the two minerals possible. To determine the 
band position, the study extracted the continuum spec-
tra by iterative polynomial fitting of the reflectance data. 
This procedure helps to remove the shifts in the posi-
tion of the bands due to the different slopes of contin-
uum baseline spectra of the minerals. With the baseline 
removed, the spectra show that halite and gypsum have 
common bands at 1450 nm, 1950 nm and 2200 nm. How-
ever, for the gypsum the 1450, 1950 and 2200 nm bands 
consist of up to three overlapped bands. In addition, gyp-
sum has distinct absorption bands at 950  nm, 1200  nm 
and 1750 nm.

The three distinct peaks make possible the detection 
of the presence of gypsum in the mixtures (Fig. 3), with 
the band depths depending on the gypsum concentration 
in the mixture. There is a notable sharp decrease in the 
1750 and 2200 nm gypsum bands from 0.75 to 0.5 nomi-
nal. The present study deals only with the 750–2500 nm 
wavelength range, in accord with Robertson [10], as 
shown in Fig. 4, mainly because of the significant varia-
tion in the spectral profiles slope and the significant noise 
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Fig. 2  Spectra of the prepared gypsum (a) and halite (b) in comparison with the spectra from USGS
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Fig. 3  Spectra of gypsum and halite with their mixtures (a) in comparison of their continuum free spectra (b, c)
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in the spectral region of 250–700 nm. Another reason is 
that halite has a strong absorption in UV, where n also 
varies strongly. The UV absorption band extends to VIS, 
making measurements and estimation of k values uncer-
tain. Also, the single scattering albedo of gypsum is flat in 
the entire VIS range and ω values lie close to 1.

Polynomial fitting of the smooth background is a com-
mon algorithm used in peak fitting software. The idea is 

to keep the polynomial series low in degree (minimizing 
the number of parameters-Occam’s razor). Thus, the iter-
ative algorithm is looking for that series that approximate 
the background satisfactory. This fitting is necessary to 
get a (qusi) quantitative understanding of the contribu-
tions of the components in the mixture to the reflection 
spectra, assuming linear mixture model is valid, from 
the size of the band depths. The polynomial fitting was 

Fig. 4  The spectral profile of gypsum and halite (a) and their mixtures (b) in the range of 750–2500 nm
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used only to approximate the background smooth com-
ponent of reflectance, and then subtract it to reveal the 
absorption features, un-skewed by the background com-
ponent. Since the background continuum part of reflec-
tance is assumed to be smooth, it can be modeled by a 
polynomial series. No polynomial fitting was used in the 
Hapke model. The Hapke algorithm was then used to find 
the required parameters (n, k, D, ω, ρ, S) to simulate the 
spectra of halite, gypsum and their mixtures. The study 
also found a favorable comparison between the results of 
our extracted parameters and those reported in the liter-
ature. The input parameters were: incoming angle = 30°, 
emerging angle = 0°, phase angle g (the angle between the 
direction of the source to detector) = 30.0°; phase param-
eters [4] or b = − 0.4, and c = 0.25. We also used B = 0 
(g > 15), s = 10−17 and S = 1.

The opposition effect is important only at small phase 
angles. The macroscopic roughness parameter has the 
greatest effect at large phase angles. Porosity (filling 
factor) is unknown. Usually, the determination of the 
n, k and b and c values would require reflectance spec-
tral measurements of three separate grain sizes at about 
seven phase angles, g. In addition, if Kramers–Kronig 
relations are to be used, additional measurements in MIR 
and UV are necessary [13]. Initially, the n and k values 
of gypsum available in the literature [12] were used to 
determine the grain size of the gypsum reflectance spec-
trum. Then the grain size estimate was used to obtain the 
optimized spectra of k (Fig. 5). For the halite, suitable k 
spectra could not be found in the literature, halite hav-
ing low absorption in NIR. To determine the wavelength 
dependent imaginary index of refraction a best fit was 
made simultaneously with D and k. The best fit gives an 
effective grain size of 26 µm. This value was applied to the 
reflectance spectra to obtain an improved k spectrum, 
keeping in mind that the k spectrum could depend on the 
hydration of the sample [10]. The above procedure sig-
nificantly improves the fit of the single scattering albedo 
obtained from reflectance to the one calculated using 
the optical constants spectra. The comparison between 
the extracted values of k and ω from fitting and those 
reported in the literature are demonstrated in Fig.  6, 
where it appears that the extracted values are comparable 
at several wavelengths. 

The study followed a similar approach in order to 
extract n and k for halite (Fig.  7). However, for the real 
index of refraction (n) of halite the study used the empiri-
cal Sellmeier equation. Halite has low absorption in the 
VIS–NIR and anything else that appears in this region 
could be related to impurities, therefore, in order to 
determine the imaginary refractive index of halite a best 
fit of the bidirectional reflectance was made leaving the 
grain size parameter free. The best fit results in the halite 

reference sample having similar grain size to gypsum. For 
low k reflectance, measurements emphasize the smallest 
particles [19]. Thus, D values obtained correspond to the 
smallest particles in the distribution, not the average.

The scattering regime of the two-component system 
is: (1) for gypsum, single scattering albedo ω is between 
0.8 < ω < 0.99, and (2) for halite is close to 1 for the entire 
region 0.95 < ω < 0.99. For gypsum α〈D〉 is between 0.01 
and 0.11 while gypsum is between 0.1 and 0.5. The region 
with α�D� ≪ 1 is the volume scattering region with scat-
tering albedo ω close to 1. The reflectance is dominated 
by light that has been refracted and transmitted within 
the volume of the particle. The region of α〈D〉 < 0.1 is 
especially susceptible to errors when determining k 
[19]. This study used the following densities values: 
ρhalite = 2.16 g/cm3, ρgypsum = 2.31 g/cm3

To model the spectra, the study used the extracted val-
ues from fitting and the common values reported in the 
literature. For the first scenario, in which the mixture is 
75% gypsum and 25% halite, the fitting parameters are: 
mass fractions or mgypsum = 0.758, mhalite = 0.24, grain 
sizes, Dgypsum = 57  µm, Dhalite = 40.08  µm, and χ2 = 0.82 
(Fig.  8). By comparison, the simulation results for the 
second mixing scenario, which involves 50% gypsum 
and 50% halite, we conducted with the following fitting 
parameters: mgypsum = 0.105, mhalite = 0.89, grain sizes 
Dgypsum = 43  µm, Dhalite = 287  µm, χ2 = 0.98. The simula-
tion results for these two scenarios are shown in Fig. 8. 
A third scenario considered the same percentages (i.e. 
50% gypsum and 50% halite mixing ratios). The values 
employed were mgypsum = 0.364, mhalite = 0.635, grain 
sizes, Dgypsum = 339  µm, Dhalite = 46.5  µm, χ2 = 1.09. For 
this scenario there was a higher fitting error, as seen in 
Fig. 9. The fourth and last scenario considered 25% gyp-
sum and 75% halite mixture. The fitting parameters of the 
mass fractions are mgypsum = 0.0016, mhalite = 0.994, grain 
sizes, Dgypsum = 26 µm (fixed), Dhalite = 265 µm, χ2 = 0.478. 
The simulation results for the last two scenarios are 
shown in Fig. 9. Apart from the last scenario, the results 
of simulation can be considered satisfactory—the results 
of the measured and modeled spectra of the first two sce-
narios almost coincide.

Conclusions
The approach reported in this contribution was use-
ful for modeling the mixed spectra of gypsum and hal-
ite, after obtaining the optical constants n, k for gypsum 
and halite, and leaving the grain sizes or their ratio as a 
parameter for fitting. The main challenge facing spectral 
modeling is that the single scatted albedo depends non-
trivially on many variables, including grain sizes, which 
impact both of the absorption coefficients, and then the 
fractional cross sections, i.e. there are at least two other 
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reflectance variables which are linked to grain size. The 
grain size mainly scales the spectra, but there are addi-
tional factors as well e.g. porosity factor, and shape of the 
grains. Although we have measured the spectra from 350 

to 2500 nm, we used only the NIR region 750–2500 nm. 
Impurities make the model unsuitable in the VIS range. 
The geometry of the measurement is very important for 
unmixing, since the phase factor cannot be neglected. 

Fig. 5  The optimized n and k values for gypsum
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Fig. 6  Comparison between the obtained values of k and ω with those reported in the literature
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Fig. 7  The optimized n and k values for halite
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Fig. 8  Comparison between the modeled and measured spectra for the first and second mixing scenarios
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The study concludes that reflectivity band contrast 
decreases and becomes overall smaller as particle size 
increases. High scattering albedo components have larger 

influence because of the nonlinear dependence of reflec-
tance on it, especially if they are smaller in size. When 
the absorption is low the sample must be thick (e.g. for 

Fig. 9  Comparison between the modeled and measured spectra for the third and forth mixing scenarios
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halite 100 µm with ω varying only few percent, the sam-
ple must be larger than 1 cm).

Additional files

Additional file 1. Paython code and governing equations as well as 
associated fitting.

Additional file 2. Additional details on the proposed fitting method and 
the used approach to simulate reflectance spectra.

Additional file 3. Simulation of reflection spectra for non-intimate linear 
mixture for comparison.

Abbreviations
r′: reflectance at wavelength; µo: cosine of the angle of incident light; µ: cosine 
of the angle of emitted light; g: phase angle; w′: average single scattering 
albedo; B(g): backscatter function; P(g): average single particle phase function, 
and; H: Chandrasekhar (1960) H-function for isotropic scatters.

Authors’ contributions
All authors contributed to this manuscript. FMH designed and supervised the 
research project. GA did the software design for extraction and comparison. 
YN and FA contributed to the experimental design. All authors read and 
approved the final manuscript.

Author details
1 College of Natural and Health Sciences, Zayed University, P.O. Box 144534, 
Abu Dhabi, UAE. 2 UAE Space Agency, P.O. Box 7133, Abu Dhabi, UAE. 

Acknowledgements
The authors would like to extend our thanks and appreciation Prof Bruce 
Hapke, University of Pittsburgh and the unanimous reviewers for their com-
ments and suggestions as well as to UAE Space Agency for funding this 
research Z01-2016-001.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the 
USGS spectral library https​://specl​ab.cr.usgs.gov/spect​ral-lib.html. The python 
code for the fitting is provided in the Additional files 1, 2 and 3.

Ethics approval and consent to participate
Not applicable.

Funding
Fares Howari is grateful for support by UAE Space Agency for funding this 
project.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 14 April 2018   Accepted: 3 August 2018

References
	1.	 Howari FM, Goodel PC, Miyamoto S (2002) Spectral properties of salt 

crusts formed on saline soils. Environ Qual 31:1453–1461
	2.	 Wang F, Gao J, Zha Y (2018) Hyperspectral sensing of heavy metals in soil 

and vegetation: feasibility and challenges. ISPRS J Photogramm Remote 
Sens 136:73–84

	3.	 Hunt GR (1982) Spectroscopic properties of rocks and minerals. In: Carmi-
chael RS (ed) Handbook of physical properties of rocks, vol 1. CRC Press, 
Boca Raton, pp 295–385

	4.	 Mustard JF, Pieters CM (1989) Photometric phase functions of common 
geologic minerals and applications to quantitative analysis of mineral 
mixture reflectance spectra. J Geophys Res Solid Earth 94:13619–13634

	5.	 Araújo SR, Wetterlind J, Demattê JAM, Stenberg B (2014) Improving the 
prediction performance of a large tropical vis-NIR spectroscopic soil 
library from Brazil by clustering into smaller subsets or use of data mining 
calibration techniques. Eur J Soil Sci 65(5):718

	6.	 Lapotre MGA, Ehlmann BL, Minson SE (2017) A probabilistic approach 
to remote compositional analysis of planetary surfaces. J Geophys Res 
Planets 122:983–1009

	7.	 Howari FM (2004) Chemical and environmental implications of visible 
and near-infrared spectral features of salt crusts formed from different 
brines. Ann Chim 94(4):315–323

	8.	 Hunt GR, Salisbury JW (1970) Visible and near infrared spectra of minerals 
and rocks. I. Silicate minerals. Mod Geol 1:283–300

	9.	 Clark RN (1999) Spectroscopy of rocks and minerals and principles of 
spectroscopy. In: Rences AN (ed) Remote sensing for earth sciences: 
manual of remote sensing, vol 3, 3rd edn. Wiley, Hoboken, pp 3–52

	10.	 Robertson K, Milliken R, Li S (2016) Estimating mineral abundances of clay 
and gypsum mixtures using radiative transfer models applied to visible-
near infrared reflectance spectra. Icarus 277:171–186

	11.	 Csillag F, Pasztore L, Biehl LL (1993) Spectral selection for characterization 
of salinity status of soils. Remote Sens Environ 43:231–242

	12.	 Roush TL, Esposito F, Rossman GR, Colangeli L (2007) Estimated optical 
constants of gypsum in the regions of weak absorptions: application of 
scattering theories and comparisons to independent measurements. J 
Geophys Res Planets. https​://doi.org/10.1029/2007J​E0029​20

	13.	 Sklute EC, Glotch TD, Piatek JL, Woerner WR, Martone AA, Kraner ML 
(2015) Optical constants of synthetic potassium, sodium, and hydronium 
jarosite. Am Mineral 100:1110

	14.	 Keshava N (2003) A survey of spectral unmixing algorithms. Lincoln Lab J 
14(1):55–78

	15.	 Hapke BW (1981) Bidirectional reflectance spectroscopy 1. Theory. J 
Geophys Res 86(1981):3039–3054

	16.	 Cheek LC, Pieters CM (2014) Reflectance spectroscopy of plagioclase and 
mafic mineral mixtures: implications for characterizing lunar anorthosites 
remotely. Am Mineral 99:1871–1892

	17.	 Grumpe A, Mengewein N, Rommel D, Mall U, Wöhler C (2018) Interpret-
ing spectral unmixing coefficients: from spectral weights to mass frac-
tions. Icarus 299:1–14

	18.	 Palik E (1998) Handbook of optical constants of solids, 1st edn. Academic 
Press, p 999

	19.	 Hapke B (2012) Theory of reflectance and emittance spectroscopy, 2nd 
edn. Cambridge University Press, New York

	20.	 Li S, Milliken RE (2015) Estimating the modal mineralogy of eucrite and 
diogenite meteorites using visible-near infrared reflectance spectroscopy. 
Meteorit Planet Sci 50(11):1821–1850

	21.	 Hapke B (2005) Theory of reflectance and emittance spectroscopy. Cam-
bridge University Press, Cambridge, p 472

https://doi.org/10.1186/s13065-018-0460-z
https://doi.org/10.1186/s13065-018-0460-z
https://doi.org/10.1186/s13065-018-0460-z
https://speclab.cr.usgs.gov/spectral-lib.html
https://doi.org/10.1029/2007JE002920

	Hapke-based computational method to enable unmixing of hyperspectral data of common salts
	Recommended Citation

	Hapke-based computational method to enable unmixing of hyperspectral data of common salts
	Abstract 
	Introduction
	Methodology
	Experimental design
	Data presentation
	Unmixing model
	Inversion algorithms

	Results and discussion
	Conclusions
	Authors’ contributions
	References


