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Abstract

We forecast internal temperature in a home with sensors, modeled as a linear function of recent sensor values. The Smart*

Project provides publicly available data from an inhabited home over a three month period, reporting on 38 sensors including

environmental readings, circuit loads, motion detectors, and switches controlling lights and fans. We select 13 of these sensors that

have some influence on the internal temperature, and create forecasts that are accurate to within about 1.6◦F (0.9◦C) over the next

six hours. Temperature prediction is important for saving energy while maintaining comfortable conditions in the home.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

According to recent studies, about 40% of energy produced worldwide is consumed by buildings, and more than

half of this is used by Heating, Ventilation and Air Conditioning (HVAC) systems.9,10 Accurate temperature forecasts

can reduce energy usage in buildings in two ways. First, as Pan et al.13 state, due to thermal inertia, it is more

efficient to maintain temperature in a room or building than to heat or cool it, so an HVAC controller can simply apply

heating or cooling to counteract forecasted temperature swings and avoid contributing to those swings. Second, Model

Predictive Controllers (MPC), which produce a control signal for HVAC systems, minimize a cost function based on

energy consumption. The cost function takes into account a prediction horizon and a control horizon7. The prediction

horizon used in practice depends on how much data is needed by the HVAC controller to achieve acceptable comfort

while reducing energy consumption. For instance, Moreno et al.16 achieve estimated energy savings of 20%. Thus, a

rough estimate of potential savings arising from forecasting temperature in buildings is 4% of all energy produced.

The Smart∗ Project14 provides publicly available data from several different houses showing various data for each

house, specifically electrical load and environmental readings including temperature, humidity, wind and rain read-

ings. One of the homes, Home A, has readings from 38 sensors including environmental readings, circuit loads,
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motion detectors, and switches controlling lights and fans, over a three month period. We predict temperature in this

home over various horizons, i.e. a temperature estimate and an estimate of its accuracy 15 minutes in the future, 30

minutes, and so on, up to six hours. Our forecast accuracy decreases gradually as the forecast horizon increases, with

mean absolute error estimated at 0.11◦F (0.06◦C) for the 15 minutes-ahead forecast, and at 2.7◦F (1.5◦C) for the six

hour-ahead forecast. Accordingly, the average error over all 24 forecasts is estimated at 1.6◦F (0.9◦C). 1

We contend temperature forecasting systems should use recent data from a wide variety of sensors, when that is

available. Previous work has relied on time series analysis from a long series of data taken over several days from just

a few sensors. For example Zamora-Martinez et al.2 use internal temperature and solar radiation, while Mechaqrane

et al.15 use indoor and outdoor temperature, solar radiation, and auxiliary heating power. However, where people are

living, their activities may be variable and unpredictable. Events that can affect temperature, such as motion detected

in the kitchen area, may occur at varying times. Moreover, the chance of a sensor malfunction over a long period is

higher, which may lead to interruptions in the forecast until sufficent data is available, which may interrupt any energy

saving that depends on forecasts.

In the remainder of this paper, we describe the data made available by the Smart∗ Project14, we review statistical

methods applied to this data, and explain our findings when forecasting internal temperature.

2. Background: Smart∗ Data and Statistical Methods for Temperature Forecasting

The Smart∗ Project14 provides environmental and electrical load data from four houses that are actively inhabited,

one of which,“Home A” also contains a sensor network. Data records are about the environmental factors including

inside and outside temperature and humidity, wind speed and rain, about the electrical load on circuits including the

master outlets and the furnace, about the motion within the home including corners near the master bedroom, the

living room, the kitchen, and the bedroom, and about switches, including the living room dining lights, and many

others. We named these variables: enviromental varliables inT, outT, inH, outH, WS, R, circuit variables MOC, FC,

motion variables MM, ML, MK, MB, and the switch variable LRDL. We chose the six environmental factors and

these seven additional ones because they add predictive value. 2

The data provided on the Smart∗ website cover May, June and July 2012, and report either at specific times, or

as energy demand is made, depending on the sensor. In our process we accumulate all data into 15 minute intervals.

The environmental data is averaged over all readings with the interval and reported at the end of that interval. Each

day has intervals 0,...,95, where interval 0 occurs at 12 midnight and reports on readings from 11:45PM to midnight,

and is given the date of the day about to begin. Interval 95 reports the data from 11:30PM to 11:45PM. Similarly,

we group all of the readings from the MasterOutlets and the Furnace and average it over each period. For the motion

detector, we add up the number of motion events detected over the interval, and for the switch, we take the average

over the interval of each power estimate. Power is computed by multiplying the maximum wattage of the switch by

the proportion that it was dimmed.3

Given the constraints of this workshop venue, we refer to a recent paper17 for a comparison with previous work in

temperature forecasting . We are not aware of any previous work forecasting temperature from Smart∗ sensor data.

We provide a sequence of forecasts for each future 15-minute interval, up to six hours. We perform a separate

linear regression to forecast the temperature in each interval. The model selection method we use is a variant of

linear resolution known as forward stepwise linear resolution, as presented by Hastie et al.4, and provided the leaps

package, using the R method regsubsets. As with any linear regression problem, we are given a set of independent

variables x1, ..., xn and a dependent variable y of interest that we want to forecast as a function of the independent

variables. Specifically in our case, we seek parameters β0, ..., βn so that β0 + Σ
n
i=1
βi xi is a good approximation of

y. When presented with a set of m instances of each xi, called xi, j and the corresponding instances y j, we select the

βi parameters so that either root mean squared error (RMSE) function
√

1/m
∑m

j=1(β0 +
∑n

i=1 βi xi, j − y j)2 or mean

1 Units used here are the units of the given data. Quantites in imperial units are shown with international equivalents.
2 Model selection using the six environmental factors with each of the 32 others individually, show only these seven factors improve the models.
3 For example, on June 16, at Interval 80 which represents 7:45 PM to 8:00 PM, the values of the 13 variables are, respectively: 76.8◦F, 77.6◦F,

43.1%, 43.5%, 0.13 fps, no rain, 441.2 watts, 612.2 watts, 3 events, 23 events, 11 events, 2 events, and 0 watts.
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absolute error (MAE) function 1/m
∑m

j=1

∣∣∣β0 +
∑n

i=1 βi xi, j − y j

∣∣∣ is minimized, depending on the situation. In this paper

we minimized RMSE. Stepwise forward regression initially sets β0 to ȳ, and all other β = 0. Then it repeatedly selects

a value for βi so that the error function is reduced as much as possible among all such choices. Once a value of βi is

selected it is not changed further. After all such βi are selected, stepwise regression halts with the model.

Minimizing a model’s error over training data is an important indicator of a model’s error over validation data, but

overfitting can occur if this is the only criterion. An important measure of a model is the Bayesian Information Criteria

(BIC)8, defined as 1/n (RSS + log(n) d σ̂)2 where n is the number of observations, and d is the number of dimensions

of the model, in our case the number of non-zero β’s. σ̂2 is an estimate of the variance of the internal temperature,

and RSS is
∑m

j=1(β0 +
∑n

i=1 βi xi, j − y j)
2 over the training data. BIC penalizes larger models, and thus balances model

size against error on the training data. A model with a smaller BIC is better, and is more likely to be accurate on the

validation data.

3. Experiments and Results

We generate forecasts for the next six hours, based on present readings and readings gathered over the previous

two hours. As each interval is 15 minutes, we build 24 separate models to predict the internal temperature at each of

f = 1, . . . , 24 intervals into the future. Our models are based on the readings from the 13 sensors for nine previous

intervals, including the present time and the previous b = 8 intervals. Expressed in regression terms, we create one

model for each future interval, and each model can forecast the temperature f intervals into the future. Such a model

is based on 13 sensor observations taken at 0, ..., b intervals into the past, so we have 13 ∗ (b + 1) predictor variables.

Thus 1 + 13 ∗ (b + 1) = 118 coefficients are produced, including the intercept. Those observations recalled from

previous times are called lagged observations.

Let the lag l vary across the intervals 0 through b into the past, and let k vary across the 13 sensors. Let xk,t

be the tth observation for the sensor k counting from the earliest observation in the data at t = 1. Let yt be the

mean internal temperature of the house at time t. For each f we seek the 1 + 13(b + 1) values for the intercept β f ,0

and the coefficient β f ,k,t for the value of the kth sensor at time t. We want to minimize the residual sum of squares∑m
t=b+1(β f ,0 +

∑b
l=0

∑13
k=1 β f ,k,t−l xk,t−l − y f+t)

2. In this equation, t starts at b+1 because there are no lagged observations

for the first b data points.

The model for a given f and b is built using 2/3 of the data available, called the training data and then validated

using the remaining 1/3 of the data, called the validation data.

Because we use stepwise forward regression, initially β f ,0 is the mean temperature 1/(m−b)Σm
j=b+1

y f+ j. All other β
are initially zero, and they are estimated one by one until all are estimated, as described in Section 2. However, many

of these steps actually provide no real improvement to the forecast. We want an estimate the BIC for the model of each

size, where size is number of steps that the foreward regression has made. We use 10-fold cross validation, where we

run the stepwise regression once for each fold. That is, we choose 9/10 of the training data to build a model, leaving

out 1/10 of the training data. This gives us 10 estimates of the BIC for each model size. Based on Hastie et al.4.

we consider the mean of these BIC estimates as a good predictor of the BIC for a given model size on the test data.

Since BIC reduces and then increases as the number of non-zero β’s increases, we can identify the model size with

minimal mean BIC. But since the BIC decreases slowly as it approaches the minimal, we are interested the model size

whose mean BIC is within one standard error of this smallest BIC. See Figure 1, where the BIC for each model size

is shown for f = 1, ..., 6 periods forward, and marked with a confidence interval spanning one standard error, based

on the BIC’s of the models of that size over the 10 folds. Normally, one tries to select a model smaller than than the

model with lowest BIC. The model with the lowest mean BIC is shown labeled green, and a smaller model whose BIC

is larger by at most one standard error is labelled red. The size of this red model is recorded as the appropriate size

for a regression model for this data. One can judge how well this heuristic works by examining how the BIC drops

as the model size increases. In the model for IntTempPlus1, (top left of Figure 1) the model size reduced from 29 to

20 by using this heuristic with a small increase in BIC, which is good. In the model for IntTempPlus3 (top right), the

heuristic dropped the model size from 23 to 17 which looks good, but we could probably have gone to 15, since there

is a big drop in BIC from 14 to 15 and small drops from there. Maximally 118, the selected sizes vary from 8 to 21,

which is a good reduction although there may still be some overfitting. The models sizes periods are, respectively, 20,

21, 17, 15, 13, 16, 15, 11, 13, 12, 12, 12, 11, 10, 9, 10, 9, 9, 9, 9, 8, 9, 10, 10.
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Fig. 1: Selecting the number of predictors for the first six periods. The plots for the remaining periods are similar.

Shown in Table 1 are the predictors selected for the models for each of the 24 periods, the root mean squared error

(RMSE) and the mean absolute error (MAE) for each model over the validation data. The variables are in four sets.

The environmental variables consist of the internal and external temperature and humidity inT, outT, inH, outH, wind

speed and rain: WS, R. The circuit loads report on the master outlets and the furnace: MOC, FC. Motion sensors

count the number of motion events in the master bedroom, the living room, the kitchen, and the bedroom: MM, ML,
MK, MB. Of the switches, we report only the load observed for the living room dining lights: LRDL. Since MAE is a

difference between two temperatures on the Fahrenheit scale, we can interpret it as the number of degrees by which

the forecast is expected to be off. We can see that the best information is given by the temperature and humidities,

where the external humidity seems to give benefit only for forecasts in intervals 4 through 24. Wind speed and rain

do not help for this experiment. The furnace helps but not for forecasts beyond five hours. Motion detectors in the

kitchen and living room are most helpful, and the living room dining lights are helpful for about four hours.

Table 2(a) shows the forecast errors over the validation set for the remaining 1/3 of the data, both as MAE and

RMSE. This table can be used to predict expected forecast error. In Table 2(b-f) we can see that by ignoring different

set of sensors we lose some accuracy in forecast, which supports our contention that temperature forecasts should

use a wide variety of sensors. Table 2(g) shows that a single hour of observations of just the internal and external

temperatures and humidities provides forecasts with good accuracy.

4. Conclusion and Future Work

Our goal is to generate forecasts of the internal temperature in a home with access to data from a variety of sensors.

Our main success criterion is forecast accuracy, which is maintained at about 1.6◦F (0.9◦C) for six hours using two

hours of readings, using models that have been created with three months of data. This is acceptable in comparison
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Table 1: Variables selected for predicting each interval: six enviromental variables (inside and outside temperature and humidity, wind speed, rain)

two circuit loads (furnace and master outlets) five motion detectors (bedroom, living room, kitchen, and master bedroom), and one switch (living

room dining lights). The model selection procedure choses various lags for each variable. Interval further into the future exhibit more error.

Interval inT outT inH outH WS R FC MOC MB MK ML MM LRDL RMSE MAE

1 0, 1, 2, 4, 6, 7, 8 0, 1 2, 3, 5, 7, 8 0, 3 7 0, 4 1.856 0.112

2 0, 1, 2, 3, 4, 6, 8 0 1, 3, 5, 7 0, 1 7 5 1 0, 3, 4 4.804 0.248

3 0, 1, 8 0 0, 1 1, 7 0 7 4 1 0, 3, 4, 5 8.037 0.386

4 0, 1, 8 0 1, 7 0 7 4 1 0, 2, 3, 4 11.975 0.546

5 0, 1, 8 0, 5 0, 1 0 3 0, 3, 4 14.936 0.673

6 0, 1, 8 0 0, 1 1, 7 0 3 1 0, 2, 3, 4 19.088 0.83

7 0, 1, 8 0, 5 0, 1 7 0 4 3 2, 4 23.401 0.981

8 0, 1, 8 0, 6 0, 1 0 3 3 27.61 1.127

9 0, 1, 8 0, 8 0, 1 0 1, 3 2 2 31.572 1.263

10 0, 1, 4, 8 0, 8 0, 1 0 1, 3 3 35.884 1.404

11 0, 1, 3, 8 0, 8 0, 1 0 1, 3 3 40.075 1.537

12 0, 2, 8 0, 8 0, 1 0 1 2 44.379 1.662

13 0, 1, 8 0, 8 0, 1 0 1 1 47.966 1.766

14 0, 1, 8 0, 8 0, 8 0 1 3 52.03 1.881

15 0, 1, 8 0, 8 0, 8 1 58.154 2.066

16 0, 1, 8 0, 8 0, 8 6 61.982 2.159

17 0, 1 0, 8 0, 8 1 5 65.913 2.251

18 0, 1 0, 8 0, 8 0 2 65.141 2.242

19 0, 1 0, 8 0, 8 1 1 68.75 2.324

20 0, 1 0, 8 0, 8 0 2 72.413 2.407

21 0, 1 0, 8 0, 7 2 76.127 2.518

22 0, 1 0, 5, 8 0, 6 1 79.612 2.588

23 0, 1 0, 8 0, 5 0, 8 8 80.894 2.631

24 0, 1 0, 4, 8 0, 5 8 0 84.826 2.701

Table 2: Mean Forecast Errors up to each time horizon, using all sensors, varying subsets of sensors, varying the amount of history. Fewer sensors

and less history generally result in more error.

(a) All Sensors

Horizon RMSE MAE

1 1.8561 0.1121

2 3.6413 0.1801

3 5.5109 0.2489

4 7.6566 0.3231

5 9.5659 0.393

6 11.7032 0.4659

7 13.9863 0.5394

8 16.3224 0.6128

9 18.6424 0.685

10 21.0121 0.7569

11 23.3944 0.8277

12 25.802 0.8972

13 28.1325 0.964

14 30.4656 1.0295

15 33.0394 1.0985

16 35.5437 1.1647

17 38.0054 1.2285

18 39.997 1.2848

19 42.0021 1.3394

20 44.022 1.3927

21 46.0588 1.4463

22 48.0923 1.4981

23 49.9657 1.5473

24 51.8855 1.5953

(b) All but

Circuits

MAE

0.1144

0.1851

0.2556

0.3311

0.406

0.482

0.5584

0.6336

0.7072

0.7803

0.8538

0.9265

0.9971

1.0656

1.1305

1.195

1.2549

1.3106

1.3648

1.4174

1.4698

1.5206

1.5688

1.6159

(c) All but

Motion

Dectors

MAE

0.1135

0.1786

0.2478

0.3167

0.3913

0.4652

0.5395

0.6142

0.6874

0.758

0.8301

0.9015

0.9709

1.0387

1.1053

1.1669

1.227

1.2854

1.3421

1.3972

1.4506

1.5024

1.5515

1.6004

(d) All but

Switches

MAE

0.1136

0.1824

0.252

0.3249

0.4023

0.4754

0.5491

0.6215

0.6936

0.7627

0.8332

0.9042

0.9717

1.0372

1.1057

1.1715

1.2349

1.2908

1.3451

1.3981

1.4514

1.503

1.552

1.5998

(e) Only En-

vironmental

MAE

0.1165

0.1875

0.2578

0.3332

0.407

0.4835

0.5599

0.6351

0.7091

0.7801

0.8498

0.9211

0.9902

1.0573

1.1197

1.1804

1.2397

1.2974

1.3535

1.408

1.4609

1.5122

1.5609

1.6085

(f) Ony

Temp and

Humid

MAE

0.1165

0.1875

0.2575

0.3329

0.4068

0.4833

0.5598

0.635

0.709

0.78

0.8497

0.921

0.9901

1.0573

1.1196

1.1804

1.2396

1.2974

1.3535

1.4079

1.4609

1.5121

1.5619

1.6102

(g) 1 hour

of Temp and

Humid

MAE

0.118

0.1881

0.263

0.3386

0.4119

0.487

0.5639

0.6375

0.7109

0.7842

0.8566

0.9276

0.999

1.0679

1.1351

1.1999

1.2638

1.3243

1.384

1.4406

1.4967

1.551

1.6046

1.6545
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with other studies17. This technique can be used in conjunction with a temperature control unit that decides to

apply heating or cooling depending on the current temperature and the forecast temperature. Such controllers have

been shown to reduce energy consumption by HVAC systems by 20%16, which itself is estimated to be 20% of

all energy used9,10. Thus potential savings may approach 4% of all energy produced. Our technique relies on a

sequence of regression steps that are guided by a greedy algorithm: forward stepwise linear regression. Model size

is limited by estimating its BIC over 10-fold cross validation. The BIC metric balances smallness against accuracy.

We conservatively choose the minimal sized model with BIC within one standard error of the minimal BIC estimate.

High out-of-sample accuracy over a holdout set of 1/3 of the data indicates we meet our main criterion.

We can restart forecasts quickly after a sensor failure so that energy savings are not delayed. Since only two hours

of readings are needed, forecasts can resume within two hours of any sensor malfunction or data miscommunication.

We consider the tradeoff between forecast horizon and forecast accuracy. If we need the MAE to be below 0.9◦ F (0.5◦
C), we would use a forecast horizon of 12 intervals, or 3 hours, according to Table 2(a). We would not forecast for 13

intervals since the error will be 0.96◦ F (0.53◦ C). We also consider the adaptability of our technique when different

set of sensors may be available. Considering again that we require forecast accuracy to be 0.9◦ F (0.5◦ C), if we had

only the temperature and humidity data, as in Table 2(f), we could guarantee sufficient accuracy only for forecasts

2.75 hours into the future. Thus, depending on the forecast horizon and precision needed, one can decide from this

table what sensor readings need to be given to the modeling system. Another tradeoff is how long the readings are

collected. If we had only one hour of temperature and humidity readings, i.e. 4 readings consisting of the current and

three lagged, the error is slightly higher, but we could still forecast 2.75 hours while achieving an accuracy of 0.9◦ F

(0.5◦ C), shown in Table 2(g). In this case we can restart the forecasting sooner. One may want to keep models with

fewer sensors and fewer observations on hand, in the case one or more of the sensors fails, to use in the interim until

that sensor is repaired and more observations are available.
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