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Abstract: When detecting a change-point in the marginal distribution of a
stationary time series, bootstrap techniques are required to determine criti-
cal values for the tests when the pre-change distribution is unknown. In this
paper, we propose a sequential moving block bootstrap and demonstrate its
validity under a converging alternative. Furthermore, we demonstrate that
power is still achieved by the bootstrap under a non-converging alternative.
We follow the approach taken by Peligrad in [14], and avoid assumptions
of mixing, association or near epoch dependence. These results are applied
to a linear process and are shown to be valid under very mild conditions
on the existence of any moment of the innovations and a corresponding
condition of summability of the coefficients.
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1. Introduction

Structural stability is typically a key component of time series models and corre-
sponding inferential methods. Consequently, tests for structural change are crit-
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ical when fitting any time series model to real-world data, and as a result there is
an enormous literature on change-point detection. Somewhat surprisingly how-
ever, there has been relatively little attention paid to detecting a change in the
marginal distribution of the time series. The most relevant references in this
context are [7], [8] and most recently, [17]. The clear advantage of this approach
is that the nature of the change (change in location, scale, covariance, etc.) need
not be specified in the alternative, provided that it results in a change in the
marginal distribution.

In the case of [7] and [8], the key to studying the asymptotic behaviour of the
test statistics is a functional central limit theorem (FCLT) for the sequential
empirical process both with and without a change point. A different approach
is taken in [17] where more general forms of functional data are considered,
with the empirical distribution considered as a special case. In [17], complicated
tightness arguments are avoided by regarding the empirical distribution as a
Hilbert space-valued functional, with weak convergence defined in terms of the
L2 norm of the Hilbert space. Appropriate test statistics are defined in [7],
[8] and [17]. In [8] and [17], critical values for the test statistics are found via
bootstrap techniques. In the case of [8], a weighted moving block bootstrap
is shown to be valid under strong mixing conditions when the change evolves
gradually over the observed period, while in [17], a disjoint block bootstrap
(DBB) is proposed whose asymptotic behaviour is considered under a converging
alternative, assuming L1-near epoch dependence (NEP(1)) of the stationary
sequence. In [7], there is little discussion of finding critical values, although the
long memory linear process is discussed in some depth.

In this article, we take a closer look at the validity of the moving block boot-
strap (MBB) in establishing critical values for detecting a change in the marginal
distribution of a stationary time series using an approach due to Peligrad [14].
Theorem 2.2 of [14] establishes the validity of the MBB for the empirical dis-
tribution of a stationary process under straightforward moment conditions that
do not involve any specific assumptions of mixing, association or near epoch
dependence. Here we define a sequential version of the bootstrapped empirical
process; our main results are a sequential version of Peligrad’s Theorem 2.2 and
an extension to a time series with a change point. As noted in [17], the most
difficult aspect is establishing tightness of the bootstrapped empirical process
in the function space D(R× [0, 1]).

There are several advantages of this approach. The MBB is known to be
superior to the DBB of [17] in concrete applications (cf. [16], [11] and [12]).
With Peligrad’s moment conditions, we are able to establish almost sure weak
convergence of the sequential bootstrapped empirical process on D(R × [0, 1])
under both converging and non-converging alternatives. Our main example, the
causal linear process, is used to illustrate that the bootstrap is valid for processes
that are not mixing or NEP(1). Consequently, we are able to apply the bootstrap
to heavy-tailed models, which is of particular importance for examples in finance
and economics. Further, by working with the empirical process we achieve more
flexibility than is possible with the L2 approach of [17] and are able to bootstrap
any statistic that is a continuous functional of the sequential empirical process.
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We demonstrate that Kolmogorov-Smirnov and Cramér-Von Mises test statistics
achieve good power under both converging and non-converging alternatives.

We proceed as follows: we introduce the sequential moving block bootstrap
in the next section and present a sequential version of Peligrad’s CLT for the
bootstrapped empirical process. In Section 3 we consider the behaviour of the
bootstrapped empirical process when there is a change-point. It is shown in
Theorem 3.2 that under a converging alternative, the bootstrapped sequential
empirical process has the same asymptotic behaviour as the sequential empiri-
cal process without a change. On the other hand, Theorem 3.3 illustrates that
a stronger normalization is needed when the alternative is not converging. In
Section 4 we consider the asymptotic behaviour of Kolmogorov-Smirnov and
Cramér-Von Mises test statistics under the null hypothesis and both converging
and non-converging alternatives, and show that the bootstrap leads to consistent
tests in all cases. Examples are given in Section 5, including an in-depth discus-
sion of the linear model. In Section 6, simulations illustrate the performance of
the tests in the case of both converging and non-converging alternatives. The
tests will be seen to perform well even when first moments do not exist. Con-
cluding comments and directions for further research are presented in Section
7, and all proofs appear in Section 8.

2. The bootstrap sequential empirical central limit theorem

As noted in the Introduction, our goal is to establish the validity of a sequential
bootstrap technique that does not require conditions of mixing, association or
near epoch dependence. To avoid these assumptions, we use the approach taken
by Peligrad in [14], where sufficient conditions for the moving block bootstrap
empirical CLT are expressed in terms of moments. In this section we review the
moving block bootstrap and define a sequential bootstrapped empirical process.
Our main result is Theorem 2.2, a sequential version of the bootstrap empirical
CLT of [14].

We shall assume throughout that we have a strictly stationary ergodic sto-
chastic process (Xi, i ∈ Z) with marginal distribution F , defined on a probability
space (Ω,F , P ). The empirical distribution function (edf) Fn is

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), −∞ < x < ∞

and the sequential edf is defined as

F[ns](x) :=
1

[ns]

[ns]∑
i=1

I(Xi ≤ x), −∞ < x < ∞, 0 ≤ s ≤ 1. (1)

The empirical process is defined as

Wn(x) :=
√
n (Fn(x)− F (x))
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and the sequential empirical process is

Wn(x, s) :=
[ns]√
n

(
F[ns](x)− F (x)

)
Under appropriate regularity conditions, including some form of short memory
(see, for example, [4], [5], [8]),

Wn(·, ·) D→ W (·, ·), (2)

where W (·, ·) is a mean zero Gaussian process with covariance function

σ((x, s), (y, t)) = (s ∧ t)
∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) ,

and
D→ denotes weak convergence of random elements taking values in the space

D(R × [0, 1]) equipped with Skorokhod’s J1-topology (cf. [1] and [9] for more
details).

We will be using the same version of the moving block bootstrap (MBB) as
presented in [14] and [6]. Let l and k be positive integers and let n = lk. Now,
extend a sample of size n by the first l − 1 observations, namely, X1, · · · , Xl−1

to define the extended sequence Xni, i = 1, · · · , n+ l − 1 as follows:

Xni :=

{
Xi if 1 ≤ i ≤ n
Xi−n if n+ 1 ≤ i ≤ n+ l − 1.

Next, let In1, In2, · · · , Ink be independent and identically distributed random
variables each having uniform distribution on {1, 2, · · · , n}. The intuitive idea
behind the MBB is to concatenate k randomly chosen blocks of size l of the
form {XnInj , Xn,Inj+1, · · · , Xn,Inj+l−1}, 1 ≤ j ≤ k, and construct the bootstrap
sample of size n,(

X
(b)
1 , · · · , X(b)

n

)
= (Xn,In1 , · · · , Xn,In1+l−1, · · · , Xn,Ink , · · · , Xn,Ink+l−1) . (3)

The (non-sequential) bootstrapped empirical process is defined as follows: for
x ∈ R,

W (b)
n (x) :=

√
n
[
F (b)
n (x)− Fn(x)

]
, (4)

where

F (b)
n (x) :=

1

n

n∑
h=1

I(X
(b)
i ≤ x) =

1

k

k∑
j=1

1

l

Inj+l−1∑
i=Inj

I(Xni ≤ x) (5)

is the bootstrapped empirical distribution.
Continuing with the sequential bootstrapped empirical process, define the ith

block empirical distribution to be

Fl,i(x) :=
1

l

i+l−1∑
j=i

I(Xnj ≤ x), and Fn(x) = Fn,1(x).
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Using the definition (5) of the bootstrapped empirical distribution and the fact
that

∑n
i=1 I(Inj = i) = 1, when n = lk we can rewrite the bootstrapped empir-

ical process defined above in (4) as follows:

W (b)
n (x) =

√
n
[
F (b)
n (x)− Fn(x)

]

=
√
n

⎡
⎣1

k

k∑
j=1

Fl,Inj (x)− Fn(x)

⎤
⎦

=

√
n

k

k∑
j=1

[
n∑

i=1

I(Inj = i)(Fl,i(x)− Fn(x))

]
. (6)

The representation in (6) suggests the following definition for a sequential boot-
strapped empirical process: for (x, s) ∈ (R× [0, 1]) and n = lk,

W (b)
n (x, s) =

√
n

k

[ks]∑
j=1

[
n∑

i=1

I(Inj = i)(Fl,i(x)− Fn(x))

]

=
l[ks]√

n

(
F

(b)
l[ks](x)− Fn(x)

)
,

(7)

where F
(b)
l[ks](x) is the bootstrapped empirical distribution based on X

(b)
1 , . . . ,

X
(b)
l[ks].

As in [14], we assume the following relationship between the block lengths
ln and the number of blocks kn, which allows the block size ln to be arbitrarily
close to O(n1/3), observed by Künsch [11] to be the optimal length for the MBB.
Following the notation used in [14], we write an � bn to indicate an = O(bn).

Assumption 2.1. Let (ln) and (kn) be sequences of natural numbers satisfying

nh � ln � n
1
3−a for some 0 < h <

1

3
− a, 0 < a <

1

3
, (8)

ln = l2k for 2k ≤ n < 2k+1, ln → ∞ as n → ∞ and n = knln.

Our first result is the following sequential version of Theorem 2.2 of [14].

Theorem 2.2. Let (Xn)n∈Z be a stationary sequence of random variables. Let
ln, kn be sequences of natural numbers satisfying Assumption 2.1. Assume there
are two constants C1 and C2 such that, for some γ > 0 and every x < y,

sup
n>m

∣∣∣∣∣
n∑

i=m

Cov(I(x < X0 ≤ y), I(x < Xi ≤ y))

∣∣∣∣∣ ≤ C1m
−γ , (9)

and for every 1 ≤ m ≤ n,

V ar

(
m∑
i=1

Y 2
lni(x, y)

)
≤ C2ml4n, (10)
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where

Ylni(x, y) :=

i+ln−1∑
j=i

(I(x < Xj ≤ y)− (F (y)− F (x))) .

Then, defining W
(b)
n (·, ·) as in (7), as n → ∞,

W (b)
n (·, ·) D→ W (·, ·)

almost surely, where W (·, ·) is a Gaussian process with zero mean and covariance

Cov (W (x, s),W (y, t)) = (s ∧ t)
∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) . (11)

The proof appears in Section 8.

Comments:

1. Assumption 2.1 requires that n be a multiple of ln. In practice, if this is not

the case then the number of blocks selected is kn =
[

n
ln

]
. It is onerous but

straightforward to show that this does not affect the asymptotic behaviour
of the resampled process. See [17] for example.

2. We note that that the sequential bootstrap is valid under the same con-
ditions as in [14] for the usual empirical process. Although this is unsur-
prising, the proof of tightness is highly technical. Unfortunately, although
the blocks are (conditionally) i.i.d., their definition changes with n. As
a result, the straightforward argument used by van der Vaart and Well-
ner in [18] for sequential empirical processes based on a single sequence
of i.i.d. random variables cannot be directly applied to the moving block
bootstrap.

3. As observed by Peligrad in [14] and Radulovic in [16], the bootstrap pro-
cess may converge in situations in which the original sequential empirical
process does not, and vice versa. This point will be illustrated in the dis-
cussion in Section 5.

3. The bootstrap empirical central limit theorems with change-point

We now introduce the change-point model. Let (Yi, i ∈ Z) and (Zi, i ∈ Z) be
strictly stationary ergodic sequences and let θn ∈ (0, 1]. Let F and G be the
distributions of Y0 and Z0, respectively. Borrowing the notation of [7], we write
Xn := (X1, ..., Xn) ∈ Ψn(θn, F,G) if

Xi =

{
Yi for 1 ≤ i ≤ [nθn]
Zi for [nθn] < i ≤ n.

(12)

In the case of no change (θn = 1 ∀n), we write Xn ∈ Ψn(F ).
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Recall the sequential empirical distribution function defined in (1):

F[ns](x) =
1

[ns]

[ns]∑
i=1

I(Xi ≤ x).

Define, for 0 ≤ s ≤ 1

H(n)(x, s) := (s ∧ θn)F (x) + (s− θn)
+G(x), (13)

where s+ = max(0, s). For (x, s) ∈ R× [0, 1], let

W ′
n(x, s) :=

1√
n

(
[ns]F[ns](x)− nH(n)(x, s)

)

=
1√
n

⎡
⎣[ns]∑

i=1

I(Xi ≤ x)− nH(n)(x, s)

⎤
⎦ .

We note H(n)(x, s) = sF (x) when there is no change (θn = 1), and so un-
der the null hypothesis |W ′

n(x, s) − Wn(x, s)| ≤ 1/
√
n and the processes are

asymptotically equivalent.
Under appropriate regularity conditions on both the pre- and post-change

stationary sequences (including some form of short memory) and assuming that
θn → θ ∈ [0, 1], it may be shown that if Xn ∈ Ψn(θn, F,G), as n → ∞, then

W ′
n(·, ·)

D→ W (θ)(·, ·), (14)

where W (θ)(·, ·) is a centred Gaussian process with finite covariance

σ((x, s), (y, t)) = (s ∧ t ∧ θ)
∑
i∈Z

Cov (I(Y0 ≤ x), I(Yi ≤ x))

+ ((s ∧ t)− θ)+
∑
i∈Z

Cov (I(Z0 ≤ x), I(Zi ≤ x)) .

See, for example, Theorem 2.4 of [5].
We now consider the behaviour of the sequential bootstrapped empirical pro-

cess W
(b)
n (·, ·) defined in (7). We have two cases to consider, and we will use the

following definition:

Definition 3.1. We say that we have a converging alternative if θn → 0 or
if θn → 1. The alternative is non-converging if θn → θ ∈ (0, 1).

The so-called “converging alternative” means that the change takes place
quite early or late in the observation period, and we shall see that consistency
of the bootstrap depends on the rate at which θn converges to 0 or 1.

Theorem 3.2. For the change-point model (12), assume that both stationary
sequences {Yi} and {Zi} satisfy (9) and (10) and suppose that (ln) and (kn) are
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any sequences satisfying Assumption 2.1. Further, suppose that either lnθn → 0
and nθn → ∞ or that ln(1− θn) → 0 and n(1− θn) → ∞. Then, as n → ∞,

W (b)
n (·, ·) D→ W ′(·, ·)

almost surely, where W ′(·, ·) is a Gaussian process with zero mean and covari-
ance

Cov (W ′(x, s),W ′(y, t))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(s ∧ t)
∑
i∈Z

Cov (I(Z0 ≤ x), I(Zi ≤ y)) if lnθn → 0

(s ∧ t)
∑
i∈Z

Cov (I(Y0 ≤ x), I(Yi ≤ y)) if ln(1− θn) → 0.

From (14), we see that the limiting distribution is that of W (1)(·, ·) when
θn → 1, and W (0)(·, ·) when θn → 0.

When the assumption of a converging alternative is not satisfied, the condi-
tional covariances of the bootstrapped process diverge. In this case, we need a
stronger normalization.

Theorem 3.3. For the change-point model (12), assume that both stationary
sequences {Yi} and {Zi} satisfy (9) and (10) and suppose that (ln) and (kn) are
any sequences satisfying Assumption 2.1. Further, suppose that θn → θ ∈ (0, 1).
Then, as n → ∞,

l−1/2
n W (b)

n (·, ·) D→ L(θ)(·, ·)
almost surely, where

L(θ)(x, s) =
√
θ(1− θ)(F (x)−G(x))B(s), (15)

and B(·) is a standard Brownian motion process on [0, 1].

Remark 3.4. The significance of Theorem 3.3 is that while the bootstrapped
test statistics defined in the next section diverge, they do so more slowly than
the original test statistics, and so the bootstrap test still achieves power with-
out a converging alternative. This will be made precise in Proposition 4.6 and
Comment 4.7.

The proofs of Theorems 3.2 and 3.3 appear in Section 8.

4. Test statistics

Recalling the notation introduced in the preceding section, when there is an
unknown change-point, the hypothesis and alternative are

H0 : {∃F such that Xn ∈ Ψn(F )}
H1 : {∃θn ∈ (0, 1), ∃F �= G such that Xn ∈ Ψn(θn, F,G)}.
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In this case, the test statistics will be based on the following process:

Vn(x, s) :=
[ns](n− [ns])

n
3
2

(
F[ns](x)− F ∗

n−[ns](x)
)

(16)

where

F ∗
n−m(x) =

1

n−m

n∑
i=m+1

I(Xi ≤ x)

is the empirical distribution function based on Xm+1, . . . , Xn. The process
Vn(·, ·) compares the (suitably weighted) empirical distributions before and after
[ns], for 0 ≤ s ≤ 1:

F[ns](x)− F ∗
n−[ns](x) =

1

[ns]

[ns]∑
i=1

I(Xi ≤ x)− 1

n− [ns]

n∑
i=[ns]+1

I(Xi ≤ x).

To test the pair (H0, H1), we use the following statistics:

• Weighted Kolmogorov-Smirnov statistic:

T1 = sup
(x,s)∈R×[0,1]

|Vn (x, s)| .

• Weighted Cramér-Von Mises statistic:

T2 =

∫ 1

0

∫
R

|Vn (x, s)|2 dFn(x)ds.

We reject the null hypothesis H0 for large values of Ti, for i = 1, 2.

Proposition 4.1. Under the null hypothesis H0 and assuming that Wn(·, ·) D→
W (·, ·), we have for every c > 0

lim
n→∞

P{T1 > c} = P

{
sup

(x,s)∈R×[0,1]

|W (x, s)− sW (x, 1)| > c

}
, (17)

lim
n→∞

P{T2 > c} = P

{∫ 1

0

∫
R

|W (x, s)− sW (x, 1)|2dF (x)ds > c

}
, (18)

where W (·, ·) is the limiting process in (2).

The proof of Proposition 4.1 is identical to that of [5], Proposition 2.7.
We next deal with consistency of the test statistics T1 and T2. There are

two cases of converging alternatives to consider: θn
p→ 0 and θn

p→ 1. The test
statistics are consistent under a converging alternative provided that the rate
of convergence of θn is slower than 1/

√
n. The following is a slight sharpening

of [5], Proposition 2.8. The proof appears in Section 8.

Proposition 4.2. Suppose that Xn ∈ Ψn(θn, F,G) where F �= G and that

W ′
n(·, ·)

D→ W (θ)(·, ·).
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(A) Converging alternative:
If the sequence {θn : n ∈ N} satisfies either

1. θn → 0 and
√
nθn → ∞,

or

2. θn → 1 and
√
n(1− θn) → ∞,

then Ti
p→ ∞ as n → ∞, for i = 1, 2.

(B) Non-converging alternative:
If θn → θ ∈ (0, 1), then

1. n−1/2T1
p→ θ(1− θ) supx∈R

|F (x)−G(x)|,
and

2. n−1T2
p→ (θ(1−θ))2

3

∫
R
(F (x) − G(x))2dH(x), where H(x) = θF (x) +

(1− θ)G(x).

4.1. The bootstrapped test statistics

Recall that the hypothesis and alternative are

H0 : {∃F such that Xn ∈ Ψn(F )}
H1 : {∃θn ∈ (0, 1), ∃F �= G such that Xn ∈ Ψn(θn, F,G)},

where Xn = (X1, X2, . . . , Xn) and θn ∈ (0, 1) such that θn → θ ∈ [0, 1] as n →
∞. Let {ln} and {kn} be sequences of natural numbers satisfying Assumption

2.1 such that n = lnkn and suppose that W ′
n(·, ·)

D→ W (θ)(·, ·). Suppressing
dependence of l and k on n for notational convenience, recall the bootstrap
sample of size n defined in (3):(

X
(b)
1 , . . . , X(b)

n

)
= (XnIn1 , . . . , Xn,In1+l−1, . . . , XnInk

, . . . , Xn,Ink+l−1) ,

where In1, In2, . . . , Ink are independent and identically distributed random vari-
ables each having uniform distribution on {1, 2, . . . , n}.

The testing procedure is based on V
(b)
n (·, ·), the sequential counterpart of the

process Vn(·.·) introduced in (16), defined as follows:

V (b)
n (x, s) =

l[ks](k − [ks])

k
√
n

(
F

(b)
l[ks](x)− F

(∗,b)
lk−l[ks](x)

)
,

where F
(b)
l[ks](x) and F

(∗,b)
lk−l[ks](x) are the bootstrapped empirical distributions

based respectively on X
(b)
1 , . . . , X

(b)
l[ks] and X

(b)
l[ks]+1, . . . , X

(b)
n .

Recalling the definition of W
(b)
n in (7), it is straightforward to show that

V (b)
n (x, s) = W (b)

n (x, s)− [ks]

k
W (b)

n (x, 1).

We define bootstrapped versions of the Kolmogorov-Smirnov and Cramér-
Von Mises statistics as follows:
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• Bootstrapped Kolmogorov-Smirnov statistic:

T
(b)
1 = sup

(x,s)∈R×[0,1]

∣∣∣V (b)
n (x, s)

∣∣∣ .
• Bootstrapped Cramér-Von Mises statistic:

T
(b)
2 =

∫ 1

0

∫
R

∣∣∣V (b)
n (x, s)

∣∣∣2 dFn(x)ds.

The asymptotic behaviour of the test statistics follows from an application of
the continuous mapping theorem to Theorems 2.2, Theorem 3.2, and Theorem
3.3.

First we deal with the null hypothesis.

Proposition 4.3. Under the assumptions of Theorem 2.2

T
(b)
1

d→ sup
(x,s)∈R×[0,1]

|W (x, s)− sW (x, 1)|

T
(b)
2

d→
∫ 1

0

∫
R

|W (x, s)− sW (x, 1)|2 dF (x)ds,

almost surely as n → ∞, where W (·, ·) is the limiting process in Theorem 2.2.

Next we deal with a converging alternative (θn → 0 or 1).

Proposition 4.4. Under the assumptions of Theorem 3.2

T
(b)
1

d→ sup
(x,s)∈R×[0,1]

|W ′(x, s)− sW ′(x, 1)|

T
(b)
2

d→
∫ 1

0

∫
R

|W ′(x, s)− sW ′(x, 1)|2 dH̃(x)ds,

almost surely as n → ∞, where W ′(·, ·) is the limiting process in Theorem 3.2
and

H̃ =

{
G if lnθn → 0
F if ln(1− θn) → 0.

Comment 4.5. We remark that under the conditions of Proposition 4.1 and
Proposition 4.3, the test statistics T1 and T2 and their bootstrapped counter-

parts, T
(b)
1 and T

(b)
2 , converge respectively under H0 to the same limits. On the

other hand, provided that the conditions of Proposition 4.2(A) and Proposition
4.4 are satisfied, we note that under H1 the test statistics based on the original
variables diverge, whereas the bootstrapped statistics converge weakly to finite
limits. This will allow us to tabulate critical values by constructing repeated
moving block bootstrap samples. More precisely, the test will be consistent if
for some constant c > 0,⎧⎨

⎩
θn → 0√
nθn → ∞

lnθn � n−c,
or

⎧⎨
⎩

θn → 1√
n(1− θn) → ∞

ln(1− θn) � n−c,
. (19)
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This will certainly be true, for instance, if nh−1/2 � θn � n−1/3 for some
0 < h < 1/6 in the first case or analogously nh−1/2 � 1 − θn � n−1/3 in the
second case.

Finally, we consider a non-converging alternative (θn → θ ∈ (0, 1)).

Proposition 4.6. Under the assumptions of Theorem 3.3,

l−1/2
n T

(b)
1

d→ sup
(x,s)∈R×[0,1]

∣∣∣L(θ)(x, s)− sL(θ)(x, 1)
∣∣∣

d
=

√
θ(1− θ)

(
sup
x∈R

|F (x)−G(x)|
)(

sup
s∈[0,1]

|Bo(s)|
)

l−1
n T

(b)
2

d→
∫ 1

0

∫
R

∣∣∣L(θ)(x, s)− sL(θ)(x, 1)
∣∣∣2 dH(x)ds

d
= θ(1− θ)

∫
R

|F (x)−G(x)|2dH(x)

∫ 1

0

|Bo(s)|2ds,

almost surely as n → ∞, where L(θ)(·, ·) is the limiting process in Theorem 3.3,
H(x) = θF (x) + (1− θ)G(x), and Bo is a Brownian bridge on [0, 1].

Comment 4.7. Recalling that ln � n
1
3−a for some a > 0, if θn → θ ∈ (0, 1)

it is immediate from Proposition 4.2(B), that l
−1/2
n T1 → ∞ and l−1

n T2 → ∞.

Therefore, the bootstrapped statistics T
(b)
1 and T

(b)
2 diverge at a slower rate

than the corresponding test statistics T1 and T2, ensuring that critical values
tabulated from repeated bootstrap samples yield consistent tests. In fact, as
will be seen in Section 6, simulations illustrate that good power is still achieved
when the alternative is not converging.

5. Examples

For the test statistics T1, T2 and their bootstrapped counterparts to yield con-
sistent tests of the hypothesis of no change, we need that

1. W ′
n(·, ·)

D→ W (θ)(·, ·) (cf. (14));
and

2. The pre- and post-change sequences {Yi} and {Zi} both satisfy (9) and
(10) of Theorem 2.2.

Note that the behaviour of the bootstrapped process W
(b)
n depends only on item

2. above, and there are no additional assumptions needed on the relationship
between the pre- and post-change sequences (cf. Theorems 3.2 and 3.3). How-
ever, for item 1. above, further information is required in order to ensure the
asymptotic independence of the pre- and post-change increments of W ′

n (for ex-
ample, some form of joint short memory of {(Yi, Zi)}). This will be investigated
in detail for the causal linear process, which was the principal motivation for
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this work. First, we present two examples from [14] giving sufficient conditions
for the validity of the bootstrap for mixing and associated sequences.

5.1. Mixing and associated sequences

Mixing sequences

Let (X0, X1, X2, ...) be stationary and strong mixing with mixing coefficients
(αn). Then conditions (9) and (10) of Theorem 2.2 are satisfied if for every
n ≥ 1, ∑

m>n

αm = O(n−γ)

for some γ > 0 ([14], Theorem 2.3).

Associated sequences

Let (X0, X1, X2, ...) be stationary and associated such that X1 has a continu-
ous bounded density. Then conditions (9) and (10) of Theorem 2.2 are satisfied
if for every n ≥ 1, ∑

m≥n

[Cov(X0, Xm)]1/3 = O(n−γ)

for some γ > 0 ([14], Theorem 2.4).

5.2. Causal linear processes

The causal linear process was the subject of both [6] and [5]. The validity of
the MBB for the (non-sequential) empirical process under conditions similar
to those of [3] was established in [6] and the linear process with a change-
point was considered in [5]. Here, we combine these results to develop sufficient
conditions for both items 1. and 2. above to hold, ensuring that the sequential
MBB produces consistent tests for linear processes with change-point.

The stationary causal linear process is defined as follows: for i ∈ Z,

Xi =
∑
j≥0

ajξi−j (20)

where (ξj : j ∈ Z) is a stationary sequence of independent and identically
distributed (i.i.d.) random variables and (aj : j ∈ N) is an absolutely summable
sequence of constants. Summability of the coefficients ensures that if E[ξ20 ] < ∞,
the process has short memory in the sense that the covariances are summable,
and more generally, if E[|ξ0|] < ∞, the process is L1-near epoch dependent (cf.
[17]). However, as will be seen below, the linear model includes processes that
are not mixing or NEP(1).



Bootstrapping with change-point 3585

We begin by stating sufficient conditions for weak convergence of the empir-
ical process W ′(·, ·) both with and without a change (cf. (14)):

Assumptions 5.1.

1. Let {aj , j ∈ Z} be a sequence of non-random weights, infinitely many of
which are non-zero, satisfying∑

j≥0

|aj |γ < ∞ for some γ ∈ (0, 1].

2. There exist constants C < ∞ and Δ ∈
(
2

3
, 1

]
such that for all u ∈ R

|E exp(iuξ0)| ≤
C

(1 + |u|)Δ .

3. E[|ξ0|4γ ] < ∞, where γ ∈ (0, 1] is as in 1 above.

Comments 5.2.

• Any linear process with Gaussian innovations and summable coefficients
satisfies Assumptions 5.1, but such a process is not necessarily mixing,
as illustrated by the following classic example due to Ibragimov: let the
ξi’s be i.i.d. N(0, 1) and let ai be the coefficient of zi in the power series
expansion of the function h(z) = (1 − z)p, where p > 4 is non-integer. In
this case, |ai| = O(i1−p) but (Xi) is not strong mixing.

• We emphasize that this model can include any sort of heavy-tailed inno-
vations ξi, provided that E[|ξ0|δ] < ∞ for some δ > 0. Since it is implicit
in the definition of L1-near epoch dependence that the Xi’s have a finite
first moment (cf. [17]), the linear model above includes processes that are
not NEP(1).

• Assumption 5.1.2 implies that the distribution function Fξ of ξ0 satisfies
the Hölder condition |Fξ(x)−Fξ(y)| < C|x− y|Δ. It also implies that the
distribution function of a partial sum of the ajξi−j terms is differentiable
with a bounded density satisfying a uniform Lipschitz condition, provided
that sufficient terms with non-zero aj are included in the moving average
(cf. [3]). Obviously, the distribution function of X0 is uniformly Lipschitz
as well.

• The assumption that infinitely many coefficients (ai) are non-zero is not
required if Fξ has a uniformly Lipschitz derivative. In this case, all the
results that follow remain valid.

We now introduce the change-point model for the linear process. Let {θn ∈
(0, 1], n ∈ N} be a convergent sequence with limit θ ∈ [0, 1]. To define the causal
linear process with a change-point at [nθn], consider the following stationary

processes for i ∈ Z and a
(1)
j , a

(2)
j ∈ R:

Yi =
∑
j≥0

a
(1)
j ξi−j and Zi =

∑
j≥0

a
(2)
j ξ′i−j ,



3586 F. El Ktaibi and B. G. Ivanoff

where the vectors (ξi, ξ
′
i) are i.i.d. and both sequences {a(1)j } and {a(2)j } are ab-

solutely summable. We do not make any assumption about the relation between
ξi and ξ′i – they can have any sort of dependence structure (and consequently,
{Yi} and {Zi} need not be independent). Denote by F and G the respective
distribution functions of Y0 and Z0.

The following result is Theorem 2.4 of [5]. Note that under the null hypothesis,
θn = 1 for all n.

Theorem 5.3. Given the change-point model described above, assume that both
linear processes {Yi} and {Zi} satisfy Assumptions 5.1. Further, assume that
θn → θ where θ ∈ [0, 1]. Then, for Xn ∈ Ψn(θn, F,G), as n → ∞,

W ′
n(·, ·)

D→ W (θ)(·, ·),

where W (θ)(·, ·) is defined in (14).

Next, we deal with weak convergence of the bootstrapped linear processW
(b)
n .

However, we impose a slightly different set of assumptions than those for con-
vergence of W ′

n.

Assumptions 5.4.

1. Let (aj , j ∈ Z) be a sequence of non-random weights, infinitely many of
which are non-zero, such that for some γ ∈ (0, 1],∑

j≥0

j|aj |γ =
∑
j≥1

Aj(γ) < ∞,

where Aj(γ) :=
∑
i≥j

|ai|γ .

2. There exist constants C < ∞ and Δ > 0 such that for all u ∈ R

|E exp(iuξ0)| ≤
C

(1 + |u|)Δ .

3. E[|ξ0|2γ ] < ∞ where γ ∈ (0, 1] is as in 1 above.

The following theorem follows from the proof of Theorem 2.5 in [6] and
demonstrates the validity of the sequential moving block bootstrap.

Theorem 5.5. If (Xn) is a stationary causal linear process satisfying Assump-
tions 5.4, then conditions (9) and (10) of Theorem 2.2 are satisfied. If, in ad-
dition, Assumption 2.1 is satisfied, then as n → ∞,

W (b)
n (·, ·) D→ W (·, ·).

Corollary 5.6. Given the change-point model described above, assume that both
linear processes {Yi} and {Zi} satisfy Assumptions 5.4. Then both Theorems 3.2
and 3.3 obtain.

The results of this subsection can be summarized as follows:
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Corollary 5.7. Given the change-point model described above for the causal
linear process, assume that both linear processes {Yi} and {Zi} satisfy Assump-
tions 5.1 and 5.4, and that Assumption 2.1 holds. Then Propositions 4.3, 4.4
and 4.6 obtain and, in particular, for Xn ∈ Ψn(θn, F,G), the test statistics de-
fined in Section 4 and their bootstrapped counterparts provide consistent tests of
the hypothesis of no change.

Comment 5.8. As noted in [6], it is not particularly surprising that Assump-
tions 5.1 and Assumptions 5.4 are not the same, since it is well known that a
bootstrap CLT may be valid in situations when the original process does not
satisfy a CLT, and vice versa. However, it is easily seen that both Assumptions
5.1 and Assumptions 5.4 are satisfied if Assumption 5.1.2 holds and {|aj |}j∈N

is a non-increasing sequence such that
∑

j≥0 |aj |
γ
2 < ∞ and E[|ξ0|2γ ] < ∞ for

some γ ∈ (0, 1]. As observed previously, these conditions include many linear
sequences that are not mixing or NEP(1), and so cannot be handled by the
results of [8] or [17].

6. Simulations

In this section, we illustrate the performance of the MBB tests in detecting
changes under various scenarios. We begin by simulating the linear model to
illustrate the performance of the tests proposed in Section 4 for both converg-
ing and non-converging alternatives. In addition, we consider both normal and
Cauchy innovations to illustrate that the procedure performs well regardless of
whether the innovations have a finite first moment.

To this end, we consider the following stationary autoregressive processes{
Yi = ρ1Yi−1 + ξi
Zi = ρ2Zi−1 + ξ′i,

where the vectors of innovations (ξi, ξ
′
i) are i.i.d. and ρ1, ρ2 < 1 (a

(i)
j = ρji , i =

1, 2). The change-point model satisfies

Xi =

{
Yi if 1 ≤ i ≤ [nθn]
Zi if [nθn] < i ≤ n,

where θn → θ ∈ [0, 1].
In our first two examples we consider normal and Cauchy innovations. In both

cases, we investigate separately changes in location or scale of the innovations
under converging (θn = 0.08) and non-converging alternatives (θn = 0.5), illus-
trating the performance of both test statistics, the Kolmogorov-Smirnov (K.S)
and Cramér-Von Mises (C.V.M). In all our examples, the tests are carried out
at a nominal level of significance α = 5% with 500 bootstrap replications used
to determine the appropriate critical value in each case. Each simulation was
repeated 400 times for the analysis of the power.

It was found that the converging alternative was much more sensitive to the
relation between n and l than the non-converging alternative. In the case of a
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converging alternative (θn = 0.08), the sample size used was n = 15, 000 with
l = 15 and k = 1, 000; for the non-converging alternative (θn = 0.5), the sample
size was n = 10, 000 with l = 25 and k = 400.

6.1. Example 1

Here we investigate the performance of our test statistics in detecting a change
in an AR(1) process with normal innovations. We consider changes in the mean
and the variance of the innovations.

• Change in the mean of the innovations:

In this case, we consider the following model with ρ1 = ρ2 = 0.5:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ N (0, 1) and ξ′i ∼ N (μ, 1).

Zi = 0.5Zi−1 + ξ′i

We consider μ = 0 under the null hypothesis and μ = −0.5,−0.4,−0.3,−0.2,
−0.1, 0.1, 0.2, 0.3, 0.4, 0.5 under the alternative.

The performance of the K.S and C.V.M test statistics for this case are illus-
trated in Fig. 1.

Fig 1. Detection of a change in the mean of the normal innovations

• Change in the variance of the innovations:

In this case, we consider the following model with ρ1 = ρ2 = 0.5:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ N (0, 1) and ξ′i ∼ N (0, σ2).

Zi = 0.5Zi−1 + ξ′i
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We consider σ = 1 under the null hypothesis and σ = 0.5, 0.6, 0.7, 0.8, 0.9, 1.1,
1.2, 1.3, 1.4, 1.5 under the alternatives. The empirical size and the power perfor-
mance of the tests are illustrated in Fig. 2.

Fig 2. Detection of a change in the variance of the normal innovations

6.2. Example 2

Using the same parameters as in the preceding example, we will be considering
now a stationary autoregressive model with Cauchy innovations.

• Change in the location parameter:

The model to be considered in this case is as follows:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ C(0, 1) and ξ′i ∼ C(a, 1).

Zi = 0.5Zi−1 + ξ′i

We consider here the location parameter a = 0 under the null hypothesis.
On the other hand, a will take the following values under the alternatives
a = −0.5,−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4, 0.5. The empirical size and the
power performance of the K.S. and C.V.M. statistics are shown in Fig. 3.
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Fig 3. Detection of a change in the location of the Cauchy innovations

• Change in the scale parameter:

In this case, we consider the following model:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ C(0, 1) and ξ′i ∼ C(0, b).

Zi = 0.5Zi−1 + ξ′i,

Fig. 4 deals with a change in the scale of the Cauchy innovations of the autore-
gressive model. In this case, we assume that the scale parameter is b = 1 under
the null hypothesis and b = 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5 under the
alternatives.

Fig 4. Detection of a change in the scale of the Cauchy innovations
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Examples 1 and 2 illustrate that our unified approach allows us to easily de-
tect changes in location or scale in the marginal distribution of a linear model.
In all cases, we can see that the rejection rate under the null hypothesis is
close to the nominal level of significance α = 0.05 and that we achieve good
power under the alternatives. We note that contrary to what is frequently ob-
served, the Cramér-Von Mises statistic does not consistently outperform the
Kolmogorov-Smirnov statistic. In both cases, normal and Cauchy innovations,
we remark a notable improvement of the performance of the test under the
non-converging alternative, despite the fact that the bootstrap test statistics
diverge.

The large sample sizes used in Examples 1 and 2 are consistent with financial
data. Next we consider smaller sample sizes and various block lengths.

6.3. Example 3

Analogously to the first example, we examine the performance of the testing
procedure for smaller sample sizes n and various values of l when detecting a
change in the mean of the normal innovations from μ0 = 0 to μ1 = 0.5 with
θn = 0.5. The empirical power and size are displayed in Table 1.

We observe that the tests still perform very well with much smaller sizes under
the non-converging alternative. We can see that for all combinations of l and
k, the power achieved is very good. However, the empirical size is higher than
the nominal size for highly correlated processes (ρ = 0.9) and small values of l.
This is an unsurprising issue of the bootstrapped tests since the short blocks
do not accurately reflect the stronger dependence structure and consequently
the critical values obtained by the bootstrap techniques are too small.

6.4. Example 4

In this example, we will present simulations that illustrate the effect of a change
in the tail behaviour of the marginal distribution. To this end, we consider the
following model:⎧⎨

⎩
Yi = ρYi−1 + ξi

where ξi ∼ N (0, 1) and ξ′i ∼ C(0, 1).
Zi = ρZi−1 + ξ′i,

As in the previous example, θn = 0.5 and we consider various values of n and
l. Table 2 shows that the test performs very well in this case. However, the
empirical power decreases as the length of blocks increases, since as observed
in the preceding example, the bootstrapped critical values are too small with
shorter blocks when the observations are highly correlated.
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Table 1

Performance of K.S and C.V.M in small sample sizes

Empirical size for K.S and C.V.M
ρ = 0.1 ρ = 0.5 ρ = 0.9

n = 200

l = 1, k = 300 0.086/0.078 0.435/0.389 0.993/0.998
l = 2, k = 100 0.067/0.054 0.265/0.224 0.932/0.933
l = 4, k = 50 0.078/0.059 0.159/0.130 0.759/0.704
l = 5, k = 40 0.068/0.050 0.134/0.108 0.668/0.623
l = 8, k = 25 0.064/0.052 0.096/0.073 0.461/0.414
l = 10, k = 20 0.080/0.052 0.092/0.083 0.376/0.339

n = 300

l = 1, k = 300 0.071/0.082 0.412/0.352 0.999/0.998
l = 2, k = 150 0.068/0.065 0.259/0.211 0.961/0.942
l = 3, k = 100 0.079/0.058 0.189/0.165 0.851/0.803
l = 4, k = 75 0.073/0.047 0.111/0.112 0.722/0.682
l = 5, k = 60 0.047/0.033 0.129/0.109 0.666/0.616
l = 10, k = 30 0.064/0.040 0.101/0.073 0.386/0.337

n = 400

l = 1, k = 400 0.090/0.080 0.419/0.385 0.997/1.000
l = 2, k = 200 0.066/0.065 0.247/0.214 0.938/0.937
l = 4, k = 100 0.054/0.059 0.145/0.108 0.760/0.706
l = 5, k = 80 0.058/0.052 0.111/0.103 0.666/0.590
l = 8, k = 50 0.069/0.046 0.097/0.080 0.474/0.420
l = 10, k = 40 0.084/0.058 0.086/0.073 0.372/0.316
l = 16, k = 25 0.068/0.049 0.078/0.064 0.257/0.227

n = 500

l = 1, k = 500 0.102/0.087 0.425/0.371 0.999/0.997
l = 2, k = 250 0.069/0.047 0.256/0.224 0.950/0.937
l = 4, k = 125 0.067/0.061 0.153/0.138 0.758/0.699
l = 5, k = 100 0.076/0.056 0.115/0.090 0.710/0.613
l = 10, k = 50 0.062/0.042 0.072/0.067 0.385/0.343

Empirical power for K.S and C.V.M when detecting a change in the mean
ρ = 0.1 ρ = 0.5 ρ = 0.9

n = 200

l = 1, k = 300 0.9400/0.9775 0.9975/1 1/1
l = 2, k = 100 0.9250/0.9550 0.9975/0.9975 1/1
l = 4, k = 50 0.9250/0.9550 0.9925/0.9950 1/1
l = 5, k = 40 0.9450/0.9275 0.9850/0.9875 1/1
l = 8, k = 25 0.8925/0.9050 0.9700/0.9650 1/1
l = 10, k = 20 0.9000/0.9275 0.9675/0.9700 1/1

n = 300

l = 1, k = 300 0.9925/0.9975 1/1 1/1
l = 2, k = 150 0.9900/0.9950 1/1 1/1
l = 3, k = 100 0.9825/0.9875 1/1 1/1
l = 4, k = 75 0.9975/0.9950 1/1 1/1
l = 5, k = 60 0.9875/0.9925 1/1 1/1
l = 10, k = 30 0.9825/0.9925 0.9925/0.995 1/1

n = 400

l = 1, k = 400 0.9975/1 1/1 1/1
l = 2, k = 200 0.9950/0.9950 1/1 1/1
l = 4, k = 100 0.9975/0.9975 1/1 1/1
l = 5, k = 80 0.9975/0.9975 1/1 1/1
l = 8, k = 50 1/0.9975 1/0.9975 1/1
l = 10, k = 40 1/1 1/1 1/1
l = 16, k = 25 0.9900/1 1/1 1/1

n = 500

l = 1, k = 500 1/1 1/1 1/1
l = 2, k = 250 1/1 1/1 1/1
l = 4, k = 125 1/1 1/1 1/1
l = 5, k = 100 1/1 1/1 1/1
l = 10, k = 50 1/1 1/1 1/1
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Table 2

Empirical power for K.S and C.V.M when detecting a change from Normal to Cauchy
innovations

ρ = 0.2 ρ = 0.5 ρ = 0.9

n = 200

l = 1, k = 300 0.6750/0.7775 0.9775/0.9925 1/1
l = 2, k = 100 0.6375/0.6750 0.8825/0.9050 1/1
l = 4, k = 50 0.4975/0.5025 0.7625/0.7375 0.9800/0.9900
l = 5, k = 40 0.4825/0.4550 0.7125/0.7075 0.9800/0.9825
l = 8, k = 25 0.4625/0.4525 0.6225/0.5450 0.9200/0.8825
l = 10, k = 20 0.4950/0.4775 0.5500/0.5000 0.8425/0.7900

n = 300

l = 1, k = 300 0.8925/0.9325 0.9950/1.0000 1/1
l = 2, k = 150 0.8500/0.9200 0.9850/0.9925 1/1
l = 3, k = 100 0.7800/0.8425 0.9500/0.9625 1/1
l = 4, k = 75 0.7100/0.7425 0.9275/0.9325 1/0.9975
l = 5, k = 60 0.7025/0.7600 0.9100/0.9125 0.9950/0.9975
l = 10, k = 30 0.7225/0.7200 0.8100/0.7500 0.9500/0.9425

n = 400

l = 1, k = 400 0.9650/0.9875 0.9975/1 1/1
l = 2, k = 200 0.9525/0.9725 0.9950/0.9950 1/1
l = 4, k = 100 0.9050/0.9225 0.9825/0.9850 1/1
l = 5, k = 80 0.9050/0.9200 0.9750/0.9700 1/1
l = 8, k = 50 0.8725/0.8650 0.9425/0.9575 0.9975/0.9975
l = 10, k = 40 0.8775/0.8900 0.9300/0.9175 0.9875/0.9800
l = 16, k = 25 0.8475/0.8800 0.9050/0.9025 0.9350/0.9050

n = 500

l = 1, k = 500 0.9975/0.9975 1/1 1/1
l = 2, k = 250 0.9825/0.9950 1/1 1/1
l = 4, k = 125 0.9825/0.9875 0.9925/0.9975 1/1
l = 5, k = 100 0.9800/0.9825 0.9925/0.9950 1/1
l = 10, k = 50 0.9625/0.9750 0.9850/0.9975 0.9950/0.9925

6.5. Example 5

Since the applicability of the results presented in this paper go beyond the scope
of linear processes, one can analyse the performance of our testing approach in
the nonlinear case. This example is of particular interest, since both the pre-
and post-change distributions are defined to have mean 0 and variance 1. First
we introduce a simple ARCH process defined recursively by Zi = σiξ

′
i where

σ2
i = (1 − a) + aZ2

i−1 with 0 ≤ a < 1. Figure 5 displays a change from an i.i.d
sequence to a simple ARCH process:⎧⎨

⎩
Yi = ξi

where ξi ∼ N (0, 1) and ξ′i ∼ N (0, 1).
Zi = σiξ

′
i,

Figure 6 illustrates the following change:⎧⎪⎨
⎪⎩

Yi = σ
(1)
i ξi

where ξi ∼ N (0, 1) and ξ′i ∼ N (0, 1).

Zi = σ
(2)
i ξ′i,

σ
(1)
i and σ

(2)
i are consecutively obtained by taking a = 0.5 in the first case and

letting a = 0.1, · · · , 0.9 for the second.
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Fig 5. Detection of a change from an independent sequence to an ARCH process

Fig 6. Detection of a change in ARCH processes

As in the previous examples, the simulations were made at a nominal level
α = 5% with 500 bootstrap replications, and each simulation was performed 400
times to get the empirical power under a non-converging alternative (θn = 0.5).
The sample size used in this case was n = 5000 with l = 10 and k = 500.

Figures 5 and 6 show that our procedure can be used to detect changes from
an i.i.d sequence to an ARCH process or from an ARCH process to another
one in case of moderate sample sizes. Although the usual distribution-free tests
are applicable for i.i.d. random variables, our results show that the bootstrap
works well even if the assumption that the pre-change process is i.i.d. has not
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been made. In this case, the power increases as the coefficient a increases. This
makes sense, since larger values of a cause more dependence in the post-change
process, and this, in turn, is reflected in the post-change marginal distribution.
The second change model shows that the empirical size is very close to the
nominal level and the test statistics achieve an acceptable power for small values
of a. It also shows much better performance for large values of a. In both cases,
the performance of the test statistics (Kolmogorov-Smirnov, Cramér-Von Mises)
is virtually identical.

7. Conclusion

In this article, we have defined a sequential version of the moving block boot-
strap and demonstrated its validity in detecting a change-point in a stationary
sequence under simple moment conditions. These results have been applied to
a linear model to illustrate that the MBB can be applied to processes that are
not mixing, associated, or near epoch dependent. Simulations illustrate the
performance of the procedure in detecting changes in both linear and non-linear
models.

There are many open questions beyond the scope of this paper that are of
interest for further research:

• In fact, Theorem 2.4 of [5] is slightly more general than as stated here in
Theorem 5.3. In the case of the linear process, it is possible to prove that
(14) holds for random values of θn, provided that θn →P θ, where θ ∈ [0, 1]
is fixed. The random change-point [nθn] can be either independent or data-
dependent (for details, see [5]). It would be useful to investigate conditions
under which the MBB can be extended to a random change-point.

• Estimation of the value of θn should be considered.
• The results obtained here should be extended to processes with multiple

change points.
• There are many interesting models of stationary random fields that gen-

eralize both mixing and linear sequences (cf. [10]). The block bootstrap as
well has been extended to planar processes. The methods developed here
could be generalized to detect a planar change-point or change-set. This
question is currently under investigation.

8. Proofs

8.1. Proof of Theorem 2.2

In what follows, for notational convenience we write l = ln and k = kn and fix
a realization of the stochastic process, {xi}. Hence, the resampling mechanism
becomes the unique source of randomness. We also consider the triangular array
{xni} defined as in Section 2:

xni :=

{
xi if 1 ≤ i ≤ n
xi−n if n+ 1 ≤ i ≤ n+ l − 1.
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Some definitions will be needed in the sequel.
The ith block sample mean:

xli =
1

l

i+l−1∑
j=i

xnj ,

and the sample mean:

xn =
1

n

n∑
j=1

xj =
1

n

n∑
i=1

xli.

The bootstrapped sample mean is then defined as

x(b)
n =

1

n

n∑
i=1

x
(b)
i ,

where (x
(b)
1 , . . . , x

(b)
n ) = (xnIn1 , . . . , xn,In1+l−1, . . . , xnInk

, . . . , xn,Ink+l−1) is de-
fined as in Section 2.

We shall also use the notation:

fli(x) =
1

l

i+l−1∑
j=i

I(xnj ≤ x), fn(x) = fn1(x)

fli(x, y) = fli(x)− fli(y), fn(x, y) = fn1(x, y).

Define now, for x ∈ R, Z
(b)
n (x) to be a sample-based version of the bootstrapped

empirical process by replacing Xni by xni in (6). Hence,

Z(b)
n (x) =

√
n(f (b)

n (x)− fn(x))

=

√
n

k

k∑
j=1

[
n∑

i=1

I(Inj = i)(fli(x)− fn(x))

]
, (21)

where f
(b)
n (x) is defined by replacing Xni by xni in (5).

We also define a sample-based version of the sequential bootstrapped empir-
ical process, by replacing Xni by xni in (7), for (x, s) ∈ (R× [0, 1]) as

Z(b)
n (x, s) =

√
n

k

[ks]∑
j=1

[
n∑

i=1

I(Inj = i)(fli(x)− fn(x))

]
. (22)

We should note again that the terms in the partial sum are independent and
identically distributed.

To prove Theorem 2.2, we proceed with a sequence of propositions that are
sequential versions of the results in Section 3 of [14]. Recall that we use C to
denote a generic constant that may change at each appearance.

Our first proposition is a straightforward generalization of Proposition 3.1 of
[14] and so is presented without proof.
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Proposition 8.1. Let {xi, i ≥ 1} be a bounded sequence of real numbers. Let k
and l be integers such that n = kl and

l2

n
→ 0 as n → ∞. (23)

For each n, let {In1, In2, . . . , Ink} be i.i.d uniform on {1, 2, . . . , n} and assume
that

Vn =
1

k

n∑
i=1

(xli − xn)
2 → σ2 > 0 as n → ∞. (24)

Then, for 0 ≤ s < t ≤ 1

√
n

k

[kt]∑
j=[ks]+1

n∑
i=1

I(Inj = i) (xli − xn)
d→ N (0, (t− s)σ2) as n → ∞. (25)

The following proposition proves the convergence of finite dimensional distri-

butions Z
(b)
n (·, ·). We shall first define for x, y in R

Vn(x, y) =
1

k

n∑
i=1

(fli(x, y)− fn(x, y))
2. (26)

Proposition 8.2. Let {xi, 1 ≤ i ≤ n} and {Ini, 1 ≤ i ≤ n} be as in Proposition
8.1, and assume that 0 ≤ xi ≤ 1 for every 0 ≤ i ≤ n. Let k and l be integers
such that n = kl and l2/n → 0 as n → ∞. Assume also for every x, y ∈ [0, 1]
that

lim
n→∞

Vn(x, y) exists. (27)

Then, for every x, y in [0, 1]

lim
n→∞

1

k

n∑
i=1

(fli(x)− fn(x))(fli(y)− fn(y)) = σ(x, y) (28)

exists and for every (z1, . . . , zp, s1, . . . , sp) ∈ [0, 1]2p(
Z(b)
n (z1, s1), . . . , Z

(b)
n (zp, sp)

)
d→
(
Nz1,s1 , . . . ,Nzp,sp

)
as n → ∞, (29)

where {Nzi,si}1≤i≤p are zero-mean Gaussian with covariance function

σij = (si ∧ sj)σ(zi, zj).

Proof. Recalling the definition of Z
(b)
n (x) in (21), exactly as in the proof of

Proposition 3.3 of [14] we have that the limit in (28) exists and

Cov
(
Z(b)
n (x), Z(b)

n (y)
)
=

1

k

n∑
i=1

(fli(x)− fn(x))(fli(y)− fn(y)). (30)

Using now the representation in (22), we can see that for 0 ≤ s < t ≤ 1
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Cov
(
Z(b)
n (x, s), Z(b)

n (y, t)
)

=
[ks]

k2

n∑
i=1

(fli(x)− fn(x))(fli(y)− fn(y))

→ sσ(x, y) as n → ∞.

Suppose now, for instance, that 0 = s0 ≤ s1 < s2 < . . . < sp ≤ 1 and let
α1, α2, . . . , αp be real numbers. We will use the Cramér-Wold device and prove
that

p∑
u=1

αuZ
(b)
n (zu, su)

d→
p∑

u=1

αuNzu,su as n → ∞.

We have the following representation:

p∑
u=1

αuZ
(b)
n (zu, su)

=

p−1∑
u=0

√
n

k

[ksu+1]∑
j=[ksu]+1

n∑
i=1

p∑
v=u+1

αvI(Inj = i)(fli(zv)− fn(zv)). (31)

Denote

yui =

p∑
v=u+1

αvI(xi ≤ zv)

and apply Proposition 8.1 with xi replaced by yui to get, as n → ∞

√
n

k

[ksu+1]∑
j=[ksu]+1

n∑
i=1

p∑
v=u+1

αvI(Inj = i)(fli(zv)− fn(zv))
d→ N (0, (su+1 − su)σ

2
u),

provided the existence of

σ2
u = lim

n→∞

1

k

n∑
i=1

(
yuli − yun

)2
.

Using (28), we get

1

k

n∑
i=1

(
yuli − yun

)2
=

1

k

n∑
i=1

(
p∑

v=u+1

αv (fli(zv)− fn(zv))

)2

=
1

k

n∑
i=1

p∑
v=u+1

α2
v (fli(zv)− fn(zv))

2

+
2

k

n∑
i=1

p−1∑
v=u+1

p∑
v′=v+1

αvαv′ (fli(zv)− fn(zv)) (fli(zv′)− fn(zv′))

→
p∑

v=u+1

α2
vσ(zv, zv) + 2

p−1∑
v=u+1

p∑
v′=v+1

αvαv′σ(zv, zv′).
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Remark now that the u-indexed sums in (31) are independent and

p−1∑
u=0

(su+1 − su)σ
2
u

=

p−1∑
u=0

(su+1 − su)

[
p∑

v=u+1

α2
vσ(zv, zv) + 2

p−1∑
v=u+1

p∑
v′=v+1

αvαv′σ(zv, zv′)

]

=

p∑
v=1

svα
2
vσ(zv, zv) + 2

p−1∑
v=1

p∑
v′=v+1

svαvαv′σ(zv, zv′)

= V ar

(
p∑

u=1

αuNzu,su

)
.

This completes the proof of the proposition.

Next, we prove tightness of the sequence (Z
(b)
n (·, ·)).

Proposition 8.3. Let {xi, 1 ≤ i ≤ n} and {Ini, 1 ≤ i ≤ n} be as in Proposition
8.1, and assume that 0 ≤ xi ≤ 1 for every 0 ≤ i ≤ n. Let k and l be integers
such that n = kl and

l ≤ C1n
1
2−a, for some 0 < a <

1

2
and C1 > 0. (32)

Assume there are constants C2 > 0, 0 < b < 1 and c > 0 such that, for every x
and y in [0, 1] and every n ≥ 1, we have

Vn(x, y) =
1

k

n∑
i=1

(fli(x, y)− fn(x, y))
2 ≤ C2(|x− y|b + n−c). (33)

Then (Z
(b)
n (·, ·))n defined by (22) is tight in D([0, 1]2); in particular, for every

ε, η > 0 there exists δ, 0 < δ < 1 and N0 such that for every n ≥ N0,

P

⎛
⎜⎜⎝ sup

|x−y|<δ

|s−t|<δ

∣∣∣Z(b)
n (x, s)− Z(b)

n (y, t)
∣∣∣ ≥ ε

⎞
⎟⎟⎠ ≤ η, (34)

and consequently, if Y is taken as a limiting distribution on a subsequence,
P (Y ∈ C([0, 1]2)) = 1.

For computational clarity, we will identify all of the constants involved in the
following proof. Note that we now assume 0 ≤ xi ≤ 1, i = 1, ..., n.

Proof. The tightness of the sequence Z
(b)
n (x, s) will be proven by closely fol-

lowing the approach used by Naik-Nimbalkar and Rajarshi in [13] and using a
restricted chaining argument given in Theorem VII.26 in [15] applied with the
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semimetric d((x, s), (y, t)) = C3 max(|x − y| b2 , |s − t| b2 ), where x, y, s, t in [0, 1],
0 < b < 1 and C3 > 0.

By (22), we have the following representation

Z(b)
n (x, s) =

[ks]∑
j=1

Enj(x),

where

Enj(x) =

√
n

k

n∑
i=1

I(Inj = i)(fli(x)− fn(x)).

Define
Enj(x, y) = Enj(x)− Enj(y)

and suppose for instance that s ≤ t, so we can now obtain by virtue of the
independence of the Enj ’s and inequality (33) that

V ar
(
Z(b)
n (x, s)− Z(b)

n (y, t)
)

=

[ks]∑
j=1

V ar (Enj(x, y)) +

[kt]∑
j=[ks]+1

V ar (Enj(y))

≤ Vn(x, y) +

(
t− s+

1

k

)
Vn(y, 0)

≤ C2(|x− y|b + n−c) + C2

(
|t− s|b + 1

k

)
(1 + n−c)

≤ C ′
2

(
|x− y|b + |t− s|b + 1

k
+ n−c

)
= Dn(x, y, s, t).

We also have by (32)

|Enj(x, y)| ≤
2
√
n

k
≤ 2C1n

−a and |Enj(y)| ≤
√
n

k
≤ C1n

−a.

Therefore, by Bennett’s inequality (see [15], page 192), we have for every η > 0

P
(∣∣∣Z(b)

n (x, s)− Z(b)
n (y, t)

∣∣∣ > η
)

≤ 2 exp

(
−1

2

η2

Dn(x, y, s, t)
B

(
2C1n

−aη

Dn(x, y, s, t)

))
, (35)

where B(λ) = 2λ−2[(1 + λ) log(1 + λ)− λ] for λ > 0.
Remark now that for any δ > 0

d((x, s), (y, t)) ≤ δ ⇒ max(|x− y|, |s− t|) ≤
(

δ

C3

) 2
b

.
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Hence, the covering number, which is the smallest m for which there exist points
(xα1, sα1), . . . , (xαm, sαm) with min

i
d((x, s), (xαi, sαi)) ≤ δ for every (x, s) in

[0, 1]2, is found to be in this case

N(δ) = N(δ, d, [0, 1]2) =

([
C3

δ

] 2
b

+ 1

)2

. (36)

Let us denote the nearest member of the α-net of [0, 1]2 to (x, s) with respect
to the semimetric d by (xα, sα). If d((x, s), (y, t)) ≤ δ and n−r ≤ δ2, where
r = min( 12 + a, c), then Dn(x, y, s, t) ≤ C4δ

2 for some C4 > 0 by (32).
It will be shown later that

i) For every λ ∈ (0, 1), every η > 0 and δ > 0 such that δ2 ≥ n−r and
δ2

η
≥ 2C1n

−a

C4B−1(λ)
, we have

P
(∣∣∣Z(b)

n (x, s)− Z(b)
n (y, t)

∣∣∣ ≥ η
)
≤ 2 exp

(
−

1
2η

2λ

C4δ2

)
, (37)

provided that d((x, s), (y, t)) ≤ δ.
ii) For any ν > 0

lim sup
n→∞

P

[
sup

(x,s)∈[0,1]2

∣∣∣Z(b)
n (x, s)− Z(b)

n (xα, sα)
∣∣∣ ≥ ν

]
= 0 a.s, (38)

where α2 = α2
n = n−r +

2C1n
−a

C4B−1(λ)
.

To apply Theorem VII.26 of Pollard [15], it remains to show that the associated
covering integral with respect to the δ-net of the semimetric d is finite for any
0 < δ ≤ 1. By definition, the covering integral is

J(δ) = J(δ, d, [0, 1]2) =

∫ δ

0

(
2 log

(
N(u)2

u

)) 1
2

du

≤
∫ δ

0

⎛
⎜⎝2 log

⎛
⎜⎝
((

C
u

) 2
b + 1

)4

u

⎞
⎟⎠
⎞
⎟⎠

1
2

du by (36)

≤ Cδ

(
log

(
1

δ

)) 1
2

for δ small enough.

Now, taking λ = 1/4, D = 2
√
C4 and α2 = n−r + 2C1n

−a/C4B
−1(1/4) in

Theorem VII.26 of Pollard [15], inequality (34) holds.
To complete the proof of the proposition, we shall prove inequalities (37) and

(38).
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If d((x, s), (y, t)) ≤ δ and n−r ≤ δ2, then Dn(x, y, s, t) ≤ C4δ
2 as mentioned

before. Since λB(λ) is an increasing function, we have by (35)

P
(∣∣∣Z(b)

n (x, s)− Z(b)
n (x, s)

∣∣∣ > η
)
≤ 2 exp

(
−1

2

η2

C4δ2
B

(
2C1n

−aη

C4δ2

))
.

Further, if
δ2

η
≥ 2C1n

−a

C4B−1(λ)
, then inequality (37) holds since B(0+) = 1 and

B(·) is a continuous, decreasing function.
We now verify (38). Recall the representation (22)

Z(b)
n (x, s) =

[ks]∑
j=1

Enj(x),

where

Enj(x) =

√
n

k

n∑
i=1

I(Inj = i)(fli(x)− fn(x)).

Let x and y be any points in [0, 1]. Then, arguing as in [13]

fn(x) = fn(y) ⇒ I(xj ≤ x) = I(xj ≤ y) for j = 1, . . . , n

⇒ I(xnj ≤ x) = I(xnj ≤ y) for j = 1, . . . , n+ l − 1

⇒ Z(b)
n (x, s) = Z(b)

n (y, s) for s ∈ [0, 1].

Since fn and [ks] assume (n + 1) and (k + 1) different values respectively,

Z
(b)
n (x, s) − Z

(b)
n (y, t) assumes at most (n + 1)2(k + 1)2 values as (x, s) and

(y, t) vary in [0, 1]2. Therefore,

P

[
sup

(x,s)∈[0,1]2
|Z(b)

n (x, s)− Z(b)
n (xα, sα)| > ν

]

≤ (n+ 1)2(k + 1)2 sup
(x,s)∈[0,1]2

P
[
|Z(b)

n (x, s)− Z(b)
n (xα, sα)| > ν

]
.

Suppose for instance that s ≤ sα, then by the kind of computations seen before,
we get

V ar
(
Z(b)
n (x, s)− Z(b)

n (xα, sα)
)
≤ Dn(x, xα, s, sα).

Bernstein’s inequality (see [15], page 193) leads to the following:

P
[
|Z(b)

n (x, s)− Z(b)
n (xα, sα)| > ν

]
≤ 2 exp

(
−

1
2ν

2

Dn(x, xα, s, sα) +
2C1n−a

3 ν

)
.

The definition of α and the condition (32) imply that

Dn(x, xα, s, sα) +
2C1n

−a

3
ν ≤ C5n

−p,
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for some constants C5 > 0 and p > 0. Hence,

P

[
sup

(x,s)∈[0,1]2
|Z(b)

n (x, s)− Z(b)
n (xα, sα)| > ν

]
≤ 2(n+ 1)4 exp(−C6n

p).

This completes the proof of inequality (38) and that of Proposition 8.3.

We now return to the proof of Theorem 2.2. We will be applying Propositions
8.2 and 8.3 to a fixed trajectory xi = Xi(ω), i = 1, 2, ... of the sequence of random
variables {Xi}.

Define the variables Ui = F (Xi) and consider the bootstrapped empirical

process W
(b)

n (·) based on the Ui’s, as in (4). Let

Vn1(x, y) = V ar
(
W

(b)

n (x)−W
(b)

n (y)
)
.

Now replace P with P ∗ and xi = Ui(ω) in Propositions 8.2 and 8.3, where P ∗

denotes the conditional probability given the sample (X1, X2, · · · , Xn). The al-

most sure convergence of the sequential bootstrapped empirical processW
(b)

n (·, ·)
will follow from Propositions 8.2 and 8.3 provided that conditions (27) and (33)
hold almost surely: i.e.

lim
n→∞

Vn1(x, y) =
∑
i∈Z

Cov (I(U0 ≤ x), I(Ui ≤ y)) a.s., (39)

and for each x and y in [0, 1]

Vn1(x, y) ≤ C(|x− y|b + n−c) a.s., (40)

for some C > 0, depending only on trajectory, 0 < b < 1 and C > 0. This
was proven by Peligrad under the conditions of our Theorem 2.2 (Proposition
4.1 and proof of Theorem 2.2 in [14]). The conclusion of our Theorem 2.2 can
now be derived in a routine manner, as in [2], for the sequential bootstrapped

empirical process W
(b)
n (x, s) = W

(b)

n (F (x), s).

8.2. Proofs of Theorems 3.2 and 3.3

We begin with a slight variation of Theorem 2.2. Let (xn)n∈Z be a realization
of a stationary sequence (Xn)n∈Z and let (θn)n∈Z be a sequence in [0, 1] such
that θn → θ ∈ [0, 1]. We introduce some notation: for 1 ≤ i ≤ [nθn] we define

FX,θn
l,i by

FX,θn
l,i (x) =

1

l

i+l−1∑
j=i

I(X∗
nj ≤ x),

where

X∗
ni =

{
Xi if 1 ≤ i ≤ [nθn]
Xi−[nθn] if [nθn] + 1 ≤ i ≤ [nθn] + l − 1.

(41)
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Let

WX,(b,θn)
n (x, s) :=

√
n

k

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

I(Inj = i)(FX,θn
l,i (x)− FX

[nθn]
(x))

⎤
⎦ , (42)

where FX
[nθn]

(x)) is the empirical distribution based on X1, ..., X[nθn].

Next, for [nθn] + 1 ≤ i ≤ n, let

F̃X,θn
l,i (x) =

1

l

i+l−1∑
j=i

I(X̃∗
nj ≤ x),

where

X̃∗
ni =

{
Xi if [nθn] + 1 ≤ i ≤ n
Xi−n+[nθn] if n+ 1 ≤ i ≤ n+ l − 1.

(43)

Define

W̃X,(b,θn)
n (x, s) =

√
n

k

[ks]∑
j=1

⎡
⎣ n∑
i=[nθn]+1

I(Inj= i)(F̃
(X,θn)
l,i (x)− FX

n−[nθn],[nθn]+1(x))

⎤
⎦

(44)
where

FX
n−[nθn],[nθn]+1(x) =

1

n− [nθn]

n∑
j=[nθn]+1

I(Xnj ≤ x).

Given a realization x1, x2, . . . of X1, X2, . . . , we use x∗
ni, x̃∗

ni, fX,θn
l,i (x),

fX
n−[nθn],[nθn]+1(x), etc. to denote the sample based versions of X∗

ni, X̃∗
ni,

FX,θn
l,i (x), FX

n−[nθn],[nθn]+1(x), and so on.

Theorem 8.4. Assume that the conditions of Theorem 2.2 are satisfied.

(a) Define W
X,(b,θn)
n (·, ·) as in (42). If θn → θ > 0 or if θn → 0 and lnθn → 0,

then as n → ∞,

WX,(b,θn)
n (·, ·) D→ WX

θ (·, ·)
almost surely where WX

θ (·, ·) is a Gaussian process with zero mean and covari-
ance

Cov
(
WX

θ (x, s),WX
θ (y, t)

)
= θ(s ∧ t)

∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) . (45)

(b) Define W̃
X,(b,θn)
n (·, ·) as in (44). If θn → θ < 1 or if θn → 1 and ln(1−θn) →

0, then as n → ∞,

W̃X,(b,θn)
n (·, ·) D→ WX

(1−θ)(·, ·)
almost surely where WX

(1−θ)(·, ·) is a Gaussian process with zero mean and co-
variance

Cov
(
WX

(1−θ)(x, s),W
X
(1−θ)(y, t)

)
= (1−θ)(s∧t)

∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) .

(46)
Furthermore, the limits in (a) and (b) are independent.
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We defer the proof of Theorem 8.4 to the end of the subsection.

The key to proving Theorems 3.2 and 3.3 is the following representation of

W
(b)
n (x, s):

Lemma 8.5. If (X1, ..., Xn) = (Y1, ..., Y[nθn], Z[nθn]+1, ..., Zn), then

W (b)
n (x, s)

= WY,(b,θn)
n (x, s) + W̃Z,(b,θn)

n (x, s) (47)

+
(
FY
[nθn]

(x)− FZ
n−[nθn],[nθn]+1(x)

)√
lB(θn)

n (s) (48)

+ oP∗(1),

where

B(θn)
n (s) =

1√
k

[ks]∑
j=1

(
I(Inj ≤ [nθn])−

[nθn]

n

)

and the oP∗(1) term is uniform in (x, s). (P ∗ denotes the conditional probability
given the sample (X1, X2, · · · , Xn)).

Proof. This can be seen as follows:

W (b)
n (x, s) =

√
n

k

[ks]∑
j=1

[
n∑

i=1

I(Inj = i)(FX
l,i (x)− FX

n (x))

]

=

√
n

k

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

I(Inj = i)(FX
l,i (x)− FY

[nθn]
(x))

⎤
⎦

+

√
n

k

[ks]∑
j=1

⎡
⎣ n∑
i=[nθn]+1

I(Inj = i)(FX
l,i (x)− FZ

n−[nθn],[nθn]+1(x))

⎤
⎦

+

√
n

k

⎡
⎣(FY

[nθn]
(x)− FX

n (x))

[ks]∑
j=1

I(Inj ≤ [nθn]) (49)

+ (FZ
n−[nθn],[nθn]+1(x)− FX

n (x))

[ks]∑
j=1

(1− I(Inj ≤ [nθn]))

⎤
⎦ (50)

We make the following observations:

sup
x,s

∣∣∣∣∣∣
√
n

k

[ks]∑
j=1

[nθn]∑
i=1

I(Inj = i)(FX
l,i (x)− FY,θn

l,i (x))

∣∣∣∣∣∣
= sup

x,s

∣∣∣∣∣∣
√
n

k

[ks]∑
j=1

[nθn]∑
i=[nθn]−l+2

I(Inj = i)(FX
l,i (x)− FY,θn

l,i (x))

∣∣∣∣∣∣



3606 F. El Ktaibi and B. G. Ivanoff

≤
√
n

k

[ks]∑
j=1

[nθn]∑
i=[nθn]−l+2

I(Inj = i) (51)

Taking expectations, we see that almost surely,

EP∗

⎡
⎣sup

x,s

∣∣∣∣∣∣
√
n

k

[ks]∑
j=1

[nθn]∑
i=1

I(Inj = i)(FX
l,i (x)− FY,θn

l,i (x))

∣∣∣∣∣∣
⎤
⎦ ≤

√
n[ks]l

kn
≤ l√

n
,

where EP∗ denotes conditional expectation with respect to P ∗. Therefore,

sup
x,s

∣∣∣∣∣∣
√
n

k

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

I(Inj = i)(FX
l,i (x)− FY

[nθn]
(x))

⎤
⎦−WY,(b,θn)

n (x, s)

∣∣∣∣∣∣ = oP∗(1).

(52)
Likewise,

sup
x,s

∣∣∣∣∣∣
√
n

k

[ks]∑
j=1

⎡
⎣ n∑
i=[nθn]+1

I(Inj= i)(FX
l,i (x)−FZ

n−[nθn],[nθn]+1(x))

⎤
⎦−W̃Z,(b,θn)

n (x, s)

∣∣∣∣∣∣
= oP∗(1). (53)

Next, noting that FX
n (x) = [nθn]

n FY
[nθn]

(x) + n−[nθn]
n FZ

n−[nθn],[nθn]+1(x), a bit of
algebra yields

(49) + (50)

=

√
l

k

(
FY
[nθn]

(x)− FZ
n−[nθn],[nθn]+1(x)

) [ks]∑
j=1

(
I(Inj ≤ [nθn])−

[nθn]

n

)

=
(
FY
[nθn]

(x)− FZ
n−[nθn],[nθn]+1(x)

)√
lB(θn)

n (s), (54)

where B
(θn)
n (s) = 1√

k

∑[ks]
j=1

(
I(Inj ≤ [nθn])− [nθn]

n

)
. Putting (52), (53) and (54)

together, we have the desired representation.

Proof of Theorem 3.2. Consider the asymptotic behaviour of (48). By ergodic-

ity, since both [nθn] → ∞ and n− [nθn] → ∞, it is immediate that
(
FY
[nθn]

(·)−

FZ
n−[nθn],[nθn]+1(·)

)
→ F (·)−G(·) almost surely in D(R) as n → ∞. Next, sup-

pressing dependence of l and k on n for notational convenience and recalling
that the Inj ’s are i.i.d.,

V ar
√
lB(θn)

n (s) = l
[ks]

k

[nθn]

n

(
1− [nθn]

n

)
→ 0,

since lnθn(1 − θn) → 0. Therefore it follows that (48) converges to 0 almost

surely in D(R × [0, 1]), provided that
√
lB

(θn)
n (·) is tight in D[0, 1]. This is an
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easy consequence of Theorem 15.6 of [2], since for s < u < t and n sufficiently

large that l [nθn]n

(
1− [nθn]

n

)
≤ 1,

E
[
|
√
lB(θn)

n (u)−
√
lB(θn)

n (s)|2 · |
√
lB(θn)

n (t)−
√
lB(θn)

n (s)|2
]

=

(
l
[nθn]

n

(
1− [nθn]

n

))2
1

k2
([ku]− [ks])([kt]− [ks])

≤ 4(t− s)2,

where the final inequality follows exactly as in the proof of equation (16.4) in

[2]. Therefore, the asymptotic behaviour of W
(b)
n (·, ·) is the same as that of (47),

and from Theorem 8.4 we have

W (b)
n (·, ·) D→

{
WZ

1 (·, ·) if θn → 0
WY

1 (·, ·) if θn → 1
,

almost surely as n → ∞. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. We have θn → θ ∈ (0, 1). By Theorem 8.4, we have

that the asymptotic behaviour of 1√
l
W

(b)
n (·, ·) is almost surely the same as that

of
(
FY
[nθn]

(x)− FZ
n−[nθn],[nθn]+1(x)

)
B

(θn)
n (s). By the same sort of argument as

in the preceding proof, B
(θn)
n (·) is tight in [0, 1], and by considering the fi-

nite dimensional distributions, it is easily seen that B
(θn)
n (·) D→

√
θ(1− θ)B(·),

where B(·) is a standard Brownian motion process on [0, 1]. Since
(
FY
[nθn]

(·) −

FZ
n−[nθn],[nθn]+1(·)

)
D→ F (·)−G(·) almost surely in D(R), it follows that

1√
l
W (b)

n (·, ·) D→ L(θ)(·, ·)

almost surely in D(R× [0, 1]), where L(θ)(·, ·) is defined in (15). This completes
the proof of Theorem 3.3.

It remains only to prove Theorem 8.4.

Proof of Theorem 8.4. We prove (a) only, as the proof of (b) is similar.

Case 1: Suppose that θn → 0 and lnθn → 0. Recalling that

WX,(b,θn)
n (x, s) :=

√
n

k

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

I(Inj = i)(FX,θn
l,i (x)− FX

[nθn]
(x))

⎤
⎦ , (55)

it is straightforward that EP∗ [W
X,(b,θn)
n (x, s)] = 0 and

V arP∗([WX,(b,θn)
n (x, s))
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=
n

k2

[ks]∑
j=1

V arP∗

⎛
⎝
⎡
⎣[nθn]∑

i=1

I(Inj = i)(FX,θn
l,i (x)− FX

[nθn]
(x))

⎤
⎦
⎞
⎠

=
n

k2

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

P (Inj = i)(FX,θn
l,i (x)− FX

[nθn]
(x))2

⎤
⎦

≤ n

k2
[ks]

[nθn]

n
= O(lnθn),

where EP∗(·) and V arP∗(·) denote conditional mean and variance with respect

to P ∗. Thus, all the finite dimensional distributions of W
X,(b,θn)
n (·, ·) converge

to 0. The result follows if W
X,(b,θn)
n (·, ·) is tight, which may be shown exactly

as in Case 2, below.

Case 2: Suppose that θn → θ > 0. The idea is as follows: we extend Propo-
sitions 8.1, 8.2 and 8.3 to partial sums where i ranges from 1 to [nθn], and the
centering is the average of the first [nθn] terms. To be precise, first we note that
Proposition 8.1 can be extended as follows: Under the same conditions on l = ln
and k = kn, defining x∗

ni as in (41) and denoting x∗
li =

1
l

∑i+l−1
j=i x∗

nj , if

V[nθn] =
1

k

[nθn]∑
i=1

(
x∗
li − x[nθn]

)2 → θσ2 > 0 as n → ∞, (56)

then, for 0 ≤ s < t ≤ 1

√
n

k

[kt]∑
j=[ks]+1

[nθn]∑
i=1

I(Inj = i)
(
x∗
li − x[nθn]

) d→ N (0, θ(t− s)σ2) as n → ∞.

(57)
The proof of (57) follows exactly the proof of Proposition 8.1 by observing that
1
kV[nθn] is the variance of

√
n

k

[nθn]∑
i=1

I(Inj = i)(x∗
li − x[nθn]).

Similarly, under the conditions of Proposition 8.2 the finite dimensional distri-
butions of

Z(b,θn)
n (x, s) =

√
n

k

[ks]∑
j=1

⎡
⎣[nθn]∑

i=1

I(Inj = i)(fX,θn
l,i (x)− fX

[nθn]
(x))

⎤
⎦ . (58)

Converge, provided that limn→∞ V[nθn](x, y) exists, where

V[nθn](x, y) =
1

k

[nθn]∑
i=1

(fX,θn
l,i (x, y)− fX

[nθn]
(x, y))2. (59)
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Proposition 8.3 yields tightness of Z
(b,θn)
n (·, ·) if (33) is replaced by

V[nθn](x, y) ≤ C(|x− y|b + n−c), (60)

0 < b < 1 and c > 0.
Continuing as in the proof of Theorem 2.2, we may assume without loss of

generality that the X ′
is are U(0, 1). Replace P with P ∗ and xi with Xi(ω) in

the statements above and the result follows provided that

lim
n→∞

V[nθn](x, y) = θ
∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) a.s., (61)

and for each x and y in [0, 1]

V[nθn](x, y) ≤ C(|x− y|b + n−c) a.s., (62)

for some C > 0 depending only on trajectory, 0 < b < 1 and c > 0.
First consider (62). As shown in the proof of Theorem 2.2, for some C > 0

depending only on trajectory, 0 < b < 1 and c > 0,

C(|x− y|b + n−c)

≥ 1

k

n∑
i=1

(FX
l,i (x, y)− FX

n (x, y))2 a.s.

≥ 1

k

[nθn]∑
i=1

(FX
l,i (x, y)− FX

n (x, y))2

=
1

k

[nθn]∑
i=1

(FX,θn
l,i (x, y)− FX

n (x, y))2

+
1

k

[nθn]∑
i=[nθn]−l+2

(FX
l,i (x, y)− FX,θn

l,i (x, y))2

−2

k

[nθn]∑
i=[nθn]−l+2

(FX,θn
l,i (x, y)− FX

l,i (x, y))(F
X,θn
l,i (x, y)− FX

n (x, y))

≥ 1

k

[nθn]∑
i=1

(FX,θn
l,i (x, y)− FX

[nθn]
(x, y))2 − 2l

k
.

Since l/k � n−1/3, c can be redefined, if necessary, to yield (62).
Next, we consider (61). This follows exactly as in the proof of Proposition

4.1 of [14], replacing summations from 1 to n with summations from 1 to [nθn].
The only changes that need to be made are to Peligrad’s assumptions (4.7) and
(4.8) of [14], which in our context should be, respectively,

V ar(
∑[nθn]

i=1 I(s < Xi ≤ t))

n
≤ K(|s− t|b + n−d), (63)
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for some K > 0, d > 0, 0 < b < 1, and

sup
u,v∈[0,1]

1

n

∣∣∣∣∣∣
[nθn]∑
i=1

Y 2
li (u, v)− EY 2

li (u, v)

l

∣∣∣∣∣∣ = O(n−g) a.s. as n → ∞, (64)

for some g > 0, where

Yli(u, v) =

i+l−1∑
j=i

[I(u < Xj ≤ v)− (F (v)− F (u))] .

It is easily seen that (63) follows if (4.7) of [14] holds, where the summation is
from 1 to n. This, in turn, is a result of Lemma 4.3 of [14]. To verify (64), we
return to the proof of Theorem 2.2 of [14], where Peligrad’s assumption (4.8)
is verified. A close perusal of the proof indicates that summations from 1 to n
can be replaced everywhere by summations from 1 to [nθn], and all the required
inequalities remain valid. Since both (63) and (64) are satisfied, (61) follows,
and Theorem 8.4(a) is proven.

The independence of the limits in (a) and (b) of Theorem 8.4 follows from
the fact that for all x, y ∈ R and s, t ∈ [0, 1],

CovP∗

(
WX,(b,θn)

n (x, s), W̃X,(b,θn)
n (y, t)

)
= 0,

where CovP∗(·, ·) denotes conditional covariance with respect to P ∗.

8.3. Proof of Proposition 4.2

As in the proof of Proposition 2.8 of [5], a bit of algebra gives us

Vn (x, s) = Kn(x, s) +Bn(x, s),

where

Kn(x, s) := W ′
n(x, s)−

[ns]

n
W ′

n(x, 1)

Bn(x, s) :=
√
nH(n)(x, s)− [ns]√

n
H(n)(x, 1)

=
√
n [(s(1− θn)) ∧ (θn(1− s))] (F (x)−G(x))

+
ns− [ns]√

n
H(n)(x, 1),

and H(n)(·, ·) is defined in (13).

By assumption, Kn(·, ·) D→ W (θ)(x, s)− sW (θ)(x, 1).
If a sequence {θn : n ∈ N} of converging alternatives satisfies either 1. or 2.

of Proposition 4.2(A), then sup
(x,s)∈R×[0,1]

|Bn(x, s)|
p→ ∞ as n → ∞, and by the

continuous mapping theorem it is immediate that Ti
p→ ∞, i = 1, 2 as n → ∞.
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On the other hand, if the alternative is non-converging (θn → θ ∈ (0, 1)) and
Proposition 4.2(B) is satisfied, then we observe that

n−1/2Vn (x, s) = n−1/2Bn(x, s) + oP (1)
p→ (s(1− θ) ∧ θ(1− s))(F (x)−G(x)),

where convergence in probability is on the space D(R × [0, 1]). The contin-
uous mapping theorem and straightforward calculations complete the proof
of (B).
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