
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

1-1-2016 

An Algorithm for Inferring Big Data Objects Correlation Using An Algorithm for Inferring Big Data Objects Correlation Using 

Word Net Word Net 

M. Basel Almourad 
Zayed University 

Mohammed Hussain 
Zayed University 

Talal Bonny 
University of Sharjah 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Almourad, M. Basel; Hussain, Mohammed; and Bonny, Talal, "An Algorithm for Inferring Big Data Objects 
Correlation Using Word Net" (2016). All Works. 409. 
https://zuscholars.zu.ac.ae/works/409 

This Conference Proceeding is brought to you for free and open access by ZU Scholars. It has been accepted for 
inclusion in All Works by an authorized administrator of ZU Scholars. For more information, please contact 
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/409?utm_source=zuscholars.zu.ac.ae%2Fworks%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae


 Procedia Computer Science   83  ( 2016 )  1238 – 1243 

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.258 

ScienceDirect
Available online at www.sciencedirect.com

The 3rd International Workshop on Machine Learning and Data Mining for Sensor Networks 
(MLDM-SN)) 

An Algorithm for Inferring Big Data Objects Correlation Using 
Word Net 

M. Basel Almourada*, Mohammed Hussaina, Talal Bonnyb 

aZayed University, P. O. Box 19282, Dubai, UAE 
b University of Sharjah, P. O. Box 27272, Sharjah, UAE  

Abstract 

The value of big data comes from its variety where data is collected from various sources. One of the key big data challenges is 
identifying which data objects are relevant or refer to the same logical entity across various data sources. This challenge is 
traditionally known as schema matching.  Due to big data velocity traditional approaches to data matching can no longer be used. 
In this paper we present an approach for inferring data objects correlation. We present our algorithm that relies on the objects 
meta-data and it consults the Word Net thesaurus 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Conference Program Chairs. 

Keywords: Big data; Schema integration; Semantic Relation ships; Word Net 

1. Introduction 

Big data refers to massive amounts of data collected over time that is difficult to analyze and handle using 
common database management tools. The analytical challenge is deriving meaningful information from data in 
petabyte and exabyte volumes. Big Data is typically described using the “3Vs”: volume, velocity, and variety. 
Volume refers to the amount of data made available from huge number of different resources. Velocity refers to the 
speed at which data is being collected and continuously made available. Variety refers to how data today is both 
varied and variable. Data sources are very heterogeneous both at the schema and at the instance levels. In other 
words, how data sources structure their data and at the instance level how the real world object is described.  

In practical applications, data often does not come from a single source. Big data implementation requires 

 

 
* Corresponding author. Tel.: +097144021464; fax: +97144021017. 

E-mail address: basel.almourad@zu.ac.ae 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.258&domain=pdf


1239 M. Basel Almourad et al.  /  Procedia Computer Science   83  ( 2016 )  1238 – 1243 

handling data from various sources, in which data can be of heterogeneous of data types, representation, and 
semantic interpretation. This brings forth the challenge of data variety. The variety of data provides more 
information to solve problems or to provide better service. The question is how to capture the different types of data 
in a way that makes it possible to correlate their meanings. Identification of semantic relationships between data 
objects that are participating in a big data application is one of major activities and can be too complex or time 
consuming to be performed manually. On the lower level of the granularity it requires schema matching which is the 
problem of identifying elements of two given schemas that correspond or related to each other 1. A number of 
traditional approaches have been proposed to infer semantic relationships between schema elements automatically. 
They can be classified into two main categories, schema and knowledge based approaches, reflecting the basis on 
which they detect semantic relationships. Both approaches have strengths and weaknesses, which will be discussed, 
in later section. In this paper we present our approach to the semantic correlation inferring. An algorithm that 
represents our approach is provided and explained. Section 2, presents the research related work. Section 3, 
discusses the role of meta data from the database design sematic point of view. Section 4, explains the role of 
WorldNet thesaurus in our research. Section 5, explain and demonstrates our semantic correlation inferring 
algorithm. Section 6, concludes and discusses the future direction of our research. 

2. Related Work 

Developers today approach identification of semantic relationships between data objects by painfully defining 
and writing programs or by using existing traditional data warehousing approaches. The main approaches to detect 
semantic relationships between data objects can be classified into two categories, schema and knowledge based 
approaches, reflecting the basis on which they detect semantic relationships.  

2.1. Schema Based Approaches 

A common technique in schema based approaches is to reason about the meaning and resemblance of 
heterogeneous objects in terms of their meta-data representation in order to identify those that could be semantically 
related 2,3. Promising techniques that have been developed include the use of heuristics to determine the similarity of 
objects based on the occurrences of related attributes in the objects and the percentage of related attributes 4. The 
main limitation of the schema based integration approaches is that they mainly rely on the literal equivalency of the 
attributes. The consideration of semantic is barely considered.  This was due to the early days of schema integration 
problem and the absence of knowledge bases and their use within the context of semantic heterogeneity and 
database integration. 

2.2. Knowledge Based Approaches  

These approaches employ techniques utilizing semantic knowledge (based on real-world experience) in the 
integration process. They start with pre-existing concept structures that model real-world knowledge, such as 
thesauri or ontologies 5. The schema elements of the databases are semantically enriched by appropriate concepts 
from these concept structures before comparing the schema elements. The semantic relationships between schema 
objects are then inferred by determining how the corresponding concepts are linked through the concept structures. 
Siegel 6 adopted a rule-based approach to resolve semantic conflicts so that common concepts would not be 
concealed by these differences. Sheth et al 7 introduce the concept of semantic proximity in order to formally specify 
various degrees of semantic similarity among related objects in different application domains. This is based on the 
real-world context in which these objects are used. In our approach we decided to identify object semantic similarity 
by using a combination of both approaches (schema and knowledge based approaches). We tried to employ positive 
notations from both techniques. Our algorithm relies on WordNet thesaurus in determining the semantically related 
DB objects. 



1240   M. Basel Almourad et al.  /  Procedia Computer Science   83  ( 2016 )  1238 – 1243 

3. Database design and the role of meta-data from the semantic point of view 

The designers of DB have to deal with different ‘worlds’: The Real world, the Conceptual world and the 
Represented world. When building schemas, the DB designers invent names to label schema elements. Since DBs 
are usually designed to model the real world, schema element names are normally natural language nouns chosen to 
provide a bridge between them and their corresponding conceptualization. This schema element names are normally 
called met-data or data about data. Meta-data is considered to be valuable resource for managing information 
sources 8,9. In a typical DB integration exercise, a DB schema integrator needs to locate DB schema objects that are 
relevant to the user information requirement.  An appropriate sub-set of schema objects could be selected. In this 
exercise various types of met-data are required to facilitate the above tasks. In our approach we use met-data of DB 
schema objects as heuristics to infer DB schema object correlation and use these correlations to measure their 
relationships. Our technique reasons about the meaning and resemblance of DB objects in terms of their meta-data 
representation in order to identify those that could be semantically related.  The technique uses kind of heuristics to 
determine the correlation of objects based on the occurrences of related attributes in the objects and the percentage 
of related attributes. The basis of heuristic depends on attribute equivalence to determine whether objects are 
semantically equivalent. Wordnet thesaurus is used 10 to help automate the identification of semantically similar 
properties. 

4. The Role of WordNet thesaurus 

WordNet is a machine readable, on-line lexical database of English words (nouns, verbs and adjectives) 10. The 
words are grouped into synsets: sets of synonyms (lists of synonym word forms that are interchangeable in some 
context). The words in a synset are selected so that they represent a single lexical concept. One of the main 
assumptions underlying WordNet is that the different meanings or senses of a given word can be conceived 
unambiguously by considering the other words in the corresponding synsets to which they belong due to their 
semantic relationships. Each WordNet relation is represented in a separate file by an operator name. Some operators 
are reflexive (i.e. the reverse relation is implicit). So, for example, if x is a hypernym of y, y is necessarily a 
hyponym of x. Semantic relations are represented by a pair of synset_ids, in which the first synset_id is generally the 
source of the relation and the second is the target. If the pair synset_id, w_num is present, the operator represents a 
lexical relation between word forms. In our technique we consult synset predicates to detect synonyms that may be 
used when identifying similar objects. The synset predicate has the following syntax:  

s (synset_id, w_num, ‘word’, ss_type, sense_number, tag_state) 
Where an s operator is present for every word sense in WordNet and w_num specifies the word number for this 

word in the synset. For example, to find whether scholar and student are synonyms or not we use the following 
predicate: s(X,_, scholar, _, _, _),s(X, _,student, _, _, _) 

The result is either true or false depending on whether scholar and student belong to the same synonym set or not. 

5. Semantic correlation inferring algorithm 

A semantic heterogeneity difference between relations of two different DBs is usually of interest only when the 
relations have some sort of resemblance so that they can be integrated in a way that satisfies their context and fits 
the user requirements 11.  

Various types of semantic relationship are possible between different relations (e.g. equivalent, overlap, 
inclusion, disjoint). There are a number of classifications reported in the literature. For example, they can be 
classified according to the real world objects they represent 12, or they can be classified with respect to a concept 
space constructed for a federation 13. We presume that two relations are Semantically Related when they have 
corresponding intended Real World Semantics (RWS) for some universe of discourse and Semantically Incompatible 
when they are not semantically related. The real-world semantics of a relation R, RWS(R), is defined as the set of 
objects in the real world defined by R's DB schema definition. As we cannot depend on the extension of relations in 
reality, we use relation properties (Property here refers to an attribute and its data type) as the basis for relation 



1241 M. Basel Almourad et al.  /  Procedia Computer Science   83  ( 2016 )  1238 – 1243 

comparison, assuming that the properties represent the intended meaning of the relations. In a real life application, 
complete semantic or syntactic equivalence between the related components of databases being integrated should 
not be expected to occur very often. Therefore, we adopt the notion of similarity rather than equivalence between 
database properties as the basis of our research. To detect whether two relations are similar, we designed a heuristic 
algorithm known as Relation Similarity Detector (RSD). The RSD quantifies the measure of similarity between two 
relations in disparate DBs according to a hierarchical aggregation of similar properties. If the measure exceeds or 
equals a certain threshold (which can be altered by the user), then we consider the two relations to be similar. The 
RSD algorithm consists of two main functions: Relation Name Similarity Factor (RNSF) and Relation Property 
Similarity Factor (RPSF) (see the algorithm in Table 1).and one auxiliary (Equal).  

The result of applying each function is a value in [0, 1]. WRNSF and WRPSF are RNSF and RPSF similarity weights 
respectively. A high value forces the RSD heuristic algorithm to detect only the relations that have highly similar 
properties and ultimately very close relations and this could ignore some potentially related relations. However, a 
low value could mean the heuristic algorithm has to reject many relations as non close which might be related. 

RNSF procedure determines whether two relations have equal or similar names based on WordNet. For this 
purpose, it consults EqualName Function in the Equal procedure (described later). The result of applying RNSF is a 
value in [0, 1] (see the algorithm in Table 1). 

Table 1. The algorithms of RSD and RNSF functions 

RSD (Relation 1, Relation 2) 
RNSF (Relation1_name, Relation2_name) = get the value of relation 

name similarity factor 
RPSF (Relation 1, Relation 2) = get the value of relation property 

similarity factor 
Return (RNSF * WRNSF + RPSF * WRPSF) 

RNSF(Relation1_name, Relation2_name) //use EqualNam Algorithm 
If Relation1_name= Relation2_name Then  

Return 1 
If Relation1_name is synonym to Relation2_name Then  

Return 0.5 
If Relation1_name is suffix or prefix to Relation2_name Then  

Return 0.3 
If Relation1_name is subname of Relation2_name Then  

Return 0.3 
Otherwise  Return 0 

 
RPSF calculates the relation property similarity factor by dividing equivalent properties to the average number of 
properties in both relations. It starts by initiating two arrays Relation1_Property and Relation2_Property with 
properties extracted from Relation1 and Relation2, respectively. Each element of the array has the form 
[PropertyName, PropertyType] (e.g. [name,string]). RPSF then uses two loops to iterate both arrays and detect 
whether a property in Relation1_Property array is equal to a property in Relation2_Property array by using the 
Equal function (described later). If two properties are detected as equal, they are stored in Eq_Prpt, which is a list 
holding equivalent properties. If a property from Relation1 or Relation2 is not detected to have a similar property, it 
is stored in Eq_Prpt list with a property equivalent to null. The variable q is used to hold the number of pairs of 
equal properties in the list and it is used to calculate RPSF. 

The findings of this algorithm are stored in the property knowledge base file which is a meta knowledge base. 
This knowledge base is used by different functions of the algorithm.  The following is n example of these facts: 

Pr_eq(db1, address, [street_name, string], primitive, db2, address, [street, string], primitive, 0.44) 
The fact shows that the street_name attribute of relation address in database db1 (which has a primitive string 

type) is equivalent to the primitive street attribute of address relation in database db2 and it is given a 0.44 value. 
The Equal algorithm detected this similarity. The following fact shows that the area attribute of the address relation 
in db1 has no equivalent attribute in relation address in db2 and for this reason, it is considered similar to null and 
has been assigned a zero value    

pr_eq(db1,address,[area,string],primitive,db2,address,null,_, 0) 
 
 



1242   M. Basel Almourad et al.  /  Procedia Computer Science   83  ( 2016 )  1238 – 1243 

Table 2. The Algorithm of RPSF function 

RPSF(Relation1,Relation2) 
q = 0; // Counter for number of equivalent properties 
Eq_Prpt = {}; // List to hold equivalent properties 
n = Number of Properties in Relation1; m = Number of Properties in Relation2; 
Relation1_Property[n] = Get_RelationProperty(Relation1);  
Relation2_Property[m] = Get_RelationProperty(Relation2); 
While n <> 0 Do 

begin 
While m <> 0 Do 

begin 
If n = 0 Then exit \\ inner loop 
If Equal(Relation1_Property[n],Relation2_Property[m]) > threshold Then 
Begin 

add(Relation1_Property[n]= Relation2_Property[m], Eq_Prpt); q = q +1; 
remove(Relation1_Property[n], Relation1_PropertyList); n = n −1; 
remove(Relation2_Property[m], Relation2_PropertyList); m = m −1; 

end{if} 
end  

add(Relation1_Property[n]= null, Eq_Prpt); 
If m = 0 Then exit // outer loop 

end{while} 

// Continue 
If n <> 0 Then 

Begin 
For i: = 1 to n Do 

Begin 
add(Relation1_Proeprty[i]= null,Eq_Prpt); 

end {for} 
end{if} 
If m <> 0 Then 

Begin 
For i =1 to m Do 

Begin 
add(Relation2_Property[i] = null,Eq_Prpt); 

End{for} 
End{if} 
Return (q/((n+m)/2)) 

5.1. The Equal Function 

The Equal function (see the algorithm in Table 3) detects whether two properties are similar or not. This uses two 
functions EqualName and EqualType. The EqualName function checks whether two properties have similar names 
by checking different criteria (e.g. one property is a suffix, prefix or sub name to the second property). The WordNet 
database is consulted to detect whether two properties are synonyms or not. Different weights are given for the 
different finding. The result of applying EqualName is a value in [0, 1]. The EqualType function checks whether 
two properties have similar types or not. If both types are primitive, EqualType checks whether the two types are 
equivalent or are members of similar types. For example, varchar, varchar2, char, char(n) are compatible because 
they are members of a character data type set. If one of the types is a non-primitive type, then EqualType considers 
both types to be non-similar. An important case is when the two types are non-primitive types (user defined data 
type), where the attributes represent a relationship (generalization/association). In this case EqualType calls RSD (a 
recursive call) to detect whether the two data types are similar or not. The result of applying EqualType is a value in 
[0, 1]. WPNS and WPTS are the weights for EqualName and EqualType respectively. 

Table 3. The Algorithm of Equal, Equal Name and Equal Type functions 

Equal(Property1, Property2) 
Property1_name, Property2_name)  
(Property1_type, Property2_type)  

If PNS * WPNS = 0 then 
Return 0 

else  
Return PNS * WPNS + PTS * WPTS 

EqualName(Property1_Name, Property2_Name) 
If Proeprty1_name = Property2_name  
 Return 1 

r prefix to Property2_name  
Return 0.3 

e to Property2_name  
Return 0.5 
If Property1_name is synonym to Property2_name  
Return 0.5 

EqualType(Property1_type, Property2_type) 
If Property1_type = Proeprty2_type Return 1 

f Property1_type and Property2_type are member 
of similar types Return 0.5 

f Property1_type or Property2_type are no similar 
type Return 0 

f Property1_type and Property2_type are non-
primitive type Return 
RSD(Property1_type,Property2_type)  
//Recursion 

5.2. Example 

Table 4 shows the similarity properties of Flight and Journey which are two relations from tow travel agent 
databases DB1 and DB2 respectively. The outcome of running RNSF procedure is 0.5 as the relations Flight & 



1243 M. Basel Almourad et al.  /  Procedia Computer Science   83  ( 2016 )  1238 – 1243 

Journey have different names, the Word Net thesaurus is consulted and it is found that Flight & Journey are 
synonyms. RPSF factor reflects the number of similar properties. Assuming that WPNS (the weight of PNS) is 0.8, 
WPTS (the Weight of PTS) is 0.2 and the PS threshold value is 0.4. 
                                  Table 4 Table 1similarity property of relations DB1_flight and DB2_journey 

DB1_Flight DB2_Journey PS >=0.4 
Attribute  Data Type Attribute  Data Type   

Departing_from Varchar2(30) Leaving_from Varchar2(30 0.3*0.8+1*0.2 = 0.44 Yes 
Going_to Varchar2(30) Arraiving_to  Varchar2(30) 0*0.8+ 1*0.2 = 0.2 No 

Departure_date Date Departure Date 0.5*0.8+1*0.2= 0.6 Yes 

Returning_date Date Return Date 0.5*0.8+1*0.2= 0.6 Yes 

Rate Number Price Number 0.5*0.8+1*0.2 = 0.6 Yes 

Duration Number - - = 0 No 
- - Class Varcha2(15) = 0 No 

 

The average number of properties across both relations is 12/2= 6 therefore RPSF = 4/6 = 0.66. After calculating 
all factors, we can calculate the correlation of the Flight and Journey relations.  If we assume that WRNSF =0.4 and 
WRPSF = 0.6, then the RSD algorithm outcome is:  0.5 *0.4 + 0.66*0.6 = 0.72. If we assume the RSD threshold value 
is 0.6 we can envisage that the relations Flight and Journey are correlated and can be integrated if we wish. 

6. Conclusion & future work 

Our approach to inferring database objects correlation uses resemblance function based on the schema meta-data 
such as names of schema element and data type. Word Net thesaurus is used to catch any potential semantic 
resemblance between schema objects. We are planning to extend the resemblance functions in future to capture 
semantic from schema instances. We are planning to include functions that support the identification of attribute 
with similar meaning by using aggregate instance information such as value distribution, term frequencies and 
average. We are also considering functions that rely on the relation instances. 

7. References 

1. Aminul I ,Diana I, [1] Iluju K. “Applications of corpus-based semantic similarity and word segmentation to database schema matching.” 
The VLDB 2008; 1293–1320 

2. Palopoli L, Sacca D, Terracina G, Ursino D. “Uniform techniques for deriving similaritites of objects and subschemas in heterogeneous 
databases.” IEEE Transactions on Knowledge and Data Engineering; 2003; 271–294. 

3. Rahm E, Bernstein PA. “A survey of approaches to automatic schema matching.” The VLDB Journal 10.4 2001; 334–350. 
4. Sheth AP, Larson J, Cornelio A, Navathe,SB. “A tool for intergrating conceptual schemas and user views.” 4th International 

Conference on Data Engeneering. Los Angeles, 1998; 176-182. 
5. Ralyté J, Jeusfeld MA, Backlund P, Kühn H, Arni-Bloch N. “A knowledge-based approach to manage information systems 

interoperability.” Information Systems 7-8; 2008; 754-784. 
6. Siegel M, Madnick S. A metadata approach to resolving semantic conflicts. In : International Conference on Very Large Databases, 

Barcelona, Spain, 1991; 133-145 
7. Sheth A, Gale S, Navathe S. On Automatic reasoning for schema integration. International Journal of Intelligent and Cooperative 

Information Systems;1993;  2(1) 23-50. 
8. Begg, T.: Database Systems: A Practical Approach to Design, Implementation and Management 5th edn. Addison Wesley; 2009 
9. Kantere V, Tsoumakos D, Sellis T, Nick R: GrouPeer: Dynamic clustering of P2P databases. Information Systems; 2009; 34(1); 62-86. 
10. Miller G. : Wordnet: Alexical database for English. Communication of the ACM; 1995. 
11. Al-Mourad MB, Gray WA, Fiddian NJ. Semantically Rich Materialisation Rules for Integrating Heterogeneous Databases. In : 

Database: Enterprise, Skills and Innovation 3567. Springer-Verlag Berlin Heidelberg; 2005. 
12. Blanco J, Illarramendi A, Goni A. Building a federated relational database system: An Approach using a knowledge-based system. 

International Journal on Intelligent and Cooperative Information systems; 1994; 3(4); 415-455. 
13. Jarke M, Gallersdorfer R, Jeusfeld M, Staudt M.: Concept-Base - a deductive object base for meta data management. Journal of 

Intelligent Information Systems;1994; 3, 167-192. 


	An Algorithm for Inferring Big Data Objects Correlation Using Word Net
	Recommended Citation

	An Algorithm for Inferring Big Data Objects Correlation Using Word Net

