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A B S T R A C T   

The concept of supply chain equilibrium has been widely employed to solve real-life cases. Under this concept, 
decisions makers move simultaneously and compete in a noncooperative manner to achieve a supply chain 
network equilibrium. This paper proposes a supply chain network equilibrium model consisting of multiple raw 
material suppliers, manufacturers and retailers. Unlike previous studies, we assume that the demand for the 
product at each retail outlet is modeled as general stochastic functions of price that encompass additive- 
multiplicative demand models used in previous studies. Under general price-dependent demand functions, we 
derive the optimality conditions of suppliers, manufacturers and retailers, and establish that the governing 
equilibrium conditions can be formulated as a finite-dimensional variational inequality problem. The existence 
and uniqueness of the solution to the variational inequality are examined. A sensitivity analysis and a series of 
numerical tests are conducted to illustrate the analytical effects of demand distribution, model parameters, 
demand level and variability on quantity shipments, prices, and expected profits. Managerial insights are re-
ported to show the impact of different types of demand functions and model parameters on the equilibrium 
solutions.   

1. Introduction 

The equilibrium concept in supply chains is drawn from network 
economics [1] and assumes a simultaneous move of the various 
decision-makers to achieve a supply chain network equilibrium. In the 
field of supply chain management, this concept is practically relevant 
and has been adopted to solve real-life cases. [2] develop a food supply 
chain equilibrium model for fresh product items, such as vegetables and 
fruits. The model was used to analyse various scenarios prior/during/-
after a foodborn disease outbreak within the cantaloupe market in the 
United States. [3] propose a multitiered supply chain network equilib-
rium model for disaster relief with capacitated freight service provision. 
The model was applied to a case study on an international healthier 
crisis in western Africa to examine the impacts of adding a freight ser-
vice provider and an humanitarian organization on the profits of freight 
service providers and on the costs incurred by the humanitarian orga-
nizations. Other relevant applications of the supply chain equilibrium 
concept includes electronic waste recycling [4], internet adverting [5], 
pharmaceutical products [6], green technology investment [7], and 
agricultural products [8]. 

Most of the studies dealing with supply chain equilibrium do not 

consider the effect of demand uncertainty on the equilibrium solutions. 
However, possessing relevant demand information such us density 
functions can assist operations supply chain managers to jointly 
compute optimal order quantities and prices before demand is realized. 
In this paper, we develop a new supply chain equilibrium model under 
demand uncertainty in which the demand for the product at each 
retailer is modeled by a general demand distribution and depends on all 
retailer prices and a on random variable independent of the price with 
increasing failure rate (IFR). This general demand model encompasses 
all common demand functions adopted in the literature [9,10] including 
additive linear, multiplicative isoelastic, power, logit, exponential, log-
arithmic, and mixed additive-multiplicative functions. The results of the 
supply chain equilibrium model are used to address the following 
research questions:  

1. How do model parameters affect equilibrium solutions and expected 
profits of the supply chain members?  

2. How the optimal quantity shipments, prices, and expected profits are 
influenced by the choice of the demand model? 
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3. What is the effect of demand variability on each supply chain 
member’s expected profit? Is this demand variability effect the same 
across different demand models? 

Similar to [11], we adopt the concept of LSR elasticity and make 
realistic assumptions on the demand functions. Under these model as-
sumptions, we demonstrate the pseudo-concavity of the retailers’ ex-
pected profits as functions of prices. This allows us to characterize the 
equilibrium conditions of all raw material suppliers, manufacturers and 
retailers as a variational inequality in which they should determine their 
own optimal decision variables, given the optimal ones of competitors. 
As far as we are aware, this is the first supply chain equilibrium model to 
consider general price-dependent demand including all common de-
mand functions adopted in the extant literature. 

The main contribution of this paper is threefold. First, we develop a 
new supply chain equilibrium model that incorporates extended price- 
dependent stochastic demand functions and price competition among 
retailers. Second, we propose a new variational inequality formulation 
in which raw material suppliers, manufacturers and retailers should 
determine their optimal decision variables, given the optimal ones of 
competitors, and demonstrate the existence and uniqueness of the so-
lution to this variational inequality. Third, through numerical tests and 
sensitivity analysis, we illustrate the analytic effects and practical 
managerial implications of different types of demand functions, model 
parameters, demand level, and demand variability on quantity ship-
ments, prices, and expected profits. 

The rest of this paper is organized as follows. Section 2 positions our 
research with respect to other contributions in the literature. Section 3 
presents the optimality conditions of the raw material suppliers, man-
ufacturers and retailers using the variational inequality theory. Section 4 
provides the equilibrium conditions of the supply chain network model 
and its qualitative properties. Section 5 discusses examples of general 
demand models. Section 6 examines structural properties of the equi-
librium solutions. Section 7 provides numerical examples to illustrate 
the effects of demand distribution, model parameters, demand level, and 
demand variability on quantity shipments, prices, and expected profits. 
Section 8 discusses some important managerial insights. Finally, Section 
9 provides concluding remarks and ideas for future research. All proofs 
are provided in the appendices. 

2. Positioning in literature 

In determining multi-echelon supply chain optimal decisions, the 
game-theory-based framework used to model supply chain depends on 
the power relation between its members, see [12,13]. The first 
approach, assumes that decisions makers have similar powers, move 
simultaneously and compete in a noncooperative manner to achieve a 
supply chain network equilibrium. See [14] for review on this topic. 
Real-life applications of this approach in different fields were discussed 
in the Introduction section. Most studies have adopted a variational 
inequality (VI) formulation to characterize the equilibrium solutions of 
the various decision-makers. [15] were the first to develop an equilib-
rium model of a competitive supply chain network involving multiple 
manufacturers, retailers, and consumers in demand markets. This model 
provides the foundation of supply chain equilibrium models and has 
been extended by several authors to include capacity constraints [16, 
17], closed-loop supply chains [18,19], and multi-period supply chain 
networks [17,19,20]. 

The second approach, assumes that one member of the supply chain 
is more powerful and acts as a leader in the decision making process. A 
Stackelberg game theoretical framework with leaders and followers is 
used to find the optimal decisions. A thorough review of this approach 
can be found in [21,22]. Applications of this approach are found in 
various fields. [23] gave an application for a food supply chain dealing 
with pork meat industry. [24] uses this approach in a supply chain 
where it is desired to maximize profit and corporate social responsibility 

(CSR). In [25], the authors utilize social work donation and recycling 
investment as tools of corporate social responsibility and integrate the 
CSR investments into the optimization of a closed loop supply chain. 
[26] adopts this approach in a hospital supply chain. 

Most literatures, dealing with Stackelberg Equilibrium in supply 
chains, notice that optimizing individual member objectives does not 
necessarily lead the optimality for the whole supply chain and that a 
centralized decision making leads to larger total supply chain profit. To 
solve such issue, many different type of contracts/incentives were 
introduced and aimed at inducing supply chain coordination. Literature 
dealing with supply chain coordination is quite extensive, see [27–29] 
for reviews. To cite some applications, one see that [30] uses price, 
rebate and returns supply contracts to coordinate supply chains while 
[31] adopts a hybrid all-unit quantity discount along a franchise fee 
contract for supply chain coordination. [32] examines the effect of 
channel leadership and information asymmetry on supply chain coor-
dination. [33] uses product recycling and explores channel coordination 
in a socially responsible manufacturer-retailer closed-loop supply chain. 
The paper [34] proposes two hybrid contract bargaining processes that 
can be used for channel coordination of a supply chain that deals with a 
deteriorating product. 

Our manuscript fits in the first approach and assumes that supply 
chain members move simultaneously in order to reach an equilibrium. 
Previous studies in this area utilize a projection-based algorithm to 
compute equilibrium shipments and prices but do not consider the effect 
of demand uncertainty on the equilibrium solutions. In fact, although 
the demand for a product may not be known with certainty but we may 
possess some information such as the density functions based on his-
torical/forecasted data that allows decision makers to jointly determine 
order quantities and price before demand is realized. This is known in 
operations research literature as the newsvendor problem with pricing 
decisions [11,35,36]. 

The extant literature on the newsvendor problem with pricing (NVP) 
is extensive but mainly focuses on the additive and multiplicative 
models. In the additive and multiplicative demand cases, demand is 
represented as the sum and the product, respectively, of a deterministic 
price-dependent demand function and a random term that is indepen-
dent of price. For the additive demand model, price affects the location 
of the demand distribution but not the demand variance while for the 
multiplicative case, price affects the scale of the distribution but not the 
coefficient of variation. [35] provide a comprehensive review of these 
two types of models when the mean demand is linear in the additive case 
and exponential (iso-elastic) in the multiplicative case. [36] and [37] 
study the NVP problem with additive and multiplicative demand models 
when the mean demand has increasing price elasticity (IPE) and the 
random noise has generalized increasing failure rate (GIFR). The authors 
prove that under these conditions, the expected profit of the newsvendor 
is unimodal or quasi-concave with respect to the price. In contrast to 
previous studies, [11] consider general price-dependent demand func-
tions that include additive-multiplicative demand models as well as 
other relevant demand models such as logit, exponential, and power 
functions. Using a new measure, called the lost-sale rate (LSR) elasticity, 
they provide necessary and sufficient conditions for the NVP optimal 
policy under both coordinated and sequential decisions. Throughout the 
paper, the authors assume that riskless unconstrained revenue is strictly 
concave with respect to price. However, this assumption is not satisfied 
for logit, power, and iso-elastic demand functions which is a significant 
drawback of the paper. [38] consider a periodic review of the NPV 
problem under general price-dependent demands. For both the back-
order and lost sales models, the objective is to maximize the expected 
profit over a finite selling horizon by coordinating the inventory and 
pricing decisions in each period. The authors utilize a new concept of 
upper-set and lower-set decreasing properties (USDP/LSDP) to derive 
sufficient conditions for the optimality of a base-stock list price policy 
based on the strict monotonicity of demand functions. Although the 
USDP/LSDP properties are considered to be small relaxations of the 
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strict concavity of the riskless revenue, some demand functions such us 
the logit and exponential functions do not share these properties, 
limiting the applicability of the model. 

As to supply chain equilibrium models under demand uncertainty, 
[39] develop a two-echelon model with multiple manufacturers and 
retailers. The retailers are faced with random demand and seek to 
maximize their expected profits with a penalty associated with a 
shortage and excess supply. The authors formulate the optimality con-
ditions of the retailers as a variational inequality when the retailers first 
decide on the optimal amount to order from manufacturers. The equi-
librium demand prices are then derived by assuming that the total 
quantity purchased by each retailer from all manufacturers is equal to 
the expected demand at that retail’ outlet. This constitutes a main lim-
itation because at equilibrium, the total actual demand is not necessarily 
equal to the total supply. The model of [39] was extended by [40] for 
multi-commodity flow and by [41] within closed-loop supply chains. 
[42] propose a dynamic supply chain equilibrium model for a 
closed-loop supply chain under uncertain and time-dependent demands 
and returns. The seasonality of demand is modeled by assuming that the 
expected value of the demand function is a cyclic function of time but 
independent of price. Using evolutionary variational inequality and 
projected dynamic systems, the authors derive dynamic equilibrium 
solutions. Results show that optimal production and transaction quan-
tities are strongly affected by the seasonality of demand. [43] develop a 
decentralized closed-loop supply chain network model under random 
and price-sensitive demand and return. Using additive and multiplica-
tive functions for both demand and return, the authors demonstrate the 
joint concavity of the retailers’ and recovery centers’ expected profits as 
functions of both shipment quantities and prices. This model has two 
main limitations. The first concerns the characteristics of the mean de-
mand and return functions. The authors’assumptions limit the use of 
common demand and return functions, such as exponential and logit 
functions. The second issue is the competition among retailers and re-
covery centers. The authors assume that demand at each retail outlet 
and return at each recovery center depend only on the retailer’s own 
price and the buy-back own price of the recovery center, respectively. In 
fact, in the presence of competition, the retailer’s market demand is not 
only influenced by the retailer’s own selling price, but also by the price 
set by competitors. Note that the NVP problem with retail competition 
was considered by [44] and [45] under additive linear demand func-
tions; by [46] and [47] using multiplicative exponential demand func-
tions; and by [48] using multiplicative demand models with increasing 
price elasticity (IPE). All of these models assume that demand at each 

retailer outlet depends on all retailer prices and the random noise has 
increasing failure rate/generalized increasing failure rate (IFR/GIFR). 

3. The supply chain network model with general price- 
dependent demand 

As shown in Figure 1, we consider a supply chain network consisting 
of N raw material suppliers who are involved in supplying one raw 
material to I manufacturers. The manufacturers produce a homogeneous 
product that can then be purchased by J retailers. We assume a one-to- 
one ratio between the raw material and product and this assumption can 
be easily relaxed by considering a non one-to-one ratio. Each retail 
outlet makes the product available to consumers in its own demand 
market. The links in the supply chain network denote transportation/ 
transaction links. As assumed in the supply chain equilibrium literature, 
manufacturers must agree with the raw material suppliers as to the 
volume of shipments and retailers must agree with the manufacturers as 
to the purchasing prices which shall be determined using equilibrium 
conditions. In addition, all the supply chain members move simulta-
neously and compete in a noncooperative manner under the Cournot- 
Nash equilibrium framework, meaning decision makers will determine 
their own optimal decision variables, given the optimal ones of the 
competitors. The demand for the product at each retail outlet is modeled 
using a general demand distribution. 

All indices, parameters and variables in the supply chain equilibrium 
network are defined as follows.  

Indices 

n: index of raw material suppliers in the SC network, n = {1,…,N}. 
i: index of manufacturers in the SC network, i = {1,…, I}. 
j: index of retailers in the SC network, j = {1,…,J}. 

Parameters 

cj: per-unit handling cost at retailer j. 
λ+j : per-unit salvage value of having excess supply at retailer j. 

λ−j : per-unit shortage cost of having excess demand at retailer j. 

Fig. 1. The supply chain network  
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Variables 

q̃ni: nonnegative raw material shipment from supplier n to manu-
facturer i. Group the shipments of all the suppliers into the column 
vector q1 ∈ RNI

+ . 
qij: nonnegative product shipment from manufacturer i to retailer j. 
Group the shipments of all the manufacturers into the column vector 
q2 ∈ RIJ

+. 
p̃ni: selling price from supplier n to manufacturer i. 
ρj: purchasing price at retailer outlet j. Group the prices of all the 
retailers into the column vector ρ ∈ RJ

+. 
pj: selling price at retailer outlet j. Group the prices of all the retailers 
into the column vector p ∈ RJ

+. 

In the following subsections, we derive the optimality conditions of 
the raw material suppliers, manufacturers and retailers. 

3.1. Raw Material Suppliers and their equilibrium conditions 

Each raw material supplier n decides on the amount of raw material 
q̃ni to ship to each manufacturer i. Raw material supplier  n incurs a 
procurement and a transaction cost, cni(q̃ni), with each manufacturer i. 
Given the above cost, we can express the criterion of profit maximization 
for each raw material supplier n as: 

max
q̃ni

ΠS
n =

∑I

i=1
p̃*

niq̃ni −
∑I

i=1
cni

(

q̃ni

)

subject to: q̃ni ≥ 0.

(1)  

Equation (1) states that supplier n’s profit equals sales revenue less costs 
associated with procurement and transaction. Note that p̃*

ni denote the 
optimal prices from each raw material supplier n to each manufacturer i. 
We will show later how to recover these optimal prices after solving the 
complete supply chain equilibrium model. 

We assume that procurement and transaction cost functions for each 
raw material supplier are continuous and convex. Therefore, the opti-
mality conditions for all raw material suppliers can be expressed 
simultaneously as the following variational inequality [43]: Determine 
q*

1 ∈ RNI
+ satisfying: 

∑N

n=1

∑I

i=1

⎡

⎣
∂cni

(

q̃*
ni

)

∂q̃ni
− p̃*

ni

⎤

⎦×

[

q̃ni − q̃*
ni

]

≥ 0 ∀q1 ∈ RNI
+ . (2)  

3.2. Manufacturers and their equilibrium conditions 

Each manufacturer i must decide on the amount of raw material ̃qni to 
get from each supplier n and the amount of product qij to ship to each 
retailer j. Raw material suppliers and manufacturers should agree on the 
quantities q̃ni and manufactures and retailers should also agree on the 
prices ρj which shall be determined using equilibrium conditions. The 
model assumes that retailer j pays the same price ρj to all manufacturers. 
This assumption is realistic since the model does not consider capacity 
constraints and any manufacturer i setting a higher price pij than the 
equilibrium price ρ*

j would induce retailer j to not purchase any quantity 
from that manufacturer. Manufacturer  i incurs a production and a 
transaction cost, cij(qij), with each retailer j. Given the above cost, we can 
write the objective of each manufacturer as: 

max(
q̃ni ,qij

)ΠM
i =

∑J

j=1
ρjqij −

∑J

j=1
cij
(
qij
)
−
∑N

n=1
p̃*

niq̃ni (3)  

subject to:
∑J

j=1
qij ≤

∑N

n=1
q̃ni. (4)  

Equation (3) states that manufacturer i’s profit equals sales revenue less 
costs associated with production and transaction, and payout to raw 
material suppliers. Constraint (4) states that the sum of all shipment 
quantities to retailers must be less or equal to the quantities procured 
from the raw material suppliers. 

We assume that production and transaction cost functions for each 
manufacturer are continuous and convex. Therefore, the optimality 
conditions for all manufacturers can be expressed simultaneously as the 
following variational inequality: Determine (q*

1, q*
2) ∈ Λ⊂RNI+IJ

+

satisfying: 

∑N

n=1

∑J

j=1
p̃*

ni ×

[

q̃ni − q̃*
ni

]

+
∑I

i=1

∑J

j=1

[∂cij

(
q*

ij

)

∂qij
− ρj

]

×
[
qij − q*

ij

]
, (5)  

for all (q1, q2) ∈ Λ where Λ is the convex set given by : 

Λ =

{

(q1, q2) ∈ RNI+IJ
+ :

∑J

j=1
qij −

∑N

n=1
q̃ni ≤ 0, ∀1 ≤ i ≤ I

}

3.3. Retailers and their equilibrium conditions 

Each retailer j has to decide on the total amount to purchase from 
manufacturers and the selling price to consumers while simultaneously 
seeking to reach a Nash equilibrium under demand uncertainty. The 
demand for the product at each retailer j,Dj(p, ϵj), is assumed to follow a 
general demand distribution that depends on the whole vector price p 
and on a random variable ϵj, independent of p, defined on the range [Aj,

Bj]. It can be seen that the classical additive demand model (Dj(p,ϵj) =

dj(p)+ ϵj) and multiplicative model (Dj(p, ϵj) = dj(p)ϵj) are simply spe-
cial cases of the general demand model. If sj =

∑I
i=1qij denotes the total 

supply at retailer j obtained from all the manufacturers, then if demand 
for the product does not exceed sj, the revenue of retailer j is pjDj(p, ϵj)

and each of the sj − Dj(p, ϵj) leftovers is disposed at the unit salvage 
value λ+j . Alternatively, if demand exceeds sj, then the revenue of retailer 
j is pjsj and each of the Dj(p, ϵj) − sj shortages incurs a per-unit shortage 
cost λ−j . Using the notation Qj = (qij)

I
i=1, the profit of retailer j, Wj(Qj, pj),

representing the difference between sales revenue and total costs, is 
given by 

Wj
(
Qj,pj

)
=

{
pjDj

(
p,ϵj
)
− cjsj − ρjsj+λ+j

[
sj − Dj

(
p,ϵj
)]

if Dj
(
p,ϵj
)
≤sj

pjsj − cjsj − ρjsj − λ−j
[
Dj
(
p,ϵj
)
− sj
]

if Dj
(
p,ϵj
)
>sj.

Assuming D(p, x) to be strictly monotone in x and defining zj = zj(p, sj) as 
the unique solution of Dj(p, zj) = sj, the profit Wj(Qj, pj) reduces to 

Wj
(
sj,pj

)
=
(

pj +λ−j − cj − ρj

)
sj −

(
pj +λ−j − λ+j

)[
sj − Dj

(
p,ϵj
)]

I
{

ϵj ≤ zj
}

− λ−j Dj
(
p,ϵj
)
.

Each retailer j seeks to maximize the expected profit Πj(sj,pj) = E(Wj(sj,

pj)). More precisely, retailer j is trying to find sj and pj that maximize 

Πj
(
sj, pj

)
=

(
pj + λ−j − cj − ρj

)
sj −

(
pj + λ−j − λ+j

)
sjFj
(
zj
)

+
(

pj + λ−j − λ+j
)∫ zj

Aj

Dj(p, x)fj(x)dx − λ−j

∫ Bj

Aj

Dj(p, x)fj(x)dx.

(6) 

To ensure the existence and uniqueness of an optimal solution, the 
following assumptions are needed 

Assumption 1. For any retailer j = 1, 2,⋯, J, the random variable ϵj 
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satisfies the following properties:  

1. ϵj has a continuous distribution Fj(x) with density fj(x).  
2. The failure rate function of the ϵj’s distribution, rj(x) =

fj(x)
1− Fj(x), is 

increasing. 

As discussed in [43], classes of increasing failure rate (IFR) distri-
butions include: Uniform, Normal (as well as truncated Normal at zero), 
Exponential, Gamma (with shape parameter s ≥ 1), Beta (with param-
eters (r, s) both being ≥ 1), and Weibull distribution (with shape 
parameter s ≥ 1). 

Let ηjj(p, x) = −
pj

∂Dj (p.x)
∂pj

Dj(p,x) denote the price elasticity of Dj. Price elasticity 
measures the percentage change in demand in response to a percentage 
change in retailer price pj. We also define, for each k ∕= j, the cross price 

elasticities ηjk(p, x) =
pk

∂Dj (p.x)
∂pk

Dj(p,x) that measure the percentage change in de-
mand in response to a percentage change in other retailer prices pk. As 

adopted by [11], we define ℰj(p, x) = −
pj

∂Dj (p.x)
∂pj

∂Dj (p.x)
∂x

rj(x) as the lost-sale rate 

(LSR) elasticity that measures the percentage change in the rate of lost 
sales with respect to the percentage change in price pj for a given 
quantity x. 

Assumption 2. For any retailer j = 1, 2,⋯, J, demand Dj(p, x) satisfies 
the following properties:  

1. ∂Dj(p,x)
∂x ≥ 0, ∂Dj(p,x)

∂pj
≤ 0, ∂Dj(p,x)

∂pk
≥ 0, ∀k ∕= j, ∂Dj(p,x)

∂pj
+
∑

k∕=j

∂Dj(p,x)
∂pk

≤ 0.  

2. ∂ηjj(p,x)
∂x ≤ 0, ∂ηjk(p,x)

∂x ≥ 0, ∀k ∕= j,
∂ηjj (p,x)

∂x
pj

+
∑

k∕=j

∂ηjk(p,x)
∂x
pk

≤ 0.  

3. ∂ℰj(p,x)
∂x ≥ 0, ∂ℰj(p,x)

∂pj
≥ 0, ∂ℰ j(p,x)

∂pk
≤ 0, ∀k ∕= j, ∂ℰ j(p,x)

∂pj
+
∑

k∕=j

∂ℰ j(p,x)
∂pk

≥ 0. 

Note that, Assumption 2.i) indicates that an increase in retailer j’s 
price results in a decrease in the retailer’s own demand while increasing 
that of competitors. This assumption also consider the substitution effect 
when demand does not increase under a uniform price increase [9]. The 
assumption also requires that demand at retailer j increases with the 
random quantity x. The same requirement is also found in [38]. 

Assumption 2.ii) stipulates that an increase in order quantity x will 
decrease price elasticity ηjj(p, x) and increase price elasticity of other 
retailers ηjk(p, x). The assumption encompasses competition re-
quirements and considers the substitution and dominance effects among 
retailers. 

Finally, Assumption 2.iii) requires that an increase in order quantity 
x will increase the LSR elasticity ℰj(p,x). Also, an increase in retailer j’s 
price will increase retailer j’s LSR elasticity and decrease the LSR elas-
ticity of other retailers. Moreover, the local price effect of a price change 
dominates the cross-price effect on local LSR elasticity. This assumption 
is consistent with those adopted by [11] and [38] but includes the 
dominance effect among retailers. 

Assumption 3. For any retailer j = 1, 2,⋯, J, demand Dj(p, x) satisfies 
at least one of these assumptions:  

1. ∂2Dj(p,x)
∂p2

j
≤ 0, ∂2Dj(p,x)

∂pkpj
≥ 0 and ∂2Dj(p,x)

∂p2
j

+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≤ 0, ∂2Dj(p,x)
∂p2

j 
and 

∂2Dj(p,x)
∂p2

j
+
∑

k∕=j

∂2Dj(p,x)
∂pkpj 

are increasing in x, and ∂
2Dj(p,x)
∂pkpj 

is decreasing in x.  

2. ∂2Dj(p,x)
∂p2

j
≤ 0, ∂2Dj(p,x)

∂pkpj
≥ 0 and ∂2Dj(p,x)

∂p2
j

+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≤ 0,

∂2Dj (p,x)

∂p2
j

−
∂Dj (p,x)

∂pj 

and 

∂2Dj (p,x)

∂p2
j

+
∑

k∕=j

∂2Dj (p,x)
∂pkpj

−
∂Dj (p,x)

∂pj 

are increasing in x, and 
∂2Dj (p,x)

∂pkpj

−
∂Dj(p,x)

∂pj 

is decreasing in x.  

3. ∂2Dj(p,x)
∂p2

j
≤ 0, ∂2Dj(p,x)

∂pkpj
≥ 0 and ∂2Dj(p,x)

∂p2
j

+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≤ 0,

∂2Dj (p,x)

∂p2
j

Dj(p,x) and 

∂2Dj (p,x)

∂p2
j

+
∑

k∕=j

∂2Dj (p,x)
∂pkpj

Dj(p,x) are increasing in x, and 
∂2Dj (p,x)

∂pkpj
Dj(p,x) is decreasing in x.  

4. ∂2Dj(p,x)
∂p2

j
≥ 0, ∂2Dj(p,x)

∂pkpj
≤ 0 and ∂2Dj(p,x)

∂p2
j

+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≥ 0, ∂2Dj(p,x)
∂pj∂x ≤ 0,

∂2Dj(p,x)
∂pk∂x ≥ 0 and ∂2Dj(p,x)

∂pj∂x +
∑

k∕=j

∂2Dj(p,x)
∂pk∂x ≤ 0,

∂ℰj (p,x)
∂pj

ℰ j(p,x) and 

∂ℰj (p,x)
∂pj

+
∑

k∕=j

∂ℰj (p,x)
∂pk

ℰj(p,x) are 

decreasing in x, and 
∂ℰj (p,x)

∂pk
ℰj(p,x) is increasing in x, 

∂2Dj (p,x)
∂pj∂x

∂Dj (p,x)
∂x 

and 
∂2Dj (p,x)

∂pk∂x
∂Dj (p,x)

∂x 

are 

independent of x. 

As seen in Section 5, all demand functions used in extant literature 
satisfy all conditions of Assumption 2. Moreover, each of these demand 
functions satisfy at least one of the above conditions of Assumption 3, 
allowing us to include all different types of demand functions in our 
supply chain equilibrium model. 

To seek the optimal solution, note that taking the first derivative of 
function Πj with respect to sj and using the definition of zj yields 

∂Πj

∂sj
=
(

pj + λ−j − cj − ρj

)
−
(

pj + λ−j − λ+j
)

Fj
(
zj
)
.

It can be seen that, when λ+j ≤ cj + ρj ≤ pj, the equation ∂Πj/∂sj = 0 
admits a solution sj given by sj = Dj(p, zj), where zj = F− 1

j (xj) with xj =

(pj + λ−j − cj − ρj)/(pj + λ−j − λ+j ). Note that the condition λ+j ≤ cj + ρj 

amounts to the fact that the salvage value λ+j should be less than or equal 
to the marginal cost ρj + cj and the condition cj + ρj ≤ pj ensures that 
retailer  j is able to make nonnegative profit. Substituting zj in (6) re-
duces the retailer problem to 

max
pj∈Γj(ρj)

Πj
(
pj
)

=
(

pj + λ−j − λ+j
)∫ zj

Aj

Dj(p, x)fj(x)dx

− λ−j

∫ Bj

Aj

Dj(p, x)fj(x)dx,
(7)  

where Γj(ρj) = {pj ∈ R+

⃒
⃒
⃒
⃒
⃒
λ+j ≤ cj +ρj ≤ pj ≤ pj}, and pj is the maximum 

admissible price for retailer j. The next theorem shows that the retailer 
profit function Πj(pj) is pseudo-concave. 

Theorem 1. If the conditions of Assumptions 1, 2, and 3 are satisfied, then 
the function Πj(pj) is pseudo-concave in pj. 

The proof is given in Appendix A. 
Next, using Lemma 1 in [49] and Theorem 1 above, the optimality 

conditions for all retailers could be expressed simultaneously as the 
following variational inequality: Determine p* ∈ Γ(ρ)⊂RJ

+ satisfying 

∑J

j=1

[

−
(

p*
j +λ−j − λ+j

)∫ zj

Aj

∂Dj(p*,x)
∂pj

fj(x)dx+λ−j
∫ Bj

Aj

∂Dj(p*,x)
∂pj

fj(x)dx

−

∫ zj

Aj

Dj(p*,x)fj(x)dx − Dj

(

p*,zj

)(

1 − Fj

(

zj

))]

×
[
pj − p*

j

]
≥0,∀p∈Γ(ρ),

(8)    

where zj = F− 1
j (xj), xj =

p*
j − cj − ρj+λ−j
p*

j +λ−j − λ+j 
and Γ(ρ) = ⨂J

j=1 Γj(ρj). 
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4. Equilibrium conditions of the supply chain 

4.1. Equilibrium conditions 

As in the supply chain equilibrium literature, the sum of the opti-
mality conditions for all raw material suppliers, as expressed by 
inequality (2), the sum of the optimality conditions for all manufac-
turers, as expressed by inequality (5) and the optimality conditions for 
all retailers, as expressed by inequality (8) must be satisfied. In addition, 
the amounts of the raw materials that the suppliers ship to the manu-
facturers must be equal to the shipments that the manufacturers accept 
from suppliers. Moreover, the amounts of the product that the manu-
facturers ship to the retailers must be equal to the total amounts pur-
chased by the retailers, as expressed in the following condition: 

s*
j = Dj

(

p*,F− 1
j

(
p*

j − cj − ρ*
j + λ−j

p*
j + λ−j − λ+j

))

=
∑I

i=1
q*

ij (9) 

Condition (9) states that when equilibrium price ρ*
j that retailer j 

pays for the product is positive, then the supply s*
j needed for at the 

retailer outlet is positive and must be equal to the total quantities pur-
chased from all manufacturers. It can then be expressed as the following 
variational inequality: Determine (q*

2,p*,ρ*) ∈ RIJ
+ × Γ⊂RIJ+2J

+ : 

∑J

j=1

[
∑I

i=1
q*

ij − Dj

(

p*,F− 1
j

(
p*

j − cj − ρ*
j + λ−j

p*
j + λ−j − λ+j

))]

×
[
ρj − ρ*

j

]
≥ 0 (10)  

∀(q2, p, ρ) ∈ RIJ
+ × Γ, Γ = ⨂J

j=1 Γj and Γj = {(pj, ρj) ∈ R2
+

⃒
⃒
⃒
⃒
⃒
λ+j ≤ cj +

ρj ≤ pj ≤ pj}. 
The summation of inequalities (2), (5), (8), and (10) yields the 

following theorem: 

Theorem 2. The equilibrium conditions governing the supply chain model 
with general price-dependent demand are equivalent to the solution of the 
variational inequality problem given by: Determine (q*

1, q*
2, p*, ρ*) ∈ Λ × Γ⊂ 

RNI+IJ+2J
+ satisfying 

∑N

n=1

∑I

i=1

∂cni

(

q̃*
ni

)

∂q̃ni
×

[

q̃ni − q̃*
ni

]

+
∑I

i=1

∑J

j=1

⎡

⎣
∂cij

(
q*

ij

)

∂qij
− ρ*

j

⎤

⎦×
[
qij − q*

ij

]

+
∑J

j=1

[

−
(

p*
j + λ−j − λ+j

)∫ z*
j

Aj

∂Dj(p*, x)
∂pj

fj(x)dx + λ−j

∫ Bj

Aj

∂Dj(p*, x)
∂pj

fj(x)dx

−

∫ z*
j

Aj

Dj(p*, x)fj(x)dx − Dj

(
p*, z*

j

)(
1 − Fj

(
z*

j

))
]

×
[
pj − p*

j

]

+
∑J

j=1

[
∑I

i=1
q*

ij − Dj

(
p*, z*

j

)
]

×
[
ρj − ρ*

j

]
≥ 0

(11)  

∀(q1, q2, p, ρ) ∈ Ω = Λ × Γ, where z*
j = F− 1

j

(
p*

j − cj − ρ*
j +λ−j

p*
j +λ−j − λ+j

)

. 

Proof. The proof follows from the standard variational inequality 
theory (e.g., [1]).□ 

4.2. Existence 

Since the feasible set Ω is not compact, we need to impose an addi-
tional condition to guarantee the existence of a solution. 

Let Ωb ≡ {(q1, q2, p, ρ, )|0 ≤ (q1, q2) ≤ b, (p, ρ) ∈ Γ}, where b = (b1,

b2) and q1 ≤ b1 and q2 ≤ b2. Ωb is a bounded closed convex subset of 
RNI+IJ+2J

+ . 

Theorem 3. (Existence). Suppose that there exist positive constants R and 
S such that 

∂cni

(

q̃ni

)

∂q̃ni
≥ R, ∀q with q̃ni ≥ S, ∀i, j. (12)  

∂cij
(
qij
)

∂qij
≥ R, ∀q with qij ≥ S, ∀i, j. (13)  

Then variational inequality (11) admits at least one solution. 

Proof. The values of constants R and S are discussed in the existence 
proof in [50]. Following similar arguments on that proof, Assumptions 
(12) and (13) imply the existence of a constant b such that (q1, q2) ≤ b 
will guarantee the compactness of the set Ωb and therefore the existence 
of a solution of variational inequality (11). Assumptions (12) and (13) 
can be economically justified as follows. When the raw material ship-
ment q̃ni is large enough, one can expect the corresponding sum of the 
marginal costs associated with procurement and transaction to be large, 
which ensures (12). Similarly, when the product shipment qij is large, 
the corresponding sum of the marginal costs associated with production 
and transaction is expected to be large as well, which ensures (13).□ 

4.3. Uniqueness 

Theorem 4. (Uniqueness) Assume that cost functions, cni and cij, are 
strictly convex and that the conditions in Theorem 1 are satisfied for each 1 ≤

j ≤ J, then variational inequality (11) admits a unique solution. 

The proof is provided in Appendix B. 

5. Examples of demand functions 

[10] gives a detailed list of demand functions adopted in the litera-
ture and presents a survey of empirical evidence showing the application 
of these demand functions in real industry sectors (sugar, yogurt, peanut 
butter, fashion, retail). The following are examples of classical demand 
functions, outlined in [10] and included in our framework.  

• Additive Linear: 
Dj(p, x) = x + aj − bjpj +

∑

k∕=j
cjkpk, aj > 0, cjk ≥ 0, bj >

∑

k∕=j
cjk and 

Aj + aj − bjpj +
∑

k∕=j
cjkpk ≥ 0 to ensure nonnegative demand.  

• Multiplicative Isoelastic (Power): 
Dj(p, x) = ajp

− bj
j
∏

k∕=j
pcjk

k x, aj > 0, bj > 1, cjk ≥ 0.  

• Logit: 

Dj(p, x) = aj
e

x− bjpj+
∑

k∕=j
cjkpk

− 1

1+e
x− bjpj+

∑

k∕=j
cjkpk

, aj > 0, cjk ≥ 0, bj >
∑

k∕=j
cjk, Aj − bjpj +

∑

k∕=j
cjkpk > 0.  

• Exponential: 

Dj(p, x) = e
x+aj − bjpj+

∑

k∕=j
cjkpk

, aj > 0, cjk ≥ 0, bj >
∑

k∕=j
cjk.  

• Logarithmic I: 

Dj(p, x) = ln

(

x+aj − bjpj +
∑

k∕=j
cjkpk

)

, aj > 0, cjk ≥ 0, bj >
∑

k∕=j
cjk, Aj +

aj − bjpj +
∑

k∕=j
cjkpk > 1. 
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• Logarithmic II: 

Dj(p, x) = ln

((

aj − bjpj +
∑

k∕=j
cjkpk

)

x

)

, aj > 0, cjk ≥ 0, bj >
∑

k∕=j
cjk, aj 

− bjpj +
∑

k∕=j
cjkpk > 1.  

• Mixed Additive-Multiplicative: 
Dj(p, x) = μj(p) + σj(p)x, μj(p)+ σj(p)Aj > 0. 
∂μj(p)

∂pj
≤ 0, ∂μj(p)

∂pk
≥ 0, ∀k ∕= j, ∂μj(p)

∂pj
+
∑

k∕=j

∂μj(p)
∂pk

≤ 0. 

∂σj(p)
∂pj

≤ 0, ∂σj(p)
∂pk

≥ 0, ∀k ∕= j, ∂σj(p)
∂pj

+
∑

k∕=j

∂σj(p)
∂pk

≤ 0. 

∂ησj
∂pj

≥ 0,
∂ησj
∂pk

≤ 0, ∀k ∕= j,
∂ησj
∂pj

+
∑

k∕=j

∂ησj
∂pk

≥ 0. 

ημj
(p) ≥ ησj

(p), ηk
μj
(p) ≤ ηk

σj
(p), ∀k ∕= j,

ημj
(p)

pj
+

∑

k∕=j

ηk
μj
(p)

pk
≥

ησj
(p)

pj
+

∑

k∕=j

ηk
σj
(p)

pk
. 

∂2μj
∂p2

j
∂μj
∂pj

≥

∂2σj
∂p2

j
∂σj
∂pj

,

∂2μj
∂pk∂pj

∂μj
∂pj

≤

∂2σj
∂pk∂pj

∂σj
∂pj

∀k ∕= j,

∂2μj
∂p2

j
+
∑

k∕=j

∂2μj
∂pk∂pj

∂μj
∂pj

≥

∂2σj
∂p2

j
+
∑

k∕=j

∂2σj
∂pk∂pj

∂σj
∂pj

. 

Note that the last two assumptions are used in the literature. The 
first of these stipulates that the price elasticity of the mean demand 
μj(p) is greater than or equal to the price elasticity of the standard 
deviation demand σj(p) [51,52]. This assumption encompasses 
competition requirements and considers the substitute and domi-
nance effects among retailers. The second was examined by [53]. In 
our case, the assumption is generalized to competing retailers when 
substitution and dominance effects are required. It is important to 
note other related assumptions used in extant literature, namely the: 
log convexity of σj(p)

μj(p)
considered by [54], and η′

μj
(p) ≥ η′

σj
(p) whenever 

ημj
(p) ≥ ησj

(p) considered by [51]. 

Each of the above demand functions satisfy Assumption 2 and at least 
one property of Assumption 3 and the proof of Theorem 1 (pseudo- 
convexity of the expected profits Πj) holds under each of these proper-
ties allowing us to include all different types of demand functions in our 
supply chain equilibrium model. Note in particular that Assumption 3.i) 

is satisfied by the log function Dj(p, x) = ln

(

x + aj − bjpj +
∑

k∕=j
cjkpk

)

. 

Assumption 3.ii) is valid for both log functions 

Dj(p, x) = ln

(

x+aj − bjpj +
∑

k∕=j
cjkpk

)

and Dj(p, x) = ln

((

aj − bjpj +

∑

k∕=j
cjkpk

)

x

)

. Assumption 3.iii) is satisfied by the two logarithmic func-

tions and the logit function Dj(p, x) = aj
e

x− bjpj+
∑

k∕=j
cjkpk

− 1

1+e
x− bjpj+

∑

k∕=j
cjkpk

. Finally, Assump-

tion 3.iv) is verified for the additive linear, multiplicative isoelastic, 
exponential, and mixed additive-multiplicative demand functions. 

6. Sensitivity analysis 

Using equations (1), (3), and (6), the total expected profit at equi-
librium can be expressed as 

Π =
∑N

n=1
ΠS

n

(

q̃*
ni

)

+
∑I

i=1
ΠM

i

(
q*

ij

)
+
∑J

j=1
Πj

(
q*

ij, p*
j

⃒
⃒
⃒p*

− j

)

=
∑J

j=1

[

p*
j E
{

Dj
(
p*, ϵj

)}
− Θj

(
p*, z*

j

)
]

+ λ+j Λj

(
p*, z*

j

)
− λ−j Θj

(
p*, z*

j

)

− cj

∑I

i=1
q*

ij

]

−
∑N

n=1

∑I

i=1
cni

(

q̃*
ni

)

−
∑I

i=1

∑J

j=1
cij

(
q*

ij

)

(14)  

where Λj(p, zj) =
∫ zj

Aj
(Dj(p, zj) − Dj(p, x))fj(x)dx and 

Θj
(
p, zj
)
=

∫ Bj

zj

(
Dj(p, x) − Dj

(
p, zj
))

fj(x)dx  

are the expected values of the leftover and shortage of retailer j,

respectively, and where Dj(p*, z*
j ) =

∑I
i=1q*

ij and z*
j = F− 1

j

(
p*

j − cj − ρ*
j +λ−j

p*
j +λ−j − λ+j

)

. 

The following propositions illustrate the analytical effects of 
different types of model functions, model parameters (handling cost cj,

shortage cost λ−j and salvage value λ+j ), demand level, and demand 
variability on the optimal solutions and the expected profits. All proofs 
are given in Appendix C. 

Proposition 1 Impact of the handling cost cj.   

• The optimal quantities q̃*
ni and q*

ij decrease in cj.  

• The optimal prices p*
j increase in cj .  

• The safety values z*
j decrease in cj .  

• The raw material suppliers’ profits ΠS
n, the manufacturers’ profits ΠM

i , the 
retailers’ profits Πj, and the total profit Π decrease in cj . 

Proposition 2 Impact of the unit shortage cost λ−j .   

• If ∂Dj(p,x)
∂pj 

is increasing in x, the optimal quantities ̃q*
ni and q*

ij increase in λ−j 
.  

• If ∂Dj(p,x)
∂pj 

is decreasing in x, the prices p*
j increase in λ−j .  

• The safety values z*
j increase in λ−j .  

• The total profit Π decrease in λ−j . 

Proposition 3 Impact of the unit salvage value λ+j .   

• If ∂Dj(p,x)
∂pj 

is decreasing in x, the optimal quantities q̃*
ni and q*

ij increase in 

λ+j .  

• If ∂Dj(p,x)
∂pj 

is increasing in x, the prices p*
j increase in λ+j .  

• The safety values z*
j increase in λ+j .  

• The total profit Π increase in λ+j . 

Proposition 4 Impact of demand level. Assume that for each retailer j,
the demand level is controlled by a parameter aj.  

• The optimal quantities q̃*
ni and q*

ij increase in aj.  

• The prices p*
j increase in aj. 
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• The raw material suppliers’ profits ΠS
n, the manufacturers’ profits ΠM

i ,

and the total profitΠ increase in aj. 

Proposition 5 Impact of demand variability. Assume that for each 
retailer j, the demand variability is controlled by a parameter mj. 

• If the safety factors z*
j are positive, the optimal quantities q̃*

ni and q*
ij in-

crease in mj.  

• If the safety factors z*
j are negative, the optimal prices p*

j decrease in mj.  

• The the total profit Π decreases in mj. 

7. Numerical examples 

A numerical study is carried out to show the effect of different model 
parameters on the equilibrium solution. As in [43], the extragradient 
algorithm of [55] is used to compute the solution of variational 
inequality (B.1). The algorithm is implemented in Matlab and has been 
successfully tested in previous studies [15,43]. 

After solving variational inequality (B.1), we can recover the equi-
librium prices p̃*

ni using the optimality conditions of variational 
inequality problem (2). If there is a positive shipment quantity q̃*

ni > 0,

then p̃*
ni =

∂cni(q̃ni)

∂q̃ni
. 

In our basic example, we consider a supply chain network with two 
raw material suppliers, two manufacturers and two retailers. The unit 
penalties of having excess supply/demand of retailers are set to λ+j = 2,
λ−j = 2, ∀j = 1,2. Also, the per-unit handling cost is set to cj = 40, ∀j = 1,
2. The procurement and transaction cost functions faced by the suppliers 
and the production and transaction cost functions incurred by the 
manufacturers are given by: 

cni

(

q̃ni

)

= 1.5
(

q̃ni

)
2 + 10

(

q̃ni

)

+ 2, n = 1, i = 1, 2.

cni

(

q̃ni

)

= 1.5
(

q̃ni

)
2 + 9

(

q̃ni

)

+ 4, n = 2, i = 1, 2.

cij
(
qij
)
= 1.5

(
qij
)2 + 9

(
qij
)
+ 2, i = 1, j = 1, 2.

cij
(
qij
)
= 1.5

(
qij
)2 + 11

(
qij
)
+ 2, i = 2, j = 1, 2.

Four models will be considered for the demand functions at retailer 
outlets:  

• Additive Linear (Model 1): 

Dj
(
p, ϵj

)
= aj − bjpj +

∑

k∕=j

cjkpk + mϵj,

with (a1, a2) = (290,300) and for all 1 ≤ j ∕= k ≤ 2, bj = 2 and cjk =

1.  
• Multiplicative Exponential (Model 2): 

Dj
(
p, ϵj

)
=
(
mj + ϵj

)
e

aj − bjpj+
∑

k∕=j
cjk pk

,

where (m1,m2) = (290,300) and for all 1 ≤ j ∕= k ≤ 2, aj = 1, bj =

0.02 and cjk = 0.01.  
• Mixed Linear-Exponential (Model 3): 

Dj
(
p, ϵj

)
= aj − bjpj +

∑

k∕=j

cjkpk + e
αj − βjpj+

∑

k∕=j
γjk pk

ϵj,

where (a1, a2) = (290,300) and for all 1 ≤ j ∕= k ≤ 2, bj = 2, cjk = 1,
αj = 5, βj = 0.02 and γjk = 0.01  

• Logit(Model 4): 

Dj
(
p, ϵj

)
= mj

{

e
ϵj+aj − bjpj+

∑

k∕=j
cjk pk

− 1

}/{

e
ϵj+aj − bjpj+

∑

k∕=j
cjk pk

+ 1

}

,

where (m1,m2) = (100,110) and for all 1 ≤ j ∕= k ≤ 2, aj = 5, bj =

0.02 and cjk = 0.01. 

For the above four models, ϵj for j = 1, 2, is chosen to have gamma 
distribution with shape parameter 2 and scale parameter 5. The distri-
bution of ϵj is centered and reduced to have a mean of 0 and variance 1. 
This is carried out to avoid over-parameterization, since each of the 
above models contains parameters that can be used to control demand 
average and variability. Table 1 displays the optimal equilibrium solu-
tions, the expected profits of all raw material suppliers, manufacturers 
and retailers, and the total supply chain profit. Comparing the quantities 
q̃*

ni and q*
ij, we observe lower values in the mixed linear-exponential 

model and higher values in the multiplicative exponential model. This 
is mainly due to the impact of the rate of decrease of the expected de-
mand with respect to retailer prices. The faster the demand decreases 
with respect to the retailer price p*

j , the lower the quantities q*
ij retailers 

will order from manufacturers. A decrease in q*
ij will result in a decrease 

in the quantities q̃*
ni, the expected profits ΠS*

n , ΠM*
i and Π*

j and the total 
profit Π*. Note that based on the current shortage and salvage param-
eters, we obtain negative values of z*

j in all four demand models, 
resulting in a situation that favors shortages at each retail outlet. 

The impact of demand distributions on the equilibrium solutions was 
also tested using the mixed additive-multiplicative demand model 
(Model 3) with the parameters specified above. Table 2 illustrates the 
results for the uniform distribution 𝒰(−

̅̅̅
3

√
,
̅̅̅
3

√
), the reduced and trun-

cated to [− 3, 3] normal distribution 𝒩(0, 1), and the centered and 
reduced gamma distribution with parameters (2,5) as above. Comparing 

Table 1 
Equilibrium solutions for different demand models  

Model Model 1 Model 2 Model 3 Model 4 

q*
11  25.75 26.82 23.79 28.17 

q*
12  26.47 27.09 24.68 29.83 

q*
21  25.42 26.49 23.45 27.84 

q*
22  26.14 26.76 24.35 29.50 

q̃*
11  

25.95 26.79 24.07 28.84 

q̃*
12  

25.61 26.46 23.73 28.50 

q̃*
21  

26.28 27.12 24.40 29.17 

q̃*
22  

25.95 26.79 24.07 28.84 

p*
1  239.67 269.88 231.29 298.22 

p*
2  242.53 270.68 234.47 299.32 

ρ*
1  174.10 179.84 162.56 190.03 

ρ*
2  176.25 180.64 165.24 195.00 

p̃*
11  

87.84 90.37 82.20 96.51 

p̃*
12  

86.84 89.37 81.20 95.51 

p̃*
21  

87.84 90.37 82.20 96.51 

p̃*
22  

86.84 89.37 81.20 95.51 

z1  -1.00 -0.85 -0.97 -0.76 
z2  -1.00 -0.85 -0.97 -0.79 

Π*
1  1296.34 2665.28 1250.67 3123.97 

Π*
2  1370.20 2692.02 1335.21 3103.80 

ΠM*
1  2039.95 2174.08 1756.35 2519.49 

ΠM*
2  1988.06 2120.50 1708.22 2461.82 

ΠS*
1  1989.76 2122.53 1709.70 2461.85 

ΠS*
2  2037.65 2172.11 1753.83 2515.52 

Π  10721.96 13946.53 9513.98 16186.45  
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the results for the three demand distributions, we observe a slight in-
crease in quantities q̃*

ni and q*
ij from uniform to normal to generalized 

gamma distributions. This slight increase in q̃*
ni and q*

ij results in small 

increases in the prices p̃*
ni, ρ*

j and p*
j , the expected profits ΠS*

n , ΠM*
i and 

Π*
j , and the total profit Π*. These small changes in the optimal solutions 

are because all three demand distributions have a mean of 0 and a 
variance of 1, and differ only in the shape of their density functions. The 
impact of demand level and demand variability are discussed in sections 
6.2 and 6.3. 

7.1. Impact of model parameters 

Here, we illustrate numerically the impact of model parameters 
(handling cost cj, shortage cost λ−j , and salvage value λ+j ) on the optimal 
solutions and the expected profits. 

7.1.1. Impact of the handling cost cj 
We first investigate the effect of changing the handling cost cj on the 

optimal quantities q̃*
ni and q*

ij, optimal prices p*
j , and expected profits. 

The logit model (Model 4) is used in the illustration and similar results 
are expected for other demand models. As proven in Proposition 1, an 
increase in cj induces a decrease of the optimal quantities ̃q*

ni and q*
ij, and 

safety values z*
j and an increase in the optimal prices p*

j (see Table 3 for 
details). For the raw material suppliers, manufacturers, and retailers’ 
profits, as shown in Proposition 1, their expected profits decrease with cj 

which implies that the total profit decreases with cj as displayed in 
Table 3. 

Table 2 
Equilibrium solutions for different demand distributions  

Distribution 𝒰( −
̅̅̅
3

√
,
̅̅̅
3

√
) 𝒩 (0,1) GG(5,2,1)

q*
11  23.01 23.35 23.79 

q*
12  23.98 24.29 24.68 

q*
21  22.68 23.01 23.45 

q*
22  23.65 23.96 24.35 

q̃*
11  

23.33 23.65 24.07 

q̃*
12  

23.00 23.32 23.73 

q̃*
21  

23.66 23.99 24.40 

q̃*
22  

23.33 23.65 24.07 

p*
1  228.08 230.42 231.29 

p*
2  231.37 233.62 234.47 

ρ*
1  158.03 160.00 162.56 

ρ*
2  160.94 162.83 165.24 

p̃*
11  

79.99 80.96 82.20 

p̃*
12  

78.99 79.96 81.20 

p̃*
21  

79.99 80.96 82.20 

p̃*
22  

78.99 79.96 81.20 

z1  -1.25 -1.07 -0.97 
z2  -1.25 -1.07 -0.97 

Π*
1  1211.93 1132.32 1250.67 

Π*
2  1302.42 1230.49 1335.21 

ΠM*
1  1651.07 1696.74 1756.35 

ΠM*
2  1604.41 1649.43 1708.22 

ΠS*
1  1605.78 1650.85 1709.70 

ΠS*
2  1648.44 1694.15 1753.83 

Π  9024.05 9053.99 9513.98  

Table 3 
Impact of cj on quantity shipments, prices, safety values and expected profits (Model 4)  

cj  40 50 60 70 80 90 100 

q*
11  28.17 27.39 26.59 25.79 24.98 24.15 23.32 

q*
12  29.83 28.98 28.12 27.25 26.37 25.48 24.59 

q*
21  27.84 27.06 26.26 25.46 24.64 23.82 22.99 

q*
22  29.50 28.65 27.78 26.91 26.03 25.15 24.25 

q̃*
11  

28.84 28.02 27.19 26.35 25.51 24.65 23.79 

q̃*
12  

28.50 27.68 26.86 26.02 25.17 24.32 23.45 

q̃*
21  

29.17 28.35 27.52 26.68 25.84 24.98 24.12 

q̃*
22  

28.84 28.02 27.19 26.35 25.51 24.65 23.79 

p*
1  298.22 300.51 302.81 305.13 307.46 309.81 312.16 

p*
2  299.32 301.59 303.87 306.17 308.47 310.79 313.11 

ρ*
1  190.03 185.22 180.35 175.42 170.44 165.40 160.31 

ρ*
2  195.00 189.99 184.92 179.80 174.62 169.39 164.12 

p̃*
11  

96.51 94.05 91.57 89.05 86.52 83.95 81.36 

p̃*
12  

95.51 93.05 90.57 88.05 85.52 82.95 80.36 

p̃*
21  

96.51 94.05 91.57 89.05 86.52 83.95 81.36 

p̃*
22  

95.51 93.05 90.57 88.05 85.52 82.95 80.36 

z1  -0.76 -0.78 -0.81 -0.83 -0.85 -0.87 -0.89 
z2  -0.79 -0.81 -0.83 -0.85 -0.87 -0.89 -0.90 

Π*
1  3123.97 2897.52 2681.23 2474.65 2277.73 2090.16 1911.70 

Π*
2  3103.80 2876.54 2659.66 2452.85 2255.82 2068.31 1890.05 

ΠM*
1  2519.49 2378.88 2240.74 2105.24 1972.57 1842.89 1716.39 

ΠM*
2  2461.82 2322.85 2186.36 2052.54 1921.56 1793.59 1668.82 

ΠS*
1  2461.85 2323.03 2186.70 2053.03 1922.18 1794.35 1669.70 

ΠS*
2  2515.52 2375.07 2237.08 2101.73 1969.19 1839.65 1713.27 

Π  16186.45 15173.90 14191.77 13240.03 12319.05 11428.95 10569.93  
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7.1.2. Impact of the shortage cost λ−j 
As proven in Proposition 2, the effect of the shortage cost λ−j on the 

optimal quantities q̃*
ni and q*

ij and optimal prices p*
j depends on the 

behavior of ∂Dj(p,x)
∂pj

. Two demand models (Model 3 and Model 4) are used 

to illustrate the different patterns. In fact, it can be seen that when ∂Dj(p,x)
∂pj 

is increasing in x (Model 4), the optimal quantities q*
ij and q̃*

ni increase 

with λ−j as illustrated in Table 4. The sign of 
dp*

j
dλ−j 

depends on the model 

parameters. In our illustration, the sign of 
dp*

j
dλ−j 

depends on the value of λ−j 
as shown in Figure 2a (p*

j increases for small λ−j and decreases for large 

λ−j ). When ∂Dj(p,x)
∂pj 

decreases in x (Model 3), we find that 
dp*

j
dλ−j

≥ 0 and that 

the signs of dq̃
*
ni

dλ−j 
and 

dq*
ij

dλ−j 
depend on the model parameters. This behavior is 

illustrated in Table 5 and Figure 2b. Moreover, the safety value z*
j in-

creases with λ−j regardless of the demand function (Tables 4 and 5). Note 
that with large values of λ−j , positive values of z*

j are obtained implying 
the likelihood of oversupply at each retail outlet to cope with high 
shortage costs. For the expected profits of raw material suppliers and 

manufacturers, as discussed in C.2, ∂ΠS
n

∂λ−j 
and ∂ΠM

i
∂λ−j 

have the same sign as 
dq*

ij
dλ−j 

(Tables 4, and 5). On the other hand, the sign of ∂Πj
∂λ−j 

depends on the 

model parameters. In our illustration, for both Model 3 and 4 the ex-
pected profits of the retailers decrease with λ−j (Tables 4, and 5). For the 
total expected profit Π, Proposition 2 shows that the total profit Π de-
creases with λ−j as displayed in Tables 4, and 5. 

Table 4 
Impact of λ−j on quantity shipments, prices, safety values and expected profits (Model 4)  

λ−j  2 42 82 122 162 202 242 

q*
11  28.17 29.95 31.45 32.76 33.91 34.93 35.85 

q*
12  29.83 31.78 33.44 34.90 36.19 37.34 38.38 

q*
21  27.84 29.62 31.12 32.43 33.58 34.60 35.51 

q*
22  29.50 31.45 33.11 34.57 35.85 37.01 38.05 

q̃*
11  

28.84 30.70 32.28 33.66 34.88 35.97 36.95 

q̃*
12  

28.50 30.36 31.95 33.33 34.55 35.64 36.61 

q̃*
21  

29.17 31.03 32.62 34.00 35.22 36.30 37.28 

q̃*
22  

28.84 30.70 32.28 33.66 34.88 35.97 36.95 

p*
1  298.22 299.35 299.62 299.38 298.80 298.00 297.06 

p*
2  299.32 300.59 300.97 300.81 300.29 299.54 298.63 

ρ*
1  190.03 200.94 210.21 218.27 225.38 231.71 237.39 

ρ*
2  195.00 206.44 216.18 224.69 232.21 238.93 244.98 

p̃*
11  

96.51 102.09 106.85 110.99 114.65 117.91 120.84 

p̃*
12  

95.51 101.09 105.85 109.99 113.65 116.91 119.84 

p̃*
21  

96.51 102.09 106.85 110.99 114.65 117.91 120.84 

p̃*
22  

95.51 101.09 105.85 109.99 113.65 116.91 119.84 

z1  -0.76 -0.65 -0.55 -0.46 -0.39 -0.32 -0.26 
z2  -0.79 -0.67 -0.57 -0.49 -0.41 -0.35 -0.28 

Π*
1  3123.97 1916.34 844.09 -119.46 -992.24 -1787.54 -2515.28 

Π*
2  3103.80 1716.31 481.66 -630.59 -1640.68 -2563.22 -3409.41 

ΠM*
1  2519.49 2854.41 3155.91 3430.83 3683.22 3915.95 4131.08 

ΠM*
2  2461.82 2793.01 3091.34 3363.50 3613.45 3844.01 4057.18 

ΠS*
1  2461.85 2792.58 3090.46 3362.16 3611.65 3841.75 4054.46 

ΠS*
2  2515.52 2849.97 3151.02 3425.48 3677.42 3909.69 4124.36 

Π  16186.45 14922.62 13814.48 12831.91 11952.81 11160.65 10442.40  

Fig. 2. Impact of λ−j on the prices pj’s  
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Table 5 
Impact of λ−j on the quantity shipments, prices, safety values and expected profits (Model 3)  

λ−j  2 42 82 122 162 202 242 

q*
11  23.79 23.73 23.66 23.60 23.55 23.50 23.47 

q*
12  24.68 24.67 24.63 24.59 24.55 24.52 24.49 

q*
21  23.45 23.39 23.32 23.26 23.21 23.17 23.13 

q*
22  24.35 24.34 24.29 24.25 24.22 24.19 24.16 

q̃*
11  

24.07 24.03 23.98 23.93 23.88 23.84 23.81 

q̃*
12  

23.73 23.70 23.64 23.59 23.55 23.51 23.48 

q̃*
21  

24.40 24.36 24.31 24.26 24.22 24.18 24.15 

q̃*
22  

24.07 24.03 23.98 23.93 23.88 23.84 23.81 

p*
1  231.29 235.91 238.94 241.22 243.06 244.59 245.90 

p*
2  234.47 238.87 241.78 243.98 245.76 247.24 248.51 

ρ*
1  162.56 162.27 161.89 161.56 161.28 161.04 160.83 

ρ*
2  165.24 165.10 164.81 164.54 164.30 164.09 163.91 

p̃*
11  

82.20 82.09 81.93 81.78 81.65 81.53 81.44 

p̃*
12  

81.20 81.09 80.93 80.78 80.65 80.53 80.44 

p̃*
21  

82.20 82.09 81.93 81.78 81.65 81.53 81.44 

p̃*
22  

81.20 81.09 80.93 80.78 80.65 80.53 80.44 

z1  -0.97 -0.69 -0.49 -0.34 -0.21 -0.11 -0.01 
z2  -0.97 -0.69 -0.50 -0.35 -0.22 -0.12 -0.02 

Π*
1  1250.67 854.83 542.59 281.56 56.57 -141.31 -317.96 

Π*
2  1335.21 986.16 707.24 472.29 268.73 88.98 -71.98 

ΠM*
1  1756.35 1751.19 1743.20 1735.97 1729.73 1724.35 1719.67 

ΠM*
2  1708.22 1703.13 1695.25 1688.12 1681.96 1676.66 1672.05 

ΠS*
1  1709.70 1704.54 1696.62 1689.46 1683.29 1677.97 1673.34 

ΠS*
2  1753.83 1748.60 1740.57 1733.31 1727.05 1721.66 1716.97 

Π  9513.98 8748.45 8125.47 7600.70 7147.33 6748.30 6392.09  

Table 6 
Impact of λ+j on the quantity shipments, prices, safety values and expected profits (Model 4)  

λ+j  2 12 22 32 42 52 62 

q*
11  28.17 28.29 28.41 28.55 28.69 28.84 29.00 

q*
12  29.83 29.95 30.08 30.21 30.35 30.50 30.67 

q*
21  27.84 27.96 28.08 28.21 28.35 28.50 28.66 

q*
22  29.50 29.62 29.74 29.88 30.02 30.17 30.33 

q̃*
11  

28.84 28.95 29.08 29.21 29.35 29.50 29.66 

q̃*
12  

28.50 28.62 28.74 28.88 29.02 29.17 29.33 

q̃*
21  

29.17 29.29 29.41 29.54 29.69 29.84 30.00 

q̃*
22  

28.84 28.95 29.08 29.21 29.35 29.50 29.66 

p*
1  298.22 299.07 299.96 300.89 301.89 302.94 304.06 

p*
2  299.32 300.16 301.04 301.97 302.95 303.99 305.10 

ρ*
1  190.03 190.73 191.48 192.27 193.11 194.02 194.98 

ρ*
2  195.00 195.71 196.46 197.26 198.12 199.02 199.99 

p̃*
11  

96.51 96.86 97.23 97.63 98.06 98.51 98.99 

p̃*
12  

95.51 95.86 96.23 96.63 97.06 97.51 97.99 

p̃*
21  

96.51 96.86 97.23 97.63 98.06 98.51 98.99 

p̃*
22  

95.51 95.86 96.23 96.63 97.06 97.51 97.99 

z1  -0.76 -0.75 -0.73 -0.71 -0.70 -0.68 -0.66 
z2  -0.79 -0.77 -0.76 -0.74 -0.73 -0.71 -0.69 

Π*
1  3123.97 3130.03 3136.18 3142.39 3148.63 3154.88 3161.09 

Π*
2  3103.80 3108.95 3114.16 3119.36 3124.54 3129.65 3134.66 

ΠM*
1  2519.49 2540.01 2561.88 2585.23 2610.22 2637.01 2665.81 

ΠM*
2  2461.82 2482.11 2503.72 2526.81 2551.52 2578.01 2606.48 

ΠS*
1  2461.85 2482.12 2503.74 2526.82 2551.51 2578.00 2606.47 

ΠS*
2  2515.52 2536.03 2557.89 2581.24 2606.22 2633.01 2661.80 

Π  16186.45 16279.26 16377.57 16481.85 16592.64 16710.56 16836.30  
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7.1.3. Impact of the salvage value λ+j 
The study of the effect of changing the salvage value λ+j on the 

optimal quantities ̃q*
ni and q*

ij and optimal prices p*
j is quite similar to that 

of the shortage value λ−j . The same models (Models 3 and 4) are used for 

illustration purposes. As shown in Proposition 3, when ∂Dj(p,x)
∂pj 

increases 

in x, the optimal prices p*
j increase with λ+j and the signs of dq̃

*
ni

dλ+j 
and 

dq*
ij

dλ+j 

depend on the model parameters as illustrated in Table 6. When ∂Dj(p,x)
∂pj 

is 

decreasing in x, we obtain dq̃
*
ni

dλ+j
≥ 0,

dq*
ij

dλ+j
≥ 0 and the sign of 

dp*
j

dλ−j 
depends on 

the model parameters as displayed in Table 7. Moreover, the safety 
values z*

j increase with λ+j regardless of the demand function (Tables 6 
and 7). For the expected profits, Proposition 3 has proved that the total 

profit increases with λ+j as displayed in Tables 6 and 7. As discussed in 

C.3, ∂ΠS
n

∂λ+j 
and ∂ΠM

i
∂λ+j 

have the same sign as 
dq*

ij
dλ+j 

as illustrated in Tables 6 and 7. 

For the expected profits of the retailers, the sign of ∂Πj
∂λ+j 

can be positive or 

negative depending on the model parameters. Figure 3a shows the case 
when the retailers’ expected profits increase with λ+j (Model 4) while 
Figure 3b shows the case when the retailers’ expected profits decrease 
with λ+j (Model 3). 

7.2. Impact of demand level 

The effect of demand level on the optimal quantity shipments, prices, 
and profits is explored. As mentioned in C.4, the mixed additive- 

Table 7 
Impact of λ+j on the quantity shipments, prices, safety values and expected profits (Model 3)  

λ+j  2 12 22 32 42 52 62 

q*
11  23.79 23.82 23.85 23.88 23.92 23.96 24.00 

q*
12  24.68 24.71 24.73 24.77 24.80 24.83 24.87 

q*
21  23.45 23.48 23.51 23.55 23.58 23.62 23.67 

q*
22  24.35 24.37 24.40 24.43 24.46 24.50 24.54 

q̃*
11  

24.07 24.09 24.12 24.16 24.19 24.23 24.27 

q̃*
12  

23.73 23.76 23.79 23.82 23.86 23.90 23.94 

q̃*
21  

24.40 24.43 24.46 24.49 24.52 24.56 24.60 

q̃*
22  

24.07 24.09 24.12 24.16 24.19 24.23 24.27 

p*
1  231.29 231.43 231.58 231.74 231.92 232.11 232.32 

p*
2  234.47 234.61 234.76 234.91 235.08 235.27 235.47 

ρ*
1  162.56 162.73 162.91 163.11 163.33 163.56 163.82 

ρ*
2  165.24 165.40 165.58 165.76 165.97 166.19 166.43 

p̃*
11  

82.20 82.28 82.37 82.47 82.57 82.69 82.81 

p̃*
12  

81.20 81.28 81.37 81.47 81.57 81.69 81.81 

p̃*
21  

82.20 82.28 82.37 82.47 82.57 82.69 82.81 

p̃*
22  

81.20 81.28 81.37 81.47 81.57 81.69 81.81 

z1  -0.97 -0.95 -0.94 -0.93 -0.91 -0.90 -0.88 
z2  -0.97 -0.95 -0.94 -0.93 -0.91 -0.90 -0.88 

Π*
1  1250.67 1249.26 1247.72 1246.02 1244.14 1242.05 1239.70 

Π*
2  1335.21 1333.88 1332.44 1330.84 1329.08 1327.11 1324.92 

ΠM*
1  1756.35 1760.37 1764.70 1769.39 1774.49 1780.06 1786.17 

ΠM*
2  1708.22 1712.18 1716.45 1721.08 1726.11 1731.60 1737.62 

ΠS*
1  1709.70 1713.67 1717.94 1722.57 1727.61 1733.10 1739.14 

ΠS*
2  1753.83 1757.85 1762.19 1766.89 1771.99 1777.56 1783.68 

Π  9513.98 9527.21 9541.44 9556.79 9573.41 9591.48 9611.23  

Fig. 3. Impact of λ+j on Retailers’ Profit  
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Table 8 
Impact of aj on the quantity shipments, prices, safety values and expected profits  

aj  290 300 310 320 330 340 350 

q*
11  23.79 25.06 26.32 27.56 28.80 30.03 31.25 

q*
12  24.68 25.94 27.19 28.42 29.65 30.87 32.08 

q*
21  23.45 24.72 25.98 27.23 28.47 29.70 30.91 

q*
22  24.35 25.61 26.85 28.09 29.32 30.53 31.74 

q̃*
11  

24.07 25.33 26.58 27.83 29.06 30.28 31.50 

q̃*
12  

23.73 25.00 26.25 27.49 28.73 29.95 31.16 

q̃*
21  

24.40 25.67 26.92 28.16 29.39 30.61 31.83 

q̃*
22  

24.07 25.33 26.58 27.83 29.06 30.28 31.50 

p*
1  231.29 239.91 248.46 256.94 265.35 273.71 282.02 

p*
2  234.47 243.07 251.59 260.04 268.43 276.77 285.06 

ρ*
1  162.56 170.17 177.71 185.18 192.58 199.93 207.23 

ρ*
2  165.24 172.81 180.31 187.75 195.12 202.44 209.71 

p̃*
11  

82.20 86.00 89.75 93.48 97.18 100.84 104.49 

p̃*
12  

81.20 85.00 88.75 92.48 96.18 99.84 103.49 

p̃*
21  

82.20 86.00 89.75 93.48 97.18 100.84 104.49 

p̃*
22  

81.20 85.00 88.75 92.48 96.18 99.84 103.49 

z1  -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 
z2  -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 

Π*
1  1250.67 1380.81 1514.76 1652.60 1794.40 1940.23 2090.15 

Π*
2  1335.21 1467.47 1603.64 1743.79 1887.97 2036.25 2188.68 

ΠM*
1  1756.35 1945.11 2141.51 2345.47 2556.90 2775.74 3001.95 

ΠM*
2  1708.22 1894.45 2088.34 2289.81 2498.78 2715.18 2938.96 

ΠS*
1  1709.70 1895.95 2089.86 2291.35 2500.33 2716.74 2940.53 

ΠS*
2  1753.83 1942.61 2139.03 2343.00 2554.44 2773.30 2999.52 

Π  9513.98 10526.41 11577.15 12666.01 13792.81 14957.44 16159.79  

Table 9 
Impact of mj on the quantity shipments, prices, safety values and expected profits (λ−j = 2)  

mj  2 3 4 5 6 7 8 

q*
11  25.75 25.64 25.53 25.42 25.31 25.20 25.09 

q*
12  26.47 26.36 26.25 26.14 26.03 25.92 25.81 

q*
21  25.42 25.31 25.20 25.09 24.98 24.87 24.76 

q*
22  26.14 26.03 25.92 25.81 25.69 25.58 25.47 

q̃*
11  

25.95 25.84 25.72 25.61 25.50 25.39 25.28 

q̃*
12  

25.61 25.50 25.39 25.28 25.17 25.06 24.95 

q̃*
21  

26.28 26.17 26.06 25.95 25.84 25.73 25.61 

q̃*
22  

25.95 25.84 25.72 25.61 25.50 25.39 25.28 

p*
1  239.67 238.89 238.11 237.32 236.54 235.75 234.97 

p*
2  242.53 241.75 240.97 240.18 239.40 238.62 237.83 

ρ*
1  174.10 173.44 172.77 172.11 171.44 170.78 170.11 

ρ*
2  176.25 175.58 174.92 174.26 173.59 172.93 172.26 

p̃*
11  

87.84 87.51 87.17 86.84 86.51 86.18 85.84 

p̃*
12  

86.84 86.51 86.17 85.84 85.51 85.18 84.84 

p̃*
21  

87.84 87.51 87.17 86.84 86.51 86.18 85.84 

p̃*
22  

86.84 86.51 86.17 85.84 85.51 85.18 84.84 

z1  -1.00 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 
z2  -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 

Π*
1  1296.34 1278.51 1260.77 1243.12 1225.55 1208.08 1190.69 

Π*
2  1370.20 1351.93 1333.74 1315.64 1297.63 1279.70 1261.87 

ΠM*
1  2039.95 2022.66 2005.44 1988.28 1971.19 1954.15 1937.19 

ΠM*
2  1988.06 1970.99 1953.99 1937.05 1920.18 1903.37 1886.62 

ΠS*
1  1989.76 1972.69 1955.69 1938.75 1921.88 1905.07 1888.32 

ΠS*
2  2037.65 2020.36 2003.14 1985.98 1968.88 1951.85 1934.88 

Π  10721.96 10617.15 10512.77 10408.82 10305.31 10202.23 10099.58  
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multiplicative model (Model 3) with μj(p) = aj − bjpj +
∑J

k∕=jcjkpk is used 
for illustration. The parameter aj is used to control the demand level. 
From Proposition 4, the optimal quantities q̃*

ni and q*
ij and the optimal 

price p*
j increase with aj as illustrated in Table 8. Note that the safety 

values z*
j decrease with aj (Table 8). Additionally, as proven in Propo-

sition 4, the expected profits ΠS*
n , ΠM*

i , and Π* increase with aj as dis-
played in Table 8. Note that based on the model parameters, the 
expected profits of retailers also increase with aj. 

7.3. Impact of demand variability 

The effect of demand variability on the optimal equilibrium is 
explored. The linear additive model (Model 1) with Dj(p, x) = aj − bjpj +
∑J

k∕=jcjkpk + mjx is used for this analysis and mj is used to control demand 

variability. From Proposition 5, it can be seen that dq̃
*
ni

dmj
≥ 0 and 

dq*
ij

dmj
≥ 0 

when z*
j is positive and their sign depend on the model parameters when 

z*
j is negative. For the optimal prices, 

dp*
j

dmj
≤ 0 when z*

j is negative and its 

sign depends on the model parameters when z*
j is positive. In our setting, 

the optimal quantities q*
ij and the optimal prices p*

j decrease with mj 

when z*
j is negative (Table 9). When z*

j is positive, the optimal quantities 

q̃*
ni and q*

ij increase and the optimal prices p*
j decrease with mj (Table 10). 

For the expected profits, Proposition 5 shows that the total profit Π 

decreases with mj as displayed in Tables 9 and 10. Since the sign of ∂ΠS
n

∂mj 

and ∂ΠM
i

∂mj 
have the same sign as 

dq*
ij

dmj
, the profits of the raw material sup-

pliers and manufacturers decrease with mj when z*
j is negative (Table 9) 

and increase with mj when z*
j is positive (Table 10). Consequently, a 

positive value of zj will induce retailers to order more from manufac-
turers whom profit from demand uncertainty when z*

j > 0. Note that for 
both cases (negative and positive values of z*

j ), the expected profits of 
the retailers decrease with mj (Tables 9 and 10). 

8. Managerial insights 

The summary of our key findings from the sensitivity analysis and 
numerical tests are as follows.  

• The effect of model parameters on the equilibrium solutions depends 
on the type of demand model. For example, the effect of the shortage 
cost λ−j depends on the behavior of ∂Dj(p,x)

∂pj
. For the logit model (Model 

4), ∂Dj(p,x)
∂pj 

is increasing in x and the optimal quantities q*
ij and q̃*

ni in-

crease with λ−j as illustrated in Table 4. The increase of q*
ij and ̃q*

ni will 
induce an increase of the expected profits of raw material suppliers 
and manufacturers (Table 4). On the other hand, using the mixed 
linear-exponential model (Model 3), ∂Dj(p,x)

∂pj 
is decreasing in x and the 

optimal quantities q*
ij and ̃q*

ni decrease with λ−j resulting in a decrease 
of the expected profits of raw material suppliers and manufacturers 
(Table 5). Another example is the effect of the salvage value λ+j . With 
the logit model (Model 4), the retailers’ expected profits increase 
with λ+j as shown in Table 6. However, using the mixed linear- 
exponential model (Model 3), the retailers’ expected profits 
decrease with λ+j as illustrated in Table 7.  

• For the same demand model, the effect of demand variability on the 
various supply chain members depends on the model parameters. 
Taking the linear additive model (Model 1) as an example, the total 

Table 10 
Impact of mj on the quantity shipments, prices, safety values and expected profits (λ−j = 300)  

mj  2 3 4 5 6 7 8 

q*
11  26.03 26.05 26.07 26.10 26.12 26.15 26.17 

q*
12  26.74 26.76 26.79 26.81 26.83 26.86 26.88 

q*
21  25.69 25.72 25.74 25.77 25.79 25.81 25.84 

q*
22  26.41 26.43 26.45 26.48 26.50 26.52 26.55 

q̃*
11  

26.22 26.24 26.26 26.29 26.31 26.33 26.36 

q̃*
12  

25.88 25.91 25.93 25.95 25.98 26.00 26.02 

q̃*
21  

26.55 26.57 26.60 26.62 26.64 26.67 26.69 

q̃*
22  

26.22 26.24 26.26 26.29 26.31 26.33 26.36 

p*
1  241.19 241.16 241.13 241.10 241.07 241.04 241.01 

p*
2  244.04 244.01 243.98 243.95 243.92 243.89 243.85 

ρ*
1  175.73 175.87 176.02 176.16 176.30 176.44 176.58 

ρ*
2  177.86 178.01 178.15 178.29 178.43 178.57 178.71 

p̃*
11  

88.65 88.72 88.79 88.86 88.93 89.00 89.07 

p̃*
12  

87.65 87.72 87.79 87.86 87.93 88.00 88.07 

p̃*
21  

88.65 88.72 88.79 88.86 88.93 89.00 89.07 

p̃*
22  

87.65 87.72 87.79 87.86 87.93 88.00 88.07 

z1  0.03 0.02 0.02 0.02 0.02 0.02 0.02 
z2  0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Π*
1  902.88 688.26 473.68 259.15 44.67 -169.77 -384.15 

Π*
2  975.22 759.39 543.61 327.88 112.19 -103.44 -319.03 

ΠM*
1  2082.49 2086.32 2090.13 2093.91 2097.65 2101.36 2105.05 

ΠM*
2  2030.05 2033.84 2037.60 2041.33 2045.03 2048.69 2052.33 

ΠS*
1  2031.76 2035.55 2039.31 2043.03 2046.73 2050.40 2054.04 

ΠS*
2  2080.19 2084.03 2087.83 2091.61 2095.36 2099.07 2102.75 

Π  10102.59 9687.39 9272.16 8856.91 8441.62 8026.32 7610.99  
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expected profit is always decreasing with the demand variability. We 
expect the same behavior with the profits of retailers who are 
directly affected by an increase of demand variability (Table 9). 
However, the behavior of the expected profits of raw material sup-
pliers and manufacturers depends on the model parameters. As 
illustrated in Table 9, the profits of the raw material suppliers and 
manufacturers decrease with the demand variability when the 
optimal safety values z*

j are negative. When z*
j are positive, the 

profits of the raw material suppliers and manufacturers increase with 
the demand variability (Table 10). Consequently, a positive value of 
zj will induce retailers to order more from manufacturers and man-
ufacturers to order more from raw material suppliers implying that 
both raw material suppliers and manufacturers would profit from 
demand uncertainty when z*

j > 0. 

Clearly, the results and insights obtained in our paper illustrate the 
importance of identifying the type of demand model in practice and 
generate interesting practical implications for managers and decision 
makers. First, the effect of a change in model parameters, like shortage 
cost and salvage value, on supply chain members is not straightforward 
and might result in different behaviors depending on the type of demand 
model. Therefore, all supply chain members should seek knowledge of 
the type of consumer demand model in their setting. Second, the effect 
of demand variability is only obvious in the case of the retailers who 
loose from an increased demand variability but might be counter intu-
itive for other supply chain members. In particular, depending on 
whether retailers best choice involves overstocking or not, manufac-
turers and raw material suppliers can either profit or loose from an 
increased demand variability. Finally, our new model can assist supply 
chain operations managers to quantify the effects of different types of 
demand functions, model parameters, demand level, and demand vari-
ability on quantity shipments, prices, and expected profits. 

9. Conclusion 

The concept of supply chain equilibrium has received increased 
attention in the supply chain management literature. Our study con-
tributes to research in supply chain equilibrium by providing insights on 
how the type of demand function and model parameters affect the 

decisions and performance of the supply chain. In this paper, we develop 
a new supply chain equilibrium model in a network consisting of mul-
tiple suppliers, manufacturers and retailers who sell the product directly 
in their own demand markets. Demand uncertainty is modeled using a 
general demand model including additive, multiplicative, power, and 
logit functions. Moreover, to account for competitiveness, the demand 
for the product at each retail outlet is price-sensitive and depends on all 
retail prices. 

Using a variational inequality approach, we derive the equilibrium 
conditions of raw material suppliers, manufacturers, and retailers. Ex-
istence and uniqueness of the equilibrium quantities and prices are 
discussed and an extragradient-based algorithm is proposed to solve the 
model. Sensitivity analysis and numerical examples illustrate the flexi-
bility of the model and show the impact of demand function, model 
parameters, demand level and demand variability on the equilibrium 
shipments, prices, and expected profits. 

Our model establishes the foundation for supply chain equilibrium 
problems under general price-dependent demand. The model is limited 
to a one-period setting with only two stages in the supply chain network. 
Additionally, our model does not consider capacity constraints and 
correlation of the retailers’uncertainties. Future research could extend 
the model to address these limitations. Other interesting avenues of 
future research include modeling the supply chain problem under gen-
eral price-dependent demand within a Stackelberg equilibrium game 
framework and/or examining different type of contracts and incentives 
that could lead to supply chain coordination in networks with general 
demand functions. 
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Appendix A. Proof of Theorem 1 

To prove Theorem 1, note that (8) yields 

∂Πj

∂pj
=
(

pj + λ−j − λ+j
)∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx − λ−j
∫ Bj

Aj

∂Dj(p, x)
∂pj

fj(x)dx +
∫ zj

Aj

Dj(p, x)fj(x)dx + Dj

(

p, zj

)(

1 − Fj

(

zj

))

, (A.1)  

where zj = F− 1
j

(
pj − cj − ρj+λ−j

pj+λ−j − λ−j

)

. Using integration by parts and the definition of ℰj(p, x),
∂Πj
∂pj 

can be rewritten as: 

∂Πj

∂pj
=

∫ zj

Aj

[

1 −
pj − λ+j

pj
E j(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx +

∫ Bj

zj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx + Dj

(
p,Aj

)
(A.2)  

=

∫ zj

Aj

[

1 −
pj + λ−j − λ+j

pj
E j(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx +

∫ Bj

Aj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx + Dj

(
p,Aj

)
(A.3)  

Using (A.1), (A.2) and (A.3), it can be seen that 

∂Πj

∂pj
= 0⟺

(
pj + λ−j − λ+j

)∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx − λ−j

∫ Bj

Aj

∂Dj(p, x)
∂pj

fj(x)dx = −

∫ zj

Aj

Dj(p, x)fj(x)dx − Dj

(

p, zj

)(

1 − Fj

(

zj

))

. (A.4)  
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∂Πj

∂pj
= 0⟺

∫ zj

Aj

[

1 −
pj − λ+j

pj
E j(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx = −

∫ Bj

zj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx − Dj

(
p,Aj

)
. (A.5)  

∂Πj

∂pj
= 0⟺

∫ zj

Aj

[

1 −
pj + λ−j − λ+j

pj
E j(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx = −

∫ Bj

Aj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx − Dj

(
p,Aj

)
. (A.6)  

Since ℰj(p, x) is increasing in x (Assumption 2.iii) and by (A.6), 
∫ zj

Aj

[

1 −
pj + λ−j − λ+j

pj
ℰj(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx ≤ 0,

we get 
pj+λ−j − λ+j

pj
ℰj(p, zj) ≥ 1, which is equivalent to 

∂Dj

(

p, zj

)

∂pj

(

1 − Fj

(

zj

))

+

∂Dj

(

p, zj

)

∂x

(

1 − Fj

(

zj

))
2

(
pj + λ−j − λ+j

)
fj

(

zj

) ≤ 0. (A.7)  

From (A.1) and (A.2), the second derivative of Πj with respect to pj can be calculated in two ways: 

∂2Πj

∂p2
j
|∂Πj

∂pj
=0

=

(
pj + λ−j − λ+j

)∫ zj

Aj

∂2Dj(p, x)
∂p2

j
fj(x)dx − λ−j

∫ Bj

Aj

∂2Dj(p, x)
∂p2

j
fj(x)dx

(A.8)  

+2
∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx +
∂Dj

(

p, zj

)

∂pj

(

1 − Fj

(

zj

))

(A.9)  

+

∂Dj

(

p, zj

)

∂pj

(

1 − Fj

(

zj

))

+

∂Dj

(

p, zj

)

∂x

(

1 − Fj

(

zj

))
2

(
pj + λ−j − λ+j

)
fj

(

zj

), (A.10)  

or 

∂2Πj

∂p2
j
|∂Πj

∂pj
=0

=

∫ zj

Aj

−
pj − λ+j

pj

∂E j(p, x)
∂pj

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj

zj

λ−j
pj

∂E j(p, x)
∂pj

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

(A.11)  

−
λ+j
p2

j

∫ zj

Aj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx −

λ−j
p2

j

∫ Bj

zj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx (A.12)  

+

∫ zj

Aj

∂2Dj(p, x)
∂pj∂x

∂Dj(p, x)
∂x

[

1 −
pj − λ+j

pj
ℰj(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx

+

∫ Bj

zj

∂2Dj(p, x)
∂pj∂x

∂Dj(p, x)
∂x

λ−j
pj
ℰj(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx +

∂Dj
(
p,Aj

)

∂pj

(A.13)  

+

∂Dj

(

p, zj

)

∂pj

(

1 − Fj

(

zj

))

+

∂Dj

(

p, zj

)

∂x

(

1 − Fj

(

zj

))
2

(
pj + λ−j − λ+j

)
fj

(

zj

). (A.14)  

The rest of the proof is divided into two cases. 
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A1. First case: ∂2Dj(p,x)
∂p2

j
≤ 0 

In this case, ∂
2Πj
∂p2

j
|∂Πj

∂pj
=0

= A1 + A2 + A3, where A1, A2, and A3 are given by the respective terms in (A.8), (A.9) and (A.10). Because ∂Dj(p,x)
∂pj

≤ 0 and 

pj+λ−j − λ+j
pj

ℰj(p, zj) ≥ 1, terms A2 and A3 are nonpositive. Note that when the shortage cost λ−j = 0, it is easy to show that A1 ≤ 0 since ∂
2Dj(p,x)

∂p2
j

≤ 0. For λ−j 
> 0, the argument used to show that A1 ≤ 0 depends on which part of Assumption 3 is satisfied. The details are outlined next in three subsections. 

A1.1. Dj(p, x) satisfies Assumption 3.i 

In this case, ∂2Dj(p,x)
∂p2

j 
is increasing in x, then 

A1 =
(

pj − λ+j
)∫ zj

Aj

∂2Dj(p, x)
∂p2

j
fj(x)dx − λ−j

∫ Bj

zj

∂2Dj(p, x)
∂p2

j
fj(x)dx

≤

∂2Dj

(

p, zj

)

∂p2
j

[(
pj + λ−j − λ+j

)
Fj

(

zj

)

− λ−j

]

=

∂2Dj

(

p, zj

)

∂p2
j

[
pj − cj − ρj

]
≤ 0.

A1.2. Dj(p, x) satisfies Assumption 3.ii 

In this case, 

∂2Dj (p,x)

∂p2
j

−
∂Dj (p,x)

∂pj 

is increasing in x, then 

A1 ≤

∂2Dj

(
p,zj

)

∂p2
j

−
∂Dj

(
p,zj

)

∂pj

⎡

⎣ −
(

pj − λ+j
)∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx+ λ−j

∫ Bj

zj

∂Dj(p, x)
∂pj

fj(x)dx

⎤

⎦ =

∂2Dj

(
p,zj

)

∂p2
j

−
∂Dj

(
p,zj

)

∂pj

[ ∫ zj

Aj

Dj(p, x)fj(x)dx+Dj

(

p, zj

)(

1 − Fj

(

zj

))]

≤ 0.

The last equality holds because of equation (A.4). 

A1.3. Dj(p, x) satisfies Assumption 3.iii 

In this case, 

∂2Dj (p,x)

∂p2
j

Dj(p,x) is increasing in x, then 

A1 ≤

∂2Dj

(
p,zj

)

∂p2
j

Dj

(

p, zj

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
pj − λ+j

)∫ zj

Aj

Dj(p, x)fj(x)dx − λ−j
∫ Bj

zj

Dj(p, x)fj(x)dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

∂2Dj

(
p,zj

)

∂p2
j

Dj

(

p, zj

)H
(

λ−j
)
,

where H(λ−j ) = (pj + λ−j − λ+j )
∫ zj

Aj
Dj(p,x)fj(x)dx − λ−j

∫ Bj
Aj

Dj(p,x)fj(x)dx. 

We have H(0) = (pj − λ+j )
∫ zj

Aj
Dj(p, x)fj(x)dx > 0 and 

∂H
∂λ−j

=
(

pj + λ−j − λ+j
)

Dj

(

p, zj

)

fj

(

zj

)
∂zj

∂λ−j
−

∫ Bj

zj

Dj(p, x)fj(x)dx

=

(
pj + λ−j − λ+j

)
Dj

(

p, zj

)

fj

(

zj

) 1 − Fj

(

zj

)

(
pj + λ−j − λ+j

)
fj

(

zj

) −

∫ Bj

zj

Dj(p, x)fj(x)dx

≤ Dj

(

p, zj

)(

1 − Fj

(

zj

))

− Dj

(

p, zj

)(

1 − Fj

(

zj

))

= 0.

Consequently, there exists λ0
j > 0 such that H(λ−j ) > 0 for each 0 ≤ λ−j ≤ λ0

j , which implies that A1 ≤ 0 for all these values of λ− . 

A2. Second case: ∂2Dj(p,x)
∂p2

j
≥ 0 

According to Assumption 3.iv), ∂
2Dj(p,x)
∂pj∂x ≤ 0,

∂ℰj (p,x)
∂pj

ℰj(p,x) is decreasing in x and 
∂2Dj (p,x)

∂pj∂x
∂Dj (p,x)

∂x 

is independent of x. In this case, we have ∂
2Πj
∂p2

j
|∂Πj

∂pj
=0

= B1 + B2 + B3 +

B4 where B1, B2, B3, and B4 are given by the respective terms in (A.11), 
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(A.12), (A.13) and (A.14). Because ∂Dj(p,x)
∂x ≥ 0 and 

pj+λ−j − λ+j
pj

ℰj(p, zj) ≥ 1, terms B2 and B4 are nonpositive. Since 
∂ℰj (p,x)

∂pj
ℰj(p,x) is decreasing in x, we get: 

B1 =

∫ zj

Aj

−
pj − λ+j

pj

∂E j(p, x)
∂pj

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj

zj

λ−j
pj

∂E j(p, x)
∂pj

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

≤

∂E j

(

p, zj

)

∂pj

E j

(

p, zj

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ zj

Aj

−
pj − λ+j

pj
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj

zj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

∂E j

(

p, zj

)

∂pj

E j

(

p, zj

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− Dj
(
p,Aj

)
−

∫ zj

Aj

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ 0.

The last equality holds because of equation (A.5). 

Now, because 
∂2Dj (p,x)

∂pj∂x
∂Dj (p,x)

∂x 

is independent of x, we obtain: 

B3 =
∫ zj

Aj

∂2 Dj (p,x)
∂pj∂x

∂Dj (p,x)
∂x

[

1 −
pj − λ+j

pj
E j(p, x)

]

∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj
zj

∂2 Dj (p,x)
∂pj∂x

∂Dj (p,x)
∂x

λ−j
pj
E j(p, x)

∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx + ∂Dj(p,Aj)

∂pj

=
−

∂2Dj(p,Aj)
∂pj∂x

∂Dj(p,Aj)
∂x

⎡

⎢
⎢
⎢
⎣

∫ zj

Aj

[
pj − λ+j

pj
E j(p, x) − 1

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx −

∫ Bj

zj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎦
+

∂Dj
(
p,Aj

)

∂pj

=
−

∂2Dj(p,Aj)
∂pj∂x

∂Dj(p,Aj)
∂x

Dj
(
p,Aj

)
+

∂Dj
(
p,Aj

)

∂pj
.

The last equality holds because of equation (A.5). 

Since ηjj(p, x) is decreasing in x (Assumption 2.ii), we have 
−

∂2Dj (p,x)
∂pj∂x

∂Dj (p,x)
∂x

≤
−

∂Dj (p,x)
∂pj

Dj(p,x) which implies that 

B3 ≤
−

∂Dj(p,Aj)
∂pj

Dj
(
p,Aj

)Dj
(
p,Aj

)
+

∂Dj
(
p,Aj

)

∂pj
= 0.

Consequently, ∂2Πj
∂p2

j
|∂Πj

∂pj
=0

≤ 0 in assumptions 3.i), 3.ii), 3.iii) and 3.iv) and therefore Πj is pseudo-concave in pj. □ 

Appendix B. Proof of Theorem 4 

Variational inequality (11) can be rewritten in standard form as follows: determine X* ∈ Ω, such that 

〈ℱ(X*),X − X*〉 ≥ 0, ∀X ∈ Ω, (B.1)  

where X ≡ (q1, q2, p, ρ) and ℱ(X) ≡ (ℱ ni,ℱ ij,ℱ
1
j ,ℱ

2
j ), with the specific components of ℱ(X) being given by the respective functional terms preceding 

the multiplication signs in (11): 
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ℱ ni(q1, q2, p, ρ) =

∂cni

(

q̃ni

)

∂q̃ni
,

ℱ ij(q1, q2, p, ρ) =
∂cij
(
qij
)

∂qij
− ρj,

ℱ 1
j (q1, q2, p, ρ) = −

∂Πj

∂pj
= −

∫ zj

Aj

Dj(p, x)fj(x)dx − Dj
(
p, zj
)(

1 − Fj
(
zj
))
,

−
(

pj + λ−j − λ+j
)∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx + λ−j
∫ Bj

Aj

∂Dj(p, x)
∂pj

fj(x)dx

ℱ 2
j (q1, q2, p, ρ) =

∑I

i=1
qij − Dj

(
p, zj
)
, where zj = F− 1

j

(
pj − cj − ρj + λ−j

pj + λ−j − λ−j

)

(B.2) 

The equilibrium vector X* is unique if ℱ(X) = 0|X=X* has a unique solution. The solution of ℱ(X) = 0|X=X* is closely related to the determinant of its 

Jacobian. Straightforward computations show that the Jacobian of ℱ(X) is given by M =

(
A B
C D

)

, where A is a NI + IJ × NI + IJ matrix, B = − CT is a 

NI + IJ × 2J matrix and D is a 2J × 2J matrix defined as follows: 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1
1 OII ⋯ OII OJJ OJJ ⋯ OJJ

OII A1
2 ⋯ OII OJJ OJJ ⋯ OJJ

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
OII ⋯ OII A1

N OJJ OJJ ⋯ OJJ

OII ⋯ OII OII A2
1 OJJ ⋯ OJJ

OII ⋯ OII OII OJJ A2
2 ⋯ OJJ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
OII ⋯ OII OII OJJ OJJ ⋯ A2

I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

OJJ OJJ
OJJ OJJ
⋮ ⋮ ⋮

OJJ OJJ
OJJ − IJJ
OJJ − IJJ
⋮ ⋮ ⋮

OJJ − IJJ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D =

(
D1 D2

D3 D4

)

, where A1
n is a I × I diagonal matrix with (A1

n)ii =
∂2cni(q̃ni)

∂q̃
2
ni 

(1 ≤ n ≤ N), A2
i is a J × J diagonal matrix with (A2

i )jj =
∂2cij(qij)

∂q2
ij 

(1 ≤ i ≤ I), IJJ is the identity matrix with rank J, OII and OJJ are I ×I and J ×J matrices of 

zeros, and matrices D1, D2, D3 and D4 are calculated as: 

D1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∂2Π1

∂p2
1

−
∂2Π1

∂p2∂p1
⋯ −

∂2Π1

∂pJ∂p1

−
∂2Π2

∂p1∂p2
−

∂2Π2

∂p2
2

⋯ −
∂2Π2

∂pJ∂p2

⋮ ⋮ ⋱ ⋮

−
∂2ΠJ

∂p1∂pJ
−

∂2ΠJ

∂p2∂pJ
⋯ −

∂2ΠJ

∂p2
J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D2 =

⎛

⎜
⎜
⎝

γ1 0 ⋯ 0
0 γ2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 γJ

⎞

⎟
⎟
⎠,

D3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− γ1 −
∂D1

∂p2
⋯ −

∂D1

∂pJ

−
∂D2

∂p1
− γ2 ⋯ −

∂D2

∂pJ

⋮ ⋮ ⋱ ⋮

−
∂DJ

∂p1
−

∂DJ

∂p2
⋯ − γJ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and D4 =

⎛

⎜
⎜
⎝

β1 0 ⋯ 0
0 β2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 βJ

⎞

⎟
⎟
⎠ with βj =

∂Dj (p,zj )
∂x

(pj+λ−j − λ+j )fj(zj)
and γj =

∂Dj(p,zj)

∂pj
+

∂Dj (p,zj )
∂x (1− Fj(zj))

(pj+λ−j − λ+j )fj(zj)
. 

In order for the equilibrium vector to be unique, Theorem 1 of [49] requires det(M)|X=X* > 0 for all equilibria X*, along with two additional minor 
conditions: differentiability and boundary requirements. The former condition is met as assumed, and the boundary condition was needed to prove the 
existence of equilibrium. To proof the uniqueness of the equilibrium solution, it remains to be shown that det(M)|X=X* > 0. 

Since functions cni and cij are assumed to be strictly convex, all matrices A1
n and A2

i are invertible with positive determinants and therefore matrix A 
is also invertible with det(A) > 0. Consequently, det(M) = det(D − CA− 1B)det(A). Using the definitions of matrices B and C, it can be seen that − CA− 1B 

=

(
OJJ OJJ
OJJ U

)

, where U is a J × J diagonal matrix with Ujj =
∑I

i=1
1

∂2cij (qij )

∂q2
ij

. Therefore, D − CA− 1B =

(
D1 D2

D3 D4 + U

)

. Since matrix D4 +U is a diagonal 

matrix with positive elements equal to δj = βj + Ujj, then det(D − CA− 1B) = det(D1 − D2(D4 + U)− 1D3)det(D4 + U). Using the definitions of matrices 

D1, D2, D3, and D4 + U, it can be seen that the elements of the matrix N = D1 − D2(D4 +U)− 1D3 are given by Njj = −
∂2Πj
∂p2

j
+

γ2
j

δj
, ∀1 ≤ j ≤ J and Njk = −

∂2Πj
∂pk∂pj

+
γj
δj

∂Dj
∂pk
, ∀k ∕= j. The proof is complete if we can establish that det(N)|X=X* > 0. Using Theorem 4 in [56] it can be seen that all principal minors of N 

are positive if N is diagonally dominant with positive diagonal entries and negative off diagonal entries. The rest of the proof is devoted to establishing 
that N satisfies these properties when X = X*. 

Y. Hamdouch and K. Ghoudi                                                                                                                                                                                                                



Operations Research Perspectives 7 (2020) 100165

20

It follows from Theorem 1, that ∂
2Πj
∂p2

j
|∂Πj

∂pj
=0

< 0, therefore Njj|X=X* = −
∂2Πj
∂p2

j
+

γ2
j

δj
> 0. Using (A.1) and (A.2), the second derivative of Πj with respect to 

pk and pj can be written as 

∂2Πj

∂pkpj
|∂Πj

∂pj
=0

=

∫ zj

Aj

∂Dj(p, x)
∂pk

fj(x)dx +
∂Dj

(

p, zj

)

∂pk

(

1 − Fj

(

zj

))

(B.3)  

+
(

pj + λ−j − λ+j
)∫ zj

Aj

∂2Dj(p, x)
∂pkpj

fj(x)dx − λ−j
∫ Bj

Aj

∂2Dj(p, x)
∂pkpj

fj(x)dx (B.4)  

or 

∂2Πj

∂pkpj
|∂Πj

∂pj
=0

=

∫ zj

Aj

−
pj − λ+j

pj

∂E j(p,x)
∂pk

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj

zj

λ−j
pj

∂E j(p,x)
∂pk

E j(p, x)
E j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx (B.5)  

+

∫ zj

Aj

∂2Dj(p,x)
∂pk ∂x

∂Dj(p,x)
∂x

[

1 −
pj − λ+j

pj
E j(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx +

∫ Bj

zj

∂2Dj(p,x)
∂pk∂x

∂Dj(p,x)
∂x

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx +

∂Dj
(
p,Aj

)

∂pk
. (B.6)  

To study the sign of Njk, we distinguish two cases. 

First case: ∂2Dj(p,x)
∂pkpj

≥ 0 

In this case, ∂2Πj
∂pkpj

|∂Πj
∂pj

=0
= C1 + C2, where C1 and C2 are given by the respective terms in (B.4) and (B.3). Because ∂Dj(p,x)

∂pk
≥ 0, term C2 is nonnegative. 

If Dj(p, x) satisfies Assumption 3.i), ∂2Dj(p,x)
∂pkpj 

is decreasing in x and 

C1 =
(

pj + λ−j − λ+j
)∫ zj

Aj

∂2Dj(p, x)
∂pkpj

fj(x)dx − λ−j

∫ Bj

Aj

∂2Dj(p, x)
∂pkpj

fj(x)dx

≥

∂2Dj

(

p, zj

)

∂pkpj

[(
pj + λ−j − λ+j

)
Fj

(

zj

)

− λ−j

]

=

∂2Dj

(

p, zj

)

∂pkpj

[
pj − cj − ρj

]
≥ 0.

If Dj(p, x) satisfies Assumption 3.ii) or 3.iii), the same arguments used in the proof of Theorem 1 will imply that term C1 is non-negative. 

Second case: ∂2Dj(p,x)
∂pkpj

≤ 0 

According to Assumption 3.iv), ∂
2Dj(p,x)
∂pk∂x ≥ 0,

∂ℰj (p,x)
∂pk

ℰj(p,x) is increasing in x and 
∂2Dj (p,x)

∂pk∂x
∂Dj (p,x)

∂x 

is independent of x. In this case, we have ∂2Πj
∂pk∂pj

|∂Πj
∂pj

=0
= D1 + D2, where 

D1 and D2 are given by the respective terms in (B.5) and (B.6). Since 
∂ℰj (p,x)

∂pk
ℰ j(p,x) is increasing in x, we get 

D1 ≥

∂E j

(
p,zj

)

∂pk

E j

(
p,zj

)

⎡

⎢
⎢
⎢
⎢
⎣

∫ zj
Aj
−

pj − λ+j
pj

E j(p, x) ∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx +

∫ Bj
zj

λ−j
pj
E j(p, x)

∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎦

=

∂E j

(
p,zj

)

∂pk

E j

(

p, zj

)

⎡

⎢
⎢
⎢
⎢
⎣
− Dj

(
p,Aj

)
−

∫ zj

Aj

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎦
≥ 0.

The last equality holds because ∂ℰj(p,zj)

∂pk
≤ 0 (Assumption 2.iii) and equation (A.5)). 

Now, because 
∂2Dj (p,x)

∂pk∂x
∂Dj (p,x)

∂x 

is independent of x, we obtain 

D2 =
−

∂2 Dj(p,Aj)
∂pk ∂x

∂Dj(p,Aj)
∂x

⎡

⎢
⎢
⎢
⎣

∫ zj
Aj

[
pj − λ+j

pj
E j(p, x) − 1

]

∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx −

∫ Bj
zj

λ−j
pj
E j(p, x)

∂Dj(p,x)
∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎦
+

∂Dj(p,Aj)
∂pj

=
−

∂2Dj(p,Aj)
∂pk ∂x

∂Dj(p,Aj)
∂x

Dj
(
p,Aj

)
+

∂Dj
(
p,Aj

)

∂pk
.
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Since ηk(p, x) is increasing in x (Assumption 2.ii), we have 
−

∂2Dj (p,x)
∂pk∂x

∂Dj (p,x)
∂x

≥
−

∂Dj (p,x)
∂pk

Dj(p,x) , which implies that 

D2 ≥
−

∂Dj(p,Aj)
∂pk

Dj
(
p,Aj

)Dj
(
p,Aj

)
+

∂Dj
(
p,Aj

)

∂pk
= 0.

This implies that − ∂2Πj
∂pj∂pk

|p=p* ≤ 0 in assumptions 3.i), 3.ii), 3.iii) and 3.iv). Since δj > 0, γj ≤ 0 (Appendix A) and ∂Dj
∂pk

> 0, we have Njk|X=X* < 0. 
Now, it only remains to show that N is diagonally dominant. In fact, it can be seen that 

|Njj|−
∑

k∕=j

⃒
⃒Njk
⃒
⃒ = −

∂2Πj

∂p2
j
−
∑

k∕=j

∂2Πj

∂pj∂pk
+

γj

δj

[
∂Dj

∂pj
+
∑

k∕=j

∂Dj

∂pk
+ βj

]

> −
∂2Πj

∂p2
j
−
∑

k∕=j

∂2Πj

∂pj∂pk
+ γj

(
1 − Fj

(
zj
))
.

The last inequality holds because ∂Dj
∂pj

+
∑

k∕=j

∂Dj
∂pk

< 0 and βj
δj
< 1. To simplify notations, let Rj = −

∂2Πj
∂p2

j
−
∑

k∕=j

∂2Πj
∂pj∂pk

+ γj(1 − Fj(zj)). From equations (A.8)- 

(B.6), Rj can be expressed in two ways: 

Rj =
(

pj + λ−j − λ+j
)∫ zj

Aj

−

(
∂2Dj(p, x)

∂p2
j

+
∑

k∕=j

∂2Dj(p, x)
∂pkpj

)

fj(x)dx − λ−j

∫ Bj

Aj

−

(
∂2Dj(p, x)

∂p2
j

+
∑

k∕=j

∂2Dj(p, x)
∂pkpj

)

fj(x)dx (B.7)  

−

∫ zj

Aj

∂Dj(p, x)
∂pj

fj(x)dx −
∫ zj

Aj

⎛

⎝∂Dj(p, x)
∂pj

+
∑

k∕=j

∂Dj(p, x)
∂pk

⎞

⎠fj(x)dx −

⎛

⎝
∂Dj

(

p, zj

)

∂pj
+
∑

k∕=j

∂Dj

(

p, zj

)

∂pk

⎞

⎠

(

1 − Fj

(

zj

))

. (B.8)  

or 

Rj =

∫ zj

Aj

pj − λ+j
pj

∂ℰj(p, x)
∂pj

+
∑

k∕=j

∂ℰj(p, x)
∂pk

ℰ j(p, x)
ℰ j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

−

∫ Bj

zj

λ−j
pj

∂ℰ j(p, x)
∂pj

+
∑

k∕=j

∂ℰj(p, x)
∂pk

ℰj(p, x)
ℰ j(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

(B.9)  

+
λ+j
p2

j

∫ zj

Aj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx +

λ−j
p2

j

∫ Bj

zj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx (B.10)  

−

∫ zj

Aj

∂2Dj(p, x)
∂pj∂x

+
∑

k∕=j

∂2Dj(p, x)
∂pk∂x

∂Dj(p, x)
∂x

[

1 −
pj − λ+j

pj
ℰj(p, x)

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx

−

∫ Bj

zj

∂2Dj(p, x)
∂pj∂x

+
∑

k∕=j

∂2Dj(p, x)
∂pk∂x

∂Dj(p, x)
∂x

λ−j
pj
ℰj(p, x)

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

−

(
∂Dj
(
p,Aj

)

∂pj
+
∑

k∕=j

∂Dj
(
p,Aj

)

∂pk

)

(B.11)  

As in the proof of Theorem 1, the rest of the argument for the sign of Rj is divided into two cases. 

First case: ∂2Dj(p,x)
∂p2

j
+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≤ 0 

In this case, Rj = E1 + E2, where E1 and E2 are given by the terms in (B.7) and (B.8), respectively. Because ∂Dj(p,x)
∂pj

+
∑

k∕=j

∂Dj(p,x)
∂pk

≤ 0, term E2 is non- 

negative. If Dj(p, x) satisfies Assumption 3.i), ∂2Dj(p,x)
∂p2

j
+
∑

k∕=j

∂2Dj(p,x)
∂pkpj 

is increasing in x and 

E1 ≥ −

⎛

⎝
∂2Dj

(

p, zj

)

∂p2
j

+
∑

k∕=j

∂2Dj

(

p, zj

)

∂pkpj

⎞

⎠

[(
pj + λ−j − λ+j

)
Fj

(

zj

)

− λ−j

]

= −

⎛

⎝
∂2Dj

(

p, zj

)

∂p2
j

+
∑

k∕=j

∂2Dj

(

p, zj

)

∂pkpj

⎞

⎠
[
pj − cj − ρj

]
≥ 0.

If Dj(p, x) satisfies Assumption 3.ii) or 3.iii), we again mimic the arguments used in the proof of Theorem 1 to show that E1 is non-negative. 
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Second case: ∂2Dj(p,x)
∂p2

j
+
∑

k∕=j

∂2Dj(p,x)
∂pkpj

≥ 0. 

Based on Assumption 3.iv), ∂
2Dj(p,x)
∂pj∂x +

∑

k∕=j

∂2Dj(p,x)
∂pk∂x ≤ 0,

∂ℰj (p,x)
∂pj

+
∑

k∕=j

∂ℰj (p,x)
∂pk

ℰj(p,x) is decreasing in x and 

∂2Dj (p,x)
∂pj∂x +

∑

k∕=j

∂2Dj (p,x)
∂pk∂x

∂Dj (p,x)
∂x 

is independent of x. In this case, Rj = F1 +F2 

+F3, where F1, F2, and F3 are given by the terms in (B.9), (B.10), and (B.11), respectively. Because ∂Dj(p,x)
∂x ≥ 0, term F2 is non-negative. Since 

∂ℰj (p,x)
∂pj

+
∑

k∕=j

∂ℰj (p,x)
∂pk

ℰj(p,x) is decreasing in x,

F1 ≥

∂E j

(
p,zj

)

∂pj
+
∑

k∕=j

∂E j

(
p,zj

)

∂pk

E j

(
p,zj

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ zj
Aj

pj − λ+j
pj

E j(p, x)
∂Dj(p,x)

∂x

(
1 − Fj(x)

)
dx −

∫ Bj
zj

λ−j
pj
E j(p, x) ∂Dj(p,x)

∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

∂E j

(
p,zj

)

∂pj
+
∑

k∕=j

∂E j

(
p,zj

)

∂pk

E j

(

p, zj

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Dj
(
p,Aj

)
+

∫ zj

Aj

∂Dj(p, x)
∂x

(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≥ 0.

The last equality holds because ∂ℰj(p,x)
∂pj

+
∑

k∕=j

∂ℰj(p,x)
∂pk

≥ 0 (Assumption 2.iii) and equation (A.5). 

Now, because 

∂2Dj (p,x)
∂pj∂x +

∑

k∕=j

∂2Dj (p,x)
∂pk∂x

∂Dj (p,x)
∂x 

is independent of x,

F3 =

∂2Dj
(
p,Aj

)

∂pj∂x
+
∑

k∕=j

∂2Dj
(
p,Aj

)

∂pk∂x

∂Dj
(
p,Aj

)

∂x

⎡

⎢
⎢
⎢
⎢
⎣

∫ zj

Aj

[
pj − λ+j

pj
E j(p, x) − 1

]
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx −

∫ Bj

zj

λ−j
pj

E j(p, x)
∂Dj(p, x)

∂x
(
1 − Fj(x)

)
dx

⎤

⎥
⎥
⎥
⎥
⎦

−

(
∂Dj
(
p,Aj

)

∂pj
+
∑

k∕=j

∂Dj
(
p,Aj

)

∂pk

)

=

∂2Dj
(
p,Aj

)

∂pj∂x
+
∑

k∕=j

∂2Dj
(
p,Aj

)

∂pk∂x

∂Dj
(
p,Aj

)

∂x

Dj
(
p,Aj

)
−

⎛

⎜
⎜
⎜
⎜
⎝

∂Dj
(
p,Aj

)

∂pj
+
∑

k∕=j

∂Dj
(
p,Aj

)

∂pk

⎞

⎟
⎟
⎟
⎟
⎠

Since 
∂ηj (p,x)

∂x
pj

+
∑

k∕=j

∂ηk (p,x)
∂x
pk

≤ 0 (Assumption 2.ii), we have 

∂2Dj(p,x)
∂pj∂x +

∑

k∕=j

∂2Dj(p,x)
∂pk ∂x

∂Dj(p,x)
∂x

≥

∂Dj(p,x)
∂pj

+
∑

k∕=j

∂Dj(p,x)
∂pk

Dj(p, x)
,

which implies that 

F3 ≥

∂Dj(p,Aj)
∂pj

+
∑

k∕=j

∂Dj(p,Aj)
∂pk

Dj
(
p,Aj

) Dj
(
p,Aj

)
−

⎛

⎜
⎜
⎜
⎝

∂Dj
(
p,Aj

)

∂pj
+
∑

k∕=j

∂Dj
(
p,Aj

)

∂pk

⎞

⎟
⎟
⎟
⎠

= 0.

Consequently, Rj > 0 for assumptions 3.i), 3.ii), 3.iii) and 3.iv) and matrix N is strictly diagonally dominant with positive diagonal and negative off- 
diagonal terms, implying that det(N)|X=X* > 0. □ 

Appendix C. Sensitivity analysis 

For simplicity, we examine the special case when Dj = Dj(pj,zj). Using the dominance effect among retailers, the proofs can be easily extended to 
the general case when Dj = Dj(p,zj). 

By definition of zj, Dj(p*
j , z*

j ) = s*
j =

∑I
i=1q*

ij, with z*
j = F− 1

j

(
p*

j − cj − ρ*
j +λ−j

p*
j +λ−j − λ−j

)

and ρ*
j =

∂cij(q*
ij)

∂qij
, ∀i = 1,2,⋯I. Therefore, ∂

∂qIj

(
∂cij(q*

ij)

∂qij

)

= ∂
∂qIj

(
∂cIj(q*

Ij)

∂qIj

)

, ∀i = 1,
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2,⋯I − 1, which is equivalent to 
∂2cij(q*

ij)

∂q2
ij

dq*
ij

dq*
Ij
=

∂2cIj(q*
Ij)

∂q2
Ij

. That implies that 
dq*

ij

dq*
Ij
=

∂2cIj (q
*
Ij )

∂q2
Ij

∂2 cij (q
*
ij)

∂q2
ij

, ∀i = 1,2,⋯I − 1. 

C1. Proof of Proposition 1 

Note that at the equilibrium, Dj(p*
j , z*

j ) = s*
j =

∑I
i=1q*

ij. Taking the derivative with respect to cj yields 

∑I

i=1

dq*
ij

dcj
=

∂Dj

(
p*

j , z*
j

)

∂pj

dp*
j

dcj
+

∂Dj(p*
j ,z

*
j )

∂x(
p*

j + λ−j − λ+j
)
fj
(
z*

j
)

⎡

⎢
⎢
⎣ − 1 −

∂2cIj

(
q*

Ij

)

∂q2
Ij

dq*
Ij

dcj
+
(

1 − Fj

(
z*

j

)) dp*
j

dcj

⎤

⎥
⎥
⎦,

which implies that 
dq*

Ij
dcj

[

1 + αj +
∂2cIj(q*

Ij)

∂q2
Ij

βj

]

=
dp*

j
dcj

γj − βj, where αj =
∑I− 1

i=1

∂2cIj (q
*
Ij )

∂q2
Ij

∂2cij(q
*
ij )

∂q2
ij

> 0, βj =

∂Dj (p
*
j ,z

*
j )

∂x
(p*

j +λ−j − λ+j )fj(z
*
j )
> 0 and γj =

∂Dj(p*
j ,z

*
j )

∂pj
+

∂Dj (p
*
j ,z

*
j )

∂x (1− Fj(z*
j ))

(p*
j +λ−j − λ+j )fj(z

*
j )

≤ 0 (Ap-

pendix A). Therefore, 
dq*

Ij
dcj

=

{
dp*

j
dcj

γj − βj

}/{

1+αj +
∂2cIj(q*

Ij)

∂q2
Ij

βj

}

Next, taking the derivative of the equilibrium equation ∂Πj/∂pj = 0 with respect to cj gives 

∂2Πj
∂p2

j

dp*
j

dcj
+ γj

[

− 1 −
∂2cIj(q*

Ij)

∂q2
Ij

dq*
Ij

dcj

]

= 0. Using the above and few algebraic manipulations shows that 
dp*

j
dcj

= {γj(1+αj)}/

{

∂2Πj
∂p2

j
(1+αj)+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

}

, where Mj 

=
∂2Πj
∂p2

j
βj − γ2

j . From Appendix A, we know that at equilibrium ∂
2Πj
∂p2

j
≤ 0, so Mj ≤ 0 and therefore 

dp*
j

dcj
≥ 0. To obtain the sign of 

dq*
Ij

dcj
, it can be seen using the 

formula for 
dp*

j
dcj
, that the derivative of qIj with respect to cj simplifies to 

dq*
Ij

dcj
=

− Mj

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

.

Since Mj ≤ 0,
dq*

Ij
dcj

≤ 0 and 
dq*

ij
dcj

=
dq*

ij
dq*

Ij

dq*
Ij

dcj
≤ 0,∀i = 1,2,⋯I − 1. Note that at equilibrium, 

∑N
n=1q̃*

ni =
∑J

j=1q*
ij and therefore dq̃

*
ni

dcj
≤ 0,∀n = 1,2,⋯N,∀i = 1,2,

⋯I. 
From the definitions of zj and ρj, we get 

0 ≥
dρ*

j

dcj
=

⎛

⎜
⎜
⎜
⎜
⎝

∂2cIj

(
q*

Ij

)

∂q2
ij

⎞

⎟
⎟
⎟
⎟
⎠

dq*
Ij

dcj
=

−

(
∂2cIj(q*

Ij)
∂q2

ij

)

Mj

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

≥

−

(
∂2cIj(q*

Ij)
∂q2

ij

)

Mj

∂2cIj(q*
Ij)

∂q2
Ij

Mj

= − 1,

and 
dz*

j
dcj

=

[

(1 − Fj(z*
j ))

dp*
j

dcj
− 1 −

dρ*
j

dcj

]/

[(p*
j +λ−j − λ+j )fj(z*

j )] reduces to 

dz*
j

dcj
=
(
1+ αj

)
[(

1 − Fj

(
z*

j

)
γj −

∂2Πj

∂p2
j

]/[
∂2Πj

∂p2
j

(
1+ αj

)
+

∂2cIj

(
q*

Ij

)

∂q2
Ij

Mj

]

and has the same sign as ∂
2Πj
∂p2

j
− (1 − Fj(z*

j )γj = A1 + A2, where A1 and A2 are defined by (A.8) and (A.9) in Appendix A, respectively. It follows that 
dz*

j
dcj

≤

0, since A1 + A2 ≤ 0, as shown in Appendix A. 

For the raw material suppliers, manufacturers, and retailers’ profits, it can be seen that ∂ΠS
n

∂cj 
follows the same sign of ∂q̃

*
ni

∂cj
,

∂ΠM
i

∂cj
=
∑J

j=1
dρ*

j
dcj

q*
ij < 0, and ∂Πj

∂cj 

=

(

− 1 −
dρ*

j
dcj

)
∑I

i=1q*
ij < 0, since − 1 ≤

dρ*
j

dcj
≤ 0, as shown before. Consequently, the expected profits of raw material suppliers, manufacturers, and 

retailers decrease with cj, which implies that the total profit Π decreases with cj. 

C2. Proof of Proposition 2 

The arguments used in this subsection are quite similar to those presented in subsection C.1, with the only difference beiing that derivatives are 
taken with respect to λ−j . In particular, following the same steps, it can be easily shown that 

dq*
Ij

dλ−j
=

{
dp*

j
dλ−j

γj + βj(1 − Fj(z*
j ))

}/{

1 + αj +
∂2cIj(q*

Ij)

∂q2
Ij

βj

}

. Computing ∂2Πj
∂λ−j ∂pj 

at the equilibrium and using arguments similiar to those in C.1 yields 
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dp*
j

dλ−j
=

(
1 + αj

)(
Δ−

j − βj

(
1 − Fj

(
z*

j

))
2
)
+

∂2cIj(q*
Ij)

∂q2
Ij

βj
∫ Bj

z*
j

∂Dj(p*
j ,x)

∂pj
fj(x)dx

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

,

where Δ−
j =

∫ Bj

z*
j

∂Dj(p*
j ,x)

∂pj
fj(x)dx −

∂Dj(p*
j ,z

*
j )

∂pj
(1 − Fj(z*

j )). Substituting in the above formula for 
dq*

Ij
dλ−j 

yields 

dq*
Ij

dλ−j
=

Mj

(
1 − Fj

(
z*

j

))
+ γj

∫ Bj

z*
j

∂Dj(p*
j ,x)

∂pj
fj(x)dx

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

.

It can be easily verified that 
dρ*

j
dλ−j

=
∂2cIj(q*

Ij)

∂q2
Ij

dq*
Ij

dλ−j 
and that 

dz*
j

dλ−j 
simplifies to 

dz*
j

dλ−j
=

(
1 + αj

)(
1 − Fj

(
z*

j

))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A1 + A2) +

⎡

⎢
⎢
⎢
⎣

1 −

∂2 cIj(q*
Ij)

∂q2
Ij

∂Dj(p*
j ,z

*
j )

∂pj

(1+αj)(1− Fj(z*
j ))

⎤

⎥
⎥
⎥
⎦

∫ Bj

z*
j

∂Dj(p*
j ,x)

∂pj
fj(x)dx

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

[(
p*

j + λ−j − λ+j
)
fj
(
z*

j
)]
[

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

] .

Using the results of Appendix A, it can be seen that 
dz*

j
dλ−j

≥ 0 for any demand model. The signs of 
dp*

j
dλ−j 

and 
dq*

Ij
dλ−j 

depend in general on the demand model. In 

particular, if ∂Dj(pj ,x)
∂pj 

is increasing in x, then it is easy to show that ∂2Πj
∂p2

j
− γj(1 − Fj(z*

j )) = A1 + A2 ≤ 0 implying that γj
∫ Bj

z*
j

∂Dj(p*
j ,x)

∂pj
fj(x)dx+ Mj(1 −

Fj(z*
j )) ≤ (1 − Fj(z*

j ))βj

[

∂2Πj
∂p2

j
− γj(1 − Fj(z*

j ))

]

≤ 0. Therefore, 
dq*

Ij
dλ−j

≥ 0 but the sign of 
dp*

j
dλ−j 

depends on the model parameters. However, if ∂Dj(pj ,x)
∂pj 

is 

decreasing in x, then Δ−
j ≤ 0 implying that 

dp*
j

dλ−j
≥ 0 and the sign of 

dq*
Ij

dλ−j 
depends on the model parameters. In both cases, dq̃

*
ni

dλ−j
(1 ≤ n ≤ N, 1 ≤ i ≤ I),

dq*
ij

dλ−j
(1 ≤ i ≤ I − 1), and 

dρ*
j

dλ−j 
have the same sign as 

dq*
Ij

dλ−j
. 

For the expected profits of raw material suppliers and manufacturers, it can be seen that ∂ΠS
n

∂λ−j 
have the same sign as dq̃

*
ni

dλ−j 
and ∂ΠM

i
∂λ−j 

=
∑J

j=1
dρ*

j
dλ−j

q*
ij which 

has the same sign as 
dq*

ij
dλ−j

. On the other hand, ∂Πj
∂λ−j

= − Θj(p*, z*
j ) −

dρ*
j

dλ−j

∑I
i=1q*

ij, which depends on the sign of 
dρ*

j
dλ−j

. Summing the above yields, ∂Π
∂λ−j 

= − Θj(p*,

z*
j ) < 0, implying that the total profit Π decreases with λ−j . 

C3. Proof of Proposition 3 

Again, using similar arguments to those in C.1, it can be verified that 

dq*
Ij

dλ+j
=

{
dp*

j

dλ+j
γj + βjFj

(
z*

j

)
}/{

1+ αj +
∂2cIj

(
q*

Ij

)

∂q2
Ij

βj

}

,

and using ∂2Πj
∂λ+j ∂pj

, we get 

dp*
j

dλ+j
=

(
1 + αj

)(
Δ+

j − βjFj

(
z*

j

)(
1 − Fj

(
z*

j

)))
+

∂2cIj(q*
Ij)

∂q2
Ij

βj
∫ z*

j
Aj

∂Dj(p*
j ,x)

∂pj
fj(x)dx

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

,

where Δ+
j =

∫ z*
j

Aj

∂Dj(p*
j ,x)

∂pj
fj(x)dx −

∂Dj(p*
j ,z

*
j )

∂pj
Fj(z*

j ). Substituting in the above formula for 
dq*

Ij
dλ+j 

gives 

dq*
Ij

dλ+j
=

MjFj

(
z*

j

)
+ γj

∫ z*
j

Aj

∂Dj(p*
j ,x)

∂pj
fj(x)dx

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj  

It is also easy to see that 
dρ*

j
dλ+j

=
∂2cIj(q*

Ij)

∂q2
Ij

dq*
Ij

dλ+j 
and that 

dz*
j

dλ+j 
is given by 
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dz*
j

dλ+j
=

(
1 + αj

)
Fj

(
z*

j

)
(A1 + A2) +

[

1 − Fj

(
z*

j

)
−

∂2cIj(q*
Ij)

∂q2
Ij

∂Dj(p*
j ,z

*
j )

∂pj

]
∫ z*

j
Aj

∂Dj(p*
j ,x)

∂pj
fj(x)dx

(
p*

j + λ−j − λ+j
)
fj
(
z*

j
)
[

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

] .

Clearly 
dz*

j
dλ+j

≥ 0 for all models but the signs of 
dp*

j
dλ+j 

and 
dq*

Ij
dλ+j 

depend on the demand model. In fact, when ∂Dj(pj ,x)
∂pj 

is increasing in x, then Δ+
j ≤ 0. Therefore, 

dp*
j

dλ+j
≥ 0 and the sign of 

dq*
Ij

dλ+j 
depends on the model parameters. However, when ∂Dj(p,x)

∂pj 
is decreasing in x, it is easy to prove that γj

∫ z*
j

Aj

∂Dj(p*
j ,x)

∂pj
fj(x)dx+

MjFj(z*
j ) ≤ 0. Therefore, 

dq*
Ij

dλ+j
≥ 0 and the sign of 

dp*
j

dλ+j 
depends on the model parameters. As in the previous subsection, dq̃

*
ni

dλ+j
(1 ≤ n ≤ N, 1 ≤ i ≤ I),

dq*
ij

dλ+j
(1 ≤ i ≤ I − 1),

dρ*
j

dλ+j
,

∂ΠS
n

∂λ+j
, and ∂ΠM

i
∂λ+j 

have the same sign as 
dq*

Ij
dλ+j

. 

For the expected profits of the retailers, it can be seen that ∂Πj
∂λ+j

= Λj(p*, z*
j ) −

∂ρ*
j

∂λ+j

∑I
i=1q*

ij, which can be positive or negative depending on the model 

parameters. Summing all expected profits yields, ∂Π
∂λ+j

= Λj(p*, z*
j ) > 0, implying that the total profit Π increases with λ+j . 

C4. Proof of Proposition 4 

To proof Proposition 4, we use the mixed linear-exponential model Dj(pj, x) = μj(pj) + xσj(p) with μj(p) = aj − bjpj and examine the effect of 
varying aj. Note that the parameter aj is used to control the demand level and a change in aj results in a change of the demand level without changing 
demand variablility and demand dependence on p. Similar analysis could be carried out for parameters bj and cjk. Repeating steps similar to those in 

the above subsections, we get 
dq*

Ij
daj

=

(
dp*

j
daj

γj + 1
)/(

1 + αj +
∂2cIj(q*

Ij)

∂q2
Ij

βj

)

. Using the equilibrium equations and adapting the arguments of the previous 

sections yields 

dp*
j

daj
=

−
(
1 + αj

)
+
(
γj − βj

) ∂2cIj(q*
Ij)

∂q2
Ij

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

,

and 

dq*
Ij

daj
=

∂2Πj
∂p2

j
− γj

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

.

The term γj − βj =
∂Dj(p*

j ,z
*
j )

∂pj
−

∂Dj (p
*
j ,z

*
j )

∂x Fj(z*
j )

(p*
j +λ−j − λ+j )fj(z

*
j )
≤ 0. Moreover, it is easy to show that at equilibrium ∂2Πj

∂p2
j
− γj ≤ 0 for the mixed linear-exponential model, 

implying that 
dp*

j
daj

≥ 0 and 
dq*

Ij
daj

≥ 0. Consequently, 
dρ*

j
daj

≥ 0,
dq*

ij
daj

=
dq*

ij
dq*

Ij

dq*
Ij

daj
≥ 0,∀i = 1, 2,⋯I − 1, and dq̃

*
ni

daj
> 0. 

For the total expected profit, it can be seen that ∂Π
∂aj

= (p*
j +λ−j − λ+j )Fj(z*

j ) − λ−j > 0 implying that the total profit Π increases with aj. The expected 

profits of raw material suppliers and manufacturers increase with aj since ∂q̃
*
ni

∂aj
> 0 and 

∂ρ*
j

∂aj
> 0. 

C5. Proof of Proposition 5 

To proof Proposition 5, we use the linear demand function Dj(pj, x) = aj − bjpj + mjx and study the effect of varying mj. Note that for this model, a 
change in mj results in a change of demand variability without changing demand level or demand dependence on p. Mimicking the same steps as in the 
previous subsections yields 

dp*
j

dmj
=

Θj

(
z*

j

)(
1 + αj

)
+
(

γjz*
j + Θj

(
z*

j

)
βj

) ∂2cIj(q*
Ij)

∂q2
Ij

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj  

and 

dq*
Ij

dmj
=

z*
j

∂2Πj
∂p2

j
+ γjΘj

(
z*

j

)

∂2Πj
∂p2

j

(
1 + αj

)
+

∂2cIj(q*
Ij)

∂q2
Ij

Mj

,

where Θj(z*
j ) =

∫ Bj

z*
j
(x − z*

j )fj(x)dx = −
∫ z*

j
Aj

xfj(x)dx − z*
j (1 − Fj(z*

j )). 

The signs of 
dp*

j
dmj 

and 
dq*

Ij
dmj 

depend on the sign of zj. In fact, if z*
j ≤ 0, then Θj(z*

j )(1+αj) + (γjz*
j +Θj(z*

j )βj)
∂2cIj(q*

Ij)

∂q2
Ij

≥ 0, implying that 
dp*

j
dmj

≤ 0. Calculations 
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show that the sign of 
dq*

Ij
dmj 

depends on the model parameters. If z*
j ≥ 0, then z*

j
∂2Πj
∂p2

j
+ γjΘj(z*

j ) ≤ 0, implying that 
dq*

Ij
dmj

≥ 0. For 
dp*

j
dmj

, its sign depends on the 

model parameters. 

For the expected profits, straightforward computation shows that ∂Π
∂mj

= (p*
j +λ−j − λ+j )

∫ z*
j

Aj
xfj(x) < 0 implying that the total profit Π decreases with 

mj. For the expected profits of raw material suppliers, manufacturers, and retailers, it can be seen that ∂ΠS
n

∂mj
, and ∂ΠM

i
∂mj 

have the same sign as 
dq*

ij
dmj 

and the 

sign of ∂Πj
∂mj 

depends on the model parameters. 
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