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ABSTRACT

Tomas Juškevičius. The University of Memphis. May 2015. Probabilistic Inequalities
and Bootstrap Percolation. Major Professor: Béla Bollobás, Ph.D.

This dissertation focuses on two topics. Firstly, we address a number of extremal

probabilistic questions:

• The Littlewood-Offord problem: we provide an alternative and very elementary

proof of a classical result by Erdős that avoids using Sperner’s Theorem. We also

give a new simple proof of Sperner’s Theorem itself.

• Upper bounds for the concentration function: answering a question of Leader and

Radcliffe we obtain optimal upper bounds for the concentration function of a sum of

real random variables when individual concentration information about the

summands is given. The result can be viewed as the optimal form of a well-known

Kolmogorov-Rogozin inequality.

• Small ball probabilities for sums of random vectors with bounded density: we

provide optimal upper bounds the probability that a sum of random vectors lies

inside a small ball and derive an upper bound for the maximum density of this sum.

In particular, our work extends a result of Rogozin who proved the best possible

result in one dimension and improves some recent results proved by Bobkov and

Chystiakov [8]. This is joint work with Jonathan Lee.

• Two extremal questions of bounded symmetric random walks: we find distributions

maximizing P(Sn ≥ x) and P(Sn = x), where Sn = X1 + · · ·+Xn is a sum of

independent bounded symmetric random variables. This is joint work with Matas

Šileikis and Dainius Dzindzalieta [16].

The second part of the dissertation is concerned with a problem in Bootstrap

Percolation. Let G be a graph and let I ⊂V (G) be a set of initially infected vertices. The
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set of infected vertices is updated as follows: if a healthy vertex has the majority of its

neighbours infected it itself becomes infected. Otherwise it stays healthy. In other words,

we have a sequence of sets

I = I0 ⊂ I1 ⊂ . . .⊂ Ik ⊂ . . . ,

where Ik+1 = Ik∪{v ∈V (G) : v has more infected than healthy neighbours}. In the

description of the bootstrap process above the superscripts of the sets correspond to the

time steps when infections occur. If the process ends up infecting all of the vertices, i.e.,

Ik =V (G) for some k, we say that percolation occurs.

In this dissertation we shall investigate this process on the Erdős-Renyi random graph

G(n, p). In this graph on n vertices each edge is included independently with probability

p. We shall be interested in the smallest cardinality, say m = m(n), of a uniformly chosen

initially infected set of vertices I, such that the probability of percolation at least 1/2. We

call this quantity the critical size of the initially infected set. In the regime p > c log(n)/n

(the connectivity threshhold) we prove sharp upper and lower bounds for m that match in

the first two terms of the asymptotic expansion.

This is joint work with Nathan Kettle and Cecilia Holmgren. The problem was

suggested to us by Béla Bollobás and Robert Morris.
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Part I

Probabilistic Inequalities



CHAPTER 1

THE LITTLEWOOD-OFFORD PROBLEM AND AN EXTENSION OF

SPERNER’S THEOREM

In this section we will relate the classical Littlewood-Offord problem and Sperner’s

Theorem, giving new and elementary proofs for both.

The Littlewood-Offord problem is a combinatorial question in geometry that asks for

the maximum number of subsums of vectors v1, . . . ,vn ∈ Rd of length at least 1 that fall

into a ball radius 1. Denote this number by f (n).

Littlewood and Offord [32] proved that in the cases d = 1 and 2 we have the upper

bound

f (n)≤ 2n log(n)/
√

n.

Erdős [17] showed that the best upper bound in the case d = 1 and an interval of

length 2 is (
n⌈n
2

⌉)
and for any interval of length 2k the optimal upper bound is provided by the sum of the k

largest binomial coefficients in n. We shall henceforth denote this sum by f (n,k).

The 1-dimensional problem has a very natural probabilistic formulation - that is how

it actually appears in Erdős’s work.

Theorem 1.0.1. Consider n independent random variables εi such that P(εi =±1) = 1/2

and let |ai| ≥ 1. Then for all x ∈ R

P(a1ε1 + · · ·+anεn ∈ (x− k,x+ k])≤ P(ε1 + · · ·+ εn ∈ (−k,k]) .

Denote the set {1,2, . . . ,n} by [n]. We call any collection of k sets F1, . . . ,Fk a chain

of length k if these sets are ordered by inclusion. That is, if we have F1 ⊂ F2 ⊂ . . .⊂ Fk.

Let us call a family of sets k-Sperner if it has no chains longer than k.
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Sperner’s Theorem is a classical result in finite set combinatorics that tells us that the

largest 1-Sperner family of subsets of [n] cannot have more elements than the middle

layer. That is, it cannot have more sets than the family of all sets of cardinality
⌈n

2

⌉
.

The main ingredient of Erdős’s proof of Theorem 1.0.1 was the following extension

of Sperner’s Theorem.

Theorem 1.0.2. Let F be a k-Sperner family of subsets of [n]. Then

|F | ≤ f (n,k) =
b n+k−1

2 c
∑

j=b n−k+1
2 c

(
n
j

)
.

Although the two Theorems stated may appear unrelated, Erdős linked them by

giving a short proof of Theorem 1.0.1 using Theorem 1.0.2. Let us give this proof to

highlight the link between random sums and k-Sperner families as we shall use a similar

idea in Section 2.4 of Chapter 2.

Erdős’s Proof of Theorem 1.0.1. There is a natural correspondence between random sums

Sn = a1ε1 + · · ·+anεn that fall into the interval (x− k,x+ k] and subsets of [n]. Namely,

for each realization of Sn that falls into (x− k,x+ k] assign a set A = {i : εi = 1}. Denote

the collection of all such sets by Fx. The probability in question is just the proportion of

Fx in the powerset of [n].

Let us verify that Fx is k-Sperner. Notice that if Fx has a chain of length k+1 then

there exists two sets A,B in Fx that differ in at least k+1 elements. But then the linear

combinations corresponding to these sets differ by at least 2k+2 and so both sets cannot

lie in Fx, which is a contradiction. Therefore Fx is k-Sperner. Using Theorem 1.0.2 we

obtain

P(a1ε1 + · · ·+anεn ∈ (x− k,x+ k]) = |Fx|/2n ≤ f (n,k)/2n

= P(ε1 + · · ·+ εn ∈ (−k,k]) .
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We shall now present the new proof of Theorem 1.0.1 without using Theorem 1.0.2.

Then we shall move to the new elementary proof of Theorem 1.0.2.

Proof of Theorem 1.0.1 Let us write Sn = a1ε1 + · · ·+anεn and Wn = ε1 + · · ·+ εn. We can

assume that a1 ≥ a2 ≥ . . .≥ an ≥ 1. Without loss of generality we can also take an = 1.

This is because

P(Sn ∈ (x− k,x+ k]) ≤ P(Sn/an ∈ (x− k,x+ k]/an)

≤ sup
x∈R

P(Sn/an ∈ (x− k,x+ k]) .

We shall argue by induction on n. The claim is trivial for n = 0. Let us assume that

we have proved the statement for 1,2, ...,n−1. Then taking the expectation with respect

to εn we obtain

P(Sn ∈ (x− k,x+ k])

=1
2P(Sn−1 ∈ (x− k−1,x+ k−1])+ 1

2P(Sn−1 ∈ (x− k+1,x+ k+1])

=1
2P(Sn−1 ∈ (x− k−1,x+ k+1])+ 1

2P(Sn−1 ∈ (x− k+1,x+ k−1])

≤1
2P(Wn−1 ∈ (−k−1,k+1])+ 1

2P(Wn−1 ∈ (−k+1,k−1])

=1
2P(Wn−1 ∈ (−k−1,k−1])+ 1

2P(Wn−1 ∈ (−k+1,k+1])

=P(Wn ∈ (−k,k]) ,

which completes the proof.�

Before we prove Theorem 1.0.2 let us establish a simple and well-known recurrence

relation for f (n,k). We shall adopt the convention that for k ≥ n we have f (n,k) = 2n and

for k = 0 we set f (n,k) = 0 to deal with boundary cases.
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Lemma 1.0.3. For 1≤ k ≤ n we have

f (n,k) = f (n−1,k−1)+ f (n−1,k+1).

Proof of Lemma 1.0.3 The assertion is trivial for n = 1,2. For n > 2 using Pascal’s identity

and grouping terms we have

f (n−1,k−1)+ f (n−1,k+1) =
b n+k−3

2 c
∑

j=b n−k+1
2 c

(
n−1

j

)
+
b n+k−1

2 c
∑

j=b n−k−1
2 c

(
n−1

j

)

=
b n+k−1

2 c
∑

j=b n−k+1
2 c

((
n−1
j−1

)
+

(
n−1

j

))

=
b n+k−1

2 c
∑

i=b n−k+1
2 c

(
n
j

)
= f (n,k).

�

The main idea of the new proof of Theorem 1.0.2 is in showing that a k-Sperner

family on the ground set [n] can be partitioned into two parts so that if we removed the

element n from all sets we would arrive at two families on the ground set [n−1] where

one is (k−1)-Sperner and the other one is (k+1)-Sperner.

Proof of Theorem 1.0.2 The result is trivial when n = 1 for all values of k. We thus assume

that n > 1 and that the assertion is true for all integers smaller than n.

Let F be a k-Sperner family on the ground set [n]. Define Fn = {A ∈ F : n ∈ A} and

F c
n = F /Fn. Consider all elements of Fn that are on the bottom of some chain of k

elements. Remove the element n from these sets and move the resulting sets to to F c
n and

denote the resulting collection by G . Note that the sets we moved cannot coincide with

any sets in F c
n as if such a set existed we could create a chain of length k+1 in F . Also,

remove the element n from all remaining sets in Fn and denote the resulting family by H .

Both families G and H are now defined on the groundset [n−1] and the total number
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of elements in both of them is exactly |F |. Note that H cannot have any chains of length k

as we removed one element from each such chain. Thus H is (k−1)-Sperner.

Furthermore, all sets that we moved are incomparable and so we could not have prolonged

the chains in F c
n by more than 1 when we added new elements to it to form G . Thus G is

(k+1)-Sperner. Using the induction hypothesis and Lemma 1.0.3 we have

|F |= |H |+ |G | ≤ f (n−1,k−1)+ f (n−1,k+1) = f (n,k).

�
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CHAPTER 2

KOLMOGOROV’S INEQUALITY AND A QUESTION OF LEADER AND

RADCFLIFFE

2.1 Introduction and the main result

The Levý concentration function of a real-valued random variable X is defined by

Q(X ,λ) = sup
x∈R

P(X ∈ (x,x+λ]) , λ≥ 0.

Of special interest is the investigation of Q(Sn,λ), where Sn = X1 + · · ·+Xn is a sum of

independent random variables. The first inequality relating Q(Sn,λ) to individual

concentration functions Q(Xi,λ) was proved by Kolmogorov [30]. Let us state a refined

version of the latter inequality by Rogozin [35].

Theorem 2.1.1. For L≥ λ we have

Q(Sn,L)≤CL

(
n

∑
i=1

(1−Q(Xi,λ))

)−1/2

,

where C is an absolute constant.

Many generalizations and sharpenings of Theorem 2.1.1 were established by a

number authors. These include the work of Esseen [18], Kesten [26] and Halász [19]

among others.

In his celebrated paper Erdős [17], using Sperner’s Theorem, provided the first exact

result which is nowadays usually referred to as the Littlewood-Offord problem. Namely,

for linear combinations Sn = a1ε1 + · · ·+anεn of independent random variables εi with

P(εi =±1) and ai ≥ 1 he showed that

P(Sn ∈ (x− k,x+ k])≤ P(ε1 + · · ·+ εn ∈ (−k,k]) , k ∈ N.
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Erdős conjectured that an analogous result holds with coefficients ai replaced by

vectors in any Banach space, which was confirmed by Kleitman [29].

The condition on the variables to be two point valued in Erdös’s result was later

removed by Leader and Radcliffe [31]. To be more precise, let us state their result.

Theorem 2.1.2. Let X1, . . . ,Xn be independent random variables satisfying Q(Xi,2) = 1/k

for some k ∈ N. Then we have

P(Sn ∈ (x−1,x+1])≤ P(U1 + · · ·+Un ∈ (−1,1]) ,

where Ui are independent and uniformly distributed in the k point set

{−k+1,−k+3, . . . ,k−1} .

Note that the case k = 2 corresponds exactly to the Littlewood-Offord problem.

Leader and Radcliffe asked the question about what happens in the case when Q(Xi,2) is

not of the form 1/k. The main aim of this chapter is to prove an inequality in the spirit of

Theorem 2.1.2 that deals with arbitrary values for the concentration functions

Q(Xi,λ) = αi and all lengths of intervals of concentration (not just λ = 2).

Before stating our result let us first adopt some notation. We shall denote by L(X) the

law of X , that is, its probability distribution. Furthermore, let us denote by νk the uniform

distribution on {−k+1,−k+3, . . . ,k−1}. That is, we have νk = L(U1), where U1 is as

in 2.1.2. Furthermore, we shall write Q(X) for Q(X ,2).

Theorem 2.1.3. Let Sn = X1 + · · ·+Xn be the sum of independent random variables Xi

such that Q(Xi) = αi and consider the integers ki so that 1
ki+1 < αi ≤ 1

ki
. Then for all

k ∈ N we have

P(Sn ∈ (x− k,x+ k])≤ P(T1 + · · ·+Tn ∈ (−k,k]) , (1)

where Ti has the distribution L(Ti) = (1− τi)ν
ki+1 + τiν

ki and τi = ki(ki +1)αi− ki.
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Note that the distribution of Ti is a convex combination of two uniform distributions.

It is easy to see that in the case k = 1 and αi = 1/k Theorem 2.1.3 reduces nicely to

Theorem 2.1.2. Indeed, in this case τi = 1 and so L(Ti) = L(Ui).

The outline of the proof of Theorem 2.1.3 is as follows. Firstly, we narrow down the

set of distributions under consideration. This is done by characterizing the extreme points

of distributions with a condition on the concentration function. Secondly, by the use of a

Sperner-type theorem for multisets we extend the result of Leader and Radcliffe to all

intervals and with the condition Q(Xi,2) = 1/k replaced by Q(Xi,2) = 1/ki. Finally, we

reduce Theorem 2.1.3 to this extension.

2.2 Reduction to discrete random variables

Before we proceed with the proof of Theorem 2.1.3 let us make a simple reduction.

Firstly, we want to show that the all random variables Xi in Theorem 2.1.3 can be assumed

take finitely many values. This is due to a well known fact in real analysis - we can

approximate any bounded measurable function by step functions, giving us the required

discretization. Let us be more precise. Consider a random variable X with distribution

function F(t) = P(X ≤ t). For all n ∈ N and k = 0,1, . . . ,n define the level sets

Ak =
{

t : F(t) ∈
(k−1

n , k
n

]}
. The sets Ak are intervals (possibly infinite) as F is monotone.

Furthermore, we define the sequence of functions Fm by setting

Fn(t) =
n

∑
k=0

k
n
1Ak .

Each function Fm is a distribution function since

lim
t→∞

Fm(t) = 1 and lim
t→−∞

Fm(t) = 0.

Consider the corresponding sequence of random variables X (m) with distribution

function Fm. Since Fm is a step function with differences between consecutive steps 1
m it

8



follows that X (m) have a uniform distribution on a finite set. Furthermore, by the definition

of the sequence Fm we have that for all t ∈ R

|F(t)−Fn(t)| ≤
1
m
.

It follows that not only does X (m) converge to X weakly as m→ ∞, but also that the

convergence is uniform. It immediately follows that

∣∣∣Ch(X)−Ch(X (m))
∣∣∣ ≤ sup

t
|(F(t +h)−F(t))− (Fn(t +h)−Fn(t))|

≤ sup
t
|F(t +h)−F(t)|+ sup

t
|F(t +h)−F(t)|

≤ 2
m
.

For a sum of independent random variables S = X1 + · · ·+Xn associate a

corresponding sum S(m)
n = X (m)

1 + · · ·+X (m)
n , where X (m)

i are independent discretized

versions of Xi as described above. It is a standard result in probability that for fixed n the

sequence S(m)
n converges weakly to Sn as m→ ∞.

Tucker [38] showed that weak convergence of random variables implies the

convergence of the concentration functions and therefore we can arbitrarily well

approximate Q(X1 + · · ·+Xn) in Theorem 2.1.3 by the discretized sums.

We have to also discuss one more detail. After the discretization of a random variable

X we may slightly alter Ch(X). This effect turns out to be negligible in the context of

Theorem 2.1.3. Indeed, notice that the upper bound in the theorem is continuous with

respect to the values αi. This can be easily seen by taking the expectation with respect to

Ti - it then becomes a linear function of αi.

In view of what we have just established, we shall henceforth assume that all

variables under consideration take only finitely many values with probabilities that are

themselves rational numbers.

9



2.3 Extremal distributions

For k ≥ 1 define by µk a uniform distribution on some k points in R that are pairwise

at distance at least 2. Note that the definition of µk depends on the choice of those points,

which is not reflected in the notation. Usually we will supply µk with a subscript, which

will mean that the distributions with distinct subscripts might be concentrated in different

sets. When the set of k points will be {−k+1,−k+3, . . . ,k−3,k−1}, we are going to

use the notation νk instead of µk.

Lemma 2.3.1. Let X be a real valued random variable such that

Q(X) = m/n ∈ (1/(k+1),1/k]. Assume that X takes the values in the set S = {y1, . . . ,ym}

with with probabilities P(X = yi) = mi/ni. Let us define

N = n∏
i

ni, K = (n− km)∏
i

ni, L = ((k+1)m−n)∏
i

ni.

Then we can express the distribution of X as

L(X) =
1− τ

K

K

∑
l=1

µk+1
l +

τ

L

K+L

∑
l=K+1

µk
l , (2)

where τ = k(k+1)m/n− k.

Proof. Assume that y1 ≤ . . .≤ yM. We can regard the distribution of X as the uniform

distribution on a multiset S′, where S′ is obtained from S by taking the element yi exactly

nmi ∏ j 6=i ni times. Let x1, . . . ,xN be the elements of S′ in increasing order.

The condition Q(X) = m/n ensures than no more than d = Nm/n points lie in the interval

(x,x+2] for all x. Thus the points xl,xl+d are at distance at least 2. For l ≤ L the points

xl,xl+d, . . . ,xl+kd are pairwise at distance at least two. Each point has mass 1/N, so in

order make the measure on the latter set of points into a probability measure we must

10



divide it by it by (k+1)/N. We have

(k+1)/N = (k+1)(n− km)/(nK) = (1− (k(k+1)m/n− k))/K = (1− τ)/K,

thus obtaining the first K distributions µk+1
l with the desired weights.

For K +1≤ l ≤ K +L take the points xl,xl+d, . . . ,xl+(k−1)d and the measures

concentrated on those points will give us the required L measures µk
l . It can be checked

that the proportion is again correct, but that will follow from the fact that we used up all

points from S′ and took each of them only once. Indeed, we started constructing each

measure in the representation from a different point in x1, . . . ,xK+L and then added points

with equally spaced indices. Thus we did not use any point twice. Furthermore,

K(k+1)+Lk = N and so we used them all.

�

2.4 Proof of a Sperner-type Theorem for multisets

In this section we shall be dealing with multisets defined on the ground set [n] such

that each element has an upper bound, say ki, on its multiplicity. The case ki = 1 naturally

reduces to the study of sets. In the latter case we can switch between talking about the

powerset of [n] to the study of indicator vectors in {0,1}n with set inclusion corresponding

to the product order in {0,1}n.

Analogously, we shall view multisets as vectors in the discrete rectangle

L(k1, . . . ,kn) = {0, . . . ,k1−1}× ·· ·×{0, . . . ,kn−1} by associating with a multiset the

vector of multiplicities of each element in it.

For a vector x ∈ Rn we shall denote its i-th coordinate by xi. We shall endow

L(k1, . . . ,kn) with the product order. That is, v≤ w if and only if vi ≤ wi. Multiset

inclusion corresponds to this order as in the case with sets.

We shall call a collection of vectors v1, . . . ,vk a chain if v1 ≤ ·· · ≤ vk and refer to the

11



number k as its length. We say that a family of vectors F is k-Sperner if it has no chains

of length k+1. In the case k = 1 we shall say that F is an antichain rather than 1-Sperner.

Let us partition L(k1, . . . ,kn) into classes Li where

Li = {x ∈ L(k1, . . . ,kn) |x1 + · · ·+ xn = i} .

Note that |Li| is a symmetric sequence in the sense that |Li|= |LN−i| where

N = ∑(ki−1). The sequence |Li| is non-decreasing for i≤
⌊N

2

⌋
and thus, by symmetry, it

is non-increasing for i≥
⌈N

2

⌉
.

For k ≤ k1 + · · ·+ kn +1 write f (k1,k2, . . . ,kn,k) for the sum of the k largest sets Li.

These are just the k middle diagonals of the rectangle L(k1, . . . ,kn).

In Chapter 1 we presented Erdős’s proof of the Littlewood-Offord problem that used a

Sperner type theorem. We shall need a similar result for multiset k-Sperner families.

Theorem 2.4.1. Let F be a k-Sperner family of vectors in L(k1, . . . ,kn). Then

|F | ≤ f (m1,m2, . . . ,mn,k).

Before we proceed with the proof, let us state an inequality for antichains of multisets that

will be instrumental in proving Theorem 2.4.1.

Lemma 2.4.2. Let F be an antichain in L(k1, . . . ,kn). For 0≤ i≤ ∑
n
j=1(k j−1) denote

Fi = F ∩Li. We have

∑
i

|Fi|
|Li|
≤ 1.

The proof of Lemma 2.4.2 can be found in Chapter 10 of the book by I. Anderson [2].

In the case of sets Lemma 2.4.2 is known as the LYM inequality.

Proof of Theorem 2.4.1. Let F be a k-Sperner family. It is easy to see that F is a union of

k antichains. Indeed, the maximal elements of F form an antichain and the remaining

elements form a (k−1)-Sperner family and so the observation follows by induction on k.
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Let A be one of the k antichains that decompose F .

Using Lemma 2.4.2 we obtain

∑
i

|Ai|
|Li|
≤ 1.

Summing this inequality over all k antichains we obtain

∑
i

|Fi|
|Li|
≤ k. (3)

For families of vectors of fixed cardinality the sum in (3) is minimized by families

containing vectors with coordinate sums as close to ∑i(ki−1)/2 as possible. This is

because in view of (3) the vectors are assigned the smallest weight.

Suppose now that |F |> f (k1, . . . ,kn,k). Note for the family of vectors consisting of

the middle k diagonals of L(k1, . . . ,kn) the corresponding sum in (3) is exactly equal to 1

and is minimal among all families having f (k1, . . . ,kn,k) vectors. Therefore for any

family of vectors with more elements the corresponding sum in (3) is strictly greater than

1, which is a contradiction. Thus |F | ≤ f (k1, . . . ,kn,k) and we are done. �

2.5 Linearity of the problem and the case Q(Xi) = 1/ki

Before we proceed to the proof of Theorem 2.1.3, we need establish two facts. Firstly,

we show our problem is linear in each measure and so we will always be able to assume

that the maximum is attained by an extreme point. Secondly, we extend the result of

Leader and Radcliffe to the case where instead of the uniform condition Q(Xi) = 1/k we

have Q(Xi) = 1/ki and all possible interval lengths.

Lemma 2.5.1. Let X1, . . . ,Xn be independent random variables with L(Xi) = ηi.

Furthermore, assume that each distribution ηi can be written as a convex combination of

some collection of distributions, say
{

γi, j : j = 1, . . . ,K
}

for some integer K. That is, for

13



each i the exist non-negative numbers αi,1, . . . ,αi,K such that

ηi =
K

∑
j=1

αi, jγi, j and
K

∑
j=1

αi, j = 1.

Then for any measurable function f : Rn→ R we have

E f (X1, . . . ,Xn)≤ E f (Y1, . . . ,Yn),

where the random variables Yi are independent and for each i there is some j such that

L(Yi) = γi, j.

Proof. First let us proof the assertion in the case n = 1. Denote by Y1, j a random variable

with L(Y1, j) = γ1, j. We have

E f (X1) =
L

∑
j=1

α1, jE f (Y1, j)≤ max
1≤k≤L

E f (Y1, j). (4)

It is not difficult to see now that the general case reduces to the latter case. Indeed,

E f (X1, . . . ,Xn) = E(E f (X1, . . . ,Xn)|Xi) = Egi(Xi),

where the function gi is the conditional expectation of f given Xi. We can do the same for

each coordinate step by step and are done. �

Lemma 2.5.2. Let X1, . . . ,Xn be independent random variables such that Q(Xi,2) = 1/ki.

We have

P(Sn ∈ (x− k,x+ k])≤ P(U1 + · · ·+Un ∈ (−k,k]) , (5)

where Ui are independent and L(Ui) = νki .

Proof of Lemma 2.5.2. We can assume that Xi take finitely many values and that all

probabilities are rational numbers. In view of Lemma 2.3.1, Lemma 2.5.1 and using the

14



notation of Section 2.3, we can assume that L(Xi) = µki
i . For each i let us denote the

values Xi takes by xi,1, . . . ,xi,ki . Let us define a family of vectors (or multisets)

F =

{
v ∈ L(k1, . . . ,kn)|

n

∑
j=1

x j,v j ∈ (−k,k]

}
.

Note that by definition of measures µki
i the points xi,1, . . . ,xi,ki are all at distance at

least 2 within each other. Therefore if we had a chain of vectors (or multisets) of length

k+1 then the sums corresponding to the top and bottom vectors (or multisets) would

differ by more than 2k as so we get a contradiction. Therefore the family F is k-Sperner.

Using Theorem 2.4.1, we therefore have

P(Sn ∈ (x− k,x+ k]) = |F |/
n

∏
j=1

ki

≤ f (k1,k2, . . . ,kn,k)/
n

∏
j=1

ki

= P(U1 + · · ·+Un ∈ (−k,k]) .

2.6 Proof of Theorem 2.1.3

Let X1, . . . ,Xn be independent random variables taking finitely many values, say

Xi ∈ {yi,1, . . . ,yi,Ai}. Assume that Q2(Xi) = αi ∈ (1/(ki +1),1/ki]. Consider another

sequence Y1, . . . ,Yn of independent random variables with sum Mn such that

L(Yi) = τiν
ki
i +(1− τi)ν

ki+1
i , where τi = αiki(ki +1)− ki.

Without loss of generality we can assume that αi are rational. This is because the

upper bound we want to establish is continuous with respect to αi and so it is enough to

deal with only rational values. Let us write αi = αi = mi/ni ∈ (1/(ki +1),1/ki].

Moreover, we can assume that the probabilities P
(
Xi = yi,k

)
are also rational. Thus

P
(
Xi = yi,k

)
= mi,k/ni,k. Writing Ni = ni ∏

n
j=1 ni, j we can look at the distribution of Xi as a

uniform distribution on a multiset with Ni elements. By Lemma 2.3.1 we have
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L(Xi) =
1− τi

Ki

Ki

∑
li=1

µki+1
i,li +

τi

Li

Ki+Li

∑
li=Ki+1

µki
i,li, (6)

where Ki,Li and τi are defined as in Lemma 2.3.1.

We shall expand the product measure ∏
n
i=1 L(Xi) into a sum of products of the

measures µk̃i
i,li , where k̃i = ki +1 for li ≤ Ki and k̃i = ki otherwise. For the same ranges of li

define τ̃i in a natural way - the coefficient in front of µk̃i
i,li . Then using Lemma 2.5.2 term

by term we obtain

P(Sn ∈ (−k,k]) =
n

∏
i=1

L(Xi)((x− k,x+ k])

=
n

∏
i=1

(
1− τi

Ki

Ki

∑
li=1

µki
i,li +

τi

Li

Ki+Li

∑
l=Ki+1

µki+1
i,li

)
(Bk)

=
n

∏
i=1

(
τ̃i

Ki+Li

∑
l=1

µk̃i
i,l

)
(Bk)

= ∑
l1,...,ln

n

∏
i=1

τ̃iµ
k̃i
i,l(Bk)

≤ ∑
l1,...,ln

n

∏
i=1

τ̃iν
k̃i
i,l((−k,k])

=
n

∏
i=1

(
τ̃i

Ki+Li

∑
l=1

ν
k̃i
i,l

)
((−k,k])

=
n

∏
i=1

(
1− τi

Ki

Ki

∑
li=1

ν
ki
i,li +

τi

Li

Ki+Li

∑
l=Ki+1

ν
ki+1
i,li

)
((−k,k])

=
n

∏
i=1

(τiν
ki
i +(1− τi)ν

ki+1
i )((−k,k])

= P(Mn ∈ (−k,k]) .

�

Note that once we expand the product measure ∏
n
i=1 L(Xi), use Lemma 2.5.2 term by

term and group similar terms we obtain exactly the expansion of ∏
n
i=1 L(Yi).
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CHAPTER 3

SMALL BALL PROBABILITIES FOR SUMS OF RANDOM VECTORS WITH

BOUNDED DENSITY

Let µ be the Lebesgue measure and X a random vector in Rd . If X has a density, say

p, we define

M(X) = ||p||
∞
= esssup p = sup{ε : µ({t : p(t)> ε})> 0}.

For random variables with distributions that are not absolutely continuous with respect to

µ we set M(X) = ∞. All of our density functions will be taken as equivalence classes up to

alterations on sets of measure 0; that is, they are defined as elements of L∞.

The aim of this chapter is to provide best possible upper bounds for the maximum

density and small ball probabilities of sums of random vectors.

Our starting point is a result by Rogozin, who showed that in the case d = 1 the worst

case is provided by uniform distributions over intervals. To be more precise, it was proved

in [36] that for independent real-valued random variables X1, . . . ,Xn with M(Xi)≤Mi we

have

M(X1 + · · ·+Xn)≤M(U1 + · · ·+Un),

where Uk are independent and uniformly distributed in [− 1
2Mi

, 1
2Mi

].

We extend Rogozin’s inequality to all dimensions. In fact, we prove a more general

statement for small ball probabilities that almost instantly implies the latter .

Theorem 3.0.1. Let X1, . . . ,Xn be independent random vectors in Rd with M(Xi)≤ Ki.

Consider a collection of independent random vectors U1, . . . ,Un with densities equal to Ki

on a centered ball and 0 elsewhere. Then for every measurable set S we have

P(X1 + · · ·+Xn ∈ S)≤ P(U1 + · · ·+Un ∈ B) , (7)
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where B is the centered ball such that µ(B) = µ(S).

Corollary 3.0.2. Under the same conditions as above we also have that

M(X1 + · · ·+Xn)≤M(U1 + · · ·+Un).

Proof of Corollary 3.0.2 Note that for any variable X with density p

M(X) = lim
ε→0

sup
µ(S)=ε

ε
−1

∫
S

pdµ.

Let Bε be the centered ball with volume ε. Using Theorem 3.0.1 we obtain

M(X1 + · · ·+Xn) = lim
ε→0

sup
µ(S)=ε

ε
−1P(X1 + · · ·+Xn ∈ S)

≤ lim
ε→0

ε
−1P(U1 + · · ·+Un ∈ Bε)

= M(U1 + · · ·+Un).

Hence the corollary holds. �

Even for d = 1 our approach is quite different than that of Rogozin, who used

discretization arguments together with an idea of Erdős to relate small ball probabilities to

Sperner’s theorem in finite set combinatorics. We avoid these subtleties by using a

rearrangement inequality proved by Brascamp, Lieb and Luttinger.
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3.1 Rearrangements of functions

For non-negative functions f : Rd 7→ R set M f
y = µ{t : f (t)≥ y}. Assume that

M f
a < ∞ for some a ∈ R. Define f̃ to be a function such that:

1) f̃ (x) = f̃ (y), for |x|2 = |y|2;

2) f (x)≤ f (y) for x≤ y;

3) M f̃
y = M f

y .

The function f̃ is known as the spherically symmetric decreasing rearrangement of f .

For existence, uniqueness and other properties of f̃ we refer the reader to [12] and [20]

(Chapter X).

Having introduced the relevant symmetrization we can state the aforementioned

rearrangement result.

Theorem 3.1.1. Let f j, 1≤ j ≤ k be non-negative measurable functions on Rd and let

a j,m, 1≤ j ≤ k,1≤ m≤ n, be real numbers. Then

∫
Rnd

k

∏
j=1

(
f j

(
n

∑
m=1

a j,mxm

))
dndx≤

∫
Rnd

k

∏
j=1

(
f̃ j

(
n

∑
m=1

a j,mxm

))
dndx

A direct consequence of the latter result is the following.

Theorem 3.1.2. Let X1, . . . ,Xn be independent random variables with given density

functions pi. Consider another collection of independent random variables X ′1, . . . ,X
′
n with

density functions p̃i. Then for every measurable set S we have

P(X1 + · · ·+Xn ∈ S)≤ P
(
X ′1 + · · ·+X ′n ∈ B

)
, (8)

where B is the centered ball such that µ(B) = µ(S).
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Proof. We have that

P

(
n

∑
i=1

Xi ∈ S

)
=

∫
x1,...xn

n

∏
i=1

pi(xi)1S

(
∑

i
xi

)
dnµ.

Now apply Theorem 3.1.1 with the fi taken to be {p1, . . . , pn,1S} and the a j,m = 1

when j = m or j = n+1 and a j,m = 0 otherwise. We note that 1̃S = 1B and that p̃i are the

densities of X ′i , completing the proof. �

3.2 Extremal measures

Let X be a normed space. Given a set A⊂ X say that a point x ∈ A is an extremal

point of A if x does not lie in the interior of any line segment within A. In other words, for

all y,z ∈ A we have that if x ∈ {(1−λ)y+λz |λ ∈ [0,1]}, then either x = y or x = z.

The aim of this section is to characterize the extreme points of the set of measures

with bounded densities. The reason for doing this is that we want to narrow down the

class of measures under consideration. The well-known Krein-Milman theorem tells us

that in a normed space every convex compact set is equal to the closure of convex hull of

its extreme points. This allows us to draw the conclusion that any linear function of a

convex compact set is maximized by an extremal point. Unfortunately, in our case the set

of measures under consideration will not be compact and so we cannot use this theorem.

Fortunately, we shall be able to show that considering extreme points is sufficient. This

will be done in the last section of this chapter.

It turns out that in the end we shall never actually use the characterization. We will

only need some ideas from its proof. We shall nevertheless provide the characterization as

we consider this to be of independent interest and possibly useful in future investigations.

Lemma 3.2.1. Denote by SK be the set of probability measures in Rd that have densities

with essential suprema bounded by K > 0. The extreme points of SK are measures having

densities p(t) = K1S(t) for some set S with µ(S) = 1/K.
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Proof. Firstly, we note that all measures having densities p = K1S are extremal. Suppose

not. Then p = αp1 +(1−α)p2, where α ∈ (0,1) and p1, p2 are not equal to p. But then

p1 and p2 differ from p on a set of positive measure, and so max(p1, p2)> K on some set

of positive measure. Hence one of p1, p2 must exceed K on a set of positive measure, so is

outside of SK .

Suppose that the density of a measure is not one of these extremal examples.

Consider the sets

Ay = {t : p(t)≥ y} .

Now, there is some y ∈ (0,K) such that µ(Ay)> 0, as otherwise p(t) = K almost

everywhere on its support, and so p would be one of our extremal examples. We fix any

such y, and define X = sup(p)\Ay. Furthermore, we partition X into two disjoint sets

X0,X1 such that
∫

X0
pdµ =

∫
X1

pdµ.

We fix δ ∈ (0,K/y−1)∩ (0,1), and construct two densities p1, p2 as follows:

pi(t) =


p(t) t ∈ Ay

(1−δ)p(t) t ∈ Xi

(1+δ)p(t) t ∈ X1−i

First, we observe that p = 1
2(p1 + p2). Furthermore, each of p1, p2 are equal to p on

Ay, and are bounded pointwise on X by:

(1+δ)sup
X

p≤ (1+δ)y≤ K.

Hence the essential suprema of p1, p2 are bounded by K, and so p1, p2 ∈ SK as

required. �
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3.3 Proof of the main Theorem

Combining the results section 3.1, the proof of Lemma 3.2.1 and Theorem 3.1.2 we

will easily derive Theorem 3.0.1. In this section we shall view all densities as elements of

L1 (R) instead of L∞ (R).

Proof. We first observe that Equation 7 for each i can be written as

P(X1 + · · ·+Xn ∈ S) = E [P(X1 + · · ·+Xn ∈ S) |Xi] . (9)

Therefore the probability in question in linear with respect to each distribution and so

also with respect to each density function. We shall now show that P(X1 + · · ·+Xn ∈ S) is

maximized when each Xi has a density function from the set SKi .

We can without loss of generality assume that the densities are simple functions. That

is, functions that take only finitely many values. This is because simple functions are

dense in L1 (R).

Assume that the density p of the i-th random variable in (9) is a simple function and

that it takes values K = x1 ≥ x2 ≥ ·· ·xt > 0 and is zero elsewhere. Define

A j =
{

t
∣∣ p(t) = x j

}
.

We have that µ(A1)≥ 0 and µ
(
A j
)
> 0 for j > 1. We shall now proceed quite

similarly as in the proof of Lemma 3.2.1. Namely, we shall express this density as a

convex combination of two different densities that both lie in SKi . In view of (9) that we

can replace p by one of those densities so that the corresponding expectation does not

decrease.

For any 1≤ j ≤ t let B0 and B1 be a partition of A j into two parts of equal measure.
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We can write

pi(t) =


p(t) t ∈ Ac

j

(1−δ)p(t) t ∈ Bi

(1+δ)p(t) t ∈ B1−i,

where δ ∈ [0,1] is picked in the following manner. If x j ≤ K
2 then δ = 1 and otherwise δ is

such that (1+δ)x j = K.

Note that p1 and p2 are indeed densities as by picking δ in the manner above we

ensured that they are both positive. Furthermore, we have that p = 1
2 p1 +

1
2 p2.

It is also useful to note that we either by switching p by p1 or p2 in (9) we either in

both cases decrease the measure of the set where the density is in (0,K) by µ(A j)
2 . After the

procedure the other values x j stay the same for the new density. As we can then perform

the same procedure for each j > 1 we get that eventually for the final density the measure

of the set where this density is in (0,K) halved. We also increase the integral in (9) each

time. Using the same procedure repeatedly for the obtained density we get a sequence of

densities that converge to some density in SKi and we get the increase of the probability in

(9) along this sequence. Thus the maximum is attained on an extreme point.

Thus by Lemma 3.2.1 and the reasoning above, the densities of every variable Xi can

be assumed to be proportional to the indicator function of some set Si of measure K−1
i if

we attain the maximum. From Theorem 3.1.2, we can infer that in order to maximize this

expression in (9) we may replace each of the densities by their spherically decreasing

rearrangements and the set S by B. The spherically decreasing rearrangement of an

indicator function of a set Si is the indicator function of the centered ball of the same

volume. This means that we are replacing the density of Xi by the density of Ui when

optimizing the expression in (9) and we are done.

�
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CHAPTER 4

TWO QUESTIONS ON SYMMETRIC RANDOM WALKS

Let Sn = X1 + · · ·+Xn be a sum of independent random variables Xi such that

|Xi| ≤ 1 and EXi = 0. (10)

Let Wn = ε1 + · · ·+ εn be the sum of independent Rademacher random variables, i.e., such

that P(εi =±1) = 1/2. We will refer to Wn as a simple random walk with n steps.

By a classical result of Hoeffding [22], we have the bound

P(Sn ≥ x)≤ exp
{
−x2/2n

}
, x ∈ R. (11)

If we take Sn =Wn on the left-hand side of (11), then in view of the Central Limit Theorem

we can infer that the exponential function on the right-hand side is the minimal one. Yet a

certain factor of order x−1 is missing, since Φ(x)≈ (
√

2πx)−1 exp
{
−x2/2

}
for large x.

Furthermore, it is possible to show that the random variable Sn is sub-Gaussian in the

sense that

P(Sn ≥ x)≤ cP
(√

nZ ≥ x
)
, x ∈ R,

where Z is the standard normal random variable and c is some explicit positive constant

(see, for instance, [6]).

Perhaps the best upper bound for P(Sn ≥ x) was given by Bentkus [5]. He proved, in

particular, that for integer x we have

P(Sn ≥ x)≤ 2P(Wn ≥ x−1) . (12)

Although there are numerous improvements of the Hoeffding inequality, to our

knowledge there are no examples where the exact bound for the tail probability is found.
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In this chapter we give an optimal bound for the tail probability P(Sn ≥ x) under the

additional assumption of symmetry.

We henceforth reserve the notation Sn and Wn for random walks with symmetric steps

satisfying (10) and a simple random walk with n steps respectively.

Theorem 4.0.1. For x > 0 we have

P(Sn ≥ x)≤


P(Wn ≥ x) if dxe+n ∈ 2Z,

P(Wn−1 ≥ x) if dxe+n ∈ 2Z+1.
(13)

Kwapień proved (see [37]) that for arbitrary i.i.d. symmetric random variables Xi and

real numbers ai with absolute value less than 1 we have

P(a1X1 + . . .+anXn ≥ x)≤ 2P(X1 + . . .+Xn ≥ x) , x > 0.

The case n = 2 with Xi = εi and x = 2 shows that the constant 2 cannot be improved.

Theorem 4.0.1 improves Kwapień’s inequality for Rademacher sequences.

In this chapter we also consider the problem of finding the quantity

sup
Sn

P(Sn = x) ,

which can be viewed as a non-uniform bound for the concentration of the random walk Sn

at a point.

Theorem 4.0.2. For x > 0 and k = dxe we have

P(Sn = x)≤ P(Wm = k) , (14)

where

m =


min

{
n,k2} , if n+ k ∈ 2Z,

min
{

n−1,k2} , if n+ k ∈ 2Z+1.
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Equality in (14) is attained for Sn =
x
k Wm.

We provide two different proofs for both inequalities. The first approach is based on

induction on the number of random variables (§4.1). To prove Theorem 4.0.2, we also

need Theorem 1.0.1.

Interestingly, Theorems 4.0.1 and 4.0.2 can also be proved by applying results from

extremal combinatorics (§4.2). Namely, we use the bounds for the size of intersecting

families of sets (hypergraphs) by Katona [24] and Milner [33].

Using a strengthening of Katona’s result by Kleitman [28], we extend Theorem 4.0.1

to odd 1-Lipschitz functions rather than just sums of the random variables Xi (§4.3). It is

important to note that the bound of Theorem 4.0.1 cannot be true for all Lipschitz

functions since the extremal case is not provided by odd functions.

4.1 Proofs by induction on dimension

We will first show that it is sufficient to prove Theorems 4.0.1 and 4.0.2 in the case

where Sn is a linear combination of independent Rademacher random variables εi with

coefficients |ai| ≤ 1.

Lemma 4.1.1. Let g : Rn→ R be a bounded measurable function. Then we have

sup
X1,...,Xn

Eg(X1, . . . ,Xn) = sup
a1,...,an

Eg(a1ε1, . . .anεn),

where the supremum on the left-hand side is taken over symmetric independent random

variables X1, . . . ,Xn such that |Xi| ≤ 1 and the supremum on the right-hand side is taken

over numbers −1≤ a1, . . . ,an ≤ 1.

Proof. Define S = supa1,...,an
Eg(a1ε1, . . .anεn). Clearly

S≤ sup
X1,...,Xn

Eg(X1, . . . ,Xn).
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By symmetry of X1, . . . ,Xn, we have

Eg(X1, . . . ,Xn) = Eg(X1ε1, . . . ,Xnεn).

Therefore

Eg(X1, . . . ,Xn) = EE[g(X1ε1, . . . ,Xnεn) |X1, . . . ,Xn]≤ ES = S.

�

Thus, in view of Lemma 4.1.1 we will henceforth write Sn for the sum

a1ε1 + · · ·+anεn instead of a sum of arbitrary symmetric random variables Xi.

Proof of Theorem 4.0.1. First note that the inequality is true for x ∈ (0,1] and all n. This is

due to the fact that P(Sn ≥ x)≤ 1/2 by symmetry of Sn and for all n the right-hand side of

the inequality is given by the tail of an odd number of random signs, which is exactly 1/2.

We can also assume that the largest coefficient ai = 1 as otherwise if we scale the sum by

ai then the tail of the this new sum would be at least as large as the former. We will thus

assume, without loss of generality, that 0≤ a1 ≤ a2 ≤ . . .≤ an = 1. Define a function

I(x,n) to be 1 if dxe+n is even, and zero otherwise. Then we can rewrite the right-hand

side of (13) as P(Wn−1 + εnI(x,n)≥ x), making a convention that ε0 ≡ 0.

For x > 1 we argue by induction on n. Case n = 0 is trivial. Observing that

I(x−1,n) = I(x+1,n) = I(x,n+1) we have

P(Sn+1 ≥ x) = 1
2P(Sn ≥ x−1)+ 1

2P(Sn ≥ x+1)

≤ 1
2P(Wn−1 + εnI(x−1,n)≥ x−1)

+ 1
2P(Wn−1 + εnI(x+1,n)≥ x+1)

= P(Wn + εn+1I(x,n+1)≥ x) .

�
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Before proving Theorem 4.0.2, we will obtain an upper bound for P(Sn = x) under an

additional condition that all ai are nonzero.

Lemma 4.1.2. Let x > 0, k = dxe. Suppose that 0 < a1 ≤ ·· · ≤ an ≤ 1. Then

P(Sn = x)≤


P(Wn = k) , if n+ k ∈ 2Z,

P(Wn−1 = k) , if n+ k ∈ 2Z+1.
(15)

Proof. We first prove the Lemma for x ∈ (0,1] and any n. By Theorem 1.0.1 we have

P(Sn = x)≤ 2−n
(

n
dn/2e

)
. (16)

On the other hand, if x ∈ (0,1], then k = 1 and

2−n
(

n
dn/2e

)
=


2−n
(

n
(n+1)/2

)
= P(Wn = 1) , if n+1 ∈ 2Z,

2−n
(

n
n/2

)
= P(Wn−1 = 1) , if n+1 ∈ 2Z+1,

where the second equality follows by Pascal’s identity:

2−n
(

n
n/2

)
= 2−n

[(
n−1
n/2

)
+

(
n−1

n/2−1

)]
= 21−n

(
n−1
n/2

)
= P(Wn−1 = 1) .

Let N= {1,2, . . .} stand for the set of positive integers. Let us write Bn(x) for the

right-hand side of (15). Note that it has the following properties:

x 7→ Bn(x) is non-increasing; (17)

x 7→ Bn(x) is constant on each of the intervals (k−1,k], k ∈ N; (18)

Bn(k) = 1
2Bn−1(k−1)+ 1

2Bn−1(k+1), if k = 2,3, . . . . (19)

We proceed by induction on n. The case n = 1 is trivial. To prove the induction step
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for n≥ 2, we consider two cases: (i) x = k ∈ N; (ii) k−1 < x < k ∈ N.

Case (i). For k = 1 the Lemma has been proved, so we assume that k ≥ 2. By the

inductional hypothesis we have

P(Sn = k) = 1
2P(Sn−1 = k−an)+

1
2P(Sn−1 = k+an)

≤ 1
2Bn−1(k−an)+

1
2Bn−1(k+an). (20)

By (17) we have

Bn−1(k−an)≤ Bn−1(k−1), (21)

and by (18) we have

Bn−1(k+an) = Bn−1(k+1). (22)

Combining (20), (21), (22), and (19), we obtain

P(Sn = k)≤ Bn(k). (23)

Case (ii). For x ∈ (0,1] the Lemma has been proved, so we assume k ≥ 2. Consider two

cases: (iii) x/an ≥ k; (iv) x/an < k.

Case (iii). Define S′n = a′1ε1 + · · ·+a′nεn, where a′i = kai/x, so that S′n =
k
xSn. Recall that

an = maxi ai, by the hypothesis of Lemma. Then a′i ≤ kan/x and the assumption x/an ≥ k

implies that 0 < a′1, . . . ,a
′
n ≤ 1. Therefore, by (23) and (18) we have

P(Sn = x) = P
(
S′n = k

)
≤ Bn(k) = Bn(x).

Case (iv). Without loss of generality, we can assume that an = 1, since

P(Sn = x) = P
(

a1

an
ε1 + · · ·+

an

an
εn =

x
an

)
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and k−1 < x/an < k, by the assumption of the present case. Sequentially applying the

induction hypothesis, (18), (19), and again (18), we get

P(Sn = x) = 1
2P(Sn−1 = x−1)+ 1

2P(Sn−1 = x+1)

≤ 1
2Bn−1(x−1)+ 1

2Bn−1(x+1)

= 1
2Bn−1(k−1)+ 1

2Bn−1(k+1)

= Bn(k) = Bn(x).

�

Proof of Theorem 4.0.2. Writing Bn(k) for the right-hand side of (15), we have, by Lemma

4.1.2, that

P(Sn = x)≤ n
max
j=k

B j(k).

If j+ k ∈ 2Z, then B j(k) = P
(
Wj = k

)
= B j+1(k) and therefore

n
max
j=k

B j(k) = max
k≤ j≤n

k+ j∈2Z

P
(
Wj = k

)
. (24)

To finish the proof, note that the sequence P
(
Wj = k

)
= 2− j( j

(k+ j)/2

)
,

j = k,k+2,k+4, . . . is unimodal with a peak at j = k2, i.e.,

P
(
Wj−2 = k

)
≤ P

(
Wj = k

)
, if j ≤ k2,

and

P
(
Wj−2 = k

)
> P

(
Wj = k

)
, if j > k2.

Indeed, elementary calculations yield that the inequality

2− j+2
(

j−2
(k+ j)/2−1

)
≤ 2− j

(
j

(k+ j)/2

)
, j ≥ k+2,
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is equivalent to the inequality j ≤ k2. �

4.2 Proofs based on results in extremal combinatorics

Let [n] stand for the finite set {1,2, . . . ,n}. Consider a family F of subsets of [n]. We

denote by |F | the cardinality of F . The family F is called k-intersecting if for all

A,B ∈ F we have |A∩B| ≥ k and an antichain if for all A,B ∈ F we have A * B.

A well known result by Katona [24] (see also [9], p. 98, Theorem 4) gives the optimal

upper bound for the size a k-intersecting family.

Theorem 4.2.1. If k ≥ 1 and F is a k-intersecting family of subsets of [n] then

|F | ≤


n

∑
j=t

(
n
j

)
, if k+n = 2t,

n

∑
j=t

(
n
j

)
+

(
n−1
t−1

)
, if k+n = 2t−1.

(25)

Notice that if k+n = 2t, then

n

∑
j=t

(
n
j

)
= 2nP(Wn ≥ k) . (26)

If k+n = 2t−1, then using the Pascal’s identity
(n

j

)
=
(n−1

j

)
+
(n−1

j−1

)
we get

n

∑
j=t

(
n
j

)
+

(
n−1
t−1

)
= 2

n−1

∑
j=t−1

(
n−1

j

)
= 2nP(Wn−1 ≥ k) . (27)

The exact upper bound for the size of a k-intersecting antichain is given by the

following result of Milner [33].

Theorem 4.2.2. If a family F of subsets of [n] is a k-intersecting antichain, then

|F | ≤
(

n
t

)
, t =

⌈
n+ k

2

⌉
. (28)
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Note that we have (
n
t

)
= 2nP(Wn = k) , if n+ k = 2t, (29)

and (
n
t

)
= 2nP(Wn = k+1) , if n+ k = 2t−1. (30)

By Lemma 4.1.1 it is enough to prove Theorems 4.0.1 and 4.0.2 for the sums

Sn = a1ε1 + · · ·+anεn,

where 0≤ a1, . . . ,an ≤ 1. Denote as Ac the complement of the set A. For each

A⊂ [n], write sA = ∑i∈A ai−∑i∈Ac ai. We define two families of sets:

F≥x = {A⊂ [n] : sA ≥ x}, and Fx = {A⊂ [n] : sA = x}.

Proof of Theorem 4.0.1. We have

P(Sn ≥ x) = 2−n|F≥x|.

Let k = dxe. Since Wn takes only integer values, we have

P(Wn ≥ k) = P(Wn ≥ x) and P(Wn−1 ≥ k) = P(Wn−1 ≥ x) .

Therefore, in the view of (25), (26), and (27), it is enough to prove that F≥x is

k-intersecting. Suppose that there are A,B ∈ F≥x such that |A∩B| ≤ k−1. Writing

σA = ∑i∈A ai, we have

sA = σA−σAc = (σA∩B−σAc∩Bc)+(σA∩Bc−σAc∩B) (31)
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and

sB = σB−σBc = (σA∩B−σAc∩Bc)− (σA∩Bc−σAc∩B). (32)

Since

σA∩B−σAc∩Bc ≤ σA∩B ≤ |A∩B| ≤ k−1 < x,

from (31) and (32) we get

min{sA,sB}< x,

which contradicts the fact sA,sB ≥ x. �

The following Lemma implies Theorem 4.0.2. It also gives the optimal bound for

P(Sn = x) and thus improves Lemma 4.1.2.

Lemma 4.2.3. Let 0 < a1, . . . ,an ≤ 1 be strictly positive numbers, x > 0, k = dxe.

Then

P(Sn = x)≤


P(Wn = k) , if n+ k ∈ 2Z,

P(Wn = k+1) , if n+ k ∈ 2Z+1.

Proof. We have

P(Sn = x) = 2−n|Fx|.

In the view of (28), (29), and (30), it is enough to prove that Fx is a k-intersecting

antichain. To see that Fx is k-intersecting it is enough to note that Fx ⊂ F≥x. To show that

Fx is an antichain is even easier. If A,B ∈ Fx and A ( B, then sB− sA = 2∑i∈B\A ai > 0,

which contradicts the assumption that sB = sA = x. �

Proof of Theorem 4.0.2. Lemma 4.2.3 gives

P(Sn = x)≤ n
max
j=k

P
(
Wj = k+1− I(k, j)

)
,
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where again I(k, j) = I{k+ j ∈ 2Z}. Note that if k+ j ∈ 2Z we have

P
(
Wj = k

)
≥ 1

2
P
(
Wj = k

)
+

1
2
P
(
Wj = k+2

)
= P

(
Wj+1 = k+1

)
, k > 0.

Hence
n

max
j=k

P
(
Wj = k+1− I(k, j)

)
= max

k≤ j≤n
k+ j∈2Z

P
(
Wj = k

)
,

the right-hand side being the same as the one of (24). Therefore, repeating the argument

following (24) we are done. �

4.3 Extension to Lipschitz functions

One can extend Theorem 4.0.1 to odd Lipschitz functions taken of n independent

random variables. Consider the cube Cn = [−1,1]n with the `1 metric d. We say that a

function f : Cn→ R is K-Lipschitz with K > 0 if

| f (x)− f (y)| ≤ Kd(x,y), x,y ∈Cn. (33)

We say that a function f : Cn→ R is odd if f (−x) =− f (x) for all x ∈Cn. An

example of an odd 1-Lipschitz function is the function mapping a vector to the sum of its

coordinates:

f (x1, . . . ,xn) = x1 + · · ·+ xn.

As in Theorems 4.0.1 and 4.0.2, the crux of the proof is dealing with two-valued

random variables. The optimal bound for a k-intersecting family is not sufficient for this

case, therefore we use the following generalization of Theorem 4.2.1 due to Kleitman [28]

(see also [9][p. 102]) which we state slightly reformulated for our convenience. Let us

define the diameter of a set family F by diamF = maxA,B∈F |A4B|.
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Theorem 4.3.1. If k ≥ 1 and F is a family of subsets of [n] with diamF ≤ n− k, then

|F | ≤


n

∑
j=t

(
n
j

)
, if k+n = 2t,

n

∑
j=t

(
n
j

)
+

(
n−1
t−1

)
, if k+n = 2t−1.

(34)

To see that Theorem 4.3.1 implies Theorem 4.2.1, observe that |A∩B| ≥ k implies

|A4B| ≤ n− k.

Theorem 4.3.2. Suppose that a function f : Cn→ R is 1-Lipschitz and odd. Let X1, . . . ,Xn

be symmetric independent random variables such that |Xi| ≤ 1. Then, for x > 0, we have

that

P( f (X1, . . . ,Xn)≥ x)≤


P(Wn ≥ x) , if n+ dxe ∈ 2Z,

P(Wn−1 ≥ x) , if n+ dxe ∈ 2Z+1.
(35)

Proof. Applying Lemma 4.1.1 with the function

g(y1, . . . ,yn) = I{ f (y1, . . . ,yn)≥ x},

we can see that it is enough to prove (35) with

X1 = a1ε1, . . . ,Xn = anεn

for any 1-Lipschitz odd function f . In fact, we can assume that a1 = · · ·= an = 1, since

the function

(x1, . . . ,xn) 7→ f (a1x1, . . . ,anxn)

is clearly 1-Lipschitz and odd.

Given A⊆ [n], write fA for f (2IA(1)−1, . . . ,2IA(n)−1), where IA is the indicator
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function of the set A. Note that

| fA− fB| ≤ 2|A4B| (36)

by the Lipschitz property. Consider the family of finite sets

F = {A⊆ [n] : fA ≥ x},

so that

P( f (ε1, . . . ,εn)≥ x) = 2−n|F |.

Write k = dxe. Note that Wn−1 and Wn take only integer values. Therefore by (26) and

(27) we see that the right-hand side of (34) is equal, up to the power of two, to the

right-hand side of (35). Consequently, if diamF ≤ n− k, then Theorem 4.3.1 implies

(35). Therefore, it remains to check that for any A,B ∈ F we have |A4B| ≤ n− k.

Suppose that for some A,B we have fA, fB ≥ x but |A4B| ≥ n− k+1. Then

|A4Bc|= |(A4B)c|= n−|A4B| ≤ k−1,

and hence by (36) we have

| fA− fBc| ≤ 2k−2. (37)

On the other hand, we have that fBc ≤−x, as f is odd. Therefore

fA− fBc ≥ 2x > 2k−2,

which contradicts (37). �
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Part II

Bootstrap Percolation



CHAPTER 5

MAJORITY BOOTSTRAP PERCOLATION ON THE ERDŐS-RENYI RANDOM

GRAPH

The mathematical study of percolation took off after Broadbent and Hammersley

introduced the following problem in [13]. Given an infinite graph G, with finite maximum

degree, select each edge to be open or closed independently and with probabilities p or

1− p respectively. We ask the question whether there is a non-zero probability of a vertex

v having an infinite connected component in the open edge subgraph? For G connected the

answer to this question is the same irrespective of the vertex v considered. This is because

the probability that v1 is in an infinite component is at least pd times the probability v2 is

in an infinite component, where d is the distance between v1 and v2 in G. The probability

of a fixed vertex v being in an infinite open component is also clearly increasing with p,

and so a lot of work has gone into determining pc = inf{p : Pp(v in ∞ component)> 0},

the critical edge percolation probability, for many graphs G.

The most natural class of graphs to study this problem on are lattices. Perhaps the

most celebrated result in this area is Harris [21] and Kesten’s [27] proof that pc(Z2) = 1
2 .

Much further study has gone into this problem and the critical probability has been found

for many lattices. For example, Wierman in [39] and [40] found the critical probability of

certain self-dual planar lattices, a result which was vastly extended by Bollobás and

Riordan in [11]. Despite all this progress there are still many open cases, for example it is

still not known, or even commonly conjectured, what the value of pc(Z3) is.

The classical bootstrap percolation, called r-neighbour bootstrap percolation,

concerns a deterministic process on a graph. Firstly, a subset of the vertices of a graph G

is initially infected. Then at each time step the infection spreads to any vertex with at least

r infected neighbours. This process is a cellular automaton, of the type first introduced by

von Neumann in [34]. This particular model was introduced by Chalupa, Leith and Reich

in [14], where G was taken to be the Bethe lattice.
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A standard way of choosing the initially infected vertices is to independently infect

each vertex with probability p. The probability that the entire graph eventually becomes

infected is increasing with p. It is therefore sensible to study the quantity

pc = inf{p : Pp(G infected)≥ c}, in particular the critical probability p1/2 and the size of

the critical window p1−ε− pε.

A natural setting for this problem is the finite grid [n]d . Many of the results on

bootstrap percolation concern this problem. The first to study this graph were Aizenman

and Lebowitz in [1], who showed that in 2-neighbour bootstrap percolation when d is

fixed we have p1/2 = Θ((logn)1−d).

The r-neighbour bootstrap percolation process has also been studied on the random

regular graph by Balogh in [4] and on the Erdős-Rényi random graph G(n, p) by Janson

Łuczak, Turova and Vallier in [23].

In majority bootstrap percolation a vertex becomes infected if a majority of its

neighbours are. In [3] Balogh, Bollobás and Morris studied this process on the hypercube

and showed that if the vertices of the n-dimensional hypercube are independently infected

with probability

q =
1
2
− 1

2

√
logn

n
+

λ log logn√
n logn

,

then with high probability percolation occurs if λ > 1
2 and does not occur if λ≤−2.

We shall study majority bootstrap percolation on the Erdős-Rényi random graph

above the connectivity threshold.

5.1 Main Results

In this section we shall state our main results and discuss two different ways of

selecting the initially infected set. Throughout this section we shall make use of some

technical lemmas, which we include at the very of this chapter in Section 5.4 so as not to
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disrupt the flow of our arguments.

For G a graph with some subset I0 ⊂V (G) of initially infected vertices, the majority

bootstrap process on G is defined by setting It+1 = It ∪{v ∈V (G) : |It ∩Γ(v)| ≥ |Γ(v)|2 }.

For a finite graph G, this process will terminate with IT+1 = IT . Denote by I = IT the set

of eventually infected vertices.

We shall look at the case of G = G(n, p), the graph on n vertices where each edge is

included independently with probability p. Our initial setup is also slightly different,

instead of infecting each vertex independently with some probability q, we shall infect a

random set of vertices of size m.

In the normal setup for the majority bootstrap process on G(n, p), we would first

choose the edges of G(n, p) and then choose an initially infected set I0 uniformly from

[n](m). As these two choices are independent we shall equivalently set I0 = [m] and then

choose the edges of G(n, p). This is the MB(n, p ;m) process.

We now introduce some notation and conventions that shall be used in this chapter.

We set d = np
1−p , thus d is roughly the average degree in G(n, p) for p = o(1). We denote

the binomial distribution with mean with parameters n and p by B(n, p). We shall

sometimes abuse the notation and denote by B(n, p) a random variable that has a binomial

distribution. We reserve m for the size of I0 and shall always assume that

m = n
2 −

n
2

√
logd

d +λn log loglogd√
d logd , for some constant λ. We use the standard asymptotic

little-o notation and this is always taken as n or N tend to infinity. An increasing

unbounded function shall be denoted by ω(n). Unless otherwise stated any random

variables mentioned will be independent. Throughout this chapter the inequalities are only

claimed to be true for n large enough. For the MB(n, p ;m) process, define

Pm (G(n, p)) = P(I = [n]) .

The main result we obtained jointly with Nathan Kettle and Cecilia Holmgren is the
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following theorem.

Theorem 5.1.1. Fix some number ε > 0. Assume that

(1+ ε) logn≤ p(1− p)n and p≤ 0.99.

If the initially infected set I0 has size

m =
n
2
− n

2

√
logd

d
+λn

log loglogd√
d logd

then

Pm (G(n, p))→


1, if λ > 1

2 ,

0, if λ < 0.
(38)

Our second result concerns a more natural setup, where each vertex is initially

independently infected with probability q, we have that with high probability

|I0|= qn±ω(n)
√

q(1−q)n. When
√

n� n log loglogd√
d logd , i.e, when p� (log loglogn)2

logn , our

result above shall still hold in this setting for q = m/n.

More formally define the MB′(n, p ;q) to be the process in which the graph G(n, p) is

chosen and each vertex is initially infected independently with probability q. Then the

infection spreads by the majority bootstrap percolation process. For the process

MB′(n, p ;q) define

P ′q(G(n, p)) = P(I = [n]).

Corollary 5.1.2. Fix a number ε > 0. Assume that

(1+ ε) logn≤ p(1− p)n and p� (log loglogn)2

logn
,
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then with q = 1
2 −

1
2

√
logd

d +λ
log loglogd√

d logd , we have

P ′q (G(n, p))→


1, if λ > 1

2 ,

0, if λ < 0.
(39)

If p≤ 0.99 and p� (log loglogn)2

logn , then with q = 1
2 −

1
2

√
logd

d +θ
1√
n , we have

P ′q (G(n, p))→Φ(2θ),

where Φ(x) denotes the distribution function of the standard Normal random variable.

Proof. As each vertex is infected independently, |I0| has distribution B(n,q). Thus with

high probability it holds that ||I0|−qn| ≤ ω(n)
√

q(1−q)n. If p� (log loglogn)2

logn , then

n log loglogd√
d logd �

√
n and the result follows from Theorem 5.1.1.

If p� (log loglogn)2

n then for each fixed δ > 0 by the Central Limit Theorem we obtain

P ′q (G(n, p)) (40)

=
n

∑
m=0

P(B(n,q) = m)Pm (G(n, p))

≥ P
(
B(n,q)≥ qn+(δ−θ)

√
n
)

Pqn+(δ−θ)
√

n (G(n, p))

= P
(

B(n,q)/
√

q(1−q)n≥ (qn+(δ−θ)
√

n)/
√

q(1−q)n
)
(1+o(1))

→ Φ(2(θ−δ)),

where the fourth line follows as Pqn+(δ−θ)
√

n (G(n, p))→ 1 for p� (log loglogn)2

logn by

Theorem 5.1.1. A similar argument shows that 1−P ′q(G(n, p))≥Φ(−2(θ+ ε))(1+o(1))

and so P ′q(G(n, p))→Φ(2θ). �

When p is smaller than the connectivity threshold, G(n, p) contains isolated vertices.

Due to the way we define the MB(n, p ;m) process, any uninfected isolated vertex

becomes infected in the first time step, so this is not an obstruction to complete
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percolation. However once p drops to below logn
2n , then with high probability G(n, p)

contains isolated edges and neither endpoint of an isolated edge becomes infected if both

endpoints are initially uninfected. This means that Pm(G(n, p))→ 0 unless m = n−o(n).

5.2 Upper Bound

As G is finite the MB(n, p ;m) process will eventually terminate with some set

I0 ⊂ [n] of infected vertices. If we do not infect the whole graph, or, equivalently, we have

that I0 6= [n], then we can say something about the structure of I0. We shall call a proper

subset S of [n] closed if for all v ∈ [n]\S we have |Γ(v)∩S|< |Γ(v)|
2 . As I0 6= [n] we must

have that the initially infected vertices I0 are contained in a closed set. We shall show that

with high probability I0 is contained in no closed sets in three stages. Using Lemma 5.2.2

will allow us that with high probability the graph G(n, p) has no ”large” closed sets. After

that we shall bound the expected number of medium sized closed sets that I0 is in. But

before we proceed with proving these two facts let us show that with high probability the

number of infected vertices after one time step, |I1|, is large, and so I0 can rarely be

contained in a small closed set. Recall that

m =
n
2
− n

2

√
logd

d
+λn

log loglogd√
d logd

.

Lemma 5.2.1. In the MB(n, p ;m) process,

|I1 \ I0| ≥
n(log logd)2λ

e8
√

d logd

with high probability.

Proof. For i ∈ [n]\ I0, denote by Ai the event that vertex i is infected at time one, that is

the event that i has fewer neighbours in [n]\ I0 than it does in I0. The events Ai are

identical and very weakly correlated but not independent. Let X be the number of vertices

42



infected at the first step of the process. Then X = |I1 \ I0|= ∑1(Ai). We shall use

Chebyshev’s inequality to bound the probability that X is small.

As the events Ai are identical we shall set r = P(Ai), so E(X) = (n−m)r. Let µ1 and

µ2 are the means of B(m, p) and B(n−m−1,(1− p)) respectively. We have that

r = P(|Γ(i)∩ I0| ≥ Γ(i)∩ ([n]\ I0))

= P(B(m, p)≥ B(n−m−1, p))

= P(B(m, p)+B(n−m−1,(1−p))≥ µ1 +µ2 + p(n−2m−1)) .

We have p(n−2m−1) = ω(n)
√

p(1− p)n and p(n−2m−1)2 = o(n
√

p(1− p)n).

Applying the bound from Proposition 5.4.11 to the last equality with N = n−1
2 ,

S = n−1−2m
2 and h = p(n−2m−1), we obtain

r >

√
p(1− p)(n−1)

2πp(n−2m−1)
exp
(
− p(n−2m−1)2

2(1− p)(n−1)
−4−o(1)

)
>

1
2π
√

logd
exp
(
− logd

2
+2λ log loglogd−4+o(1)

)
>

(
(log logd)2λ

2πe4
√

d logd

)
(1+o(1)). (41)

where in the second line we have used the asymptotic relation

d(n−2m−1)2 = n2 logd−4λn2 log loglogd +o(n2).

Let us calculate the variance of X . We have

Var(X) = ∑
i, j∈[n]\[m]

(P(A j|Ai)−P(A j))P(Ai)

= (1− r)r(n−m)+ r′r(n−m)(n−m−1), (42)
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where r′ = P(A j|Ai)− r, this being the same for any i 6= j. In (42) the first term is the sum

over i = j and the second term is the sum over i 6= j. Let Bi j and Bi j be the events that i j

is, or is not, an edge in G respectively. We bound r′ by

P(A j|Ai)−P(A j) = P(A j|Bi j)P(Bi j|Ai)+P
(
A j|Bi j

)
P
(
Bi j|Ai

)
−P
(
A j
)

≤ P
(
A j|Bi j

)
−P

(
A j
)

= P
(
A j|Bi j

)
(1− (1− p))

= p
(
P
(
A j|Bi j

))
= pP(B(m, p) = B(n−m−2, p)) , (43)

where the last equality follows because the probabilities of the events A j|Bi j and A j|Bi j are

equal to P(B(m, p)≥ B(n−m−2, p)+1) and P(B(m, p)≥ B(n−m−2, p)) respectively.

As p(n
2 −m−1) = ω(n)

√
p(1− p)n we get from Proposition 5.4.13 applied with

(N,S,T ) = (n
2 −1, n

2 −m−1,0), that r′ is at most

p(n
2 −m−1)

2π(1− p)(n
2 −1)

exp

(
−

p(n
2 −m−1)2

(1− p)(n
2 −1)

+o(1)

)

+
3

π(n
2 −m−1)

exp

(
−

9p(n
2 −m−1)2

8(1− p)(n
2 −1)

)

<
p
√

logd
2π(1− p)

√
d

exp
(
− logd

2
+2λ log loglogd +o(1)

)
+

6
√

d
πn
√

logd
exp
(
−9logd

16
+

9λ log loglogd
4

+o(1)
)
. (44)

The second term is much smaller than the first term and so,

r′ <

(√
logd(log logd)2λ

πn

)
. (45)

We are now able to bound the probability that X is small. From (42) and Chebyshev’s
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inequality we get

P
(

X ≤ (n−m)r
2

)
≤ P

(
|X− (n−m)r| ≥ (n−m)r

2

)
≤ 4Var(X)

((n−m)r)2

=
4((1− r)+(n−m−1)r′)

(n−m)r

<
4r′

r
+o(1). (46)

From (45) and (41) this is at most

(
2e4 logd

√
d

n

)
(1+o(1))+o(1) = o(1), (47)

and so we have with high probability that |I1 \ I0| is at least (n−m)r
2 , which for large n is

greater than
n(log logd)2λ

e8
√

d logd
,

which completes the proof. �

We now show that G(n, p) contains no large closed sets by a simple edge set

comparison.

Lemma 5.2.2. Suppose that for some fixed ε > 0 we have p(1− p)n≥ (1+ ε) logn. Then

with high probability G(n, p) contains no closed set of size greater than n
2 +

7n
2
√

d
.

Proof. Let us write s for the size of the set S. In order for the set S to be closed each vertex

v has to have the majority of its neighbours outside S. In other words, we must have

|Γ(v)∩ ([n]\S)|> |Γ(v)∩S|. Summing over the vertices in [n]\S we have that the

number of edges from S to [n]\S must be fewer than twice the number of edges in [n]\S.

If n
2 +

7n
2
√

d
< s < 4n

5 then p(2s−n)≥ 7
√

p(1− p)n and so
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ps(n− s)−3(n− s)
√

p(1− p)s > 2p
(

n− s
2

)
+4(n− s)

√
p(1− p)(n− s).

By Proposition 5.4.14 every set of size s has at most

p
(n−s

2

)
+2(n− s)

√
p(1− p)(n− s) edges in its complement with probability at least

1− 1
4s and by Proposition 5.4.15 every set S of size s has at least

ps(n− s)−3(n− s)
√

p(1− p)s edges between it and its complement with probability at

least 1− 1
4s . Therefore with high probability every set S of size n

2 +
7n

2
√

d
< s < 4n

5 is not

closed.

If s≥ 4n
5 and p(1− p)n≥ 4logn, then we know from Proposition 5.4.16 that with

probability at least 1−n−
n−s
120 there does not exist a closed set of size s in G(n, p). The

result follows as ∑i=1 n−
i

120 = o(1).

If n−n
27
28 ≥ s≥ 4n

5 and 5logn≥ p≥ (1+ ε) logn, then we know from

Corollary 5.4.17 that with probability at least 1−n−
n−s
120 there does not exist a closed set of

size s in G(n, p).

If s≥ n−n
27
28 and 5logn≥ p≥ (1+ ε) logn, then we know from Proposition 5.4.19

that with probability at least 1−n−
n−s
120 every set [n]\S of size n− s has at most 2(n− s)

edges and so has a vertex vS of degree at most 4. By Proposition 5.4.18 we have that with

high probability the minimum degree of G(n, p) is at least 9 and so vS will become

infected if all of S is and so S is not closed.

�
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Lastly, we turn to bounding the expected number of medium sized closed sets I0 is

contained in. We shall therefore want a bound on the probability that a set S of size at least

s in a particular range of s is closed. To do this we shall pick a test set T of a suitable size

and bound the probability that none of the vertices in T are infected by S.

Lemma 5.2.3. Fix ε > 0 and define

s =
n
2
− n
√

logd
2
√

d
+

n(log logd)1+ε

√
d logd

.

Take any set of vertices S in G(n, p) of size s≤ |S|< 2n
3 . Then

P(S is closed)≤ exp

(
−n(logd)(log logd)ε−2

e7
√

d

)
.

Proof. Without loss of generality we shall set S = [|S|] and T = [t + |S|]\S, where

t =
⌊

n
(logd)2

⌋
. We shall condition on the edge set of T as once we have done so the events

Fv, that v is infected by S for each vertex v ∈ T , are independent.

Denote by E(T ) the family of all possible edge sets on the vertex set T and set dE(v)

to be the degree of vertex v ∈ T when T has edge set E. We have that

P(Fv|E) = P(|Γ(v)∩S|< dE(v)+ |Γ(v)∩ ([n]\ (S∪T ))|).

Therefore,

P(S is closed) (48)

≤ ∑
E
P(E)∏

v∈T
P(Fv|E)

= ∑
E
P(E)∏

v∈T
P(B(|S|, p)< B(n−|S|− t, p)+dE(v)), (49)

where P(E) is the probability of a particular edge set E ⊂ {0,1}(
t
2) and is equal to
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p|E|(1− p)(
t
2)−|E|.

The function f|S|(x) = P(B(|S|, p)< B(n−|S|− t, p)+ x) is decreasing in |S| so we

have fs(x)≥ f|S|(x). Let us supress the dependency on s by writing f (x) instead of fs(x).

We have

P(S closed)≤∑
E
P(E)∏

v∈T
f (dE(v)). (50)

The rest of the proof shall be spent bounding (50). The degree of vertices in T is

heavily concentrated around pt, and we shall expand f around pt to show that (50) is not

much larger than f (pt)t .

We have by Corollary 5.4.3 that f is log-concave and so for any x and y with f (y) 6= 0,

f (x)≤ f (y)
(

f (y+1)
f (y)

)x−y

.

Setting y = dpte ∈ N we get

P(S closed) ≤ ∑
E
P(E)∏

v∈T
f (y)

(
f (y+1)

f (y)

)dE(v)−y

= ∑
E
P(E) f (y)t

(
f (y+1)

f (y)

)2|E|−ty

(51)

We have removed any dependence on E other than its size and so

P(S closed) ≤
(t

2)

∑
i=0

((t
2

)
i

)
pi(1− p)(

t
2)−i f (y)t

(
f (y+1)

f (y)

)2i−ty

=

(
1− p+ p

(
f (y+1)

f (y)

)2
)(t

2)( f (y)
f (y+1)

)ty

f (y)t . (52)

Setting f (y+1)
f (y) = 1+a, we bound (52) using the inequalities 1+w≤ ew and
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(1+ x)−1 ≤ 1− x+ x2 for x≥ 0 to get

P(S closed) ≤
(
1+2ap+a2 p

) t2
2

(
1

1+a

)pt2

f (y)t

≤ exp
(
(2ap+a2 p)

t2

2
+(a2−a)pt2

)
f (y)t

= exp
(

3pa2t2

2

)
f (y)t (53)

We have that

f (y+1) = f (y)+P(B(s, p) = B(n− s− t, p)+ y) .

Let us write z = P(B(s, p) = B(n− s− t, p)+ y) to ease up the notation. Thus

f (y+1) = f (y)+ z. By Proposition 5.4.13 applied with N = n−t+T
2 , S = n−2s−t+T

2 and

T = dpte
p and noting that 0≤ T − t < p−1, we have

z <
n−2s+ 1

p

2π(1− p)n
exp

(
−

2p(n
2 − s)2

(1− p)(n− t)
+o(1)

)

+
6

π(n−2s)
exp

(
− 9p(n−2s)2

8(1− p)(n+ 1
p)

)

=

√
logd

2π(1− p)
√

d
exp
(
(− logd

2
+2(log logd)1+ε)(1+

t
n
)+o(1)

)
+

6
√

d
πn
√

logd
exp
(
−9logd

16
+

9(log logd)1+ε

4
+o(1)

)
. (54)

The second term in (54) is much smaller than the first so as 6 < 2π and t logd = o(n)

we get

z <
√

logd(logd)2(log logd)ε

6(1− p)d
.
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We can rewrite f (y) as

f (y) = 1−P(B(s, p)+B(n− s− t,(1− p))≥ n− s− t + y) ,

We have the asymptotic relation (p(n−2s)+1)(t +2s−n) = o(n
√

np(1− p)) and

so using Proposition 5.4.11 with (N,S,h) = (n−t
2 , n−2s−t

2 , p(n−2s)+ y− pt) we obtain

f (y) < 1−
√

p(1− p)(n− t)
2π(p(n−2s)+1)

exp
(
− (p(n−2s)+1)2

2p(1− p)(n− t)
−4−o(1)

)
< 1− (logd)2(log log)ε

e6
√

d logd

< exp

(
−(logd)(log logd)ε

e6
√

d

)
, (55)

the second inequality follows from the same reasoning used in (54) and that e6 > 2πe4.

We can also apply Proposition 5.4.12 to get a lower bound on f (y) of

f (y)> 1−
√

p(1− p)(n− t)
p(n−2s)

exp
(
− p(n−2s)2

2(1− p)(n− t)
+4
)
>

1
2
,

here the bound on 1− f (y) is actually o(1), being within a constant factor of the bound in

(55).

We are now able to get a good upper bound on a,

a =
z

f (y)
<

√
logd(logd)2(log logd)ε

3(1− p)d
.

Substituting these bounds into (53) we get

P(S closed) < exp

(
p(logd)4(log logd)ε

n
6(1− p)2d2 logd

− (logd)(log logd)ε

e6
√

d

)t

.
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The second term in the exponential is much larger than the first term and so

P(S closed) < exp

(
−(logd)(log logd)ε

2e6
√

d

)t

< exp

(
−n(logd)(log logd)ε−2

e7
√

d

)
,

as t > 2n
e(logd)2 . �

We shall now bound the expected number of closed sets in this medium sized range

that contain I0, this is also a bound on the probability that I0 is contained in such a medium

sized closed set.

Proposition 5.2.4. Assume that

m =
n
2
− n
√

logd
2
√

d
+

nλ log loglogd√
d logd

.

Then the expected number of closed sets in G(n, p) of size between

n
2
− n
√

logd
2
√

d
+

n(log logd)1+ε

√
d logd

and
n
2
+

4n√
d

that contain [m] is o(1).

Proof. Let S be a set of size s in our range, s can have at most n
√

logd√
d

different values. For

each possible value of s there are at most

(
n−m
s−m

)
<

(
n

n
√

logd√
d

)
<

(
e
√

d√
logd

) n
√

logd√
d

< exp

(
n(logd)

3
2

√
d

)

possible closed sets. By Lemma 5.2.3 the expected number of closed sets is less than

n
√

logd√
d

exp

(
n(logd)

3
2

√
d
− n(logd)(log logd)ε−2

e8
√

d

)
,

and this is o(1) as (log logd)ε is unbounded. �
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Corollary 5.2.5. If λ > 1
2 then with high probability the MB(n, p ;m) process percolates.

Proof. We have from Lemma 5.2.1 that with high probability I0 = [m] is contained in no

closed set of size less than

n
2
− n
√

logd
2
√

d
+

n(log logd)2λ

e8
√

d logd
.

Proposition 5.2.4 applied to ε = λ− 1
2 tells us that with high probability I0 is contained in

no closed set of size between

n
2
− n
√

logd
2
√

d
+

n(log logd)λ+ 1
2

√
d logd

and
n
2
+

4n√
d
.

We have from Lemma 5.2.2 that with high probability I0 is contained in no closed set

of size greater than

n
2
+

7n
2
√

d
,

and so with high probability I0 is not contained in any closed set in G(n, p) and hence

percolates. �

5.3 Lower Bound

In this section we shall show that if λ < 0 then with high probability the MB(n, p ;m)

process does not percolate. In fact, as might be expected, we shall show that with high

probability the MB(n, p ;m) process terminates with I only slightly larger than m. We

shall do this by bounding the expected number of sets of some size that could be the first

vertices to be infected.

We say that a set of vertices T percolates if all of its vertices will be infected

eventually. For T ⊂ I \ I0 we can order the vertices of I0∪T by the time they get infected.

That is, take any order of T such that a vertex from I j is infected before any vertex from I j′
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if j < j′. Notice that for each v ∈ T the majority of its neighbours (in the whole graph) are

in the set of its predecessors in this order. Our strategy will be to show that if λ < 0 then

with high probability there is no percolating set T of a particular size and thus the

MB(n, p ;m) process does not percolate.

Assume that |I0|= m, set t = |T | and denote by E = E(T ) the edge set of T . Write

dE(i) for the degree within T of a vertex i ∈ T . Condition on the edge configuration E. We

want to bound the probability that T percolates. To do so, we modify the infection rule

within T so that the vertices inside T consider their neighbours in T to be already infected,

regardless of their real state at any particular time step. The latter assumption only

increases the probability and, more importantly, makes the events for vertices in T to be

infected independent. This is because these events now only depend how many edges each

vertex has to I0 and V (G)/(I0∪T ). We thus have

P(T percolates)≤∑
E
P(E)

t

∏
i=1

P(B(m, p)+dE(i)≥ B(n−m− t, p)). (56)

Denote g(x) = P(B(m, p)+ x≥ B(n−m− t, p)). Due to the log-concavity of g

(Corollary 5.4.3) we have for integer x,y that

g(x)≤ g(y)
gx−y(y+1)

gx−y(y)

Using the latter inequality with x = dE(i) and y = dpte, we can bound 56 by

∑
E
P(E)

t

∏
i=1

g(y)
(

g(y+1)
g(y)

)dE(i)−y

= ∑
E
P(E)g(y)t

(
g(y+1)

g(y)

)2|E|−ty

=
(t

2)

∑
j=0

((t
2

)
j

)
p j(1− p)(

t
2)− jg(y)t

(
g(y+1)

g(y)

)2i−ty

=

(
1− p+ p

(
g(y+1)

g(y)

)2
)(t

2)( g(y)
g(y+1)

)pt2

g(y)t .
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Substituting g(y+1)
g(y) = 1+a and the elementary inequality 1/(1+a)≤ 1−a+a2, we

bound the latter expression by

(
1− p+ p(1+a)2)(t

2) (1−a+a2)ty
g(y)t

≤ exp
(
(2ap+a2 p)

t2

2
+(a2−a)pt2

)
g(y)t

=

(
exp
(

3pa2t
2

)
g(y)

)t

. (57)

We have by definition that g(y) is equal to

g(y) = P(X1 +X2 ≥ µ1 +µ2 + pn−2pm− pt−dpte) ,

where X1 = B(m, p) with mean µ1 and X2 = B(n−m− t,(1− p)) with mean µ2. Setting

t =
⌊

n(log logd)λ/
√

d logd
⌋

and using Proposition 5.4.12 with N = n−t
2 , S = n−2m−t

2 and

h = p(n−2m− t)− y to bound g(y), we obtain

g(y) <

√
p(1− p)(n− t)

pn−2pm−2pt−1
exp
(
−(pn−2pm−2pt−1)2

2p(1− p)(n− t)
+4
)

<
e4
√

logd
exp
(
− logd

2
+2λ log loglogd +O((log logd)λ)

)
<

(
e5(log logd)2λ

√
d logd

)
, (58)

when λ < 0.

We can also bound g(y) from below by Proposition 5.4.11

g(y) >

√
p(1− p)(n− t)

2π(pn−2pm−2pt)
exp
(
−(pn−2pm−2pt)2

2p(1− p)(n− t)
−4−o(1)

)
>

1
2πe4
√

logd
exp
(
− logd

2
+2λ log loglogd +O((log logd)λ)

)
>

(
(log logd)2λ

e6
√

d logd

)
, (59)
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when λ < 0.

By definition of g we have that

g(y+1) = g(y)+P(B(m, p)+ y+1 = B(n−m− t, p)). Let us write

u = P(B(m, p)+ y+1 = B(n−m− t, p)) for convenience. We shall now obtain an upper

bound for u. Using Proposition 5.4.13 with T =−y+1
p , N = n−t+T

2 and S = N−m, we

obtain

u <
n
2 −m−2t

2π(1− p)(n
2 −2t− 2

p)
exp

(
−

2p(n
2 −m−2t− 2

p)
2

(1− p)(n− t)
+o(1)

)

+
3

πp(n
2 −m−2t− 2

p)
exp

(
−

9p(n
2 −m−2t− 2

p)
2

8(1− p)(n
2 −2t− 1

p)

)

<

√
logd

2π(1− p)
√

d
exp
(
− logd

2
+2λ log loglogd +o(1)

)
+

6
√

d
πpn
√

logd
exp
(
−9logd

16
+

9λ log loglogd
4

+o(1)
)
. (60)

The first term is much larger than the second and so we obtain the inequality

u <

√
logd(log logd)2λ

π(1− p)d
. (61)

We have that a = z
g(y) and so from (59) and (61)

a <
e6 logd

π(1− p)
√

d
<

e5 logd
(1− p)

√
d
. (62)

We can now bound the expression in (57) by

P(T percolates) <

(
exp

(
3pe10(logd)2n(log logd)λ

2(1− p)2d2 logd

)
e5(log logd)2λ

√
d logd

)t

<

(
e6(log logd)2λ

√
d logd

)t

. (63)
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The expected number of sets of size t that percolate is

(
n−m

t

)
P(T percolates) <

(
n
t

)(
e6(log logd)2λ

√
d logd

)t

<

(
e7n(log logd)2λ

t
√

d logd

)t

, (64)

because
(n

t

)
≤
(en

t

)t . We chose t =
⌊

n(log logd)λ

√
d logd

⌋
, and so the expected number of sets of

size t that percolate is bounded above by

(e7(log logd)λ)t = o(1). (65)

Therefore with high probability percolation does not occur for λ < 0.

5.4 Inequalities

We begin this section with some remarks on the log-concavity of the distribution

function of the Binomial distribution. These results are standard, see for example [25], but

we prove them for completeness.

Proposition 5.4.1. The sum of independent Bernoulli random variables is log-concave,

that is if Xi are independent Bernoulli random variables with means pi, then for any k we

have,

P(
n

∑
i=1

Xi = k−1)P(
n

∑
i=1

Xi = k+1)≤ (P(
n

∑
i=1

Xi = k))2.

Proof. We proceed by induction on n, with the base case n = 1 being trivial as one of the

terms on the left hand side of the inequality is zero. Otherwise conditioning on Xn+1, and

writing fn,k = P(∑n
i=1 Xi = k) we get,
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fn+1,k−1 fn+1,k+1 = (pn+1 fn,k−2+(1−pn+1) fn,k−1)(pn+1 fn,k+(1−pn+1) fn,k+1)

≤ (pn+1 fn,k−1+(1−pn+1) fn,k)
2

= ( fn,k)
2 (66)

The inequality follows as fn,k−1 fn,k+2 ≤ fn,k fn,k+1 is implied by the induction

hypothesis. �

Proposition 5.4.2. The cumulative distribution of a discrete non-negative log-concave

random variable X is log-concave, that is for all k,

P(X ≤ k−1)P(X ≤ k+1)≤ (P(X ≤ k))2.

Proof. Setting ri = P(X = i) we get by Proposition 5.4.1,

(r0 + . . .+ rk−1)rk+1 ≤ (r1 + . . .+ rk)rk + rkr0,

and so,

(r0 + . . .+ rk−1)(r0 + . . .+ rk+1)≤ (r0 + . . .+ rk)
2.

�

When X is the sum of n independent Bernoulli random variables, we can rewrite

X = n−Y, where Y is also the sum of n independent Bernoulli random variables, and so

Proposition 5.4.2 is still true if we replace ≤, with <, > or ≥.

Corollary 5.4.3. The cumulative distribution of the sum or difference of independent

binomial random variables is log-concave.

Proof. Sums and differences of independent binomial random variables are also sums of
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independent Bernoulli random variables plus a constant and so are log-concave. �

A substantial part of this section is now taken up with providing tight bounds, up to a

constant factor, on binomial probabilities and their sums.

Proposition 5.4.4. Suppose pn≥ 1 and k = pn+h < n, where h > 0. Set

β =
1

12k
+

1
12(n− k)

,

then P(B(n, p) = k) is at least

1√
2πp(1−p)n

exp
(
− h2

2p(1−p)n
− h3

2(1−p)2n2 −
h4

3p3n3 −
h

2pn
−β

)
.

Proof. This is Theorem 1.5 in [10], p. 12. �

Corollary 5.4.5. Suppose p(1− p)n = ω(n) and k = pn+h, where

0 < h = o
(
(p(1− p)n)

2
3

)
, then

P(B(n, p) = k)>
1√

2πp(1− p)n
exp
(
− h2

2p(1− p)n
−o(1)

)
Proof. For h in this range we have

h3

2(1− p)2n2 +
h4

3p3n3 +
h

2pn
= o(1).

We also have that k = ω(n) and n− k = ω(n) and so the inequality follows from

Proposition 5.4.4. �

Proposition 5.4.6. Suppose pn≥ 1 and k ≥ pn+h, where h(1− p)n≥ 3. Then

P(B(n, p) = k)<
1√

2πp(1−p)n
exp
(
− h2

2p(1−p)n
+

h3

p2n2+
h

(1−p)n

)
.

Proof. This is Theorem 1.2 of [10], p. 10. �
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Corollary 5.4.7. Suppose p(1− p)n = ω(n) and k ≥ pn+h, where

1 < h = o((p(1− p)n)
2
3 ), then

P(B(n, p) = k)<
1√

2πp(1− p)n
exp
(
− h2

2p(1− p)n
+o(1)

)
.

Proof. For h in this range we have

h3

p2n2 +
h

(1− p)n
= o(1),

and so the inequality follows from Proposition 5.4.6, which can be applied as

h(1− p)n = ω(n). �

Proposition 5.4.8. Suppose p(1− p)n = ω(n) and 0 < h = o((p(1− p)n)
2
3 ), then

P(B(n, p)≥ pn+h)<

√
p(1− p)n√

2πh
exp
(
− h2

2p(1− p)n
+o(1)

)
.

Proof. This proof follows that of Theorem 1.3 in [10]. For m≥ pn+h, we have

P(B(n, p) = m+1)
P(B(n, p) = m)

≤ 1− h+(1− p)
(1− p)(pn+h+1)

= λ.

Hence

P(B(n, p)≥ pn+h)≤ 1
1−λ

P(B(n, p) = dpn+he).

As (1−λ)−1 < p(1−p)n
h (1+ h

pn)<
p(1−p)n

h e
h

pm , we get from Proposition 5.4.6 that

P(B(n, p)≥ pn+h)<

√
p(1−p)n

h
√

2π
exp
(
− h2

2p(1−p)n
+

h
p(1−p)n

+
h3

p2n2

)
the last two terms in the exponent being o(1), for h = o(p(1− p)n)

2
3 . �
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Proposition 5.4.9. Suppose p(1− p)n = ω(n) and (p(1− p)n)
1
2 < h = o((p(1− p)n)

2
3 ),

then

P(B(n, p)≥ pn+h)>

√
p(1− p)n

h
√

2π
exp
(
− h2

2p(1− p)n
− 3

2
−o(1)

)
.

Proof. Due to the unimodality of the binomial distribution, we have that the probability

density function of the binomial distribution is decreasing away from its mean and so,

P(B(n, p)≥ pn+h)>
p(1− p)n

h
P(B(n, p) = pn+h+

p(1− p)n
h

).

We can apply Corollary 5.4.5 as h+ p(1−p)n
h = o((p(1− p)n)

2
3 ) and so it follows that

P(B(n, p)≥ pn+h)>

√
p(1− p)n

h
√

2π
exp

(
−
(h+ p(1−p)n

h )2

2p(1− p)n
−o(1)

)
.

This is greater than the stated bound because (h+ p(1−p)n
h )2 ≤ h2 +3p(1− p)n. �

We shall also want a weaker but more general bound than Proposition 5.4.8 due to

Bernstein in [7].

Lemma 5.4.10. Let X1, . . . ,Xn be independent zero-mean random variables. Suppose that

|Xi| ≤M, then for all positive t,

P

(
n

∑
i=1

Xi > t

)
≤ exp

(
− t2

2∑E(X2
j )+

2
3Mt

)
.

Proof. For a proof see [15]. �

Proposition 5.4.11. Suppose that p(1− p)N = ω(N), the inequality

2(2p(1− p)N)
1
2 < h = o((p(1− p)N)

2
3 ) holds and hS = o(N((p(1− p)N)

1
2 )). For the

independent random variables; X1 = B(N−S, p), with mean µ1 and variance σ2
1,; and

X2 = B(N +S,(1− p)) with mean µ2 and variance σ2
2, we have
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P(X1 +X2 ≥ µ1 +µ2 +h)>

√
2p(1−p)N

2πh
exp
(
− h2

4p(1−p)N
−4−o(1)

)
.

Proof. The conditions on S and h imply that S = o(N). Set z and l equal to 2p(1−p)N
h and⌊

h√
2p(1−p)N

⌋
respectively. We can bound P(X1 +X2 ≥ µ1 +µ2 +h) from below by

summing over the disjoint regions

l−1

∑
i=−l

P
(

X1 < µ1+
h
2
−iz,X2 < µ2+

h
2
+(i+1)z,X1+X2 ≥ µ1+µ2+h

)
. (67)

For each i there are at least bzc(bzc−1)/2 pairs of integer values x1,x2, which X1,X2 can

take while still satisfying all three relations in (67). We have that h > 2lz, and so if X1,X2

satisfy all three relation in (67), then X1 ≥ µ1 and X2 ≥ µ2. As we are only considering the

region in which X1,X2 are larger than their means we can bound the sum in (67) from

below by

l−1

∑
i=−l

bzc(bzc−1)
2

P
(

X1 =

⌈
µ1 +

h
2
− iz
⌉)

P
(

X2 =

⌈
µ2 +

h
2
+(i+1)z

⌉)
. (68)

We have that p(1− p)(N−S) = ω(N) and h+ lz = o(p(1− p)(N−S))
2
3 , and so we

can apply Corollary 5.4.5 to get that the quantity in (68) is at least

l−1

∑
i=−1

bzc(bzc−1)
4πσ1σ2

exp

(
−
(h

2−iz+1)2(N+S)+(h
2+(i+1)z+1)2(N−S)

2p(1− p)(N2−S2)
−o(1)

)
.

Expanding this out, and noticing bzc= z(1+o(1)) and

(N−S)(N +S) = N2(1+o(1)) we get that the sum in (68) is at least

l−1

∑
i=−l

z2

4πp(1−p)N
exp
(
−h2N+2hz(N−S)+4i2z2N+(4i+2)z2(N−S)+o(p(1−p)N2)

4p(1−p)(N2−S2)
−o(1)

)
,

where the approximations for bzc and σ1,σ2 have been taken care of in the o(1) in the
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exponential term. Using the bounds in the statement of the Proposition this is at least

lz2

2πp(1− p)N
exp
(
− h2N

4p(1− p)(N2−S2)
−4−o(1)

)
>

√
2p(1− p)N

2πh
exp
(
− h2

4p(1− p)N
−4−o(1)

)
. (69)

The inequality following because l > h/(2
√

2p(1− p)N) and

hS = o(N(p(1− p)N)
1
2 ). �

Proposition 5.4.12. Suppose that p(1− p)N = ω(N). Furthermore assume that

2(2p(1− p)N)
1
2 < h = o((p(1− p)N)

2
3 ) and Sh = o(N(p(1− p)N)

1
2 ).

Then we have

P(X1 +X2 ≥ µ1 +µ2 +h)<

√
2p(1− p)N

h
exp
(
− h2

4p(1− p)N
+4
)
,

where X1 = B(N−S, p) with mean µ1 and variance σ2
1, and X2 = B(N +S,(1− p)) with

mean µ2 and variance σ2
2.

Proof. The conditions on S and h imply that S = o(N). Set z = 2N p(1−p)
h , and

l =
⌊

h2

4N p(1−p)

⌋
. We bound P(X1 +X2 ≥ µ1 +µ2 +h) from below by covering the region

where this inequality holds by

P(X1 +X2 ≥ µ1 +µ2 +h)< (70)
−l≤i, j≤l−1

∑
i+ j≥−1

(
P
(

0≤ X1−µ1−
h
2
−iz < z

)
P
(

0≤ X2−µ2−
h
2
− jz < z

))
(71)

+P
(

X1 ≥ µ1 +
h
2
+ lz

)
(72)

+P
(

X2 ≥ µ2 +
h
2
+ lz

)
. (73)
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We shall bound these three summands separately. Firstly for each i, j pair there are at

most dze2 points inside the specified region and so the product inside the sum of (71) is at

most

dze2P
(

X1 =

⌈
µ1 +

h
2
+ iz
⌉)

P
(

X2 =

⌈
µ2 +

h
2
+ jz

⌉)
.

Again because h > 2lz we are only considering the range in which X1 and X2 are

greater than their means. We have that p(1− p)(N±S) = ω(N) and

1 < h± lz = o(p(1− p)(N±S))
2
3 and so we can apply Corollary 5.4.7 to get that the sum

in (71) is at most

−l≤i, j≤l−1

∑
i+ j≥−1

dze2

2πp(1− p)
√

N2−S2

·exp

(
−
(h

2 + iz
)2
(N +S)+

(h
2 + jz

)2
(N−S)

2p(1− p)(N2−S2)
+o(1)

)
. (74)

This is equal to

z2

2πp(1− p)N
exp
(
− h2N

4p(1− p)(N2−S2)
+o(1)

)−l≤i, j<l

∑
i+ j≥−1

exp
(
−h(i+ j)zN +hzs(i− j)+ z2N(i2 + j2)+ z2S(i2− j2)

2p(1− p)(N2−S2)

)
. (75)

We can bound the above by noting that |i− j| ≤
√

2
√

i2 + j2 and |i2− j2| ≤ i2 + j2.

As we also have that N p(1− p)/2 < z2l ≤ N p(1− p), the sum appearing in 75 is at most

−l≤i, j<l

∑
i+ j≥−1

exp

(
−(i+ j)+

√
i2 + j2

4l
− i2 + j2

4l
+o(1)

)
. (76)

63



A point (i, j) in the plane with integer coordinates and i2+ j2
4l −

√
i2+ j2

4l < t, also

satisfies |i− j|<
√

21tl. Therefore the number of points (i, j) in the plane with integer

coordinates and satisfying both i2+ j2
4l −

√
i2+ j2

4l < t, and −1≤ i+ j < t is at most

2(t +1)
√

21lt. This allows us crudely bound (76) by

2
√

21l
∞

∑
t=1

(t +1)
√

t exp(−(t−1)) . (77)

The latter sum is less than 50
√

l and so the sum in (71) is bounded above by

50
√

p(1− p)N
hπ

exp
(
− h2

4p(1− p)N
+o(1)

)
. (78)

Secondly we bound the probability (72). As l > h2

8N p(1−p) we have that

P
(

X1 ≥ µ1 +
h
2
+ lz

)
< P

(
X1 ≥ µ1 +

3h
4

)
.

By Proposition 5.4.8 we get that the quantity in (72) is at most

4
√

p(1− p)(N−S)

3h
√

2π
exp
(
− 9h2

32p(1− p)(N−S)
+o(1)

)
<

2
3
√

π

√
2p(1− p)N

h
exp
(
− h2

4p(1− p)N

)
. (79)

Similarly, the probability in (73) is at most

2
3
√

π

√
2p(1− p)N

h
exp
(
− h2

4p(1− p)N

)
. (80)

As 50
√

2
π

+ 4
3
√

π
< e4 we get that the sum of our three bounds, (78), (79), and (80) is at

most the stated bound. �

Proposition 5.4.13. Suppose that p(1− p)N = ω(N), that
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ω(N)(p(1− p)N)
1
2 ≤ pS = o((p(1− p)N)

2
3 ) and that T = o(N), then

P(Z1 = Z2 + pT ) <
S

2π(1− p)N
exp
(
− 2pS2

(1− p)(2N−T )
+o(1)

)
+

3
πpS

exp
(
− 9pS2

8(1− p)N

)
, (81)

where Z1 = B(N−S, p) with mean µ1 and variance σ2
1 and Z2 = B(N +S−T, p) with

mean µ2 and variance σ2
2.

Proof. Let φ(i) be the probability that Z1 = Z2 + pT = pN + i, then

φ(i) =
(

N−S
pN + i

)(
N +S−T

pN− pT + i

)
pp(2N−T )+2i(1− p)(1−p)(2N−T )−2i.

Denote the ratio between successive values of φ(i) by ψ(i). We obtain

ψ(i) =
φ(i+1)

φ(i)
=

p2((1− p)N−S− i)((1− p)(N−T )+S− i)
(1− p)2(pN + i+1)(p(N−T )+ i+1)

=

(
1− S+i

(1−p)N

)(
1+ S−i

(1−p)(N−T )

)
(

1+ i+1
pN

)(
1+ i+1

p(N−T )

) , (82)

and so ψ is a decreasing function of i. By noting that ex−x2 ≤ (1+ x)≤ ex, for x≥−1
2 , we

can bound ψ for i = o(p(1− p)N) between

exp

(
pST − (2N−T )(i+1− p)

p(1− p)N(N−T )
−
(

S+ i
(1− p)N

)2

−
(

S− i
(1− p)(N−T )

)2
)

and

exp

(
pST − (2N−T )(i+1− p)

p(1− p)N(N−T )
+

(
i+1
pN

)2

+

(
i+1

p(N−T )

)2
)
.
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Substituting in i =± pS
2 , we get that

ψ(
pS
2
) < exp

(
−
(

(2N−3T )S
2(1− p)N(N−T )

)
(1+o(1))

)
< exp

(
− (2N−3T )S

4(1− p)N(N−T )

)
< 1− S

3(1− p)N
(83)

and

ψ(− pS
2
) > exp

((
(2N +T )S

2(1− p)N(N−T )

)
(1+o(1))

)
> exp

(
(2N + t)S

4(1− p)N(N−T )

)
> 1+

S
3(1− p)N

. (84)

Therefore ψ is greater than 1 at i = pN− pS
2 and less than 1 at i = pN + pS

2 . Consequently,

the maximum value of φ occurs between these two values.

We have that

φ(i) = P(Z1 = µ1 + pS+ i)P(Z′2 = µ′2 + pS− i),

where Z′2 = N +S−T −Z2 = B(N +S−T,(1− p)) with mean µ′2 and variance (σ′2)
2. By

Corollary 5.4.7 we get that

φ(i)<
1

2πσ1σ′2
exp
(
−(pS+ i)2(N +S−T )+(pS− i)2(N−S)

2p(1− p)(N−S)(N +S−T )
+o(1)

)
,

for |i| ≤ pS
2 . This is maximized when i = pST−2pS2

2N−T and there takes the value

1
2πp(1− p)N

exp
(
− pS2((2N−T )2− (T −2S)2)

2(1− p)(N−S)(N +S−T )(2N−T )
+o(1)

)
=

1
2πp(1− p)N

exp
(
− 2pS2

(1− p)(2N−T )
+o(1)

)
. (85)

66



We also obtain the bounds

φ(
pS
2
) <

1
2p(1− p)πN

exp
(
− pS2(10N +8S−9T )

8(1− p)(N−S)(N +S−T )
+o(1)

)
<

1
2p(1− p)πN

exp
(
− 9pS2

8(1− p)N

)
(86)

and

φ(
−pS

2
) <

1
2p(1− p)πN

exp
(
− pS2(10N−8S−T )

8(1− p)(N−S)(N +S−T )
+o(1)

)
<

1
2p(1− p)πN

exp
(
− 9pS2

8(1− p)N

)
(87)

Putting this all together we obtain

P(Z1 = Z2 = pT ) < pSmax
i

φ(i)+
1

1−ψ( pS
2 )

φ(
pS
2
)+

ψ(−pS
2 )

ψ(−pS
2 )−1

φ(
−pS

2
)

<
S

2π(1− p)N
exp
(
− 2pS2

(1− p)(2N−T )
+o(1)

)
+

3
pπS

exp
(
− 9pS2

8(1− p)N

)
(88)

�

We end with some propositions about the number of edges in and between sets in

G(n, p).

Proposition 5.4.14. Suppose that p(1− p)n = ω(n). If n is large enough, then for all

t > n
5 we have that with probability at least 1−4−t , every set in G(n, p) of size t has at

most p
(t

2

)
+2t

√
p(1− p)t edges.

Proof. The expected number of sets of size t with more than p
(t

2

)
+2t

√
p(1− p)t edges is

(
n
t

)
P
(

B
((

t
2

)
, p
)
≥ p
(

t
2

)
+2t

√
p(1− p)t

)
.
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By Lemma 5.4.10 and the fact that
(n

t

)
≤ (en

t )
t , this expectation is at most

(5e)t exp

− 4p(1− p)t3

2p(1− p)
(t

2

)
+

4t
√

p(1−p)t
3

 .

As
√

p(1− p)t = ω(n), we have that if n is large enough, then for all t > n
5 we have

2p(1− p)
(

t
2

)
+

4t
√

p(1− p)t
3

≤ 1.001p(1− p)t2.

Substituting this in we have that the expected number of sets of size t with more than

p
(t

2

)
+2t

√
p(1− p)t edges is at most,

exp
(

t(log5+1)− 4p(1− p)t3

p(1− p)t2 (1+o(1))
)
< 4−t .

�

Proposition 5.4.15. Suppose that p(1− p)n = ω(n). If n is large enough then for all t in

the range n
5 < t ≤ n

2 we have that with probability at least 1−4−t every set in G(n, p) of

size t has at least pt(n− t)−3t
√

p(1− p)(n− t) edges between it and its complement.

Proof. The expected number of sets T of size t with less than

pt(n− t)−3t
√

p(1− p)(n− t) edges between T and [n]\T is

(
n
t

)
P
(

B(t(n− t),(1− p))≥ (1− p)t(n− t)+3t
√

p(1− p)(n− t)
)
.

By Lemma 5.4.10 and the fact that
(n

t

)
≤ (en

t )
t , this expectation is at most

(5e)t exp

− 9p(1− p)t2(n− t)

2p(1− p)t(n− t)+ 4t
√

p(1−p)(n−t)
3

 .

As
√

(n− t)p(1− p) = ω(n), we have that if n is large enough, then for all t in the
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range n
5 < t ≤ n

2 ,

2p(1− p)t(n− t)+
4t
√

p(1− p)(n− t)
3

≤ 9
2

p(1− p)t(n− t).

Substituting this in we have that the expected number of sets T with a small number

of edges between T and [n]\T is

exp
(

t(log5+1)− 9t
2
(1+o(1))

)
< 4−t .

�

Proposition 5.4.16. Suppose that p(1− p)n≥ 4logn. If n is large enough, then for all

t ≤ n
5 we have that with probability at least 1−n−

t
120 , for every set T in G(n, p) of size t

there are at least twice as many edges between T and [n]\T as there are in T .

Proof. The expected number of sets T of size t such that there are less than twice as many

edges between T and [n]\T as there are in T is

(
n
t

)
P
(

B(t(n− t), p)< 2B
((

t
2

)
, p
))

.

We can rewrite this as,

(
n
t

)
P
(

2B
((

t
2

)
, p
)
− pt(t−1)−B(t(n−t), p)+ pt(n−t)> pt(n−2t+1)

)
.

By Lemma 5.4.10, this is at most

(
n
t

)
exp

(
− (pt(n−2t +1))2

2p(1− p)t(n+ t−2)+ 4pt(n−2t−1)
3

)
. (89)
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For t < n
24 , using the inequality

(n
t

)
≤ nt we have that the quantity in (89) is at most

nt exp

(
−

pt(11n
12 )

2

10n
3

)
< n−

t
120 .

For t ≥ n
24 , using the inequality

(n
t

)
≤
(en

t

)t we have that the quantity in (89) is less

than, (en
t

)t
exp

(
−

pt(3n
5 )

2

10n
3

)
<

(
24e

n
2
5

)t

< n−
t

120 .

�

Corollary 5.4.17. Suppose that pn≥ logn. If n is large enough, then for all t satisfying

n
24
25 ≤ t ≤ n

5 , we have that with probability at least 1−n
−t
120 , for every set T in G(n, p) of

size t, there are at least twice as many edges between T and [n]\T than there are in T .

Proof. By the exact same reasoning as in Proposition 5.4.16 the expected number of sets

T of size t with less than twice as many edges between T and [n]\T than there are in T is

at most (en
t

)t
exp

(
−

pt
(3n

5

)2

10n
3

)
<

(
e

n
17
250

)t

< n−
t

120 .

�

Proposition 5.4.18. For every fixed ε and p≥ (1+ε) logn
n with high probability the minimal

degree of G(n, p) is greater than 8.

Proof. The expected number of vertices with degree at most 8 is equal to

nP(B(n−1, p)≤ 8) = n
8

∑
i=0

(
n−1

i

)
pi(1− p)n−1−i

≤ n

((
n−1

8

)
p8(1− p)n−9

(
1+

9(1− p)
p(n−9)

+

(
9(1− p)
p(n−9)

)2

+ . . .

))

≤ 9n9

8!
p8(1− p)n−9. (90)
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These inequalities follow as maxi≤8P(B(n−1, p) = i) occurs when i = 8 and so

P(B(n−1, p)≤ 8)≤ 9P(B(n−1, p) = 8). The last line of (90) is maximised over

0≤ p≤ 1 when p
8 = 1−p

n−9 , that is when p = 8
n−1 . So for p in our range, (90) is maximised

when p = (1+ε) logn
n . Therefore

nP(B(n−1, p)≤ 8) ≤ 9n9(1+ ε)8(logn)8

8!n8 e−
(n−9)(1+ε) logn

n

≤ (logn)8

nε
. (91)

�

Proposition 5.4.19. Suppose that (1+ ε) logn≤ pn≤ 5logn. If n is large enough, then

for all t satisfying t ≤ n
29
30 , we have that with probability at least 1−n−

t
120 , every set in

G(n, p) of size t has at most 2t edges.

Proof. The expected number of sets T in G(n, p) of size t with at least 2t edges is

(
n
t

)
P
(

B
((

t
2

)
, p
)
≥ 2t

)
=

(
n
t

) n

∑
i=2t

((t
2

)
i

)
pi(1− p)(

t
2)−i (92)

By carefully bounding the summands in (92) for i = 2t and i = 2t +1, we shall get a

good bound on the total sum.

((t
2

)
2t

)
p2t(1− p)(

t
2)−2t <

(
ep(t−1)

4

)2t

<

(
5et logn

4n

)2t

.

We also obtain

( (t
2)

2t+1

)
p2t+1(1− p)(

t
2)−2t−1((t

2)
2t

)
p2t(1− p)(

t
2)−2t

=
p(
(t

2

)
−2t)

(1− p)(2t +1)
≤ pt <

1
2
.
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Therefore

(
n
t

)
P
(

B
((

t
2

)
, p
)
≥ 2t

)
≤

(
n
t

)
2
(

5et logn
4n

)2t

≤ 2
e3t25t(logn)2ttt

16tnt

≤
(

C(logn)2

n
1

30

)t

, (93)

and so the expected number of set T in G(n, p) of size t with at least 2t edges is at most

n−
t

120 . �
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