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ABSTRACT 

Assadollahi, Andrew Kary Mehdi. Ph.D. The University of Memphis. December 
2013. Minimization of Cost and CO2 Emissions for Rectangular Spread Footings 
Subjected to Biaxial Loading. Major Professor: Charles Camp, Ph.D. 

A Big Bang-Big Crunch (BB-BC) optimization algorithm was applied to the analysis 

and design of reinforced concrete spread footings subjected to concentric, uniaxial, and 

biaxial loading. For spread footings subjected to eccentric loading conditions, it is 

convenient to assume that the entire base of the footing remains in contact with the soil, 

resulting in a compressive bearing pressure distribution. However, this assumption does 

not accurately describe the nature of the bearing pressure distribution. Analysis 

procedures for spread footings subjected to eccentric loading conditions that allow 

uniaxial and biaxial uplift were developed. From these formulations, an analysis chart of 

the bearing pressure surface equations for one, two, and three footing corners detached 

was developed to determine percentages of detachment along the edges of a spread 

footing that is subjected to biaxial uplift.  

In addition to assuming that the entire footing base remains in compression, it is 

common to make several other simplifying assumptions when designing spread footings 

subjected to uniaxial and biaxial loading. A BB-BC optimization algorithm is applied in 

order to compare spread footing designs based upon theoretical analysis procedures and 

designs based upon simplifying assumptions.  

Since cost has always been an integral part of engineering design and CO2 emissions 

are becoming of greater concern, a multi-objective optimization was utilized to develop 

relationships between cost and CO2 emissions associated with the design of reinforced 

spread footings subjected to concentric, uniaxial, and biaxial loading.  
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CHAPTER 1 

INTRODUCTION 

Reinforced concrete spread footings are one of the most common geo-structures in 

engineering practice. In the analysis and design of spread footings, the interaction 

between the soil and the reinforced concrete poses many challenges to the designer: the 

footing must safely and reliably support the superstructure, provide stability against soil 

bearing capacity failure and excessive settlement, and limit the stresses in the concrete. In 

addition to these design objectives, there are many requirements that a reinforced spread 

footing must satisfy: it must have sufficient shear and moment capacities in both of the 

plan dimensions, the bearing capacity of the concrete cannot be exceeded, and the 

configuration of the steel reinforcement must meet all building code requirements. 

Uniaxial loading occurs on a spread footing when the applied force acts through a 

point displaced from the center along one of the principal axes, or if there is a moment 

load applied to the footing. The eccentricity is the perpendicular distance from the center 

of the footing to the applied load. For a moment loading, the equivalent eccentricity is 

calculated as the applied moment divided by the applied vertical column load. Biaxial 

loading occurs when the applied force acts through a point displaced from the center 

along both of the principal directions. In this case, there are two eccentricity values, 

which are the perpendicular distances from the center of the footing to the applied load. 

For moment loading; there are two applied moments, each about one of the principal 

axes. When designing a spread footing with eccentric loading, it is convenient and typical 

for the entire base of the footing to be in compression.  
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Economical design is essential in the practice of engineering. However, a detailed 

method for developing low-cost designs of reinforced concrete spread footings is 

relatively new (Wang and Kulhawy 2008, Wang 2009, and Khajehzadeh et al. 2011). In 

addition, there has been no investigation into the development of low-cost and low-CO2 

emission designs that consider both the geotechnical and structural limit states.  

According to the United Nations Intergovernmental Panel on Climate Change 

(UNIPCC 2007), there has been a significant increase in the build-up of global 

greenhouse gases (GHG) in the atmosphere due to human activities since the pre-

industrial times. The production of Portland cement, the principal binder used in 

concrete, is responsible for large emissions of carbon dioxide (CO2) (Mehta 2002). Due 

to increased demand for concrete products and structures, the carbon footprint of the 

cement industry almost doubled between 1990 and 2005 (Mehta 2009). As a result of the 

concerns of the increased levels of GHG, design and construction methods have moved 

towards more sustainable materials, designs, and construction practices. With the variety 

and number of concrete structures in the world, consideration of the impacts of CO2 

emissions on their design is both a suitable and prudent area of research.  

In practice, simplifying and conservative assumptions for the analysis of spread 

footings are made which yield over-designed results. If cost or the emission of CO2 is not 

a concern; that is, if they are negligible compared to the cost or CO2 emissions of the 

entire project, then using simplifying design assumptions is acceptable. However, if the 

material and construction costs or CO2 emissions of the spread footing are not considered 

negligible, then using simplifying design assumptions which not only yields over-
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designed footings, but also leads to inflated costs or CO2 emissions, may not be 

acceptable. 

To analyze and design a reinforced concrete spread footing while minimizing cost or 

CO2 emissions, optimization algorithms may be employed. Big Bang-Big Crunch (BB-

BC) has been shown to be a computationally efficient heuristic method to solve a variety 

of optimization problems. The most powerful concept proposed by Erol and Eksin (2006) 

in their original BB-BC algorithm involved exploiting the power of the mean. 

Historically, Galton (1907) proposed that the average or weighted-average of a group of 

estimates can be remarkably accurate. Erol and Eksin (2006) coupled the Galtonian 

principle of the accuracy of the mean with an abstract model of the lifecycle of the 

universe to develop the BB-BC algorithm.  

The BB-BC algorithm has been shown to outperform many other evolutionary 

methods in a variety of optimization problems. Erol and Eksin (2006) established that a 

simple BB-BC algorithm can outperform enhanced and classic genetic algorithms (GA) 

for many benchmark optimization functions. Camp (2007) and Kaveh and Talatahari 

(2009 and 2010) proposed hybrid forms of the BB-BC algorithm to solve structural 

engineering optimization problems. Results indicated that these hybrid BB-BC 

algorithms improved both the quality of the optimization and its computational efficiency 

when compared to published solutions generated by GA and ant colony optimization 

(ACO).  

While there is little research on optimization of spread footings, the literature has 

numerous studies on optimizing the design of reinforced concrete structures. For 

example, Sarma and Adeli (1998) present a comprehensive review of papers on cost 
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optimization of concrete structures. Coello et al. (1997), Rafiqa and Southcombea (1998), 

Rajeev and Krishnamoorthy (1998), Camp et al. (2003), Lee and Ahn (2003), Lepš and 

Šejnoha (2003), Sahaba et al. (2004), Govindaraj and Ramasamy (2005), Kwak and Kim 

(2008, 2009), and Camp and Huq (2013) all applied various types of GAs to the cost 

optimization of reinforced concrete structures. Paya et al. (2008), Perea et al. (2008), and 

Paya-Zaforteza et al. (2009) optimized reinforced concrete structures using simple and 

hybrid simulated annealing (SA) algorithms. Camp and Akin (2012) used a hybrid BB-

BC algorithm to develop low-cost retaining wall designs and Villalba et al. (2010) 

optimized reinforced concrete retaining walls for CO2 emissions using SA. Yepes et al. 

(2012) developed an innovative hybrid multistart optimization strategic method based on 

a variable neighborhood search threshold acceptance strategy to optimize reinforced 

concrete retaining walls for cost and CO2 emissions. 
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CHAPTER 2 

OBJECTIVES 

Since the design of spread footings is a common practice among geotechnical and 

structural engineers; the optimization of spread footings subjected to concentric and 

eccentric loads is a prudent area of research. When designing a spread footing due to 

eccentric loading, it is typical and convenient that the entire base of the footing be in 

compression. By designing a spread footing such that the footing base is in full 

compression, the footing will typically be much larger than what is required to satisfy all 

of the geotechnical and structural service and ultimate limit states. In an effort to design 

smaller, yet adequate spread footings, there has been some limited research on uniaxial 

and biaxial uplift (Highter and Anders 1985, Irles and Irles 1994, Wilson 1997, 

Rodriguez-Gutierrez and Aristizabal-Ochoa 2012). In addition, knowledge of the soil 

pressure distribution for spread footings subjected to uplift may be necessary to evaluate 

an existing footing in which the original loading pattern has been modified. Therefore, 

the first objective of this research is to develop analysis procedures for reinforced 

concrete spread footings which are subjected to uniaxial and biaxial uplift.     

In all fields of engineering, the comparison of theoretical analysis procedures with 

simplified analysis procedures is an important discussion among engineers. In practice, 

many simplifying design assumptions are made that can yield over-designed, 

conservative results. However, many of these simplifying assumptions may not be 

necessary and often lead to inflated costs and increased CO2 emissions. A second 

objective of this research is to compare spread footing designs, subjected to eccentric 
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loading, using the developed theoretical analysis procedures with designs based on 

simplifying assumptions, commonly used in practice, using optimization techniques.  

Economical designs have always been important to engineers, with concerns about 

the impacts of GHGs, reducing CO2 emissions is becoming a valid objective in 

engineering design. The third objective of this research is to study of the relationship 

between cost and CO2 emissions by applying the optimization procedure to a multi-

objective fitness function. 
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CHAPTER 3 

GEOMECHANICS 

Biaxial eccentric loading is encountered when an applied force acts through a point 

displaced from the center of the footing along both of the principal directions or there are 

two applied moments, each about one of the principal axes. Uniaxial eccentric loading 

occurs if a force acts through a point displaced from the center of the footing along only 

one of the principal directions or there is one applied moment. In this research the spread 

footings is assumed to be perfectly rigid and the soil is assumed to be homogeneous, 

uniform, isotropic, cohesionless, and behave linear-elastically. Since the spread footing is 

assumed to be rigid, the distribution of the subgrade reaction is independent of the degree 

of compressibility of the subgrade. During eccentric loading, a non-uniform bearing 

pressure distribution is produced. If there are no eccentricities or applied moments, the 

loading condition is concentric and a uniform bearing pressure distribution occurs. All 

procedures developed in this research are based on the assumption that the ground water 

table is located well below the foundation.  

Two eccentric loading conditions are considered: eccentricities within and outside of 

the kern of the footing. The kern area of a rectangular cross section is defined as the area 

in which a load is applied such that no tensile stresses develop. If a load is applied outside 

of the kern; one, two, or three corners of the cross section will develop tensile stresses. 

For the application of spread footings, it is assumed that tensile stresses are not 

transmitted to the soil from the footing. Because of this, when there is loading on a spread 

footing outside of the kern area, detachment of the footing from the soil will occur.  
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Meyerhof (1953) developed the effective area method for the analysis of spread 

footings due to biaxial bending. Teng (1962) developed an analysis chart with 

accompanying equations to evaluate the four corner bearing pressures for footings 

subjected to biaxial uplift. Highter and Anders (1985) developed another effective area 

method along with a set of design charts for the analysis of footings subjected to biaxial 

uplift. Irles and Irles (1994) developed analytical solutions for finding the percentage of 

the dimensions of footings that become detached during biaxial uplift by geometrically 

modeling the bearing pressure distribution. Wilson (1997) modeled the bearing pressure 

distribution beneath a footing experiencing biaxial uplift using planar geometric solids. 

The focus of this chapter is the development of equations to model the bearing pressure 

distribution beneath a rectangular footing subjected to eccentric loading in which one, 

two, or three corners become detached from the soil. In addition to governing equations, 

an analysis chart is developed for the determination of the corner bearing pressures when 

uplift occurs. 

3.1 Biaxial Loading 

Figure 1 shows a schematic of a spread footing subjected to biaxial loading where the 

origin is taken to be the center of the footing and the applied force is P, the length of the 

footing is L, the width is B, the eccentricity along the x-axis is ex, and the eccentricity 

along the y-axis is ey. Due to symmetry, only positive eccentricities are considered. 
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Figure 1. Spread Footing Subjected to Biaxial Loading. 

 

When a footing is subjected to biaxial loading and there is no detachment of the soil 

(the entire bearing surface is in compression), the well-known bending formula is applied 

to determine the bearing stresses at the four corners of the footing as 

  

[1 4]
x y y x

x y

M c M cP
q

BL I I     (1)

 

where Mx is the moment about the x-axis, Ix is the moment of inertia about the x-axis, cy is 

half of the footing width, My is the moment about the y-axis, Iy is the moment of inertia 

about the y-axis, and cx is half of the footing length. Substituting values for the moment 

of inertia terms, defining the moment about the x-axis as Pey, and defining the moment 

about the y-axis as Pex yields: 

 

[1 4]

6 6
1 y x

e eP
q

BL B L

 
   

 
 (2)
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The locations of P that cause the minimum corner pressure, q1, to become zero define 

the portion of the kern boundary for positive eccentricities. The minimum bearing 

pressure, q1, is given by: 

 

1

6 6
1 y x

e eP
q

BL B L

 
   

 
 (3)

 

When Equation (3) equals zero, the kern boundary is: 

 

6 6
1y x

e e

B L
   

(4)

 

Therefore, when the left side of Equation (4) is larger than 1, a portion of the footing 

will become detached from the soil, assuming that the soil cannot support tension, and 

Equation (1) is no longer applicable for determining the bearing pressures at the four 

corners of the footing. 

Analytical solutions for the case of biaxial uplift will be based upon the formulation 

for a rectangular element with associated interpolation functions. The choice of a 

rectangular element formulation is made because the analysis of only rectangular spread 

footings is considered in this research. Figure 2 shows a general rectangular element. 
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Figure 2. Rectangular Element. 

 

For the purposes of this research, the initial point shown in Figure 2 will be taken as 

the origin, located at the center of the element. For the application of spread footings, 

there are four degrees of freedom, one for each node, which are designated by the four 

corner bearing stresses, q1, q2, q3, and q4. The general rectangular interpolation functions 

Ni are:  
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   
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N x y

x x y y
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x x y y

x x y y

  
   
  
 

  
  

  
  
 

  
   

 (5)

 

Figure 3 shows plots of each rectangular interpolation function. 
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Figure 3. Plots of Interpolation Functions. 

 

The shapes of the interpolation functions are such that there is no curvature in the 

directions parallel to the sides of the element; however, there is a twist in each of the 

plots for Ni(x, y) that is caused by the bilinear xy term. This model fits the description of 

the assumed bearing pressure distribution beneath a rectangular spread footing subjected 

to biaxial loading.  

In order to develop a relationship for the bearing pressure surface beneath a 

rectangular  spread footing, first the four corner stresses qj are defined as a column vector 

as: 
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1

2

3

4

j

q

q
q

q

q

 
 
 
 
 
 

 (6)

 

The geometric boundary conditions of a rectangular spread footing are defined by the 

coordinates (x1,y1), (x2,y2), (x3,y3), (x4,y4) as: 

 

 

 

 

 

1 1

2 2

3 3

4 4

, ,
2 2

, ,
2 2

, ,
2 2

, ,
2 2

L B
x y

L B
x y

L B
x y

L B
x y

    
 
   
 
   
 
   
 

 (7)

 

Substituting the boundary conditions given by Equation (7) into the shape function 

formulations given in Equation (5) defines the spread footing geometry in terms of the 

rectangular element shape functions. This is given as: 

 

2 2

2 21
( , )

2 2

2 2

i

L B
x y

L B
x y

N x y
BL L B

x y

L B
x y

          
       
   
       
   
       
   

 (8)
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 The superposition of the four corner stresses with the shape functions defines the bearing 

pressure surface beneath a rectangular spread footing and is achieved by performing the 

following operation: 

 

   , ,T
j iq x y q N x y  (9)

 

Evaluating the vector multiplication in Equation (9) gives the general relationship for the 

bearing pressure surface beneath a rectangular spread footing as: 

 

  1 2

3 4

,
2 2 2 2

2 2 2 2

q qB L B L
q x y y x y x

BL BL

q qB L B L
y x y x

BL BL

               
     
               
     

 (10)

 

During uniaxial loading, the bilinear xy terms cancel and Equation (10) simplifies to a 

planar surface. For uniaxial loading along the positive x-axis, q2 = q3 and q1 = q4. If 

uniaxial loading is along the positive y-axis, q3 = q4 and q1 = q2. For the case of 

concentric loading, the four corner pressures are equal and all of the variable terms 

cancel, resulting in Equation (10) being constant.  

Since a rectangular spread footing is symmetric, the load P may fall in any of the four 

quadrants of the footing. Figure 4 shows a rectangular spread footing with the load P 

having positive eccentricities. For loading within the other three quadrants, the kern 

boundary is developed in a similar manner. The kern is the diamond-shaped area bounded 

by four linear relationships. 
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Figure 4. Spread Footing with Load in Quadrant I. 

 

Depending on where the load is located with respect to the kern boundary, only Corner 1 

may become detached (Case 1), Corners 1 and 4 may become detached (Case 2), Corners 

1 and 2 may become detached (Case 3), or Corners 1, 2, and 4 may become detached 

(Case 4). Different sets of boundary conditions are applied to Equation (10) for each of 

the four cases of biaxial uplift.   

3.1.1 Uplift – case 1 

Figure 5 shows a spread footing in which Corner 1 has become detached from the 

soil, where α and β are the percentages of detachment of the L and B dimensions, 

respectively.  
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Figure 5. Footing with One Corner Detached. 

 

Assuming that the intersection of the bearing pressure surface and the footing is linear, 

the line of zero bearing pressure can be expressed in two forms: 

 

( )
2 2

 

      

 
B L B

y x x L
L

 (11)

( )
2 2

 

      

 
L B L

x y y L
B

 (12)

 

From this linear relationship, three boundary conditions are developed. Two of the 

boundary conditions are developed from the points of intersection of the line of zero 

bearing pressure and the sides of the footing: 
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2 2

L B
q L    
 

 (13)
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The third is developed from the line of zero bearing pressure itself: 

 

  , 0q x y x   (15)

 

By applying Equations (13), (14), and (15) to Equation (10); the following three 

relationships are derived: 

 

2 1

1
1q q


   
 

 (16)

4 1

1
1q q


 

  
 

 (17)

3 1

1 1
1q q

 
 

   
 

 
(18)

 

Substituting Equations (16), (17), and (18) into Equation (10) the bearing pressure 

surface becomes: 

 

  1 1 1 1
1,

2 2

q q q q
q x y x y q

L B   
             

     
 (19)

 

From force equilibrium, the volume of the compressive bearing pressure distribution 

beneath the footing is equal to the applied load P. An expression for q1 in terms of the 

footing dimensions, α and β, is derived from the following integration:  
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 2 2 2

2 2 2 2

( , ) ( , )

L B L
L y x

L B L B

P q x y dy dx q x y dy dx




   

      (20)

 

Evaluating the integral in Equation (20) and rearranging terms yields: 

 

 1 2 2

6

6 3 3

P
q

BL


    




  
 (21)

 

Integral equations are also written for moment equilibrium. The volume of the bearing 

pressure distribution which has become detached from the soil is subtracted from the total 

volume of the bearing pressure distribution. For a comparison to Irles and Irles (1994), 

moment equilibrium along the bottom and left edge of the footing is taken. This is 

satisfied by the following integral: 

 

 2 2 2

2 2 2 2

( , ) ( , )
2 2 2

L B L
L y x

y
L B L B

B B B
P e q x y y dy dx q x y y dy dx




   

              
          (22)

 

Evaluating the integral in Equation (22) and rearranging terms yields: 

 

 2 2 3
1 12 8 6

2 24y

B LqB
P e

    



      
 

 
(23)
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Moment equilibrium along the left edge of the footing is satisfied by the following 

integral: 

 

 2 2 2

2 2 2 2

( , ) ( , )
2 2 2

L B L
L y x

x
L B L B

L L L
P e q x y x dy dx q x y x dy dx




   

              
          (24)

 

Evaluating the integral in Equation (24) and rearranging terms yields: 

 

 2 3 2
1 12 6 8

2 24x

BL qL
P e

    



      
 

 
(25)

 

Substituting Equation (21) into Equations (23) and (25) yields the following two 

relationships: 

 

 
2 3

2 2

8 6 12 1

24 3 3 6
ye

B

    
    
  

 
  

 (26)

 
3 2

2 2

6 8 12 1

24 3 3 6
xe

L

    
    
  

 
  

 (27)

 

Equations (26) and (27) are a system of nonlinear equations and are identical to those 

presented by Irles and Irles (1994) who used only properties of tetrahedrons. Figure 6 

shows a plot of Equations (26) and (27) for various values of α and β. If the load falls 

within this region, known as Region A; Corner 1 will become detached from the soil. 
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Figure 6. Biaxial Uplift – Region A. 

 

 

 

β =
 0.1 

β =
 0.2 

β =
 0.3 

β =
 0.4 

β =
 0.5 

β =
 0.6 

β =
 0.7 

β =
 0.8 

β =
 0.9 

β =
 1.0 

α = 1.0 

α = 0.9 

α = 0.8 

α = 0.7 

α = 0.6 

α = 0.5 

α = 0.4 

α = 0.3 

α = 0.2 

α = 0.1 



21 

By making some algebraic transformations, Equations (26) and (27) can be written as 

an eighth order polynomial p8(ν) of a single variable ν (Irles and Irles 1994). This is 

presented in this research as 

 

 

 
 
     

3 3 2 3
8

2 3 3 3

2 22 2 2

( ) 12 4 2 2 8 4 6 6

4 6 2 2 12 6 4 8

1 3 2 2

p A C A C AC AC AC

A A C AC A C AC

C A

         

       

 

        

       

    

 (28)

 

where 

  

4 yx
ee

A
L B

 
  

 
 (29)

x

y

e B
C

e L
  (30)

   
(31)

 

Equation (28) is an eighth order polynomial with up to eight real roots for a unique 

combination of ex  ⁄ L and ey  ⁄ B. Equation (31) represents real roots of Equation (28). 

However, since the roots of Equation (28) represent the product of the percentages of 

detachment along each dimension of the footing, only real roots in the range [0, 1] are of 

interest. Once the desired root ν is obtained, decimal values of α and β may be calculated 

using the following relationships (Irles and Irles 1994): 
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 
2

6 4

3 2

A A
u

A





  

    
 (32)

   
  

2 2

2

2 2 1

1 2

u C C

C

 




  


 
 

(33)

u    
(34)

 

 Numerically finding the appropriate root for Equation (28) can be very cumbersome. 

The bisection method is applied to Equation (28) to determine the appropriate root in [0, 

1], for a combination of ex  ⁄ L and ey  ⁄ B. Numerical studies have shown that for unique 

combinations of ex  ⁄ L and ey  ⁄ B, there may be either one or two real roots in [0, 1]. 

Figure 7 shows a plot of Equation (28) for a combination of ex  ⁄ L and ey ⁄ B inside 

Region A, yielding one root at ν = 0.3. 

 

 

Figure 7. Polynomial p8(ν) with One Root on [0,1]. 
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For this combination of ex  ⁄ L and ey ⁄ B; the value for A, given by Equation (29), is 

calculated as 1.2195. The value for C, given by Equation (30) is calculated as 0.82065. 

Utilizing Equation (32), the value for u is calculated as 1.1. The percentage of 

detachment along the B-face of the footing β is computed from Equation (33) as 48.4%. 

Using Equation (34), the percentage of detachment along the L-face of the footing α is 

61.6%. Both α and β are between 0% and 100%, which makes physical sense for this 

application. 

If there are two roots on the interval [0, 1], numerical studies have shown that the 

larger of the two roots produces a value for α or β that is larger than 1, which is 

meaningless for the application to spread footings. To show this, a combination of ex  ⁄ L 

and ey  ⁄ B inside Region A that produces two real roots on the interval [0, 1] will be 

evaluated. Figure 8 shows a plot of Equation (28) for a combination of ex  ⁄ L and ey ⁄ B 

inside Region A, yielding two real roots. The first root is approximately ν = 0.18 and the 

second is approximately ν = 0.72.  
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Figure 8. Polynomial p8(ν) with Two Roots on [0,1]. 

 

First, the root ν = 0.18 is considered. For this combination of ex  ⁄ L and ey  ⁄ B; the 

value for A, given by Equation (29), is calculated as 0.93502. The value for C, given by 

Equation (30) is calculated as 4.7801. Utilizing Equation (32), the value for u is 

calculated as 1.1. The percentage of detachment along the B-face of the footing β is 

computed from Equation (33) as 88.8%. Using Equation (34), the percentage of 

detachment along the L-face of the footing α is 21.1%. Both α and β are between 0% and 

100%, which makes physical sense for this application. 

Next, the root ν = 0.72 is considered. Since the values of ex  ⁄ L and ey  ⁄ B have not 

changed, the value for A remains 0.93502. The value for C is also unchanged and remains 

4.7801. Utilizing Equation (32), the value for u is calculated as 5.17. The percentage of 

detachment along the B-face of the footing β, computed from Equation (33) becomes 

425%. There is no need to perform any further calculations as this value does not make 

physical sense for the spread footing application.  
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For the unique case when ex  ⁄ L = ey  ⁄ B; it can be shown that α = β. Irles and Irles 

(1994) state that when Equations (26) and (27) are set equal, the resulting equation 

reduces to a fourth order, single variable polynomial. Irles and Irles (1994) do not present 

the fourth order polynomial but they discuss a general procedure for obtaining a closed 

form solution to this polynomial. By setting Equations (26) and (27) equal, a fourth order 

polynomial can be developed in terms of α only as: 

 

4 34 24 24
2 2 0x x xe e e

L L L
                 

     
 (35)

 

The analytical procedure that is presented by Irles and Irles (1994) is actually an 

incomplete combination of Ferrari’s Method and Cardano’s Method for solving third and 

fourth order polynomial equations. Although it is relatively easy to program the 

procedure for calculating the analytical solution of Equation (35), the analytical solution 

is extremely cumbersome to use in its general form for any ex  ⁄ L value. Therefore, a 

numerical root-finding method may be employed to find solutions to Equation (35) by 

varying the value of ex  ⁄ L. Figure 9 shows a plot of α versus ex  ⁄ L. The curve represents 

solutions to Equation (35) using the analytical procedure, while the scatter points 

represent solutions to Equation (35) obtained from the bisection method. 
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Figure 9. Percentage of Detachment α for Various Ratios ex  ⁄ L (Region A, α = β). 

 

The bisection method was chosen for its simplicity and because it will always locate the 

root of a function without using the function’s derivative. Values obtained using the 

bisection method are calculated with a tolerance of 10-10.  

3.1.2 Uplift – case 2 

Figure 10 shows a spread footing in which Corners 1 and 4 have become detached 

from the soil, where α and   are the percentages of detachment of the lower L and upper 

L dimensions, respectively.  
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Figure 10. Footing with Corners 1 and 4 Detached. 

 

Assuming that the intersection of the bearing pressure surface and the footing is linear, 

the line of zero bearing pressure can be expressed in two forms: 

  

 
( )

2 2


 
       

B L B
y x x L

L
 (36)

 
( )

2 2

 


      
 

L B L
x y y L

B
 

(37)

 

From this linear relationship, three boundary conditions are developed. Two of the 

boundary conditions are developed from the points of intersection of the line of zero 

bearing pressure and the sides of the footing: 

 

, 0
2 2

L B
q L   
 

 (38)
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, 0
2 2

L B
q L    
 

 
(39)

 

The third boundary condition is developed from the line of zero bearing pressure as: 

 

  , 0q x y y   (40)

 

By applying Equations (38), (39), and (40) to Equation (10), the following three 

relationships are derived: 

 

3 4

1
1q q


 

  
 

 (41)

2 1

1
1q q


   
 

 (42)

1 4q q



 
  

 
 

(43)

 

Substituting Equations (41), (42), and (43) into Equation (10), the bearing pressure 

surface becomes:
  

 

     4 2 2 1
,

2

q Bx L y BL
q x y

BL

   


         
(44)
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From force equilibrium, the volume of the compressive bearing pressure distribution 

beneath the footing is equal to the applied load P. An expression for q4 in terms of the 

footing dimensions, α and  , is derived from the following integration:  

 

2 2

2

( , )

B L

B x y

P q x y dx dy


    (45)

 

Evaluating the integral in Equation (45) and rearranging yields: 

 

 4 2 2

6

3 3 3

P
q

BL


    




    
 (46)

 

Integral equations are also written for moment equilibrium along the bottom and left 

edges of the footing. Moment equilibrium along the bottom edge of the footing is 

satisfied by the following integral: 

 

 

2 2

2

( , )
2 2

B L

y
B x y

B B
P e q x y y dx dy



        
      (47)

 

Evaluating the integral in Equation (47) and rearranging terms yields: 

 

 2 2 2
4 3 4 8 2 6

2 24y

B LqB
P e

    



        
 

 
(48)

 

Moment equilibrium along the left edge of the footing is satisfied by the following 

integral: 
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 

2 2

2

( , )
2 2

B L

x
B x y

L L
P e q x y x dxdy



        
      (49)

 

Evaluating the integral in Equation (49) and rearranging terms yields: 

 

 2 2 2 3 3
4 6 6 8

2 24x

BL qL
P e

      



         
 

 
(50)

 

Substituting Equation (46) into Equations (48) and (50) yields the following two 

relationships: 

 

 
2 2

2 2

2 2

4 3 3 3
ye

B

   
    

  
 

    
 (51)

 
2 2 2 3 2 3

2 2

2 2 2 2

4 3 3 3
xe

L

       
    

      


    
 

(52)

 

Figure 11 shows Equations (51) and (52) plotted for various values of α and . If the 

load falls within this region, known as Region B; Corners 1 and 4 will become detached 

from the soil. Entering Figure 11 with ex  ⁄ L and ey  ⁄ B, α and   may be obtained 

graphically.  
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Figure 11. Biaxial Uplift – Region B. 

 

Irles and Irles (1994) provide a procedure to solve for α and γ explicitly, knowing 

e x ⁄ L and e y  ⁄B. They define the variables μ and δ as:  

 

2 4 ye

B
    (53)

28 3 12 3 8

12 6

  



   




 
(54)

 

Using Equation (54), the percentages of detachment   and α are: 

 

 
 

33

44
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1 4

2 1
xe

L

 
 

 

     
   

 (55)
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  1
1 1 1 


     
 

 
(56)

 

Although the procedure presented by Irles and Irles (1994) to solve for α and γ is 

powerful, it is not applicable for the uniaxial case of ey  ⁄ B = 0, since this produces a zero 

value in the denominator of Equation (54). However, the graphical solution may be 

utilized for both the biaxial and uniaxial cases.  

3.1.3 Uplift – case 3 

Figure 12 shows a spread footing in which Corners 1 and 2 have become detached 

from the soil, where β and η are the percentages of detachment of the left B and right B 

dimensions, respectively.  

 

 

Figure 12. Footing with Corners 1 and 2 Detached. 

 

Assuming that the intersection of the bearing pressure surface and the footing is linear, 

the line of zero bearing pressure can be expressed in two forms: 
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 
( )

2 2

 


      
 

B L B
y x x B

L
 (57)

 
( )

2 2


 
       

L B L
x y y B

B
 

(58)

 

From this linear relationship, three boundary conditions are developed. Two of the 

boundary conditions are developed from the points of intersection of the line of zero 

bearing pressure and the sides of the footing: 

 

, 0
2 2

L B
q B    
 

 (59)

, 0
2 2

L B
q B   
 

 
(60)

 

The third boundary condition is developed from the line of zero bearing pressure as: 

 

  , 0q x y y  (61)

 

By applying Equations  (59), (60), and (61) to Equation (10), the following three 

relationships are derived: 

 

4 1

1
1q q


 

  
 

 (62)
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3 2

1
1q q


 

  
 

 (63)

1 2q q



 
  

 
 

(64)

 

Substituting Equations (62), (63), and (64) into Equation (10), the bearing pressure 

surface becomes: 

 

     2 2 2 1
,

2

q B x Ly BL
q x y

BL

   


         
(65)

 

From force equilibrium, the volume of the compressive bearing pressure distribution 

beneath the footing is equal to the applied load P. An expression for q2 in terms of the 

footing dimensions, α and  , is derived from the following integration:  

 

2 2

( )
2

( , )

L B

L y x

P q x y dy dx


    (66)

 

Evaluating the integral in Equation (66) and rearranging terms yields: 

 

 2 2 2

6

3 3 3

P
q

BL


    




    
 (67)
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Integral equations are also written for moment equilibrium along the bottom and left 

edges of the footing. Moment equilibrium along the bottom edge of the footing is 

satisfied by the following integral: 

 

2 2

( )
2

( , )
2 2

L B

y
L y x

B B
P e q x y y dy dx



        
      (68)

 

Evaluating the integral in Equation (68) and rearranging terms yields: 

 

 2 2 2 3 3
2 6 6 8

2 24y

B LqB
P e

      



         
 

 
(69)

 

Moment equilibrium along the left edge of the footing is satisfied by the following 

integral: 

 

2 2

( )
2

( , )
2 2

L B

x
L y x

L L
P e q x y x dy dx



        
      (70)

 

Evaluating the integral in Equation (70) and rearranging terms yields: 

 

 2 2 2
2 3 4 8 2 6

2 24x

BL qL
P e

    



        
 

 
(71)
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Substituting Equation (67) into Equations (69) and (71) yields the following two 

relationships: 

 

 
2 2 2 3 2 3

2 2

2 2 2 2

4 3 3 3
ye

B

       
    

      


    
 (72)

 
2 2

2 2

2 2

4 3 3 3
xe

L

   
    

  
 

    
 

(73)

 

Figure 13 shows Equations (72) and (73) plotted for various values of β and η. If the 

load falls within this region, known as Region C, Corners 1 and 2 will become detached 

from the soil. Entering Figure 11 with ex  ⁄ L and ey  ⁄ B, β and η may be obtained 

graphically. 
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Figure 13. Biaxial Uplift – Region C. 
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Irles and Irles (1994) provide a procedure to solve for β and η explicitly, knowing  

ex  ⁄ L and ey ⁄ B. They define the variables μ and δ as: 

 

2 4 xe

L
    (74)

28 3 12 3 8

12 6

  



   




 (75)

 

Using Equation (75), the percentages of detachment γ and β are: 

 

 
 

33

44

14
1

2 1
y

B
e

B

 
 

     
   

 (76)

  1
1B B 


    
 

 
(77)

 

Although the procedure presented by Irles and Irles (1994) to solve for β and η is 

powerful, it is not applicable for the uniaxial case of ex  ⁄ L = 0, since this produces a zero 

value in the denominator of Equation (75). However, the graphical solution may be 

utilized for both the biaxial and uniaxial cases.  

3.1.4 Uplift – case 4 

Figure 14 shows a spread footing in which Corners 1, 2, and 4 are detached from the 

soil, where γ and η are the percentages of detachment of the L and B dimensions, 

respectively.  
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Figure 14. Footing with Corners 1, 2, and 4 Detached. 

 

Assuming that the projection of zero bearing is linear, the line of zero bearing 

pressure can be expressed in two forms: 

 
 

( )
2 2

 


            

B B L B
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L L
 (78)

( )
2 2

 


         

L L B L
x y y L

B B
 

(79)

 

Three boundary conditions are developed. Two of the boundary conditions define the 

points of intersection of the line of zero bearing pressure along the sides of the footing as:
  

 

, 0
2 2

L B
q L   
 

 (80)

, 0
2 2

L B
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(81)
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The third boundary condition is developed from the line of zero bearing pressure as: 

 

  , 0q x y x   (82)

 

By applying Equations (80), (81), and (82) to Equation (10), the following three 

relationships are derived: 

 

4 3 1
q q




 
   

 (83)

2 3 1
q q



 

   
 (84)

1 3

1

1
q q


  

 
     

 
(85)

 

Substituting Equations (83), (84), and (85) into Equation (10), the bearing pressure 

surface becomes: 

 

        
3 3

3

2
,

1 1 2 1 1

q q
q x y x y q

L B

  
   

      
                    

 (86)
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From force equilibrium, the volume of the compressive bearing pressure distribution 

beneath the footing is equal to the applied load P. An expression for q3 in terms of the 

footing dimensions, α and β, is derived from the following integration:  

 

 

2 2

2

( , )

L B

L y xL

P q x y dy dx




    (87)

 

Evaluating the integral in Equation (87) and rearranging terms yields: 

 

   3

6

1 1

P
q

L B 


 
 (88)

 

Integral equations are also written for moment equilibrium along the upper and right 

edges of the footing. Moment equilibrium along the upper edge of the footing is satisfied 

by the following integral: 

 

 

2 2

2

( , )
2 2

L B

y
L y xL

B B
P e q x y y dy dx




        
      (89)

 

Evaluating the integral in Equation (89) and rearranging terms yields: 

 

    2

31 1

2 24y

L B qB
P e

     
 

 
(90)
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Moment equilibrium along the right edge of the footing is satisfied by the following 

integral: 

 

 

2 2

2

( , )
2 2

L B

x
L y xL

L L
P e q x y x dy dx




        
      (91)

 

Evaluating the integral in Equation (91) and rearranging terms yields: 

 

    2

31 1

2 24x

L BqL
P e

     
 

 
(92)

 

Substituting Equation (88) into Equations (90) and (92) yields the following two 

relationships: 

 

1

4
ye

B


  (93)

1

4
xe

L


  

(94)

 

Figure 15 shows Equations (93) and (94) plotted for various values of γ and η. If the 

load falls within this region, known as Region D, Corners 1, 2, and 4 will become 

detached from the soil. 
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Figure 15. Biaxial Uplift – Region D.  
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Figure 16 shows Equations (26), (27), (51), (52), (72), (73), (93), and (94) plotted for 

various values of  ,  ,  , and η. Teng (1962) produced a similar analysis chart with 

accompanying equations; however, there was little explanation of its usage and 

capabilities. In addition, Teng (1962) provides no explanation of how the chart was 

developed.   
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Figure 16. Analysis Chart for Biaxial Uplift. 
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When eccentricities are such that the values of ex  ⁄ L and ey  ⁄ B are within the kern 

area, no detachment of the footing from the soil will occur and Equation (1) is used to 

calculate the four corner stresses. When eccentricities are such that the values of ex  ⁄ L 

and ey  ⁄ B are within Region A, Corner 1 of the footing is detached from the soil.  

Entering Figure 16 with ex  ⁄ L and ey ⁄ B, the percentages of detachment, α and β, 

along the perpendicular dimensions of the footing are obtained. Equations (16), (17), and 

(18) are used to calculate the bearing pressure values beneath the three corners of the 

footing which are in compression. If ex  ⁄ L and ey ⁄ B are within Region B, Corners 1 and 

4 of the footing are detached from the soil. The percentages of detachment, α and γ, along 

the L-dimension are obtained. Equations (41) and (42) are used to calculate the 

compressive bearing pressures beneath Corners 2 and 3. If ex  ⁄ L and ey  ⁄ B are within 

Region C, Corners 1 and 2 of the footing are detached from the soil. The percentages of 

detachment, β and η, along the B-dimension are obtained. Equations (62) and (63) are 

used to calculate the compressive bearing pressures beneath Corners 3 and 4. If 

eccentricities are so large that ex  ⁄ L and ey  ⁄ B are within Region D, then Corners 1, 2, 

and 4 of the footing are detached from the soil. The percentages of detachment, γ and η, 

along the upper L-dimension and right B-dimension are obtained. Equation (88) is used to 

calculate the compressive bearing pressure beneath Corner 3. 
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3.2 Uniaxial Loading 

Uniaxial loading occurs if a force acts through a point displaced from the center of 

the footing along only one of the principal directions or there is an applied moment about 

a principal axis. In this case, one of the eccentricity terms in Equation (2) will drop out, 

leaving 

 

6
1min,max

P e
q

BL w
   
 

 (95)

 

where w is either the B or L dimension, depending upon the axis on which the load is 

applied. Due to symmetry, only loading along the positive x and y-axes is considered. 

The kern boundary is defined as:
  

 

1

6

e

w
  (96)

 

When the left side of Equation (96) exceeds 1/6, a portion of the footing will become 

detached from the soil (assuming that the soil cannot support tension) and Equation (95) 

is no longer applicable for determining the bearing pressure beneath the footing. 

Depending on the axis on which load is applied, either Corners 1 and 4 will become 

detached, or Corners 1 and 2 will become detached. For either of these cases, the area of 

detachment will be rectangular.  

3.2.1 Corners 1 and 4 detached 

If loading is on the positive x-axis, outside of the kern, then Corners 1 and 4 will 

become detached from the soil. Figure 17 shows a spread footing in which Corners 1 and 
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4 are detached from the soil, where α is the percentage of detachment along the L 

dimensions.  

 

 

Figure 17. Footing with Corners 1 and 4 Detached. 

 

For this scenario, Equation (41) simplifies and q3 and q2 are equal to the maximum 

compressive bearing pressure qmax, given by:  

 

1
1max minq q


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 (97)

 

Equation (46) also simplifies and q1 and q4 are equal to the minimum bearing pressure 

qmin, given by: 
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Equation (52) simplifies, giving the eccentricity ratio expressed in terms of α as: 

 

2 1

6
xe

L

 
  (99)

 

Solving for α in Equation (99) and substituting the resulting expression into Equations 

(97) and (98) yields the relationship given in Das (2008): 
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q
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3.2.2 Corners 1 and 2 detached 

If loading is along the positive y-axis, outside of the kern, then Corners 1 and 2 will 

become detached from the soil. Figure 18 shows a spread footing in which Corners 1 and 

2 are detached from the soil, where β is the percentage of detachment along the B 

dimensions.  

 

Figure 18. Footing with Corners 1 and 2 Detached. 
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For this scenario, Equation (62) simplifies and q3 and q4 are equal to the maximum 

compressive bearing pressure qmax, given by: 

 

1
1max minq q


 

  
 

 (101)

 

Equation (67) also simplifies and q1 and q2 are equal to the minimum bearing pressure 

qmin, given by: 
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 (102)

 

Equation (72) simplifies, giving the eccentricity ratio expressed in terms of β as: 
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(103)

 

Solving for β in Equation (103) and substituting the resulting expression into Equations 

(101) and (102) yields the relationship given in Das (2008): 
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3.3 Concentric Loading 

Concentric loading occurs if a force acts through the center of the footing. In this 

case, there are no eccentricities or applied moments. Equation (2) yields a constant 

bearing pressure q beneath the entire footing, becoming 

 

P
q

BL
  (105)

 

Under concentric loading, no detachment of the footing from the soil occurs.  

3.4 Summary 

Governing equations were developed to model the bearing pressure surface beneath a 

rigid spread footing subjected to biaxial uplift using a rectangular element with associated 

interpolation functions. The underlying soil was assumed to be linear-elastic, 

homogeneous, uniform, isotropic, and cohesionless. Depending on the magnitudes of the 

eccentricities and footing dimensions, the eccentricity ratios, ex  ⁄ L and ey ⁄ B, will either 

fall within the kern area of the footing, or within one of four Regions: A, B, C, or D. An 

analysis chart, along with accompanying equations, was developed to determine the 

percentages of detachment from the soil along the footing dimensions, as well as the 

bearing pressure beneath the corners of the footing experiencing compression. During 

uniaxial loading, the governing equations simplify and are more easily used. The analysis 

chart is still applicable for determining the percentages of detachment and compressive 

bearing pressures at the footing corners during uniaxial uplift.  
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CHAPTER 4 

STRUCTURAL MECHANICS 

A reliable reinforced spread footing must provide adequate resistance against two-

way (punching) shear failure, one-way shear failure, and flexural failure in both 

directions. Formulations for the analysis of two-way shear, one-way shear, and bending 

of rectangular spread footings are based on the magnitudes of the applied load and its 

eccentricities. Depending on whether the eccentricities of the applied load are within the 

kern area or in Region A, B, C, or D, different boundary conditions are applied to the 

governing equations to account for the orientation of the line of zero bearing pressure 

with respect to critical sections for two-way shear, one-way shear, and bending. 

For structural analysis and design, factored loads are used in all formulations, as 

opposed to service loads. The factored column load Pu is calculated as 

 

 u fP P W   (106)

 

where P is the applied service load and Wf is the weight of the footing. The applied load 

is taken as a dead load for all design examples, so  = 1.4 (ASCE 2010). 

Two-way (punching) shear occurs in a footing when the column tends to punch 

through the footing due to the shear stresses that act in the footing around the perimeter 

of the column. It is generally calculated as the upward bearing pressure within the critical 

two-way shear perimeter subtracted from the factored column load. The critical two-way 

shear perimeter bp is given as: 
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 4p col ab b d   (107)

 

where da is the average depth from the extreme compression fiber of the footing to the 

centroid of the reinforcement and bcol is the dimension of the column (which is assumed 

to be square). Figure 19 shows a spread footing with the two-way shear perimeter. 

 

 

 

Figure 19. General Critical Section for Two-Way Shear. 

 

The origin is taken as the center of the footing and only loading with positive 

eccentricities is considered, due to symmetry.  

One-way shear may occur, as in beams and slabs, in either dimension of the footing. 

It is calculated as the upward bearing pressure acting on the footing from the critical one-

way shear plane to the edge of the footing. The critical plane in which one-way shear 

occurs is at a distance da away from the face of the column. The origin is taken as the 

center of the footing and only loading with positive eccentricities is considered. Figure 20 
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shows the critical section for one-way shear parallel to the B-dimension in a spread 

footing.  

 

 

Figure 20. General Critical Section for One-Way Shear Parallel to the B-Dimension. 

 

Figure 21 shows the critical section for one-way shear parallel to the L-dimension in a 

spread footing. 

 

 

Figure 21. General Critical Section for One-Way Shear Parallel to the L-Dimension. 
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For bending, the critical moment is located at the face of the column and is calculated 

based on the upward bearing pressure acting on the footing from the face of the column 

to the edge of the footing. The origin is taken as the center of the footing and only 

loading with positive eccentricities is considered. Figure 22 shows the critical section for 

bending parallel to the B-dimension in a spread footing.  

 

 

Figure 22. General Critical Section for Bending Parallel to the B-Dimension. 

 

Figure 23 shows the critical section for bending parallel to the L-dimension in a 

spread footing. 
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Figure 23. General Critical Section for Bending Parallel to the L-Dimension. 

 

Expressions are derived to calculate two-way shear, one-way shear, and the critical 

moment for eccentricities within the kern area and Regions A, B, C, and D.  

4.1 Biaxial Loading 

For loading within the kern area, the bearing pressure surface q(x,y) is given by 

Equation (10). The two-way shear force is 

 

limit limit

limit limit

( , )   
U U

punch u

L L

V P q x y dy dx  (108)

 

where the lower and upper limits for integration are based upon the critical two-way 

shear perimeter and are given, respectively as: 
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limit 2


 col ab d

U  
(110)

 

Evaluating Equation (108) gives the two-way shear force as: 

 

   2
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4

   
  col a
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b d q q q q
V P  

(111)

 

The one-way shear force on the critical section parallel to the L dimension of the 

footing is:  

 

2 2

2 2

( , )




  
col

a

L B

one way
L b

d

V q x y dy dx  (112)

 

The evaluation of Equation (112) is listed in the Appendix as Equation (A1).  

The one-way shear force on the critical section parallel to the B dimension of the 

footing is:  

 

2 2

22

( , )




  
col

a

L B

one way
b B

d

V q x y dy dx  (113)

 

The evaluation of Equation (113) is listed in the Appendix as Equation (A2).  



58 

The bending moment on the critical section parallel to the L dimension of the footing 

is computed as:  

 

2 2

2 2
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b
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Evaluating Equation (114) gives the critical bending moment as: 
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(115)

 

The bending moment on the critical section parallel to the B dimension of the footing 

is computed as:  
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Evaluating Equation (116) gives the critical bending moment as: 

 

   2

1 2 3 4 1 2 3 45 5

96

       
 col col col col col

B

B L b Lq Lq Lq Lq b q b q b q b q
M

L
 

(117)

 

4.1.1 Uplift – region A  

If the equivalent eccentricities are large enough to cause Corner 1 to become detached 

from the soil, shown in Figure 5, the eccentricities will be located in Region A and the 
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bearing pressure surface q(x,y) is given by Equation (19), using factored loads. The line 

of zero bearing pressure can be expressed in two forms: 

 

( )
2 2
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 
L B L

x y y L
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(119)

 

4.1.1.1 Region A: two-way shear. Figure 19 shows a spread footing with the two-

way shear perimeter. There are four cases for which the two-way shear is calculated. 

Each case is represented by the amount of compressive bearing pressure within the two-

way shear perimeter. Lower and Upper limits for integration are based upon the critical 

two-way shear perimeter and are given by Equations (109) and (110). 

4.1.1.1.1 Case one. When the line of zero bearing pressure does not intersect the 

critical two-way shear perimeter, the two-way shear force Vpunch is: 

 

limit limit

limit limit

( , )   
U U

punch u

L L

V P q x y dy dx  (120)

 

Evaluating the integral expression in Equation (120) gives: 
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4.1.1.1.2 Case two. Figure 24 shows the critical two-way shear when a triangular 

portion of the area becomes detached from the soil. The shaded area is the portion of the 

two-way shear area that has become detached from the soil. 

 

 

         Figure 24. Critical Two-Way Shear Area for Region A, Case Two. 

 

The point where the line of zero bearing pressure intersects the bottom of the two-way 

shear perimeter x1 is: 
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The two-way shear force is computed as: 
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The evaluation of the integral in Equation (123) is listed in the Appendix as Equation 

(A3). 

4.1.1.1.3 Case three. As the eccentricities become larger, more of the critical two-

way shear area becomes detached from the soil beneath it. Figure 25 shows the critical 

two-way shear area where the trapezoidal shaded area is the portion of the two-way shear 

area that has become detached from the soil.  

 

              

Figure 25. Critical Two-Way Shear Area for Region A, Case Three. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (124) gives an expression for the two-way shear force 

listed in the Appendix as Equation (A4). 
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4.1.1.1.4 Case four. If the footing is such that the vertical dimension is significantly 

larger than the horizontal dimension, the line of zero bearing pressure may intersect the 

two-way shear area along both the top and bottom edges. Figure 26 shows the critical 

two-way shear area when the line of zero bearing pressure intersects the two-way shear 

area along both the top and bottom edges. 

                         

Figure 26. Critical Two-Way Shear Area for Region A, Case Four. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (125) gives an expression for the two-way shear force 

listed in the Appendix as Equation (A5). 
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4.1.1.2 Region A: one-way shear. One-way shear may occur along either face of the 

spread footing. For each face of the footing, two cases should be considered: one, when 

the line of zero bearing pressure intersects the critical shear plane and two, when it does 

not.  

4.1.1.2.1 B -Face: case one. Figure 27 shows a spread footing when the line of zero 

bearing pressure does not intersect the critical one-way shear plane. 

 

 

Figure 27. Critical One-Way Shear Section for Region A, B-Face: Case One. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (126) gives:
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4.1.1.2.2 B-Face: case two. Figure 28 shows a spread footing when the line of zero 

bearing pressure intersects the critical one-way shear plane.  

 

 

Figure 28. Critical One-Way Shear Section for Region A, B-Face: Case Two. 

The point where the line of zero bearing pressure intersects the one-way shear section y1 

is  
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In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (129) gives an expression for the one-way shear force 

and is listed in the Appendix as Equation (A6). 

4.1.1.2.3 L-Face: case one. Figure 29 shows the critical section for one-way shear 

when the line of zero bearing pressure does not intersect the critical section.  

 

 

Figure 29. Critical One-Way Shear Section for Region A, L-Face: Case One. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (130) gives: 
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4.1.1.2.4 L-Face: case two. Figure 30 shows the critical section for one-way shear 

when the line of zero bearing pressure intersects the critical section.  

 

 

Figure 30. Critical One-Way Shear Section for Region A, L-Face: Case Two. 

 

The point where the line of zero bearing pressure intersects the one-way shear section x2 

is: 
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In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (133) gives an expression of the one-way shear force 

and is listed in the Appendix as Equation (A7). 

4.1.1.3 Region A: flexure. The critical section for bending on a spread footing is at 

the column face. As with one-way shear, for each face of the footing, there are two cases 

for the calculation of moment. 

4.1.1.3.1 B-Face: case one. Figure 31 shows the critical section for bending when the 

line of zero bearing pressure does not intersect the critical section.  

 

 

Figure 31. Critical Bending Section for Region A, B-Face: Case One. 
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In this case, the critical bending moment MB is computed as:  
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Evaluating the integral in Equation (134)  gives: 
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4.1.1.3.2 B-Face: case two. Figure 32 shows the critical section for bending when the 

line of zero bearing pressure intersects the critical bending section.  

 

 

Figure 32. Critical Bending Section for Region A, B-Face: Case Two. 
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The point where the line of zero bearing pressure intersects the critical bending section y2 

and is given as: 
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In this case, the critical bending moment MB is computed as:  
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Evaluating the integral in Equation (137)  gives: 
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4.1.1.3.3 L-Face: case one. Figure 33 shows the critical section for bending when the 

line of zero bearing pressure does not intersect the critical section.  
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Figure 33. Critical Bending Section for Region A, L-Face: Case One. 

 

In this case, the critical moment ML is computed as:  
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Evaluating the integral in Equation (139) gives: 
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4.1.1.3.4 L-Face: case two. Figure 34 shows the critical section for bending when the 

line of zero bearing pressure intersects the critical section.  
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Figure 34. Critical Bending Section for Region A, L-Face: Case Two. 

 

The point where the line of zero bearing pressure intersects the critical bending section x3 

is: 
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In this case, the critical bending moment is ML computed as:  
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Evaluating the integral in Equation (142) gives: 
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4.1.2 Uplift – region B 

If the eccentricity ratios are such that the load is within Region B, shown in Figure 

10, then Corners 1 and 4 are detached from the soil. The line of zero bearing pressure can 

be expressed in two forms:
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4.1.2.1 Region B: two-way shear. There are six cases for which the two-way shear is 

calculated based upon how the line of zero bearing pressure intersects the critical two-

way shear area. Lower and Upper limits for integration are based upon the critical two-

way shear perimeter and are given by Equations (109) and (110). 

4.1.2.1.1 Case one. When the line of zero bearing pressure does not intersect the 

critical punching shear perimeter, the two-way shear force Vpunch is: 
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Evaluating the integral in Equation (146) gives: 
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4.1.2.1.2 Case two. Figure 35 shows the two-way shear area when a triangular portion 

of the two-way shear area becomes detached from the soil. The shaded area is the 

detached region beneath the critical two-way shear area.  

        

Figure 35. Critical Two-Way Shear Area for Region B, Case Two. 

 

The point where the line of zero bearing pressure intersects left side of the two-way shear 

perimeter y3 is: 
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The two-way shear force is computed as: 
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Evaluating the integral in Equation (149) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A8). 

4.1.2.1.3 Case three. The third case occurs when more of the two-way shear area 

becomes detached from the soil beneath it. Figure 36 shows the trapezoidal detached area 

beneath the critical two-way shear area. 

 

              

Figure 36. Critical Two-Way Shear Area for Region B, Case Three. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (150) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A9). 
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4.1.2.1.4 Case four. Figure 37 shows the critical two-way shear area when the line of 

zero bearing pressure intersects it, causing the trapezoidal shaded area to become 

detached. 

  

         

Figure 37. Critical Two-Way Shear Area for Region B, Case Four. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (151) gives: 
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4.1.2.1.5 Case five. Figure 38 shows the critical two-way shear area when only a 

triangular portion of the two-way shear area remains in contact with the soil.  

 

               

Figure 38. Critical Two-Way Shear Area for Region B, Case Five. 

 

The point that the line of zero bearing pressure intersects the right side of the two-way 

shear perimeter y4 is: 
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The two-way shear force is computed as: 
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Evaluating the integral in Equation (154) gives: 
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4.1.2.1.6 Case six. The last case occurs when the line of zero bearing pressure is 

located to the right of the two-way shear area, causing the two-way shear area to be 

completely detached from the soil. In this case, the two-way shear force is computed as:  

 

punch uV P  (156)

 

4.1.2.2 Region B: one-way shear. For one-way shear on the B-face of the footing, 

there are three cases for which the line of zero bearing pressure may interact with the 

critical one-way shear section. For one-way shear on the L-face of the footing, there is 

only one case for which the line of zero bearing pressure may interact with the critical 

one-way shear section. 

4.1.2.2.1 B-Face: case one. Figure 39 shows a spread footing when the line of zero 

bearing pressure does not intersect the critical section for one-way shear 
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Figure 39. Critical One-Way Shear Section for Region B, B-Face: Case One. 

 

The one-way shear force is computed as:  
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Evaluating the integral in Equation (157) gives: 
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4.1.2.2.2 B-Face: case two. Figure 40 shows a spread footing when the line of zero 

bearing pressure intersects the critical section of one-way shear. 
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Figure 40. Critical One-Way Shear Section for Region B, B-Face: Case Two. 

 

The point where the line of zero bearing pressure intersects the one-way shear section y5 

is:  
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In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (160) gives an expression for the one-way shear and 

is listed in the Appendix as Equation (A10). 

4.1.2.2.3 B-Face: case three. Figure 41 shows a spread footing when the line of zero 

bearing pressure is beyond the critical section for one-way shear.  
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Figure 41. Critical One-Way Shear Section for Region B, B-Face: Case Three. 

 

In this case, the one-way shear force is compute as:  
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Evaluating the integral in Equation (161) gives: 
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4.1.2.2.4 L-Face. Figure 42 shows the critical section for one-way shear parallel to 

the L-face of the footing. 
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Figure 42. Critical One-Way Shear Section for Region B, L-Face. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (163) gives an expression for the one-way shear and 

is listed in the Appendix as Equation (A11). 

4.1.2.3 Region B: flexure. As with one-way shear, for each face of the footing, there 

are different cases for which the moment is calculated when eccentricities are in Region 

B. For the moment on the critical section parallel to the B-face of the footing, there are 

three cases based on where the line of zero bearing pressure is located with respect to the 

critical bending section. For bending on the L-face of the footing, there is only one case 

for which the line of zero bearing pressure may interact with the critical bending section. 

4.1.2.3.1 B-Face: case one. This case occurs when the line of zero bearing pressure 

does not intersect the critical section for bending. 
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Figure 43. Critical Bending Section for Region B, B-Face: Case One. 

 

The moment MB is computed as:  
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Evaluating the integral in Equation (164) gives: 
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4.1.2.3.2 B-Face: case two. Figure 44 shows the line of zero bearing pressure 

intersecting the critical section for bending.  
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Figure 44. Critical Bending Section for Region B, B-Face: Case Two. 

 

The point that the line of zero bearing pressure intersects the critical bending section y6 is:  
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The moment MB is computed as:  
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Evaluating the integral in Equation (167) gives: 
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4.1.2.3.3 B-Face: case three. This case occurs when the line of zero bearing pressure 

is beyond the critical section for bending. Figure 45 shows the line of zero bearing 

pressure beyond the critical bending section.  

 

 

Figure 45. Critical Bending Section for Region B, B-Face: Case Three. 

 

The moment MB is computed as:  
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Evaluating the integral in Equation (169) gives an expression for the moment and is listed 

in the Appendix as Equation (A12). 

4.1.2.3.4 L-Face. Figure 46 shows the critical section for bending parallel to the L-

face of the footing. 
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Figure 46. Critical Bending Section for Region B, L-Face. 

 

In this case, the moment ML is computed as:  
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Evaluating the integral in Equation (170) gives an expression for the moment and is listed 

in the Appendix as Equation (A13). 

4.1.3 Uplift – region C 

If the eccentricities are such that Corners 1 and 2 are detached from the soil, shown in 

Figure 12, then the line of zero bearing pressure can be expressed as: 
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4.1.3.1 Region C: two-way shear. There are six cases for which the two-way shear is 

calculated. Each case is represented by how the line of zero bearing pressure intersects 

the two-way shear area. Lower and Upper limits for integration are based upon the 

critical two-way shear perimeter and are given by Equations (109) and (110). 

4.1.3.1.1 Case one. The first case occurs when the line of zero bearing pressure does 

not intersect the critical two-way shear perimeter. The two-way shear force is computed 

as: 
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Evaluating the integral in Equation (173) gives: 
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4.1.3.1.2 Case two. The second case occurs when a triangular portion of the two-way 

shear perimeter becomes detached from the soil. Figure 47 shows the triangular shaded 

area beneath the critical two-way shear area that has become detached from the soil. 
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Figure 47. Critical Two-Way Shear Area for Region C, Case Two. 

 

The point where the line of zero bearing pressure intersects the left side of the two-way 

shear perimeter y7 is: 
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The two-way shear force is computed as: 
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Evaluating the integral in Equation (176) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A14). 
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4.1.3.1.3 Case three. The third case occurs when more of the critical two-way shear 

area becomes detached from the soil beneath it. Figure 48 shows the trapezoidal detached 

area. 

 

              

Figure 48. Critical Two-Way Shear Area for Region C, Case Three. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (177) gives: 
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4.1.3.1.4 Case four. The fourth case may occur when the vertical dimension of the 

footing is larger than the horizontal dimension. The line of zero bearing pressure 

intersects the two-way shear perimeter in an orientation causing a vertical trapezoidal 

area of detachment. Figure 49 shows the detached critical two-way shear area.  

              

Figure 49. Critical Two-Way Shear Area for Region C, Case Four. 

 

The two-way shear force is computed as: 
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Evaluating the integral in Equation (179) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A15). 
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4.1.3.1.5 Case five. This case occurs when only a triangular portion of the two-way 

shear perimeter remains attached to the soil. Figure 50 shows the triangular shaded area 

beneath the critical two-way shear area that is attached to the soil. 

 

              

Figure 50. Critical Two-Way Shear Area for Region C, Case Five. 

 

The point where the line of zero bearing pressure intersects the top of the critical two-

way shear perimeter x4 is calculated as: 
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The two-way shear force is computed as: 
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Evaluating the integral in Equation (181) gives: 
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4.1.3.1.6 Case six. The last case occurs when the line of zero bearing pressure is 

located to the right the critical two-way shear area. In this case, the critical two-way shear 

area is completely detached from the soil. The two-way shear force is computed as:  

 

punch uV P  (183)

 

4.1.3.2 Region C: one-way shear. For one-way shear on the critical section parallel 

to the L-face of the footing, there are three cases for which the line of zero bearing 

pressure may interact with the critical one-way shear section. For one-way shear on the 

critical section parallel to the B-face of the footing, there is only one case for which the 

line of zero bearing pressure may interact with the critical one-way shear section. 

4.1.3.2.1 B –Face. Figure 51 shows the critical one-way shear section parallel the B-

face of the footing. 
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Figure 51. Critical One-Way Shear Section for Region C, B-Face. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (184) gives an expression for the one-way shear force 

and is listed in the Appendix as Equation (A15). 

For one-way shear on the L-face of the footing, there are three cases for which the 

line of zero bearing pressure may interact with the critical one-way shear section. 

4.1.3.2.2 L-Face: case one. Figure 52 shows the case when the line of zero bearing 

pressure does not intersect the critical section for one-way shear.  
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Figure 52. Critical One-Way Shear Section for Region C, L-Face: Case One. 

 

In this case, the one-way shear force is computed as:  

 

2 2

2 2

( , )




  
col

a

L B

one way
L b

d

V q x y dy dx  (185)

 

Evaluating the integral in Equation (185) gives: 
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4.1.3.2.3 L -Face: case two. Figure 53 shows the line of zero bearing pressure 

intersecting the critical section for one-way shear.  
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Figure 53. Critical One-Way Shear Section for Region C, L-Face: Case Two. 

 

The point where the line of zero bearing pressure intersects the one-way shear section x5 

is: 
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In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (188) gives an expression for the one-way shear force 

and is listed in the Appendix as Equation (A17). 

4.1.3.2.4 L-Face: case three. This case occurs when the line of zero bearing pressure 

is beyond the critical section for one-way shear. Figure 54 shows the line of zero bearing 

pressure beyond the critical section for one-way shear.  
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Figure 54. Critical One-Way Shear Section for Region C, L-Face: Case Three. 

 

In this case, the one-way shear force is computed as:  
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 Evaluating the integral in Equation (189) gives: 
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4.1.3.3 Region C: flexure. As with one-way shear, for each face of the footing, there 

are different cases for which the moment is calculated when eccentricities are in Region 

C. For the moment on the critical section parallel to the B-face of the footing, there is one 

case that is based on the location of the line zero bearing pressure with respect to the 

critical bending section. 
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4.1.3.3.1 B-Face. Figure 55 shows the critical bending section parallel to the B-face 

of the footing. 

 

 

Figure 55. Critical Bending Section for Region C, B-Face. 

 

In this case, the moment MB is computed as:  

 

2 2

( )
2

( , )
2
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Evaluation of the integral in Equation (191) gives an expression for the moment and is 

listed in the Appendix as Equation (A18). 

For bending on the L-face of the footing, there are three cases for which the line of 

zero bearing pressure may interact with the critical bending section. 

4.1.3.3.2 L-Face: case one. This case occurs when the line of zero bearing pressure 

does not intersect the critical section for bending. Figure 56 shows the case when the line 

of zero bearing pressure does not intersect the critical section for bending.  

y(x) 
 

L/ 2 L/ 2 

y  

x  

B/ 2 

B/ 2 



97 

 

Figure 56. Critical Bending Section for Region C, L-Face: Case One. 

 

In this case, the moment ML is computed as:  
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   
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Evaluation of the integral in Equation (192) gives: 
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(193)

 

4.1.3.3.3 L-Face: case two. This case occurs when the line of zero bearing pressure 

intersects the critical section for bending. Figure 57 shows the line of zero bearing 

pressure intersecting the critical bending section.  
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Figure 57. Critical Bending Section for Region C, L-Face: Case Two. 

 

The point where the line of zero bearing pressure intersects the critical bending section x6 

is: 

 

 6 2 2 2


 
       

colbL B L
x B

B
 (194)

 

In this case, the moment ML is given computed as:  
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2 2 
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col col
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col col
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b b
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Evaluating the integral in Equation (195) gives: 
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(196)
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4.1.3.3.4 L-Face: case three. This case occurs when the line of zero bearing pressure 

is beyond the critical section for bending. Figure 58 shows the line of zero bearing 

pressure beyond the critical bending section.  

 

 

Figure 58. Critical Bending Section for Region C, L-Face: Case Three. 

 

In this case, the moment ML is computed as:  
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Evaluating the integral in Equation (197) gives an expression for the moment and is listed 

in the Appendix as Equation (A19). 
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4.1.4 Uplift – region D 

When the eccentricities increase to values that cause Corners 1, 2 and 4 to become 

detached, shown in Figure 14, the load will be in Region D and the line of zero bearing 

pressure can be expressed in two forms: 

 

( )
2 2

 


            

B B L B
y x x L

L L
 (198)

( )
2 2

 


         

L L B L
x y y L

B B
 

(199)

 

4.1.4.1 Region D: two-way shear. There are five cases for which the two-way shear 

is calculated. Each case is represented by how the line of zero bearing pressure intersects 

the two-way shear area. For all of the integrations, the lower and upper limits are given 

by Equations (109) and (110). 

4.1.4.1.1 case one. The first case occurs when a triangular portion of the two-way 

shear perimeter becomes detached from the soil. This may occur if the spread footing is 

nearly square in the plan view. The triangular shaded area is the area beneath the two-

way shear area that has become detached from the soil and is shown in Figure 59. 
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Figure 59. Critical Two-Way Shear Area for Region D, Case One. 

 

The point where the line of zero bearing pressure intersects the bottom side of the two-

way shear perimeter x7 is: 
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col ab dL L B L

x L
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 (200)

 

The two-way shear force is computed as: 
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limit limit limit limit
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U U x y x

punch u

L L L L

V P q x y dy dx q x y dy dx  (201)

 

Evaluating the integral in Equation (201) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A20). 

B/ 2 

b
col

+ d
a
 

 

x 

B/ 2 

L/ 2 L/ 2 

y 

y(x) 

x
7
 

  



102 

4.1.4.1.2 case two. The second case occurs when more of the two-way shear area 

becomes detached from the soil beneath it. This trapezoidal detached area is shown as the 

shaded portion of Figure 60. 

 

              

Figure 60. Critical Two-Way Shear Area for Region D, Case Two. 

 

The two-way shear force is computed as: 
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V P q x y dy dx  (202)

 

Evaluating the integral in Equation (202) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A21). 

4.1.4.1.3 case three. The third case occurs when if the line of zero bearing pressure 

intersects the two-way shear perimeter in the orientation shown in Figure 61. 
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             Figure 61. Critical Two-Way Shear Area for Region D, Case Three. 

 

The two-way shear force is computed as: 

 

limit limit

limit ( )

( , )   
U U

punch u

L x y

V P q x y dx dy  (203)

 

Evaluating the integral in Equation (203) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A22). 

4.1.4.1.4 Case Four. This case occurs when only a triangular portion of the two-way 

shear perimeter remains attached to the soil. The triangular area is the area beneath the 

two-way shear area that remains attached to the soil and is shown in Figure 62. 
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Figure 62. Critical Two-Way Shear Area for Region D, Case Four. 

 

The point where the line of zero bearing pressure intersects the top of the two-way shear 

perimeter x8 is: 
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 (204)

 

The two-way shear force is computed as: 
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8 ( )
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V P q x y dy dx  (205)

 

Evaluating the integral in Equation (205) gives an expression for the two-way shear force 

and is listed in the Appendix as Equation (A23). 

4.1.4.1.5 case five. The last case occurs when the line of zero bearing pressure is 

located past the two-way shear perimeter, causing the two-way shear area to be 

completely detached from the soil.  In this case, the two-way shear force is computed as:  
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punch uV P  (206)

 

4.1.4.2 One-Way Shear. One-way shear may occur on either face of the spread 

footing. The one-way shear on the critical section parallel to the B-face of the footing is 

shown in Figure 63. 

 

 

Figure 63. Critical One-Way Shear Section for Region D, B-Face. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (207) gives an expression for the one-way shear force 

and is listed in the Appendix as Equation (A24). 

The one-way shear on the critical section parallel to the L-face of the footing is shown in 

Figure 64. 
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Figure 64. Critical One-Way Shear Section for Region D, L-Face. 

 

In this case, the one-way shear force is computed as:  
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Evaluating the integral in Equation (208) gives an expression for the one-way shear force 

and is listed in the Appendix as Equation (A25). 

4.1.4.3 flexure. Bending may occur on either face of the spread footing. The bending 

on the critical section parallel to the B-face of the footing is shown in Figure 65. 
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Figure 65. Critical Bending Section for Region D, B-Face. 

 

In this case, the moment is computed as:  
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Evaluating the integral in Equation (209) gives: 

 

     
 

2 2 2 2 2
3

2 2

1 24 40 17 8 6

384 1

   



       




col col col col

B

q B L b L L L b L b L b
M

L
 

(210)

 

The moment on the critical section parallel to the L-face of the footing is shown in Figure 

66. 
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Figure 66. Critical Bending Section for Region D, L-Face. 

 

In this case, the moment is computed as:  

 

2 2

( )
2

( , )
2

   
  

col

B L

col
L

b x y

b
M q x y y dxdy  (211)

 

Evaluating the integral in Equation (211) gives: 
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(212)

 

4.2 Uniaxial Loading 

If one of the eccentricities is zero, or there is only one applied moment along one of 

the principle axes; the spread footing is subjected to uniaxial loading and the biaxial 

loading formulations for structural mechanics simplify. For an eccentric loading 

condition where the eccentricity is within the kern and along the positive x-axis, the 

bearing pressures at Corners 1 and 4 will be equal and the bearing pressures at Corners 2 
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and 3 will be equal; that is, q1 = q4 will be the minimum compressive bearing pressure 

qmin and q2 = q3 will be the maximum compressive bearing pressure qmax.  

For an eccentric loading condition where the eccentricity is within the kern and along 

the positive x-axis, the two-way shear force in Equation (111) reduces to: 

 

 2

2
max min

punch u col a

q q
V P b d

    
 

 (213)

 

The one-way shear force on the critical section parallel to the L-face of the footing in 

Equation (A1) reduces to 
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 (214)

 

The one-way shear force on the critical section parallel to the B-face of the footing in 

Equation (A2) reduces to 
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(215)

 

where 
adq is the value of the bearing pressure at the location da distance away from the 

face of the column in the L-direction, defined as: 
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The moment on the critical section parallel to the L-face of the footing in Equation (115) 

can be expressed as 

 

 2 2

2 2 2 4 2 2
max minmin col col
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q q Lq L b bB B
M
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(217)

 

The moment on the critical section parallel to the B-face of the footing in Equation (117) 

can be expressed as 
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(218)

 

where qcol is the value of the bearing pressure at the face of the column parallel to the B 

direction: 

 

2 2
max min col

col min

q q bL
q q

L

      
  

 (219)

 

For an eccentric loading condition where the eccentricity is within the kern and along 

the positive y-axis, the bearing pressures at Corners 1 and 2 will be equal and the bearing 

pressures at Corners 3 and 4 will be equal; that is, q1 = q2 will be the minimum 

compressive bearing pressure qmin and q3 = q4 will be the maximum compressive bearing 

pressure qmax.  

For an eccentric loading condition where the eccentricity is within the kern and along 

the positive y-axis, the two-way shear force is given by Equation (213). Due to symmetry, 
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the one-way shear force on the critical section parallel to the L-face of the footing 

becomes 

 

2 2 2
ad max col

one way a

q q bB
V L d

        
  

 
(220)

 

where 
adq is the value of the bearing pressure at the location da distance away from the 

face of the column in the B direction, defined as: 
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max min col
d min a

q q bB
q q d

B
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 (221)

 

The one-way shear force on the critical section parallel to the B-face of the footing 

becomes 
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min max col
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q q bL
V B d
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 (222)

 

The moment on the critical section parallel to the L-face of the footing becomes 
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(223)
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where qcol is the value of the bearing pressure at the face of the column, expressed as: 

 

2 2
max min col

col min

q q bB
q q

B

      
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 (224)

 

The moment on the critical section parallel to the B dimension of the footing becomes: 

 

 2 2

2 2 2 4 2 2
max minmin col col

B

q q Bq B b bL L
M

         
   

 
(225)

 

4.2.1 Corners 1 and 4 detached 

If loading is on the positive x-axis, outside of the kern, then Corners 1 and 4 will 

become detached from the soil. The bearing pressures at Corners 2 and 3 are equal and 

they are the maximum bearing pressure qmax beneath the footing. When this occurs, the 

formulations for two-way shear, one-way shear, and moment at the critical sections 

within Region B will simplify since the percentage of detachments will be equal on the 

upper and lower L dimensions of the footing. Referring to Figure 17, the line of zero 

bearing pressure is vertical and α is the percentage of detachment along the L dimensions. 

4.2.1.1 two-way shear. There are two cases of two-way shear that a spread footing 

may experience if detachment occurs when the load is along the positive x-axis. Both 

cases are simplifications of the two-way shear formulations for biaxial loading. If the line 

of zero bearing pressure does not intersect the critical two-way shear perimeter, Equation 

(147) simplifies to 
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   2

4 2 1

2
col a

punch u

q b d
V P




 
   

(226)

 

where q4 represents the minimum bearing pressure qmin given in Equation (98). 

Rearranging Equation (97) and substituting it into Equation (226) gives 
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 
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max col a

punch u

q b d
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(227)

 

If the line of zero bearing pressure intersects the critical two-way shear perimeter, 

Equation (152) simplifies to 

 

  2
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col a col a

punch u

q b d L b d L
V P

L




   
   

(228)

 

where q4 represents the minimum bearing pressure qmin given in Equation (98). 

Rearranging Equation (97) and substituting it into Equation (228) gives: 

 

  
 

2
2

8 1
max col a col a

punch u

q b d L b d L
V P

L



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 


 

(229)

 

4.2.1.2 one-way shear. For one-way shear on the B-face of the footing, there are two 

cases for which the line of zero bearing pressure may interact with the critical one-way 

shear section. If the line of zero bearing pressure does not intersect the critical section for 

one-way shear, Equation (158) simplifies to  
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  4 2 3 2 4
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col a col a
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q B b L d L b d L
V

L
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
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where q4 represents the minimum bearing pressure qmin given in Equation (98). 

Rearranging Equation (97) and substituting it into Equation (230) gives: 

 

  
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V

L
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If the line of zero bearing pressure is beyond the critical section for one-way shear, 

Equation (162) simplifies to: 

 

 2
4 2 1

2one way

q BL
V

 


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  
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Rearranging Equation (97) and substituting it into Equation (232) gives: 

 

 1

2
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one way
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V





  

(233)

 

For one-way shear on the L-face of the footing, there is only one case for which the line 

of zero bearing pressure may interact with the critical one-way shear section. Equation 

(A11) simplifies to: 
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Rearranging Equation (97) and substituting it into Equation (234) gives: 

 

  1 2

4
max col a

one way

q L b B d
V




  
  

(235)

 

4.2.1.3 flexure. As with one-way shear, there are two cases for which the line of zero 

bearing pressure may interact with the critical one-way shear section on the B-face of the 

footing. If the line of zero bearing pressure does not intersect the critical section for 

bending, Equation (165) simplifies to:  
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Rearranging Equation (97) and substituting it into Equation (236) gives: 
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(237)

If the line of zero bearing pressure is beyond the critical section for bending, Equation 

(A12) simplifies to: 
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Rearranging Equation (97) and substituting it into Equation (238) gives: 

 

  1 3 2

12
max col

B

q BL L b L
M

   
  

(239)

 

For bending on the L-face of the footing, there is only one case for which the line of zero 

bearing pressure may interact with the critical one-way shear section. Equation (A13) 

simplifies to: 

 

   2 2

4 1

16
col

L

q L B b
M




  
  

(240)

 

Rearranging Equation (97) and substituting it into Equation (240) gives: 

 

  2
1

16
max col

L

q L B b
M

 
  

(241)

 

4.2.2 Corners 1 and 2 detached 

If loading is on the positive y-axis, outside of the kern, then Corners 1 and 2 will 

become detached from the soil. The bearing pressures at Corners 3 and 4 are equal and 

they are the maximum bearing pressure qmax beneath the footing. When this occurs, the 

formulations for two-way shear, one-way shear, and moment at the critical sections 

within Region C will simplify since the percentage of detachments will be equal on the 

left and right B dimensions of the footing. Referring to Figure 18, the line of zero bearing 

pressure is horizontal and β is the percentage of detachment along the B dimensions. 
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4.2.2.1 two-way shear. There are two cases of two-way shear that a spread footing 

may experience if detachment occurs when the load is along the positive y-axis. Both 

cases are simplifications of the two-way shear formulations for biaxial loading. If the line 

of zero bearing pressure does not intersect the critical two-way shear perimeter, Equation 

(174) simplifies to 

 

   2

2 2 1

2
col a

punch u

q b d
V P




 
   

(242)

 

where q2 represents the minimum bearing pressure qmin given in Equation (102). 

Rearranging Equation (101) and substituting it into Equation (242) gives: 

 

  
 

2
2 1

2 1
max col a

punch u

q b d
V P



 

 


 
(243)

 

If the line of zero bearing pressure intersects the critical two-way shear perimeter, 

Equation (178) simplifies to 

 

  2

2 2

8
col a col a

punch u

q b d B b d B
V P

B




   
   

(244)

 

where q2 represents the minimum bearing pressure qmin given in Equation (102). 

Rearranging Equation (101) and substituting it into Equation (244) gives: 
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  
 

2
2

8 1
max col a col a

punch u

q b d B b d B
V P

L




   
 


 

(245)

 

4.2.2.2 one-way shear. For one-way shear on the L-face of the footing, there are two 

cases for which the line of zero bearing pressure may interact with the critical one-way 

shear section. If the line of zero bearing pressure does not intersect the critical section for 

one-way shear, Equation (186) simplifies to  

 

  2 2 3 2 4

8
col a col a

one way

q L b B d B b d B
V

B




    
  

(246)

 

where q2 represents the minimum bearing pressure qmin given in Equation (102). 

Rearranging Equation (101) and substituting it into Equation (246) gives: 

 

  
 

2 3 2 4

8 1
max col a col a

one way

q L b B d B b d B
V

B




    



 (247)

 

If the line of zero bearing pressure is beyond the critical section for one-way shear, 

Equation (190) simplifies to: 

 

 2
2 2 1

2one way

q BL
V

 



  
  

(248)
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Rearranging Equation (101) and substituting it into Equation (248) gives: 

 

 1

2
max

one way

q BL
V





  

(249)

 

For one-way shear on the B-face of the footing, there is only one case for which the line 

of zero bearing pressure may interact with the critical one-way shear section. Equation 

(A15) simplifies to: 

 

   2

2 1 2

4
col a

one way

q B b L d
V




  
  

(250)

 

Rearranging Equation (101) and substituting it into Equation (250) gives: 

 

  1 2

4
max col a

one way

q B b L d
V




  
  

(251)

 

4.2.2.3 flexure. As with one-way shear, there are two cases for which the line of zero 

bearing pressure may interact with the critical bending section on the L-face of the 

footing. If the line of zero bearing pressure does not intersect the critical section for 

bending, Equation (193) simplifies to: 

 

   2

2 5 6

48
col col

L

q L B b B b B
M

B




   
  

(252)
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Rearranging Equation (101) and substituting it into Equation (252) gives: 

 

   
 

2
5 6

48 1
max col col

B

q L B b B b B
M

B




  



 

(253)

 

If the line of zero bearing pressure is beyond the critical section for bending, Equation 

(A19) simplifies to:  

 

   2

2 1 3 2

12
col

L

q BL B b B
M

 


   
  

(254)

 

Rearranging Equation (101) and substituting it into Equation (254) gives: 

 

  1 3 2

12
max col

L

q BL B b B
M

   
  

(255)

 

For bending on the B-face of the footing, there is only one case for which the line of zero 

bearing pressure may interact with the critical one-way shear section. Equation (A18) 

simplifies to: 

 

   2 2

2 1

16
col

B

q B L b
M




  
  

(256)
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Rearranging Equation (101) and substituting it into Equation (256) gives: 

 

  2
1

16
max col

B

q B L b
M

 
  

(257)

 

4.3 Concentric Loading 

During concentric loading, an applied force acts through the center of the footing. A 

constant, compressive bearing pressure q is developed beneath the footing, given by 

Equation (105). The two-way shear force in Equation (213) further reduces to: 

 

 2

punch u col aV P q b d    (258)

 

The one-way shear force on the L face of the footing in Equation (214) further reduces to: 

 

2 2
col

one way a

bB
V qL d

    
 

 (259)

 

The one-way shear force on the B face of the footing in Equation (215) reduces to: 

 

2 2
col

one way a

bL
V qB d

    
 

 (260)
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The moment on the critical section parallel to the L-face of the footing in Equation (217) 

reduces to: 

 

2

2 2 2
col

L

bqL B
M

   
 

 
(261)

 

The moment on the critical section parallel to the B-face of the footing in Equation (218) 

reduces to: 

 

2

2 2 2
col

B

bqB L
M

   
 

 
(262)

 

4.4 Summary 

Governing equations are developed to calculate the two-way shear force, one-way 

shear force, and bending moments at critical sections in a reinforced concrete spread 

footing. The spread footing may be subjected to biaxial, or uniaxial uplift, as well as 

concentric loading. The bearing pressure surface beneath a spread footing was developed 

using a rectangular element with associated interpolation functions.  
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CHAPTER 5 

DESIGN METHODOLOGY 

Economical design has always been central in the practice of engineering. More 

recently, sustainable design has gained interest in engineering practice. As the annual 

emissions of carbon dioxide (CO2) have grown by about 80% since 1970 and were 

estimated to be 77% of total anthropogenic greenhouse gas emissions in 2004 (UNIPCC 

2007), the consideration of CO2 emissions in structural concrete design has become a 

prudent area of research. Large emissions of CO2 are produced during the manufacturing 

of Portland cement, the principal binder used in concrete. Due to these large CO2 

productions, efforts have been made to design concrete structures that are more 

sustainable. A detailed method for developing low-cost and low-CO2-emission designs of 

reinforced concrete spread footings is relatively new (Wang and Kulhawy 2008, Wang 

2009, Khajehzadeh et al. 2011, and Camp and Assadollahi 2013). In addition, there has 

been no investigation into the comparison of footing designs based on simplified analysis 

procedures with theoretical analysis procedures for low-cost and low-CO2 emissions, 

subjected to biaxial bending, which consider all of the geotechnical and structural limit 

states. 

In practice, there are many simplified analysis procedures that yield conservative 

design results. If cost or CO2 emissions are not of significant concern to the design 

engineer, then applying simplified analysis procedures is acceptable. However; if the 

material and construction costs or CO2 emissions of the spread footing are of significant 

concern, using simplified analysis procedures that yield over-designed footings and result 

in increased costs and CO2 emissions may not be desired. The theoretical analysis 
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procedures presented in Chapters 3 and 4 for the analysis of spread footings subjected to 

biaxial bending more accurately describe the bearing pressure distribution beneath the 

footing and do not yield over-designed spread footings that result in increased costs and 

CO2 emissions. 

When designing a reinforced spread footing, both geotechnical and structural limit 

states must be considered. Geotechnical limit states are evaluated using service loads and 

include the bearing capacity of the surrounding geomaterial and the allowable settlement 

of the footing. Allowable Stress Design (ASD) is used for the evaluation of the 

geotechnical limit states. Structural limit states are evaluated based on Load Resistance 

Factor Design (LRFD) and include the shear capacity of the footing (one-way shear and 

two-way shear); the flexural capacity; the bearing capacity of the column, dowels, and 

footing; and development length requirements for the reinforcing. Structural limit states 

conform to the specifications prescribed by the American Concrete Institute building 

code 318-11 (ACI 2011) for structural concrete. 

5.1 Simplified Analysis Procedures 

In practice, several simplified structural analysis procedures can be implemented for 

footings subjected to eccentric loading that will yield over-designed footings. For the 

purposes of this research, five of these simplified analysis procedures are considered: 

1) The two-way (punching) shear force through the footing is taken as the applied 

factored axial load, 

2) The one-way shear force through the footing due to the soil pressure is calculated 

by assuming that the maximum bearing pressure is constant across the entire 

footing and is computed using Equation (1), 
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3) The moment produced at the face of the column due to the soil pressure is 

calculated by assuming that the maximum bearing pressure is constant, 

4) The development length of the flexural steel is the entire length of each direction 

of the footing less the clear cover distance, 

5) Eccentricities outside of the kern area are not permitted.  

Taking the two-way shear force Vpunch as the factored column load, the two-way shear 

force through the footing is 

 

punch uV P  (263)

 

where Pu is the factored column load given by Equation (106). The shear stress vpunch  

transferred to the footing by the combined two-way shear force and moment is computed 

as 

 

2
  

 
  

col a
v u

punch
punch

p a c

b d
M

V
v

b d J
 

(264)

 

where v is the fraction of the moment that is transferred by shear stress on the critical 

shear perimeter, given in ACI 318-11, Mu is the factored moment transmitted from the 

column, and Jc is the polar moment of inertia of the critical shear perimeter. For biaxial 

loading, vpunch calculations are made for each principal direction and superimposed.  

Recall that the critical plane in which one-way shear occurs is at a distance da away 

from the face of the column. By assuming that the bearing pressure distribution is 
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constant, with a value of qmax, the one-way shear on the critical plane parallel to the L-

face is computed as: 

 

2 2
col

one way max a

bB
V q L d

    
 

 (265)

 

The one-way shear on the critical plane and parallel to the B-face of the footing is 

computed as: 

 

2 2
col

one way max a

bL
V q B d

    
 

 (266)

 

The critical sections for bending are located along the face of the column in both of 

the dimensions L and B. By assuming that the bearing pressure distribution is constant, 

with a value of qmax, the moment on the critical section parallel to the L-face of the 

footing is computed as:  

 

2

2 2 2
col

L max

bL B
M q

   
 

 
(267)

 

The moment on the critical section parallel to the B-face of the footing is computed as:   

 

2

2 2 2
col

B max

bB L
M q

   
 

 
(268)
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Based on the calculated shear and moment values from these simplified analysis 

procedures, the size of the footing and reinforcement requirements are determined. While 

a conservatively-designed foundation provides additional safety against ultimate limit 

state and service limit state failures, there is an associated increase in both cost and CO2 

emissions for the extra materials and labor. Depending on the overall cost or acceptable 

CO2 emissions of the project, the extra cost and emissions of CO2 may not be of 

consequence; however, for projects with small budgets or ones striving to be 

environmentally friendly, the additional cost and emissions might be undesirable  

5.2 Geotechnical Limit States  

For a spread footing of length L, width B (where L > B), thickness H, and depth of 

penetration D, the bearing capacity limit state of the soil is defined by the factor of safety. 

For bearing capacity analysis on an eccentrically loaded spread footing, the effective area 

method is used (Meyerhof 1953), in which effective footing dimensions are calculated 

such that the applied load will act through the center of the equivalent footing area, 

producing a uniform bearing pressure distribution over the equivalent footing area. The 

equivalent dimensions B and L  are defined, respectively, as: 

 

min( 2 , 2 )   x yB L e B e  (269)

max( 2 , 2 )   x yL L e B e  
(270)

 

If the footing is subjected to concentric loading, then ex and ey are zero and the effective 

dimensions are equal to the actual footing dimensions. The equivalent bearing pressure 

qequiv is: 
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
 

equiv
fP W

B
q

L
 

(271)

 

The factor of safety against soil bearing capacity failure FSB is  

 

 ult

equiv
B

q

q
FS  (272)

 

where qult is the ultimate bearing capacity of the footing. For a cohesionless soil with no 

ground slope and an internal angle of friction  , the bearing capacity is calculated as 

(Vesic 1975)  

 

0.5      ult q qs qd s dq DN F F B N F F  (273)

 

where γ is the unit weight of the soil. The bearing capacity factors Nq and Nγ, as well as 

the shape and depth factors Fqs, Fγs, Fqd, and Fγd 
are given as: 

 

tan( ) 2tan
4 2

       
 

qN e  (274)

2( 1) tan  qN N  (275)

1 tan


 
qs

B
F

L
 

(276)

1 0.4


 

s

B
F

L
 

(277)
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 

 

2

1 2
1 2

2

1 2

1 2tan 1 sin arctan         if     D min( ,  )
min( ,  )

1 2tan 1 sin                       if     otherwise
min( ,  )

 

 

   
      

    
      
 

qd

D
B B

B B
F

D

B B

 (278)

1.0 dF  
(279)

 

The second geotechnical limit state to be considered is settlement of the spread 

footing. For a cohesionless soil with a sufficiently deep ground water level, only the 

immediate settlement is considered. The settlement δ is calculated using the elastic 

solution given by Poulos and Davis (1974) 

 

2( )(1 )




 
 f

z

P W

E BL
 (280)

 

where μ is the Poisson ratio and E is the modulus of elasticity of the soil. The shape 

factor  z  was developed by Whitman and Richart (1967) as: 

 

2

0.0017 0.0597 0.9843          
   

z

L L

B B
 (281)

 

Immediate rotational settlement also occurs due to the moment loading. The angle of 

rotation that the column-footing connection experiences is calculated using the elastic 

solution given by Poulos and Davis (1974) due to the moment M applied in either the L or 

B direction. For moment loading in the L direction, the angle of rotation is given as 
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2

2

(1 )


 


M
I

L BE
 

(282)

 

where Iθ is an influence factor developed by Whitman and Richart (1967) and interpreted 

in this study as: 

 

0.9411 ln 3.7937     if     4

5.1                                     if     otherwise


        


B
L B

I L  (283)

 

Corresponding formulations are used to compute rotational settlement for moment 

loading in the B-direction.  

5.3 Structural Limit States 

Structural limit states include the shear capacity of the footing (one-way shear and 

two-way shear); the flexural capacity; the bearing capacity of the column, dowels, and 

footing; and development length requirements for the reinforcing. The structural limit 

states conform to the specifications prescribed by the American Concrete Institute 

building code 318-11 (ACI 2011) for structural concrete.  

For spread footing design, ACI 318-11 provides capacity equations for two-way 

shear, one-way shear, flexure, and bearing. The two-way shear strength vn,punch is 

calculated as  
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,

2
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 



     
 

         
 


c

a
n punch c

p

c

f

d
v f

b

f

 (284)

 

where β is the ratio of the long side to the short side of the column (ACI 318-11, 

11.11.2.1),   is the nominal strength coefficient (  = 0.75 per ACI 318-11), κ is a factor 

representing the type of concrete (κ = 1.0 for normal weight concrete), and cf  is the 

compressive strength of the concrete. 

The one-way shear strength Vn,one-way in either the long or short dimension is 

 

 , 0.17  n one way a cV wd f  (285)

 

where w is either B for the short dimension or L for the long dimension of the footing. 

The flexural strength Mn is calculated for reinforcing steel in both the L-direction and 

B-direction. For reinforcing steel in the L-direction, the flexural strength is  

 

,
, 0.59

 
   

s L y
n s L y L

c

A f
M A f d

Bf
 (286)

 

where   is the nominal strength coefficient (defined in section 9.3.2.2 of ACI 318-11), 

As,L is the area of reinforcing steel in the L-direction, fy is the tensile strength of the 

reinforcement, and dL is the depth from the compression face of the footing to the 
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centroid of the reinforcement in the L-direction. For reinforcing steel in the B-direction, 

the flexural strength is  

 

,
, 0.59

 
   

s B y
n s B y B

c

A f
M A f d

Lf
 (287)

 

where As,B is the area of reinforcing steel in the B-direction and dB is the depth from the 

compression face of the footing to the centroid of the reinforcement in the B-direction.  

The reinforcement steel should be spaced appropriately in both directions of the 

footing. Minimum and maximum spacing requirements in the long and short directions of 

the footing conform to sections 7.6 and 13.3.2 of ACI 318-11. In addition, spacing in the 

short direction should conform to section 15.4.4.2 of ACI 318-11. The minimum amount 

of reinforcing steel defined by section 10.5.4 of ACI 318-11 is:  

 

, 0.0018s minA wH  (288)

 

There is no required maximum steel reinforcing in ACI 318-11; however, there is a 

limitation that ensures the section be tension-controlled based upon the developed strain 

in the tension steel in both the L and B directions. The strain in the tension steel ,s L  in the 

L-direction is calculated as 

 

, 0.003
 

  
 

L L
s L

L

d c

c  

(289)



133 

where cL is:  

 

,

10.85 



s L y

L
c

A f
c

f B
 (290)

 

and 1  is a factor relating the depth of the equivalent rectangular compressive stress 

block to the neutral axis depth given by section 10.2.7.3 of ACI 318-11. The strain in the 

tension steel ,s B  in the B-direction is calculated as 

 

, 0.003
 

  
 

B B
s B

B

d c

c  

(291)

 

where cB is:  

 

,

10.85
s B y

B
c

A f
c

f L



 (292)

 

The minimum development length ld for all flexural steel reinforcing is defined as: 

 

1.1

 




  
 

y t e
d bar

b tr
c

bar
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c
d

K
f

d

 (293)
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where s is the size factor, t is the traditional reinforcement location factor, e is a 

coating factor reflecting the effects of epoxy coating,  is a factor reflecting the lower 

tensile strength of lightweight concrete, and dbar is the diameter of the reinforcement bar. 

In this study, t, e, and  are 1.0 and s is 0.8 for #6 bars and smaller and 1.0 for bars 

larger than #6. The cb factor is the smaller of the distance from the center of a bar to the 

nearest concrete surface and one-half the center-to-center spacing of the bars being 

developed. The Ktr factor represents the contribution of confining reinforcement across 

potential splitting planes and is taken as zero. 

The bearing strength of the concrete is also calculated for the base of the column and 

top of the footing based on sections 10.14 and 15.7 of ACI 318-11. The bearing strength 

Pb of the dowels and footing are calculated respectively as 

 

, ,b dowel s dowel yP A f  (294)

   2 2

, 2
0.85 1.7   proj

b footing c col c col
col

A
P f b f b

b
 

(295)

 

where  is the nominal strength coefficient ( = 0.65 per ACI 318-11) and Aproj is the area 

of the lower base of the largest frustum of a pyramid, defined in section 10.14 of ACI 

318-11. The minimum amount of steel required for the dowels is given in section 15.8.2.1 

of ACI 318-11 as 0.005(bcol)
2. 



135 

The total bearing strength provided is:
  

 

, , b b footing b dowelP P P  (296)

 

The development length of the dowels conforms to sections 12.3, 12.5, 12.16, and 

15.8 of ACI 318-11. The development length of the dowels into the column , ,d dowel coll  is 

calculated as  

 

, ,, max(0.0005 , ) y doweld dowe d cl col oll f d l  (297)

 

where ddowel is the diameter of the dowels. The development length of the column 

reinforcement ld,col is defined in ACI 318-11 as 
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where dcol is the diameter of the column bars. The development length of the dowels into 

the footing ld,dowel is defined by ACI 318-11 as: 
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Standard hooking of the dowels is provided based upon Sections 7.1 and 7.2 of ACI 

318-11 and the added material cost of the bend diameters and extensions of the dowel 

hooks is computed. Placement of the dowels is not considered in this research.  

5.4 Summary 

In order for a spread footing to provide safety and stability for a superstructure, it 

must meet all geotechnical and structural limit states. Service loads are used for the 

geotechnical limit state analysis while factored loads are used for the structural limit state 

analysis. In order to provide added safety against structural limit state failure, simplified 

analysis procedures are commonly employed in practice. However, simplifications 

typically lead to increases in cost and CO2 emissions. Theoretical analysis procedures 

presented in earlier chapters use a more realistic distribution of the bearing pressure 

surface and may be used to analyze a spread footing subjected to biaxial loading, without 

leading to increases in cost and CO2 emissions.  
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CHAPTER 6 

OPTIMIZATION 

Mathematical optimization involves selecting the best value from a set of available 

alternatives. An optimization problem typically consists of minimizing or maximizing a 

function by systematically choosing input values from a set and computing the value of 

the function. Big Bang-Big Crunch (BB-BC) has been shown to be a computationally 

efficient heuristic method to solve a variety of mathematical and engineering 

optimization problems. Erol and Eksin (2006) proposed the original BB-BC algorithm, 

which involved exploiting the power of the mean using an abstract model of the lifecycle 

of the universe. In each “Big Bang” stage, a set of normally distributed solutions is 

generated about the weighted mean of the current solution population. After the solutions 

are evaluated, a “Big Crunch” stage computes a new center for the next “Big Bang” 

based on the fitness of the various solutions. Over successive cycles of Big Bangs and 

Big Crunches, the standard derivation of the normal distribution of new solutions 

decreases and the search tends to become more localized in the neighborhood of the best 

solution. When the average and/or the best solution cease to improve over a number of 

cycles, the optimization is assumed to have converged. Erol and Eksin (2006) established 

that a simple BB-BC algorithm can outperform enhanced and classic genetic algorithms 

(GA) for many benchmark optimization functions.  

6.1 Objective Functions  

Three objective functions are utilized in this research. The forms of the first two 

objective functions for this optimization are consistent with those presented by Wang and 

Kulhawy (2008). Both the cost objective function and the CO2 emission objective 
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function include the cost of excavation, formwork, reinforcing steel, concrete, and 

compacted backfill. The values include material cost and associated cost for labor and 

installation.  

The general form of the optimization problem is  
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where fcost is the cost function, 
2COf  is the CO2 emission function, Ci are the unit costs, ui 

is the amount of material and construction units, xi are the design variables, n is the 

number of design variables, R is the number of material and construction units, Ei are the 

unit CO2 emissions, pj are penalty functions, and N is the number of penalty functions.  

For all examples, cost and CO2 fitness functions are defined, respectively, as 
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where Ce is the unit cost of excavation, Cf is the unit cost of formwork, Cr is the unit cost 

of reinforcement, Cc is the unit cost of concrete, Cb is the unit cost of backfill, Ee is the 

unit emission of excavation, Ef is the unit emission of formwork, Er is the unit emission 
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of reinforcement, Ec is the unit emission of concrete, Eb is the unit emission of backfill, 

Ve is the volume of excavation, Vc is the volume of concrete, and Vb the volume of 

backfill. Af is the area of formwork, and Mr is the mass of reinforcement. To help keep 

the cost and CO2 emissions of concrete and steel comparable, a scale factor  is 

introduced. In addition, the impact of the strength of concrete is scaled using the 

minimum allowable strength of concrete cminf . 

Scale factors on the unit values for steel reinforcing and concrete help reflect the 

impact of design variables more equitably on related terms in the optimization fitness 

function. Three factors account for applying a scale factor to the unit values for concrete 

strength: (1) at moderate values of the applied load, the footing design is controlled by 

geotechnical considerations, where concrete strength is not influential; (2) calculations 

for flexural strength, shear strength, and development length are related to both reciprocal 

and square root functions of concrete strength; and (3) in the optimization formulation, 

the concrete strength design variable space is very small. A scale factor on concrete unit 

values that artificially increases the associated fitness value as concrete strength increases 

significantly improves the quality and reliability of the optimization. Numerical studies 

have shown that a scaling factor of  = 10 is adequate to artificially increase the 

magnitude of the fitness function term associated with unit values for steel reinforcement 

to the same order of magnitude as unit values for concrete and, more importantly, results 

in more consistent structural designs in terms of the size and number of rebars. 

To gain better insight on the relationship between low-cost and low-CO2 emission 

design, a multi-objective optimization is applied using the weighted aggregation (sum) 

approach. In general, this approach consists of adding all the single-objective functions 
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together using different weighting coefficients. Many applications of this method can be 

found in the literature. Coello (1999) presented a comprehensive survey of multi-

objective optimization techniques, which includes a summary of the weighted 

aggregation approach, its applications, strengths, and weaknesses. Parsopoulos and 

Vrahatis (2002) present a detailed description of the weighted aggregation approach. 

Marler and Arora (2004) also present a survey of multi-objective optimization methods.  

The general form of the weighted aggregation approach is given as 
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where fmulti is the multi-objective fitness function, h are non-negative weights, fh are the 

single-objective fitness functions, and m is the number of weights.  

For the multi-objective study, the fitness function is defined as
  

 

 
2

1   multi cost COf f f  (306)

 

where  is a weighting factor that varies from 0 to 1.  

6.2 Design Variables  

Figure 67 shows the dimensions and design variables for a rectangular spread footing. 

In general, there are four geometric design variables representing the dimensions of the 
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footing: the long dimension of the footing is L = xmin, L + X1 (the minimum dimension of 

the footing is assumed to be the larger of the column width bcol and 3ex), the short 

dimension is B = xmin, B + X2 (the minimum dimension of the footing is assumed to be the 

larger of the column width bcol and 3ey), the depth from the ground surface to the bottom 

of the footing is D = X3, and the thickness of the footing is H = Tmin + X4 (the minimum 

thickness of the footing is assumed to be Tmin and is specified as the sum of 76.2 mm 

concrete cover below the reinforcement and 152.4 mm concrete cover above the 

reinforcement). There are six design variables related to the steel reinforcement of the 

various sections of the footing: R1 is the bar number in the long direction of the footing, 

R2 is the number of bars in the long direction of the footing, R3 is the bar number in the 

short direction of the footing, R4 is the number of bars in the short direction of the 

footing, R5 is the bar number of the dowels, and R6 is the number of dowels. One 

additional design variable S1 represents the compressive strength of the concrete.  
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Figure 67.  Reinforced Spread Footing Design Variables 

 

6.3 Constraints 

The typical design philosophy of shallow foundations seeks designs that provide 

safety and stability against geotechnical limit state failure and structural limit state 

failure. These requirements include stability of the geomaterial, concrete capacity, 

reinforcement configuration, and geometric limitations. Each design constraint is posed 

as a penalty on the objective function of the design and is non-zero only when violated. 

In other words, if the design is feasible, the sum of the constraint penalties will be zero. 

The general form of a penalty equation for minimum constraint values is: 

 

min
min

constraint
1 0

constraint
  p  (307)
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The general form of a penalty equation for maximum constraint values is: 

 

max
max

constraint
1 0

constraint
  p  (308)

 

Penalties are imposed for violations of: soil bearing capacity; vertical settlement; 

rotational settlement; two-way shear capacity; one-way shear capacity in both directions 

of the footing; moment capacity in both directions of the footing; minimum area of steel 

in both directions; tension steel strain in both directions; development length in both 

directions; development length of dowels; minimum and maximum dimensions based on 

spacing requirements; concrete bearing strength; and minimum and maximum depth of 

embedment of the footing in the soil.  

The geotechnical limit state penalties are defined as 
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where FSmin is the minimum prescribed safety factor for bearing capacity and max  is the 

maximum allowable settlement.  

The shear capacity of any reinforced concrete foundation should be greater than the 

ultimate shear force in the foundation. In the same way, moment capacities of footing 

sections should be greater than the design moments. The two-way shear capacity penalty 
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and the one-way shear capacity penalties for each of the footing dimensions B and L are 

summarized as:  
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Moment capacity penalties in both dimensions of the footing may be summarized as:  
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The amount of steel reinforcement in each direction of the footing must satisfy 

minimum limits required by ACI 318-11. Minimum reinforcement area penalties for each 

direction and for the dowels are defined as: 
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For flexural design, if failure is to occur, it is desired that it be in tension. When the 

strain in the tension steel is less than 0.005, the section is no longer tension controlled. To 

ensure a tension-controlled section, tension steel strain penalties in each direction are 

defined as:  
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All footing sections must satisfy minimum requirements for the development length 

of steel reinforcement bars within the dimensions of the structure. The minimum basic 

development length is checked against the allowable space in the appropriate footing 

dimension (accounting for rebar size and concrete cover). All appropriate footing 

dimensions should accommodate the required development lengths for the reinforcement. 

The reinforcement development length penalties are summarized for each dimension of 

the footing; for the short dimension, the development length penalty is: 
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For the long dimension, the development length penalty is: 
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For the development length of dowels into the footing, a minimum footing thickness 

penalty is established as 
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where dbend is the bend diameter of the hooked dowels, defined in section 7.2 of ACI 318-

11.  

In general, the spacing of the reinforcing bars must meet minimum and maximum 

requirements smin and smax in the long direction, the center band of the short direction, and 

the outer bands of the short direction. To address spacing criteria, additional geometric 

penalties are established to prevent infeasible footing dimensions. The minimum 

dimension penalty for the B-dimension is defined as 
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where nbars,L and smin,L are the number of bars and minimum bar spacing in the L-

direction, respectively. The minimum dimension penalty for the L-dimension is defined 

as 
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where nbars,B and smin,B are the number of bars and minimum bar spacing in the B-

direction, respectively.  

The maximum dimension penalty for the B-dimension is defined as 
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where smax,L is the maximum bar spacing in the L-direction. The maximum dimension 

penalty for the L-dimension is defined as  
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where smax,B is the maximum bar spacing in the B-direction. 

The concrete bearing strength penalty is:  
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The depth of the footing must not be less than a minimum value defined by the frost 

depth and must not be greater than a maximum value that delineates a shallow 

foundation. The footing depth penalties are given as 
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where Dmax is the maximum allowable depth of the footing to be considered a shallow 

foundation (equal to four times the shorter plan dimension) and Dmin is equal to the depth 

of frost, taken as 0.3 m for this study. Additional geometric constraints are developed to 
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prevent infeasible footing designs due to the calculation of negative punching shear, one-

way shear, and development lengths.  

An additional penalty is developed for footing designs using the simplified analysis 

procedures. This penalty does not allow for footing detachment from the soil, as this is 

typically not allowed in practice. Based upon the kern, this penalty is given as: 
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A penalty function is used to enforce each penalty pj on the objective function. The 

penaltyk for a candidate low-cost or low-CO2 emission design k is a function of the 

summation of the all of the penalties and is defined as 
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where m is the total number of penalties and  is a positive penalty exponent (typically > 

1). The penalized objective function Fk is a product of either the cost or the CO2 objective 

function of candidate design k and its total penalty: 
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The penalty function imposes a numerical penalty on the value of the objective function 

that tends to reflect the degree to which the constraints are violated by a candidate set of 

design variables. 

6.4 Big Bang-Big Crunch Optimization 

Erol and Eksin (2006) developed BB-BC optimization from an abstract model of the 

lifespan of the universe. In their model, each Big Bang stage of the process simulates the 

dissipation of energy by transforming ordered space to a randomly distributed space. This 

is followed by a Big Crunch stage where space contracts about a center of mass. Over 

successive cycles of Big Bangs and Big Crunches, the overall search space decreases and 

becomes localized about the best solution.   

In the initial Big Bang stage, solution variables are uniformly randomly distributed 

throughout the search space; this step is nearly identical to other evolutionary methods in 

that an initial population of candidate solutions is generated randomly over the range of 

the search space. Next, during the contraction of the Big Crunch stage, a center of mass


cmx is computed from the initial population using penalized objective function values 
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where


kx is the position of candidate k in an n-dimensional search space and NC is the 

candidate population size. 
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For the subsequent iterations of the Big Bang stage, new candidate solution positions 

new
kx  are normally distributed around the center of mass by  
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where   is a vector of standard deviations for each normal distribution computed as 
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where r is a random number from a standard normal distribution, τ is a parameter limiting 

the size of the search space, 


maxx and 


m inx are the upper and lower limits on the values of 

the design variables, and ncycle is the number of Big Bang iterations. The size of the 

search space available for new candidate
new

kx positions decreases inversely with the 

number of completed Big Bang iterations. 

For discrete variables, the continuous values maybe rounded to the nearest integer 

value: 
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Depending on where the center of mass is located in the search space, especially during 

early cycles of the algorithm, it is possible to generate a design variable value that is 
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outside the prescribed range. In this case, values that lie outside the search space limits 

are reset to the appropriate minimum/maximum values (Erol and Eksin 2006).  

Both Camp (2007) and Kaveh and Talatahari (2010) developed hybrid formulations 

that not only use the center of mass, but weighted values of the local best solution and the 

global best solution to compute the mean of the Big Bang. The local best solution is the 

best solution in a given cycle. The global best solution is the overall best unpenalized 

solution found from all previous cycles. A modified version of Equation (329) is given 

as:  
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where 1 and 2 are values in the range [0, 1] that weight the influence of the local best 

solution 
best

lx  and the global best solution 
best

gx on the center of mass of new population 

positions. Since normally distributed numbers can exceed ±1, it is necessary to limit 

candidate positions to the prescribed search space boundaries. As a result of this 

contraction, there may be an accumulation of candidate solutions at the search space 

boundaries (Erol and Eksin 2006).  

For structural optimization, Camp (2007) and Kaveh and Talatahari (2009 and 2010) 

have shown that there is a significant improvement in the quality of the solution and the 

computational efficiency of the BB-BC algorithm using formulations similar to Equation 

(332) over the original model developed by Erol and Eksin (2006).  

The BB-BC method used here also employs a two-phase search procedure. Unlike 

traditional BB-BC algorithms, during Phase 1 the initial random search Big Bang stage is 
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repeated until the local best solution
 best

lx has an acceptable minimum penalty. Once a 

pseudo-feasible solution is found, the Big Crunch stage is initiated. Phase 1 is completed 

when the global best solution
 best

gx has not improved over a number of consecutive Big 

Bang cycles; with this condition reached, the algorithm is considered to have converged 

to a solution. The global best solution
 best

gx is limited to candidates that are feasible, in 

other words, designs that have no penalty applied to their objective function values. In 

Phase 2, a local search space is defined in the immediate neighborhood around 
 best

gx  from 

Phase 1 and a new search is initiated. A new set of candidate solutions 
 new

kx are 

randomly generated within the local search space with 
 best

gx from Phase 1 either being 

retained or reset. Phase 2 uses the same convergence criteria as Phase 1. The BB-BC 

optimization parameters include the size of the candidate solution population; values of τ, 

1 and 2 required for Equation (332); the penalty function exponent; the search space 

reduction factor used for a multi-phase search; and the algorithm stopping criteria. 

6.5 Summary 

A modified BB-BC algorithm is applied to the analysis and design of spread footings 

subjected to biaxial, uniaxial, or concentric loading. Cost and CO2 emission functions are 

considered as single objective functions, while the weighted aggregate of the cost and 

CO2 emission functions is considered as a multi-objective function to gain better insight 

on the relationship between cost and CO2 emissions.  

 

 

 



153 

CHAPTER 7 

OPTIMIZATION DESIGN EXAMPLES 

Design examples are presented to investigate the impacts of cost and CO2 emissions 

on spread footing designs. The first set of design examples considers concentric loading, 

the second set considers uniaxial loading, and the third set considers biaxial loading. The 

BB-BC optimization procedure is applied to find the best low-cost and low-CO2 emission 

footing designs, subjected to geotechnical and structural limit states, using the 

formulations developed in Chapters 3 and 4.  

Table 1 and Table 2 list the unit costs and unit CO2 emissions used in Equation (302), 

the cost fitness function, and Equation (303), the CO2 fitness function. Table 1 lists unit 

cost values, based on costs for raw material and labor (Wang and Kulhawy 2008), and 

unit emission values, based on extraction and the transportation of raw materials; 

processing, manufacturing, and fabrication of products and machinery; and the emissions 

of equipment involved in the construction process (Yepes et al. 2012). Concrete unit cost 

values are scaled to match the costs presented by Wang and Kulhawy (2008) at f'c = 27.6 

MPa. CO2 emissions are estimated from concrete proportions and emissions data on 

cement works, crushed rock, sand, and ready-mixed concrete production (MPA 2010). 

Table 2 lists the unit cost and CO2 emission values for concrete based upon compressive 

strength, estimated by Camp and Assadollahi (2013).  

For all design examples, the volume of excavation Ve, area of formwork Af, volume of 

concrete Vc, and volume of backfill Vb, used in Equations (302) and (303), are computed 

in the same manner. The volume of excavation Ve is calculated as 
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  0 0eV B B L L D    (333)

 

where B0 and L0 are the over-excavation lengths long the B and L dimensions of the 

footing. The area of formwork Af is calculated as:  
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The volume of concrete Vc is calculated as 
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where Vr is the volume of reinforcement. If H D , there is no backfill above the footing 

and the volume of compacted backfill Vb is 
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otherwise: 
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Unless otherwise specified, the mass of reinforcement Mr is calculated based on the total 

volume of reinforcement and the density of steel, which is taken as 7,850 kg/m3.  

As the value of the penalty function exponent  increases in Equation (326), the 

penalty for a given candidate design increases. In Phase 1 of the BB-BC algorithm, if 

 > 2, the search tends to be more exploitive and less explorative, generating solutions 

that, while feasible, are too costly to be considered good designs. For all the spread 

footing design examples,  = 2 in both Phase 1 and Phase 2. 

 

Table 1. Unit Cost and CO2 Values 

Input parameter Unit Symbol Value 

Cost of excavation $/m3 Ce 25.16 

Cost of concrete formwork $/m2 Cf 51.97 

Cost of reinforcement $/kg Cr 2.16 

Cost of compacted backfill $/m3 Cb 3.97 

CO2 emission for excavation kg/m3 Ee 13.16 

CO2 emission for concrete formwork kg/m2 Ef 14.55 

CO2 emission for reinforcement kg/kg Er 3.02 

CO2 emission for compacted backfill kg/m3 Eb 27.20 
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Table 2. Unit Cost and CO2 Values for Concrete 

Compressive Strength 
of Concrete (MPa) 

Unit Cost Value 
($/m3) 

Unit CO2 
Value (kg/m3) 

20 169.13 214.09 

25 173.14 240.33 

30 177.42 268.36 

35 182.41 301.01 

40 188.53 341.09 

45 196.23 391.43 

50 205.92 454.86 

55 218.05 534.21 

 

7.1 Concentric Loading 

Two design examples considering concentric loading are presented. The first 

example, originally developed by Wang and Kulhawy (2008), did not consider the ACI 

318-11 requirements for structural concrete (i.e. one-way and two-way shear capacity of 

the footing; the flexural capacity; the bearing capacity of the column, dowels, and 

footing; and development length requirements). The objective in presenting the first 

example is to compare the low-cost designs of the BB-BC algorithm, using both 

continuous-variable and discrete-variable formulations, to those of Wang and Kulhawy 

(2008) and develop companion low-CO2-emission designs. The purpose of using both 

continuous-variable and discrete-variable formulations is to show how the designs from 

both formulations using BB-BC algorithm compare to those of Wang and Kulhawy 

(2008), who used  the Microsoft Excel Solver tool to perform only a continuous-variable, 



157 

low-cost footing design. The objectives of the second example are; first, to examine the 

effects of applying the ACI 318-11 requirements for structural concrete to the first 

example by performing a single-objective, low-cost and low-CO2-emission optimization; 

and second, to perform a multi-objective optimization to gain insight on the relationship 

between low-cost and low-CO2 emission designs.  

7.1.1 Concentric loading: example one 

Example One was originally developed by Wang and Kulhawy (2008) and only 

considered the geotechnical limit states of soil bearing capacity and vertical settlement, 

given by Equations (269) through (281). Wang and Kulhawy (2008) only considered 

three design variables: length of the footing L, width B, and depth from the ground 

surface to the bottom of the footing D. Since structural limit states were not considered in 

this example, the mass of reinforcement Mr is calculated as: 

 

r cM mV  (338)

 

where m is a proportionality coefficient taken as 29.67 kg/m3 (Wang and Kulhawy 2008). 

Both a continuous and discrete variable formulation are used for Example One. Table 

3 gives the ranges of the design variables used for both the continuous and discrete 

variable formulations.  
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Table 3. Concentric Loading Design Variables for Example One 

 

Design  
variables 

Unit 
Lower 
 bound 

Upper 
bound 

Increment 
(discrete variable) 

B m 0.01 5.0 0.01 

L m 0.01 5.0 0.01 

D m 0.50 2.0 0.01 

 

Numerical results indicate that a population of 300 candidate solutions is adequate to 

balance computational efficiency and overall algorithm performance for both the 

continuous and discrete variable formulations, using both the cost and CO2 emissions 

fitness functions. Figure 68 shows the average cost as a function of population size. It can 

be seen that the solutions are not sensitive to the population size. This is due to the 

simplicity of the problem. With only three design variables, the size of the search space is 

relatively small. A general stopping criterion of 2,000 analyses without any change in 

 best
gx (overall best feasible design) has been shown to be sufficient for both the continuous 

and discrete variable formulations, using both the cost and CO2 emissions fitness 

functions. Figure 69 shows the average cost as a function of the number of analyses.  The 

size of the Phase 2 search space reduction around best
gx


 varies with the size of the 

problem; however, approximately 10% of the original size has been shown to be 

sufficient to obtain improved designs while reducing overall computational time (Camp 

and Bichon 2004 and Camp 2007). 
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Figure 68. Initial Population Parameter Study for Concentric Loading, Example One. 

 

 

Figure 69. Stopping Analysis Parameter Study for Concentric Loading, Example One. 
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Appropriate values for 1 and 2 required in Equation (332) for spread footing design 

are established based upon a sensitivity study. Computational results from Example One 

show that 1 = 0.3 and 2 = 0.5 routinely provide the best footing designs for this 

example for both the continuous and discrete variable formulations, using both the cost 

and CO2 emissions fitness functions. Figure 70 shows how the average fitness varies with 

1 and 2. The relatively small value for 1 indicates that better designs are obtained 

when the center of the new population of normally distributed candidates is shifted more 

towards the local and global best designs than the population center of mass. The value of 

2 = 0.5 indicates an equal weight between the local best and global best designs tends to 

produce overall better results. Camp and Akin (2012) and Camp and Huq (2013) showed 

that using a value of τ = 1 in Equation (332) enables the initial search to sample the full 

range of values for each design variable.  
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Figure 70. 1 and 2 Parameter Study for Concentric Loading, Example One. 
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Table 4. Concentric Loading Design Parameters for Example One 

Input parameter Unit Symbol Value 

Internal friction angle of soil degree ’ 35 

Unit weight of soil kN/m3 s
 18.5 

Poisson ratio of soil —  0.3 

Modulus of elasticity of soil MPa E 50 

Applied vertical force kN P 3,000 

Over-excavation length m L0 0.3 

Over-excavation width m B0 0.3 

Thickness of footing m H 0.6 

Factor of safety for bearing capacity — FS 3.0 

Maximum allowable settlement mm  25 

 

In a series of 1,000 runs, the BB-BC procedure, using the cost objective function and 

continuous variable formulation, had a low cost of $1,086.15 (with an average cost of 

$1,087.88 and standard deviation of $1.35) and an associated CO2 emission value of 

1,122.15 kg. When rounded to the nearest dollar, this low-cost value is the same as 

presented by Wang and Kulhawy (2008). For the same number of runs, the BB-BC 

procedure, using the CO2 objective function and continuous variable formulation, had a 

low-CO2-emission value of 1,119.53 kg (with an average CO2 emission value of 1,124.23 

kg and standard deviation of 3.80 kg) and an associated cost value of $1,087.32 kg. Table 

5 shows a summary of the designs developed by the BB-BC procedure using continuous 

variable formulation. On average, the multiphase BB-BC design procedure used 62% of 

the computational effort in Phase 1 for both the cost and CO2 emission functions. On 

average, the multiphase BB-BC procedure completed 62% of the computational effort in 
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Phase 1 for the cost function and 63% of the computational effort in Phase 1 for the CO2 

emission function. On average, the percent difference between the Phase 1 and Phase 2 

solutions is 0.12% for the cost function and 0.21% for the CO2 emission function.  

 

Table 5. Designs for Example One (Continuous Variables) 

Design  
variables 

Wang and 
Kulhawy (2008) 

BB-BC COST BB-BC CO2 

B (m) 1.86 1.865 2.089 

L (m) 2.30 2.297 2.101 

D (m) 1.38 1.374 1.256 

Excavation (m3) 7.75 7.72       7.20 

Concrete Formwork (m2) 5.00 5.00       5.03 

Reinforcement (kg) 76.16 76.26     78.12 

Concrete (m3) 2.57 2.57       2.63 

Compacted Backfill (m3) 5.18 5.15       4.57 

Design Objective $1,086 $1,086.15  1,119.53 kg 

Secondary Objective —        1,122.15 kg $1,087.32 

Average Fitness —      $1,087.88 1,124.23 kg 

Std. Dev. Fitness —       $1.35       3.80 kg 

Average No. Analyses — 10,207 10,958 

 

Table 6 shows a summary of the designs developed by the BB-BC procedure using 

discrete variable formulation. For the discrete variable formulation, the size of the 

resulting search space is approximately 3.78(107) possible designs. For the cost objective 

function, the best BB-BC design is approximately $1,086.54 (with an average cost of 

$1,088.28 and standard deviation of $1.33) and an associated CO2 value of 1,121.06 kg. 

When rounded to the nearest dollar this low-cost value is the same as presented by Wang 
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and Kulhawy (2008). For the same number of runs, the BB-BC procedure, using the CO2 

objective function and discrete variable formulation, had a low-CO2 emission value of 

1,120.74 kg (with an average CO2 emission value of 1,125.50 kg and standard deviation 

of 12.84 kg) and an associated cost value of $1,088.22. On average, the multiphase BB-

BC design procedure used 67% of the computational effort in Phase 1 for both the cost 

and CO2 emission functions. On average, the percent difference between the Phase 1 and 

Phase 2 solutions is 0.10% for the cost function and 0.16% for the CO2 emission 

function. 

 

Table 6. Designs for Example One (Discrete Variables) 

Design  
variables 

Wang and 
Kulhawy (2008) 

BB-BC COST BB-BC CO2 

B (m) 1.86 1.96 2.08 

L (m) 2.30 2.21 2.11 

D (m) 1.38 1.32 1.26 

Excavation (m3) 7.75 7.49 7.23 

Concrete Formwork (m2) 5.00 5.00 5.03 

Reinforcement (kg) 76.16 77.11 78.13 

Concrete (m3) 2.57 2.60 2.63 

Compacted Backfill (m3) 5.18 4.89 4.59 

Design Objective $1,086 $1,086.54 1,120.74 kg 

Secondary Objective —        1,121.06 kg  $1,088.22 

Average Fitness — $1,088.28 1,125.50 kg 

Std. Dev. Fitness —        $1.33 12.84 kg 

Average No. Analyses — 9,325 9,725 
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7.1.2 Concentric loading: example two 

For the second design example, the discrete variable BB-BC footing design procedure 

is applied once for the cost objective function and again for the CO2 objective function. 

In addition, the design will satisfy the ACI 318-11 requirements for reinforced concrete. 

This example considers the four design variables associated with the geometry of the 

footing (X1 – X4), six design variables representing the steel reinforcement (R1 – R6), and 

one design variable representing the strength of the concrete (S1), as defined in Section 

6.2. The size of the resulting search space is approximately 1.13(1017) possible designs. 

Table 7 lists the ranges of the design variables for Example Two.  

 

Table 7. Concentric Loading Design Variables for Example Two 

Design 
variables 

Unit 
Lower  
bound 

Upper 
bound 

Increment 

X1 m 0.30 3.00 0.01 

X2 m 0.02 8.00 0.02 

X3 m 0.02 8.00 0.02 

X4 m 0.01 2.00 0.01 

R1 — 3 12 1 

R2 — 2 20 1 

R3 — 3 12 1 

R4 — 2 20 1 

R5 — 3 11 1 

R6 — 4 12 2 

S1 MPa 20 55 5 
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Table 8 lists the specified column, footing, soil, and design parameters. For a 

comparison to Wang and Kulhawy (2008), all of the design parameters are the same as in 

Example One, with the exception of the parameters that are utilized for the structural 

analysis. Values needed for the structural aspects of the footing design include: concrete 

unit weight, steel elastic modulus, column dimensions, concrete cover, and minimum 

footing thickness. The concrete unit weight, steel elastic modulus, and column 

dimensions are assumed based on typical values used in practice. Concrete cover and 

minimum footing thickness are specified in ACI 318-11.  

 

Table 8. Concentric Loading Design Parameters for Example Two 

Input parameter Unit Symbol Value 

Internal friction angle of soil degree ’ 35 

Unit weight of soil kN/m3 s
 18.5 

Poisson Ratio of soil —  0.3 

Modulus of elasticity of soil MPa E 50 

Applied vertical force kN P 3,000 

Over excavation length m Lo 0.3 

Over excavation width m Bo 0.3 

Factor of safety for bearing capacity — FS 3.0 

Maximum allowable settlement mm  25 

Unit weight of concrete* kN/m3 c 23.56 

Modulus of elasticity of steel* GPa Es 199.95 

Column length* mm lcol 457.2 

Column width* mm bcol 457.2 

Concrete Cover in Footing* mm cover 76.2 

Minimum Footing Thickness* mm Tmin 228.6 

Note: All values given by Wang and Kulhawy (2008) except for * values which are 
assumed. 
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As in Example One, numerical results indicate that a population of 300 candidate 

solutions is adequate to balance computational efficiency and overall algorithm 

performance, and a general stopping criterion of 2,000 analyses without any change in 

 best
gx  has been shown to be sufficient. Figure 71 shows the average cost as a function of 

population size. Figure 72 shows the average cost as a function of the number of 

analyses. 

 

 

Figure 71. Initial Population Parameter Study for Concentric Loading, Example Two. 
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Figure 72. Stopping Criteria Parameter Study for Concentric Loading, Example Two. 
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Figure 73. 1 and 2 Parameter Study for Concentric Loading, Example Two. 
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details specified in ACI 318-11. On average, the multiphase BB-BC procedure completed 

64% of the computational effort in Phase 1. The increase in the average number of 

analyses to convergence from Example One is due to the increased complexity of the 

problem as well as the significantly larger search space.  

 

Table 9. Concentric Load Designs Based on Scaled Cost Fitness for Example Two 

Design Variables 

X1 (m) 1.78 R1 5 

X2 (m) 1.66 R2 19 

X3 (m) 1.19 R3 5 

X4 (m) 0.42 R4 18 

S1 (MPa) 40 R5 4 

  R6 10 

Excavation (m3) 7.298 

Concrete Formwork (m2) 5.649 

Reinforcement (kg) 54.707 

Concrete (m3) 3.065 

Compacted Backfill (m3) 4.113 

Best Cost    $ 1,189.55 

Average Cost $ 1,321.66 

Std. Dev. Cost  $ 78.63 

Corresponding CO2                          1,500.82 kg 

Average CO2                          1,398.39 kg 

Std. Dev. CO2                             130.31 kg 

Average No. Analyses                               24,281 
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Table 10 lists a summary of the results developed by the BB-BC procedure using the 

CO2 emissions fitness function.  From 1,000 designs, the best low-CO2 emission design is 

1,205.70 kg (with an average CO2 emission value of 1,337.09 kg and standard deviation 

of 112.29 kg) with a corresponding cost of $1,248.25. Compared to Wang and Kulhawy 

(2008), the mass of steel reinforcement from the spread footing design in Example Two 

is 32% lower; resulting in an equivalent proportionality coefficient of 14.90 kg/m3. 

Second, while there is a modest emission savings associated with the reduction in the 

required reinforcing, the additional emissions of the spread footing design in Example 

Two is primarily due to a 35% increase in the volume of concrete in the footing. 

Increased values for length, width, and height of the footing are required to meet strength 

and reinforcing details specified in ACI 318-11. On average, the multiphase BB-BC 

procedure completed 68% of the computational effort in Phase 1. The increase in the 

average number of analyses to convergence from Example One is due to the increased 

complexity of the problem as well as the significantly larger search space.  
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Table 10. Concentric Load Designs Based on Scaled CO2 Fitness for Example Two 

Design Variables 

X1 (m) 1.74 R1 5 

X2 (m) 1.70 R2 16 

X3 (m) 1.18 R3 5 

X4 (m) 0.52 R4 16 

S1 (MPa) 20 R5 4 

  R6 10 

Excavation (m3) 7.241 

Concrete Formwork (m2) 6.519 

Reinforcement (kg) 52.773 

Concrete (m3) 3.541 

Compacted Backfill (m3)     3.602 

Best CO2       1,205.70 kg  

Average CO2 1,337.09 kg 

Std. Dev. CO2 112.29 kg 

Corresponding Cost                $ 1,248.25 

Average Cost               $ 1,363.73 

Std. Dev. Cost                    $ 88.48 

Average No. Analyses                         23,714 

 

A sensitivity analysis was performed to assess the impact of different design 

parameters on the cost and CO2 emissions. Figure 74 shows that the cost and CO2 

emissions increase dramatically as the applied column load increases, as one would 

expect. Figure 75 shows that as the soil becomes stiffer, the cost and CO2 emission values 

greatly decrease. The only limit state that the soil stiffness influences is settlement. 

Footings resting on stiffer soils will tend to settle less, which can lead to the settlement 
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limit state not significantly controlling the design. Figure 76 shows that as the Poisson 

ratio of the soil increases, the cost and CO2 emission values slightly decrease, which 

suggests that the soil Poisson ratio does not have a significant impact on designs. Figure 

77 shows that as the internal angle of friction of the soil increases, the cost and CO2 

emission values decrease. The lack of smoothness in these curves is most likely due to 

the internal friction angle value being in the trigonometric functions of the bearing 

capacity, shape, and depth factors of the soil bearing capacity analysis. Figure 78 shows 

that as the minimum required factor of safety against bearing failure of the soil increases, 

the cost and CO2 emission values increase. Figure 79 shows that as the maximum 

allowable settlement increases, the cost and CO2 emissions of the spread footing designs 

significantly decrease until a point where settlement no longer controls the design ( > 35 

mm).  

Impact of the concrete compressive strength on footing cost and CO2 emissions is 

investigated using a modified form of the design example that does not consider the 

concrete compressive strength as a design variable. The four geometric design variables 

and six reinforcement design variables are defined in the same manner as stated in 

Section 6.2. Figure 80 shows the impact of the concrete strength on average footing cost 

for various applied loads. For a given applied load, it is seen that the concrete 

compressive strength has little effect on average cost. Figure 81 shows the average CO2 

emissions as a function of the concrete strength. For a given applied load, it is seen that 

as the concrete compressive strength is increased, the average CO2 emissions increase. 

For higher applied loads, it is seen that the average CO2 emissions increase more 

dramatically as concrete compressive strength increases.  
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Figure 74. Sensitivity of Cost and CO2 Emissions to Applied Load. 
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Figure 75. Sensitivity of Cost and CO2 Emissions to Soil Elastic Modulus. 
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Figure 76. Sensitivity of Cost and CO2 Emissions to Poisson Ratio. 
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Figure 77. Sensitivity of Cost and CO2 Emissions to Angle of Internal Friction. 
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Figure 78. Sensitivity of Cost and CO2 Emissions to Factor of Safety. 
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Figure 79. Sensitivity of Cost and CO2 Emissions to Allowable Settlement. 
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Figure 80. Cost vs. Concrete Compressive Strength. 
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Figure 81. CO2 Emissions vs. Concrete Compressive Strength. 
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7.1.3 Multi-objective optimization 

In order to observe a relationship between the cost and CO2 emissions, the BB-BC 

algorithm is applied to the multi-objective fitness function given by Equation (306). To 

better reflect the tradeoff between cost and CO2 emissions, the reinforcement scale factor 

 used in the single objective fitness functions is taken as 1 and f'cmin = f'c. The value of

was varied from 0 to 1 by 0.01. Figure 82 shows that, on average, as cost increases, CO2 

emissions decrease. That is, as the value of approaches 1, cost decreases and CO2 

emissions increase. The steeper slope of the data when the multi-objective function is 

weighted more heavily for cost indicates a drastic decrease in average CO2 emissions for 

a relatively small increase in average cost. As the weights on the cost and CO2 emission 

components of the multi-objective function become equal and the CO2 emissions become 

weighted more heavily, the data shows a smaller decrease in CO2 emissions with 

increasing cost. Also, the data shows that when more weight is on the cost function, 

designs are produced with a higher average concrete compressive strength. As the CO2 

emissions function is weighted more heavily, the average concrete compressive strength 

drops. Figure 83 shows the relationship between best low-CO2 emissions with best low-

cost for different values of the concrete compressive strength.  For groups of designs 

where the strength of concrete is constant, a slight increase in cost has a correspondingly 

small increase in CO2 emission. When the entire set of designs is considered, a more 

significant trend is observed where the strength of concrete has a more significant effect 

on both cost and CO2 emissions. As the strength of concrete decreases, CO2 emissions 

decrease by up to 12% while cost increases only 0.8%. This difference is due to the 

increased CO2 emission associated with the larger quantities of cement in the higher 
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strength mix designs. The few designs produced with f'c = 30 MPa occur when the multi-

objective fitness function is weighted more heavily on the CO2 fitness function. The 

fewer designs with the f'c = 30 MPa suggest that using lower strength concrete causes a 

higher required volume of concrete, as well as a higher required mass of rebar, which 

may tend to inflate CO2 emissions.  

 

 

Figure 82. Pareto Front for Cost and CO2 Emissions for                                        
Concentric Loading, Example One.  
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Figure 83. Effects of Concrete Strength on Cost and CO2 Emissions                               
for Concentric Loading, Example One. 
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Table 11. Uniaxial Loading Design Variables  

Design 
variables 

Unit 
Lower  
bound 

Upper 
bound 

Increment 

X1 m 0.30 3.00 0.01 

X2 m 0.02 8.00 0.02 

X3 m 0.02 8.00 0.02 

X4 m 0.01 2.00 0.01 

R1 — 3 12 1 

R2 — 2 40 1 

R3 — 3 12 1 

R4 — 2 40 1 

R5 — 3 11 1 

R6 — 4 12 2 

S1 MPa 20 55 5 

 

Table 12 lists the specified column, footing, and soil design parameters. In order to 

build upon the concentric loading design examples, all of the design parameters remain 

the same with the only additional information being an applied bending moment about 

the y-axis, My. Recall that the applied moment can be written in terms of the applied point 

load acting at an equivalent eccentricity ex away from the center of the footing, along the 

positive x-axis. The equivalent eccentricity ex is defined as: 

 

y
x

M
e

P
  (339)

  

The applied moment value was chosen based on a force equal to the one used by Wang 

and Kulhawy (2008) with values of ex varying from 0 m to 1 m. As the optimization 

procedure sizes the footing, the weight of the footing Wf is included in the equivalent 
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eccentricity as part of the point load P. Concrete cover and minimum footing thickness 

are specified in ACI 318-11.  

 

Table 12. Uniaxial Example Input Parameters  

Input parameter Unit Symbol Value 

Internal friction angle of soil degree ’ 35 

Unit weight of soil kN/m3 s
 18.5 

Poisson Ratio of soil —  0.3 

Modulus of elasticity of soil MPa E 50 

Applied vertical force kN P 3,000 

Over excavation length m Lo 0.3 

Over excavation width m Bo 0.3 

Factor of safety for bearing capacity — FS 
3.0 

Maximum allowable settlement mm  25 

Applied Moment*  kN-m M 3,000 

Unit weight of concrete* kN/m3 c
23.56 

Modulus of elasticity of steel* GPa Es 199.95 

Column length* mm lcol 457.2 

Column width* mm bcol 457.2 

Concrete Cover in Footing* mm cover 76.2 

Minimum Footing Thickness* mm Tmin 228.6 

Note: All values given by Wang and Kulhawy (2008) except for * values which 
are assumed. 

 

As with the concentric loading examples, numerical results indicate that a population 

of 300 candidate solutions is adequate to balance computational efficiency and overall 

algorithm performance, and a general stopping criterion of 2,000 analyses without any 
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change in 
 best

gx  has been shown to be sufficient. Figure 84 shows the average fitness as a 

function of population size. Figure 85 shows the average fitness as a function of the 

number of analyses. 

 

 

Figure 84. Initial Population Parameter Study for Uniaxial Loading Examples. 

 

2,500

2,600

2,700

2,800

2,900

3,000

3,100

3,200

0 100 200 300 400 500

A
ve

ra
ge

 F
it

ne
ss

 (
$)

Initial Population



184 

 

Figure 85. Stopping Criteria Parameter Study for Uniaxial Loading Examples. 
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Figure 86. 1 and 2 Parameter Study for Uniaxial Loading Examples. 
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analyses before convergence and completed 59% of the computational effort in Phase 1 

when using the theoretical analysis procedures. 

Table 13 summarizes the low-cost designs developed by the BB-BC procedure. 

Several important observations can be made by comparing the cost of the spread footing 

design based on the simplified analysis procedures with the one based on the theoretical 

analysis procedures. First, on average, there is a 24.7% savings in cost when using the 

theoretical procedures. Although the excavation volume is slightly higher for the design 

based on the theoretical analysis procedures, the other quantities are significantly less. In 

particular, there is approximately 70% less rebar mass in the design based on the 

theoretical analysis procedures. Since the moment at the face of the column is based on 

the maximum bearing pressure beneath the footing, and the rebar length extends from 

between the clear covers in both directions of the footing; the mass of reinforcement is 

significantly higher for the design based on the simplified analysis procedures. Second, 

when using the theoretical analysis procedures, some soil detachment is allowed; whereas 

for the simplified analysis procedures, it is not. The detached distance for the design 

presented in this example is 0.311 m, with a percentage of detachment of approximately 

6.5%. For 1000 runs, the average percent detachment is approximately 1.1%. 

A sensitivity study is done by varying the applied vertical force and equivalent 

eccentricity. Table 14 shows the range of applied vertical force and equivalent 

eccentricity considered. Figure 87 shows a surface plot of the lowest cost footing designs 

using the theoretical analysis procedures. The general trend shows that as the applied load 

and equivalent eccentricity increase, cost values increase drastically. Figure 88 shows a 

surface plot of the difference between the average low-cost designs using both simplified 
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analysis procedures and the theoretical analysis procedures. The general trend shows that 

as the applied load and equivalent eccentricity increase, the difference in average cost 

increases dramatically. For example, the average cost is approximately a 31% higher 

when the simplified analysis procedures are used for a footing subjected to a load of 

3,000 kN and moment of 3,000 kN-m. Figure 89 shows a contour plot of average cost 

when using the theoretical analysis procedures, where each contour represents a $1,000 

increment in average cost. The bold boundary indicates where detachment first occurs. 

Designs to the right of the boundary have loading outside of the kern. A general trend 

shows an inflection point in the contours, located approximately where designs first have 

soil detachment. 
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Table 13. Uniaxial Loading Designs Based on Scaled Cost Fitness 

Design Variables Simplified Analysis Theoretical Analysis 

X1 (m) 2.32 1.76 

X2 (m) 2.18 2.68 

X3 (m) 0.31 0.31 

X4 (m) 0.96 0.75 

R1 7 8 

R2 34 25 

R3 9 6 

R4 18 30 

R5 7 4 

R6 4 10 

S1 (MPa) 45 45 

L 5.32 4.76 

B 2.64 3.14 

H 1.19 0.98 

Detached Distance (m) —   0.311 

Excavation (m3) 5.117   5.392 

Concrete Formwork (m2)                18.916  15.456 

Reinforcement (kg)              769.843 237.477 

Concrete (m3)                16.578  14.583 

Compacted Backfill (m3)                  0.768    0.762 

Best Cost        $ 6,030.79          $ 4,316.57 

Average Cost        $ 6,911.92          $ 5,203.72 

Std. Dev. Cost           $ 444.85             $ 418.45 

Average No. Analyses 21,793 22,631 
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Table 14. Uniaxial Loading Force and Eccentricity Parameters 

Parameter Unit 
Lower 
 bound 

Upper 
bound 

Increment 

F kN 500.0 5,000.0 500.0 

ex m     0.0       1.0     0.1 

 

 

Figure 87. Lowest Cost Designs using Theoretical Analysis                                  
Procedures for Uniaxial Loading. 
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Figure 88. Difference in Cost between Designs using Simplified Analysis Procedures and 
Theoretical Analysis Procedures for Uniaxial Loading. 
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Figure 89. Cost Contour Plot for Theoretical Analysis Procedures for Uniaxial Loading.  
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performed 22,949 analyses before convergence and completed 59% of the computational 

effort in Phase 1 when using the theoretical analysis procedures. 

Table 15 summarizes of the lowest CO2 emission designs developed by the BB-BC 

procedure. Several observations can be made by comparing the CO2 emissions of the 

spread footing design based on the simplified analysis procedures with the one based on 

the theoretical analysis procedures. On average, there is a 26.4% savings in CO2 

emissions when the theoretical analysis procedures are used. As with cost, the excavation 

volume is slightly higher based on the theoretical analysis procedures; however, more 

significantly, all of the other quantities are less. There is approximately 70% less rebar 

mass in the design based on the theoretical analysis procedures. Also, when using the 

theoretical analysis procedures, some soil detachment is allowed. The detached distance 

for the design presented in this example is 0.0397 m, with a percentage of detachment of 

approximately 0.8%. For 1,000 runs, the average percent detachment is nearly zero. 

Although the average percent of detachment is nearly zero, the allowance of possible 

detachment that the theoretical analysis procedures provide, coupled with the more 

realistic triangular-shaped bearing pressure distribution, results in a significant savings in 

CO2 emissions. 

Figure 90 shows a surface plot of the best CO2 emission values based upon the 

theoretical analysis procedures. The general trend shows that as the applied load and 

equivalent eccentricity increase, the best CO2 emission values increase drastically. Figure 

91 shows a surface plot of the difference between the average of the low CO2 emission 

designs using both simplified analysis procedures and the theoretical analysis procedures. 

The general trend shows that as the applied load and equivalent eccentricity increase, the 
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additional CO2 emission associated with the simplified analysis procedures increases 

dramatically. Figure 92 shows a contour plot of average low-CO2 emission designs using 

the theoretical analysis procedures, where each contour represents a 1,000 kg increment 

in average CO2 emission. The bold boundary indicates where detachment first occurs. As 

with low cost designs, the area to the right of the boundary indicate designs where the 

loading is outside of the kern. A general trend shows an inflection point in the contours 

located approximately where designs first have soil detachment. 
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Table 15. Uniaxial Loading Designs Based on Scaled CO2 Fitness 

Design Variables Simplified Analysis Theoretical Analysis 

X1 (m) 2.40 2.14 

X2 (m) 2.56 2.74 

X3 (m) 0.31 0.31 

X4 (m) 1.07 0.93 

R1 7 6 

R2 32 40 

R3 8 6 

R4 25 38 

R5 6 4 

R6 8 12 

S1 (MPa) 25 25 

L 5.40 5.14 

B 3.02 3.20 

H 1.30 1.16 

Detached Distance (m) — 0.0397 

Excavation (m3) 5.861 5.898 

Concrete Formwork (m2)                 21.861                 19.319 

Reinforcement (kg)               809.033               240.521 

Concrete (m3)                 21.055                 19.009 

Compacted Backfill (m3)                   0.811                   0.803 

Best CO2            7,920.67 kg            5,675.44 kg 

Average CO2            8,520.88 kg            6,268.98 kg 

Std. Dev. CO2 423.57 kg 370.04 kg 

Average No. Analyses 21,490 22,949 
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Figure 90. Best CO2 Emissions Designs using Theoretical Analysis                        
Procedures for Uniaxial Loading. 

 

 

Figure 91. Difference in low-CO2 Emissions Designs using Simplified Analysis 
Procedures and Theoretical Analysis Procedures for Uniaxial Loading. 
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Figure 92. CO2 Emission Contour Plot for Theoretical Analysis                          
Procedures for Uniaxial Loading. 
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  approaches 1, cost decreases and CO2 emissions increase. Also, the data shows that 

when more weight is on the cost function, designs are produced with a higher average 

concrete compressive strength. As the CO2 emissions function is weighted more heavily, 

the average concrete compressive strength drops. Figure 94 shows the relationship 

between best low-CO2 emissions with best low-cost for different values of the concrete 

compressive strength when the theoretical analysis procedures are applied to the design 

example. For groups of designs where the strength of concrete is constant, a slight 

increase in cost has a correspondingly small increase in CO2 emission. When the entire 

set of designs is considered, a more significant trend is observed where the strength of 

concrete has a more significant effect on both cost and CO2 emissions. In this case, as the 

strength of concrete decreases, CO2 emissions decrease by up to 20% while cost increases 

only 6%. This difference is due to the increased CO2 emission associated with the larger 

quantities of cement in the higher strength mix designs.  
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Figure 93. Pareto Front for Average Cost and CO2 Emissions using Theoretical Analysis 
Procedures for Uniaxial Loading. 

 

 

Figure 94. Effects of Concrete Strength on Cost and CO2 Emissions using Theoretical 
Analysis Procedures for Uniaxial Loading. 
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Figure 95 shows that, on average, as cost increases CO2 emissions decrease when the 

simplified analysis procedures are applied to the design example. The steeper slope of the 

data when the multi-objective function is weighted more heavily for cost indicates a 

drastic decrease in average CO2 emissions for a relatively small increase in average cost. 

As the weights on the cost and CO2 emission components of the multi-objective function 

become equal and the CO2 emissions become weighted more heavily, the data shows a 

smaller decrease in CO2 emissions with increasing cost. Like with the theoretical analysis 

procedures, the data shows that when more weight is on the cost function, designs are 

produced with a higher average concrete compressive strength. As the CO2 emissions 

function is weighted more heavily, the average concrete compressive strength drops. 

Figure 96 shows the relationship between best low-CO2 emissions with best low-cost for 

different values of the concrete compressive strength when the simplified analysis 

procedures are applied to the design example. For groups of designs where the strength of 

concrete is constant, a slight increase in cost has a correspondingly small increase in CO2 

emission. When the entire set of designs is considered, a more significant trend is 

observed where the strength of concrete has a more significant effect on both cost and 

CO2 emissions. In this case, as the strength of concrete decreases, CO2 emissions 

decrease by up to 12% while cost increases only 2.5%. Compared to the theoretical 

analysis procedure multi-objective optimization, there is less decrease in CO2 emissions 

for a relatively small increase in cost. 
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Figure 95. Pareto Front for Average Cost and CO2 Emissions using Simplified Analysis 
Procedures for Uniaxial Loading. 

 

 

Figure 96. Effects of Concrete Compressive Strength on Cost and CO2 Emissions using 
Simplified Analysis Procedures for Uniaxial Loading. 
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Figure 97 shows the data from Figure 93 and Figure 95 plotted on the same set of 

axes, without coloring based on concrete compressive strength. It is clear that there is a 

significant savings in both cost and CO2 emissions when the theoretical analysis 

procedures are used over the simplified analysis procedures. In addition, the curvature of 

the data shows a smoother transition from the low-cost to low-CO2 emissions when the 

theoretical analysis procedures are used. Due to the nature of the simplified analysis 

procedures, the multi-objective optimization is utilizing less of a variety of concrete 

compressive strengths, with more of the designs having lower concrete compressive 

strengths. This causes a steep decrease in CO2 emissions as more weight is applied to the 

CO2 emission component of the multi-objective function.  

 

 

Figure 97. Pareto Fronts for Theoretical and Simplified Analysis for Uniaxial Loading. 
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7.3 Biaxial Loading 

The objective of these design examples is to investigate the cost and CO2 emission 

impact between using the theoretical analysis procedures and simplified analysis 

procedures when designing a spread footing subjected to a biaxial bending moment. 

Recall that the applied bending moments may also be expressed as an applied point load 

acting at equivalent eccentricities along the positive x and y axes. The discrete variable 

BB-BC footing design procedure is applied for the cost objective function and again for 

the CO2 objective function. All designs will satisfy geotechnical limit states, as well as 

the ACI 318-11 requirements for reinforced concrete. As with uniaxial loading, both 

examples considers the four design variables associated with the geometry of the footing 

(X1 – X4), six design variables representing the steel reinforcement (R1 – R6), and one 

design variable representing the strength of the concrete (S1), as defined in Section 6.2. 

Table 11 lists the upper and lower limits of the design variables, which are identical to 

the uniaxial loading examples. The size of the resulting search space is approximately 

4.75(1017) possible designs.  

As with the concentric and uniaxial loading examples, parametric studies suggest that 

a population of 300 candidate solutions and a general stopping criterion of 2,000 analyses 

without any change in 
 best

gx  are sufficient. Based upon a sensitivity study, 1 = 0.3 and 

2 = 0.6 required in Equation (332) routinely provide the best footing designs for this 

example. Since the uniaxial optimization problem is a simplification of the biaxial 

optimization problem and the design variables along with their ranges have not changed 

between the uniaxial and biaxial analysis, the parameter studies for initial population, 

stopping criteria and 1 and 2 are the uniaxial and biaxial analyses are identical. 
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Therefore, Figures 84, 85, and 86 are applicable to the biaxial loading case. A value of 

τ = 1 is also used in Equation (332). In order to give the steel reinforcing term a 

magnitude comparable to that of the other terms, the scale factors used in Equations (302) 

and (303) are taken as  = 10 and f’cmin = 20 MPa for both biaxial loading examples. In 

order to show how different applied loads and moments affect the average cost and 

average CO2 emission designs, applied loads of 1,000 kN, 3,000 kN, and 5,000 kN are 

applied for equivalent eccentricities ranging from 0 m to 1 m along the positive x and y 

axes. Figure 98 shows surface plots of average cost for equivalent eccentricities along the 

x and y axes for (a) 5,000 kN, (b) 3,000 kN, and (c) 1,000 kN. Figure 99 shows surface 

plots for average CO2 emissions versus equivalent eccentricities along the x and y axes 

for (a) 5,000 kN, (b) 3000 kN, and (c) 1,000 kN. Both figures show the significant 

upward shift in cost and CO2 emissions as load increases. For the two biaxial design 

examples, the applied load will be taken as 3,000 kN and the applied moments will be 

taken as 3,000 kN-m each, which represents one specific point in the middle plots of 

Figures 98 and 99. 

Table 16 lists the specified column, footing, and soil design parameters. In order to 

build upon the uniaxial loading design examples, all of the design parameters remain the 

same with the only additional information being the second applied moment.  
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Figure 98. Average Cost for Various Applied Loads and Equivalent Eccentricities for 
Biaxial Loading. 
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Figure 99. Average CO2 Emissions for Various Applied Loads and Equivalent 
Eccentricities for Biaxial Loading. 
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Table 16. Biaxial Loading Example Input Parameters 

Input parameter Unit Symbol Value 

Internal friction angle of soil degree ’ 35 

Unit weight of soil kN/m3 s
 18.5 

Poisson Ratio of soil —  0.3 

Modulus of elasticity of soil MPa E 50 

Applied vertical force kN P 3,000 

Over excavation length m Lo 0.3 

Over excavation width m Bo 0.3 

Factor of safety for bearing capacity — FS 3.0 

Maximum allowable settlement mm  25 

Applied Moment about x-axis*  kN-m Mx 3,000 

Applied Moment about y-axis*  kN-m My 3,000 

Unit weight of concrete* kN/m3 c 23.56 

Modulus of elasticity of steel* GPa Es 199.95 

Column length* mm lcol 457.2 

Column width* mm bcol 457.2 

Concrete Cover in Footing* mm cover 76.2 

Minimum Footing Thickness* mm Tmin 228.6 

Note: All values given by Wang and Kulhawy (2008) except for * values which 
are assumed. 
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7.3.1 Biaxial loading: example one 

The first set of footing designs considers the scaled cost fitness function defined by 

Equation (302). The applied column load is P = 3,000 kN and applied column moments 

are Mx = 3,000 kN-m and My = 3,000 kN-m. From 1,000 optimization runs, the best low-

cost design using the simplified analysis procedures is $21,595.39, with an average cost 

of $22,414.92 and standard deviation of $528.88. On average, the multiphase BB-BC 

procedure performed 25,032 analyses before convergence and completed 71% of the 

computational effort in Phase 1 when using the simplified analysis procedures. The best 

low-cost design using the theoretical analysis procedures is $6,888.80, with an average 

cost of $8,177.29 and standard deviation of $517.33. On average, the multiphase BB-BC 

procedure performed 24,185 analyses before convergence and completed 63% of the 

computational effort in Phase 1 when using the theoretical analysis procedures. 

Table 17 summarizes the low-cost designs developed by the BB-BC procedure. 

Several important observations can be made by comparing the cost of the spread footing 

design based on the simplified analysis procedures with the one based on the theoretical 

analysis procedures. First, on average, there is a 63.5% savings in cost when using the 

theoretical procedures. While all material quantities are significantly less when the 

theoretical analysis procedures are used, most notably there is approximately 88% less 

rebar mass in the design based on the theoretical analysis procedures. Since the moment 

at the face of the column is based on the maximum bearing pressure beneath the footing, 

and the rebar length spans between the clear covers in both directions of the footing, the 

mass of reinforcement is significantly higher for the design based on the simplified 

analysis procedures. Secondly, when using the theoretical analysis procedures, some soil 
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detachment is allowed whereas for the simplified analysis procedures it is not. The 

equivalent eccentricities fall within Region A in Figure 6, causing approximately 14.6% 

of the plan area of the footing to detach from the soil. 

A sensitivity study is done by varying the applied column bending moments. Table 18 

shows the variation of eccentricities. Figure 100 shows a surface plot of the best low-cost 

designs using the theoretical analysis procedures. The general trend shows that as the 

eccentricities increase, the cost increases drastically. Figure 101 shows a surface plot of 

the difference between average low-cost designs based on the simplified analysis 

procedures and the theoretical analysis procedures. The general trend shows that as the 

eccentricities increase, the difference in cost increases dramatically.  
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Table 17. Biaxial Loading Designs Based on Scaled Cost Fitness 

Design Variables Simplified Analysis Theoretical Analysis 

X1 (m) 3.26 1.96 

X2 (m) 3.62 1.96 

X3 (m) 2.96 0.39 

X4 (m) 1.35 0.84 

R1 9 7 

R2 31 33 

R3 10 7 

R4 27 34 

R5 9 4 

R6 12 10 

S1 (MPa) 25 40 

B 6.26 4.96 

L 6.62 4.96 

H 1.58 1.07 

Region Kern A 

Detached Area (m2) — 3.98 

Detached Percent — 14.6 % 

excavation (m3) 134.370 10.790 

Concrete Formwork (m2)  40.665 21.201 

Reinforcement (kg)             2,105.785 259.568 

Concrete (m3) 65.151  26.256 

Compacted Backfill (m3) 68.662    1.196 

Best Cost $ 21,595.39 $ 6,888.80 

Average Cost $ 22,414.92 $ 8,177.29 

Std. Dev. Cost      $ 528.88    $ 517.33 

Average No. Analyses 25,032 24,185 
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Table 18. Biaxial Loading Eccentricity Parameters 

Parameter Unit 
Lower 
 bound 

Upper 
bound 

Increment 

ex m 0.0 1.0 0.1 

ey m 0.0 1.0 0.1 

 

 

Figure 100. Cost of Biaxial Loading Designs using Theoretical Analysis Procedures. 
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Figure 101. Difference in Average Low-Cost Designs using Simplified Analysis 
Procedures and Theoretical Analysis Procedures for Biaxial Loading. 
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uniaxial cases, some low-cost designs just fall within Regions B and C, yielding two 

detached corners. Figure 104 shows that footings with some detachment are still feasibly 

designed. The trend seen in Figure 101 coupled with that shown in Figure 104 provide 

evidence that by allowing some detachment of the footing from the soil, there is a 

significant savings in cost. 

 

 

Figure 102. Average Detached Area of Biaxial Loaded Footing. 
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Figure 103. Average Percentage of Detached Area of Biaxial Loaded Footing. 
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Figure 104. Biaxial Loading Low-Cost Designs by Detachment Region for P = 3,000 kN. 
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design based on theoretical analysis procedures that do not allow uplift with the one 

based on the theoretical analysis procedures that allow uplift. First, on average, there is a 

50.3% savings in cost when uplift is allowed. All material quantities are significantly less 

when uplift is allowed. There is approximately 92% less excavation volume, 35% less 

rebar mass, 48% less concrete volume, and 99% less backfill volume in the design based 

on allowing uplift. This data shows that not allowing uplift but applying the other 

theoretical analysis procedures (i.e., not applying the simplified analysis procedures) 

results in significant cost savings. It shows that allowing uplift can result in a significant 

savings in cost, while still satisfying geotechnical and structural limit states.  
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Table 19. Biaxial Loading Designs Based on Scaled Cost Fitness with and without Uplift 

Design Variables 
Theoretical Analysis 

without Uplift 
Theoretical Analysis 

X1 (m) 3.56 1.96 

X2 (m) 3.40 1.96 

X3 (m) 2.97 0.39 

X4 (m) 0.98 0.84 

R1 8 7 

R2 36 33 

R3 8 7 

R4 36 34 

R5 4 4 

R6 12 10 

S1 (MPa) 35 40 

B 6.56 4.96 

L 6.40 4.96 

H 1.21 1.07 

Region Kern A 

Detached Area (m2) — 3.98 

Detached Percent — 14.6 % 

excavation (m3) 136.507 10.790 

Concrete Formwork (m2)  31.327 21.201 

Reinforcement (kg)                398.873 259.568 

Concrete (m3) 50.691  26.256 

Compacted Backfill (m3) 85.397    1.196 

Best Cost $ 15,509.73 $ 6,888.80 

Average Cost $ 16,462.61 $ 8,177.29 

Std. Dev. Cost      $ 470.44    $ 517.33 

Average No. Analyses 22,797 24,185 
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7.3.2 Biaxial loading: example two 

The second set of footing designs considers the scaled CO2 fitness function. As with 

cost, to build upon the concentric and uniaxial loading cases, the applied load is 3,000 kN 

and applied column moments are Mx = 3,000 kN-m and My = 3,000 kN-m. From 1,000 

optimization runs, the best low-CO2 emission design using the simplified analysis 

procedures is 25,041.20 kg, with an average CO2 emission value of 27,415.41 kg and 

standard deviation of 1,426.30 kg. On average, the multiphase BB-BC procedure 

performed 25,304 analyses before convergence and completed 71% of the computational 

effort in Phase 1 when using the simplified analysis procedures. The best low-CO2 

emission design using the theoretical analysis procedures is 9,279.84 kg, with an average 

CO2 emission value of 9,939.03 kg and standard deviation of $ 413.03. On average, the 

multiphase BB-BC procedure performed 23,424 analyses before convergence and 

completed 64% of the computational effort in Phase 1 when using the theoretical analysis 

procedures. Table 20 summarizes the low-CO2 emission designs developed by the BB-

BC procedure. Several observations can be made by comparing the CO2 emissions of the 

biaxial loaded spread footing design based on the simplified analysis procedures with the 

one based on the theoretical analysis procedures. On average, there is a 63.7% savings in 

CO2 emissions when the theoretical analysis procedures are used. All material quantities 

are significantly less when the theoretical analysis procedures are used; most notably, 

there is approximately 88% less rebar and 98% less backfill in the design based on the 

theoretical analysis procedures.  

A sensitivity study is done by varying the applied column bending moments. Table 18 

shows the variation of equivalent applied eccentricities. Figure 105 shows a surface plot 
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of the best CO2 emission values based upon the theoretical analysis procedures. The 

general trend shows that as the eccentricities increase, the CO2 emission values increase 

drastically. Figure 106 shows a surface plot of the difference between average CO2 

emission values of designs based on the simplified analysis procedures and the theoretical 

analysis procedures. The general trend shows that as the eccentricities increase, the 

difference in CO2 emissions increases dramatically.  
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Table 20. Biaxial Loading Designs Based on Scaled CO2 Fitness 

Design Variables Simplified Analysis Theoretical Analysis 

X1 (m) 3.50 2.24 

X2 (m) 3.58 2.24 

X3 (m) 2.73 0.34 

X4 (m) 1.39 0.98 

R1 9 7 

R2 31 31 

R3 8 7 

R4 39 31 

R5 11 4 

R6 12 12 

S1 (MPa) 20 25 

B 6.50 5.24 

L 6.58 5.24 

H 1.62 1.21 

Region kern A 

Detached Area (m2) — 3.66 

Detached Percent — 12.9 % 

Excavation (m3) 127.720 10.435 

Concrete Formwork (m2)  42.343 25.332 

Reinforcement (kg)             2,118.037                257.114 

Concrete (m3) 68.958 33.153 

Compacted Backfill (m3) 58.260   1.100 

Best CO2 Emission 25,041.20 kg 9,279.84 kg 

Average CO2 Emission 27,415.41 kg 9,939.03 kg 

Std. Dev. CO2 Emission   1,426.30 kg    413.03 kg 

Average No. Analyses 25,304 23,424 
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Figure 105. CO2 Emissions of Biaxial Loading Designs using Theoretical Analysis 
Procedures. 

 

 

Figure 106. Difference in Average Low-CO2 Emission Biaxial Loading Designs between 
Simplified Analysis Procedures and Theoretical Analysis Procedures. 
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As with the cost fitness function designs, detachment is allowed in the theoretical 

procedures. Figure 107 shows a plot of the average area of the footing that has become 

detached from the soil. As eccentricities increase, the detached area increases drastically. 

Figure 108 shows a plot of the average percent of area of the footing that has become 

detached from the soil. The surface shows that the maximum percentage of area that has 

become detached from the soil is approximately 13%. Figure 109 shows a plot of the kern 

area, Region A, Region B, and Region C of detachment overlain by a scatter plot of the 

eccentricity ratios e x / L and e y / B of the best low-CO2 emission designs. It is seen that as 

eccentricity ratios grow, the optimization yields footing designs in which one corner has 

become detached from the soil. For the uniaxial cases, some low-cost designs just fall 

within Regions B and C, yielding two detached corners. This plot shows that footings 

with some detachment are still feasibly designed. As with cost, the trend seen in Figure 

106 coupled with that shown in Figure 109 suggests a significant savings in CO2 

emissions can be achieved by allowing some detachment of the footing from the soil. 
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Figure 107. Average Detached Area of Biaxial Loaded Footing. 

 

 

Figure 108. Average Percentage of Detached Area of Biaxial Loaded Footing. 
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Figure 109. Biaxial Loading Low-CO2 Emission Designs by                              
Detachment Region for P = 3,000 kN. 
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based on the theoretical analysis procedures that allow uplift. First, on average, there is a 

50.0% savings in cost when uplift is allowed. All material quantities are significantly less 

when uplift is allowed. There is approximately 92% less excavation volume, 54% less 

rebar mass, 44% less concrete volume, and 98% less backfill volume in the design based 

on allowing uplift. This data shows that not allowing uplift but applying the other 

theoretical analysis procedures (i.e., not applying the simplified analysis procedures) 

results in significant savings in CO2 emissions. It shows that allowing uplift can result in 

a significant savings in cost, while still satisfying geotechnical and structural limit states.  
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Table 21. Biaxial Loading Designs Based on Scaled CO2 Emission Fitness with and 
without Uplift 

 

Design Variables 
Theoretical Analysis 

without Uplift 
Theoretical Analysis 

X1 (m) 3.70 2.24 

X2 (m) 3.50 2.24 

X3 (m) 2.68 0.34 

X4 (m) 1.14 0.98 

R1 8 7 

R2 32 31 

R3 8 7 

R4 33 31 

R5 11 4 

R6 12 12 

S1 (MPa) 20 25 

B 6.70 5.24 

L 6.50 5.24 

H 1.37 1.21 

Region Kern A 

Detached Area (m2) — 3.66 

Detached Percent — 12.9 % 

excavation (m3) 127.568 10.435 

Concrete Formwork (m2)  36.131 25.332 

Reinforcement (kg)                562.070                257.114 

Concrete (m3) 59.531 33.153 

Compacted Backfill (m3) 67.691   1.100 

Best CO2 Emission           18,488.13 kg 9,279.84 kg 

Average CO2 Emission           19,912.92 kg 9,939.03 kg 

Std. Dev. CO2 Emission   707.67 kg    413.03 kg 

Average No. Analyses 23,115 23,424 
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7.3.3 Multi-objective optimization 

As with the concentric and uniaxial loading cases, to observe a relationship between 

the cost and CO2 emissions for the theoretical and simplified analysis procedures, the 

BB-BC algorithm was applied to the multi-objective fitness function, using the weighted 

aggregation approach given by Equation (306) with the design input parameters given in 

Table 16. As with the concentric and uniaxial loading examples, the reinforcement scale 

factor  used in the single objective fitness functions is taken as 1 and f’cmin = f’c to better 

reflect the tradeoff between cost and CO2 emissions. The value of  was varied from 0 to 

1 by 0.01. 

Figure 110 shows that, on average, as cost increases CO2 emissions decrease when 

the theoretical analysis procedures are applied to the design example. That is, as the value 

of   approaches 1, cost decreases and CO2 emissions increase. Also, the data shows that 

when more weight is on the cost function, designs are produced with a higher average 

concrete compressive strength. As the CO2 emissions function is weighted more heavily, 

the average concrete compressive strength drops. Figure 111 shows the relationship 

between best low-CO2-emissions with best low-cost for different values of the concrete 

compressive strength when the theoretical analysis procedures are applied to the design 

example. For groups of designs where the strength of concrete is constant, a slight 

increase in cost has a correspondingly small increase in CO2 emission. When the entire 

set of designs is considered, a more significant trend is observed where the strength of 

concrete has a more significant effect on both cost and CO2 emissions. In this case, as the 

strength of concrete decreases, CO2 emissions decrease by up to 20% while cost increases 
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only 7%. This difference is due to the increased CO2 emission associated with the larger 

quantities of cement in the higher strength mix designs.  

 

 

Figure 110. Pareto Front for Average Cost and CO2 Emissions using Theoretical Analysis 
Procedures for Biaxial Loading.  

 

9,500

10,000

10,500

11,000

11,500

12,000

6,800 7,000 7,200 7,400 7,600 7,800 8,000

A
ve

ra
ge

 C
O

2
E

m
is

si
on

s 
(k

g)

Average Cost ($)

Series5

Series4

Series3

Series2

Series125 MPa ≤  f'
c
 < 30 MPa  

30 MPa ≤  f'
c
 < 35 MPa  

35 MPa ≤  f'
c
 < 40 MPa  

40 MPa ≤  f'
c
 < 45 MPa  

45 MPa ≤  f'
c
 < 50 MPa  



228 

 

Figure 111. Effects of Concrete Strength on Cost and CO2 Emissions using Theoretical 
Analysis Procedures for Biaxial Loading. 
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compressive strength. As the CO2 emissions function is weighted more heavily, the 

average concrete compressive strength drops. Figure 113 shows the relationship between 

best low-CO2-emissions based on concrete compressive strength when the simplified 

analysis procedures are applied to the design example. From this multi-objective 

optimization, concrete compressive strength for all designs is 30 MPa. As with Figure 

112, this is most likely due to the nature of the simplified analysis procedures applied to 

the biaxial loading case. Figure 113 shows a slight increase in cost has a correspondingly 

small increase in CO2 emission.  

For biaxial loading, there is a significant savings in both cost and CO2 emissions 

when the theoretical analysis procedures are used over the simplified analysis procedures, 

as was the case with uniaxial loading. In addition, optimization results show a much 

clearer relationship between the low-cost and low-CO2-emissions when the theoretical 

analysis procedures are used.  
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Figure 112. Front for Average Cost and CO2 Emissions using Simplified Analysis 
Procedures for Biaxial Loading. 

 

 

Figure 113. Effects of Concrete Strength on Cost and CO2 Emissions using Simplified 
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CHAPTER 8 

SUMMARY AND DISCUSSION 

A BB-BC optimization algorithm was applied to the analysis and design of rigid 

reinforced concrete spread footings subjected to concentric, uniaxial, and biaxial loading. 

For spread footings subjected to eccentric loading conditions, it is convenient to assume 

that the entire base of the footing remains in contact with the soil, resulting in a 

compressive bearing pressure distribution. These conditions occur when the eccentricities 

of the load are within the kern area of the footing and the flexure formula, given by 

Equation (1), is valid. By designing a spread footing such that the kern area is large 

enough to contain the eccentricities, the footing will become larger than what is required 

to satisfy service and ultimate limit states. Then, by assuming the bearing pressure 

distribution is constant beneath the entire footing with a value of qmax, the analysis of a 

spread footing subjected to eccentric loads greatly simplifies and becomes similar to a 

concentrically loaded footing. However, these assumptions do not accurately describe the 

nature of the bearing pressure distribution. In addition, knowledge of the soil pressure 

distribution for spread footings subjected to uplift may be necessary to evaluate an 

existing footing in which the original loading pattern has been modified. Therefore, the 

first objective of this research was to develop analysis procedures for rigid spread 

footings underlain by a uniform, homogeneous, isotropic, cohesionless, linear-elastically 

behaving soil, subjected to eccentric loading conditions that allow uniaxial and biaxial 

uplift. Different boundary conditions, based upon one, two, and three corners detached, 

were applied to the general bearing pressure surface equation, given by Equation (10). 

From these formulations, an analysis chart of the bearing pressure surface equations for 
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one, two, and three footing corners detached was developed to determine percentages of 

detachment along the edges of a spread footing that is subjected to biaxial uplift.  

The second objective was to compare the theoretical structural analysis procedures 

that account for uplift with simplified analysis procedures, discussed in Section 5.3, using 

a BB-BC optimization algorithm. For reinforced spread footings subjected to uniaxial and 

biaxial loading, it was shown that there is significant savings in cost and CO2 emissions 

when the theoretical analysis procedures are used over the simplified analysis procedures.  

Figure 88 showed a dramatic increase in average cost difference between the theoretical 

and simplified analysis procedures as applied load and eccentricity increased for uniaxial 

loading. For a load of 5,000 kN at a 1-m eccentricity, there was close to a 30% difference 

in average cost between the theoretical and simplified analysis procedures. Figure 91 also 

showed a drastic increase in the difference in average CO2 emissions between the 

theoretical and simplified analysis procedures as applied load and eccentricity increased 

for uniaxial loading. For a load of 5,000 kN at a 1 m eccentricity, there was close to a 

30% difference in average CO2 emissions between the theoretical and simplified analysis 

procedures. For biaxial loading, significant differences in average cost and CO2 

emissions between theoretical and simplified analysis procedures were also observed. 

Figure 101 showed that for footings subjected to biaxial loading with an applied load of 

3,000 kN and ex = ey = 1 m, there was approximately a 175% difference in average cost 

between the theoretical and simplified analysis procedures. Figure 106 also showed 

nearly 175% difference in average CO2 emissions for the same loading condition between 

the theoretical and simplified analysis procedures. In addition, it was shown that when 

large applied moments cause detachment of the footing from the soil, feasible designs are 
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still produced for both uniaxial and biaxial loading cases. Figures 104 and 109 showed 

several low-cost and low-CO2 emission designs that yield one and two corners detached. 

This is a significant observation since in practice it is convenient and typical to increase 

the footing size if there is concern for soil detachment. Applying the BB-BC algorithm to 

a uniaxial and biaxial loaded footing shows that even though there may be some 

detachment of the footing from the soil, this does not cause ultimate or service limit state 

failure.  

The third objective was to study the relationship between cost and CO2 emissions 

associated with the design of reinforced spread footings subjected to concentric, uniaxial, 

and biaxial loading. By utilizing a multi-objective optimization, it was shown that for a 

moderate increase in cost, there was a substantial savings in CO2 emissions for 

concentric, uniaxial, and biaxial loading conditions. For engineers striving to be 

environmentally friendly, spending a little extra money on a spread footing project can 

result in a decrease in CO2 emissions.  
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