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Abstract 

Background: In recent years, time-restricted feeding, alternate day fasting, and the Daniel Fast 

have garnered attention as potential dietary interventions to combat obesity. Objective: To 

compare the effects of various dietary models on measures of body composition and physical 

performance in male C57BL/6 mice. Methods: 60 young C57BL/6 male mice were assigned a diet 

of time-restricted feeding, alternate day fasting, the Daniel Fast, caloric restriction, a high-fat 

rodent diet, or a standard rodent chow for 8 weeks. Body composition and run time to exhaustion 

were determined. Results: Compared to the high-fat ad libitum group, all groups displayed 

significantly less weight and fat mass gain and non-significant changes in fat-free mass. 

Additionally, although not statistically significant, all groups displayed greater run time to 

exhaustion, relative to the high-fat ad libitum group. Conclusion: The Daniel Fast, time-restricted 

feeding, and alternate day fasting may improve body composition and physical performance as 

compared to a high-fat diet. 
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Introduction 

The prevalence of obesity - a complex condition caused by a combination of genetic, 

metabolic, social, behavioral, and cultural factors - has risen substantially in the United States since 

the year 1976 (1). Recent estimates indicate 36.5% of adult Americans are classified as obese, 

defined as a body mass index [BMI] of ≥ 30 kg∙m-2) (2). This figure is important because obesity 

is associated with negative alterations to many markers of overall health, notably with unfavorable 

changes in body composition (i.e. increased fat mass [FM], abdominal FM, and ratio of FM to fat-

free mass [FFM]) (1) and decreased physical fitness (3). Given that the prevalence of obesity is 

expected to increase in the coming decades, it is clear that novel interventions are needed to induce 

favorable changes in body composition and increases in physical fitness in obese individuals. 

In recent years, three dietary modifications have been suggested as potential aids in 

preventing and treating obesity: time-restricted feeding (TRF), alternate day fasting (ADF), and 

the Daniel fast (DF). TRF regimes restrict daily feeding periods to designated hours of the day (i.e. 

only eating from 12:00 pm – 7:00 pm), extending the typical overnight fast by several hours. 

Recent studies have indicated that TRF is capable of producing positive alterations in markers of 

overall health in humans, including positively altering blood lipids (4, 5), blood glucose (5), and 

blood insulin (5). With regard to body composition, studies in both humans (4, 5) and animals (6-

8) have suggested that TRF may be successful in inducing significant reductions in body mass and 

FM, while human studies have indicated that FFM can be maintained during this weight loss (4, 

5). Few studies have reported measures of physical fitness following a TRF intervention. Studies 

in humans have indicated that physical fitness levels are maintained in normal weight individuals 

following short-term TRF (5, 9). Two TRF studies conducted using animal models (one using 
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C57BL/6J mice and one using Drosophila) have reported greater physical performance in TRF 

groups, relative to control groups (10, 11).  

Traditional ADF protocols follow the practice of fasting for one day, followed by ad 

libitum consumption on the subsequent day. Recent research has also utilized a modified ADF, 

which permits the consumption of small meals on fast days, typically consisting of 25-30% of 

normal daily caloric consumption (12, 13). Studies suggest that ADF may improve measures of 

cardio-metabolic health in humans, including decreased cholesterol (14-16), decreased LDL levels 

(14-16), decreased triglyceride levels (14-16), and decreased blood pressure (14, 17, 18). 

Additionally, ADF has been shown to improve measures of body composition in humans, resulting 

in significant reductions in FM (13-15, 17, 19, 20), visceral FM (20), and waist circumference (17, 

18) while maintaining FFM (13, 14, 17). To the author’s knowledge, no studies have reported 

measuring physical fitness following ADF.  

 The DF is a religious motivated fast derived from the Biblical book of Daniel (21). 

Typically, individuals partake in the DF for a 21-day period. It is a strict vegan diet that generally 

leads to reduced caloric intake. Individuals participating in a DF may consume fruits, vegetables, 

whole grains, nuts, legumes, seeds, and healthy oils (such as olive oil) ad libitum. Products that 

contain additives or preservatives, as well as caffeine and alcohol, are prohibited. In humans, the 

DF has resulted in improvements of many markers of overall health, including blood lipids, blood 

pressure, insulin, inflammation, and oxidative stress (21-24). With regards to body composition, 

only one study has indicated that DF results in significant alterations in body composition in 

humans (23). In this study, body mass, FM, and FFM all decreased significantly. However, other 

DF studies have failed to produce significant alterations in body composition, likely the result of 

the short duration of the intervention used in the studies (21, 22, 24). However, weight loss is 
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typically 5-6 pounds over the course of a 21-day period. No DF studies have examined physical 

fitness in humans. However, one study in Long-Evans rats resulted in a significant increase in 

exercise capacity (run time to exhaustion) in mice consuming a DF-inspired chow and participating 

in regular exercise, relative to control groups (25). This indicates that the DF may result in 

increased physical fitness in rodent models.  

 Currently, no studies have compared these above dietary interventions within one protocol 

with respect to body composition and physical fitness. The proposed study aimed to accomplish 

this goal for the first time using a mouse model.   

Methods 

Mice and Dietary Protocol 

 Male C57BL/6 mice were used for this study, with 60 mice (7 groups of 8 mice, with 4 

additional mice obtained to ensure statistical power was maintained in the event of the death of an 

animal) allocated to one of seven groups. Mice were obtained at 4 weeks of age and were co-

housed (as described in Hatori, 2012) at the animal facility on the University of Memphis campus. 

They were entrained under a 12h light: 12h dark schedule for 2 weeks with standard rodent chow 

available ad libitum. During the 2-week entrainment period, mice began the reverse light-dark 

schedule, with lights off between the hours of 7am-7pm. This was done so that the feeding time 

was during the active phase (“lights off” phase) of the mice. Mice were housed in Life Sciences in 

an area that is used for studies of the circadian rhythm, and therefore, the light was well-regulated.  

Following the 2-week entrainment period, all mice entered a 6-week lead-in phase. During 

this 6-week lead-in period, 8 mice continued consuming a standard chow diet. These mice served 

as the control group (referred to as CHOW). They maintained ad libitum consumption of standard 

rodent chow through the entire study. The remaining 52 mice consumed a high-fat diet, consisting 
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of 45% lard and 41% carbohydrate (20% sucrose, 9% corn starch, and 12% Maltodextrin). This 6-

week period of ad libitum feeding of a high-fat diet allowed for significant weight gain. Following 

the 6-week period lead-in period, the 52 mice fed the high-fat diet were divided into 6 additional 

groups (see Tables 1-3 for dietary composition of each diet):  

Group 1 (HF) had access to the high-fat diet ad libitum, 24 hours per day (n=8).  

Group 2 (SWITCH) had access to a standard rodent chow ad libitum, 24 hours per day (n=8). 

Group 3 (DF) had access to a purified, high-fiber, vegan-based diet ad libitum, 24 hours per day 

(n=10; 2 additional animals were assigned to this group following the death of 2 animals during 

baseline testing). The DF chow consumed by Group 3 (product: D13092801) was custom-made 

by Research Diets, Inc., based on the average macronutrient sources and quantities of the dietary 

intakes of human participants following the Daniel Fast in our previous studies (25).  

 Group 4 (CR) received 80% of ad libitum intake as determined during week 6 of the high-fat diet 

intake period (n=8).  

Group 5 (TRF) had ad libitum access to the high-fat diet for 6 hours at the beginning of their active 

phase (8am-2pm) (n=9; an additional animal was assigned to this group a priori because it was 

deemed a high-risk group).  

Group 6 (ADF) had ad libitum access to the Western diet every other day (n=9; an additional 

animal was assigned to this group a priori because it was deemed a high-risk group). That is, on 

day 1 they received as much food as desired during the entire 24-hour period. On day 2, they 

received no food. On day 3, they received ad libitum access to food, and so on.  

The diets were purchased from Research Diets, Inc (New Brunswick, NJ), which has 

experience in producing the high-fat diet and purified vegan diets for rodent studies. The mice 

remained on their particular diets for 8 weeks and then post-testing began. Mice continued on their 
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diets until all testing was completed (~ middle of week 9). Water was provided ad libitum 

throughout the study period. The amount of food consumed was measured daily and the weights 

of the mice were taken on alternating days. Following the conclusion of post-testing, mice were 

euthanized with cervical dislocation (using isoflurane inhalation for anesthesia). 

Measurements of Body Composition 

Animals underwent a MRI for determination of body mass/body fat. This was done during 

the 6th week of the lead-in period (baseline) and 9th intervention week (post-intervention) using a 

small animal MRI unit (EchoMRI™) which uses a specialized NMR-MRI-based technology to 

rapidly measure lean and fatty tissue in small animals. Baseline and post-intervention scans were 

performed on the same days for all animals during the last hour of the animal’s inactive (light) 

phase. With regard to the ADF group, baseline and post-intervention scans were performed 

following 24 hours of feeding.  The total scan time for each animal was approximately 60 seconds. 

Animals simply remained in a stationary tubing while the scan was performed. There was no need 

to anesthetize the animals during the scan.  

Measurements of Physical Fitness 

Animals underwent a treadmill run-time-to-exhaustion test using a motorized treadmill 

with 5% incline. Animals ran at 20m/min for 30 min and 25m/min for the remaining time until 

they reach exhaustion. A warm-up was provided for 15min (5min at 5m/min, 5min at 10m/min, 

5min at 15m/min). Exhaustion was defined as the time at which mice were no longer able to 

continue running and sat on the shock grid with all 4 paws on the grid for 5 seconds, despite gentle 

hand prodding. The very mild electric shock was only used when mice did not respond well to 

gentle hand prodding and at the end of the run-time-to-exhaustion test to determine the stopping 
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point. The frequency and amplitude of shock was as low as possible (3Hz) to motivate the animals 

to remain on the treadmill belt, without causing unnecessary distress.  

The run-time-to-exhaustion testing was conducted twice in the mice, once prior to starting 

the intervention period (during the 6th week of the lead-in period) and once at the end of the 8th 

intervention week. The first run-time-to-exhaustion test was used to acclimate the mice to the 

treadmill and the run-time-to-exhaustion protocol. The second test was used as a primary 

dependent variable to characterize the aerobic capacity of each group after the 8-week intervention. 

Statistical Analysis 

 Data collected for anthropometric variables and the run-time-to-exhaustion test were 

analyzed using GraphPad Prism (GraphPad, LaJolla, CA, USA). A one-way ANOVA was used to 

calculate main effects, and Tukey post-hoc tests were used for multiple comparisons. An alpha 

value of 0.05 was used for all statistical testing. Cohen’s d was calculated for the run time to 

exhaustion data using Microsoft Excel (Microsoft, Redmond, WA, USA) to further explore the 

differences observed between the HF group and the DF, TRF, and ADF groups.  

Results 

Overview 

 Three animals died during the course of the study. One animal died during the 6th week of 

the lead-in period due to sepsis caused by an injury of unknown origin sustained to the left hind 

limb. Two animals (1 from the CHOW group and 1 from the DF group) died during the 6th week 

of the lead-in period while performing the run-time-to-exhaustion test. Both mice died instantly 

from injuries sustained as a result of falling between the shock grid and the treadmill belt. All 

remaining animals completed the 16-week study.  
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Caloric Consumption Data 

 Caloric consumption during the 8-week intervention period (Figure 1) displayed multiple 

significant group effects. Caloric consumption for HF was significantly greater than for CHOW 

(p<0.005), SWITCH (p<0.0001), CR (p<0.005), TRF (p<0.0001), and ADF (p<0.0001). Caloric 

consumption for DF was significantly greater than for CHOW (p<0.005), SWITCH (p<0.0001), 

CR (p<0.005), TRF (p<0.0001), and ADF (p<0.0001). Caloric consumption for CR was 

significantly greater than for ADF (p<0.05). No other effects were noted for caloric 

consumption. 

Anthropometric Data 

 All anthropometric data are presented in Table 4. Change in body mass from baseline to 

post-intervention (Figure 2) displayed several group effects. Change in body mass for HF was 

significantly different from all other groups (p<0.0001). Change in body mass for CHOW 

differed significantly from DF (p<0.0001), TRF (p<0.005), and ADF (p<0.0005). Change in 

body mass for SWITCH was significantly different from CHOW (p<0.0001), CR (p<0.0001), 

TRF (p<0.005), and ADF (p<0.05). 

 The data for change in FM from baseline to post-intervention are presented in Table 4 

and Figure 3. The SWITCH, DF, TRF, and ADF groups displayed decreased FM after the 8-

week intervention, while the CHOW, HF, and CR groups displayed an increase in FM. As 

expected, the HF group gained more FM (6.76±0.46g) than all other groups (p<0.0001). The 

greatest decrease in FM was observed in the SWITCH group, which lost significantly more FM 

(-6.275±0.86g; p<0.005) than all other groups with the exception of DF (-4.10±0.49g; p>0.05). 

Change in FM for CHOW was significantly different from SWITCH (p<0.0001), DF 

(p<0.0001), TRF (p<0.005), and ADF (p<0.0005). Change in FM for DF was significantly 
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different from CR (p<0.0005). No significant differences were observed with regard to change in 

FM between the DF, TRF (-1.89±0.55g), and ADF (-2.39±0.49g) groups. 

 Data for the change in FFM from baseline to post-intervention are displayed in Figure 4. 

No main effect or group effect was noted. However, the change in FFM between HF - which 

gained FFM - and CR - which lost FFM - trended towards significance (p=0.068). 

 Change in %FM from day 1 of the intervention to the final day of the intervention (Figure 

5) displayed several significant group effects. Change in %FM for HF was significantly different 

from SWITCH, DF, CR, TRF, and ADF (p<0.0001). Change in %FM for CHOW was 

significantly different from SWITCH (p<0.0001), DF (p<0.0001), TRF (p<0.0005), and ADF 

(p<0.0001). Change in %FM for SWITCH was significantly different from CR (p<0.0001), TRF 

(p<0.0001), and ADF (p<0.0001). Change in %FM for DF was significantly different from CR 

(p<0.0001) and TRF (p<0.05). Change in %FM for CR was significantly different from ADF 

(p<0.05).  

Run Time to Exhaustion Data 

 Data for the run time to exhaustion are presented in Figure 6. No significant effects were 

noted (p>0.05). However, large effect sizes were observed when comparing DF to HF (d=1.10), 

TRF to HF (d=0.99), and ADF to HF (d=1.10). 

Discussion 

 To our knowledge, this is the first study to compare the effects of dietary protocols 

mimicking caloric restriction, the Daniel Fast, time-restricted feeding, and alternate day fasting 

on measures of body composition and physical performance in male C57BL/6 mice. Our results 

indicate that the CR, DF, ADF, and TRF protocols used in this study produce favorable 

alterations in body composition in male C57BL/6 mice. Additionally, though the differences 
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between groups were not significant, the DF, TRF, and ADF groups displayed greater run time to 

exhaustion when compared with the HF group, with large effect sizes noted.  

Anthropometric Findings 

 As can be seen in Table 4 and Figure 2, the SWITCH, DF, CR, TRF, and ADF groups all 

displayed decreased body mass after the 8-week intervention. SWITCH displayed the greatest 

decrease in body mass, losing significantly more weight than all groups besides DF. No 

significant differences were observed with regard to change in body mass between the DF, CR, 

TRF, and ADF groups, indicating that all of these diet regimes are effective for inducing weight 

loss and/or preventing excessive weight gain following a period of high-fat feeding. As expected, 

the CHOW and HF groups exhibited increased body mass after the 8-week intervention. The 

increase in body mass displayed by the CHOW group is characteristic of the normal growth of 

C57BL/6 mice, and the increase in body mass displayed by the HF group is characteristic of the 

growth rate of C57BL/6 mice given ad libitum access to a calorically dense diet.  

 With regard to body composition, the SWITCH, DF, TRF, and ADF groups displayed 

decreased FM (Table 4 and Figure 3) after the 8-week intervention, while the CHOW, HF, and 

CR groups displayed an increase in FM. As noted above, the greatest decrease in FM was 

observed in the SWITCH group, which lost significantly more FM than all other groups with the 

exception of DF. No significant differences were observed with regard to change in FM between 

the DF, TRF, and ADF groups; although, it should be noted that the DF group displayed the 

lowest post-intervention FM despite consuming the most kilocalories during the 8-week 

intervention period (Table 4). These data indicate that the DF, TRF, and ADF protocols used in 

this study can effectively decrease FM following a period of high-fat feeding, albeit likely 

through different mechanisms. TRF and ADF likely reduced FM by inducing a form of caloric 
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restriction while DF likely modulated FM via the quality of the macro-and-micronutrients 

contained in the purified vegan rodent chow.  

 Figure 4 presents data respective to change in FFM after the 8-week intervention. No 

main or group effects were noted for this data, though the comparison between HF and CR 

trended towards significance (p=0.068). This lack of a significant main effect is likely due to the 

relatively small changes in FFM observed after the 8-week intervention, coupled with the small 

group sizes and the relatively large variation observed (SEM). However, it is worth noting that 

only the CR and ADF groups displayed decreased FFM after the 8-week intervention. Animals 

in the DF and TRF groups actually gained FFM over the course of the 8-week intervention. The 

gain in FFM observed in the DF group is particularly notable because the purified vegan rodent 

chow consumed by the DF group contains only soy protein; it does not contain any animal 

protein. These data demonstrate that the TRF and DF protocols used in this study can maintain 

FFM, even during periods of weight and fat loss.  

 Many of the findings discussed in this section are consistent with the anthropometric 

measures reported by other animal studies that utilized DF, TRF, and ADF dietary protocols. 

Studies have consistently reported significant reductions in body mass following the DF (25), 

TRF (6, 8, 26, 27), and ADF (28-30) protocols in animal models. With regard to body 

composition, the DF (25) and TRF (8, 26) protocols have often resulted in reductions in FM, 

while only one animal study (31) has indicated that ADF results in decreased FM, relative to 

control. However, it should be noted that many of these studies, and all of the ADF studies 

mentioned here, use epididymal FM as a measure of overall FM. The current study measured FM 

using a small animal MRI.  
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The available FFM data relevant to the DF compares well to the data reported in the 

current study. Notably, our previous work with the DF in male Long-Evans rats reported 

maintenance of FFM following 12 weeks of purified vegan rodent chow consumption, despite 

weight loss and decreased FM (25). Measures of FFM have not been reported following TRF or 

ADF protocols in animals. It should be noted, though, that a number of human studies have 

reported reductions in body weight and FM while maintaining FFM following TRF (4, 5) and 

ADF (13, 14, 17) protocols. 

Taken together, the data from the current study and other studies mentioned here indicate 

that DF, TRF, and ADF protocols are capable of producing favorable alterations in body 

composition. The DF appears to produce the best results with regard to anthropometric measures 

of body composition in animal models, though more studies are needed to confirm these 

findings. Additionally, TRF and ADF protocols appear to be viable options for individuals 

seeking to decrease body mass and FM while consuming a Western diet that is high in fat and 

simple sugar. More work is needed to compare the effects of the DF, TRF, and ADF on 

measurements of body composition. 

Run Time to Exhaustion Findings 

 As indicated by Figure 6, no main or group effects were observed for the run-time-to-

exhaustion test. The lack of a significant main effect in these data is likely due to the small group 

sizes and the relatively large standard error observed. Additionally, the animals’ genetic aerobic 

capacity likely affected run time to exhaustion. For example, during our run-time-to-exhaustion 

tests, many of the animals had difficulty running at the predetermined testing speed, even during 

the early stages of testing (20m/min). It may be that some of these animals simply possessed 

genetic qualities that predisposed them to poor physical performance.  
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Despite the lack of a significant main effect, however, it is valuable to highlight the mean 

values for the main intervention groups. The mean run time for the DF (39.00±2.90min), TRF 

(40.00±4.88min), and ADF (27.78±3.30min) groups was greater than the mean run time for the 

HF group (16.38±3.85min). Additionally, large effect sizes were observed when the mean run 

time for the DF (d=1.10), TRF (d=0.99), and ADF (d=1.10) groups were compared with the HF 

group. These data indicate that the DF, TRF, and ADF protocols had a large impact on run time 

to exhaustion performance, when compared with the HF group. This may be attributed to the 

relatively higher FM of the HF group. Further, because the mean run time for the DF and TRF 

groups closely resembled the mean run time for the CHOW group (39.86±7.87min), the DF and 

TRF dietary appear to optimize performance, relative to ADF. 

 As mentioned above, literature describing the effects of DF, TRF, and ADF on physical 

performance is scant. Only one known study has reported any measure of physical performance 

following a DF intervention in animals (25). Conducted in male Long-Evans rats, this study 

indicated the DF combined with regular exercise results in significantly greater aerobic 

performance than a high-fat diet combined with regular exercise. However, run time between the 

DF and high-fat groups that did not participate in regular exercise did not differ significantly, 

findings that align well with the findings of the current study. With regard to TRF studies in 

animals, one study (11) has reported that C57BL/6J mice following TRF protocols display 

significantly greater run time to exhaustion, relative to a high-fat control, and another study has 

indicated that TRF improves physical performance (as measured by flight index) in Drosophila 

(10). Additionally, studies have indicated that TRF does not diminish physical performance in 

humans, relative to a control (5, 9). No animal model or human subject studies have reported any 
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measurement of physical fitness following an ADF intervention. More work is needed to 

investigate the impacts of DF, TRF, and ADF on measures of physical performance. 

Conclusions 

 To our knowledge, this is the first study to compare the effects of dietary protocols 

mimicking caloric restriction, the Daniel Fast, time-restricted feeding, and alternate day fasting 

on measures of body composition and physical performance in male C57BL/6 mice. The 

findings presented here indicate that the Daniel Fast, time-restricted feeding, and alternate day 

fasting are viable option for improving anthropometric measures and physical performance, 

when compared with an ad libitum high-fat diet. 

Future Directions 

Future research using animal models and human participants are needed to more fully 

elucidate the mechanisms responsible for the improved anthropometric measures in response to 

the Daniel Fast, time-restricted feeding, and alternate day fasting. Specifically, research should 

focus on the caloric consumption of each group and relate it to changes in anthropometrics. For 

example, in the present study, the Daniel Fast group consumed the greatest number of 

kilocalories during the intervention period, yet the Daniel Fast group also had the lowest FM. 

Future research should determine the causes of the noted changes and seek to address these 

results more specifically.  

Additionally, future studies should aim to better characterize the effects of the Daniel 

Fast, time-restricted feeding, and alternate day fasting on physical performance, both in an 

animal model and with human participants. These studies should use larger sample sizes than 

what was used in the present study to better mitigate the effects of within group variation in 

physical performance. Future studies should utilize baseline and post-intervention performance 
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tests to measure changes in physical performance after the completion of the dietary 

interventions. Additionally, future studies aiming to characterize physical performance following 

DF, TRF, and ADF should likely aim to control body mass between groups to better measure the 

effects of the dietary protocols on physical performance, independent of body mass. 
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Appendix A 

Tables and Figures 
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Figure 1. Total kilocalories consumed during the 8-week intervention period by male mice 
assigned to seven different dietary protocols. 
 
Values are Mean ± SEM 
 
* A group effect noted for caloric consumption: HF>CHOW, SWITCH, CR, TRF, & ADF 
(p<0.005) 
† A group effect noted for caloric consumption: DF>CHOW, SWITCH, CR, TRF, & ADF 
(p<0.0005) 
‡ A group effect noted for caloric consumption: CR>ADF (p<0.05) 
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Figure 2. Change in total body mass (g) from baseline (start of the intervention) to the last day of 
the 8-week intervention of male mice assigned to seven different dietary protocols. 

 
Values are Mean±SEM 
 

§ A group effect noted for change in body mass: CHOW different from SWITCH, DF, TRF, & 
ADF (p<0.005) 
* A group effect noted for change in body mass: HF different from all groups (p<0.0001) 
¥ A group effect noted for change in body mass: SWITCH different from CR, TRF, & ADF 
(p<0.05)  
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Figure 3. Change in FM (g) from baseline (start of intervention) to the last day of the 8-week 
intervention of male mice assigned to seven different dietary protocols.  
 
Values are Mean±SEM 
 
§ A group effect noted for change in FM: CHOW different from SWITCH, DF, TRF, & ADF 
(p<0.005) 
* A group effect noted for change in FM: HF different from all groups (p<0.0001) 
¥ A group effect noted for change in FM: SWITCH different from CR, TRF, & ADF (p<0.0005)  
† A group effect noted for change in FM: DF different from CR (p<0.0005) 
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Figure 4. Change in FFM (g) from baseline (start of intervention) to the last day of the 8-week 
intervention of male mice assigned to seven different dietary protocols.  
 
Values are Mean±SEM 
 
No main or group effects observed (p>0.05) 
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Figure 5. Change in percent fat mass (%FM) from baseline (start of intervention) to the last day 
of the 8-week intervention of male mice assigned to seven different dietary protocols.  
 
Values are Mean±SEM 
 
§ A group effect noted for change in %FM: CHOW different from SWITCH, DF, TRF, & ADF 
(p<0.0005) 
* A group effect noted for change in %FM: HF different from SWITCH, DF, CR, TRF, & ADF 
(p<0.0001) 
¥ A group effect noted for change in %FM: SWITCH different from CR, TRF, & ADF 
(p<0.0001)  
† A group effect noted for change in %FM: DF different from CR & TRF (p<0.05) 
# A group effect noted for change in %FM: CR different from ADF (p<0.05) 
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Figure 6. Run time to exhaustion (min) in male mice assigned to seven different dietary protocols 
for 8 weeks.  
 
Values are Mean±SEM 
 
While no main or group effects were observed (p>0.05), all groups demonstrated a higher mean 
run time to exhaustion, relative to HF.  
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Table 1. Macronutrient composition and Caloric Density of Experimental Diets. 

Macronutrient DF HF CHOW 
  kcal% kcal% kcal% 
Protein 15 20 24  
Carbohydrate 59 35 58  
Fat 25 45 18  
    
kcal/gm 3.9 4.73 3.1 

 
Table 2. Ingredient List of Daniel Fast and High-Fat Diets 
 
  DF HF 
 gm kcal gm kcal 
Casein 0 0 200 800 
Soy Protein 170 680 0 0 
DL-Methionine 3 12 0 0 
Corn Starch 0 0 72.8 291 
Corn Starch-Hi Maize 
260 533.5 2134 0 0 

(70% Amylose and 30% 
Amylopectin) 

    

Maltodextrin 150 600 100 400 
Sucrose 0 0 172.8 691 
L-Cystine 0 0 3 12 
Cellulose, BW200 100 0 50 0 
Inulin 50 50 0 0 
Soybean Oil   25 225 
Lard 0 0 177.5 1598 
Flaxseed Oil 71 639 0 0 
Safflower Oil, High Oleic 59 531 0 0 
Ethoxyquin 0.04 0 0 0 
DiCalcium Phosphate   13 0 
Mineral Mix S10001 35 0 10 40 
Calcium Carbonate 4 0 5.5 0 
Mineral Mix S10026   10 0 
Vitamin Mix V10001 10 40 0 0 
Choline Bitartrate 2 0 2 0 
Ascorbic Acid Phosphate, 
33% active 0.41 0 0 0 

Potassium Citrate, 1 H2O 0 0 16.5 0 
Cholesterol 0 0 0 0 
FD&C Red Dye #40 0.05 0 0.05 0 
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Table 3. Macronutrient and Micronutrient Composition of Standard Rodent Chow 
 
Micronutrients     Amino Acids 

Calcium % 1 Aspartic Acid % 1.4 

Phosphorous % 0.7 Glutamic Acid % 3.4 

Non-Phytate Phosphorous % 0.4 Alanine % 1.1 

Sodium % 0.2 Glycine % 0.8 

Potassium % 0.6 Threonine % 0.7 

Chloride % 0.4 Proline % 1.6 

Magnesium % 0.3 Serine % 1.1 

Zinc mg/kg 70 Leucine % 1.8 

Manganese mg/kg 100 Isoleucine % 0.8 

Copper mg/kg 15 Valine % 0.9 

Iodine mg/kg 6 Phenylalanine % 1 

Iron mg/kg 200 Tyrosine % 0.6 

Selenium mg/kg 0.23 Methionine % 0.4 

Vitamins    Cysteine % 0.3 

Vitamin A e,f IU/g 15 Lysine % 0.9 

Vitamin D3  e,g IU/g 1.5 Histidine % 0.4 

Vitamin E IU/kg 110 Arginine % 1 

Vitamin K3 (menadione) mg/kg 50 Tryptophan % 0.2 

Vitamin B1 (thiamin) mg/kg 17 Fatty Acids     

Vitamin B2 (riboflavin) mg/kg 15 C16:0 Palmitic % 0.7 

Niacin (nicotinic acid) mg/kg 70 C18:0 Stearic % 0.2 

Vitamin B6 (pyridoxine) mg/kg 18 C18:1ω9 Oleic % 1.2 

Pantothenic Acid mg/kg 33 C18:2ω6 Linoleic % 3.1 

Vitamin B12 
(cyanocobalamin) 

mg/kg 0.08 C18:3ω3 Linolenic % 0.3 

Biotin mg/kg 0.4 Total Saturated % 0.9 

Folate mg/kg 4 Total Monounsaturated % 1.3 

Choline mg/kg 1200 Total Polyunsaturated % 3.4 
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Table 4. Anthropometric and run time to exhaustion data for male mice assigned to seven 
different dietary protocols for 8 weeks.  

 
  

Body Mass   

(g) 

FM 

(g) 

FFM 

(g) 

%FM Run time to 
exhaustion  

(min) 

 PRE POST PRE POST PRE POST PRE POST POST 

CHOW 25.49±0.66 27.79±1.03 2.48±0.38 4.21±0.71 21.05±0.48 21.30±0.39 0.10±.0.1 0.15±0.02 39.86±7.87 

HF 30.54±1.01 39.60±1.71 7.96±0.72 14.72±0.92 20.64±0.37 22.03±0.85 0.26±0.02 0.37±0.01 16.38±3.85 

SWITCH 33.90±0.79 28.65±0.83 10.71±0.68 4.43±0.89 21.20±0.34 22.02±0.34 0.31±0.01 0.15±0.03 42.13±9.01 

DF 31.83±1.02 28.91±0.5 7.82±0.84 3.72±0.44 21.97±0.57 22.85±0.76 0.24±0.02 0.13±0.01 39.00±9.4 

CR 34.12±1.05 33.69±1.01 10.55±0.82 10.56±0.62 21.50±0.30 20.78±0.86 0.31±0.02 0.31±0.01 30.63±5.38 

TRF 30.03±1.06 28.47±0.63 7.80±0.89 5.91±0.51 20.31±0.31 20.50±0.26 0.25±0.02 0.21±0.01 40.00±10.68 

ADF 30.96±0.56 28.64±0.40 7.75±0.63 5.36±0.35 21.13±0.23 20.91±0.38 0.25±0.02 0.19±0.01 27.78±3.30 

 
Values are Mean±SEM  
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Appendix B 

Literature Review 

Introduction 

The prevalence of obesity - a complex condition caused by a combination of genetic, 

metabolic, social, behavioral, and cultural factors - has risen substantially in the United States since 

the year 1976 (1). As of 2014, the WHO estimated that, worldwide, 35% of adults over the age of 

20 years were overweight (body mass index [BMI] ≥ 25 kg∙m-2), with 10% of men and 14% of 

women being classified as obese (BMI ≥ 30 kg∙m-2) (2). The United States exhibits particularly 

high levels of overweight and obesity. More than one in three (36.5%) adult Americans is classified 

as obese (3). More than two in three (69.2%) adult Americans are classified as either overweight 

or obese. In Americans, obesity is more prevalent in non-Hispanic blacks (48.1%) and Hispanics 

(42.5%) when compared to both the national average and non-Hispanic whites (34.5%), and non-

Hispanic Asians (11.7%). Additionally, obesity is more prevalent in older adults than in younger 

adults: the prevalence of obesity in Americans ages 40-59 (40.2%) and Americans age 60 and 

older (37.0%) is generally greater than the prevalence of obesity individuals age 20-39 (32.3%). 

Perhaps more troubling, these trends extend to the youth of America. The Centers for Disease 

Control and Prevention (CDC) estimate that 12.7 million (17%) American adolescents age 2-19 

suffer from obesity (defined as BMI in kg∙m-2 greater than or equal to the age- and sex-specific 

95th percentile of the 2000 CDC growth charts).  

 Obesity places a major financial burden on the healthcare system of the U.S. In 2011, Tsai 

et al. estimated that overweight status and obesity accounted for $170.2 billion U.S. dollars (7.1%) 

of the total healthcare dollars spent (4). The authors noted that this obesity-related spending 
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doubled or tripled the percentage of healthcare dollars spent to combat obesity in several other 

developed nations, including Canada and nations in the European Union (4). Unfortunately, the 

future looks even bleaker. Experts have projected direct healthcare costs for preventing, 

diagnosing, and treating overweight and obesity will rise to 16-18% of total healthcare dollars 

spent in the U.S. by the year 2030. 

 In addition to causing a great national financial burden, obesity may substantially reduce 

an individual’s quality of life, impacting physical, psychological, and financial functioning (5). 

Obese individuals often experience some degree of decreased physical and psychological function. 

Notably, aerobic and anaerobic capacity, ability to perform basic tasks, ability to perform at work, 

and ability to sleep (including the development of sleep apnea) may decline with obesity (6-10). 

These decreases in physical function may be accompanied by, or compounded by, some 

combination of feelings of depression, shame, guilt, and social isolation, as well as other potential 

psychological stressors (5, 11-13). Moreover, because obesity has been linked to cardiovascular 

disease (CVD) (14, 15), type II diabetes (16), and some forms of cancer (including colon, kidney, 

endometrial, and postmenopausal breast cancers) (17, 18), individuals may have no choice but to 

spend a substantial amount of money to assuage the negative healthcare outcomes associated with 

obesity. Studies have estimated that obese individuals spend as much as $1429-$1723 more per 

year on healthcare when compared to individuals of normal weight (BMI between 18 and 25 kg∙m-

2) (4, 19). 

Weight Loss Strategies 

 The figures and statistics listed above make it clear that obesity is a major healthcare 

problem, and an intervention is needed. Several strategies exist that may help an individual lose 

weight. They exist on three tiers. The first tier of weight loss strategies, dietary intake and physical 
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activity/exercise, may be implemented by an individual at home. Dietary modification can 

effectively stimulate weight loss in obese individuals (discussed in further detail below). Exercise, 

of sufficient volume and intensity, has also been shown to decrease fat mass and, thus, BMI (20).  

The second tier of weight loss strategies requires intervention by healthcare professionals. 

These methods should be employed after the first tier of intervention has been deemed 

unsuccessful with regards to obtaining the needed weight loss/health outcomes. These strategies 

include weight-loss counselling by a registered dietitian or a counselor, as well as consideration 

for the use of prescription weight-loss drugs. The Food and Drug Administration (FDA) has 

approved several drugs designed to induce weight loss, including lorcaserin and phentermine–

topiramate, which have been shown to assist individuals with weight loss goals (21). 

The third and final tier consists of bariatric surgeries. These surgeries, such the 

Laparoscopic Adjustable Gastric Banding (LAGB), Laparoscopic Sleeve Gastrectomy (LSG), and 

Roux-en-Y Gastric Bypass (RYGB), are typically reserved for individuals with extremely high 

BMIs (BMI > 40 kg∙m-2). These surgeries should be considered as a last resort for those seeking 

weight loss and should be reserved for those who have medical conditions secondary to being 

obese.  However, they have been shown to be extremely effective in individuals who have extreme 

trouble with losing weight.   

 The intervention that is most applicable to the average obese person include lifestyle 

modification, involving increased physical activity and diet modification. Perhaps the most 

recognizable form of diet modification is caloric restriction. Caloric restriction (CR) consists of 

restricting the number of calories consumed per day. Typically, CR attempts to reduce caloric 

intake by 20-40% of ad libitum consumption, achieved by consuming a reduced volume of food 

at feeding periods (22). CR has been shown to increase lifespan and improve myriad health 
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markers (22-24). Because of the low tolerability of CR in human populations (25), researchers and 

healthcare professionals have developed indirect methods to achieve caloric restriction that are 

better tolerated by humans. One such method is intermittent fasting (IF). IF is a general term that 

describes any dietary modification in which an individual intentionally alternates between periods 

of “feeding” and extended, self-induced “fasting” (26). Two notable methods of IF have emerged: 

time-restricted feeding (TRF) and alternate day fasting (ADF). TRF restricts daily feeding periods 

to designated hours of the day (i.e. only eating from 12:00 pm – 7:00 pm), extending the typical 

overnight fast by several hours. TRF often, but not always, reduces  daily caloric intake by 

reducing feeding time. Alternate day fasting (ADF) is the practice of fasting for one day, followed 

by ad libitum consumption on the subsequent day. Although it has been documented that 

individuals practicing ADF typically increase caloric intake on the feeding days, net calorie 

ingestion is typically lowered over the total duration of the regime (27).  

For many individuals, CR is intolerable for extended periods of time. Dietary restriction 

(DR) may be more tolerable to these individuals. DR is a dietary modification in which an 

individual reduces or eliminates the consumption of specific dietary components (28). DR 

commonly involves the reduction of a specific macronutrient (carbohydrates, lipids, or proteins). 

Vegetarian diets, ketogenic diets, and the Daniel Fast (DF) are examples of DR. The DF is a 

religiously motivated DR, derived from the Bible. As described in the book of Daniel, the DF is a 

strict vegan diet, consisting of only of pulse (food grown from seeds) (29). Today, a typical DF 

consists of the ad libitum consumption of vegetables, whole grains, nuts, legumes, seeds, and 

healthy oils. It prohibits the consumption of processed foods, coffee, and alcohol. Individuals 

typically partake in the DF for 21-day periods.  
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Time-restricted feeding, alternate day fasting, and the Daniel Fast have been shown to 

improve many markers of health and longevity (29-31). However, relative to caloric restriction, 

time-restricted feeding, alternate day fasting, and the Daniel Fast have not been studied in great 

detail, especially with regard to changes in body composition and physical fitness (e.g., endurance 

capacity). Because body composition and physical fitness are important markers of overall health, 

it is important to compare TRF, ADF, and DF in a single study to determine the relative 

effectiveness of each dietary modification these outcomes. To the author’s knowledge, no such 

study has been conducted.  

This review will discuss the relevant literature regarding TRF, ADF, and DF and the health 

benefits associated with each. It will also discuss measures of body composition and physical 

fitness and their relation to overall health and TRF, ADF, and DF.  

Body Composition 

The term “body composition” describes the chemical composition of the body. The human 

body is composed of muscle mass, connective tissue, organs, bone, adipose tissue, and water. 

Because it is difficult to measure the contribution of each of these components to overall body 

composition through traditional methods, conventional measurements of body composition often 

group the components of the human body into two gross categories: fat mass (FM) and fat-free 

mass (FFM). Muscle mass, connective tissue mass, organ mass, and bone mass are collectively 

termed FFM, while all adipose tissue is termed FM. Assessments of body composition attempt to 

measure the relative percentages of FFM and FM and are often expressed simply in terms of 

percent fat-free mass (%FFM) versus percent fat mass (%FM).  

Body composition can either be directly measured or estimated. Cadaver analysis and 

diagnostic imaging (Computerized Axial Tomography [CAT scan], Magnetic Resonance Imaging 
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[MRI], and dual-energy x-ray absorptiometry [DXA]) are the only methods currently available to 

directly measure total body composition. Cadaver analysis is considered the gold standard of body 

composition assessment, which is obviously restricted only to use in animal models (32). Thus, 

diagnostic imaging is the best method for assessing body composition in living humans. Currently, 

many investigators use DXA due to its validity and reliability (33). Body composition may also 

be estimated through various methods, including bioelectrical impedance analysis (BIA), 

densitometry (hydrostatic weighing, water displacement, air plethysmography), and 40pattasium 

counting. Moreover, anthropometric measurements such as waist circumference and skinfold 

thickness measurements are often used in large populations to estimate body composition, as these 

assessments are quick to perform and inexpensive. However, estimates of body composition are 

typically, but not always, less reliable than diagnostic imagery (34). 

Body Composition and Overall Health   

 Body composition an important indicator of overall health. A high percentage of FM (% 

FM) is closely correlated to elevated BMI (1). In turn, elevated BMI is associated with a number 

of negative health outcomes. Obese individuals (BMI ≥ 30 kg∙m-2) present with increased CVD 

risk factors, including hypertension, dyslipidemia, insulin resistance, and type II diabetes mellitus 

(14). Ultimately, an increase in CVD risk factors leads to increased incidence of CVD-related 

events in obese individuals, such as myocardial infarction, heart failure, sudden death, coronary 

heart disease, and ischemic stroke (14, 35, 36). 

 Abdominal obesity, or visceral obesity, is another important measurement of body 

composition. Measured by DXA and CT scan, or estimated via waist circumference, abdominal 

obesity has been linked to a number of adverse outcomes, including increased risk of mortality, 
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myocardial infarction, and heart failure (37). Weight loss strategies that reduce abdominal obesity 

should be prioritized.  

FFM can also be an important indicator of overall health because FFM is the single best 

predictor of resting metabolic rate (38). Resting metabolic rate (RMR) - a measurement of resting 

energy expenditure - accounts for 60-70% of total daily caloric expenditure, depending on physical 

activity (39). Because energy expenditure must exceed energy intake to induce weight loss, RMR 

and its influence on energy homeostasis should be considered in models of weight loss. Indeed, 

researchers have hypothesized that abnormally low RMR is a strong indicator of future weight 

gain (40). It has been known for some time that FFM is the single best predictor of RMR (38). In 

fact, FFM explains between 60-80% of the variance in measured RMR (41). Additional 

adjustments for specific components of FFM such as organ volume and density can push this R2 

value to as high as 85% (42, 43). Thus, dietary interventions that result in weight loss but maintain 

FFM should be prioritized.  

Body Composition and Physical Fitness 

 Body composition is an independent predictor of physical fitness. Tests of physical fitness 

often involve moving one’s body (i.e. running) as long or as fast as possible. FFM (skeletal muscle) 

performs the work during such tests. Underweight individuals (BMI < 18 kg∙m-2) with low levels 

of FFM may display worse fitness than normal weight individuals (6). Because FM is not 

responsible for performing human work, FM may be viewed as “dead weight” during physical 

activity. Individuals must simply carry this extra weight during physical fitness tasks and 

examinations, similar to wearing a backpack while running. For obvious reasons, it is logical that 

increased FM will have a detrimental impact on physical performance/fitness. Indeed, physical 

fitness is negatively correlated with BMI in adolescents aged 12-18 years (6), as well as in young 
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adults (7, 8). Additionally, studies have shown a negative correlation between body fatness and 

performance in activities requiring running or jumping (44, 45). Therefore, generally, it can be 

said that individuals with abnormally high or low BMIs may display lower fitness than individuals 

of normal BMI.   

Body Composition and Dietary Modification 

 Body composition can be altered significantly through dietary modification. Certainly, 

many dietary modifications have been created for the sole purpose of decreasing total body mass 

and FM. Caloric restriction has been shown to positively change body composition by decreasing 

total body mass and FM (46, 47). Additionally, studies have reported that CR decreases abdominal 

subcutaneous (48), visceral (48, 49), and intermuscular fat (48, 49). However, studies have also 

indicated that CR significantly decreases FFM (49). For this reason, CR interventions may 

recommend consumption of a high-protein diet. CR with a high protein diet shows promise in 

maintaining FFM during CR-induced weight loss (50), although it should be understood that 

reducing caloric intake will almost certainly lead to some loss in FFM.  

 TRF also displays the potential to reduce total body mass and FM while maintaining FFM. 

To the author’s knowledge, three studies have examined the relationship between TRF and body 

composition in humans. One study  failed to report significant differences in total body mass, FM, 

or FFM following a TRF intervention (51), while the other two studies reported extremely 

favorable body composition outcomes (52, 53). The most successful study found that participants 

in the TRF group lost significantly more FM compared to the control group when measured at the 

conclusion of the 8-week intervention (−16.4 in TRF vs −2.8 %FM in control). Moreover, despite 

losing significantly more FM, the TRF group did not differ from baseline or between groups for 

FFM (+0.86 in TRF vs +0.64 %FFM in control) (53). It should be noted that, though existing 
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evidence suggests that TRF is successful in maintaining FFM during weight loss, no studies have 

measured body composition in overweight or obese individuals following TRF.  

 Relative to simple CR, ADF also seems to have the potential to induce favorable changes 

in body composition in humans. Similar to simple CR, ADF has been shown to result in significant 

reductions in FM (54-59), visceral FM (58), and waist circumference (57, 60). However, whereas 

simple CR often results in loss of FFM, modified ADFs have demonstrated the ability to maintain 

FFM during weight loss. Three out of four studies that have measured FFM have reported no 

significant reductions in FFM relative to baseline (55, 57) or relative to a control group (56) 

following the completion of a modified ADF protocol. It should be noted that while individuals 

appear to retain FFM relatively well during modified ADF, traditional ADF has resulted in 

significant reductions in FFM during ADF (54, 59).  

 Alternatively, DF has not resulted in favorable body composition alterations in humans. 

Only one study has displayed significant reductions in total body mass and/or FM (61). Following 

a 21-day DF intervention with krill oil supplementation, body weight (74.1 ± 2.4 versus 71.5 ± 2.3 

kg), fat mass (21.9 ± 1.5 versus 20.8 ± 1.5 kg), and fat-free mass (52.2 ± 2.0 versus 50.8 ± 1.9) all 

decreased significantly, relative to baseline. However, neither a traditional DF or a modified DF 

(inclusion of one serving of meat and one serving of dairy per day) has resulted in significant 

reductions in any measure of body composition (29, 62, 63). The lack of findings of significant 

weight loss in these studies is likely due to the short duration of the intervention (21 days). 

Physical Fitness 

Generally, physical fitness is defined as the ability to perform physical activity (64). It is 

characterized by a number of subcategories, including cardiorespiratory fitness, muscular fitness, 

flexibility, balance, and speed. Physical fitness exists on a spectrum, with individuals being 



 
 

 36 

classified anywhere from low fitness to highest fitness based on performance in a number of 

physical performance examinations (65). Many intrinsic factors such as age, sex, race, motivation, 

and genetic expression influence physical fitness. Extrinsic factors also influence physical fitness, 

most notably regular physical exercise (66).   

Cardiorespiratory fitness and muscular fitness are the most important components of 

health-related physical fitness. Cardiorespiratory fitness (CRF) is broadly defined as the overall 

combined ability of the body’s cardiovascular and respiratory systems to uptake, transport, and 

use oxygen (67). The most accurate measure of CRF is maximal oxygen uptake during an exercise 

performance test (VO2max) (68). Measurements of VO2max can either be obtained directly or 

indirectly. Direct measurement of VO2max involves the collection of an individual’s expired gases 

using the Douglas Bag method or automated gas-collection equipment such as a metabolic cart. 

The composition of the expired gas is analyzed to determine total oxygen uptake at the point of 

volitional failure. Indirect measurement of VO2max involves the estimation of VO2max using an 

exercise test. Graded exercise tests, such as a step-up test or a submaximal walk test, are frequently 

used in clinical settings. A variable (i.e. time or heart rate) is measured upon the completion of the 

exercise test. The value of this variable is then plugged into an adjusted equation to estimate 

VO2max. Other exercise tests, such as the 1.5 mile run test and the run-time-to-exhaustion test, 

provide meaningful descriptive data related to CRF.     

Muscular fitness is characterized by the strength and endurance of skeletal muscle. A 

variety of tests have been used to assess muscular fitness. These tests include maximal pushups 

achieved during a given time frame, maximal sit-ups achieved during a given time frame, maximal 

grip strength as measured by a hand dynamometer, and maximal weight achieved during resistance 
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exercise (i.e. bench press). Studies have not determined a single test of muscular capacity that best 

estimates overall muscular fitness.  

Physical Fitness and Overall Health 

 Studies have routinely reported CRF to be an important predictor in overall health for a 

multitude of populations. Low CRF leads to decreased ability to perform seemingly-simple daily 

activities. Additionally, low CRF appears to be a powerful independent risk factor for all-cause 

mortality in both healthy and non-healthy populations (65, 69-71). Studies have also shown an 

inverse relationship between CRF and the risk of developing sudden cardiac death (72), cancer 

mortality (73), childhood obesity (74, 75), type 2 diabetes mellitus (76, 77), and cardiovascular 

disease (78). Similarly, studies have reported a positive relationship between CRF and cognition 

(79) and health-related quality of life (80). 

Because low CRF is associated with adverse outcomes and high CRF is associated with 

positive outcomes, improving CRF is perhaps the most important fitness goal for the average 

individual. Fortunately, studies have repeatedly demonstrated that regular exercise improves CRF 

(66, 81). Moreover, drastic improvements in CRF may not be required to induce clinically 

meaningful improvements in health-related outcomes, as indicated by Kokkinos et al. In one study 

conducted by Kokkinos et al., they examined the relationship between CRF and mortality risk in 

6,749 black and 8,911 white men. CRF was measured in metabolic equivalents (METs) (65). One 

MET was defined as the energy expended at rest by an average individual (estimated to be 3.5 

mL∙kg-1∙min-1). The study reported that a 1-MET increase in exercise capacity resulted in a 13% 

reduction in risk of mortality for individuals with and without cardiovascular disease. Small 

improvements such as these may also lead to increased ability to perform basic daily tasks, 

especially in older adults.  
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Compared to CRF, research on the role of muscular fitness and overall health is limited. 

Muscular fitness is important for maintaining individual autonomy (82). Simple tests of muscular 

fitness such as the sit-stand provide valuable indicators of an individual’s functional muscular 

fitness. Individuals that perform extremely poorly on these functional fitness exams will likely 

experience difficulty performing everyday tasks, a general characteristic of extreme obesity. 

Moreover, muscular fitness may be an important indicator of general health. Muscular fitness has 

been inversely linked to several adverse outcomes, including all-cause mortality (83, 84) and 

premature death (85).Therefore, improving muscular fitness should also be a goal for all 

individuals.  

As mentioned above, physical fitness is closely associated with body composition which 

is also associated with overall health. Underweight individuals (BMI < 18 kg∙m-2) may be less fit 

than normal weight individuals (6, 86). On the other end of the spectrum, high BMI has been 

associated with poor physical fitness (6-8). To maximize most measures of physical performance, 

individuals should strive to maintain normal body weight and health levels of FM. 

Physical Fitness and Dietary Modification 

 Diet plays a major role in physical fitness. Relative to ad libitum feeding, CR appears to 

improve physical performance in mice (87, 88), likely because weight gain is inversely related to 

physical performance (6). High-carbohydrate diets have been recommended for prime physical 

performance because they are said to keep glycogen stores saturated and blood concentrations of 

triacylglycerides and free-fatty acids low (89, 90). Two recent reviews indicated that consumption 

of a high-fat diet may result in diminished physical performance, especially at high intensities and 

in anaerobic conditions (91, 92). Therefore, it appears that a high-carbohydrate diet augments 

performance when compared to a high-fat diet.  
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Few studies have examined the effects of DF, ADF, or TRF on physical performance. To 

date, only one study has examined the relationship of the DF and physical fitness. Following the 

conclusion of a 3-month DF and exercise intervention in male rats, cardiorespiratory fitness was 

measured (run-time-to-exhaustion) and compared to baseline fitness (Bloomer, In Publication). 

Exercise capacity increased significantly more (99% increase) in the DF + exercise group when 

compared to the WD + exercise group (51% increase), indicating that the DF accentuated exercise 

gains. To this author’s knowledge, only 3 studies (excluding studies that focused on Ramadan) 

have examined the relationship of TRF and physical fitness. Two studies have tested the effects of 

TRF in humans. Both of these studies utilized 8-week interventions and similar intervention groups 

(TRF + resistance training 3 x weekly) and control groups (normal diet + resistance training 3 x 

weekly) (51, 53). Neither study reported significant differences between groups in physical 

performance as measured by muscular strength or endurance (51, 53). One study examined the 

effects of TRF on physical performance in animals. This study reported that Drosophila subjected 

to TRF displayed significantly better flying performance, relative to the control group (93). No 

publications have studied ADF and physical fitness. More research is needed in humans and 

animals to determine whether TRF, ADF, and DF will enhance physical fitness. 

Time-Restricted Feeding 

 Intermittent fasting (IF) is a general term that describes any dietary modification in which 

an individual intentionally alternates between periods of “feeding” and extended, self-induced 

“fasting” (26). During the feeding period, individuals are often permitted to consume foods ad 

libitum (51, 59, 94), although some IF interventions have restricted caloric intake during the 

feeding period (53, 95). During the fasting period, individuals either abstain from caloric intake 

all together (51, 52, 96) or dramatically reduce caloric intake by 70-80% (56, 97, 98). Fasting 
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periods can last anywhere from 12 hours (99) to 48 hours (97) or longer, and the duration of this 

period typically demarcates the classification of each IF regime. Recently, two types of IF have 

recently garnered noteworthy interest from the scientific community. 

In recent decades, alternate day fasting (ADF) and time-restricted feeding (TRF), two 

specific types of IF, have gained scientific momentum. ADF involves the cycling of 24-hour ad 

libitum feeding with 24-hour fasting or severe caloric restriction (26). Alternatively, TRF – the 

topic of this section - simply involves the daily reduction of the feeding period. Typical TRF 

interventions limit the daily feeding period to a 4-12 hour window in the afternoon/evening, 

eliminating any caloric consumption during the morning and night hours. This results in a 

lengthened fasting period (12-20 hours per day). However, during feeding periods, individuals are 

allowed ad libitum caloric consumption. Additionally, TRF does not necessarily mandate that 

individuals “improve” their diet, only alter their meal timing. For these reasons, TRF is viewed as 

a very user-friendly alternative to individuals who find it difficult to adhere to the guidelines of 

simple CR.  

Time-Restricted Feeding: Overview of Current Literature 

Human Trials 

 Few publications have examined the effects of controlled TRF interventions in a human 

model. However, despite utilizing short-term TRF interventions lasting between 2-8 weeks and 

some conflicting results, these studies have displayed promise. Many benefits have been associated 

with TRF, including - but not limited to – reduction of caloric intake (51), weight loss (52, 53), 

decreased FM (52, 53). Positive alterations in blood lipids following TRF such as increased HDL 

(52) and decreased triglycerides (53) have been noted. Additionally, TRF has been associated with 

decreased blood glucose and decreased blood insulin (53). Studies examining the effects of 
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Ramadan-fasting-induced TRF have reported similar positive results (100-104). Furthermore, 

studies indicate that TRF, especially 16/8 (16 hour fasting period/8 hour feeding period) TRF, is 

well tolerated by participants (53). 

Currently, few negative or conflicting results have been reported in regards to TRF. Carlson 

and colleagues stated that an 8-week TRF intervention (1 iso-caloric [relative to control group] 

meal per day consumed between 5:00pm – 9:00pm) resulted in increased morning blood glucose 

concentrations and decreased glucose tolerance (105). The authors suggested that the increase in 

blood glucose levels could be a result of the study’s design, stating that early-morning blood 

glucose levels were likely impacted by the consumption of extremely calorically dense 

intervention meal the during the preceding night. The duration of period may have also influenced 

this outcome. Longer feeding periods (6-8 hours) may improve measures of glucoregulation, as 

displayed by the findings of Moro et al. (53). Additionally, Tinsley et al. indicated that an 8-week 

TRF intervention (4-hour ad libitum feeding period between 4:00pm – 8:00pm) may lead to 

decreased hypertrophic gains in untrained males relative to untrained males following the same 

resistance training protocol but consuming food ad libitum (51). Thus, TRF may not be appropriate 

in the early stages of resistance training when hypertrophy is the main goal. However, it should be 

noted that TRF has been reported to maintain FFM during weight loss and resistance training (51-

53).  

Animal Trials 

 Animal trials have largely corroborated many of the beneficial findings of human trials 

discussed above. TRF in animals appears to be an effective method for preventing weight gain 

and/or inducing weight loss in a number of species, including Drosophila (93), mice (99, 106-

110), rats (111) and geese (112). Notably, evidence suggests that weight loss and/or prevention of 
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weight gain can be achieved through TRF despite consumption of at high-fat diet (99, 107). Studies 

have indicated that TRF is successful in improving important lipid factors, such as lowering total 

cholesterol (107, 108, 113) and triglycerides (107, 109). TRF has also been noted to improve 

glucoregulatory factors by lowering plasma insulin levels and increasing insulin sensitivity (107, 

108). Studies have also reported diminished levels of inflammatory markers following TRF (107, 

108). 

It should be noted that not all animal trials have yielded exclusively positive results. Some 

studies have failed to report differences in weight gain post-TRF, relative to a control group (114, 

115). Additionally, not all studies have demonstrated significant improvements in glucoregulatory 

factors following TRF (115). In fact, Park et al. stated that TRF exacerbated hepatic insulin 

resistance, despite loss of FM, in hormone-sensitive lipase knockout mice (115). These discrepant 

results may be the result of a number of factors. In some cases, small sample sizes may have limited 

statistical power, diminishing the opportunity to find significant differences between groups (114). 

In other cases, differences in reported outcomes may be attributed to differences is protocols, as 

studies have used various animal models (i.e. hormone-sensitive lipase knockout mice vs wild-

type mice), interventions of differing lengths (i.e. a 4-week intervention v. a 12-week intervention), 

and daily feeding periods of differing lengths (i.e. a 4-hour feeding period versus a 12-hour feeding 

period).  

Time-Restricted Feeding and Physical Fitness  

Human Trials 

Two studies have examined the effects of TRF on physical fitness in humans, both utilizing 

tests of muscular fitness. Tinsley and colleagues utilized an 8-week TRF in combination with 

resistance training in young, normal-weight, untrained males (n = 18) (51). The intervention group 
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consumed a modified TRF diet, while the control group continued to consume their normal diet 

throughout the duration of the study. Both the control group and the intervention group completed 

resistance training (8-12 repetitions to failure) on non-consecutive days 3 x weekly, alternating 

between lower-body and upper-body sessions. Maximal muscular output – classified by maximal 

muscular strength and maximal muscular endurance – was measured at base-line and post-

intervention. Maximal strength was defined by maximal weight achieved during 1-repetition 

(1RM) during the hip sled and barbell bench press exercises. Muscular endurance was defined by 

maximal repetitions using a standardized weight during the hip sled and barbell bench press 

exercises. Relative to baseline, hip-sled endurance, bench-press endurance, and hip sled strength 

increased, post-study. However, no differences existed between groups.  

A second study focused on TRF in resistance-trained men (n = 34). Moro and colleagues 

implemented a 16/8 TRF intervention (16 fasting period; 8 hour feeding period between 1:00pm-

9:00pm; meals consumed at 1:00pm, 4:00pm, and 8:00pm) in combination with 3 x weekly 

resistance training (split routine; 6-8 repetitions to failure) (53). The control group was instructed 

to consume meals at standard times (1:00pm, 4:00pm, and 8:00pm) in combination with 3 x weekly 

resistance training (split routine; 6-8 repetitions to failure). Muscular strength was measured at 

baseline and post-intervention. Muscular strength was defined as 1RM achieved during leg press 

and bench press exercises. Moro et al. reported that weight achieved during 1RM for leg press 

increased in both groups, relative to baseline. However, no differences existed between groups. 

1RM achieved during bench press did not differ from baseline or between groups. 

Taken together, these studies indicate that short-term TRF interventions do not inhibit 

anaerobic muscular performance during resistance training. These data are generally supported by 

similar studies that have examined the relationship between performance and TRF during 
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Ramadan (116). More research is needed in this area to verify that TRF does not inhibit, or 

preferably improves, physical performance. Additional studies should also focus on measures of 

CRF. 

Animal Trials 

 To the author’s knowledge, only one animal study has included any physical performance 

measure following TRF. Gill et al. indicated that 5 weeks of 12-hour TRF in wild type Drosophila 

significantly improved ability to fly, as measured by flight index (93). However, the study failed 

to specify how or when flight performance was measured. Additionally, the researchers did not 

mention the specifics of the flight index that was used. Because of the lack of detail provided in 

the paper of Gill and coworkers and the fact that  no other studies are available in this area, more 

studies are needed to better understand the potential influence of TRF on physical performance in 

animals.  

TRF and Body Composition  

Human Trials 

 To the author’s knowledge, three studies have examined the relationship between TRF and 

body composition. One study reported moderately favorable body composition outcomes, while 

the other two studies reported extremely favorable body composition outcomes. The two studies 

described above in the TRF section reported measures of body composition in addition to the 

aforementioned measures of muscular performance. Tinsley et al. measured body composition via 

DXA (51). No significant differences existed relative to baseline or between groups for total body 

mass, FFM, or FM. However, the study did state that, though the difference was not significant, 

FFM increased in the control group (+2.3 kg FFM) and decreased in the TRF group (-0.2 kg FFM). 

The researchers mentioned that the non-significant difference in FFM gains between groups could 
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most likely be attributed to the training status of the participants (i.e. untrained) and the caloric 

demand associated with hypertrophy during the onset of training.  

Alternatively, Moro and colleagues reported very promising results. They used DXA to 

measure body composition at baseline and post-intervention (53). The study indicated that 

participants in the TRF group (10.90 ± 3.51 kg at baseline versus 9.28 ± 2.47 kg post-intervention) 

lost significantly more FM compared to the control group (11.36 ± 4.5 kg at baseline versus 11.05 

± 4.27 kg post-intervention). The TRF group also experienced greater reductions in %FM relative 

to the control group (−16.4 % FM in TRF vs −2.8 % in control). However, despite  losing 

significantly more FM than individuals in the control group, individuals in the TRF group (73.08 

± 3.88 kg at baseline versus 73.72 ± 4.27 kg post-intervention) did not exhibit significantly 

different levels of FFM post-intervention when compared to baseline or the control group (73.93 

± 3.9 kg at baseline versus 74.41 ± 3.59 kg post-intervention). Additionally, measurements of mid-

arm circumference and mid-thigh circumference did not differ between groups or from baseline 

for either condition.  

 A third study examined the effects of an 8-week 20/4 (20-hour feeding period, 4-hour 

fasting period) TRF intervention on body composition in normal-weight, middle-aged adults (n = 

15) (52). All meals were provided by the lab staff, and caloric intake did not differ between the 

control condition (3 meals daily) and the intervention condition (all food consumed between 

5:00pm – 9:00pm). Body composition was assessed via BIA at baseline and post-intervention. 

Favorable changes in body composition were exhibited post-intervention. Relative to the control 

condition, the TRF condition exhibited significantly greater weight loss (1.4 kg) and reduction of 

FM (2.1 kg). No differences were observed between-groups for FFM. Additionally, none of the 

body-composition measures differed significantly relative to baseline. 
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 No studies have measured body composition in overweight or obese individuals following 

TRF. However, the evidence discussed in this section shows that similar individuals can achieve 

loss of FM and retention of FFM through TRF. Further studies should apply these findings to an 

obese sample to ascertain if similar alterations in body composition are attainable through TRF.  

Animal Trials 

A majority of animal trials that have reported body composition have indicated that TRF 

has a major impact on body mass and FM. Studies show that mice fed during the dark phase (active 

phase) display significantly lower total body mass and lower total FM and %FM when compared 

with mice fed ad libitum or during the light (inactive) phase (99, 108, 117, 118). Notably, this 

reduction appears to occur independent of diet composition. Studies have demonstrated that mice 

fed a high fat diet during the dark phase display lower %FM relative to controls (107, 108). No 

studies have described alterations in FFM or %FFM following TRF. More research is needed to 

determine how TRF affects FFM in animals.  

Alternate Day Fasting 

 Alternate day fasting (ADF) is a type of IF protocol that has received increased attention 

from members of the scientific community over the past decade. ADF regimes consist of 

alternating “feed” and “fast” days, often grouped in 14-day cycles. For example, ADF protocols 

should be arranged such that individuals experience 7 fast days and 7 feed days over a given 14-

day period. Feed days typically consist of ad libitum caloric consumption (27), although at least 

one study has implemented a caloric limit on feed days (60). Fast days involve either total or severe 

caloric restriction. ADF interventions that eliminate caloric intake for the entire 24-hour period are 

considered traditional ADFs (54, 59). Traditional ADFs may permit consumption of calorie free 

beverages and/or calorie-negligible options such as bouillon/stock cube soup (59). ADF 
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interventions that allow for consumption of a small meal on fast days are termed modified ADFs. 

(56, 57). Modified ADFs typically permit consumption of 1 small meal on fast days in an effort to 

depress feelings of hunger on fast days and, ultimately, attrition rates. These meals typically consist 

of 25-30% of normal daily caloric consumption and are typically consumed in the early afternoon 

(55, 94), though evidence has suggested that meal timing on fast days does not impact outcomes 

(58). 

Alternate Day Fasting: Overview of Current Literature 

Human Trials 

 The benefits of ADF in humans have been well-documented. Thus far, studies have 

primarily focused on ADF in obese populations (56), although some trials have included normal-

weight and over-weight participants (54, 56). Many of these publications have utilized a modified 

ADF intervention (55, 58, 60, 119, 120), while relatively few studies have implemented a 

traditional ADF in humans (54, 59). Additionally, although most studies have utilized short-term 

(2-12 week) ADF interventions, the results have been encouraging.  

Generally, human trials have reported improved health-related outcomes following ADF. 

Studies have repeatedly shown that ADF is effective for inducing weight loss in both obese (55, 

57-60, 121, 122) and non-obese individuals (54-56), while resulting in favorable changes in body 

composition (these variables will be discussed in further detail below) (57, 59). Additionally, ADF 

has been associated with improved measures of cardio-metabolic health, including decreased 

cholesterol (56, 59, 98), decreased LDL levels (56, 59, 98), decreased triglyceride levels (56, 59, 

98), and decreased blood pressure (56, 57, 60). These cardiovascular-health-related benefits of 

ADF may be further enhanced when combined with an exercise intervention (57). Furthermore, 
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one study has also shown that markers of inflammation and oxidative stress may be improved 

following ADF in obese individuals with asthma (122). 

 Some null or negative findings have been associated with ADF. One study failed to report 

reductions in total body mass, likely due to the short duration of the 2-week intervention used (96). 

Another study has indicated that short-term ADF can lead to unfavorable reductions in HDL levels 

(59). Still others have indicated that ADF results in the loss of FFM (54, 59). Interestingly, all of 

these undesirable outcomes have been reported following traditional ADF. Potentially, the total 

elimination of any caloric intake on fast days of a traditional ADF leads to the development of 

these adverse outcomes. Indeed, Heilbronn et al. address this notion in the discussion section of 

their paper, hypothesizing that a modified ADF that allows for 10-20% of caloric needs on fast 

days may lead to better outcomes (54). Thus, it is recommended that individuals undergo a 

modified ADF for a period of at least 3 weeks for best clinical results.  

Animal Trials 

 ADF interventions conducted in animal models have yielded positive results. Similar to 

simple CR, ADF has been reported to protect against the development of several severe negative 

health outcomes, such as diabetes, cancers, heart disease, and neurodegeneration (123). ADF has 

also been associated with significant cardio-protection (124). Studies have indicated that ADF 

favorably alters measures of cardiovascular health by lowing heart rate, blood pressure, blood 

insulin, and blood glucose (125, 126). Moreover, ADF has been shown to induce weight loss and 

prevent weight gain (125, 127-129), as well as decrease visceral fat mass (129, 130). Indeed, 

weight loss appears to be achievable through ADF despite the consumption of a high fat diet (131). 

Ultimately, these protective effects of ADF may result in increased longevity (132, 133). 

ADF and Physical Fitness 
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 To the author’s knowledge, no studies have reported any measure of physical fitness or 

physical performance with respect to ADF in humans or animals. However, because high FM and 

low FFM are associated with decreased physical fitness and performance (7, 8), it is expected that 

ADF would improve physical fitness and performance simply by improving body composition in 

overweight and obese individuals and animals. 

ADF and Body Composition  

Human Trials  

 Relative to simple CR, ADF seems to have the potential to induce favorable changes in 

body composition. Similar to simple CR, ADF has been shown to result in significant reductions 

in FM (54-59), visceral FM (58), and waist circumference (57, 60). However, whereas simple CR 

often results in loss of FFM, modified ADFs have demonstrated the ability to maintain FFM during 

weight loss. Three out of four studies that have measured FFM have reported no significant 

reductions in FFM relative to baseline (55, 57) or relative to a control group (56) following the 

completion of a modified ADF protocol.  

 It should be noted that while individuals appear to retain FFM relatively well during 

modified ADF, traditional ADF may result in significant reductions in FFM. The only two 

traditional ADF trials in humans have reported significant decreases in FFM following 

interventions of 3 (54) and 8 weeks, respectively (59). For this reason, modified ADFs are 

recommended for optimizing loss of FM and retention of FFM during ADF.  

Animal Trials  

Interestingly, though many animal studies have reported ADF-induced weight loss, few 

studies have investigated body composition following ADF, and these results are conflicting. Two 

studies have found that ADF does not result in decreased fat mass. Varady et al. reported no 
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significant difference in inguinal adipose mass or epididymal adipose mass following a 4-week 

traditional ADF (32). A subsequent study also failed to report significant differences in fat mass 

between control and ADF groups after 4 weeks of ADF (130). Only one study, conducted by 

Dorighello et al., has reported successful reductions in total fat mass. This study indicated that a 

12-week traditional ADF was successful in reducing epididymal fat pad mass in wild-type mice 

(134). No studies have reported measures of total FFM.  

While the literature has failed to support unequivocally the claim that ADF reduces fat 

mass in animals, it should be noted that preliminary evidence has suggested that ADF can alter the 

size and distribution of adipose cells in clinically meaningful ways. ADF has been shown to 

favorably alter adipose tissue distribution by decreasing visceral fat mass and increasing 

subcutaneous fat mass (130). Because visceral obesity has been linked to increased incidence of 

insulin resistance, cardiovascular events and premature death, decreases in visceral fat mass are a 

significant finding (130). Additionally, another study has indicated that ADF results in decreased 

inguinal adipose cell size (32). This finding is important because large adipose cells have been 

reported to increase the risk of developing chronic disease (130). So, while the evidence does not 

yet fully support the notion that ADF leads to decreased total FM in animals, studies do suggest 

that ADF favorably alters the composition and distribution of FM, a worthwhile outcome.  

Dietary Restriction 

 Dietary restriction (DR) is a dietary modification in which an individual reduces or 

eliminates the consumption of one or more specific dietary components (28).  DR commonly 

involves the reduction of a specific macronutrient (carbohydrates, lipids, or proteins), but other 

dietary components may be the subject of DR. One such example is methionine (an essential amino 

acid) restriction, which has been shown to lower the incidence of cancer and extend life spans in 
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animal models (135). Though the primary goal of DR may not be calorie restriction, it typically 

results in reduced caloric intake by default. The Daniel Fast is an example of a DR model that 

typically leads to decrease in caloric consumption, relative to normal ad libitum calorie intake. 

 The Daniel Fast (DF) is a religious fast, derived from the Bible (29). Typically, individuals 

partake in the DF for a 21-day period, as described in the book of Daniel. It is a strict vegan diet 

that inherently leads to reduced caloric intake. Individuals participating in a DF may consume 

fruits, vegetables, whole grains, nuts, legumes, seeds, and healthy oils (such as olive oil) ad libitum. 

Products that contain additives or preservatives, as well as coffee and alcohol, are prohibited. 

Because the DF involves ad libitum intake of the permitted foods, individuals may find it an easier 

model to follow than other caloric restriction models. 

Daniel Fast: Overview of Current Literature 

Human Trials 

Several studies have shown the Daniel Fast, followed for as few as 21 days, to improve 

markers of health. All have been conducted at The University of Memphis. In the first such study 

conducted, Bloomer and colleagues implemented a 21-day DF in 43 human participants (13 men; 

30 women; 35 ± 1 yrs; range: 20-62 yrs) to assess its effects on metabolic and cardiovascular risk 

factors (29). Participants were not excluded based on body mass. Thus, individuals with a variety 

of BMIs enrolled in the study: 21 participants were considered to have a “normal” BMI (BMI < 

25 kg∙m-2); 9 participants were considered overweight (BMI 25-29.9 kg∙m-2); and 13 participants 

were considered obese (BMI > 30 kg∙m-2Participants were generally considered to be healthy 

individuals. Thirty-four of 43 participants were considered exercise trained (participate in 3 hours 

of anaerobic and aerobic exercise per week). A pretest was conducted for all tested variables before 

the 21-day intervention was initiated. Post-intervention testing revealed that many important 
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metabolic and cardiovascular markers of health had improved following the 21-day fast.  Amongst 

other variables, total cholesterol (171.07 ± 4.57 vs. 138.69 ± 4.39 mg·dL-1), systolic blood pressure 

(SBP; 114.65 ± 2.34 vs. 105.93 ± 2.12 mmHg), and diastolic blood pressure (DBP; 72.23 ± 1.59 

vs. 67.00 ± 1.43 mmHg) were significantly lowered when compared to baseline values (p < .05). 

Additionally, insulin blood-concentrations and HOMA-IR scores were lowered (p > .05) by 

clinically meaningful values. Moreover, total caloric intake was significantly reduced during the 

intervention period when compared to baseline (2185 ± 94 vs. 1722 ± 85 kcals). The only noted 

downside of the DF was a significant decrease in HDL-C. Thus, Bloomer et al. concluded that a 

21-day DF can result in key metabolic changes that may improve overall health.  

A year later, a subsequent study was published on the same data set which assessed 

antioxidant status and markers of oxidative stress following a 21-day DF (136). Results showed 

that a 21-day DF positively effects antioxidant status and markers of oxidative stress. 

Concentrations of certain variables increased significantly (p < .05) post-intervention, including 

Nitrate/Nitrite (NOx) and Trolox Equivalent Antioxidant Capacity (TEAC). Markers of oxidative 

stress were reduced, post-intervention. Malondialdehyde (MDA) levels were significantly lowered 

(p = .004) by 15%. H2O2 levels were also meaningfully lowered (p = .074) by 14%. Together, 

these data indicate that a 21-day DF can lower levels of oxidative stress while raising levels of 

antioxidants.  

Subsequent studies have validated the majority of these results. In 2012, Bloomer et al. 

conducted a 21-day DF on 22 participants to examine post-prandial oxidative stress. Ten men and 

12 women (aged 35 ± 3 years) completed the study (62). Participants had a wide variety of BMIs 

(13 normal, 4 overweight, and 5 obese). Bloomer and colleagues noted no significant decrease in 

post-prandial oxidative stress. However, several health benefits were reported. Both DBP and SBP 
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were lowered post-intervention. NOx increased following the DF (TEAC was not significantly 

higher). Total caloric intake was lowered by 16% during the DF.  

A modified DF has also been shown to produce meaningful health benefits (61, 63). A 

modified DF is inclusive of dietary components that are excluded in a traditional DF. In a study 

published in 2012, Trepanowski and colleagues instructed participants in the experimental group 

to consume krill oil capsules (2 g/day in 2 daily dosages of 1 g) daily in an effort to maintain HDL-

C levels (61). While HDL-C levels were not significantly different between the control and 

experimental groups, the litany of health benefits reported in the original study conducted by 

Bloomer et al. in 2010 were observed. Similarly, Alleman and colleagues reported a significant 

decrease in HDL-C following a 21-day DF modified to include one serving of lean meat (3 oz.) 

and dairy (8 oz. skim milk) per day (63).  

Animal Trials 

 To date, two studies have implemented a DF intervention in an animal model. Bloomer et 

al. utilized a 3-month DF intervention in male Long-Evans rats (n=60) to determine the effects of 

the DF on physical performance, body composition, blood lipids, oxidative stress and 

inflammation (Bloomer, unpublished). Following a 2-week acclimation period, animals were 

assigned to an exercise group and a diet group. Two exercise groups existed, with animals either 

being assigned to the exercise-trained group (E), which exercised 3 times weekly on a treadmill, 

or the sedentary group, which was only permitted normal daily activity. Two diet groups were 

used, with animals either assigned to an ad libitum WD group or an ad libitum DF group. At the 

conclusion of the study, DF rats displayed relatively lower body mass, cholesterol, triglycerides, 

lipid peroxidation, and protein oxidation than WD rats. Additionally, rats in the DF+E group 
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displayed greater physical performance increases, relative to the WD+E group. Markers of 

inflammation did not differ between groups. 

 In a separate publication, Daniels et al. detailed how the intervention described above 

affected the rats’ viscera, particularly the small intestine. Daniels et al. reported several key 

findings. Following the 13-week intervention, WD rats had heavier livers than DF rats (25.9 ± 2.0 

kg versus 17.1 ± 0.6 kg). The intestines of the WD rats were shorter when compared to the DF 

rats’ intestines. The weight of the WD rats’ intestines represented a smaller percentage of total 

body weight (g∙kg-1 body weight) than the intestines of the DF mice. The WD rats intestines 

displayed shallower crypts and narrower villi, compared to the DF rats’ intestines. These results 

are likely the result of the low fat, high fiber composition of the DF diet and indicate that the small 

intestines of DF rats adapted to become more absorptive per kg of body weight compared to the 

WD rats’ small intestines.  

Daniel Fast and Physical Performance  

Human Trials 

 No human trials have tested physical fitness following DF. However, many subjects have 

commented that they “feel” better physically when following the DF eating plan. Of course, 

quantitative data are needed to confirm improvements in performance.  

Animal Trials 

To date, only one study has examined the relationship of the DF and physical fitness. This 

study utilized a 3-month DF intervention in male Long-Evans rats to determine the effects of the 

DF on physical performance (Bloomer, unpublished). Baseline cardiorespiratory capacity was 

measured for all animals as run time to exhaustion. Following the conclusion 3-month intervention, 

cardiorespiratory fitness was measured again. Exercise capacity significantly increased for both 
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exercise groups, relative to baseline. However, exercise capacity increased significantly more 

(99% increase) in the DF + E when compared to the WD + E group (51% increase), indicating that 

the DF increased exercise gains independent of body mass.  

Daniel Fast and Body Composition 

Human Trials 

To date, the DF has not resulted in consistent and favorable body composition alterations 

in humans but has resulted in a mean weight loss of approximately 4-6 pounds over a three week 

intervention period. Only one study has displayed significant reductions in total body mass and/or 

FM (61). Following a 21-day DF intervention with krill oil supplementation, body weight (74.1 ± 

2.4 versus 71.5 ± 2.3 kg), fat mass (21.9 ± 1.5 versus 20.8 ± 1.5 kg), and fat-free mass (52.2 ± 2.0 

versus 50.8 ± 1.9) all decreased significantly, relative to baseline. However, other studies, using 

either a traditional DF or a modified DF (inclusion of one serving of meat and one serving of dairy 

per day), have not reported significant improvements in any measure of body composition (29, 62, 

63).  Two traditional DF studies have reported measures of body composition. The first traditional 

DF study indicated that total body mass (77.5 ± 3.0 versus 74.7 ± 2.7 kg), %FM (30.2 ± 1.6 versus 

29.9 ± 1.6%), %FFM (53.8 ± 2.0 versus 52.1 ± 1.9%), and waist circumference (92.2 ± 2.0 versus 

90.4 ± 2.0 cm) remained unchanged at the conclusion of the 21-day intervention (29). Similarly, 

the second traditional DF study reported that body mass (77.8 ± 3.8 versus 75.1 ± 3.5 kg), FM 

(21.1 ± 2.2  versus 19.9 ± 2.1 kg), %FM (26.7 ± 2.3 versus 26.1 ± 2.1%), FFM (56.7 ± 2.8 versus 

55.2 ± 2.7 kg), and waist circumference (88.7 ± 2.9 versus 87.5 ± 2.9 cm) remained unchanged at 

the conclusion of the 21-day intervention (62) . A DF modified to include meat and dairy also 

reported no changes in body composition following 21 days of DF, including no changes in total 

body mass in the traditional DF group (81.7 ± 4.8 versus 79.3 ± 4.9 kg) or in the modified DF 
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group (74.5 ± 6.1 versus 72.4 ± 5.7 kg); no changes in %FM in the traditional DF group (35.7 ± 

2.4 versus 35.5 ± 2.5%) or in the modified DF group (33.8 ± 3.5 versus 33.4 ± 3.6%); and no 

changes in %FFM in the traditional DF or the modified DF group (63). The lack of findings of 

statistically significant weight loss in these studies is likely due to the short duration of the 

intervention (21 days) and the variability in subjects’ response. 

 

Animal Trials 

 The animal trial discussed above in Daniel Fast and Physical Fitness also reported 

measures of body composition. The data indicated that DF is effective in preventing weight gain 

in rats, relative to ad libitum feeding (Bloomer, unpublished). Rats in the WD group (571.1 ± 14.7 

kg) weighed significantly more post-intervention than all other groups (516.8 ± 10.7 kg WD + E; 

478.7 ± 11.3 kg DF + E; 496.8 ± 13.5 kg DF). Additionally, rats in the DF groups weighed 

significantly less than rats in the WD groups (data not given). Bloomer et al. also reported a group 

effect for %FM. Both DF groups (20.3 ± 1.3% DF + E; 24.6 ± 1.4% DF) displayed lower %FM 

than both WD groups (30.6 ± 1.3% WD + E; 33.5 ± 1.0% WD). Furthermore, no significant 

between-group differences were noted for FFM (366.0 ± 9.2 kg WD + E; 386.8 ± 6.7 kg WD; 

391.4 ± 8.8 kg DF +E; 376.5 ± 7.8 kg DF), indicating that the DF may be effective in attenuating 

FFM loss in animals.  

Conclusion 

 Obesity is a multifactorial disease that presents myriad problems, both in the United States 

and worldwide. It is associated with increased risk of chronic, and potentially fatal, disease, such 

as cardiovascular disease, heart attack, and suddent death (14). Additionally, obesity places a major 

financial burden on the individual and the United States healthcare system (4). Thus, attenuating 
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the rise of obesity worldwide is a primary goal of many healthcare organizations, such as the World 

Health Organization. This goal may be achieved through dietary modification.  

 Though more research is needed, three novel dietary interventions – time-restricted 

feeding, alternate day fasting, and the Daniel fast – appear able to successfully induce weight loss, 

while simultaneously generating additional positive health outcomes. However, each one of these 

dietary modifications currently displays unique benefits. TRF causes the most favorable changes 

in body composition. While studies have linked DF and ADF to insignificant or unfavorable 

alterations in body composition, studies generally show that TRF leads to significant reductions in 

FM (52, 53, 99) without reducing FFM (52, 53). Additionally, because TRF permits the daily 

consumption of a high-fat diet, it has an added psychological benefit, relative to ADF (which 

severely restricts caloric intake every other day) and DF (which eliminates processed foods). 

Conversely, ADF is the only dietary modification out of the three that has been shown to 

consistently reduce total body mass in a significant manner. Varady et al. and others have 

repeatedly demonstrated that ADF results in significant reductions of total body mass (54-56, 59). 

TRF and DF have yet to consistently demonstrate large improvements in weight, though TRF has 

not been utilized in an obese sample, and DF studies have yet to span longer than 3 weeks in 

humans. DF appears to be the most comprehensive dietary modification, compared to TRF and 

ADF. DF studies have shown improvements in virtually every health-related factor, despite short-

term interventions (29, 61, 63, 136). Additionally, DF is the only dietary modification that has 

been shown to increase physical performance (Bloomer, unpublished). 

 Despite the promising results of the literature detailed above, much still needs to be learned 

about these dietary modifications. Little literature has been published on DF and TRF, and few of 

these studies have reported measures of body composition or physical performance, essential 
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indicators of overall health. Moreover, no studies have implemented TRF, ADF, and DF in the 

same study to compare outcomes of each dietary modification. Thus, a single study comparing 

TRF, ADF, and DF is needed to determine the relative effectiveness of these dietary modifications 

on body composition and physical performance.  
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IACUC PROTOCOL 

FOR USE OF LIVE VERTEBRATES FOR RESEARCH, TEACHING OR DEMONSTRATION 

UNIVERSITY OF MEMPHIS 

 

Date submitted to Attending Veterinarian for pre-review:  

 

IACUC Protocol #                                               Date Submitted to IACUC  

 

Dates Protocol will be in effect:                              from                                  to  

(not to exceed three years including two yearly renewals) 

 

Is this protocol related to an external grant or contract application?                Yes           No   

 

If yes, complete the following: 

 

Agency:                                                                           Date Submitted 

 

Grant # 

 

University account for Animal Care Facility per diem charge:   

 

If the protocol is not related to an external grant or contract application, complete the 

following: 

5/30/17 

 

7/1/17 6/30/20 

  

 

0806 

5/3/17 
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University account for Animal Care Facility per diem charge:   

 

Project Title: (If project relates to a grant or contract application, give that title; if multiple 

protocols relate to one grant, give unique titles for each protocol; if the project is related to a 

class, give the course name and number): 

 

Impact of dietary and caloric restriction models on metabolic health and physical function in 

male mice  

 

I. Personnel 

 

Investigator/Instructor:  

 

Department:  

 

Academic Rank:  

 

Campus phone:                                                     Emergency phone:   

 

Attending Veterinarian:    

 

Phone:                                                                   Emergency phone:  

211700 

Marie van der Merwe and Richard Bloomer 
 

Health Studies 
 

Assistant Professor and Professor 
 

Karyl Buddington 
 

678 3476 and 678 5638 
 

901 406 7458 / 901 267 3514 
 

901-678-2359 901-258-1232 
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List all individuals that will handle animals using this protocol, their affiliation, and their level of 

expertise (e.g. relevant qualifications). If the protocol applies to a class then so specify. 
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Marie van der Merwe, PhD (Molecular Pharmacology), Postdoctoral Fellowship (Bone 

Marrow Transplantation): More than 10 years of experience using mice as a research 

model. 

 

Richard Bloomer, PhD: 2 years of prior experience using rodents in research. 

 

Melissa Puppa, PhD: 8+ years of experience working with mice including breeding, 

exercise training/testing, injections, surgery, dietary interventions, gavage, GTT, 

electroporation, blood collection, and dissection/necropsy. 

Matt Butawan: 2 years of rodent handling experience. 

Harold Lee: 1 year of rodent handling experience, including exercise testing (treadmill 

running). 

Sunita Sharma: 6 months animal handling experience; has been to Laboratory Animal 

Training. 

Nick Smith: No experience with animals, but has been to Laboratory Animal Training; 

training will be provided during experiment. 

Jade Caldwell: No experience with animals, but has been to Laboratory Animal 

Training; training will be provided during experiment. 

Kyle Truska: No experience with animals and will attend Laboratory Animal Training; 

training will be provided during experiment 
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If additional personnel become involved in handling animals used in this protocol, it is the 

responsibility of the principal investigator to notify the Animal Care Facility in writing 

before they start. 

Has the investigator/instructor and all personnel listed above received the appropriate 

vaccinations (tetanus, rabies)?                                   Yes           No          Not Applicable   

Will be done by the time the study is initiated.  

Is it necessary for personnel listed on this protocol to be tested for TB? 

                                                                                   Yes           No   

If you have questions about the kind of vaccination or about TB, call the Animal Care 

Facility at 678 2359. 

All U of M personnel involved in this protocol must complete the animal care and use 

training program before animals can be procured or before experiments/teaching or 

demonstration.   In submitting this protocol, I, as Principal Investigator/Instructor accept 

the responsibility for compliance with this requirement. 

In addition, the Principal Investigator/Instructor must be willing to provide appropriate 

supervision for all persons working on this protocol.  In the case of a class, the Instructor 

must be responsible for training any students in classes involved prior to using animals. 

 

 

II.  Project Description 

A. Summary (Enter a brief description below of your project, using lay terminology): 
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Obesity has become an epidemic in the Western world, largely due to poor dietary 

habits. Multiple dietary programs have been studied in recent years, showing promise 

with regards to weight loss and improvement in multiple health related outcomes, 

including glucose control, inflammation, and oxidative stress. More recently, a great 

deal of attention has been placed on the microbiome and the influence of dietary intake 

on this very important component of overall health. What is unknown is the degree of 

improvement noted when following each of the popular dietary regimens as compared 

to simple caloric restriction. That is, are certain protocols more beneficial than others 

and if so, in regards to which specific outcome(s)? Much debate centers on these 

questions and no study has sought to make direct comparisons between the well-

investigated protocols. 

 

In fact, most dietary protocols have simply been compared to a typical high fat 

Western diet. Very few comparison studies have been conducted inclusive of the four 

most common dietary approaches: Caloric Restriction (CR), Dietary Restriction (DR), 

Time Restricted Feeding (TRF), and Alternate Day Fasting (ADF). The goal of the 

present study is to directly compare the above four dietary plans to a Western Diet, 

with regards to body mass/body fat, physical performance, insulin sensitivity, 

inflammation, oxidative stress, and the microbiome. A diet of standard rodent chow 

will be used as a control. Outcome measures will be determined after 8 weeks of 

assignment to the dietary programs, with a total of 56 animals assigned to one of 7 diet 

groups (n=8 per group). 
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4 week old C57BL/6 male mice will be entrained under a 12h light: 12h dark schedule 

for two weeks with standard rodent chow available ad libitum.  During the entrainment 

period, mice will begin the reverse light-dark schedule, with lights off between the 

hours of 7am-7pm. This will be done so that the feeding time will be during the active 

phase (“light off” phase) of the mice. Mice will be housed in Life Sciences in an area 

that is currently used for studies of the circadian rhythm and therefore the light is well-

regulated. After two weeks of entrainment, all but 8 mice will be switched to a Western 

diet for four weeks, consisting of 45% fat with lard as the fat source. This additional 

four week period of ad libitum feeding should allow for significant weight gain. Eight 

mice will continue following a standard chow diet during this 4-week period and serve 

as a low-fat control diet group. They will maintain this same diet throughout the entire 

study period. Following the 4-week period, the mice fed the Western diet will be 

divided into 6 additional groups: Western, CR, DR, TRF, ADF, and chow.  

 

A MRI for the determination of body mass/fat and treadmill run to exhaustion will 

occur at baseline (prior to starting the specific diet plan) and following eight weeks on 

the specific diet assignment. Before and after the 4-week period of Western diet 

feeding and at the end of the intervention period, a glucose tolerance test will be 

performed. Mice will be fasted for 7 hours and glucose levels measured in 10 ul of 

blood collected via the tail vein.  Glucose will be administered intraperitoneally and 

blood glucose measured every 30 minutes for 90 minutes from 10 ul of blood collected 

from the tail vein. At the end of the dietary intervention, prior to sacrifice, blood will 

be collected from the facial vein for the determination of lipids, glucose, insulin, 
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oxidative stress markers, cytokines, immune cell populations, and other variables. All 

mice will be sacrificed by CO2 inhalation. Tissues will be harvested immediately. This 

form of euthanasia does not affect the outcome measures as determined by our 

previous studies. Organs to be harvested are liver, spleen, intestine, lymph nodes, 

adipose tissue, skeletal muscle, and heart. 

 

B. Describe IN DETAIL the procedures you will follow. Include accompanying 

documentation and reference to previously published work in the box below.  Provide a complete 

bibliographic citation and describe any variations from the published technique.  The 

bibliography may be included in the box below or appended to this protocol. 

Mice: 56, 4 week old C57BL/6 male mice will be purchased from Envigo or another 

vendor. After arrival, mice will be co-housed (as done in reference 1) at the animal 

facility on the University of Memphis campus. 

After arrival at the University of Memphis, mice will be entrained under a 12h light: 

12h dark schedule for two weeks with standard rodent chow available ad libitum.  

During the entrainment period, the light-dark cycle will be reversed with lights off 

between the hours of 7am-7pm. This will be done so that the feeding time will be 

during the active phase (“light off” phase) of the mice. Mice will be housed in Life 

Sciences in an area that is currently used for studies of the circadian rhythm and 

therefore the light is well-regulated. After two weeks of entrainment, all but 8 mice 

will be switched to a Western diet, consisting of 45% lard and 41% carbohydrate (20% 

sucrose, 9% corn starch, and 12% Maltodextrin).  This additional four week period of 

ad libitum feeding should allow for significant weight gain. Following this period, 



 
 

 79 

mice will be divided into 6 additional groups and will consume their respective diets 

for an additional 8 weeks.   

Group 1 will have access to a standard rodent chow ad libitum, 24 hours per day.  

Group 2 will have access to a purified, high-fiber, vegan-based diet ad libitum, 24 

hours per day. We have used this same customized diet in past studies and it results in 

normal weight/muscle mass gain, while minimizing fat accumulation. This will be the 

DR arm of the trial.  

Group 3 will have access to the Western diet ad libitum, 24 hours per day.  

Group 4 will have ad libitum access to the Western diet for 6 hours at the beginning of 

their active phase (7am-1pm). This will be the TRF arm of the trial. We have used this 

exact feeding protocol in a recent investigation of mice. No negative health 

consequences were observed using this protocol. 

Group 5 will be on the alternate day fasting (ADF) protocol and have ad libitum access 

to the Western diet every other day. That is, on day 1 they will have unrestricted access 

to food during the entire 24 hour period. On day 2 they will receive no food. On day 3, 

they will have unrestricted access to food, and so on.  This same protocol has been 

used in mice in several studies without incident. Please see references 2-10. It should 

be noted that if the ADF protocol leads to significant weight loss beyond what would 

be expected for mice following such a plan (≥20% body mass as compared to their 

body mass at the start of the intervention period [after 4 weeks of following the ad 

libitum Wester diet]) and/or mice show signs of stress or  impaired health (e.g., scruffy 

coat, hunched posture, excessively aggressive behavior), the attending veterinarian will 

be notified and a rescue protocol will be set in place and will consist of the following: 
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instead of receiving no food on the fasting days, mice will receive 20% of the daily 

calories in the form of the Western diet during a one hour period at the mid-point of the 

animals’ active phase (12-1pm).  

It should be noted that animals in all groups will be monitored daily for signs of stress 

and impaired health, with particular attention given to animals in the ADF group. 

Monitoring body weight three times weekly should be more than adequate and should 

not cause undue stress to the animals due to frequency of handling. 

Group 6 will receive 80% of ad libitum intake of the Western diet as determined during 

the prior 4 week period. This will be the CR arm of the trial. Multiple rodent studies 

have reduced caloric intake by 20-40% without incident. See references 5 and 11-17. 

Al mice will be monitored daily for sign of malnutrition and stress.  

The diets will be purchased from Research Diets, which has experience in producing 

the Western diet and purified vegan diets for rodent studies. The mice will remain on 

their particular diets for eight weeks and then post-testing will begin. Mice will 

continue on their diets until all testing is completed (~ end of week 9). Water will be 

provided ad libitum throughout the study period. The amount of food consumed will be 

measured daily and the weights of the mice will be taken three times per week at the 

same time of day. There will be a total of 56 mice assigned in this study. 

There will be two mice housed per cage. From our previous studies we know that 

genetically similar mice eat basically a constant volume of food. We can therefore pair-

house the mice and determine an average amount of food consumed. Previous studies 

have used a similar set up where 3-5 mice were co-housed (Hatori et al.). If there are 

any signs of fighting or it appears that one the mice is consuming the majority of the 
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food, those specific mice will be separated into individual cages. Food will be weighed 

daily. Mice will be weighed 3 times per week at the same time of day.  A glucose 

tolerance test (GTT) will be performed at the beginning of the experiment (when mice 

are put on their respective diets) and following 8 weeks after the start of the dietary 

intervention. The final GTT will be performed 48h prior to euthanasia. For the glucose 

tolerance test, mice will be fasted for a minimum of 7 hours and blood glucose levels 

determined by blood from tail vein. Mice will be given a 1g glucose/kg body weight 

intraperitoneally and blood (10ul) collected every 30 minutes for 90 minutes to 

measure glucose levels. For blood collection, mice will be placed on a flat surface and 

restraint by gently holding onto the tail without pulling. The tip of the tail will be 

snipped – 1mm region. This part of the tail has little nerve innervation and does not 

cause the animal any distress. By “milking” the tail, blood can be collected at multiple 

time points without having to cut again.  Isoflurane cannot be used as it increases blood 

glucose levels independent of treatment. We have used this exact procedure in a recent 

study. 
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In addition to the GTT, prior to commencing the specific diet plans (after the initial 4 week 

period on the Western diet), animals will undergo a MRI for determination of body mass/body 

fat. Body composition will be determined using an EchoMRI™ 1100. The MRI is housed in 

room 115 in Life Sciences, the same location that our mice are housed in. For scanning, animal 

are placed with cylindrical tube holders and movement restricted to the bottom 7.5 cm as stated 

in the instrument manual and the study by Jones et al. (Validation of quantitative resonance for 

the determination of body composition of mice. Int. J Body Compos Res. 2009; 7(2):68-72). The 

animals are scanned without anesthesia, sedation or restraint and are free to move within the 

holder. The smallest possible holder is used to limit the movement of the mouse (without 

constraining them) in order to reduce measurement errors induced by motion. Scanning time is 

approximately 40 seconds.  There is no prior training required for the animal. We have prior 

experience using this system in mice. 

 

Finally, animals will undergo a treadmill run test to exhaustion using a motorized 

treadmill without incline. Specifically, mice will be acclimated to the treadmill prior to 

testing. Run to fatigue test will be performed twice in the mice; once prior to starting 

the 8 week intervention and at the end of the 8 week intervention. Animals will run 

using a 5% grade at 20m/min for 30 min and 25m/min for the remaining time until they 

reach exhaustion. A warm up phase will be provided for 15min (5min at 5m/min, 5min 

at 10m/min, 5min at 15m/min). Fatigue will be defined as the time at which mice are 

no longer able or willing to keep up with the speed of the treadmill despite gentle hand 

prodding for a period of 30 seconds. Very mild electric shock will only be used if mice 

do not respond well to gentle hand prodding. Our past and current work using running 
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protocols demonstrates that mild shocking is preferable to obtain the best running 

performance. The frequency and amplitude of shock will be as low as possible to 

motivate the animals to remain on the treadmill belt, without causing unnecessary 

distress. We have used small electric shock in prior studies and this is well-accepted in 

rodent running studies. Equipment will be cleaned upon the completion of testing with 

ethanol solution. All urine and feces will be cleaned off of the device and the 

surrounding area.  

After 8-9 weeks of dietary intervention, mice will be euthanized (CO2 inhalation) and 

with cervical dislocation. Tissues will be harvested immediately. This form of 

euthanasia does not affect the outcome measures as determined by our previous 

studies. Organs to be harvested are liver, spleen, intestine, lymph nodes, adipose tissue, 

skeletal muscle, and heart. Immediately prior to euthanasia, blood will be collected via 

the facial vein to measure lipids, glucose, insulin, oxidative stress markers, cytokines, 

immune cell populations, and other variables as needed. Cecum and intestinal contents 

will be collected for microbiome analysis. 
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C. Rationale for Involving Animals and the Appropriateness of Species and Number Used. 

Indicate (here) briefly the short and/or long-term benefits (to humans and/or other animals) of 

this use of animals for research, teaching or demonstration.  Provide rational for and the number 
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of animals to be used.  In addition, state briefly why living animals are required for this study, 

rather than some alternative model. 

The goal of this experiment is to study common feeding patterns in a controlled 

environment over a moderate period of time to determine the cardio-metabolic health 

effects of these dietary plans. Results will provide evidence for or against certain 

models that can then be used by human subjects in an attempt to combat obesity and 

related co-morbidities. We know from our prior work in rodents that the TRF and DR 

models are favorable as compared to a WD. However, we are uncertain as to how CR 

and ADF plans compare. Moreover, we are unaware of studies focused on comparing 

these plans with regards to the microbiome or physical performance. These are 

important areas of interest to scientists and humans who are focused on which dietary 

plan may be “best.” As obesity is becoming more of a problem in the Western world, 

determining which dietary approaches may be best to combat this disease is of great 

importance.  

The C57BL/6 diet induced obesity mouse model has been used previously to study the 

effect of excess weight on various organ systems. As we are interested in the 

interaction between the immune system, oxidative stress, physical performance, and 

other organs, we cannot use isolated cell lines or model organisms such as yeast. 

Additionally, many reagents have been developed for the use of mouse tissues, 

especially antibodies that will be used to identify certain outcome measures. As we are 

focusing on the effect of the different dietary programs on multiple organ systems, it is 

only feasible in an animal study. 
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There will be 8 mice per group for a total of 56 mice. This number is the norm for 

similar studies of dietary-induced changes in our health-specific parameters. This 

number should be sufficient to determine statistical significance for the tests planned 

during this study. 
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D. Do the procedures described in B above, have the potential to inflict more 

 than momentary pain or distress (this does not include pain caused by  

 injections or other minor procedures)?                                                     Yes           No  

I have considered alternatives to procedures that might cause more than momentary or slight 

pain/distress, and I have not found such alternatives.  As such, I have used one or more of the 

following methods and sources to search for such alternatives: (check below each method used) 

 

 Agricola Data Base  Medline Data Base  CAB Abstracts 

 TOXLINE  BIOSIS  Lab. Animal Sci. Journal 

 Lab. Animals Journal  Lab Animal  Animal Welfare Info Center 

 ATLA (Alternatives to Laboratory Animal Journal)  Quick Biblio. Series 

 Lab Animal Welfare Bibliography (QL55L27311988)  "Benchmarks" 

 "Alternatives to Animal Use in Research, Testing and Education" 

 Current Contents 

 CARL 

 Direct contact with colleagues (if selected, you MUST document this below) 

 

 

 

List search words for the literature search:   

Daniel Fast, dietary restriction, vegan fasting, fasting, time restricted feeding, intermittent 

fasting, caloric restriction, alternate day fasting, chow, obesity, inflammation, oxidative stress, 

microbiome, treadmill test, EchoMRI, insulin resistance, insulin sensitivity, fatty acids, body 
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composition, glucose, insulin, blood sugar (words used in isolated and in combination in 

PubMed and Google Scholar).  

 

What is the length of time that the literature search covers? 

1960-2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Animal Use 

A. List all animal species to be used (example below). 

 Species Number1 Age2 Sex2 Weight2 Where Housed  

 (Bldg./Rm#) 
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e.g. Hooded 

Wistar rats  
45 2 months male 250-350 gm Psychology Bld./422I 

C57Bl/6 mice 56 4 weeks Male 15-20 gm Life Sciences/115 

      

      

      

      

 

        1Individuals using ectotherms need to only approximate numbers. 

  2Individuals using fish or other ectotherms need not answer this question. 

Is any species threatened or endangered?                                                          Yes           No  
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B.  Source of animals 

  Commercial vendor (Source___ Envigo 

Labs_____________________________________________) 

 Bred at The University of Memphis  

 Captured from wild. Identify method of capture:  

 Transferred from another study (IACUC Protocol Number                                                        

 Donated (Source                                                                                                           ) 

 Tennessee Wildlife Resources Agency 

Is the supplier a USDA approved source?                                                         Yes           No  

 

If not, explain why:  

 Animals are already in residence at U of M 

 

C. Will surgery be conducted on animals?                                                    Yes           No  

 

If yes, complete this section: 

 Non Recovery Surgery  Recovery Surgery 

 Multiple Survival Surgery (if the latter is checked, complete section F) 

 

Surgeon(s) (Name/Job/Title/Academic Rank) Location of Surgery (Bldg. & Room #) 

 

 

D.  Will Anesthetic(s), Analgesic(s), or  
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 Tranquilizing agents be administered?                                                     Yes          No  x                    

If yes, complete this section (example below). 

Species & Sex Agent Dose Route Performed by 

 (Name/Title/Academic Rank) 

e.g. male Hooded 

Wistar rats 

sodium 

pentobarbitol 

50 

mg/kg 

i.p

. 

Mr. Smith/Research 

Technician/B.S. 

     

     

     

     

     

 

 

 

 

 

 

 

 

 

E. Will euthanasia be carried out?                                              Yes           No                    

If yes, complete this section (example below). 

 Species & Sex Agent Dose Route Performed by (Name/Title/Academic Rank) 
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e.g. male Hooded 

Wistar rats 

sodium 

pentobarbitol 

150 

mg/kg  

i.p

. 

Mr. Smith/Research 

Technician/B.S. 

C57BL/6 mice CO2 3L/min In

ha

lat

io

n 

Marie van der Merwe/ 

Assistant Professor 

Matt Butawan/Research 

Associate 

Sunita Sharma/Master’s 

Student (Will be trained by 

Dr. Karyl Buddington) 

     

     

     

     

 

If no, describe disposition of animal(s) at conclusion of this study in box below. 

 

 

 

 

 

F. Will special housing, conditioning, diets or other conditions  

 be required?                                                                                              Yes           No  
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If yes, please explain in box below. 

Mice will be on high fat, chow, or purified diets. Some mice will have restricted access 

to food, either 7am-1pm or every other day. Some mice will have access to only 80% 

of their daily ad libitum intake. 

         

 
G. Will animals be removed from the U of M campus at any time?             Yes           No  

 

 

If yes, please indicate to where and for how long in box below. 

 

H. If they are to be housed for more than 24 hours outside approved facilities at U of M, 

provide a scientific justification in box below. 
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IV. Toxic and Hazardous Substances 

A. Check off any of the following below that will be used in these experiments? 

 Infectious agents (Fill out a, b) 

 Radioisotopes (Fill out a, b, e) 

 Toxic chemicals or carcinogens (Fill out a, b) 

 Recombinant DNA (Fill out a) 

 Experimental drugs (Fill out a) 

 Malignant cells or hybridomas (Fill out a, c) 

 Adjuvants (Fill out a) 

 Controlled substances (Fill out a, d, e) 

 

For each checked off category, answer the questions indicated below: 

a. Identify the substance(s) and completely describe their use, including how will be injected 

or given to the animal(s):  

b. Describe all procedures necessary for personnel and animal safety including  biohazardous 

waste, carcass disposal and cage decontamination: 

c. If transplantable tumors or hybridoma cells are to be injected into the 

 animals, have the tissues/cells been tested for inadvertent contamination  

 by viruses or mycoplasma?                                                                       Yes           No  

 

If yes, what was the result (indicate in box below). 
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d. In the box below, provide a complete list of these substances, and if their use is not 

explicitly explained in the materials already provided, explain their use and role in the 

research. 

Provide DEA license # covering the use of these substances:   

To whom (or what entity) is the license issued?   

e. Provide Radioisotope License Number:   

To whom is the license issued?   
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V. Categories of Animal Experimentation Based Upon Level of Manipulation and Pain: 

(check off each category that is applicable to this application) 

 A. Animals will be involved in teaching, research, experiments or tests involving  no 

pain, distress, or use of pain-relieving drugs. 

 B.  Animals  will be subject to mild stress only (e.g., food or water deprivation of less 

than 24 hours for use in behavioral studies such as operant conditioning; physical 

restraint for less than 30 minutes), and will not be subject to surgery, painful stimuli, 

or any of the other conditions described below. Procedures described in this protocol 

have the potential to inflict no more than momentary or slight pain or distress on the 

animal(s)----that is, no pain in excess of that caused by injections or other minor 

procedures such as blood sampling.  

 C. Animals will have minor procedures performed, blood sampling, etc. while 

anesthetized.  

 D. Live animals will be humanely killed without any treatments, manipulations, etc. but 

will be used to obtain tissue, cells, sera, etc.  

 E. Live animals will have significant manipulations, surgery, etc. performed while 

anesthetized. The animals will be humanely killed at experiment termination without 

regaining consciousness.  

 F. Live animals will receive a painful stimulus of short duration without anesthesia 

(behavior experiments with flight or avoidance reactions--e.g., shock/reward) 

resulting in a short-term traumatic response. Other examples in this category are, 

blood sampling, injections of adjuvants, or drugs, etc.  

Injection for glucose tolerance test; possible low grade shock while on treadmill.  
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 G. Live animals will have significant manipulations performed, such as surgery, while 

anesthetized and allowed to recover. Such procedures cause post-anesthetic 

pain/discomfort resulting from the experiment protocol (e.g., chronic catheters. 

surgical wounds, implants) which cause a minimum of pain and/or distress. Also 

included are mild toxic drugs or chemicals, tumor implants (including hybridomas). 

tethered animals, short-termed physically restrained animals (up to 1 hour), 

mother/infant separations.  

 H. Live animals will have significant manipulations or severe discomfort, etc. without 

benefit of anesthesia, analgesics or tranquilizers. Examples to be included in this 

category are: toxicity testing, radiation sickness, irritants, burns, trauma, biologic 

toxins, virulence challenge, prolonged: restrictions of food or water intake, cold 

exposure, physical restraint or drug addiction. All use of paralytic agents (curare-like 

drugs) must be included in this category.  Describe any abnormal environmental 

conditions that may be imposed.  Describe and justify the use of any physical restrain 

devices employed longer then 1 hour.  
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VI. Justifications for Category G Studies and Deviations from Standard Techniques 

Describe in the box below any steps to be taken to monitor potential or overt pain and/or distress 

during the course of this study and how such pain or distress will be alleviated. Be as detailed as 

necessary to justify your procedure. 

 

VII. Certifications 

(By submitting this protocol, I am acknowledging that I comply with the certifications 

included in Section VII.)  (check one) 

 Animal Use for Research. I certify that the above statements are true and the protocol 

stands as the original or is essentially the same as found in the grant application or 

program/project. The IACUC will be notified of any changes in the proposed project, or 

personnel, relative to this application, prior to proceeding with any animal experimentation. 

I will not purchase animals nor proceed with animal experimentation until approval by the 

IACUC is granted. 

 Animal Use for Teaching/Demonstration. I certify that the information in this application is 

essentially the same as contained in the course outline and a copy of the laboratory 

exercises using animals is on file in the IACUC office. The IACUC will be notified of any 

changes in the proposed project, or personnel, relative to this application, prior to 

proceeding with any animal experimentation. I will not proceed with animal 

experimentation until approval by the IACUC is granted.  

Estimate the cost of maintaining animals used in this protocol based on current per diem charge 

at University of Memphis. 

 
    $7.20/day ($0.24/cage/day) 
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Please specify cost per unit of time:  

 

Specify anticipated total costs for project duration:   

 

As supervisor of this project it is required that you inform your department chair 

concerning any animal per diem costs related to this project that are to be paid by the 

department.  

 

By submitting this protocol, the Principal Investigator/Course Director indicates that the 

following have been considered: 

 

1. Alternatives to use of animals. 

2. Reduction of pain and stress in animals to the lowest level possible.  

3. The proper needs of the animals with respect to housing and care.  

4. The lowest number of animals used that will give the appropriate experimental results.  

5. Use of the most primitive species that will give the appropriate experimental results.  

6.  Proper training of all personnel in the care and handling of the species used and in the 

procedures called for in this protocol before beginning the experiment/teaching or 

demonstration.  

7. That this protocol is not an unnecessary repeat of results already in the literature or in the 

case of teaching/demonstrations, results that can be demonstrated using models or video 

material.  

 

   $756 (15 weeks) 

        Marie van der Merwe/Richard Bloomer 
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Principal Investigator/Course Director (Type Name) 

 

e-mail address 

 

Date 

Federal Law requires that members of the IACUC be given adequate time to read and review 

protocols including any changes or revisions in them. 

 

Pre-review of protocols by the Attending Veterinarian is required before submission to the 

IACUC.  New protocols or modifications or renewals to protocols must be submitted to the 

IACUC Chair by the 1st business day of the month to be considered for review during that 

month. Incomplete protocols will be returned to the principal investigator.  

 

E-mail the completed protocol to the IACUC Chair, Dr. Amy de Jongh Curry, 

adejongh@memphis.edu  

 

 

February, 2015 

 
 
 

        mvndrmrw@memphis.edu / rbloomer@memphis.edu 
 
 

    5/3/2017 
 

mailto:adejongh@memphis.edu
mailto:mvndrmrw@memphis.edu
mailto:rbloomer@memphis.edu
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