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ABSTRACT 

Huang, Xudong. M.S. The University of Memphis. August/2013. Evaluation: 

Measurements of Differences between Semantic Spaces. Major Professor: Xiangen Hu, 

PhD. 

The existing method to measure differences among semantic spaces is costly. The 

current study evaluates a low-cost method. Specifically, the current study uses three 

measurements of induced semantic structures (ISS) to measure the differences between 

vector-based semantic spaces. An ISS of a target word is that word’s ordered nearest 

neighbors. Our hypothesis, which was confirmed, is that the three measurements have the 

ability to measure the differences between spaces. In addition, the number of nearest 

neighbors used by measurements has an effect on the ability. Evaluation was conducted 

on five Touchstone Applied Science Associates (TASA) spaces. The measured 

differences between spaces were compared to the objective similar pattern of TASA 

spaces, which follow a well-defined hierarchy. The comparison indicates that three 

measurements can capture the objective TASA pattern and that performance measures 

were better than a measurement which does not use ISS. It was concluded that the new 

method of measuring space differences is an apt complement to the existing method. 
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CHAPTER 1 

INTRODUCTION 

The last decade has seen remarkable development in vector-based semantic 

modeling. This technology uses real-valued vectors to represent semantics and to 

compute semantic relations between words in corpora. Semantic modeling starts with 

word co-occurrence in chosen corpora and then uses mathematical algorithms to acquire 

word meanings. For example, when milk and juice often occur in the same discourse 

environment we assume that they are semantically related. There are dozens of semantic 

encoding methods. Stone, Dennis, and Kwantes (2008) and Riordan and Jones (2011) 

reviewed 13 of them. Several popular semantic models include Hyperspace Analogue to 

Language (HAL; Burgess, 1998), Latent Semantic Analysis (LSA; Landauer & Dumais, 

1997), the Topic Models (Griffiths, Steyvers, & Tenenbaum, 2007) and Explicit 

Semantic Analysis (ESA; Gabrilovich & Markovitch, 2007). 

With the fast-paced development of computer technology, generating a large 

number of semantic spaces in a relatively short time is achievable. The process of 

building semantic spaces can be summarized in three steps. People extract corpora from 

naturally written documents in a given domain, choose proper encoding methods, and 

then generate the semantic spaces for real world use. For details see Figure 1. 
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Figure 1. Three Steps of Producing Semantic Spaces 

When a large number of semantic spaces occur, a new problem arises. We always 

need to answer the following questions when facing several space candidates: Which one 

is the most suitable space for a specific application? How can we compare the spaces? A 

correct choice significantly improves the performance of the application. In contrast, a 

wrong choice leads to poor performance or even non-performance. In order to choose a 

space accurately, scientists have developed a method to compare semantic spaces. In the 

past decade, many advances have been made using this method. The following chapter 

reviews several such studies.  
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CHAPTER 2 

LITERATURE REVIEW 

Generally, in previous studies of comparing semantic spaces, the first step is to 

choose a task. The task should be competent for both human and semantic spaces. The 

human performance collected on the task is used as the gold standard. Then semantic 

spaces are generated to complete the same task. If the performance of one semantic space 

can reach the level of human performance, but the other spaces fail, then it is argued that 

the successful semantic space is better than the others. In the task used by Lee, Pincombe, 

and Welsh (2005), the criterion of a good semantic space was the ability to emulate 

human judgments of similarity. These researchers (Lee et al., 2005) first built a baseline 

by human raters. Then they had 83 college students rate the similarity of any random pair 

among these 50 headline stories from Australian Broadcasting Corporation's news. An 

index “inter-rater correlation” was created for further evaluation. One rating for each 

document pair was chosen randomly and correlated with the average ratings of the 

remaining pairs. After 1,000 times, the average inter-rater correlation was 0.605. Once 

these ratings were complete, keyword, n-gram, and LSA models were chosen to compute 

the machine-rating similarity of the same documents. The result showed that the best 

LSA model had a correlation with human raters, 0.6. The best keyword and n-gram 

models had correlations of approximately 0.5. Other methods showed almost no 

correlation with the human rating.  

Later researchers (Stone, Dennis, & Kwantes, 2008) extended the scope of Lee et 

al.’s (2005) study. Besides Lee’s (2005) corpus of news stories, Stone et al. (2008) used 

the Internet Movie Database (IMDB), which is a collection of celebrity gossip articles, 
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the Touchstone Applied Science Associates (TASA) corpus, and Wikipedia. They 

combined the IMDB set and Lee’s (2005) corpus separately with TASA and a corpus 

from Wikipedia to produce sub-spaces. Then, they trained six vector-based semantic 

models on the sub-spaces and compared their performances with human ratings. The 

result showed that Wikipedia performed better than TASA. Large space dimensionality 

increased the model similarity with human judgments. In addition, removing numbers 

and single letters from the corpora improved the performance of all the models. Unlike 

Lee et al.’s (2005) study, the vector space model had the highest judgment correlation 

with the human rating, 0.51.  

In addition to the two above studies, Riordan and Jones (2011) used a semantic 

clustering task to compare the perceptual and linguistic information learned by different 

semantic spaces. In this study, nine semantic models were trained on the TASA corpus. 

Then the researchers collected their clustering performances on concrete nouns, object 

nouns, action verbs, and child-directed speech. As references, the researchers also used 

three human-generated feature models to do the same clustering tasks. The criterion of a 

good vector-based space was performing comparable to human-generated feature models. 

The result showed that several semantic spaces reached the standard, indicating that they 

contained sufficient semantic information that was similar to the human-generated 

models.  

In short, the approaches used in former studies have one thing in common: Setting 

up a task that humans and machines can both perform. The performance of semantic 

spaces and humans was compared to distinguish spaces. This method does not consider 

the spaces’ internal features, but only the input and output.  
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If the human performance on the task has high validity, when a semantic space 

meets or surpasses human performance, it is widely accepted as valid. One successful 

story is the Test of English as a Foreign Language (TOEFL) on LSA space (Landauer & 

Dumais, 1997). LSA achieved a 64.4% correct rate on 80 synonymous TOFEL questions, 

which is equally well as general examinees’ performance (64.5%). This result has led to 

the popular acceptance of LSA. 

However, there are some issues with this method which compares machine and 

human performance on the same task. First, human performance data needs to be 

collected for most of the tasks. Although human performance data already exists for some 

ready-made tasks, like the TOEFL test, data collection is costly. Second, the validity of 

human data varies. The national average score on TOEFL synonyms is more valid 

because it is coming from a larger subject sample. Word similarity rated by 20 college 

students is less valid because it is coming from a smaller sample. To increase the validity 

of human standards, researchers need to collect a large data sample, which is also time-

consuming and costly. Third, in order to complete a task, specific semantic spaces need 

to be generated. Researchers need to select a specific corpus (e.g., child-directed speech 

and TASA corpus of Riordan & Jones, 2011), and train the target semantic models using 

the corpus to obtain a testing space. Last, when multiple spaces succeed at the same task, 

meaning they have all reached the human performance level, the task’s power of 

distinguishing spaces is not sufficient. A new task for further distinction will be needed 

(Riordan & Jones, 2007). 

If there exists a common semantic component across different semantic spaces, 

and the component has a numerical representation, we can use the differences within a 
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common component to represent the space difference. Nearest neighbors of a word 

(known as the “target word”) is such a common semantic component. Nearest neighbors 

are the semantically similar words to the target word in a space. At difference spaces, a 

word’s nearest neighbors are not the same. As early as 1957, Firth indicated that “you 

shall know a word by the company it keeps.” This view has been accepted as an 

important hypothesis in the research area of vector-based semantic analysis: A word’s 

nearest neighbors represent the meaning of the target word. Therefore, using nearest 

neighbors could be a new method to compare semantic spaces.  

The information provided by the nearest neighbors can be represented 

numerically (see Rationale in Chapter 3 for further explanation). Using numerical 

representation, the difference of nearest neighbors from several spaces indicates an 

ordinal ranking of the space differences. The ordinal ranking does not directly approve an 

absolute best space. However, we can utilize the existing well-accepted spaces and other 

trusted human semantic representations as references. A particular space that is 

minimally different from the already-evaluated spaces or semantic representations can be 

approved as a good space. 

The new method which uses nearest neighbors is an apt complement to the 

current method. First, the new method can maximize the use of existing data. The 

references are not limited to corpus-based spaces. References can also be human 

semantic structure which is similar in form to the target word and its nearest neighbors. 

Free association norms are an excellent example here. Free association norms are human 

reported word association, which are widely used as a referential standard in cognitive 

studies. For every stimulus word, free association norms list about 10 semantic related 
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words that people report to have thought when they first saw the word. We can view 

these semantic related words as nearest neighbors derived from the stimulus word. 

Because free association norms are human data, they are apt references for the new 

method. The maximum use of the existing data may reduce the need to collect new 

human data. Second, the new method offers large flexibility to the space candidates. The 

new method can use a single comparison to evaluate the spaces that differ in metric and 

corpus. For example, it can compare a LSA space to a probabilistic topic space. It can 

also compare a Wikipedia space to a LSA space of textbooks. This flexibility helps to 

evaluate the semantic theories/models. The third advantage is that the comparison does 

not produce equal results and does not need an additional task for further distinction. The 

new method calculates the numerical information of the nearest neighbors and reports 

numerical results. The results are specific to the decimal point, which can clearly separate 

the spaces. 

Using the nearest neighbors of a target word to examine the meaning one space 

represents is an intuitive method. This method has been applied to some previous studies. 

For example, Andrews, Vigliocco, and Vinson (2009) randomly chose words in several 

spaces and listed their top several nearest neighbors. Different neighbors of the same 

target word in two spaces were used to prove that one space emphasized grounded 

sensory-motor senses while the other emphasized abstract encyclopedic senses. 

The differences among nearest neighbors can also be used to identify words whose 

meanings vary across domains. For example, in order to develop a tool that can “detect 

semantically shifted words for translators of technical documents,” Itagaki, Aue, and 

Aikawa (2006) first used parsing to discover the syntactically similar words for the target 
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words. Then they used the overlap of the nearest neighbors as the indicator for the 

semantically shifted words. The less the overlap, the more one word’s meaning shifted. 

Some researchers compare the word meanings by intuitively represent the nearest 

neighbors. Kievit-Kylar and Jones (2012) developed a JAVA-based tool to visualize a 

given word’s distribution of nearest neighbors. 

The previous studies mostly used nearest neighbors at the word level, either 

focusing on a single word’s difference in meaning or using several words to illustrate the 

space differences. In this study, we evaluated the semantic effect of nearest neighbors at 

the level of complete spaces, using a straightforward evaluation to show that the 

information of nearest neighbors can sufficiently capture the difference between semantic 

spaces. 
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CHAPTER 3 

RATIONALE 

Induced Semantic Structure 

Generally, in a vector-based semantic space, semantics exist at all five levels of 

language entities: Word, phrase, sentence, paragraph, and document. However, semantics 

can also be represented numerically or algebraically (for example, Turney & Pantel, 

2010). Therefore, the meaning of any word can be represented by its numerical relations 

with other words in the same semantic space. “We call such a relation induced semantic 

structure (ISS) of the word in the given semantic space” (Hu, Cai, Graesser, & Ventura, 

2005). 

Induced semantic structure is the core concept of this current thesis. This concept 

has an origin in the field of social science. In social science, culture can be viewed as 

shared cognitive representation (e.g., word meaning) in human minds. Speakers of the 

same language share the “same” semantic structure. Romney, Boyd, Moore, Batchelder, 

and Brazill (1996) stated: 

The semantic structure is defined as the arrangement of the terms relative to each 

other as represented in a metric space in which items judged more similar are 

placed closer to each other than items judged as less similar. (p. 4699) 

In the vector-based semantic spaces, nearest neighbors represent the meaning of a 

target word in the exact same way. Therefore, the concept of induced semantic structure 

is adopted from the field of social science and defined as the top group of ordered nearest 

neighbors of a word in a given semantic space. 
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To facilitate the understanding of induced semantic structures, an example is 

provided in Table 1. Table 1 lists the top 10 nearest neighbors of “hamburger” in two 

TASA spaces: TASA09 and TASAall. TASA spaces were produced by Touchstone 

Applied Science Associates, Inc. (Zeno, Ivens, Millard, & Duvvuri, 1995). The company 

collected reading texts from 1st grade to 1st year college students and used an encoding 

model called latent semantic analysis (LSA) to generate five semantic spaces. The 

TASA09 space used the corpus from 1st grade to 9th grade. The TASAall space used the 

corpus from 1st grade to 1st-year of college. LSA spaces use cosine to represent the 

word-to-word similarity. Basically, cosine similarity uses the cosine of the angle between 

two word vectors to represent whether two vectors are pointing the same direction. Value 

1 means the two vectors overlap, value 0 means the vectors are perpendicular, and a 

value closer to 1 means the vectors are more semantically similar. In the current example, 

the two sets of nearest neighbors are sorted by the cosine similarity with “hamburger” in 

a descending order. The two ordered neighbor sets are the induced semantic structures of 

“hamburger” in two different contexts. Researchers manually select the number of 

nearest neighbors they use. We used 10 nearest neighbors in this example. The letter T is 

used to denote the number of nearest neighbors. So here T = 10. 
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Table 1 

Two Induced Semantic Structures of ‘hamburger’ at Two TASA Spaces 

Order TASA09 Cosine TASAall Cosine 

1 hamburgers 0.48 hamburgers 0.62 

2 burger 0.46 macs 0.49 

3 fries 0.43 fries 0.46 

4 taco 0.38 chili 0.44 

5 chili 0.38 steak 0.42 

6 steak 0.36 menu 0.41 

7 serving 0.35 burger 0.41 

8 broiler 0.35 malts 0.38 

9 recipe 0.34 restaurant 0.38 

10 menu 0.34 cheeseburger 0.38 

The concept induced semantic structures provides a framework that is comparable 

to any space with nearest neighbors, even if the two spaces do not use the same semantic 

encoding methods (e.g., LSA and Topic models). Furthermore, semantic spaces can be 

compared to semantic structure manually built by humans, such as free association 

norms, as long as the concept or word of the semantic structure has derived nearest 

neighbors. Therefore, a “best” semantic space may be identified if the space is minimally 

different from a human-generated semantic structure. The step of extracting induced 

semantic structures in the pipeline of semantic-spaces generation is shown in Figure 2. 
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Figure 2. ISS Makes Semantic Spaces Comparable  

Difference Measurements Based on Induced Semantic Structures 

Before developing the measurements, Hu et al. (2005) proposed three 

assumptions. First, “the meaning of a word is embedded in its relations with other 

words.” This is a well-accepted assumption in the field. Second, if a given word is shared 

in different semantic spaces, the relation between the semantics of the word in different 

spaces is “a function of the corresponding induced semantic structures.” Third, the 

relations between any two semantic spaces are “a function of the relations of the semantic 

structures of all the shared words.” 

The second assumption emphasizes that the semantic difference of a word in two 

spaces can be represented by a function. In other words, we can use mathematical 

methods to measure the difference of nearest neighbors. Hu et al. (2005) provided three 

measurements, as discussed below. 
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Combinatorial Similarity 

Combinatorial similarity calculates the overlap of two induced semantic 

structures. Overlap is the primary source of numerical information derived from nearest 

neighbors (Itagaki, Aue, & Aikawa, 2006). Suppose we have two sets of ordered nearest 

neighbors (ISSs) which has T nearest neighbors separately. For the two sets of top T 

nearest neighbors, T ≤ min (N1, N2), combinatorial similarity equals the intersection of 

the two sets divided by the union of the two sets. 

Assume a given word x, where S1 and S2 are its two sets of top T nearest 

neighbors in two spaces. Then the combinatorial similarity C for the word x is defined as 

    
       

       
 

Taking Table 1 as an example, the intersection of the two sets of top 10 nearest neighbors 

is 5. The union is 15. Hence, the combinatorial similarity of Table 1 is 1/3. Since the 

combinatorial similarity uses overlap and the overlap is direct and simple, it has the 

widest range of applications. 

Permutation Similarity 

Permutation similarity considers the overlap of nearest neighbors and the order of 

the overlapped nearest neighbors. The positions of the overlapped words in two induced 

semantic structures may be different. For instance, in Table 1, “menu” places 10
th

 in one 

induced semantic structure but 6
th

 in the other one. So we use a permutation measurement 

to measure the order of the overlapped nearest neighbors. We call the measured value the 

permutation value. Thereby, the permutation similarity of two induced semantic 

structures is the product of its combinatorial similarity and its permutation value. In the 

current thesis, we use Spearman’s rank correlation (Spearman, 1904) as the permutation 
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measurement. The algorithm of Spearman’s rank correlation will be introduced in the 

next chapter. 

Assume the permutation value is  . Then the permutation similarity P is defined 

as 

       

Permutation similarity extracts more information from induced semantic structures than 

combinatorial similarity. The adding of ordinal information provides more preciseness to 

the measurement of space difference.  

Quantitative Similarity 

Quantitative similarity also measures both the overlap of the nearest neighbors 

and the order of the overlapped nearest neighbors. The order here is from the nearest 

neighbors’ quantitative similarity value to the target word. When two spaces are built 

from the same semantic model, they are in the same metric. For example, two LSA 

spaces use cosine to represent word similarity. When we compare two such LSA spaces, 

the order information can be obtained by directly calculating the order of the cosine 

instead of the order of nearest neighbor words. For instance, the overlapped nearest 

neighbors in Table 1 are “hamburgers,” “burger,” “fries,” “chili,” “steak,” and “menu.” In 

space TASA09, the cosine values of “hamburger” and its nearest neighbors are 0.48, 0.46, 

0.43, 0.38, 0.36, and 0.34. In space TASA12, the cosine values are 0.62, 0.41, 0.46, 0.44, 

0.42, and 0.41. Then, Pearson’s correlation (Pearson, 1907) of the cosine values can 

measure the order of two induced semantic structures. 

For two induced semantic structures, the quantitative similarity is their 

combinatorial similarity multiplied by Pearson’s correlation of their cosine values. 
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Assuming Pearson’s correlation of the quantities is  , the quantitative similarity Q is 

defined as 

       

It is worth emphasizing that, when comparing spaces from different models, we 

use the permutation similarity. For example, LSA spaces use cosine to represent 

similarity. Topic models use KL divergence to represent similarity. LSA models and 

Topic models are not in the same metric. In this case, we would compare the order of the 

nearest neighbors in the LSA model space to the nearest neighbors in the Topic model 

space, regardless of their similarity values. By doing this we use the order place of the 

neighbors to calculate the order information. 

A Competing Measurement: Correlation of the Cosine 

The goal of the current paper is to empirically evaluate the use of induced 

semantic structures in evaluating semantic spaces. In other words, we use ordered nearest 

neighbors to measure the difference of spaces. As experiments have a control group, we 

also have a competing measurement which does not use nearest neighbors to measure 

space differences. Here we develop a measurement called the correlation of the cosine. 

The algorithm is the correlation value of random words’ cosine matrix. The cosine value 

is an excellent indicator of word-to-word similarity in a single space. Though cosine 

similarity cannot directly measure the similarity of words across spaces, it is easy to think 

about bridging two spaces using the correlation of cosine similarity. Therefore, we use 

Pearson’s correlation of the cosine as our competing measurement. First, we randomly 

select a large number of words as a sample from all common words across spaces. Then 

we obtain the cosine similarity for every pair of sample words in single spaces. This 
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cosine similarity can be represented as a cosine matrix whose rows and columns are the 

sample words. The matrix has an equal number of rows and columns. Then we compute 

Pearson’s correlation of the cosine matrices of two spaces. The correlation value is the 

measure of space difference. 
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CHAPTER 4 

METHOD 

Design 

The Hu method (Hu et al., 2005) measures the difference between semantic 

spaces. One direct evaluation of the measurements is to find several semantic spaces with 

objective difference pattern and compare the result of the Hu method with this pattern. 

The TASA spaces are the spaces which have objective difference pattern. 

TASA spaces were produced with reading texts from 1
st
 grade to 1

st
 year college. 

Space TASA03 includes texts from 1
st
 grade to 3

rd 
grade. TASA06 includes texts from 1

st
 

grade to 6
th

 grade. Following the same pattern, TASA09 contains all texts from 1
st
 grade 

to 9
th

 grade. TASA12 contains all texts from 1
st
 grade to 12

th
 grade. TASAall contains all 

texts from 1
st
 grade to 1

st
 year of college. Since the spaces are added, the neighbor spaces 

should have a higher similarity than the others. For example, TASA03 should be more 

similar to TASA06, than to TASA09, TASA12, and TASAall. We use this pattern as the 

reference to evaluate the four space similarity measurements. The reference pattern is 

shown in Table 2. 

Table 2 

Similarity Pattern of TASA Spaces 

Space TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 identical high low lower lowest 

TASA06 high identical high low lower 

TASA09 low high identical high low 

TASA12 lower low high identical high 

TASAall lowest lower low high identical 
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We used the four measurements introduced at the last chapter to measure the 

difference of semantic spaces pairwise. By comparing against the reference pattern in 

Table 2, we can know which measurement(s) catches the objective pattern. 

Materials: TASA spaces 

TASA spaces were generated by Touchstone Applied Science Associates, Inc. to 

develop The Educator’s Word Frequency Guide (Zeno et al., 1995). After generation, 

they have been widely used, generally well accepted, used in various research projects 

and applications (e.g., Griffiths, Steyvers, & Tenenbaum, 2007; Riordan & Jones, 2011). 

The specifics of the spaces are listed in Table 3. As shown in the table, the TASA spaces 

are added. For example, the corpus of the space TASA06 contained the 6,974 documents 

from TASA03, and added the other 10,975 documents from the 4
th

 to 6
th

 grade reading. 

The number of the added documents varies for difference spaces. Because the TASA 

space of 1
st
 year college included the entire documents from 1

st
 grade to 1

st
 year of 

college, it is referred to as TASAall space at the current thesis. 

Table 3 

Specifics of Five TASA Spaces 

Space Grade 

Number of 

Documents 

Document 

Added 

Number 

of Terms 

Terms 

Added 

Number of 

Dimensions 

TASA03 3 6,974 —— 29,315 —— 432 

TASA06 6 17,949 10,975 55,105 25,790 412 

TASA09 9 22,211 4,262 63,582 8,477 407 

TASA12 12 28,882 6,671 76,132 12,550 412 

TASAall college 37,651 8,769 92,409 16,277 419 
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Manipulation 

Combinatorial Similarity. The process began with random selection of 1,000 

common words among spaces. Since TASA03 is covered by all the other four spaces, a 

random selection of 1,000 words was chosen from TASA03 as the sample. For each word 

at each space, we obtained its top 50, 100, and 200 nearest neighbors and computed the 

combinatorial similarity. The average of the 1,000 sample words’ similarity was used to 

calculate the reported results for this measurement. 

Permutation Similarity. This step used the same 1,000 words and the same 50, 

100, and 200 nearest neighbors to compute permutation similarity. In the current thesis, 

Spearman’s rank correlation (Spearman, 1904) was used to get the permutation 

difference. Spearman’s rank is designed for ordinal values. It fulfills our need to calculate 

the correlation of two sets of ordered nearest neighbors. The detailed steps are as follows.  

First, we ordered the n overlapped nearest neighbors of one target word across two spaces 

from 1 to n in order of the largest cosine. Then we computed the Spearman’s rank 

correlation for the two sets. For instance, in Table 1, the overlapped nearest neighbors are 

“hamburgers,” “burger,” “fries,” “chili,” “steak,” and “menu.” Their order in space 

TASA09 is 1, 2, 3, 4, 5, and 6; while their order in space TASAall is 1, 6, 2, 3, 4, and 5. 

Their Spearman’s rank correlation       
    

 (    )
     

    

 (    )
        . As 

mentioned in the rationale chapter, the permutation similarity is the multiplication of the 

permutation value and the corresponding combinatorial similarity. Hence, the 

permutation similarity in the current thesis is the product of Spearman’s rank correlation 

and the corresponding combinatorial similarity. We use the average of the permutation 

similarity values of the 1,000 words as the reporting result for this measurement.  
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Quantitative Similarity. The measurement of the quantitative similarity also uses 

the same 1,000 words and their 50, 100, and 200 nearest neighbors. As mentioned in the 

rationale chapter, Pearson’s correlation was adopted to obtain the correlation of the 

neighbors’ cosine values. Pearson’s correlation is well-described in Spearman (1907), so 

we will not go into the details here. According to the discussion of the rationale chapter, 

the quantitative similarity of two spaces is the multiplication of the quantitative 

difference and the corresponding combinatorial similarity. So we use the product of 

Pearson’s correlation and the corresponding combinatorial similarity as our measurement. 

The reporting result for this measurement is the averages of the quantitative similarity 

values of the 1,000 sample words.  

The Competing Measurement: Correlation of the Cosine. The competing 

measurement is the correlation of the cosine which does not include the information of 

nearest neighbors. It only considers the words themselves and their cosine similarity. This 

measurement used the same selection of 1,000 words. In each space, the cosine values of 

the 1,000 words were obtained. Then, Pearson’s correlation was applied to every pair of 

semantic spaces to get the correlation of the 1,000 words’ cosine values across two 

spaces. Pearson’s correlation values are the reporting values of the measurement. 

Evaluation the Performance of the Measurements 

Since we have four measurements trying to catch the difference pattern of TASA 

spaces, it is necessary to compare the performance of these four measurements. When a 

measurement has the ability to measure the space difference, it should report a large 

similarity value for the should-be-high space pair, e.g., TASA03 and TASA06. Also, it 

should report a small value for the should-be-low space pair, e.g., TASA03 and TASA12. 
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When we calculate the average of all should-be-high space pairs and the average of all 

should-be-low space pairs, the former should be larger than the latter. Therefore, if we 

divide the former by the latter, the quotient must be greater than 1. For example, in Table 

2, the cells TASA03-TASA06, TASA06-TASA09, TASA09-TASA12, and TASA12-

TASAall have the highest similarity values. The rest cells have lower similarity values. 

Then the average of the four cells (TASA03-TASA06, TASA06-TASA09, TASA09-

TASA12, and TASA12-TASAall) divided by the average of the rest of the cells must be 

larger than 1. We call this the ratio of performance. Following the same algorithm, we 

have two other ratios of performance. One is the ratio of second-highest average 

(TASA03-TASA09, TASA06-TASA12 and TASA09-TASAall) to the average of lower 

remaining cells (TASA03-TASA12, TASA06-TASAall and TASA03-TASAall). The 

other one is the ratio of the third-highest average (TASA03-TASA12, TASA06-TASAall) 

to the lower remaining cell (TASA03-TASAall). When several measurements all have a 

ratio of performance larger than 1, the measurements with the largest ratio is the best 

measurement. 
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CHAPTER 4 

RESULTS 

Combinatorial Similarity 

The combinatorial similarities of TASA spaces using 50, 100, or 200 neighbors 

are in Table 4. Comparing the result table with Table 2, the reference pattern, we observe 

that the patterns match substantially at all three levels of nearest neighbors. Most should-

be-high values are large, and all the should-be-low values are small. The result generally 

indicates that the neighboring spaces have higher similarity than the not-neighboring 

spaces. The only exception is the similarity of TASA06 and TASA03. Its similarity was 

considered to be higher than the TASA6-TASA12 combination and the TASA6-TASAall 

combination. However, the actual TASA06-TASA03 similarity is lower than the TASA6-

TASA12 combination and the TASA6-TASAall combination. 

Checking Table 3 gives us a clue as to why the space TASA03 is odd. The corpus of 

TASA03 had 6,974 documents and the TASA06 had 17,949 documents. Because 

TASA06 is an added space from TASA03, we know that TASA03 corpus only composes 

38.85% of TASA06 corpus. In contrast, TASA09 has 22,211 documents and TASA12 

has 28,882 documents. TASA06 composes 80.81% of TASA09 and composes 62.15% of 

TASA12. Hence, the proportion of the overlapped corpus between TASA03 and 

TASA06 is much lower than the ones of TASA06-TASA09 and TASA06-TASA12. 

When we argued that the neighboring spaces have higher similarity, we assumed that the 

documents added to create the higher grade spaces were in the same proportion. 

However, we neglected to consider that the quantity of the added documents changes 

dramatically in TASA spaces. Therefore, the previous reference pattern was not precise. 



 23 

Rather, the order of document overlap percentage is a more accurate reference. Higher 

document/term overlap indicates a higher space similarity. We calculated the overlap 

percentages of the documents and terms in Table 5. The third column of Table 5 shows 

that TASA06 compared to TASA03 has a higher document/term overlap with TASA09, 

TASA12, and TASAall. Therefore, the space most similar to TASA06 is TASA09, the 

second similar space is TASA12, the third similar space is TASAall, and the least similar 

space is TASA03. Using document/term overlap as the reference for the TASA similarity 

pattern is better than the original reference which only used neighbors or not to indicate 

the similarity relations. Neighbor or not cannot distinguish a target space’s relation 

between the left and right neighbors. Also, the neighboring TASA spaces are not always 

most similar to each other. From now on, we will use the document/term overlap as the 

reference of space similarity. Since document and term overlap have the same pattern, we 

will only use document overlap as the reference for the following comparisons. 

A direct observation of Table 4 and Table 5 shows that the order of the measured 

pattern matches the order of the reference pattern. We use the pattern of TASA03 as an 

example. Please read the tables by columns. Table 5 indicates that the most similar space 

of TASA03 is TASA06, the second similar space is TASA09, the third similar space is 

TASA12, and the least similar space is TASAall. In Table 4, for the condition of 50, 100, 

and 200 neighbors, the most similar space of TASA03 is also TASA06. The second 

similar space is TASA09. The third similar space is TASA12, and the least similar space 

is TASAall. Checking all columns shows that for every space, the order of measured 

similarity with other spaces (most similar, second similar, third similar and least similar) 

matches the order of the reference pattern. 
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Table 4 

Combinatorial Similarity of 50, 100, and 200 Nearest Neighbors 

50 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

0.344214254 0.266635296 0.204004956 0.140846895 

TASA06 0.344214254 

 

0.793473852 0.589087804 0.40292577 

TASA09 0.266635296 0.793473852 

 

0.757795556 0.517648809 

TASA12 0.204004956 0.589087804 0.757795556 

 

0.718799602 

TASAall 0.140846895 0.40292577 0.517648809 0.718799602 

 100 Neighbors 

 TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.239618594 0.184218942 0.140596692 0.09743117 

TASA06 0.239618594  0.678051602 0.466014867 0.299184047 

TASA09 0.184218942 0.678051602  0.640037161 0.400126861 

TASA12 0.140596692 0.466014867 0.640037161  0.601549747 

TASAall 0.09743117 0.299184047 0.400126861 0.601549747  

200 Neighbors 

 TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.154735509 0.119968961 0.092592508 0.064368022 

TASA06 0.154735509  0.524083227 0.333765482 0.203276944 

TASA09 0.119968961 0.524083227  0.490895529 0.279785651 

TASA12 0.092592508 0.333765482 0.490895529  0.450031315 

TASAall 0.064368022 0.203276944 0.279785651 0.450031315  

 

Table 5 

Document and Term Overlap of the TASA spaces 

Document Overlap (%) 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

38.85 31.40 24.15 18.52 

TASA06 38.85 

 

80.81 62.15 47.67 

TASA09 31.40 80.81 

 

76.90 58.99 

TASA12 24.15 62.15 76.90 

 

76.71 

TASAall 18.52 47.67 58.99 76.71 

 (Continued) 
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Table 5 

Document and Term Overlap of the TASA spaces 

Term Overlap (%) 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

53.20 46.11 38.51 31.72 

TASA06 53.20 

 

86.67 72.38 59.63 

TASA09 46.11 86.67 

 

83.52 68.80 

TASA12 38.51 72.38 83.52 

 

82.39 

TASAall 31.72 59.63 68.80 82.39 

 

Permutation Similarity 

The permutation similarity of 50, 100, and 200 neighbors are in Table 6. A direct 

observation of Table 6 and Table 4 also indicates that the order of the measured 

permutation similarity with other spaces (most similar, second similar, third similar and 

least similar) matches the order of the reference pattern. 

Table 6 

Permutation Similarity of 50, 100, and 200 Nearest Neighbors 

50 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

0.152559166 0.103861707 0.069525177 0.041892245 

TASA06 0.152559166 

 

0.528877731 0.320152052 0.187987667 

TASA09 0.103861707 0.528877731 

 

0.479286204 0.268592280 

TASA12 0.069525177 0.320152052 0.479286204 

 

0.453724493 

TASAall 0.041892245 0.187987667 0.268592280 0.453724493 

 100 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

0.107631405 0.073214435 0.049100146 0.030094322 

TASA06 0.107631405 

 

0.454366927 0.254989610 0.140226235 

TASA09 0.073214435 0.454366927 

 

0.408639143 0.210215822 

TASA12 0.049100146 0.254989610 0.408639143 

 

0.380826021 

TASAall 0.030094322 0.140226235 0.210215822 0.380826021 

 (Continued) 
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Table 6 

Permutation Similarity of 50, 100, and 200 Nearest Neighbors 

200 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.068843650 0.048316261 0.032257387 0.019656631 

TASA06 0.068843650  0.351138703 0.182090137 0.095180293 

TASA09 0.048316261 0.351138703  0.317028755 0.149933310 

TASA12 0.032257387 0.182090137 0.317028755  0.288548677 

TASAall 0.019656631 0.095180293 0.149933310 0.288548677  

Quantitative Similarity 

The permutation similarity of 50, 100, and 200 neighbors are in Table 7. A direct 

observation of Table 7 and Table 4 also indicates that the order of the measured 

quantitative similarity with other spaces (most similar, second similar, third similar and 

least similar) matches the order of the reference pattern. 

Table 7 

Quantitative Similarity of 50, 100, and 200 Nearest Neighbors 

50 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.178309050 0.122493035 0.083086320 0.050401536 

TASA06 0.178309050  0.598365601 0.372594232 0.218953844 

TASA09 0.122493035 0.598365601  0.545325379 0.310055483 

TASA12 0.083086320 0.372594232 0.545325379  0.515308216 

TASAall 0.050401536 0.218953844 0.310055483 0.515308216  

100 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.128495256 0.087365445 0.058752303 0.035786705 

TASA06 0.128495256  0.525464474 0.305021294 0.167745966 

TASA09 0.087365445 0.525464474  0.475230983 0.249503040 

TASA12 0.058752303 0.305021294 0.475230983  0.442757058 

TASAall 0.035786705 0.167745966 0.249503040 0.442757058  

(Continued) 

 



 27 

 

Table 7 

Quantitative Similarity of 50, 100, and 200 Nearest Neighbors 

200 Neighbors 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.084040040 0.058373183 0.039467686 0.024012791 

TASA06 0.084040040  0.414300504 0.222927910 0.116384222 

TASA09 0.058373183 0.414300504  0.375322648 0.180654797 

TASA12 0.039467686 0.222927910 0.375322648  0.339709983 

TASAall 0.024012791 0.116384222 0.180654797 0.339709983  

Correlation of the Cosine 

The correlation of the cosine between TASA spaces are in Table 8. A direct 

observation of Table 8 and Table 4 also indicates that the order of the measured similarity 

with other spaces (most similar, second similar, third similar and least similar) matches 

the order of the reference pattern. 

Table 8 

Correlation of the Cosine 

 

TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03  0.340395010 0.284931136 0.237597438 0.20037843 

TASA06 0.340395010  0.765601621 0.594569012 0.46166667 

TASA09 0.284931136 0.765601621  0.743623101 0.56225027 

TASA12 0.237597438 0.594569012 0.743623101  0.73265338 

TASAall 0.200378427 0.461666670 0.562250266 0.73265338  

Ratio of Performance on TASA Spaces 

Because all four measurements can extract the pattern of the TASA spaces, 

comparison of the performance was conducted to distinguish the measurements. As 

mentioned in the rationale chapter, we used the ratio of performance to indicate the level 
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of performance. A larger value represents a better performance. The algorithm of the 

ratio examines the multiple of the should-be-high averages to the should-be-low 

averages. The algorithm does not change. But because the reference pattern has been 

updated, we will also update the information of the should-be-high cells in Table 9 and 

the should-be-low cells. We simplified the reference pattern of the document overlap of 

Table 5 to a similarity ranking in Table 9. Please read the table by columns. In the table, 

1 means the most similar, 4 means the least similar. Hence, the three kinds of ratios are: 

The average of 1 divided by the average of 2, 3, and 4; the average of 2 divided by the 

average of 3 and 4; the average of 3 divided by the average of 4. The values of the ratios 

were calculated in Table 10. The result indicates that the three measurements with nearest 

neighbors perform better than the one without nearest neighbors, the correlation of the 

cosine. Within the three measurements with nearest neighbors, the permutation and the 

quantitative similarities perform better than the combinatorial similarity. In addition, the 

increase of the number of neighbors increases the measurement performance. 

Table 9 

TASA Spaces Similarity ranked by Document Overlap 

Space TASA03 TASA06 TASA09 TASA12 TASAall 

TASA03 

 

4 4 4 4 

TASA06 1 

 

1 3 3 

TASA09 2 1 

 

1 2 

TASA12 3 2 2 

 

1 

TASAall 4 3 3 2 
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Table 10 

Ratio of Performance on TASA Spaces 

 Neighbors 1/(2+3+4) 2/(3+4) 3/4 

Combinatorial 50 1.686143568 1.773944379 1.930232457 

100 1.828025153 1.938711379 2.11393885 

200 1.958921333 2.08169968 2.24319244 

Permutation 50 2.09473302 2.251585108 2.524207351 

100 2.24533377 2.447956484 2.739273311 

200 2.388319814 2.652553958 2.938800296 

Quantitative 50 2.055934781 2.210196585 2.483319352 

100 2.204064885 2.409161463 2.740629125 

200 2.344547252 2.59899659 2.939537888 

Correlation of 

the Cosine 

Not applicable 

1.545301953 1.629531496 1.83412672 
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CHAPTER 5 

DISCUSSION 

The purpose of this study was to evaluate a new method of measuring the 

differences between semantic spaces. The new method has large flexibility and is an apt 

complement to the current method which uses the human tasks as criteria. By using the 

common semantic component across spaces, the nearest neighbors of the words, the new 

method maximize the use of the existing data and can work on semantic spaces from 

different encoding methods and corpora. The difference pattern of five TASA spaces was 

used to test the ability of the method. The result suggests that the method works 

efficiently. 

 The TASA spaces were added spaces. In other words, the corpora of the lower 

grades were included in the corpora of the higher grades. Therefore, the overlap of the 

corpora created an objective similarity pattern between TASA spaces. Intuitively, we 

thought that the neighboring spaces would have higher similarity than the non-

neighboring spaces. That was the original reference pattern of the current study. 

However, this judgment had a hidden precondition: The number of the documents added 

to the previous corpora should generally have the same proportion. That was not 

completely true for the TASA spaces. The TASA06 space contains 17,949 documents, 

which is 2.6 times that of TASA03. The corpus of TASA03 only composed 38.85% of 

TASA06. But TASA06 composed 80.81% of TASA09 and 62.15% of TASA12. 

Therefore, TASA06 is obviously closer with TASA09 and TASA12 than TASA03. In 

order to reflect the precise similar pattern of the TASA spaces, we use the document 

overlap percentage of the spaces to express the similar pattern. Larger overlap means 
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more similar spaces. Details are in Table 5. The pattern is almost the same as the original 

reference pattern except that the two most similar spaces of TASA06 are TASA09 and 

TASA12, instead of TASA03 and TASA09.  

 According to the results, the method extracts the TASA pattern precisely. The 

direct comparison of the measured similarity and the reference pattern show a matched 

order. For all four measurements, the decreasing order of every TASA space with all 

other spaces are the same as that reference order, the order of document overlap 

percentages. Hence, the similarity measurement measures the real pattern of the spaces. 

In addition, though the values extracted from the measurements are generally ordinal, the 

difference between two values reflects internal information to a certain extent. For 

example, TASA12 has almost equal similarity with TASA09 and TASAall because the 

document overlap percentages of TASA12-TASA09 and TASA12-TASAall are the same 

down to two decimal places. Correspondingly, the similarity values of the pair TASA12-

TASA09 and TASA12-TASAall are much closer compared to the values of the other 

pairs.  

The direct observation of the result tables provides a basic knowledge of the 

measurements’ ability. We further used a ratio of should-be-high values to should-be-low 

values to distinguish the performance of four measurements. The result shows that the 

three measures using nearest neighbors perform better than the correlation of the cosine, 

which does not consider the information of nearest neighbors. It infers that the nearest 

neighbors provide more information for a target word than the target word’s own 

similarity with other random words. The sufficient semantic information contained in 

nearest neighbors has been proved by multiple studies. Widdows (2003) used the 
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unknown words’ nearest neighbors to automatically classify the meaning of the words 

and therefore map the unknown words into taxonomy. Jones and Mewhort (2007) and 

Andrew et al. (2009) used sample words’ nearest neighbors to distinguish the semantic 

emphases of specific models. The current study proves once again that the method of 

nearest neighbor is valid and efficient. 

Within the three measurements of nearest neighbors, the permutation and the 

quantitative similarity perform better than the combinatorial similarity. Obviously, in 

addition to the number of overlap in nearest neighbors, permutation and quantitative 

similarities contain the order information of the nearest neighbors. Permutation has the 

order of nearest neighbors. The quantitative similarity has the order of the similarity 

values to the target word. The adding of the order information helps distinguish semantic 

spaces. One thing to address is that the methods to get permutation and quantitative 

difference affect the pattern extracting ability. Different methods generate different 

performance. A strong method improves the ability. In the current study, we used 

Spearman’s rank correlation and Pearson’s correlation. Since Spearman’s rank 

correlation is the variation of Pearson’s correlation which keeps most of the information 

of Pearson’s correlation, the levels of performances of the permutation and the 

quantitative similarity are very close.  

Three numbers of nearest neighbors were considered in the current study. 

Macroscopic observation of the similarity tables did not show a significant difference 

between the results of 50, 100, and 200 nearest neighbors. However, the ratio of the 

performance indicates that the pattern extracting ability increases slightly when the 

number of nearest neighbors increases. Widdows (2003) also reported that the number of 
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the nearest neighbors affected the performance of the classification. It should be noted 

that, the current finding is the initial application of the nearest neighbors on space 

difference measurement. We remain cautious about the finding. The impact of the 

number of nearest neighbors on the three similarity measurement is a curve with multiple 

turning points. The points 50, 100, and 200 are three samples from the curve, which only 

offer a glimpse of the complete phenomenon. The turning points may occur after 50, 100, 

or 200 neighbors. In Figure 3 there is a sample curve of the combinatorial similarities of 

the word “hamburger” with nearest neighbors from 1 to 500. The permutation and 

quantitative similarities of “hamburger” with nearest neighbors from 1 to 160 are in 

Figure 4. For the combinatorial similarity, the curve goes smoothly from 50 nearest 

neighbors. For the quantitative similarity, turning points occur at 15, 50, 60, and 100 

nearest neighbors. Therefore, if we want to have a comprehensive understanding on the 

effect of the numbers of nearest neighbors, a study of the whole curve is needed. That is 

one further direction of the current study.  

 
Figure 3. Combinatorial similarities of ‘hamburger’ with nearest neighbors from 1 to 500 
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Figure 4. Permutation and quantitative similarities of ‘hamburger’ with nearest neighbors 

from 1 to 160 

Limitations and Future Directions 

 The present study has two major limitations that need to be addressed in future 

studies. First, as mentioned above, the sample numbers of the nearest neighbors are 

limited. As a first attempt, the present study proved that the number of nearest neighbors 

has an effect on the ability of the measurements. A comprehensive examination of effect 

will provide an accurate description of the impact. For example, with the increase in the 

number of nearest neighbors, the similarity value changes dramatically at the first part 

and then goes smooth. Therefore, finding the complete impact trend and detecting where 

to stop adding nearest neighbors will be interesting questions.  

 The second limitation pertains to the type of the semantic theories considered in 

the study. LSA is a popular theory. But in addition to it, pLSA, the topic models, and 

many other spaces are also widely accepted. The impact of the nearest neighbors may 
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vary among theories. The evaluation of other semantic theories is needed to complement 

our findings on the LSA spaces. 

In order to understand the algorithm more comprehensively, further study may 

also consider different word types. Widdows (2003) reported that classification using 

nearest neighbors is obviously better for common nouns than for verbs. In the current 

study we sampled random words from the corpus which contained different word types, 

e.g., nouns, verbs, adjectives, and adverbs. If we separated the words by type and 

compared their results on similarity measurements, we may find that different types of 

words have different abilities.  

Implications 

 The method of induced semantic structure evaluates the difference between 

semantic spaces using the information of nearest neighbors. Nearest neighbors are 

common semantic components among vector spaces. Hence, this method can be applied 

to a very wide field. The method helps reduce the cost of collecting human data for space 

evaluation.  

In addition, this approach is an application of the nearest neighbors. Hu et al. 

(2005) is the initial theory to use neighbors to measure the difference between spaces. 

This successful evaluation supports the theory and indicates the further directions. 
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CHAPTER 6 

CONCLUSION  

The current study verifies that the method of nearest neighbors works effectively 

in measuring differences between semantic spaces. Using the nearest neighbors of the 

target words to extract space difference is more efficient than directly using the relation 

between target words themselves. The number of nearest neighbors has an effect on the 

ability to measure space difference. A comprehensive understanding of the effect needs 

more exploration. 
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