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ABSTRACT 

Pegram, Derek Joseph. M.S. The University of Memphis. Conferred August 2012. 

On-line, single point standardization analysis for measuring hydrogen production by 

transition metal catalyst in light driven synthesis. Major Professor: Paul S. Simone Jr. 

An automated SPS-GC-TCD has been optimized to determine hydrogen 

production in light driven synthesis reactions while operating in real time and being 

capable of multiple analysis per hour. The SPS-GC-TCD method incorporates two 

sample loops on a valve, one for a check standard and the other for the sample, 

eliminating many sources of error associated with gas sampling and allowing for 

automated calibration during each analytical run. Gas samples containing hydrogen in a 

percent volume concentration were analyzed and method detection limit (MDL), 

accuracy, and precision measurements have been conducted. Using single point 

standardization, proof of concept results for the analyzer gave an MDL of 0.73% (v/v%), 

accuracy of 100%, and precision of 3.7% for hydrogen. These values were comparable to 

results obtained by a much more intensive 5-point external calibration. The automated 

system gave extreme improvements in reproducibility, and a detection limit of 0.25% and 

precision of 1.7%. 
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Introduction 

 As populations and technologies continue to increase in this globalized world, so 

too does the demand for power and fuel. Massive consumption of non-renewable fossil 

fuels amongst developed and developing countries are leading to predicaments on local, 

national, and even global scales. Alternative energy is a growing field of research in 

response to this global energy crisis. Foreign oil dependence is a significant topic in both 

our political system and governments abroad. The energy crisis is being addressed in 

various ways. Nations such as America have provided subsidies by the federal, state, and 

local governments to encourage both improvements to current energy sources and the 

creation of new alternative energies. Some nations are looking to completely break their 

dependence on foreign oil, such as Sweden who has pledged to replace all energy 

demands with alternative sources and become an oil free nation by 2020 (Commission on 

Oil Independence, 2006). The answer to America’s energy future may be unclear, but it 

will likely combine multiple innovations in alternative fuel technologies to improvements 

made on our current system. In a lecture on alternative energies conducted by his 

research group at MIT, Prof. Donald Sadoway claims, “If we’re going to get this country 

out of its current energy situation, we can’t just conserve our way out. We can’t just drill 

our way out. We can’t bomb our way out. We’re going to do it the old-fashioned 

American way. We’re going to invent our way out, working together” (Sadoway, 2012). 

Among the potential sources of alternative energy, hydrogen has numerous 

characteristics that will make it a key contributor to breaking the domestic and global 

dependence on fossil fuels. Hydrogen is a clean, renewable source of energy. It is the 

most abundant element on Earth, and it could rather easily be integrated into the fuel-
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consuming products that consumers rely on for everyday use (National Renewable 

Energy Laboratory, 2005). 

The major disadvantage of hydrogen as a large scale fuel source is the lack of a 

clean, efficient means of mass production. Hydrogen can be obtained from the 

electrolysis of water; however energy is required to do this. Currently, mass production 

of hydrogen requires the consumption of fossil fuels to provide that needed energy, 

negating the benefits of being clean and renewable as well as contributing to its cost of 

production. It is for this reason that great interest has been taken to research alternative 

methods of production. These methods typically utilize other alternative energies such as 

wind, solar, biomass, et cetera, to provide the needed energy and replace the fossil fuel 

consumption (Milbrandt & Mann, 2007). However, the answer to this problem may be 

found by looking to Mother Nature instead. 

The most straightforward water-splitting scheme is to have catalysts act directly 

on water. The objective is to develop a system for artificial photosynthesis (AP) to 

photochemically separate water into its constituent elements (Zhao, 2011). This AP 

incorporates the use of a metal catalyst in a photoelectrolysis reaction that reduces the 

protons in water to directly produce hydrogen gas. The initial goals of AP studies are to 

qualitatively find which metals can induce this photoelectrolysis, followed by 

refinements and directed development to find new active catalysts composed of more 

abundant and less expensive metals (McNamara, Holland, & Eisenberg, 2011). Once a 

catalyst has been found effective for proton reduction, its efficiency must then be 

quantitatively assessed. The expensive and inexpensive hydrogen production values are 

then to be compared to one another, providing information about what characteristics and 
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conditions are most beneficial to further develop better electrocatalysts. The ultimate goal 

of AP research is to identify the most efficient electrocatalyst for the cheapest cost to use 

in the mass production of hydrogen as an alternative energy. 

To acquire this valuable data on the rates of hydrogen production, an analyzer 

capable of monitoring proton reduction and the presence or absence of other gaseous 

analytes is necessary. The instrument must be capable of separating a headspace sample 

into its constituent permanent gases (a term used to refer to hydrogen, oxygen, nitrogen, 

and carbon monoxide). Once separated, it should be able to qualitatively and 

quantitatively detect these gases representing the atmosphere inside the reaction vessel. 

The instrument should have a wide dynamic range. In other words, the instrument should 

detect low concentrations of the analyte while still capable of quantitative data on higher 

concentrations with little to no adjustments, avoiding the need of a dilution step. 

Additionally, it’s advantageous to design and construct an instrument with on-line and 

real-time capabilities incorporating an automated standardization step into the analytical 

method. 

Permanent gases are traditionally analyzed by gas chromatographic (GC) 

methods, using manual injection and a thermal conductivity detector (TCD) (Li & Guan, 

2009). The instrument developed here uses a GC-TCD, constructed to employ automated, 

on-line analysis and calibration capabilities. On-line automation saves the user time, 

allows for lower operator skill level, eliminates numerous sources of error, gives 

significant improvements in reproducibility, and overall accumulates more reliable data. 

Calibration of any instrumental method is always an important analytical step to 

consider. For any given analyzer, analytes of similar or equal concentrations can have 
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varied analytical signal due to changing environmental conditions in the laboratory 

(Skoog, 1998). Thus, it is necessary to calibrate for the analytes being tested on a daily 

basis. Simply having reference values of detector response from a known analyte 

concentration may not always account for all variables in a method. Other commonly 

overlooked factors affecting how reliable the accuracy of data produced can be include 

matrix effects, irreproducibility of manual injection, and sample preparation. Calibration 

methods such as standard addition or internal standardization can be used to mitigate 

these issues. The instrument presented here is designed to use single point standardization 

(SPS), which is similar to internal standardization in that it takes into account minor 

variations in reagent concentrations or sample loss, flow rates, and other potential sources 

of calibration drift over monitoring periods (Ranaivo, Henson, Simone, & Emmert, 

2011). 

The goal of this research is to develop a GC-TCD analyzer capable of monitoring 

hydrogen production in a closed AP reaction environment, by separating a headspace 

sample into its constituent permanent gases with on-line and real-time capabilities while 

also incorporating single point standardization as an additional, continuous and on-line 

calibration technique.  

Experimental 

Reagents and Consumables 

All gases are purchased from Airgas (hydrogen, oxygen, nitrogen, argon, helium, 

and custom blends). Argon is used as the reaction’s background gas. Argon and helium 

(UHP) are used as carrier gases. All argon used is “ultra-high purity” (UHP; minimum 

purity 99.999%, <1ppb O2, <1ppb H2O, <1ppb CO + CO2). The SPS check standard gas 
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is comprised of 95% argon and 5% hydrogen, mixed by the manufacturer and bottled into 

a ‘300-volume’ gas cylinder tank, with a CGA350 regulator fitting. A 95% argon and 5% 

methane internal standard was used for manual injection samples and method 

comparison. A 95% nitrogen and 5% hydrogen standard was used for SPS verification. 

Zero grade compressed air was used for optimization studies of flow rates and pressure 

settings through the standard and sample lines on the sampling valve. Custom 

manufactured calibration standards of various percent compositions of hydrogen in argon 

are purchased from Airgas. The GC consumables were purchased from Restek.  

Proof of Concept and Manual Injection Method GC-TCD Analysis 

Gas Standard Preparation. A gas mixture of hydrogen, oxygen, nitrogen, and 

argon is made in identical 100 mL vials with a fresh septum from Fisher Scientific. The 

vials are evacuated and filled with a desired volume of argon, hydrogen, oxygen, and/or 

nitrogen. The gases are extracted from the individual cylinders from a purged tygon tube 

fitted with a Swagelok tee using an air-tight septum placed inside the tee. A ‘gastight’ 

syringe is used to pull out the desired volume of gas and inject it into the vial. The 

volumes of desired analytes to calibrate for are adjusted proportionally to give different 

percent volume compositions at the same total volume.  

Manual Single Point Standard Procedure. A proof of concept was performed to 

compare the viability of using the simpler SPS method as opposed to an external 

calibration. A SPS standard was prepared in the same manner as the external standards. 

Five calibration standards and a check standard were made using identical vials with 

fresh septa to avoid interference (Skoog, Holler, & Nieman, 1998). The check standard 

concentration was between the two lowest concentrations of the calibration standards. 
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The calibration standards were run from lowest to highest concentration and the check 

standard was analyzed 7 consecutive times. On the tail end of each analysis the SPS 

sample was injected at the 5 minute mark. 

Manual Sampling GC-TCD Method. The first step for the AP research was to 

build a working instrument in order to start collecting data. As with any analyzer, an 

instrumental method was developed for the GC-TCD for minimization of error and 

continuity between sample analyses. The manual injection technique involved first 

preparing the sample and irradiating with a light source. The reaction was monitored by 

using a microsyringe to extract a headspace sample and inject onto the GC-TCD. The 

syringe was evacuated and plugged with a septum to avoid ambient air interferences, and 

was always removed in a manner to not expose the tip to outside air until the sample was 

to be injected. 

 The carrier gas pressure is set to 80PSI at the source, and the column head 

pressure is set to approximately 40PSI.  The temperature program was set run 

isothermally at 50°C, the injector at 150°C, and the TCD at 300°C. Manual injections of 

30 μL from the headspace were injected. The TCD sensitivity was put on the ‘high’ 

setting. Argon is used for the carrier gas, set at approximately 30 mL min
-1

. The dead 

time is ~0.9 min and ~5min total run time (excluding the presence of gaseous byproducts 

from certain reactions, which would extend the run time to ~18min). Various precautions 

were taken to avoid column degradation. A stand-by method was developed for when the 

GC-TCD was not in use; raising the oven temperature to 100°C and lowering the detector 

temperature to 200°C. This was done to regenerate any deactivated pores in the packed 

column, hence helping to maintain better levels of sensitivity and column longevity. 
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Automated GC-TCD Single Point Standard Parameters 

Flow Controlled Method. The flow controlled method will enable automated 

sampling from both the single point standard gas and the sample vial during the same 

analytical run. This method was chosen over other proposed designs after the proof of 

concept to give the desired functionality with the least cost and most simplicity. 

Apparatus. As shown in figure 1, the on-line sampling instrument requires a 

custom inlet system fabricated with an arrangement of traps, valves, and flow 

controlling/restricting devices. There are two primary gas lines from the gas cylinders 

(one for the carrier & TCD reference gas and another for the check standard) and a 

sample line. These lines are connected to a HP 5890 gas chromatograph with a thermal 

conductivity detector via a micoelectrically actuated 10-port injection valve (VICI, Inc.). 

The GC has a packed column (Restek, molecular sieve 5Å 80/100 mesh [3.05m x 1/8in 

OD x 2mm ID]) and a purged-packed inlet manifold, with chemical trap. An 

oxygen/nitrogen trap was installed upstream on the carrier line to help stabilize the 

baseline. There are two electronically controlled 2-way ball valves (Omega, Inc.) to 

affect the standard/sample gas lines, both using two internal reducing unions from ¼’’ to 

1/16’’ (VICI, Inc.). The 10-port valve, electronic ball valves, GC (via remote start 

wiring), and data processing are all automated by Peaksimple hardware/software (SRI 

Instruments.) The GC is run isothermally, but has the ability to sync temperature 

programs with Peaksimple as well.  
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Figure 1. Flow controlled instrument schematic showing standard and sample systems. 

This system is based off the traditional purge-and-trap routing of the carrier gas 

line. The carrier gas goes through the oxygen/nitrogen trap, then a chemical trap, and is 

finally split before reaching the injector. The line is rerouted to the 10-port valve 

(displayed in figure 2), equipped with two 50 μL sample loops (loop 1 being the sample 

loop, loop 2 the standard loop). The carrier gas will enter through port 1, flow through 

either loop then out of the valve at port 6 and on to the injector. 

 
Figure 2. Schematic diagram of 10 port injection valve for sample and SPS standard 

 The 10-port valve will load one sample while the other is in the inject position. At 

the beginning of analysis, the sample injection valve is in Position “A”. The reaction 

vessel sample is loaded into loop 1 using a peristaltic pump to pull the headspace of the 
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vial through the tubing. Concurrently, the carrier gas flows to the column through loop 2 

and the check standard gas is set to vent. The valve then actuates to position “B” and the 

headspace sample in sample loop 1 is swept onto the column and the single point 

standard is simultaneously flowed through loop 2 at a flow rate set to mimic the 

conditions of the reaction vial on the basis of the ideal gas law. At 5.000 min, the valve is 

actuated again back to position “A”. The single point standard is then swept onto the 

column for separation and analysis. The resulting chromatogram, presented in Figure 4, 

shows a sample and single point standard analysis within a single GC run. 

Reaction Vessel Sampling Configuration. The sample headspace gas is flowed 

through the sample loop by 1/16’’, 0.5 mm internal diameter (ID), stainless steel (SS) 

tubing on both the ‘sample-in’ and ‘sample-out’ ports of the sampling valve (ports 3 and 

4). The SS tubing segments end with a length of 1/16’’ tygon rubber tubing which is zip-

tied down onto the SS tubing to eliminate air interference. The tygon tubing then goes to 

a peristaltic pump which will push/pull the headspace of the sample vial through the 

sample loop, ensuring that the gas sample is thoroughly mixed at an adjustable rate. The 

terminal ends of the tygon tubing are fitted over modified syringe needles (B-D brand, 

18G, 1-1/2’’) and zip-tied in place to prevent leaks or sample loss. These syringes are 

inserted into the sample vial before the sample is prepared, essentially making all the 

sample line tubing an extension of the sample vial’s headspace (ie, all the volume of the 

tubing and the sample loop are in actual fact added to the volume of the vial). This must 

be done before the sample is prepared to ensure removal of ambient air from all the 

tubing and sample loop from entering into the reaction environment when the AP 

experiment is ready to begin. 
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Single Point Standard Configuration. The standard gas is regulated to 

approximately 8 PSI at the source then flows to another flow controller for fine tune flow 

adjustments. Immediately after the flow controller, a flow restrictor is implemented from 

the controller’s exit to the 10-port valve ‘standard-in’ spot. The flow restrictor is a 

reduced ID SS tube, which is labeled at 4 mL/min at 30 PSI. The flow rate is measured 

after the standard loop and was set to approximately 0.8 mL min
-1

. After the loop is a 

length of reduced ID PEEK tubing connecting the ‘standard-out’ port of the sampling 

valve to a 2-way electronically controlled ball valve with another length of PEEK tubing 

traversing down the instrument and venting to the atmosphere. 

Sample and Single Point Standard Purging. The two systems on the valve must 

both be purged of ambient air in the lines before analysis can be done. Any air in the 

system will affect the percent composition values of the analytes being tested. Also, air in 

the sample’s system may affect the catalyst and prevent hydrogen generation. 

On the sample system, one of the SS lines is tee’d with a 3-way union which has 

another 1/16’’ SS, 0.5 mm ID tube going from it to an electronically controlled 2-way 

ball valve. This ball valve is used to open the system to vent when purging the sample 

vial with the argon background gas. The manner in which the vial must be purged was 

investigated and optimized to ensure minimal contamination. The argon gas cylinder is 

fitted to a tube with a modified syringe. The cylinder’s pressure is set at the source to be 

~8 PSI (slightly above STP). The sample lines from the pump are inserted in a manner to 

have the “in” line (the one being pushed from the pump) inserted all the way down, and 

the other “out” line (the one being pulled from the pump) is inserted to a point of having 

the needle as close to the top of the vial as possible. The gas is first turned on to eliminate 
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air out of the line, then the ball valve is opened to vent. The argon line is then inserted 

and allowed to purge the system for approximately 15 min. The needle for this line is 

inserted fully into the vial at 90°. After the purging period, the argon line is first removed 

to avoid pressure build-up, and the electronic ball valve is immediately closed. After the 

system has been purged a test run is performed to ensure all air has been removed from 

both the sample system (the vial and sample lines) and the standard system. The test run’s 

chromatogram should have a flat baseline during the ‘sample’ portion and only one peak 

for  hydrogen during the ‘SPS’ portion, ensuring the system is free of interference. 

Monitoring Studies of Hydrogen Producing Catalyst. The sample vial is 

cleaned and given a stir bar then capped with a rubber septum, which is sealed and 

tightened to ensure no leakage. The vial is then place on a stir plate in front of the light 

source. The sample line needles are inserted into the sample vial and the vial is purged 

with argon (as previously described). The standard line is also set to vent during the 

sample prep. Once the sample and standard systems have been purged, the test run is 

performed before introducing the sample. If any air remains after the test run then the 

system purge is extended and the analyst should check for any potential leaks.  

 The electrocatalyst solution is then carefully injected into the vial. Attention 

should be given to ensure no air is being injected with the sample from inside the syringe 

or needle (priming the needle if needed). It should be injected at approximately 90° to 

avoid introducing parallax error. Caution should be taken to not touch the sampling lines 

during this step of the procedure as it has been shown that small amounts of air can enter 

into the vial if they are disturbed. Once the electrocatalyst solution is in the sample vial, 

the stir plate is turned on and the system is covered in aluminum foil. The software is 
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then set for total run time, number of desired runs, and time allotted between sample run. 

The system is then ready for on-line autonomous monitoring studies for the given AP 

reaction. 

Results and Discussion 

Optimization of Manual GC-TCD Analyzer 

Carrier Gas Optimization. Helium was initially used as the carrier gas, but there 

were problems with argon and oxygen co-eluting and the sensitivity for hydrogen was not 

acceptable. Argon (0.016 W/(m·K)) has a much greater difference in thermal 

conductivity than helium (0.142 W/(m·K)) does to hydrogen (0.168 W/(m·K)). Switching 

the carrier gas to argon increased the hydrogen sensitivity and solved for the co-elution 

problem as the background gas for the AP reaction was now the same as the carrier gas, 

hence removing the solvent peak from the chromatogram. This carrier gas change 

initially spurred the interest in performing a proof of concept for using single point 

standardization (SPS) as the means of instrument calibration because its use of the same 

chemical species. 

The sensitivity for oxygen and nitrogen was decreased, but was acceptable as 

hydrogen is the primary analyte. Ambient air interference can be assessed by the presence 

of oxygen or nitrogen peaks, though we focus on nitrogen as it is more prevalent in air 

and the oxygen produced from the photoelectrolysis may react to form other byproducts 

during the reaction.  

MDL, Accuracy and Precision of the Manual Analysis. A 5-point calibration 

curve was prepared and the slope and y-intercept were determined. The check standard 

concentration was determined using the slope and y-intercept. The MDL was calculated 
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by multiplying the standard deviation of the experimental concentrations of the check 

standard by the Student t-value at 98% confidence interval (USEPA, 1996). Accuracy is 

estimated by the mean percent recovery, which is calculated by dividing the experimental 

concentration by the theoretical concentration multiplied by 100% for each check 

standard and calculating the mean value. Precision is estimated by the percent relative 

standard deviation (%RSD), which is calculated by the standard deviation of the check 

standards divided by the check standards mean multiplied by 100%. 

 
Figure 3. External 5-point calibration curve for hydrogen and oxygen, manual injection. 

The GC-TCD’s external calibration using the USEPA calibration protocol gave 

excellent results for hydrogen and oxygen. Concentrations are reported as percent 

composition. Volume percent composition (v/v%) is the ration parts of solute to one 

hundred parts of solution, expressed as a percent. Hydrogen had a MDL of 0.70% 

volume, accuracy of 105%, and a precision of 3.4%. Oxygen had a MDL of 9.5% 

volume, accuracy of 129%, and a precision of 37%. 
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The calibration standard concentrations ranged from 5-15% for hydrogen and 

oxygen gas. These standards were meticulously prepared to avoid ambient air 

interference. Oxygen was calibrated with the hydrogen, and the quantity of nitrogen 

present is proportional to the amount of experimental error due to ambient air 

interference from sample preparation and injection steps.  

The single point standard was made at 10% volumes for hydrogen and oxygen 

gas. Hydrogen had a MDL of 0.73% (v/v%), accuracy of 100%, and precision of 3.7%. 

Oxygen had a MDL of 5.4%, accuracy of 126%, and precision of 22%. Comparing the 

external calibration data to that of the single point calibration showed comparable values 

and much promise for long-term on-line analysis of gases.  

 
Figure 4. Proof of concept chromatogram. 10 minute run time. First half for sample (or in 

this case, external calibration standards), and second half for SPS standard. 
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It was found that quantitative analyses of gases have more potential for mistakes 

by manual injection technique as opposed to sampling of liquids. With each piercing of a 

septum during the sample preparation and analysis the potential for associated human 

error will increase. Standardization for the instrument also requires numerous piercing of 

the septa in both the making the standards (from drawing each anaylte and injecting it 

into the vial) and from the actual sampling of the standard itself. As shown in Figure 3, 

when observing the hydrogen peaks for the single point standard injected on each run; 

one can notice an irregularity between the 7.5% SPS injection compared to the other 

hydrogen-standard peaks. This supports the claim that no matter how skilled the GC 

analyst may be, an inherent human error associated with manual injection technique will 

always exist. Though this error can be reduced as the analyst becomes more precise with 

sample preparation and more skilled with GC analysis, the most common source of error 

usually results from the actual injection technique of the sample by the human analyst.   

The preliminary results from the proof of concept showed a validation for why the 

benefits provided by developing an on-line automated sampler together with the single 

point calibration would be beneficial going forward. The excellent performance results 

from external calibration and SPS proof of concept did not come easy. They required 

intensive sample prep and analysis labor over more than a 12-hour-span with meticulous 

attention to detail to minimize interferences performed by an experienced GC analyst. 

Automating the instrument for on-line sampling and calibration in one step will solve 

numerous issues. The use of industrially prepared standards will minimize errors 

associated with standard preparation, and interfacing the sampling apparatus to the 
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reaction vial will reduce the associated sample preparation error and eliminate the 

injection related errors. 

Mechanical automation of the instrumentation allows for the ability to perform 

autonomous extended monitoring studies, capable of an indefinite number of sample 

iterations. This will save analyst time by being able to set-it and forget-it and allow them 

to spend their time on other tasks. Greater instrument functionality is capable with a 

lower operator skill level. Having an automated instrument most importantly minimizes 

the human error, giving much greater reproducibility and hence more reliable data. 

Single Point calibration will be used for the incorporation of an automated 

standardization step to the method. It is advantageous because it uses the same chemical 

species as the instrumental method. It can be performed on the tail end of the sample run, 

essentially giving two unique parts to each chromatograph; the sample half then the 

standard half. It provides a very easy source of data analysis to determine quantitative 

results. Using SPS, the concentration of the sample can be calculated by using a ‘ratio 

and proportion’ approach. The analyzed check standards can then be used to calculate an 

MDL, accuracy, and precision. The formula for this method is: 

                    

                      
  

             

               
 

SPS accounts for minor variations in flow rates and other potential sources of calibration 

drift over extended monitoring periods. Most importantly, it offers the advantage of 

extraordinary time savings and simplicity. 
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Optimization of Automated Single Point Standard GC-TCD Analyzer 

Single Point Standard Flow and Pressure. The conditions on both parts of the 

sampler must be approximately the same to ensure continuity between the concentration 

of the standard and the concentration of the sample to be injected. By observing the ideal 

gas law, PV = nRT, the pressure must be adjusted to ensure that equivalent molar 

volumes of the gas from each side of the valve is being injected. The sample loops are the 

same volume, however if the pressure of the standard gas is too high, then the molar 

concentration of the standard being injected will be too high. This was proven by filling a 

sampling vial with the check standard gas at approximately STP and comparing the peak 

area to that of the check standard flowed through the standard-line tubing at various 

pressures/flow rates. To perform method verification between sample and standard 

conditions, the vial is loaded with the standard in the same manner that it would normally 

be purged with background argon during the AP reaction. The standard gas flow rate (or 

source pressure if needed) is then adjusted to approximately match the peak areas on both 

halves of the chromatogram. 

 Previous ideas of how to match the method conditions included a gas-sampling-

bag method in which the sample headspace and standard gas would be pulled into 

sampling bags then from there through the sample loop, a vacuum method which would 

briefly pull sample through the loop to a vent line in a manner to match that of the 

standard gas flow, and a pressure gauge method which would use gauges on both lines to 

adjust the pressure to match both sides. The flow controlled system was chosen to add 

simplicity, reduce analysis time, save money, and minimize potential disturbances to the 

reaction environment when compared to these previously proposed methods.  
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Purge Time Optimization. The amount of time required to vent the standard was 

optimized to remove all traces of ambient air interference. Air in the standard gas lines 

would show up if injected by the sampling valve. The presence of this air will lessen the 

accuracy of the SPS results. This happens because the standard is prepared as a percent 

volume in argon and any extraneous gas would throw off the ratio mixture. This is proven 

by observing the change of peak area for hydrogen as the interferent is removed from the 

system; as the amount of air decreases to vent, the standard side of the chromatogram 

gives exponentially smaller peaks for oxygen and nitrogen while giving peak areas for 

hydrogen that asymptotically increase towards the true value. It was found that the 

standard part of the system should be allowed to vent for at least 10 minutes before 

sampling at the set flow rate. Once the system is sufficiently purged, it was also found 

that pressure build up would skew the data for hydrogen’s peak area. To correct for this, 

the method was modified to open the normally-closed valve at 0.100min and, having all 

relays programed to reset upon completion, the valve will close at the end of the sample 

run until the next programmed run in a monitoring study is initiated. 

Manual Injection vs. Automated Injection Performance. The GC-TCD 

settings are largely unchanged from the manual injection method. However, the switch 

from a manual syringe injection to automated valve injection demonstrated significantly 

more precision compared to manual injection. The efficiency of injection by the 

automated sample gives much greater peak shape and less sample loss during injection. 

The peak tailing effects seen during manual injections is significantly less, giving more 

Gaussian peaks on the chromatogram. That precision, along with retaining more of the 

sample, is also apparent from the peak height. When testing a 50µL sample injected both 
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manually and by the sampling valve, that of the sampling valve actually caps-out the 

detector. For this reason, the TCD sensitivity setting had to be changed to ‘low’ for the 

automated method.   

MDL, Accuracy and Precision of the Single Point Standard GC-TCD 

Analyzer. Eleven consecutive sample runs were performed on a completely purged 

system for the 5% hydrogen in 95% argon single point standardization gas. These had an 

average peak area of 12.281 and a standard deviation of 2.048 x 10
-1

. Having performed 

previous MDL, accuracy and precision studies during the proof of concept phase, the 

TCD has been proven to exhibit a linear response. Assuming this linear response through 

the origin, a theoretical signal for 1% hydrogen was calculated to have a peak area of 

2.456. Using these values a theoretical slope was obtained using the point-slope formula, 

   
     

     
. 

 Detection limit is the smallest quantity of analyte distinguishable from baseline 

noise. It is defined as 3 times the standard deviation of the signal divided by the slope. A 

signal that is 10 times as great as the noise is defined as the lower limit of quantification 

(LOQ), or the smallest amount that can be measured with reasonable accuracy and is 

calculated as 10 times the standard deviation of the signal divided by the slope (Harris, 

2007). Calculating with these values the detection limit for this analyzer is 0.25% and the 

LOQ is 0.83% using single point standardization. The precision of the analyzer by 

calculation of %RSD for the peak area of the check standard is 1.7% (compared to 3.7% 

from the proof of concept calibration). 
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Optimization of Hydrogen Gas Monitoring Studies. On the sample part of the 

system, there was a sample-loss problem when continuous sample runs were performed, 

shown in figure 5. An optimization study was done to correct this problem. Upon 

consecutive runs, the amount of analyte reaching the sample loop exhibited a drop off. 

When the valve would rotate to inject the sample, the carrier gas would flow through the 

sample loop. As the valve rotated back to the load position, a plug of argon from the 

carrier gas remained in the loop. This plug of argon did not equilibrate throughout the 

headspace of the vial; in fact, it would not even equilibrate when the needles were left 

open to ambient air. Needle gauge, tubing length, and ID were adjusted. Large gauge 

needles, bigger ID tubing, and shorter lengths improved equilibration ability. By 

incorporating a peristaltic pump to the sample line though, circulation of the headspace 

gas can be controlled, thus solving for the sample loss problem. 

 
Figure 5. The left chromatogram shows the loss of sample using the injection valve 

(sample side is open to ambient air and standard side has zero grade air for comparison). 

The right chromatogram shows the correction after implementation of the peristaltic 

pump (sample side open to ambient air and standard side with non-purged 5% hydrogen 

single point standard gas). 
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  The stirring conditions inside the sample vial must also be considered when 

performing monitoring studies. Once the electrocatalyst solution is injected into the vial 

the stir plate is turned on. The placement of the vial on the stir plate and the level of 

applied magnetism must be checked. If either of these is not right, the stir bar has been 

shown to splash up the electrocatalyst solution which could then be pulled into the 

sample tubing. In the event that enough makes its way into the sample tubing, it could be 

circulated through to the sample loop and hence onto the column. This results in extreme 

baseline disturbance commonly known as ‘wander’ and makes column replacement or 

refurbishing a necessity.  

Reproducibility. Comparing the chromatogram on the right of figure 5 to the 

proof of concept chromatogram in figure 4, simply by observation it is clear that a much 

higher degree of reproducibility is achieved using an automated system. To get a better 

idea quantitatively on the level of reproducibility gained using this automated system 11 

continuous runs were made for the check standard and integrated for comparison. It is 

worth mentioning that the integration function was set to auto-integrate, once again 

saving the analyst time. The peak heights for these eleven runs were averaged and the 

standard deviation was taken. It had an average peak height of 3.110 mV and a standard 

deviation of 8.779 x 10
-3

 mV. Comparing the standard deviation value to the numerical 

value for the baseline noise (~0.040 mV) we show that the variance between runs is 

significantly lower than the approximate noise of the detector. Also, taking the peak 

height standard deviation and average, the %RSD is determined to be 0.28%. 
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Figure 6. Five automated chromatograms overlaid showing reproducibility and precision. 

SPS-GC-TCD vs manual GC-TCD w/ IS: Which is more appropriate? A 

comparison study was performed using the SPS-GC-TCD method compared to one of the 

group’s other manual injection methods utilizing internal standardization. When making 

a sample for AP reaction, the vial would be purged with a gas mixture of 95% argon and 

5% methane. After being purged the electrocatalyst solution would be injected then 

irradiated as previously described. Upon examining the internal standardization method 

that was being used by the AP researchers for some of their reactions, certain problems 

were found in their established method when compared to the SPS method (in addition to 

the previously explained shortcomings of manual injection methods and experience level 

of GC analyst).  

The pressure in the flask from the purge was not taken into consideration. There is 

a sample loss problem both as the reaction is proceeding and during sampling. More 

importantly than these problems, internal standardization requires a response factor, F, to 

accurately calculate ratio proportions of samples and a standard. This response factor had 

not been calculated or included in data manipulation. One of the great benefits to internal 
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standardization is the first two problems significant effect on the reliability of data is 

greatly diminished if not totally negated. As the standard is in environment with the 

sample, any effect on the sample will also be done to the standard in the manner. This is 

of great benefit to manual injection methods of gas analysis as the primary error of 

sample injection equally affects the standard and sample. Internal standardization is 

especially useful for analyses in which the quantity of sample analyzed or the instrument 

response varies slightly from run to run. (Skoog, Holler, & Nieman, 1998) Trying to 

automate analysis in this manner for comparison to SPS is problematic.  

To get reliable data using internal standardization the response factor must first be 

calculated. If the detector responds equally to the standard and the analyte, then F = 1. To 

calculate the response factor a known concentration of the analyte, [X], is tested against a 

known concentration of standard, [S], and the peak areas of the two, AX and AS, are used 

with the concentration values to solve for F. 

Response Factor:  
  

   
   

  

   
  

The response factor of methane to hydrogen for this analyzer is 0.522, meaning 

the TCD responds approximately half as well to methane as it does to hydrogen. Not 

knowing the dilution factor of IS added to unknown hydrogen being produced (because 

the IS gas is the background gas for the reaction, not spiked into an unknown amount of 

hydrogen already generated) it was omitted in calculating [S] for internal standardization 

and concentration is approximated at 5%.  

Summary of Automated, On-line, Single Point Standard GC-TCD Analyzer. 

The flow controlled system works very well with automated, on-line analysis for 

monitoring AP reactions over time. The automation of sample injection gives much 
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greater precision when introducing the sample as compared to manual injection, resulting 

in sharper peaks with less tailing and much larger peaks. By changing the TCD 

sensitivity to low, the larger peaks can be made to not cap out the detector. Sample loop 

size was examined from around 1µL up to 250µL and found to have a linear response in 

terms of sample injection capacity. In the event that a future sample was found to be 

outside the analyzer’s dynamic range, the sample loop and sensitivity settings could be 

adjusted to alter the dynamic range to avoid implementation of a dilution or standard 

addition step to the method. The sample vial during the purge was found to have a signal 

slightly above that of the standard, when the same gas was being tested on both systems. 

To adjust for this the fine tuning flow controller was adjusted to increase the flow rate of 

the standard through the standard loop. The flows were optimized and analyzed 

numerous times in a row. These values were averaged together to see any further 

discrepancy between the two systems conditions. The difference in peak area at this 

optimized setting is believed to be negligible as the corresponding peak area difference is 

near that of the common baseline noise. 

 The system will work fine for extended monitoring studies provided caution is 

taken at the parts of the procedure warning of possible air interferences that could be 

introduced. If these steps are not meticulously performed and air does make its way into 

the sample, the reaction has been shown to not succeed in producing hydrogen. 

 Internal standardization is subject to the same conditions of the sample, as it is 

included in the sample as the reaction is proceeding. Because of this, there will be a little 

sample loss that will equally affect the sample and the IS together, that would not be 

represented in the SPS signal. SPS offers the benefits of being inexpensive, easier to use 
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in the method, and it has the same response factor as it is the same species that is being 

tested. The significance here is that as more gas is generated by the reaction and carrier 

argon is being introduced into the flask from the rotation of the valve, the percent volume 

composition of the internal standard will become increasingly smaller. This percentage is 

then also subject to a response factor of about half that of hydrogen, so as it is ever 

slightly decreasing that effect is being compounded by the detectors inability to respond 

as well to it. It has been found that after approximately nine consecutive same runs that 

there will be a significant decrease to methane IS peak area. By using SPS, over longer 

monitoring studies the accuracy of this form of calibration will be more and more reliable 

than the use of internal standardization. 

Deuterium analysis. The AP research 

must also be able to properly determine the 

source of H2 production. The AP reaction is 

validated if the hydrogen production can be 

correctly attributed to the electrocatalyst being 

tested and not from a hydrocarbon present in 

solution. The reaction run in H2O should produce H2 and in deuterated water (D2O) 

should produce D2. If a hydrocarbon was present in D2O and H2 is produced, then it came 

from the hydrocarbon rather than D2O. To perform these tests with this analyzer the 

carrier gas must be switched back to helium, as it has a thermal conductivity between 

deuterium and hydrogen. When H2O was used, a negative peak at a retention time of ~0.8 

min is consistent with hydrogen formation. In contrast, a positive peak at that time 

suggests the formation of D2 (Zhao, 2011). This positive versus negative orientation is 

Figure 7: Deuterium versus hydrogen 
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obviously dependent upon the polarity settings of the method both within the GCs 

functionality setting and that of the data processor. 

Conclusions 

The GC-TCD with on-line, single point standardization can separate all analyte 

gases from a headspace sample and a manufactured check standard on the same 

chromatographic run at a total analysis time of approximately 10 minutes. It has 

acceptable MDL, accuracy, and precision values for AP research applications. The single 

point standardization allows for much simpler calibration procedure with very similar 

results. Added on-line capabilities greatly increase the reproducibility over traditional 

manual methods, significantly increase the precision of injection, and eliminate numerous 

potential sources of error. 

Automated injections exhibited much greater response from the detector, which 

can be attributed to error associated with injection technique and sample loss. This 

method is a great overall improvement to traditional gas sampling methods because it can 

be recalibrated within each sample run and is capable of continuous sampling at any 

desired interval using the on-line capabilities. This allows for extended monitoring 

studies to be easily carried out without need for analyst supervision.  

Future work 

 Five industrially made standards of varying concentrations will be purchased to 

perform a comparison study of method validation between external calibration with 

manufactured standards and the manufactured SPS calibration protocol. These standards 

will be free of all the associated sample preparation interferences and will be subject only 

to the percent accuracy of the manufacturer. This will provide the truest form of method 
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validation for the use of single point standardization, as both forms of calibration will be 

almost completely free of the numerous sources of error that they were subject to during 

the proof of concept study. As concluded before, it is expected that the five point 

calibration curve and check standard analysis will give excellent results for MDL, 

accuracy, and precision; and that the single point standardization method will give 

comparable data to that method with much less effort, time, and cost. 
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