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Abstract 

Lee, Sungmin. PhD. The University of Memphis. December 2017. Predicting Speech 
Recognition Using the Speech Intelligibility Index (SII) for Cochlear Implant Users and 
Listeners with Normal Hearing. Major Professor: Lisa Lucks Mendel, PhD.  

Although the AzBio test is well validated, has effective standardization data available, 

and is highly recommended for Cochlear Implant (CI) evaluation, no attempt has been made to 

derive a Frequency Importance Function (FIF) for its stimuli. In the first phase of this 

dissertation, we derived FIFs for the AzBio sentence lists using listeners with normal hearing. 

Traditional procedures described in studies by Studebaker and Sherbecoe (1991) were applied 

for this purpose. Fifteen participants with normal hearing listened to a large number of AzBio 

sentences that were high- and low-pass filtered under speech-spectrum shaped noise at various 

signal-to-noise ratios. Frequency weights for the AzBio sentences were greatest in the 1.5 to 2 

kHz frequency regions as is the case with other speech materials. A cross-procedure comparison 

was conducted between the traditional procedure (Studebaker and Sherbecoe, 1991) and the 

nonlinear optimization procedure (Kates, 2013). Consecutive data analyses provided speech 

recognition scores for the AzBio sentences in relation to the Speech Intelligibility Index (SII). 

Our findings provided empirically derived FIFs for the AzBio test that can be used for future 

studies. It is anticipated that the accuracy of predicting SIIs for CI patients will be improved 

when using these derived FIFs for the AzBio test.  

In the second study, the SII for CI recipients was calculated to investigate whether the SII 

is an effective tool for predicting speech perception performance in a CI population. A total of 

fifteen CI adults participated. The FIFs obtained from the first study were used to compute the 

SII in these CI listeners. The obtained SIIs were compared with predicted SIIs using a transfer 

function curve derived from the first study. Due to the considerably poor hearing and large 

individual variability in performance in the CI population, the SII failed to predict speech 
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perception performance for this CI group. Other predictive factors that have been associated with 

speech perception performance were also examined using a multiple regression analysis. Gap 

detection thresholds and duration of deafness were found to be significant predictive factors. 

These predictor factors and SIIs are discussed in relation to speech perception performance in CI 

users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

Table of Contents 

Chapter           Page 

1 General Introduction         1 

2 Derivation of frequency importance functions for the AzBio sentences  4 
 

Introduction         4 

Speech Intelligibility Index      5 

Audibility function and FIF      7 

Prediction of speech intelligibility via transfer functions  7 

 Proficiency factor      7 

 Desensitization factor      8  

Application of SIIs       9 

Purpose of the study       10 

  Method         10  

   Participants        10 

   Materials        11 

   Stimuli         11 

   Procedures        12 

    Pilot study       12 

    Primary study       13  

  Results          16 

   Curve smoothing       16 

   Curve bisection procedure      18 

   Cross-over frequency       20  

   Relative transfer function      20 

   Frequency importance functions     21 

Absolute transfer function      24 

  Discussion         26 

   Cross-over frequency       26 

   Frequency importance function     27  



ix 
 

Transfer function (TF)      32 

Limitations        34 

Conclusion         35  

3  Predicting speech recognition using the speech intelligibility index (SII)   37 

and other variables for cochlear implant users        

Introduction         37 

 Spectral/temporal resolution in cochlear implants   37 

 Variance in performance for CI users     39 

 Cognitive function as a contributing factor    41  

Speech Intelligibility Index (SII) as a predictive factor  43  

Aim of the study       45 

Method         46 

 Participants        46  

 Audiometric Testing       48 

 Speech recognition test      48  

 SII calculation        49 

 Auditory processing tests      51 

 Cognitive function tests      52  

  Results          53 

   Prediction of speech perception scores using SIIs   53 

   Prediction of speech perception scores using multiple variables 56 

   Cognitive function tests      60 

  Discussion         61 

   Prediction of speech perception scores using SIIs   61 

Prediction of speech perception scores using multiple variables 63 

   Working memory capacity for CI users    64 

   Limitations        66  

  Conclusion         67 

4 General Conclusion         69 



x 
 

References           72 

Appendix           86 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of Tables 

Table                    Page 

1 The filtering/SNR conditions used in the present study. Average speech   15 

recognition scores are represented in percent for each condition.    

2 Cross-over frequencies for the five SNR conditions     20  

3 Summary table of the FIF calculation.      23 

4 The fitting parameter values of Q, N, and K for the two procedures.   32  

5 Slopes of the TFs for the different speech materials.     34 

6 Demographic details of CI participants      47 

7 FIF across the 1/3 octave center frequencies (CF)     51  

8 Nine predictor variables and one dependent variable for    58 

the multiple regression analysis 

9 Pearson correlation for 10 variables       59 

10 Summary of regression coefficients       60 

 

 

 

 

 

 

 

 

 



xii 
 

List of Figures  

Figure            Page 

1 Group mean percent correct scores for AzBio lists     17 

2 Illustration of the curve bisection procedure      19  

3 Relative transfer function curve       21  

4 FIF plot for the AzBio test.        24 

5 Absolute transfer function curve       25  

6 FIFs for four English stimuli plotted as a function of frequency   28 

in a logarithmic scale          

7 Cumulative FIFs for four English speech stimuli plotted as a function of   30  

frequency in a logarithmic scale        

8 FIFs derived from the traditional procedure and the nonlinear    31 

optimization procedure         

9 Comparison of transfer functions for the four English materials   32  

10 LTASS of AzBio sentences and noise across 1/3 octave band frequencies  50 

11 Mean speech perception scores for the AzBio sentences in the three different 54 

SNR conditions.          

12 (A) Score-vs-SII distribution scatter-plots along with the reference    56

 transfer function curve (B) Score-vs-HLD SII distributions scatter-plots   

 along with the reference transfer function curve      

13        Mean number of lists correctly recalled for forward and back ward DSTs            61

 presented with two different modalities (visual and auditory)   

  



1 
 

Chapter 1 

GENERAL INTRODUCTION 

In the mid-20th century, the Articulation Index (AI) was developed by engineers at Bell 

Telephone Laboratories for the purpose of quantitatively evaluating speech intelligibility 

transmitted via their prototypes of telecommunication devices (French and Steinberg, 1947; 

Kryter, 1962). The AI was effective and efficient at predicting speech recognition by using this 

established mathematical concept that replaced effort and time in the actual testing procedure. 

After about half a century, the model was reviewed and updated by the American National 

Standards Institute (ANSI), and renamed the Speech Intelligibility Index (SII) (ANSI, 1997).  

The SII is a value that quantifies the proportion of speech information available to 

listeners. The SII ranges between 0 (no speech information is available) and 1 (total speech 

information is available). Two critical components for frequency bands, audibility function and 

frequency importance function (FIF), are taken into account in the SII computational procedure. 

The audibility function is accounted for by the amount of speech energy available to the listener. 

Thus, levels of the speech spectrum, noise spectrum and the listeners’ hearing thresholds are 

considered in the audibility calculation. The FIF refers to the importance of each frequency band 

and its relative weight for contributing to speech perception. The specific patterns of FIFs vary 

depending on the speech stimuli and the procedure used for deriving FIFs (Studebaker and 

Sherbecoe, 1991; DePaolis et al., 1996). Most evidence from previous studies indicates that the 

most important frequency region is around 2 kHz where the greatest amount of speech 

information is centered  (Studebaker and Sherbecoe, 1991; DePaolis et al., 1996; Amlani et al., 

2002)
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Cochlear implants (CIs) are prosthetic medical devices that electrically stimulate auditory 

nerve fibers to transmit acoustic outputs. Since their first approval by the Food and Drug 

Administration (FDA) in 1984, CIs have evolved and become a very successful option for people 

who are deaf or who have severe-to-profound sensorineural hearing loss. With advances in CI 

technology and continued success in speech perception performance for CI recipients, the FDA 

has lessened its eligibility criteria and extended accessibility to children as young as 12 months 

of age. In addition, the criteria for adult CI candidates have been expanded to include individuals 

with moderate-to-severe sensorineural hearing losses. These improvements in CI technology 

have restored audibility for many individuals with significant hearing loss. However, on closer 

inspection, CIs have not always provided satisfaction for all candidates, because there are still 

large numbers of individuals who have not benefited from CIs as much as others. This issue of 

variability in speech and language outcomes in the CI population is regarded as the most 

challenging problem that needs to be addressed in this population (Faulkner and Pisoni, 2013). 

These individual differences are not likely to be accounted for by a single factor, but in fact 

multiple parameters in different domains are likely interacting with each other, either positively 

or negatively, affecting these outcomes (Faulkner and Pisoni, 2013). In addition, many studies on 

CIs have investigated variables that contribute to individual differences in speech perception 

performance (Gordon et al., 2000; Geers et al., 2011). The factors scrutinized in many studies 

are limited to CI patients’ demographics, surgical outcomes, auditory processing ability, and 

cognitive function. These contributing factors are also thought to be predictive factors, because 

both contributing and predictive factors can significantly affect speech perception outcomes 

associated with CIs.  
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The SII is used widely in hearing aid research, yet CI researchers pay scant attention to 

the SII as a predictive factor for estimating CI users’ speech perception. Thus, the primary 

purpose of this dissertation was to explore the feasibility of the SII model for predicting speech 

perception performance for CI users. 

This dissertation consists of two studies. In order to apply the SII model for CI 

evaluation, the FIF for the speech perception material that is often used with CI users needed to 

be known. Thus, in the first study, we derived FIFs for the AzBio sentences using a traditional 

procedure. The AzBio test was chosen because it is part of the Revised Minimum Speech Test 

Battery (MSTB) (Spahr et al., 2012; Spahr et al., 2014) which is considered as a standard test 

protocol in the field of CI evaluation. The derived FIF for the AzBio sentences was used to 

compute SIIs for CI users in the second phase of the dissertation. 

The aim of the second study was to investigate whether the SII can be considered a useful 

tool for successfully predicting speech perception outcomes for CI patients. We hypothesized 

that conventional SII values could not predict speech perception performance for CI adults with a 

high degree of accuracy due to the enormous variability in speech perception outcomes. Other 

predictive factors that could possibly influence speech perception outcomes were further 

investigated.  
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Chapter 2 

DERIVATION OF FREQUENCY IMPORTANCE FUNCTIONS FOR THE AZBIO 

SENTENCES 

I. INTRODUCTION 

The AzBio sentence test, named after the Arizona Biomedical Institute at Arizona State 

University, was first described and developed (Spahr and Dorman, 2004; Spahr et al., 2012). The 

goals that the AzBio test pursued were to provide new test material that (1) minimized stimulus 

familiarization effects for listeners who were exposed to traditional test stimuli too often, (2) 

allowed a large number of test conditions, (3) had similar levels of difficulty for within subject 

comparisons, and (4) evaluated performance that reflects a high degree of correlation with the 

patient’s everyday speech perception environments (Spahr et al. 2012). With a growing interest 

in cochlear implant (CI) studies, the AzBio sentence test has gained widespread use when 

assessing the speech perception ability of cochlear implant recipients. Yet, no attempt has been 

made to establish frequency importance functions (FIFs) for this sentence test which could be 

very useful in predicting the speech intelligibility index (SII) for these listeners. The spectral 

distribution of speech is important for estimating intelligibility; thus FIFs are critical for this 

process. These values reflect our understanding of the content of speech in each spectral band 

which contributes to a better understanding of speech processing. This study determined the 

frequency importance weights for the AzBio sentences for use in future SII studies that evaluate 

speech perception performance of CI patients. 

A. Speech Intelligibility Index 

Since the development of the model of articulation theory (French and Steinberg, 1947), 

the profession of audiology and related fields have made use of this concept, exploring extensive 
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attempts to predict speech perception in an objective way. The underlying assumption of the 

articulation model is that intelligibility of speech can be quantitatively represented using 

weighted factors across the frequency bands of speech and corresponding audibility of listeners. 

Relying on this assumption, the Articulation Index (AI) (Kryter, 1962) in 1986, later named the 

Speech Intelligibility Index (SII) in 1997, has been used to establish the relationship between 

audible speech cues and the perception of speech.  

Calculating SII in a traditional way is not a simple process, as it requires a fairly 

complicated procedure in its calculation (Amlani et al., 2002). As a result, some researchers have 

attempted to simplify the calculation of the SII, while maintaining its accuracy (Mueller and 

Killion, 1990). The SII is a number between 0 and 1 with a value of 1 indicating that all speech 

cues were delivered to the listener, whereas a value of 0 suggests no speech cues were available 

to the listener. The SII is calculated by multiplying the audibility function (Ai) and FIF (Ii) which 

are summed across the total number of frequency bands [Eq. (1)]. Therefore, audibility functions 

(Ai) and FIFs (Ii) play an important role in determining the SII. 

𝑆𝐼𝐼 = 𝐼 𝐴  ,                                                                     (1) 

B. Audibility function and FIF 

The audibility function defines the proportion of speech information delivered to the 

listener at frequency band i. The audibility function is typically represented by equation (2). The 

SNR  denotes the SNR (or signal to hearing threshold ratio) in “i” frequency band; K is the level 

of the speech maxima above the long term average speech spectrum (LTASS); and DR is the 

dynamic range of the speech input. Despite some  disagreement, it is generally assumed that a 
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dynamic range of 30 dB (±15 dB relative to the LTASS in ANSI 1997) is a reasonable value in 

maximizing speech intelligibility (ANSI, 1969; Amlani et al., 2002). 

𝐴𝑢𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐴 ) =
𝑆𝑁𝑅 + 𝐾

𝐷𝑅
,                                             (2) 

 The FIF, sometimes called Band Importance Function (BIF) or frequency weight, refers 

to defining the relative importance of the frequency band “i” in the speech spectrum in relation to 

speech intelligibility. In general, the greatest frequency weights are observed at approximately 

2kHz (ANSI, 1969; Studebaker and Sherbecoe, 1991). The specific pattern of frequency 

importance weight, however, varies with specific stimuli, gender, equipment and procedures 

(Studebaker and Sherbecoe, 1991; DePaolis et al., 1996; Sherbecoe and Studebaker, 2002; Chen 

et al., 2016). Speech perception test materials are thought to be a major factor that contribute to 

the variability among FIFs due mostly to the different amounts of contextual information 

available in the various speech materials (DePaolis et al., 1996). If there is more contextual 

information available in the material (e.g., discourse), then the peak of the FIF is closer to the 

lower frequencies. In contrast, higher frequency information becomes more informative when 

nonsense syllables, which do not have contextual cues, are recognized. Therefore, appropriate 

frequency weights need to be used to improve the accuracy in predicting speech recognition 

performance using the SII, and continuous efforts deriving FIFs should be made as new test 

materials become available. Currently, the FIFs for six speech tests [NNS (various nonsense 

syllable tests) (French and Steinberg, 1947), CID-W22 (Studebaker and Sherbecoe, 1991), NU-6 

(Studebaker et al., 1993) , DRT (Diagnostic Rhyme Test) (Duggirala et al., 1988), short passages 

(Studebaker et al., 1987), SPIN monosyllables (Speech Perception in Noise) (Bell et al., 1992)] 

are included in the ANSI S3.5 (1997). 
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C. Prediction of speech intelligibility via transfer functions  

Once the SII is calculated, it is typically used to predict speech recognition performance 

by means of a Transfer Function (TF). The TF is represented with an s-shaped curve to show a 

series of relationships between the SII and corresponding speech recognition scores. The 

equation for the TF is shown in Eq. (3), where A refers to the SII value, P is a proficiency factor, 

and Q and N are fitting consonants that determine the shape of the curve. 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = (1 − 10 ( / ))  ,                                        (3) 

Predicting speech intelligibility through the TF curve has been shown to be valid for 

listeners with normal hearing and for good performing listeners with mild-to-moderate hearing 

loss (French and Steinberg, 1947; Humes, 1986; Pavlovic et al., 1986). The TF curves drawn 

from listeners with normal hearing, however, are likely to overestimate speech recognition 

performance for listeners with moderate-to-profound hearing loss having poor speech perception 

scores (Ching et al., 1998). This deterioration in supra-threshold sound processing can be 

attributed to poor spectral and temporal resolution inherent in patients with sensorineural hearing 

loss (Pavlovic et al., 1986). Therefore, when the SII serves as a predictor of speech perception 

performance for people with hearing loss, some correction factors (e.g., proficiency and hearing 

loss desensitization) are required (Sherbecoe and Studebaker, 2002; Scollie, 2008) to adjust the 

measured SII in proportion to the degree of hearing loss.  

1. Proficiency factor 

In 1950, Fletcher and Galt proposed a proficiency factor (P) as a means to reduce the 

predicted scores computed by the original TF. The proficiency factor accounts for talkers’ and 

listeners’ variation in proficiency with a maximum value of 1 when they use the same dialect. 

The SII, considering the proficiency factor (P), is represented by Equation 4. 
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𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝐼𝐼 (𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟) = 𝑃 𝐼 𝐴 ,                        (4) 

2. Desensitization factor 

A few decades later, a concept called the hearing loss desensitization factor was 

introduced to account for the effect of hearing loss on speech intelligibility (Pavlovic et al., 

1986). The desensitization factor was developed from the findings (Pavlovic, 1984) that supra-

threshold sound processing is affected by hearing loss in a frequency specific way. Pavlovic et 

al. (1986) showed the superiority of the modified SII with desensitization factors to accurately 

predict the SII compared to using the unmodified SII without desensitization. The desensitization 

factor is computed by multiplying the hearing threshold by a number between 0 and 1. For 

hearing thresholds < 15 dB HL and > 95 dB HL, the desensitization factor is calculated by 

multiplying the threshold by 1 and 0, respectively. When the hearing threshold falls between 15 

and 95 dB HL, the desensitization factor factor (𝐷 ) is determined by the value derived from 

Equation 5. 

𝐷 =  1.19 –  0.0127 ×  ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑖),                                       (5)                                                          

In the SII calculation, the obtained desensitization factor (𝐷 ) is multiplied by either 𝐴  or 

𝐼  (Eq. 6). While the desensitization factor appears to be similar in concept to the proficiency 

factor, they are not identical. The desensitization factor reflects frequency specific deficits in 

hearing threshold, and thus is applied during the SII calculation. In contrast, the proficiency 

factor affects overall performance, and thus is applied after the SII calculation (Scollie, 2008). 

Even though desensitization factors improve the accuracy of TFs to some extent, they do not 

work perfectly for fitting TF curves depending on the degree of hearing loss and conditions 

(Humes, 2002; Scollie, 2008).  



9 
 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝐼𝐼 (𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑑𝑒𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) = 𝐼 𝐴 𝐷  ,                    (6) 

D. Application of SIIs 

The SII has been widely used with people with hearing loss in clinical and research 

environments. The SII is used in clinics to predict speech recognition ability for patients who 

have communication problems, on whom it is often difficult to obtain reliable speech perception 

scores. The SII is also typically applied in hearing aid evaluations by comparing aided and 

unaided performance. The count-the-dots audiogram is an example of a simplified version of the 

SII and is an effective tool for counseling patients with hearing impairments (Mueller and 

Killion, 1990). The SII is also used in probe microphone measurements when fitting appropriate 

gain to restore audibility. A high SII often results from amplifying speech signals so that the 

LTASS has up to 18 dB of sensational level which can facilitate speech perception (Humes, 

1986; Amlani et al., 2002). Finally, there have been attempts to develop hearing aid fitting 

formulas based on audibility across the frequencies and corresponding SIIs for hearing aid users 

(Dillon, 1999; Byrne et al., 2001).  

Despite a wide range of research on the SII associated with hearing aid outcomes, there is 

little published research available that has predicted SIIs for CI users. Mehr et al. (2001) 

attempted to develop and validate an estimation method to derive channel weights for 

multichannel CIs. In addition, some researchers have shown high correlations of several 

modified SII procedures with the intelligibility of vocoded speech (Chen and Loizou, 2011), and 

some proposed a couple of refinements to emulate CI auditory perception (Santos et al., 2013). 

Neither of them, however, has shown traditional TFs that establish the relationship between SII 

and speech perception scores for CI users. Thus, global data related to the SII for CI listeners 
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have not been collected using a standard approach, and comparative relationships to listeners 

with normal hearing have yet to be established. Significant variability in performance among CI 

populations has prevented the application of using the SII with CI users; however, at the very 

least, ways of measuring the SII with this population should be pursued. 

E. Purpose of the study 

The AzBio sentence test was first developed by Spahr and Dorman (2005) with the 

purpose of comparing speech perception performance of high-performing patients who used CIs 

from the various manufacturers (Spahr and Dorman, 2005; Spahr et al., 2007). This test has 

become the gold standard for assessing CI users’ performance, and is now included in the 

Revised Minimum Speech Test Battery used to evaluate pre- and post-implant speech perception 

abilities (Spahr et al., 2012). As noted above, FIFs can differ considerably based on the specific 

speech test materials used (Sherbecoe and Studebaker, 2003). Although the AzBio is well 

known, has effective standardization data available, and was chosen as a gold standard for CI 

evaluation, no attempt has been made to derive a FIF for its stimuli. Establishing FIFs for the 

AzBio set would provide building blocks for future CI studies that employ the SII. Therefore, the 

purposes of this study were to: (1) derive FIFs for the AzBio sentences using a traditional 

approach (Studebaker and Sherbecoe, 1991) and (2) provide systematic comparisons of FIFs for 

the AzBio sentences with other speech perception materials.  

II. METHOD 

A.  Participants 

Fifteen native English speakers (4 males, 11 females) ranging in age from 21 to 51 years 

(M = 29, SD = 10.16) were recruited. Participants had normal hearing and reported negative 

history of cognitive deficits. Pure-tone audiometry was conducted to confirm air conduction 
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thresholds < 20 dB HL at the octave frequencies from 250 to 8000 Hz. All participants 

underwent tympanometry to verify normal middle ear function as evidenced by Type A 

tympanograms. All of them received monetary compensation for their participation. This 

research was approved by The University of Memphis Institutional Review Board.  

B. Materials 

Recorded sentences from the AzBio lists were used which consist of 15 lists, each 

containing 20 sentences spoken by 2 male and 2 female talkers. The total number of possible 

words correct ranges from 133 to 154 depending on the list. Percent correct scores were 

computed by dividing the number of correctly identified words by the total number of words in 

the sentences in each list. In the present study, low- and high-pass filtered AzBio sentences were 

presented at various SNRs in sound field conditions. 

C.  Stimuli 

The noise was designed to match the LTASS of the AzBio speech sounds. All silent 

pauses within and between sentences were eliminated and digitized at 44.1 kHz sampling 

frequency with 16-bit amplitude resolution using Adobe Audition 3.0 (Adobe Systems Inc., San 

Jose, CA, USA). All sentences in 14 of the AzBio lists were concatenated, with the exception of 

List 7, which was used as a practice list. The LTASS envelope of the concatenated speech was 

applied to white noise using Praat (Boersma, 2002). This process ensured that the noise and 

speech signals had the same spectral shape on average across the frequencies, preventing the 

effect of variation in SNRs across frequency bands. The SNRs across the frequencies, however, 

were slightly varied from sentence to sentence, even for the same talker. 

As a large number of filtering/SNR conditions were required to be evenly applied to the 

limited number of AzBio lists, we generated a randomization table that randomly assigned each 
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list to each stimulus condition. Following the randomization scheme, the AzBio lists were 

filtered through 18 high-pass (HP) and 18 low-pass (LP) conditions that were consistent with the 

1/3 octave band calculation procedure (Table I). Linear phase FIR filters (Equiripple filter) with 

a slope of 96 dB/octave at the cutoff frequencies were used. The signal filtering was 

implemented using MATLAB 2016 (The Math-Works, Inc., Natick, MA). The speech-shaped 

white noise and the AzBio sentences were then mixed in separate channels using Adobe 

Audition to present a single stimulus at the desired SNR using an audiometer (GSI 61). Each 

channel was calibrated using a Bruel and Kjaer Type 2250 sound level meter. A total of 222 

experimental stimuli were generated [(18 LP + 18 HP + 1 wide band) X 6 SNRs] with 30 

unnecessary conditions based on the pilot study described below. Those stimuli were randomly 

assigned to one of the AzBio lists following the randomization table. All stimuli were presented 

using Adobe Audition from a laptop through a GSI 61 audiometer.  

D. Procedures 

1. Pilot study 

 First, it was necessary to determine the appropriate SNRs that would be used to draw a 

series of SNR curves for the curve bisectional procedure. The ideal scenario would include SNRs 

that generated maximum scores of 100% for the best condition (wideband frequency with the 

highest SNR), and the scores for the other conditions would gradually decrease with a decrease 

in either SNR or in the amount of speech energy in the cut-off frequency of the filters. Within 

our diverse filtering conditions (18 LP and 18 HP), those with a cut-off frequency at the extreme 

edge of the frequency bands were not intelligible at all, resulting in 0% correct. Thus, it was 

meaningless to conduct experiments in such extremely degraded conditions. As a result, we 
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conducted a pilot study with 6 listeners who had normal hearing to determine appropriate SNRs 

and eliminate unnecessary filtering conditions.  

The pilot study was performed using the procedures as in the main experiment (described 

below), except for the SNR/filtering conditions. Using wideband stimuli, we identified that a 4 

dB SNR resulted in maximum scores of 100%. We then used an SNR range from -6 to 4 dB, 

with 2 dB steps. We further determined unnecessary conditions that resulted in 0% intelligibility 

by testing some cut-off frequency ranges at the edge of the frequency domain, and then 

eliminated those redundant conditions. For example, if LP450 (low-pass filter with a cut-off 

frequency at 450 Hz) at 4 dB SNR resulted in 0% correct, the other acoustically poorer 

conditions, such as LP450 at 2 dB SNR or LP335 at 4 dB SNR were also assumed to be 0%, as 

those conditions were acoustically more degraded. As a result, those unnecessary conditions (30) 

were removed, and 192 conditions remained from the initially planned 222 conditions [(18 LP + 

18 HP + 1 WB) X 6 SNRs]. 

2. Primary study 

Traditional procedures described by Studebaker and Sherbecoe (1991) were applied in 

order to derive the FIFs. For determining FIFs using the curve bisection technique, listeners’ 

percent correct scores on the AzBio test were obtained in 192 filtering/SNR conditions that were 

determined in the pilot study. To avoid learning effects, each listener only heard each list of 

sentences one time. Fifteen AzBio lists were available to each listener. Each participant was 

randomly assigned to 14 different conditions using 14 different lists. According to Spahr et al. 

(2012), speech recognition performance in noise for AzBio List 7 was significantly poorer than 

for the other AzBio lists. Thus, List 7 was used as a practice list for familiarization of the 
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procedure. A practice trial of the speech recognition test was conducted using List 7 under the 

unfiltered 2 dB SNR condition for each participant to get used to the experimental protocol. 

Each participant was seated in the middle of a double-walled sound-treated room meeting 

permissible ambient noise levels (ANSI S3.1-1999 (R2013). The participants listened to the 

stimuli presented through a loudspeaker located 1m away (0° azimuth) from the listener. The 

stimuli were routed from a laptop computer to a GSI 61 audiometer. The noise level was set at 

65 dB SPL, and the level of the speech signal was varied for the desired SNR conditions using 

the audiometer. Participants were instructed to listen carefully and repeat everything they heard, 

even if it was only part of a sentence. They were encouraged to guess. Responses were scored in 

percent based on the number of key words repeated correctly. The final perception score for each 

condition was determined by the average of two individuals’ speech perception scores. Each 

participant required approximately one hour to complete their assigned test conditions. Table 1 

shows the 192 filtering/SNR conditions used in the main experiment along with average speech 

recognition scores in percentage. The diagonal line boxes represent conditions that were 

eliminated based on the pilot study. 
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Table 1. The filtering/SNR conditions used in the present study. Average speech recognition scores are represented in percent for each 

condition. The cells with a diagonal line are the conditions that were eliminated. 

SNR (dB) Filter type 
1/3 Octave cut-off frequency (Hz) 

180 224 280 355 450 560 710 900 1120 1400 1800 2240 2800 3550 4500 5600 7100 9000 

-6 

Low-pass filter         0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.03  4.52  7.98  8.38  12.47  16.32  18.04  

High-pass filter 11.43  13.04  16.42  13.41  18.35  12.59  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00    

Wide band 19.00                                   

-4  

Low-pass filter         0.00  0.00  0.35  0.00  0.00  2.76  6.04  7.63  15.05  15.29  23.97  31.88  33.49  29.54  

High-pass filter 28.89  30.13  37.85  32.41  28.62  23.53  21.11  24.16  13.14  19.16  19.34  7.33  3.50  0.70  0.00  0.00  0.00    

Wide band 33.00                                    

-2 

Low-pass filter         0.00  0.00  0.00  1.05  2.50  12.47  15.92  28.64  32.53  38.20  48.07  46.90  62.38  53.10  

High-pass filter 52.39  48.25  47.86  55.40  47.62  46.04  39.80  39.40  29.22  33.07  22.99  9.00  8.37  1.90  0.00  0.36  0.00    

Wide band 55.00                                    

0 

Low-pass filter         0.00  0.00  2.05  7.10  14.14  30.07  29.51  36.50  48.85  72.72  62.42  72.42  74.74  68.37  

High-pass filter 74.96  68.01  67.59  63.81  67.38  62.09  50.37  48.45  39.79  40.93  30.90  13.79  4.34  9.62  0.00  0.00  0.00    

Wide band 71.00                                    

2 

Low-pass filter         0.00  0.00  8.14  12.06  20.68  32.20  57.63  59.21  80.96  80.78  85.92  79.37  85.95  89.63  

High-pass filter 80.50  80.59  86.40  87.29  86.59  76.84  80.39  68.88  63.59  54.42  45.72  22.37  11.09  4.00  0.00  0.00  0.00    

Wide band 85.40                                    

4 

Low-pass filter     0.00 0.97 10.37 15.06 31.57 44.20 70.36 73.10 88.82 95.22 92.17 91.42 95.91 97.80 

High-pass filter 95.20 91.55 96.00 99.29 87.66 82.31 82.33 77.72 82.39 60.61 55.23 26.08 17.27 9.07 2.17 0.00 0.00  

Wide band 98.46  
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III. RESULTS 

A. Curve smoothing 

Multiple SNR curves were drawn plotting the speech recognition scores as a function of 

the cutoff frequencies of the HP and LP filters (Fig. 1). Unlike theoretical graph patterns that can 

show smoothed and even perception scores as a function of cut-off frequencies, our empirical 

graph patterns showed zigzag shapes for some frequency bands. This unsmoothed pattern has 

been observed in most studies, so smoothing curves were required prior to moving on to the next 

step of the curve bisection method. The smoothing method used is a technique that is 

conventionally used in most studies (Studebaker and Sherbecoe, 1991; Studebaker et al., 1993; 

DePaolis et al., 1996; Sherbecoe and Studebaker, 2002; Jin et al., 2015).  The curves were 

smoothed by drawing freehand curves following four rules demonstrated by Studebaker and 

Sherbecoe (1991): (1) two different SNR curves do not intersect if they are identical filter 

curves; (2) both HP and LP curves at any SNR terminate at the same score; (3) scores must 

increase or remain constant as the energy of the passband or SNR increases; (4) HP and LP 

curves at any SNR curves make only a single crossover point.  
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Figure 1. Group mean percent correct scores for AzBio lists plotted as a function of the 1/3 

octave cutoff frequency bands. Each panel represents the curves in the order of different SNRs 

from 4 to -6 dB SNR in 2 dB steps. The curves with circles in red indicate HP, and the curves 

with circle in blue represent LP conditions. Smoothed curves drawn based on raw data are shown 

with yellow lines.  
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B. Curve bisection procedure 

The smoothed curves were then analyzed using a sequence of procedures called the curve 

bisection procedure (Studebaker and Sherbecoe, 1991; Wong et al., 2007; Chen et al., 2016). 

The curve bisection method is a technique that is typically used to determine the relative transfer 

function as a basis for deriving a FIF and absolute transfer function. 

Figure 2 shows the illustration of the curve bisection procedure for deriving relative 

transfer function curves. The procedure begins with an assumption that the total area for the 4 dB 

SNR curves, which have 100% maximum scores, is equal to an SII of 1.0. Thus, it can be 

assumed that the intersection point between the HP and LP curves for this SNR corresponds to 

an SII of 0.5, because half of the total auditory area is available below this point, and the other 

half of the auditory area is available above this point. In the same way, an intersection point for 

certain SNR curves having maximum scores that correspond to an SII of 0.5 is equal to an SII of 

0.25, and another intersection point for certain SNR curves having maximum scores that 

correspond to an SII of 0.25 is equal to and SII of 0.125. Unfortunately, none of the obtained 

SNR curves in our procedure had maximum scores at the point of either an SII of 0.5 or 0.25. 

Therefore, we adopted interpolation methods to generate the curves that yielded the maximum 

scores corresponding to SIIs of 0.5 and 0.25. The interpolation curves were drawn on the basis of 

the two obtained curves that had the closest maximum scores to the 0.5 and 0.25 SIIs: 0 & -2 dB 

SNR curves for the interpolation curve having a maximum score at 0.5 SII and -4 & -6 dB SNR 

curves for the interpolation curve having a maximum score at 0.25 SII. The SII of 0.75 was 

obtained by extending two separate horizontal lines, left and right, from the 0.25 SII until they 

reached the HP and LP curve for the 4 dB SNR condition. Then, vertical lines were drawn up 

from those points until they touched the HP and LP curves for the 4 dB SNR condition. The 
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average of those two points was 0.75 SII. A 0.875 SII point was derived in the same way using 

the SII of 0.125. Additional SII values were obtained with our speech perception score data at 

several different SNRs using this procedure.  

 

Figure 2. Illustration of the curve bisection procedure. Group mean percent correct scores obtained 

from speech perception tests at 4 dB SNR are represented with the smoothed curves (top two HP 

and LP curves) as a function of the 1/3 octave cutoff frequency bands. The following four curves 

were generated using an interpolation method based on 0 & -2 dB SNRs and -4 & -6 dB SNRs, 

respectively. The filled circles indicate relative SII points 0.875, 0.75, 0.5, 0.25, 0.125 from top to 

bottom. 
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C. Cross-over frequency 

Cross-over frequencies are defined as the intersection points of HP and LP speech 

recognition curves. As shown in the previous step, these points account for equal intelligibility 

above and below the points at each SNR curve. Cross-over frequencies for the remaining five 

SNR conditions are shown in Table 2. The smoothed mean scores were used to determine the 

cross-over frequencies. The -6 dB SNR condition was not reported because its curve did not 

yield an intersection point due to significantly low intelligibility. To some extent, the cross-over 

frequencies tended to monotonically decrease with SNR conditions. 

Table 2.  Cross-over frequencies for the five SNR conditions. 

SNR conditions (dB) -4 -2 0 2 4 Average 

Cross-over frequency (Hz) 2114 1863 1675 1645 1571 1774 

 

D. Relative transfer function 

Through the consecutive curve bisection procedures, 12 pairs of speech recognition 

scores and their associated SII values were obtained. The obtained pairs of SIIs and scores were 

used to calculate relative transfer functions yielding the curve fitting values Q and N in equation 

(3) (P will be assumed to be 1). The nonlinear regression using IBM SPSS (version 24) found 

that the fit between the SIIs and scores was excellent when Q = 0.567 and N = 3.797 (R2 value of 

0.991) for predicting scores (equation 3), and when Q = 0.57 and N = 3.712 (R2 value of 0.995) 

for predicting SIIs (equation 7, an inverse of equation 3).  

𝑆𝐼𝐼 = −
𝑄

𝑃
𝑙𝑜𝑔 (1 − 𝑆 ) ,                                                          (7) 
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These values were also confirmed with the NLIN procedure in SAS program (version 9). 

The relative transfer function curve determined by Q (0.567) and N (3.797) based on the twelve 

pairs is shown in Figure 3.  

 

Figure 3. Relative transfer function plotted on the basis of the twelve pairs of speech recognition 

scores and corresponding SIIs (denoted with filled circles) obtained by the curve-bisection 

procedure.  

E. Frequency importance functions 

The FIFs were derived using the following procedures. First, all the smoothed mean HP 

and LP speech perception scores for each SNR were transformed into SII values using equation 

(7) using the Q and N values obtained for the relative transfer function. Then the difference in SII 

values between two adjacent bands was calculated to determine the SII value for individual 

bands. Specifically, for each HP condition, the SII value for the higher frequency band was 

subtracted from the SII value for the lower frequency band. In contrast, for each LP condition, 
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the SII value for the lower frequency band was subtracted from the SII value for the higher 

frequency band. The averages of these two difference values were calculated for the six different 

SNRs, and then averages of the six SNR values were again determined. This procedure was 

repeated until all the mean values across the 1/3 octave bands were obtained. Eventually, FIFs 

for each frequency band were determined proportionally by dividing each SII value by the sum 

of all values over the frequency bands and multiplying by 100. Table 3 demonstrates the last 

computational stage for deriving FIFs, and Figure 4 reports the FIFs obtained from this study. 
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Table 3. Summary table of the FIF calculation. Differences in SII values between two adjacent 

bands are represented as a function of the 1/3 octave bands and the six SNR conditions. Final 

FIFs were derived by averaging the SII values for six SNRs at each frequency band and 

proportionally computing the value across the frequency bands. 

NO. 1/3 Octave band (Hz) Center frequency (Hz) 
SNR (dB) 

Average FIF (%) 
-6 -4 -2 0 2 4 

1 0 180 160 0.006 0.006 0.007 0.000 0.007 0.065 0.015 2.203 

2 180 224 200 0.000 0.000 0.003 0.009 0.000 0.087 0.017 2.406 

3 224 280 250 0.000 0.000 0.007 0.009 0.000 0.056 0.012 1.738 

4 280 355 315 0.006 0.006 0.003 0.009 0.009 0.023 0.009 1.347 

5 355 450 400 0.013 0.012 0.013 0.008 0.016 0.065 0.021 3.076 

6 450 560 500 0.052 0.017 0.013 0.016 0.022 0.105 0.037 5.420 

7 560 710 630 0.090 0.018 0.018 0.083 0.091 0.060 0.060 8.708 

8 710 900 800 0.085 0.012 0.057 0.046 0.058 0.049 0.051 7.426 

9 900 1120 1000  0.019 0.040 0.048 0.072 0.075 0.051 7.354 

10 1120 1400 1250  0.071 0.046 0.048 0.071 0.099 0.067 9.720 

11 1400 1800 1600  0.032 0.045 0.047 0.097 0.131 0.070 10.208 

12 1800 2240 2000 0.042 0.028 0.043 0.057 0.092 0.116 0.063 9.127 

13 2240 2800 2500 0.062 0.044 0.042 0.063 0.091 0.097 0.067 9.647 

14 2800 3550 3150 0.010 0.032 0.048 0.063 0.072 0.103 0.055 7.912 

15 3550 4500 4000 0.025 0.018 0.040 0.043 0.036 0.113 0.046 6.652 

16 4500 5600 5000 0.018 0.017 0.013 0.014 0.000 0.089 0.025 3.647 

17 5600 7100 6300 0.013 0.006 0.010 0.010 0.017 0.051 0.018 2.565 

18 7100 9000 8000 0.003 0.001 0.001 0.002 0.004 0.023 0.006 0.845 

 SUM 0.690 100 
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Figure 4.  FIF plot for the AzBio test. Frequency weights for the AzBio sentences are displayed 

as a function of the 1/3 octave cutoff frequency bands. 

F. Absolute transfer function 

The last stage was to derive the absolute TF. As the relative TF was developed based 

only on the speech produced by the four speakers in the AzBio, it was necessary to adjust the TF 

curves to reflect variability in the speech spectrum using the LTASS. To identify the true 

absolute TF curves, the values K in the audibility formula (Eq. 2) needed to be determined and 

corresponding Q and N values were reestablished. An iterative process was used to search the K 

value that yielded the smallest mean square error between the predicted SII [calculated with Eq. 

7) and the actual SII (calculated with Eq. 1)]. First, unsmoothed mean scores between 5% and 

95% were plotted as a function of their SII values. Then, holding the DR value constant at 30 dB, 

K was varied starting from 10 dB in 1 dB steps in equation 1 to calculate the actual SII. The 

corresponding Q and N values to define K were used to calculate the predicted SII in equation 7. 

This comparison process was repeated until the smallest mean square error was identified. The 

corresponding Q and N values of the best fitting curve using Equation 3 and R2 between raw 
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scores and SII were obtained. The results showed that the mean square error was the least when 

K was 11. The corresponding Q and N values were 0.287 and 5.206, respectively, and R2 was 

0.923 for predicting speech intelligibility scores from SIIs using Equation 3. Figure 5 shows the 

TF curve plotted using the K, Q and N values obtained here. Q was 0.254 and N was 6.519, and 

R2 was 0.914 for predicting SII from speech intelligibility scores using Equation 7. The obtained 

R2 values in the current study are slightly lower than the values from other FIF studies: 

continuous discourse (Eq. 3: 0.984; Eq. 7: 0.977); CID W-22 monosyllabic word test (Eq. 3: 

0.995; Eq. 7: 0.992). Comparatively lower correlations of our model are presumably attributed to 

some unknown potential methodological variables, such as a small sample size or unstable 

speech scores affecting the curve smoothing procedures. However, our R2 is still thought to be 

high enough to show that the two models both provided an excellent fit to the data. 

 

Figure 5. Absolute transfer function curve plotted on the basis of the unsmoothed speech 

recognition scores and corresponding SIIs (denoted with dots). The unsmoothed mean scores 

between 5% and 95% were plotted as a function of their SII values. 
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IV. DISCUSSION 

A. Cross-over frequency 

The geometric average of the cross-over frequencies for the five SNR curves was 1774 

Hz. This value is somewhat higher in comparison with the cross-over frequencies of other 

English speech materials: Nonsense syllables (1660 Hz), HINT sentence test (1550 Hz), 

Connected Speech Test (1599 Hz), continuous discourse (1189 Hz) and CID W-22 monosyllabic 

word test (1314 Hz) (ANSI, 1969; Studebaker et al., 1987; Studebaker and Sherbecoe, 1991; 

Eisenberg et al., 1998; Sherbecoe and Studebaker, 2002). The higher cross-over frequency 

observed in this study may be associated with the gender of the talkers (Studebaker et al., 1987). 

The two male and two female talkers used in the AzBio recordings probably resulted in higher 

cross-over frequencies than other studies that used only male talkers (ANSI, 1969; Studebaker 

and Sherbecoe, 1991; Eisenberg et al., 1998). Some previous FIF studies have used either male 

and female talkers or only female talkers; however, they exhibited lower cross-over frequencies 

(Studebaker et al., 1987; Sherbecoe and Studebaker, 2002). These studies used continuous 

discourse and connected speech as the speech materials. This implies that variance in cross-over 

frequency is probably accounted for by the redundancy effect of speech materials, with greater 

contextual cues associated with lower cross-over frequencies (Studebaker et al., 1987). 

Interestingly, many of our participants unofficially reported that the female talkers were 

perceptually more intelligible than the male talkers. Thus, it seems reasonable that multiple 

variables interact to determine the cross-over frequency that eventually contributes to the FIFs. 

 As seen in Table 2, the cross-over frequencies in our study for the five usable SNRs 

decreased as speech intelligibility increased. Studebaker and Sherbecoe (1991) suggested that 

cross-over frequencies should be equal across different SNRs, and unequal cross-over 
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frequencies may be caused by the adverse effect of spread of masking. They noted that spread of 

masking effects possibly occurs when the designated speech-shaped noise cannot completely 

cover 1% of the speech peaks causing a failure to mask the intensity variation in speech. 

However, the exact reason for the decrease in cross-over frequencies with SNR is unclear 

because this tendency has been observed not only in this study, but also in other studies (Kuo, 

2013) that used validated speech-shaped noises.  

B. Frequency importance function 

 Many articles regarding FIFs have reported that the primary peaks of speech are located 

around 2 kHz  (Studebaker and Sherbecoe, 1991; DePaolis et al., 1996; Henry et al., 1998). The 

greatest amount of frequency weights at this frequency region is accounted for by the importance 

of the second and third formants in recognizing voicing in speech (Chen et al., 2016). In most 

vowels, these formants show their dynamic trajectories at about 1 to 2 kHz. At first glance, our 

FIF for the AzBio test seems to have a broad mid-frequency peak extending from about 630 Hz 

to 2500 Hz. However, judging from the small valley between 800 and 1kHz, the shape appears to 

follow a bimodal pattern having two peaks at low and mid-high frequencies. There was a minor 

peak at 630 Hz and a major peak at 1600 Hz. Studebaker and Sherbecoe (1991) first proposed a 

possible association between the bimodal shape and perception of contextual cues. They 

provided some examples of highly redundant speech materials that produced a bimodal shape 

(Studebaker et al., 1987; Duggirala et al., 1988) as opposed to a nonsense syllable test that 

yielded unimodal configurations (ANSI, 1969). A similar view was expressed by DePaolis et al. 

(1996). They derived FIFs for words, sentences and continuous discourse under the same method 

and conditions, and suggested that highly contextual cues or low vocabulary size could be 

associated with a broad shape of frequency weights. Over the past few decades, highly 
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contextual speech tests having unimodal shapes have been frequently reported (Bell et al., 1992; 

DePaolis et al., 1996; Eisenberg et al., 1998). Therefore, it seems more reasonable to assume that 

context and linguistic information are associated with a more broadly shaped FIF, and further 

investigations on the origin of bimodal shapes are still necessary. 

 In Figure 6, we compared our FIF with those of other speech perception tests  including 

importance weights for the R-SPIN test (Bilger, 1984) and the CNC words from Lehiste and 

Peterson (1959) along with average speech as presented in ANSI S3.5-1997. With the exception 

of the R-SPIN, the importance weights for the AzBio and the CNC words were nearly identical 

to those for average speech as provided in ANSI S3.5-1997.  This implies that the FIFs provided 

by ANSI satisfactorily represent frequency weights for the AzBio sentences and CNC words in 

the SPIN test, and could be used for typical SII calculations for sentence intellegibility.  

 

Figure 6. FIFs for four English stimuli were plotted as a function of frequency in logarithmic 

scale.  
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Interestingly, an extremely sharp and high peak at 2 kHz was observed in the FIF for the 

R-SPIN test. It is highly probable that the small number of frequency bands used gave rise to the 

extremely prominent peak because the distribution of weights across frequency was limited. 

Thus, caution should be taken regarding the number of bands used when interpreting 

comparative differences in FIFs for different studies. Using cumulative plots could be an option 

to eliminate the bias of the number of bands. Figure 7 shows the cumulative FIFs for the speech 

materials shown in Figure 6. Despite the different shape of the frequency curves,  the abrupt 

change in frequency weights for the R-SPIN was also seen in the cumulative plot. DePaolis et al. 

(1996) assumed that this distinct shape was attributed to the degree of listeners’ familiarity to the 

stimuli. In fact, methodological heterogeneity among studies has been noted as an obstacle for 

the accurate comparison of FIFs in many relevant studies (Studebaker et al., 1993; DePaolis et 

al., 1996; Sherbecoe and Studebaker, 2002; Kates, 2013). Neverthless, due to the complex nature 

of speech and technical procedures required for deriving FIFs, it has been challenging for studies 

to keep uniformity in their methods. In addition to speech stimuli, several other factors have been 

shown to cause variability in FIFs including gender of talkers, signal processing, stimulus 

familarization of listerners, curve smoothing methods, type of noise, data collection protocol, and 

vocabulary size (Bell et al., 1992; DePaolis et al., 1996; Sherbecoe and Studebaker, 2002; Kates, 

2013). 
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Figure 7. Cumulative FIFs for four English speech stimuli plotted as a function of frequency on 

a logarithmic scale.  

An alternative way for FIF computation that uses a nonlinear optimization function has 

recently been released (Kates, 2013) highlighting its advantages of accuracy and simplicity over 

the more traditional procedure. The new procedure aims at minimizing RMS errors between 

speech perception scores observed from experiments and those predicted by the SII equation 

using MATLAB. An unconstrained minimization, fminsearch function, is used to find an 

approximation. Then the approximation is applied to the constrained minimization, fmincon 

function, to yield optimal values of variables.  

The current study focused primarily on the traditional FIF derivation procedure, despite 

the laborious steps involved and its relatively lower accuracy as indicated by Kates (2013). We 

chose to use the traditional procedure because not only has it been used in most FIF studies, 

which makes it easier for comparisons, but also it provides more detailed information such as 

information about the cross-over frequency. Our FIF, derived by the traditional procedure, was 

compared to the FIF derived by the nonlinear optimization procedure as shown in Figure 8. The 
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frequency weights for the traditional procedure and the nonlinear optimization procedure did not 

match up completely. The overall patterns were similar, but there were a few inconsistent 

frequency band weights between the two procedures (e.g., around the center frequency of 630 Hz 

and above the center frequency of 4 kHz). Some of the fluctuating FIF patterns seen across bands 

with the traditional procedure were not shown in the new procedure. It is likely that the five-

point binomial smoothing filter (Marchand and Marmet, 1983) used in the new procedure 

removed undesirable fluctuations resulting in smoother morphology of the FIF for the nonlinear 

optimization procedure. The differences in the FIFs obtained in the current study are quite large 

compared to those observed in previous studies (Kates, 2013; Jin et al., 2015) for unknown 

reasons. 

 

Figure 8. FIFs derived from the traditional procedure and the nonlinear optimization procedure. 

The RMS error for the new procedure (0.044) was less than the RMS error for the 

traditional procedure (0.069). The Pearson correlation coefficients were 0.923 for the traditional 

procedure and 0.990 for the nonlinear optimization procedure (p < 0.001), implying that both 

procedures were accurate, but the new approach was slightly higher in accuracy. The new 

solution also produced the equation parameters that minimized the RMS error between the SIIs 
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and the observed speech perception scores. The fitting parameters Q, N, and K for the two 

procedures are presented in Table 4. 

Table 4. The fitting parameter values of Q, N, and K for the two procedures. 

Parameter Nonlinear Optimization procedure Traditional procedure 
Q 0.247 0.287 
N 4.013 5.206 
K 8.737 11 

 

C. Transfer function (TF) 

In this study, the TF for the AzBio test was derived to establish the relationship between 

SIIs and corresponding speech intelligibility. Figure 9 shows TFs that convert SII scores into 

speech recognition scores for our FIFs for the AzBio test compared to three other English 

(HINT, CST, and NU-6) speech materials (Studebaker et al., 1993; Eisenberg et al., 1998; 

Sherbecoe and Studebaker, 2002).  

 

Figure 9. Comparison of transfer functions for the four English materials: (1) AzBio sentences 

(current study); (2) HINT (Eisenberg et al., 1998); (3) CST (Sherbecoe &Studebaker, 2002); (4) 

NU-6 words (Studebaker et al., 1993). 
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Examination of Figure 9 shows that the shape of the TFs differed depending on the 

amount of contextual cues embedded in the speech. The NU-6 words required a much higher SII 

value (approximately 1.0 SII) in order to achieve 100% correct compared to the other materials 

that required lower SIIs to reach 100%. This is presumably due to the limited linguistic context 

available in the NU-6 monosyllabic word lists (Sherbecoe and Studebaker, 2002). Notably, the 

TF for the AzBio test was positioned further to the left of the HINT and nearly the same as the 

CST indicating better performance on the AzBio test compared to the HINT. For example, an SII 

of 0.2 resulted in an AzBio score of about 40% compared to a HINT score of 10%, and at an SII 

of 0.5, performance on the AzBio and HINT converged. Even though the CST provides 

connected discourse compared to only sentences in the AzBio, our findings suggest that the 

AzBio sentences were comparable in difficulty.    

Research has shown that performance on the AzBio test has been poorer than on the 

HINT test (Gifford et al., 2008; Spahr et al., 2012). However, our findings show the opposite 

results in the TF. It is possible this discrepancy is due mainly to the different experimental and 

mathematical methods used in this study and others. For example, in our experiments, listeners 

were highly encouraged to guess for correct responses. Also, we used a large number of filters, 

and outcomes were scored based on the key words correctly identified. In contrast, Eisenberg et 

al. (1998) used a limited number of filters for the purpose of establishing the TF rather than 

targeting FIFs. In addition, they scored the number of sentences, not words, that their listeners 

correctly answered. Further, in calculating the TF, we varied K (peak to RMS level), along with 

Q and N, to seek the best fitting curve, whereas Eisenberg et al. (1998) assumed K to be 12 dB. 

Thus, different methods used among the studies probably had some influence on the varying 
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results. Table 5 reports the slopes for each of the four TF curves shown in Figure 9 based on the 

scores between 5 to 95% which eliminated floor and ceiling effects.  

Table 5. Slopes of the TFs for the different speech materials. 

 AzBio HINT CST NU-6 

Slope (%) 8.68 10.05 10.42 6.39 

 

D. Limitations 

 There are several limitations to be noted in this study. The speech perception scores in 

each filtering/SNR condition were determined by limited experimental data (the average of two 

scores by two individuals) which some might characterize as insufficiently reliable. To be sure, 

testing more people and averaging more scores in each condition would have resulted in more 

reliable outcomes. However, we felt including a large number of filtering/SNR conditions in the 

experiments strengthened the reliability of this study. 

 For deriving the FIFs, we followed the traditional procedure that has been most widely 

used. As seen before, the traditional procedure calculates importance weights by comparing 

scores obtained with successive cut-off frequencies. As a result, when importance weights for 

each band are computed, speech energy either below or above the cut-off frequency are involved, 

while the other speech energy either above or below the cut-off frequency are excluded (Warren 

et al., 2005; Healy et al., 2013). Recently, some have posed the issue of redundancy and 

synergistic interactions among involved frequency bands, suggesting that traditional FIF 

procedures may not reflect independent importance weights for each band (Healy and Warren, 

2003; Warren et al., 2005). For instance, a target band presented with another adjacent band 

showed less importance in comparison to a target band presented with another band located some 
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distance apart. To address this potential limitation, the “compound” method (Apoux and Healy, 

2012) has been developed that derives FIFs by computing the performance differences between a 

target band with randomly selected bands and the same randomly selected band, but with the 

absence of the target band. Other alternative approaches also exist to determine the importance 

weights (Doherty and Turner, 1996; Turner et al., 1998; Henry et al., 2000; Mehr et al., 2001). 

However, given the fact that almost all studies, even the ANSI standard for the six speech 

materials, have followed the traditional approach to FIF derivation, we opted to perform our 

research in this way as well. Thus, the possible effects of redundancy and synergistic interactions 

among bands needs to be taken into account when interpreting these results.  

 Lastly, the use of different data collection and analysis procedures is always problematic 

when comparing FIFs across studies. The accurate comparison of the results from our study with 

other studies is also limited due to the methodological heterogeneity. Further study will be 

required to identify the effect of variations in methodology. Validating our derived FIF for the 

AzBio sentences remains to be completed in future studies. 

V. CONCLUSIONS 

 Advances in CI technology have seen rapid improvements in speech intelligibility among 

patients, prompting researchers to develop new speech perception materials, such as the AzBio 

test. In this study, we derived FIFs for the AzBio test because FIFs vary across different speech 

materials. The overall frequency weights for the AzBio test were similar to those for other 

English speech materials. For the cross-procedure comparison, the FIF derived from the 

nonlinear optimization procedure resulted in relatively higher accuracy compared to the FIF 

derived from the traditional procedure. The FIF shapes for the two procedures did not completely 

overlap each other. However, the results supported the globally accepted notion that speech cues 
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in the 2 kHz region play a pivotal role in speech recognition. Our findings provide empirically 

derived FIFs for the AzBio test that can be used in future studies. The FIF will contribute to the 

interpretation of speech perception outcomes when using the AzBio test. It will be worthwhile to 

refer to the FIF when developing new signal processing strategies or providing optimal maps to 

the CI patients. The SII may not be a reliable tool to objectively estimate speech intelligibility for 

the CI population due to the tremendous variability in performance among CI recipients. The 

application of SII is challenged even more by the difference in FIF patterns between normal 

listeners and CI listeners, as well as the large cross-listener inconsistencies observed in FIFs 

among CI users (Bosen and Chatterjee, 2016). Nevertheless, the SII, which has a long history of 

widespread use, is certainly worth trying with CI patients. It is hoped that our obtained FIFs will 

contribute to improving the accuracy of the SII in predicting speech intelligibility for CI patients 

using the AzBio test.  
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Chapter 3 

PREDICTING SPEECH RECOGNITION USING THE SPEECH INTELLIGIBILITY 

INDEX (SII) AND OTHER VARIABLES FOR COCHLEAR IMPLANT USERS 

I. INTRODUCTION 

A. Spectral/temporal resolution in cochlear implants 

 A cochlear implant (CI) is a prosthetic device that converts acoustic signals into electrical 

stimuli to excite surviving auditory nerve fibers. Over the past few decades, a growing number of 

people with severe-to-profound sensorineural hearing loss have benefited from CIs that can 

restore audibility. However, many patients still struggle with understanding speech not only due 

to the characteristics of electrical hearing, but also because the pathway through which sound 

travels is different in the CI compared to the normal hearing mechanism. Unlike the mechanisms 

of normal hearing that incorporate the peripheral (outer, middle, and inner ears) and central 

mechanisms, CIs bypass many of these auditory structures and directly stimulate auditory nerve 

fibers along the electrode array. This causes a loss of the significant roles that the outer and 

middle ears play as frequency-specific amplifiers. This loss of auditory processing ability is often 

compensated for by breaking the broad concept of auditory ability into spectral/temporal 

resolution. This segmentation strategy is especially useful when closely examining the subparts 

of auditory processing ability and coming up with a solution targeting the specific auditory 

ability that is diminished for people with hearing loss.  

 Spectral resolution refers to one’s sensitivity in detecting fine acoustic changes in the 

frequency domain. CI users are known to have very poor spectral resolution for several reasons. 

Physiologically, neural excitation patterns of electrical hearing are broader than those of acoustic 

hearing (Macherey and Carlyon, 2014), resulting in poor frequency sensitivity caused by 
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overlapping auditory filters for CI users. Functionally, a CI system primarily extracts and 

transfers temporal-envelope cues from band-pass filters, and temporal fine structure cues in the 

speech signal are typically lost. Although it has been established that envelope cues alone can 

transfer sufficient information for speech perception in quiet, the role of temporal fine structure 

cannot be disregarded considering its significant contribution to pitch perception (Smith et al., 

2002; Oxenham et al., 2004) and speech perception in noise (Lorenzi et al., 2006). In addition, 

up to 22 electrical channels in CI systems that substitute for thousands of inner and outer hair 

cells may not be enough to deliver fine frequency information. Increasing the number of 

electrodes could rather result in the adverse effect of channel interaction in certain circumstances 

such as with monopolar current. These physiological challenges combine with the technical 

impossibility of designing an equal number of the auditory filter bands typical of normal acoustic 

mechanism to cause poor spectral resolution for CI listeners. For this reason, spectral 

degradation is often thought to be a greater issue than deficiency in temporal resolution for CI 

users. That is, it is typically easier to restore normal-like temporal resolution by increasing 

stimulation rates (Shannon et al., 2011). As a result, CI users often take advantage of temporal 

cues to compensate for their poor spectral resolution for phonetic perception (Winn et al., 2012).  

 The ability to resolve or segregate temporal variances in a stream of sound is called 

temporal resolution. CIs use a train of biphasic pulses as the carrier of envelope cues to transmit 

acoustic information. Theoretically, higher stimulation rates of electrical pulses are beneficial, as 

fine temporal modulation information can be delivered to listeners. However, many cases have 

been reported where CI users cannot take advantage of these higher stimulation rates for 

improving speech perception (Fu and Shannon, 2000b; Vandali et al., 2000; Shannon et al., 

2011), consistently resulting in poor temporal resolution. The reasons behind this are assumed to 
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be due to the characteristics of auditory nerve firing patterns in response to electrical pulse trains 

used in CIs: (1) absolute refractory periods and resting potentials of neural firing patterns do not 

fit the fast rates of electrical stimulation and (2) a train of biphasic pulses is not appropriate to 

provide exact timing information because it consists of two opposite polarities that cause action 

potentials with different latencies (fixed rate stimuli primarily deliver envelope information) 

(Macherey and Carlyon, 2014). 

 These two aspects of auditory processing capacity are highly associated with speech 

perception performance. For this reason, many CI studies have used them in relation to speech 

recognition (Shannon et al., 1995; Fu and Shannon, 2000a; Nie et al., 2006; Xu and Zheng, 

2007). Viewed in this light, the lack of such auditory processing capacities for CI users is 

thought to be an important contributing factor to the variance seen in their speech perception 

outcomes. Here, we included spectral and temporal resolution as predictive factors to examine 

the degree of contribution that these auditory processing abilities make for speech perception in 

CI users. 

B. Variance in performance for CI users 

One of the issues that always follows when we discuss listeners’ performance with CIs is 

the enormous variability seen in their speech perception performance. CIs do not provide equal 

benefit in all users. Some CI recipients show nearly normal performance exceeding expectations, 

while the performance of others is so poor that some of them do not wear their CI. Those who 

cannot benefit from CIs challenge surgeons and clinicians to improve their procedures for better 

outcomes. Thus, determining, or even quantifying, factors that predict perceptual benefits from 

CI surgery is clinically crucial in establishing realistic expectations and rehabilitation strategies 

for CI recipients. In fact, a large number of studies has been conducted to address this issue by 
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looking at the correlation between speech perception performance and surgical, demographic, 

psychophysical and cognitive variables. Overall, the same point has been made from previous 

studies that the duration of deafness is certainly one of the most critical factors determining 

performance with implantation (Blamey et al., 1996; Daya et al., 1999; van Dijk et al., 1999; 

Gordon et al., 2000; Green et al., 2007; Holden et al., 2013). Gordon et al. (2000) noted that all 

CI children who had extremely poor open-set word recognition scores had experienced deafness 

longer (implanted at ages beyond 5 years) than the control group. It is typically assumed that 

children implanted prior to two years of age have better speech and language performance 

compared to those who were implanted at a later age (Kirk et al., 2000; Kral and Sharma, 2012; 

May-Mederake, 2012; O’Donoghue et al., 2014). According to May-Mederake (2012), most 

children implanted at less than two years of age performed as well as or better than their control 

peers in speech and grammar development outcomes. The long duration of auditory deprivation 

causes delays in speech and language development and reconstruction of neural circuits in the 

brain (Faulkner and Pisoni, 2013). 

Such pre-implant factors, however, cannot fully account for limited speech perception 

outcomes in CI individuals. Other factors, such as communication mode, audibility, etiology, 

habilitation and cognitive function also have been found to contribute a significant amount of 

variance in speech recognition performance in CI patients (Pisoni et al., 1999; Collison et al., 

2004; Holden et al., 2013; Schafer and Utrup, 2016). Geers et al. (2011) evaluated performance 

across a variety of domains for 112 CI teenagers by comparing outcomes obtained when they 

were in elementary grades with when they were in high school. They found that variability in 

speech/language outcomes was accounted for by neurocognitive processing measured with 

verbal rehearsal speed. They also emphasized the use of spoken language as a communication 
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mode, suggesting that oral communication is positively correlated with verbal rehearsal skills 

and speech perception. In this study, CI users’ audiologic/demographic variables were 

investigated to examine their effects on variability in speech perception performance. 

C. Cognitive function as a contributing factor 

Over the past few years, the effect of central cognitive function on CI users’ speech 

perception has received much attention (Pisoni and Geers, 2000; Pisoni and Cleary, 2003b; 

Collison et al., 2004; Burkholder and Pisoni, 2006). Cognitive function encompasses broad brain 

activities including memory, learning, judgment, reasoning, attention, language comprehension 

and production. In the field of cognitive science, a working memory model is frequently 

referenced to account for the cognitive information processing system. The notion of working 

memory stems from the concept of short-term memory (Atkinson and Shiffrin, 1968) that only 

refers to the short-term storage of information. From this simple point of view, short-term 

memory has been developed into working memory, extending its definition to include capacity to 

encode, store, and manipulate information. Among several models of working memory 

(Daneman and Carpenter, 1980; Hasher and Zacks, 1988; Caplan and Waters, 1999), the theory 

proposed by Baddeley and colleagues (Baddeley and Hitch, 1974; Baddeley, 1992) is considered 

as one of the most influential when discussing working memory. According to their 

multicomponent model, working memory functions by multiple components: central executive, 

phonological loop, and visuospatial sketchpad. As an active memory system, the central 

executive function is responsible for controlling attention to sensory inputs and regulating or 

coordinating “slave systems” that provide short-term storage of information. The visuospatial 

sketchpad is one of the slave systems responsible for storing visual and spatial information. The 

other slave system, the phonological loop that stores phonological information, is composed of 
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two systems: a phonological input store and an articulatory rehearsal process. This model has 

been extended by an additional component, known as the episodic buffer, that links working 

memory and long-term memory (Baddeley, 2000). The episodic buffer integrates information 

from other slave systems and forms a combined unit such as the short story or a scene.  

When assessing working memory associated with people with hearing loss, the concept 

of phonological loop can be frequently applied. In everyday life, linguistic information is 

encoded by sensory organs, and then the phonological information is rehearsed and stored in 

ones’ memory. People with hearing loss whose auditory sensory functions are diminished may 

have a problem with making use of such phonological representations of input information. One 

of the more useful measures that has been used for assessing working memory and representing 

the phonological loop is digit span tests in which a participant is required to repeat a series of 

digits in designated order. A forward digit span test simply requires the participant to recall the 

series of digits, while a backward digit span test requires the participant to recall the digits in 

reverse order. Therefore, compared to the forward digit span test, backward digit span is thought 

to involve executive-attentional resources (Elliott et al., 1997), reflecting more processing 

sources in working memory. Evidence has shown that outcome performance on digit span tests 

for CI subjects is poorer than that of their normal-hearing counterparts (Pisoni et al., 2011; Geers 

et al., 2013), and digit span tests are highly correlated with speech recognition in CI children 

(Pisoni and Geers, 2000; Pisoni and Cleary, 2003a). We included forward and backward digit 

span tests to examine working memory capacity for CI users in relation to their speech 

perception performance. The tests presented stimuli auditorily and visually to investigate 

working memory load with and without the detrimental effect of hearing loss.  
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D. Speech Intelligibility Index (SII) as a predictive factor 

Previous studies have shown that better aided thresholds for CI users were significantly 

correlated with higher speech recognition performance, emphasizing the importance of a wider 

dynamic range that increases audibility in the CI map (Firszt et al., 2004; Holden et al., 2013). 

CIs are certainly more beneficial than hearing aids in terms of audibility. CIs allow clinicians to 

provide high frequency gains that sometimes are unavailable with hearing aids due to acoustic 

feedback or technological limitations. However, clinicians programming a CI speech processor 

frequently fit CIs based on the patient’s loudness comfort rather than the consideration of 

audibility. This causes variability in aided thresholds across frequency as well as among CI 

users. Given that aided audibility is a contributing factor to speech perception outcomes, 

investigating the traditional speech intelligibility model that predicts speech perception outcomes 

is worth consideration. 

Over 60 years ago, scholars working at a telephone laboratory explored a way to 

quantitatively represent a listeners’ speech intelligibility, and developed the model of articulation 

theory (French and Steinberg, 1947). Over the years, the computation procedure has been 

enhanced and supplemented, such that the Articulation Index has been renamed the Speech 

Intelligibility Index (SII) (ANSI, 1997). This model considers audibility (Ai) and frequency 

importance functions (Ii) as key components to predict speech intelligibility [Eq. (1)]. 

𝑆𝐼𝐼 = 𝐼𝑖𝐴𝑖 ,                                                                    (1) 

The amount of speech energy available to listeners and the relative importance weights 

for each frequency band, respectively, are multiplied, and all outcome values are summed to 

calculate SIIs ranging from 0 to 1. The SII unit, however, does not solely account for speech 
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recognition outcomes. To predict speech perception scores using SIIs, a transfer function that 

establishes the relationship between the SII and speech perception scores is required. The SII 

model typically displays high accuracy in prediction of speech perception scores in individuals 

with normal hearing (Pavlovic et al., 1986; Sherbecoe and Studebaker, 2003), whereas 

incorporation of correction values, known as hearing loss desensitization factors, is 

recommended when calculating the SII for individuals with hearing impairment. In other words, 

there are additional factors that affect speech recognition beyond audibility for those with 

hearing loss. Several correction factors, known as Hearing Loss Desensitization (HLD) factors, 

that compensate for such supra-threshold deficits, have been developed and proposed (Fletcher 

and Galt, 1950; Pavlovic et al., 1986; Studebaker et al., 1997; Ching et al., 1998; Studebaker et 

al., 1999). Such correction factors associated with hearing thresholds of individuals with mild-to-

moderate hearing loss have improved the accuracy of SII prediction to some extent. However, 

these modified and refined SIIs have not improved predictive accuracy for people with hearing 

loss greater than moderate impairment (Pavlovic et al., 1986; Ludvigsen, 1987; Ching et al., 

1998). Given this limited success of the SII in the severe hearing loss group, it is reasonable to 

assume that applying an SII application to CI users may be met with limited success due to the 

considerable degree of hearing loss (nearly deaf) that typical CI users have. Furthermore, 

significantly deteriorated auditory processing and large individual variability in speech 

recognition outcomes among CI users could make it impossible to use such SIIs as a predictable 

tool for speech perception performance. Despite of these concerns, and in light of technological 

advancements seen in modern CIs that provide much more audibility across frequency, it is 

worth attempting to examine the feasibility of the SII to predict speech perception performance 
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in CI users. This study examined the application of the SII for prediction of speech perception 

outcomes for CI users.    

E. Aim of the study 

 Despite the widespread usage of SIIs for hearing aids and other related areas, little 

attention has been paid to the application of SIIs for CI patients. As noted above, the lack of SII 

studies with CI patients may be attributed to the significant hearing loss that typical CI 

individuals have and the provision of distorted electrical signals that CIs provide. Moreover, 

individual variability and heterogeneity typically observed in a CI population may also be a 

primary reason for this scant attention. As a result, this study attempted to use SIIs to predict CI 

users’ speech perception outcomes. We designed this study in a way to partially replicate the 

methodology in a study by Humes (2002) that used two indirect approaches for predicting the 

aided and unaided speech perception ability of elderly hearing aid users: (1) calculation of the 

SII and (2) predictive factor analysis using a regression model. Thus, in addition to calculating 

SII, we also included other predictive factors that affect speech perception capabilities in a group 

of CI adults.  

Few studies have examined the usefulness of the SII in predicting speech perception 

ability in CI users. Despite the likelihood that the SII would fall short of this goal, this study 

sought to provide evidence for the use of the SII with this population. First, a transfer function 

curve that established the relationship between SIIs and speech perception scores was used to 

determine if the SII could serve as an effective tool for predicting speech perception performance 

for this population. Then, we examined other predictive factors. Adult CI users’ demographics, 

auditory processing ability, and working memory load were explored using a multiple regression 

analysis. Although the SII is primarily determined by the audibility and FIF, it has been 
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improved with considerations of other psychoacoustic or perceptual effects (e.g., masking 

effects, level distortion effect, HLD, and age). Hence, examining such variables may provide us 

with some implications for a model for improving the accuracy of the SII.  

II. METHOD 

A. Participants 

Fifteen CI adults ranging in age from 22 to 73 years (M = 53.13, SD = 17.27) were 

invited to participate in the current study. Younger than 80 years of age, experience with CI 

device(s) for at least 6 months, and American English as the first language were the inclusion 

criteria for participation. All participants had severe-to-profound sensorineural hearing loss with 

bilateral pure-tone averages (PTA, average loss at 0.5, 1, and 2 kHz) greater than 70 dB HL. The 

group mean PTA for left ears was 95 dB HL (SD: 7.2 dB HL) and right ears was 97 dB HL (SD: 

4.8 dB HL). 

The CI listeners signed informed consent forms, and all were paid for their participation 

after competing all procedures. The protocol employed in this research was approved by The 

University of Memphis Institutional Review Board. Participants completed a questionnaire 

addressing patient demographics and hearing history. Some of these demographics, such as 

duration of hearing loss, were used later for the regression analysis. Table 6 represents the 

demographic details of the CI participants. 
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Table 6. Demographic details of CI participants. 

N Gender 
Age 

(years) 

Onset 
of 

hearing 
loss 

(years) 

Duration 
of 

deafness 
(years) 

Etiology 
CI Manufacturer 

and model 
Level of 

education 

Uni/ 
Bi- 

lateral 
CI 

Communication 
mode 

1 Female 41 13 0 Unknown 
Cochlear 
Nucleus 

Master’s 
degree 

Uni 
oral/speaking, lip 

reading 

2 Male 73 40 0 
Noise 

exposure 
Cochlear 
Nucleus 

Master’s 
degree 

Uni 
oral/speaking, lip 

reading 

3 Male 63 46 13 Unknown 
Cochlear 
Nucleus 

High 
school 

Uni 
oral/speaking, lip 
reading, writing 

4 Male 30 7 3 Unknown 
Cochlear 
Nucleus 

Doctoral 
degree 

Uni 
oral/speaking, lip 

reading 

5 Female 56 41 7 Meniere’s 
Cochlear 
Nucleus 

Master’s 
degree 

Uni 
oral/speaking, lip 

reading 

6 Female 65 51 10 Unknown 
Cochlear 
Nucleus 

Master’s 
degree 

Uni oral/speaking 

7 Female 56 5 50 
Nerve 

damage 
Cochlear 

Kanso 

Bachelor's 
degree 

Uni 
oral/speaking, lip 

reading 

8 Male 73 41 31 
Noise 

exposure 
Cochlear 

Kanso 

Master’s 
degree 

Uni 
oral/speaking, lip 

reading 

9 Female 40 15 14 
Brain 
tumor 

Cochlear 
Nucleus 

Master’s 
degree 

Uni oral/speaking 

10 Female 59 0 55 Rubella 
Medel 
Opus 

Bachelor's 
degree 

Uni 
oral/speaking, lip 

reading, sign 
language 

11 Female 65 56 2 Unknown 
Cochlear 
Nucleus 

Doctoral 
degree 

Bi 
oral/speaking, lip 

reading 

12 Female 64 42 21 Meniere’s 
Cochlear 
Nucleus 

High 
school 

Uni 
oral/speaking, lip 

reading 

13 Male 24 2 2 Illness 
Advance Bionics 

Harmony 

Master’s 
degree 

Uni 
oral/speaking, lip 

reading 

14 Female 22 2 0 Meningitis 
Advance Bionics 

Harmony 

Bachelor's 
degree 

Uni Oral/speaking 

15 Male 66 50 0 Meniere’s 
Cochlear 
Nucleus 

Bachelor's 
degree 

Uni Oral/speaking 
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B. Audiometric Testing  

Aided and unaided audiometric tests were conducted to verify hearing thresholds and 

audibility with and without their CIs. Hearing thresholds were obtained at octave frequencies 

from 250 to 8000 Hz, and inter-octave frequencies (125, 750, 1500, 3000, and 6000 Hz) were 

also confirmed. Aided audiometry was carried out in a free-field condition with participants 

seated in the center of a double-walled sound booth meeting ANSI standard S.31-1999 (ANSI, 

R2013), facing the front speaker 1 meter away. In the case of bimodal participants who wore a 

CI on one ear and a hearing aid on the other ear, the hearing aid was removed during the test. 

This rule was applied to other experiments in the study as well. Unaided audiometry was 

conducted using pure tones presented through TDH-39 headphones. 

C. Speech recognition test  

 CI listeners’ speech recognition was measured using the AzBio Sentence Test. The 

AzBio test is one of the standardized speech perception tests in the Revised Minimum Speech 

Test Battery that was designed to be used with CI patients. The AzBio stimuli are produced by 

two male and two female speakers that can be presented in quiet or in noise (10-talker babble). 

Each participant listened to three AzBio sentence lists in three test conditions presented in the 

sound field. (1) one sentence list presented at a level of 65 dB SPL in quiet, (2) one sentence list 

presented at a level of 65 dB SPL with a +5 dB SNR, and (3) one sentence list presented at a 

level of 65 dB SPL with a +10 dB SNR. The level of the speech was fixed at 65 dB SPL, while 

noise levels were varied depending on the desired SNRs. Each CI listener was seated in the 

middle of the double-walled sound booth meeting ANSI standard S3.1-1999 (ANSI, R2013), 1m 

away from the speaker, wearing his/her CI device. The listener’s job was to repeat the sentences 

or words they heard. Among 15 lists available in the AzBio test, lists 8, 9, 10, 11, 12 and 13 were 
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chosen as they were equally difficult based on results from a previous study (Bush, 2016). 

Among these lists, three were randomly selected and presented in the different conditions. Each 

list consists of 20 sentences that contain a different number of target words per sentence. The 

tests were scored in percentage based on the number of correctly repeated target words by the 

listeners.  

D. SII calculation 

The SII was computed in the following way. For each CI patients’ aided thresholds to be 

used in the SII calculation, equivalent hearing threshold levels needed to be established. The 

aided audiometric thresholds measured in dB HL were converted to dB SPL by adding the 

minimum audible field (MAF) values (Bentler and Pavlovic, 1989). Critical ratios (Pavlovic, 

1987) and bandwidth adjustments (ANSI, 1997) were further used to transform the obtained 

thresholds into equivalent hearing threshold levels. The equivalent hearing threshold levels were 

eventually used in the SII equation. To yield 1/3 octave pure-tone thresholds that could not be 

obtained from the audiometric procedures, interpolation or extrapolation was used. 

As noted earlier, two key components, audibility and frequency importance functions, 

need to be established for calculation of the SII. For computation of audibility in the three speech 

recognition task conditions, the Long Term Average Speech Spectrum (LTASS) of the AzBio 

lists and its noise were measured. To this end, the overall rms level of 65 dB SPL and the levels 

of the concatenated speech and noise were measured separately using a Bruel and Kjaer Type 

2250 sound level meter. Figure 10 shows the band specific levels in LAeq across the 1/3 octave 

band frequencies. The shape of the speech and noise spectra reflect nearly identical patterns 

across the frequencies. 
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Figure 10. LTASS of AzBio sentences and noise across 1/3 octave band frequencies. 

The audibility function (Ai) was calculated by subtracting the larger one of either the 

long-term noise levels or the thresholds, from the speech peaks in each band, and dividing the 

difference by 30 dB. Table 7 shows the frequency importance function (FIF) for the AzBio 

sentences that were derived in our prior study (Lee et al., In Press). This band weight information 

of the AzBio sentences was applied in the SII calculation using Equation 1. The entire procedure 

of computing SII values followed the ANSI standard (ANSI S3.5-1997), which takes into 

consideration masking effects and a level distortion factor. After the SII calculation, an age 

correction factor proposed by Studebaker et al. (1997) was multiplied for those who were older 

than 70 years. This correction was applied to reflect the tendency of speech perception scores 

that decline with age. The SII algorithm was generated in an Excel program for all of the SII 

calculations. 

 



51 
 

Table 7. FIF across the 1/3 octave center frequencies (CF). 

CF 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 

FIF 2.20 2.41 1.74 1.35 3.08 5.42 8.71 7.43 7.35 9.72 10.21 9.13 9.65 7.91 6.65 3.65 2.56 0.84 

 

E. Auditory processing tests 

It is reasonable to assume that supra-threshold deficits associated with poor speech 

recognition in the hearing impaired are attributed to abnormal spectral and temporal resolution 

(Pavlovic et al., 1986). Assessing auditory processing ability that measures spectral and temporal 

resolution could be beneficial in terms of understanding these deficits in supra-threshold sound 

processing that cannot be accounted for by the SII. In addition, these psychophysical assessments 

could serve as predictive variables, along with the CI patients’ demographics that potentially 

contribute to predicting speech perception performance for these listeners. For measuring 

auditory processing, a Gap Detection Test (GDT) and Spectral-temporally Modulated in Ripple 

Test (SMRT) were administered to determine each listener’s temporal and spectral resolution, 

respectively. The auditory processing tests were administered twice for each participant, and the 

average of the two performances was used for subsequent statistical analysis. 

 PsyAcoustX (Bidelman et al., 2015), which is a Matlab based platform allowing several 

auditory tests with 3 alternative forced choice (3AFC), was used to implement the GDT. Three 

successive broad band noises, 500 ms each, were presented at 65 dB SPL through a loud speaker 

located 1 meter and at 0° azimuth from the listener. One out of the three stimuli was designed to 

have a short silent gap, whereas the other two were continuous broad band noise. The durations 

of the short gap were varied depending on listener’s response following a 2 down/1 up adaptive 

tracking rule to determine ones’ GDT threshold with 71% consistent criterion performance level 

(Levitt, 1971). Starting gap duration was set to 10 ms. Each listener was asked to click a button 
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on the screen to reflect a stimulus that sounded different from the other two stimuli, detecting a 

brief gap that divided two successive stimuli.  

The Spectral Ripple Test, that uses stimuli containing a different number of spectral 

peaks at a particular modulation depth, is one of the most commonly used approaches to evaluate 

spectral resolution in modern CI studies (Henry and Turner, 2003; Henry et al., 2005). Won et 

al. (2007) found that better spectral ripple discrimination was significantly correlated with better 

speech perception in noise and quiet for CI users. In our study, CI patients’ spectral resolution 

was estimated using the SMRT software version 1.1 (Aronoff and Landsberger, 2013). The 

SMRT is a newly developed ripple test that was created to compensate for drawbacks found in 

the original test (local loudness cues and upper/lower frequency boundary cues). The SMRT was 

designed to seek the largest number of ripples per octave (RPO) that could be reliably detected 

by listeners. The test uses an adaptive procedure (1up/1down). Like the GDT, the SMRT was 

administered with 3AFC presenting stimuli at 65 dB SPL. The ripple density of reference stimuli 

was 20 RPO, and the target stimuli were adjusted starting from 0.5 RPO with a step size of 0.2 

RPO. The trial ended when 10 reversals were found, and the mean of the last 6 reversals was 

reported as the RPO threshold. Listeners were instructed to click a button on the screen that 

reflected the stimulus that sounded different from the other two stimuli, discriminating the 

spectrally different sound. 

F. Cognitive function tests 

For the cognitive measure, the Digit Span Test (DST) designed to evaluate working 

memory function was administered. The DST is a subset of Wechsler Adult Intelligence Scale-

Revised (WAIS-R), which assesses comprehensive cognitive ability for adults and consists of six 

verbal subtests (Information, Comprehension, Arithmetic, Digit Span, Similarities, and 
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Vocabulary) and five performance subtests (Picture Arrangement, Picture Completion, Block 

Design, Object Assembly, and Digit Symbol). In the DST, a participant is required to memorize 

a series of numbers presented either visually or auditorily, and repeat the correct numbers in the 

correct order. Outcomes from auditory DSTs may not reflect pure attention and memory deficits, 

as it is significantly influenced by hearing deficits for individuals with hearing loss. The DST can 

further be divided into two tasks depending on the answering method. The forward task asks 

participants to answer in the presented order, whereas the backward task requires listeners to 

answer in reverse order. We used both visual and auditory modalities and both forward and 

backward responses to compare the functional difference in short-term/working memory. To 

implement the test, Inquisit computer software (Draine, 1998) was used. For the visual DST, a 

sequence of numbers was shown on a computer screen and then disappeared. For the forward 

DST, participants were instructed to click the correct digits on the monitor in the correct order. 

For the backward DST, they were instructed to click the correct digits in the reverse order. The 

auditory DST was administered in the same way, but the sequence of numbers was presented 

from the front speaker at 65 dB SPL, instead of the monitor screen. The digit string was 

increased in length with each trial until the participant was unable to remember the correct 

numbers in the correct sequences. The maximum lengths of the correct numbers that the CI users 

remembered in a correct order were yielded from the tasks as a final outcome. 

III. RESULTS 

A. Prediction of speech perception scores using SIIs 

 Mean speech perception scores for three different SNR conditions (Quiet, SNR 5, and 

SNR 10) are shown in Figure 11. The CI listeners had particular difficulty under the noise 

conditions compared to the quiet condition. The scores were drastically decreased when 
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background noise was presented along with the AzBio sentences. A one-way repeated measures 

Analysis of Variance (ANOVA) determined that mean speech perception scores differed 

significantly between the presentation conditions of the AzBio sentences [ F (2, 25.717) = 

112.893, p < 0.001]. Post hoc tests using the Bonferroni correction revealed that all pairs of 

conditions were significantly different from each other, indicating that an increase in the amount 

of background noise resulted in a statistically significant decrease in speech perception scores (p 

< 0.001). In addition, the extended boxes and whiskers in Figure 11 suggested that individual 

differences in speech perception performance were tremendously large. 

 

Figure 11. Mean speech perception scores (x) for the AzBio sentences in the three different SNR 

conditions.  

To investigate the predictive role of the SII for speech perception performance, a transfer 

function curve that established the relationship between predicted scores using SIIs and observed 

scores needed to be considered. We made reference to the transfer function equation (Eq. 2) that 

was derived in our first study (Lee et al., In Press). The transfer function equation was obtained 
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from listeners with normal hearing who were administered the AzBio test in a variety of 

filtering/SNR conditions. The fitting constants, Q (0.287) and N (5.206), in Equation 2 resulted 

in a good fit between the observed scores and predicted scores (RMS error = 0.069 and R2 = 

0.923). With the appropriate reference transfer function for normal hearing listeners as a 

normative point, our speech perception data and corresponding SIIs for CI listeners were 

examined.  

𝑆𝑝𝑒𝑒𝑐ℎ 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = (1 − 10 ( / . )) . ,                                      (2) 

Figure 12A provides the scores-vs-SII transfer function for the AzBio test derived from 

listeners with normal hearing (solid line). Additionally, the SII values and corresponding speech 

perception scores obtained from this study are represented by circles in blue for the +10 dB SNR 

condition, gold for the +5 dB SNR condition, and green for quiet. Regardless of test condition, 

all obtained scores fell considerably below the predicted scores using the transfer function curve, 

suggesting that the transfer function curve for listeners with normal hearing is not capable of 

predicting speech perception scores for CI listeners using this SII model. In an attempt to address 

the issue of overestimation by the conventional SII calculation, we applied a HLD factor to the 

SII calculation. Among several HLD models, we adopted an equation similar to the one 

developed by Sherbecoe and Studebaker (2003) (Eq. 3). In the equation, the PTA is the average 

hearing loss of the better ear at 1, 2, and 4 kHz. This correction factor is applied by multiplying 

the SII values with the calculated correction factors. 

𝐻𝑒𝑎𝑟𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 𝑑𝑒𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1 −
𝑃𝑇𝐴

108.3072
 ,                              (3) 

Paired-sample t-tests were conducted to compare the conventional SII values and SII 

values with HLD correction (HLD SII) for the three conditions. There were statistically 

significant differences in the SII values with and without HLD corrections for all conditions 
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[Quiet: t (14) = -21.958, p < 0.001, SNR 10: t (14) = -23.743, p < 0.001, and SNR 5: t (14) = -

23.760, p < 0.001]. The comparisons showed that the HLD corrections significantly reduced the 

original SII values for all listening conditions.    

In contrast to the predictions from the conventional SII that excluded the influence of the 

hearing loss, the SII calculations using the HLD corrections resulted in lower SII values 

compared to the normative transfer function predictions in most cases (Figure 12B). A 

considerable number of the observed SIIs were higher than the predicted SIIs, suggesting the 

normative transfer function curve was not suitable for predicting performance for CI listeners 

even when the influence of hearing loss was considered. As was the case for SIIs calculated 

without the HLD factor, the SIIs with the HLD factor in Figure 12B also displayed large 

individual variation in speech perception. 

 

Figure 12. (A) Score-vs-SII distribution scatter-plots with the reference transfer function curve. 

(B) Score-vs-HLD SII distributions scatter-plots with the reference transfer function curve. 

B. Prediction of speech perception scores using multiple variables 

Prior to the multiple regression analysis, it was necessary for our dependent variable, 

speech perception scores, to be measured in three different conditions to be combined as a single 
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value. To this end, the scores obtained from the three conditions were averaged, yielding one 

dependent variable. Furthermore, independent variables that were likely to be associated with 

speech perception scores were determined and defined clearly for the analysis. In the 

demographic data obtained from the questionnaires, age, onset of hearing loss, and duration of 

deafness were chosen as predictive variables. Onset of deafness was defined as the age at which 

hearing loss occurred. Duration of deafness was defined as the period between when hearing loss 

occurred and CIs were activated. In order to represent only the effects of hearing loss, ruling out 

the potential benefits of audibility from the better ear or hearing aids, these two demographic 

variables were primarily defined based on the history of the poorer ear. In our experimental data, 

the outcomes from the SMRT, GDT, visual DST, and unaided/aided audibility were selected as 

predictive variables. Only working memory outcomes from the DST for visual presentations 

were included to minimize the effects of hearing loss for auditory DSTs. The DST values used 

for the analysis were the mean of two visual DSTs (forward and backward DTS). Unaided and 

aided audibility values were determined by averaging auditory thresholds at 0.5, 1, 2, and 4 kHz 

in the better ear. If CI patients could not detect the pure tones at the highest level presented in the 

unaided condition, the thresholds were regarded as 100 dB at that frequency. Lastly, the HLD SII 

and SII were included as predictive variables. Like the speech perception scores, HLD SIIs and 

SIIs obtained in the three different conditions were averaged, and individual HLD SII and SII 

values were respectively obtained for the 15 CI participants. All of the variables used for the 

analysis are shown in Table 8. 
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Table 8. Nine predictive variables and one dependent variable (speech perception test scores) for 

the multiple regression analysis. 

N 
Onset of 

hearing loss 
(years) 

Duration of 
deafness 
(years) 

SMRT 
(RPO) 

GDT 
(ms) 

Unaided 
audibility 
(dB HL) 

Aided 
audibility 
(dB HL) 

Visual 
DST 

Speech 
perception 
test scores 

(%) 

HLD 
SII 

SII 

1 13 0 1.60 2.22 100.00 22.50 7 62.51 0.13 0.59 

2 40 0 3.63 5.25 87.50 26.25 4.5 48.98 0.29 0.59 

3 46 13 1.92 15.10 93.75 27.50 8 19.94 0.17 0.58 

4 7 3 1.57 4.19 100.00 30.00 8.5 60.77 0.12 0.58 

5 41 7 1.98 3.48 92.50 21.25 7 59.26 0.19 0.59 

6 51 10 1.28 9.62 97.50 26.25 5.5 25.49 0.13 0.59 

7 5 50 1.48 5.19 75.00 22.50 7 33.42 0.21 0.59 

8 41 31 3.15 9.76 88.75 32.50 7 40.28 0.12 0.57 

9 15 14 4.13 5.39 67.50 22.50 6 47.37 0.23 0.59 

10 0 55 0.51 34.88 86.25 43.75 4.5 1.77 0.24 0.52 

11 56 2 1.63 8.30 100.00 20.00 6 57.73 0.13 0.59 

12 42 21 6.30 12.09 90.00 25.00 5 35.69 0.25 0.58 

13 2 2 1.13 2.86 95.00 22.50 6 59.15 0.13 0.59 

14 2 0 1.70 1.71 100.00 18.75 6 64.18 0.13 0.59 

15 50 0 2.93 10.64 88.33 23.75 6 63.38 0.25 0.59 

 

Pearson correlations and stepwise multiple linear regressions were conducted to 

investigate the relationship between the variables and the prediction model of speech perception 

scores for the CI users based on their demographic, auditory processing, and cognitive function 

variables. The software program IBM SPSS (version 24) was used. The inter-correlations of the 

variables are shown in Table 9. As can be seen, some correlations for several pairs of variables 

were statistically significant. There were strong, negative correlations between speech perception 

scores and duration of deafness, aided audibility, and GDT (r > 0.7). Increases in speech 

perception scores were correlated with decreases in duration of deafness, aided hearing threshold 

represented as unaided audibility, and GDT thresholds. 
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Table 9. Pearson correlation for 10 variables. 

Variable 1 2 3 4 5 6 7 8 9 10 

Speech 
perception 

score  
1 

1 -0.02 -0.767* 0.306 -0.713* 0.08 -0.815* 0.265 -0.272 0.697* 

Onset of 
hearing 

loss 
 2 

 1 -0.29 0.167 -0.162 0.367 0.015 -0.08 0.118 0.281 

Duration 
of 

deafness  
3 

  1 -0.534* 0.626* -0.088 0.647* -0.144 0.261 -0.689* 

Unaided 
audibility 

 4 

   1 -0.104 -0.362 -0.149 0.203 -0.624* 0.103 

Aided 
audibility 

 5 

    1 -0.171 -0.836* -0.169 0.175 -0.921* 

SMRT         
6 

     1 -0.126 -0.27 0.516* 0.22 

GDT 
7 

      1 -0.377 0.341 -0.907* 

Visual DST 
8 

       1 -0.567* 0.277 

HLD SII 
9 

        1 -0.189 

SII 
10 

         1 

*p < 0.05 

The stepwise multiple regression yielded a prediction model. The prediction model 

contained two out of the nine predictors with seven variables excluded. The significant 

regression equation was found [F (2, 12) = 19.343, p < 0.001], and this model accounted for 

approximately 76% of the variance of speech perception scores (R² = 0.763, adjusted R² = 

0.724). Speech perception scores had significant negative correlations with GDT thresholds and 

duration of deafness, indicating that CI adults with better speech perception outcomes were 

expected to have lower GDT thresholds, and shorter duration of deafness. Table 10 shows the 

regression coefficient summary. 
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Table 10. Summary of regression coefficients. 

Model B Std. Error  Sig. Pearson-r 

Constant 62.208 3.799    

GDT -1.256 0.421 -0.550 0.011 -0.815 

Duration of deafness -0.428 0.192 -0.411 0.046 -0.767 

The dependent variable was speech perception score, R² = 0.763, Adjusted R² = 0.724, *p < 0.05 

C. Cognitive function tests 

 The DSTs administered in four different ways (visual/auditory, forward/backward) were 

further analyzed to compare differences in performance. Group mean maximum lengths of 

numbers correctly answered by 15 CI users are shown in Figure 13 [visual-forward DST (M: 6.6, 

SD: 1.18); visual-backward DST (M: 5.93, SD: 1.27); auditory-forward DST (M: 5.4, SD: 1.05); 

auditory-backward DST (M: 5.06, SD: 1.53)]. A two-way repeated measures ANOVA was 

conducted with the two presentation modalities (visual and auditory) and two reproduction 

orders (forward and backward) as the two within-subject variables, and the maximum length of 

numbers as the dependent variable. Significant main effects were found for the presentation 

modalities [F (1, 14) = 14.252, p < 0.05] and reproduction orders [F (1, 14) = 6.563, p < 0.05] 

with no significant interaction effect between the two [F (1, 14) = 1.094, p = 0.072]. CI users 

performed better on forward DSTs and visual DSTs compared to backward DSTs and auditory 

DSTs, respectively.   
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Figure 13. Mean number of lists correctly recalled for forward and backward DSTs presented 

with two different modalities (visual and auditory). Error bars denote ±1 SEM. 

IV. DISCUSSION 

A. Prediction of speech perception scores using SIIs 

 One of our primary goals was to find out whether the SII is an appropriate model to 

predict speech perception scores for adults who use CIs. We examined the observed SIIs with 

and without HLD for CI adults in comparison to the transfer function curve yielded by adults 

with normal hearing. Two trends were apparent from our results. First, the transfer function 

curve tended to overestimate speech perception scores for CI users when the HLD factor was not 

taken into account, whereas the curve tended to underestimate speech perception when the HLD 

factor was applied to the SII calculation. This finding suggests that speech perception ability of 

CI users cannot be accounted for adequately by the existing SII model based on the transfer 

function from listeners with normal hearing. It is likely that the severe-to-profound sensorineural 

hearing loss, the significantly damaged auditory system, and limitations posed by electrical 
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hearing by CIs could be adverse factors affecting the SII prediction, beyond just audibility. When 

taking HLDs into account, a significant decrease in SII values with HLD corrections for the CI 

users appears to be the cause that the prediction failed.  In general, HLD correction factors for 

modification of SII models are applied based on the hearing thresholds of the listeners. The 

amount of the correction factors increased with the greater hearing loss that these individual 

listeners have. This approach sometimes results in significant negative-weights on SII values for 

people having very poor hearing thresholds. For example, an HLD factor proposed by Pavlovic 

et al. (1986) provides a desensitization factor of zero when hearing thresholds are above 94 dB 

HL. This will eventually lead SIIs to 0 as a result of multiplication. This extreme application of 

correction factors has been criticized by arguing that individuals having thresholds of 94 dB HL 

would still be able to extract intelligible information from speech above 94 dB HL (Ching et al., 

1998). Given the fact that CI candidates have mostly severe to-profound hearing loss and the 

corresponding correction factors are substantially high, it is not surprising to see the 

underestimation effect observed in Figure 12B.  

The other especially important observation is the significant variability seen in these 

listeners’ speech perception scores. Given the consistent reporting of wide variation in individual 

speech perception outcomes (Kiefer et al., 1998; Pisoni et al., 1999), the limitation of the SII 

model to accurately predict speech perception was an anticipated result to some extent. Unless 

this issue of variability can be addressed, the applicability of SII models will likely not become 

an ideal tool. Given our findings and previous research, the general applicability of these SII 

models as a predictive tool for CI users appears impossible at this stage. 
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B. Prediction of speech perception scores using multiple variables 

A total of nine independent variables considered as possible predictors of speech 

perception scores were included for a correlation and stepwise linear regression analysis. The 

correlation coefficient of the group data from 15 CI adults showed that duration of deafness, 

aided audibility, GDT, and SII were significantly correlated with speech perception scores. 

Unexpectedly, several variables that were thought to be associated with speech perception 

performance were excluded from the best regression model. Only GDT and duration of deafness 

were included as significant variables in the model. The GDT factor was the strongest predictor 

in the model, explaining more than 70% of the variance followed by duration of deafness (54%). 

Even though duration of deafness has been shown to be the strongest contributor to performance 

in CI users in other studies, the contribution accounted for by duration of deafness was less than 

that of GDT in our study. The majority of CI subjects in our study were post-lingually deafened 

CI users who had experienced hearing deficits after mastering oral communication skills. This CI 

population tends to show better performance in general and is less affected by duration of 

hearing loss compared to CI users whose hearing loss occurs prelingually. Thus, the lower 

significance of the duration of deafness factor that we found may be accounted for by such 

characteristics of those with post-lingual deafness.  

The significant contribution of the GDT indicates that auditory processing abilities, 

especially temporal resolution, are highly associated with speech perception performance in CI 

adults. In contrast, the SMRT outcomes which represent spectral acuity did not show robust 

correlations with speech perception scores. The lack of any significant correlations between the 

SMRT outcomes and speech perception differs from previous studies that showed significant 

correlations between these two measures (Litvak et al., 2007; Lawler et al., 2017). It is hard to 
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state reasonable reasons for this inconsistency, but possible explanations for this discrepancy 

may lie in the considerable degree of variability seen across the participants in this study. 

Individual differences in performance in CI populations are typically observed in psychoacoustic 

experiments as well as in speech intelligibility tasks. Even though an attempt was made to 

control for these effects by attempting random selection of CI participants for this study, the 

small sample size (N = 15) probably could not yield asymptotic performance on the SMRT tasks.  

As noted above, it is often stated that temporal resolution is comparatively better than 

spectral resolution in CI users. Indeed, GDT performance for CI users was comparable to that of 

listeners with normal hearing (Shannon, 1989; Goldsworthy et al., 2013). Better acuity of 

temporal cues in CI users probably allowed them to catch up to the rapid stream of speech cues, 

such as voice onset time, providing reliable data that systemically varied with speech scores. In 

addition, CI users’ poorer spectral resolution likely made it difficult to produce meaningful 

scores on the SMRTs in relation to speech perception scores. Taken together, our auditory 

processing outcomes suggested that temporal resolution is more associated with speech 

perception than spectral resolution for CI users. This observation supports the notion that CI 

users who are exposed to only limited spectral information, rely heavily on temporal cures for 

speech perception (Kirby and Middlebrooks, 2010; Winn et al., 2016). 

C. Working memory capacity for CI users 

      To determine whether working memory capacity for CI users was affected by the 

deficits in auditory/phonological processing components, we administered the DST in two 

different modalities (auditory and visual presentations). Previous cognitive literature has shown 

mixed outcomes in terms of the superiority between visual and auditory presentation modalities 

for working memory tasks. Some studies on human memory have shown that visual memory is 
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superior to auditory memory (Hilton, 2001; Cohen et al., 2009). Hilton (2001) described the 

reasons that their subjects were better at visual learning for the memory task. She indicated that 

the visual stimuli, contrary to the auditory stimuli, were stored in two different forms, mental 

image and repletion, which makes it easier for the brain to reproduce. She also noted that 

auditory processing may cause more fatigue than visual processing. On the other hand, other 

studies have claimed an auditory superiority effect with the assumption of higher strength of 

association between successive auditory stimuli compared to successive visual stimuli (Penney, 

1989; Kemtes and Allen, 2008). These researchers also argued that visual stimuli likely give rise 

to more attentional load relative to auditory stimuli. This controversy can be seen in DST studies 

using CI subjects who have significant hearing problems. AuBuchon et al. (2014) reported 

slightly higher performance for auditory DST than visual DST in a forward paradigm, but 

slightly lower performance for visual DST than auditory DST in a backward paradigm. This 

contradicts the results of Kronenberger et al. (2013) where visually presented stimuli resulted in 

slightly higher reproduction rates over auditorily presented stimuli in forward DSTs. Taken 

together, while there appears to be no definitive answer on this issue, it is clear that presentation 

modality plays a minor role in task performance. 

      Our DST results showed that CI users’ performance on working memory tasks was 

significantly better when they perceived stimuli visually rather than auditorily. The heavy 

demand on working memory load for processing the auditory stimuli may make it difficult to 

store the stimuli into short-term memory, resulting in such variance in performance. The other 

possibility is that the poorer performance on auditory tasks might have been caused by an 

auditory perception issue, not auditory processing or memory demands. Some CI users having 

very poor speech perception might have misunderstood the auditory stimuli, substantially 
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affecting the group mean performance on the auditory DST. However, since the DSTs for a 

normal hearing control group were not measured in this study, and previous studies showed 

mixed outcomes, it would be absurd to argue that auditory deficits in CI users led to such 

differences in working memory function. Indeed, studies that assessed listeners with normal 

hearing and those with CIs using both auditory and visual modalities indicated that the poorer 

working memory function for CI users compared to those with normal hearing are not solely 

accounted for by their auditory perception or speech production abilities (Cleary et al., 2001; 

Kronenberger et al., 2013; AuBuchon et al., 2014). Therefore, further investigations are needed 

to examine the mechanism of these two modalities in relation to performance on working 

memory capacity.  

D. Limitations 

 The primary shortcoming of this study is the small number of CI participants (N = 15). It 

is well known that large sample sizes are necessary for examining factors associated with 

experimental performance for CI users (Schafer and Utrup, 2016), yet it is often difficult to 

obtain large, random samples for such studies. Speech perception performance in CI individuals 

varies considerably from person to person, and a large number of variables is associated with 

such variability. A multiple regression analysis requires a proper sample size to have the desired 

statistical power needed for the number of predictors used. Our small sample size limited the 

range of predictive variables that could be included, as well as other potentially important 

variables, such as surgical- or device-relevant-variables that had to be excluded. Additionally, 

the small sample size may not have represented a typical CI population. Finding and recruiting 

CI users is certainly a practical challenge for studies such as these. Nevertheless, an effort should 

be made to include larger sample sizes to provide more reliable predictions in future studies. 
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V. CONCLUSION 

 This study investigated whether the SII could be a reliable predictor for speech 

perception performance in adults who use CIs. The speech perception scores for CI recipients 

obtained in three different SNR conditions yielded observed SIIs which were compared to the 

predicted SIIs based on the transfer function curve. Predictions of speech perception 

performance using the SII alone overestimated CI users’ abilities, whereas SII calculations using 

HLD corrections underestimated performance. Furthermore, the large variability in speech 

perception performance across the CI users was shown to be a significant barrier for the SII to 

prove to be a reliable predictor. Other predictive factors that have been associated with speech 

perception performance were also examined using a correlation and stepwise multiple regression. 

Some of the demographic and experimental variables showed significant correlations with 

speech perception scores. Gap detection thresholds and duration of deafness were found to be 

significant predictable factors. These predictive factors and SIIs were discussed in relation to 

speech perception performance in CI users. We conclude that conventional SII models are not 

appropriate for predicting speech perception scores for CI users. CI users struggle with speech 

understanding not because of audibility, but because of other factors.  

Future studies are required for developing a new SII model that reflects the 

characteristics typical of CI individuals. To improve the predictions made by SII calculations in a 

future SII model, more specific SII calculation methods need to be developed that consider such 

factors that contribute to the individual differences in speech perception ability found in this 

population. For example, our study found that GDT outcomes and duration of deafness are 

highly correlated with speech perception performance in CI users. As with some correction 

factors previously developed that consider variables associated with speech perception outcomes, 



68 
 

such as the HLD with degree of hearing loss and age corrections, a model that takes into account 

GDT results or duration of deafness could contribute to improving SII prediction accuracy. The 

long term goal of future studies would include investigations that sophisticatedly quantify or 

control the enormous individual variability seen in CI populations and develop algorithms that 

incorporate such correction factors. 
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Chapter 4 

GENERAL CONCLUSION 

Having briefly demonstrated the history and fundamental concept of SII models, this 

dissertation began with raising the interesting question of whether the SII can be used as an 

adequate tool for predicting speech perception performance in CI recipients. Prior to 

implementing a study to answer this question, it was necessary to establish FIFs for the AzBio 

sentences, as the FIF is one of the critical components in the SII calculation that has never been 

established for the AzBio sentences. For this reason, we designed the dissertation to contain two 

consecutive studies.  

The aim of the first study was to derive FIFs for the AzBio test. Traditional procedures 

described in studies by Studebaker and Sherbecoe (1991) were mainly applied for this purpose. 

Fifteen listeners with normal hearing underwent speech recognition testing using the AzBio 

sentences that were high- and low-pass filtered under speech-spectrum shaped noise at various 

SNRs. The results showed that frequency weights for the AzBio sentences were greatest in the 

1.5 to 2 kHz region, supporting the globally accepted notion that speech cues in the 2 kHz region 

play an important role in speech perception. The frequency weights yielded with using traditional 

procedures (Studebaker and Sherbecoe, 1991) and those using a nonlinear optimization 

procedure (Kates, 2013) were compared. Both procedures were accurate, but the newer approach 

(Kates, 2013) was slightly more accurate. Consecutive data analyses provided speech recognition 

scores for the AzBio sentences in relation to the SII. Our findings provided empirically derived 

FIFs for the AzBio test that can be used for future CI studies. Specifically, the accuracy of 

predicting SIIs for CI patients should be improved when using these derived FIFs for the AzBio 

test. 
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In the second study, the SIIs for CI users were calculated to investigate whether the SII 

could be an effective tool for predicting speech perception performance in a CI population. 

Fifteen adults who were pre- and post-lingually deafened participated. CI users’ speech 

recognition was measured using the AzBio sentence lists. The FIFs obtained from the first study 

were used to compute the SII in these CI listeners. The obtained SIIs were compared with 

predicted SIIs using a transfer function curve derived from the first study. Furthermore, CI users 

completed questionnaires and performed psychoacoustic and cognitive function tests. A multiple 

regression was conducted with predictive variables (demographics, cognition, and 

spectral/temporal resolution) to investigate which predictive factors could be associated with 

speech perception performance. Due to the considerably poor hearing loss and large individual 

variability in performance, the SII failed to predict speech performance for this CI group. Only 

gap detection thresholds and duration of deafness were found to be significant predictive factors.  

Although the applicability of the SII for predicting speech perception scores in CI users was not 

successful in this study, it is worth mentioning that this study represents the first study that 

devotes considerable attention to this area. Despite the unsuccessful SII predictions, we believe 

that SII models still have potential if we can strictly control confounding factors such as large 

individual variability among participants. To this end, development of correction models that 

compensate for such individual variability need to be developed. Therefore, future studies should 

focus particularly on increasing the sample size and predictive factors to provide more robust 

findings. The results from this study could contribute to future studies that aim to develop SII 

models for CI users by systematically controlling or quantifying confounding factors. Surely, 

prodigious efforts should be followed to enhance the possibility that SIIs can play are stronger 
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role in predicting speech perception performance, resulting in practical benefits to CI patients. 

We hope this study represents an important breakthrough for that purpose. 
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