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ABSTRACT

Realistic synthesis of human actions is a challenging problem. This thesis

investigates the problem of synthesizing actions, with individual variability, under

different emotions. Current action/gesture synthesis, understanding and recognition

models do not provide a general framework for synthesizing an extensive range of actions

over a large range of emotions. The literature on spectral style transfer provides a plethora

of viable approaches for transferring the style of action learned from one individual to

another. Our idea is to consider an emotion as a style and then use a style transfer

algorithm for transferring an emotion from one action to another. This allows us to

synthesize any action over a large range of emotions. Experiments reported in this thesis

are based on generating 18 actions with five emotions using the Kinect skeleton. The

quality of the synthesized actions over time is evaluated through a subjective perception

test, which is a standard in the domain of gesture synthesis.
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Chapter 1

Introduction

Synthesizing human’s everyday actions embedding emotion poses significant

interest in various cross-disciplinary research domains. Human action and emotion are an

integral part of social interaction and affecting social outcomes (Vosk, Forehand, &

Figueroa, 1983). Emotions can be expressed through different modalities such as facial

expression and physical action. Facial expressions have been the most extensively studied,

whereas the physical actions are less studied (Lhommet & Marsella, 2014).

Motion capture equipment and Kinect can provide realistic and smooth skeleton

points (Wang et al., 2014). However, these skeleton points capturing systems are

expensive and time-consuming and also laborious to use. The automatic of generation the

actions with emotions can overcome these issues.

1.1 Overview

Style transfer method allows transforming an input action into a new style action

while preserving its original content (Hsu, Pulli, & Popović, 2005). The concept of

spectral style transfer for synthesizing human motion enables to transfer style of the frame

by frame spatial similarity between two independent actions (Yumer & Mitra, 2016). Our

idea is to use a style transfer algorithm for transferring the style of action learned from one

emotion to another. In this approach, we can learn important frequency component of

target emotion based action from the database and apply to input. This approach allows us

to synthesize any action over a large range of emotions. In this work, we utilized the CMU

graphics (Hahne, 2010) and Emotional Body Motion Database (Max-Planck Institute for

Biological Cybernetics in Tuebingen, 2014) human motion data preprocessing for

skeleton compatibility. We extracted the difference of target emotion based source action

and reference emotion based action skeleton in the spectral domain. Afterwards, we

applied the difference to the input action and combined with the constant input phase.

Then, we reconstruct the time domain action signal from the spectral domain. The
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procedure of generation of actions with emotions in a block diagram is shown in Figure

1.1. In the motion data, energy is concentrated in upper or lower body based on the

actions such as upper body actions (e.g., hitting) and lower body action (e.g., kicking).

Considering the style transfer method is energy based, based on the upper or lower body

input action we are applying the upper or lower training data similarities to do the best

style transfer. Therefore, we have divided the training data upper body (e.g., hitting) and

lower body (e.g., kicking). In this thesis, we have experimented 18 actions with five

emotions using the skeleton joints. This work will help to build and enhance dataset

actions with various emotions. Finally, we evaluate our generated actions with emotions

via quantitative experiments. We conducted a user study on Amazon Mechanical Turk

(AMT) to evaluate the synthesized actions with emotion video. In addition, we discuss our

and state of the art evaluation result.

Fig. 1.1: Overview of generation actions with emotions

1.2 Contributions

The main contribution of this thesis work is:

1. An approach to synthesize any action over a large range of emotions.

2. Implementation and evaluation of the approach using subjective perception test.
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1.3 Outline

The rest of the thesis is arranged as follows. A thorough review of the

state-of-the-art is presented in Chapter 2. Following this, the motivation of using style

transfer method to synthesize actions with emotion and the brief description of the method

are given in Chapter 3. In chapter 4, dataset details and implementation results are

discussed. The evaluation criteria and evaluation results are also presented in Chapter 4.

Finally, in Chapter 5, we discuss the conclusion and future work of synthesizing actions

with emotion.
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Chapter 2

Related Work

Our work is based on the literature on spectral style transfer for synthesizing

human motion. In this chapter, a brief overview of related work of human action synthesis

is presented and different kind of motion capture technologies is discussed. In the end, a

description of BVH(Bivison) file is presented.

2.1 Motion Synthesis Methods

According to the literature, existing motion synthesis methods can be classified

mainly into following categories: manual synthesis, physics-based methods and

data-driven methods (Wang et al., 2014).

Manual synthesis is the earliest and most basic motion synthesis approach which

refers manually setting degrees of freedoms(DOFs)of human joints in all individual points

in times which is called key frames. The manual synthesis was majorly applied in early

cartoon movie and game industries (Wang et al., 2014). Different kinds of interpolation

methods, such as cubic spline interpolation are used to compute DOFs in between the key

frames. Perlin and Goldberg (1996) have demonstrated manual synthesis computationally

efficient algorithm based on plain interpolation. Though simple interpolation hardly

produces realistic outputs unless the key frames are remarkably dense, the artist should

manually construct a substantial fraction of the character poses that used to appear in the

motion. Moreover, this work is time-consuming because a lot of key frames must be

created, and it is challenging to draw right key frames which are realistic and smooth

when played in sequence. Besides, it requires some knowledge of art sometimes. Mostly

the result of manual synthesis is very less natural and the simulation depends on enormous

manually modeling work.

The concept of physics-based methods depends on the real human movements

likewise the physical law. These methods are used to appear in both graphics and robotics

(Fang & Pollard, 2003). In physics based method, the mass distribution for each body part
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and the torques generated by each joint and Newton’s laws serve a system of ordinary

differential equations(ODEs). ODE that can be integrated to yield joint trajectories and

the trajectory of each joint can be retrieved by solving the ODE. This approach eliminates

a great deal of manual labor by, using physical laws to automatically fill in the details of

the motion of a character and guarantees that motions are physically accurate. However,

the physical accuracy does not imply visual realism. Besides, the main disadvantage of the

physical based methods is difficult to design specific equation of motion. Moreover, the

generated movement has fewer details and lack of individuality.

The data-driven methods allow reuse of existing data to synthesis new data. In data

driven approach, original or raw material data can be captured by the motion or skeleton

point capture equipment which will contain a source of highly realistic example motions.

Moreover, by using this approach the result can be used as the source of the human motion

data. Data-driven methods have the advantages of producing natural, realistic and more

generative motions in comparison with Physics-based motion synthesis. Also, there is no

need to build complex control systems for each joint (Wang et al., 2014). In the literature,

most of the algorithms have been proposed to synthesize new motion based on motion

capture data. In this part, we present the brief description of the state of arts of data-driven

motion synthesis algorithms.

Motion blending is the way to generate a new motion from pre-recorded motion

and concatenate two motion and blend the transition part. Perlin (1995) demonstrated

motion blending algorithm which are based on the real-time procedural animation system.

To synthesize a new motion using motion blending process, a user manually constructed a

set of base motions and then used blending operations via interpolation to transition

between motions (Kovar & Gleicher, 2003). Radial basis functions (Wooten & Hodgins,

2000) can be used to blend two motion if the motion capture data is contained by relative

orientation angles. Kovar and Gleicher (2003) introduced the registration curves for

computing blends which support all the operations such as interpolation, transitioning,
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and continuous control and could be used as a back end in these systems. Sometimes for

synthesizing some special motions, it is hard to find suitable matching motion capture. For

that reason, it is always required to capture new data for this purpose. Therefore, only

blending and interpolation cannot make use of motion capture data efficiently and

perfectly.

Motion graphs generate continuous streams of motion under user specified

constraints not only for concatenate two motion samples as motion blending. This

approach is sometimes called ”move trees”, and it has been used for a long time in the

video game industry for the character control (Mizuguchi, Buchanan, & Calvert, 2001).

This approach is more flexible and can make use of motion capture data more efficient

than simply blending. In addition, using motion graph approach is also feasible to

combine environment constrains or user specified constraints, for instance, sneak walking

in this approach. Most of the motions more than a few seconds in duration are naturally

thought of as sequences of atomic actions. These motion graphs have historically been

constructed manually in the sense that a user explicitly decided which motion clips could

be connected. In another approach (Kovar, Gleicher, & Pighin, 2002), a simple linear

blending method to concatenate two motions clips and showed that a motion graph could

be automatically constructed by identifying places where motions are locally similar.

Kovar et al. generated a transition from the ith frame of the first motion to the jth frame of

the second motion by linearly interpolating the root positions, performing spherical linear

interpolation on joint rotations, and putting additional constraints on the desired motion

(Wang et al., 2014). However, the limitation of the motion graph is generating motion at

the transition point where the thresholds for similarity must be specified by hand. Because

different kinds of motion have different fidelity requirements.

In the style transfer process, input movement style can be transformed into a new

style at the same time keeping its own original content. Real-time data driven method

using linear time invariant model are used to encode style differences and variances (Hsu
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et al., 2005). However, the performance of the method degrades when the motion

sequences are complex (Hsu et al., 2005). Recently a data driven method (Xia, Wang,

Chai, & Hodgins, 2015) has circumvented from (Hsu et al., 2005) linear time invariant

method to a local mixture of autoregressive method for style transfer using a motion

dataset. In this method, motion sequences labeled in various styles and actions and a local

mixtures of an autoregressive models creates temporally local nearest neighbor mixtures

from the source style database to transform each frame successively (Xia et al., 2015). In

other words, this method is able to create optimal stylize every frame in spatio-temporal

space. This method able to handle more heterogeneous action motion compared to other

methods. Moreover, this method generates better result when the style dataset contains the

type of actions in the target motion sequences. In one of the previous work stylistics

motion generation method (Amaya, Bruderlin, & Calvert, 1996), using the signal

processing method emotional transformed has been calculated then those transformation

applied to existing motions of articulated figures to generate the similar motions. To

calculate the transformation (Amaya et al., 1996) they have calculated the difference

between neutral and emotional movement.After that, the difference has been applied to a

new neutral movement. Moreover, Ikemoto, Akrikan, and Forsyth (2009) introduced

motion modeling method using gaussian process models to demonstrate the stylistic

motion.

Statistical methods of input output relationships are a primitive tool in closely all

fields of science engineering. The statistical models are mostly described as a set of

mathematical equations or functions that defined human motion using a finite number of

parameters and their associated probability distribution. In the translation of styles of line

drawings (Freeman, Tenenbaum, & Pasztor, 2003) the statistical methods have been used.

For synthesizing the stylistical motion, the generative statistical method such as Hidden

Markov Models (HMM) was used (Brand & Hertzmann, 2000). Statistical methods, for

instance, the Gaussian Process dynamic model (GPDM) was applied in J.M. Wang, Fleet
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and Hertzmann (2005). After that, J. M Wang et al.(2007) extended GPDM to Gaussian

Process Latent Variable model (GPLVM) to capture stylistic variation caused by gait and

identity. The capturing the same style and identity in the same action method has been

extended later (Min, Liu, & Chai, 2010).

Deep learning framework is used to synthesize character movements based on

high-level parameters, and the system can produce smooth, high-quality motion sequences

without any manual pre-processing of the training data (Holden, Saito, & Komura, 2016).

However, there is some ambiguity present in the output data. Besides, a good amount of

data is required to train a network to produce the data using the deep learning framework

(Holden et al., 2016).

2.2 Motion Capture

The process of recording and registering the movement of objects or human is

defined as Motion capture (mocap). The mocap technology is a successful technique for

generating realistic animations. In addition, it is also the foundation for motion data-driven

motion synthesis approaches and it has great use in the entertainment industry for films

and games to get more realistic human movements. Figure 2.1 displays different types of

motion capture technologies as well as some of the motion capture technologies processes.

2.2.1 Motion Capture Technologies

Capturing the movement of the human body using electromagnetic sensors is

called magnetic motion capture system. In a magnetic motion capture system,

electromagnetic sensors are cabled to an electronic control unit which correlates their

reported locations within the field. In other words, these sensors are connected to one or

multiple computers which are able to process the data and produce 3D data in real time.

The generated 3D data in real time which represent positions in 3D space tracking

trajectory will be display on the screen at the same time. Moreover, the generated output

is accurate and fast, without complex post-processing time. However, the main drawbacks

of magnetic motion capture are heavier sponsors and restricted freedom of movement
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caused by the connected cables (Lonkar, 2017). In addition, there are also some other

problems like magnetic distortion happens as distance increases, prone to interference

from magnetic fields and the system is very expensive (Lonkar, 2017).

In electro-mechanical systems, participants need to wear this special suit with

integrated electro-mechanical sensors that register the motion of the different articulations

that is hooked on to performers back. In this process, each joint has sensors which provide

the position (Lonkar, 2017). The main advantages of the electro-mechanical systems are

high tracking quality and real-time processing. However, it reduces the cost and

constraints of movement because of cabling. The electro-mechanical sensor suit is one of

the common examples. The disadvantages of this system are that it is not able to track the

background of the actor, and the tracking skeleton is usually constant (Du, 2014).

Depth cameras have become very popular in recent years. A good example of

depth camera motion capture system is Kinect camera. For motion tracking, the depth

information is a very important feature, and it also tracks the background of the actor.

Thus, it has good interaction property. The depth cameras, such as Kinect, are cheaper

than these special sensors. In addition, it also has the benefits, for instance, full freedom of

movement and the interaction between multi-actors. However, currently, the raw depth

data from Kinect is quite noisy. In addition, trained actor or subjects are required to

synthesis the data. Therefore, collecting data using Kinect is costly and time-consuming

Optical motion capture systems used to employ proprietary video cameras to track

the motion of reflective markers (or pulsed LED’s) connected to particular locations of the

actor’s body (Optical Motion Capture Systems, 2017). Optical systems have been applied

to motion capture area based on photogrammetric methods. Traditional optical camera

systems provide the advantage of full freedom of movement and interaction with different

actors as like as the depth camera system. Optical Motion Capture system is mostly very

flexible. Therefore, it can be extended by adding multiple cameras, which could give

larger tracking area and better tracking results. The optical camera tracking system can be
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divided into maker based and makerless. The captured motion data is usually 3D position

and relative orientation of each marker or joint in human skeleton both in marker based

and markerless. The main drawback of the optical systems is post-processing is necessary

to extract captured motion data from record videos.

(a) (b) (c)

(d)

Fig. 2.1: Motion Capture Technologies (Du, 2014): (a) Magnetic motion capture (b)
Electro-Mechanical Motion capture (c) Depth Camera Motion capture (d) Optical Motion
Capture

Animation software is one of the popular technologies used to create realistic

action based animation. In this thesis, we experimented with some of the animation

software. One of them makes human, which is an open source 3D animation tool (Team,

n.d.). Besides, we have experimented on iPi recorder animation software to make an own

3D character (Starbuck, Seo, Han, & Lee, 2014). However, we have faced some problems,

such as the iPi recorder produces only body movement excluding hands movement. It is

hard to know whether synthesized data will generalize to the real world. Moreover, in

some animation software hardware equipment also required recording the data. Therefore,

this software was not efficient for our work.
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2.3 Motion Data Representation

Motion Data is defined as the time series data where each frame represents the

poses of the character and poses of the character could be different. In the motion data

format, the poses of the character are typically parameterized by the character joints

positions or angles (3 dimensional).

2.3.1 Motion Capture File Formats

In Table 2.1 the list of motion capture file formats and references along with

motion capture data formats in use today along with URLs for additional formatting

information are given according to Meredith et al. (2001). The storage format of the

motion capture data is different according to different manufactures listed in Table 2.1. In

our work, we experimented in BVH format. The general skeleton structure (Wang et al.,

2014) shown in figure 2.2 (a) is used to define the skeleton joint chain, where each joint is

connected based on hierarchical structure. The hierarchical structure of the skeleton is

shown in Figure 2.2(b).

Table 2.1: List of Motion capture file formats and corresponding references for additional
format information (Meredith et al., 2001).

Mocap Extension Associated Institution File Format Reference

ASF and AMC Acclaim http://www.darwin3d.com/gamedev/

BVA and BVH Biovision https://research.cs.wisc.edu/

C3D The biomechanics standard https://www.c3d.org/

ASK/SDL Biovision/Alias http://research.cs.wisc.edu/

CSM 3D Studio Max, Character Studio http://www.character-studio.net/

HTR and GTR Motion Analysis software https://research.cs.wisc.edu/graphics/

BRD LambSoft Magnetic Format http://www.dcs.shef.ac.uk/

TRC Opensim Motion Analysis http://simtk-confluence.stanford.edu/

MOT and SKL Acclaim-Motion Analysis http://www.cs.wisc.edu/

MNM Autodesk 3D Studio Max http://autodesk.com
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BVH File Format

The BioVisions BVH file contains two parts, the first part represents the hierarchy

and initial pose of the skeleton and the second part refers to the motion data section, which

describes channel data referred in the first part of each frame. The human skeleton is

organized in a tree structure, normally starting from the root node in BVH file shown in

Figure 2.2(b). Recently, BVH format has become a recursive definition. Each segment of

the hierarchy includes some data relevant to just that segment then it recursively defines its

children. The main keywords of the BVH format are given below:

• Hierarchy: The BVH file starts with HIERARCHY keyword, which defines the

actors skeleton in a hierarchical structure. It allows to define more than one actors

skeleton in Hierarchy section, and the hierarchical skeleton usually starts from root

joint.

• Offset: Offset defines a 3D vector, which contains length and direction used for

drawing the parent. In addition, Offset also represents the bone length between two

joints.

• Channels: Channels represents the degree of freedom of a human skeleton. Each

bone within a skeleton can be subject to position, orientation and scale change over

the time of the animation, where each parameter is referred to as a channel.

• Motion: The motion capture data at each timestamp contains in the ending part of

BVH file. In the file, each line of motion represents each frame, and the data is

ordered according to sequentially concatenating the channels in hierarchy part.

The BVH file defines a human skeleton in it, so we do not need to pre-define a human

skeleton for different motion capture system, which makes our statistical modeling

approach more robust for different human skeleton model. To calculate the global position

of each joint in the human skeleton from raw BVH data, the mathematical definition was

12



introduced by Meredith et al. (2001). A BVH data file has the absolute translation and

rotation of the root joint and relative rotations of all other joints. Skeleton position of each

joint is crucial for our action synthesis work. Skeleton Joint, 3× T matrix, where T is the

total number of frames in our training data.

The Kinect skeleton joint of the bvh data format with 38 joints displays in Figure

2.2(a). Each joint has three channels or degrees of freedom x, y, z coordinates. The

hierarchical definition of the joints are shown in Figure 2.2(b).

13



Fig. 2.2: Human skeleton structure: (a) General human skeleton structure with 38 joint
points (b) Hierarchical structure of the BioVisions data format (Wang et al., 2014)

14



Chapter 3

Methodology

In this thesis, for synthesizing the actions with emotions, we are using the

literature on spectral style transfer. Style transfer method is data-driven which allows

utilizing the prior knowledge embedded in prerecorded skeleton data for the style transfer

(Xia et al., 2015). In this section, the description of the core methods of spectral style

transfer is presented.

3.1 Introduction

The human motion skeleton points presented as the time domain signal is shown in

Figure 3.1. In this figure, we can observe that the specific actions (for example walking

and kicking) with different emotion (for example neutral and kicking) in time domain

there is no trivial correlation that can be utilized immediately. Therefore, style transfer in

time domain signal is quite complex because there is no existing significant correlation,

especially when the actions are different in Figure 3.1. On the other hand, these same data

in magnitude component in the spectral domain as shown in Figure 3.2. We utilized that

the correlation is easily computable and also comparable to each other. Thus, these signal

frequency components in spectral domain contain useful information (Yumer & Mitra,

2016). The difference of neutral and emotion based skeleton joints is highly correlated in

frequency domain magnitude component even when the actions are different shown in

Figure 3.2. These experiments deduce the fact that if we have reference actions data

performed in the different emotion, we can extract the difference and apply the difference

to a new action data.
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Fig. 3.1: The difference of neutral and stylized skeleton joints. Where f(t) Discrete Time
domain signal of one of the degrees of the freedom (DOF) of the skeleton joints

Fig. 3.2: Frequency domain representation of (top) walking and kicking (bottom). The
difference of neutral and stylized skeleton joints are highly correlated in frequency
domain magnitude component even when two actions are different.

3.2 Method Definitions

We now define the terms and concepts relevant to Style Transfer algorithm.

Discrete Fourier transform: Let f [t] be a discrete time domain signal of one of the

16



degrees of freedom (DOF)of a feature. Consequently, the Discrete Fourier Transform F [k]

of f [t] is given by (Oppenheim & SCHAFER, 2009),

F [k] =
N−1∑
t=0

f [t]e−i
2 ∗ π
N

kt k = 0, ....., N − 1 (3.1)

Where N is the length of feature and i2 = −1. The single-sided spectrum F [w] is given by

F [w] =
2

N
F [k] k = 0, ...., N/2 (3.2)

Where w = (fs
N
)k frequency transform from samples k in the time space. Here, fs is the

sampling frequency or the time difference between one frame to another frame of the

original time signal f [t].

Magnitude and Phase angle: Let, R[w] and A[w] is the magnitude and phase angle.

Mathematically, R[w] amplitude of combined cosine and sine and A[w] is phase relative

proportions of sine and cosine. The magnitude, R[w], defines the existence and intensity

of a motion at w frequency whereas the phase, A[w] presents relative timing. The

magnitude R[w] and phase angle A[w] follows:

R[w] =
∣∣F [w]∣∣ (3.3)

A[w] = 6 F [w] (3.4)

In this work, magnitudes encode whether there are specific the magnitude of the action

and the angle represents the relative dynamic information of the skeleton data.

Inverse Discrete Fourier transform: Finally, to reconstruct f [t] from F [K] the inverse

discrete transform (Oppenheim & SCHAFER, 2009):

f
′
[t] =

1

N

∑
k=0

F
′
[k]ei

2 ∗ π
N

kt (3.5)

17



3.3 Algorithm on Style Transfer in Spectral Space

In this section, we describe the algorithm on Style Transfer in Spectral space. Let,

f(t)= time domain signal of the input action.

f s(t)= time domain signal of the source style or target emotion.

f r(t)= time domain signal of the reference style.

f s(t) and f r(t) from same action class.

f r(t) and f(t) are from the same style from action class.

f(t), f s(t) and f r(t) are computed discrete time signal of one of the degrees of the

freedom(DOF). The main goal of Style Transfer in Spectral space model (Yumer & Mitra,

2016) is to extract the difference between the source style f s(t) and reference f r(t) in

spectral space. Afterwards, we apply that difference into f(t). The length of the three

signal, synchronization and spatial correspondences could be different. Here, R[w], Rs[w]

and Rr[w] respectively, input, source, reference style spectral magnitudes. R[w], Rs[w]

and Rr[w] are computed using Eq.3.3 for all degrees of freedom in skeleton joints. The

style transfer is formulated by applying the difference of Rs[w] and Rr[w] to R[w] and

computes a newly stylized magnitude R′[w]. To preserve the timing with first constraint

and synchronization of the skeleton joints, the phase of the signal are constant (Yumer &

Mitra, 2016) in the algorithm. We apply the magnitude difference of the resulting new

magnitude R′[w] is used in the inverse fourier transform presented in Eq. 3.5. We

reconstruct the time domain data from frequency domain in Eq. 3.5. In addition, in the

resulting signal in the method are real valued in the spatial-temporal space. The procedure

of style transfer in spectral Space is summarized in algorithm 1. In this algorithm, for each

38 skeleton joint and DOF, we are calculating all the definitions of input, source and

reference. Besides, we calculate the same magnitude component point in this algorithm

for each action for mathematical calculation because input, source and reference action

data might have the different number of frames.
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Algorithm 1 Style Transfer in Spectral Space Pseudo code

1: Inputs: input signal f(t), source signal f s(t), reference signalf r(t)

2: Output: Output styled signal f ′
[t]

3: for joint=1 to 38 do

4: for DOF=1 to 3 do

5: for frame=1 to n do

6: Compute fft F [k], F s[k], F r[k] by solving Eq. (3.1) and Eq. (3.2)

7: Compute R[w], Rs[w], Rr[w] by solving Eq. (3.3)

8: Compute phase angle A[w],As[w]and Ar[w] by solving Eq. (3.4)

9: Compute Difference between Rs[w] and Rr[w]

Rs[w]−Rr[w]

10: Apply the difference to input magnitude

R
′
[w] = R[w] + (Rs[w]−Rr[w])

11: Compute F ′[k]by Adding R′
[w] with input phase angle

F ′[k]= R′
[w] + A[w]

12: Compute ifft or reconstructed signalf ′[t] by solving Eq. (3.5)

13: end for

14: end for

15: end for

16: Outputf ′[t]

3.4 Schematic representation of Style Transfer in Spectral Space

The schematic representation of the algorithm style transfer is presented in Figure

3.3. Here source and reference data are available from the training database. In Figure 3.3,

we are presenting the way of computing the difference between source and reference

19



action data. Afterwards, the resulting difference applied into the input magnitude

component. In the end, we are combining the original phase information to new stylized

magnitude component. Then, we reconstruct the new emotion based data in the time

domain.
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Fig. 3.3: Schematic representation of Style Transfer in Spectral space. (a) Compute the
difference between Rs[w] and Rr[w]. (b) Applying the difference to the input R[w] and
compute newly stylized magnitude R′[w]. A[w] is kept constant while generating stylized
time domain data.
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Chapter 4

Implementation and Evaluation

In this chapter, dataset description, experimental setup and experimental results are

discussed.

4.1 Dataset

In this work, we experiment on the two benchmark dataset CMU graphics lab

(Hahne, 2010) and Emotional Body Motion Database (Max-Planck Institute for

Biological Cybernetics in Tuebingen, 2014). The experimental data has 38 skeleton joints

with three degrees of freedom for each joint.

4.2 Experimental Setup

We have tested on CMU motion capture database in BVH format (Hahne, 2010).

The BVH format succeeded BioVisions BVA data format with the important addition of a

hierarchical data structure describing the bones of the skeleton. The BVH file has two

parts where the first part contains the hierarchy and initial pose of the skeleton, and the

second part is the motion data section which describes channel data defined in the first

part of each frame (Biovision BVH, n.d.). In BVH file, the human skeleton is represented

in a tree structure, usually starting from the root node. Human skeleton can be

reconstructed by deep first parsing this part. We have extracted the skeleton joints from

the BVH motion data. In the data, skeleton joints were recorded in the motion data at 120

frames per second and mapped to 38 skeleton joints times of 3 degrees of freedom

(Hahne, 2010). In the motion data, energy is concentrated in upper or lower body based

on the actions such as upper body actions (e.g., hitting) and lower body action(e.g.,

kicking). Considering the style transfer method is energy based, based on the upper or

lower body input action we are applying the upper or lower training data similarities to do

the best style transfer. Therefore, we have divided the training data upper body action and

lower body action is shown in Table 4.1.
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Table 4.1: List of Actions Upper body and Lower body class actions

Upper body Lower body Upper and Lower body

Punch Jump Walking

Throwing Sitting Standing

Drinking Falling Running

Dressing Reading

Grabbing Lying or Sleeping

Pushing Talking

Cutting Kicking

Eating

4.3 Experimental Results and Discussion

In this work, we generate 18 actions with five emotions of human skeleton joints

by implementing the algorithm 1. The list of the actions is: walking, running, standing,

punching, kicking, jumping, throwing, grabbing, hitting, sitting, lying, eating, dressing,

drinking, falling, cutting, talking and pushing. The list of the emotions is neutral, happy,

sad, angry and fear. We transform the input action skeleton pose data into a sequence of

frames in the output emotion style on the fly. For expressing emotion through arm

movement and gesture, an observation was made Gross, Crane, and Fredrickson (2001) is

summarized in Table 4.2. We justify the emotion based action visually based on these

features. Figure 4.1 shows sample key frames of input neutral walking and output sad

walking, happy walking, angry walking and fear walking. The training data both source

and reference for the ”sad walking” contained running data. According to the sad emotion

features are shown in the Table 4.2, we can observe in output sad walking that skeleton

head joints have the longest movement over time, the smallest amplitude of elbow motion

and also hiding gesture. In Figure 4.2, sample key frames of input neutral running and

output happy running, sad running, angry running and fear running and in this case
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training data (source and reference) contained the walking data. We observe in the output

that arms stretched out to the front according to the happy emotion feature Table 4.2.

(a)

(b)

(c)

(d)

(e)

Fig. 4.1: Sample key frames of experiment (a) Input Neutral walk (b) Output Happy Walk
(c) Output Sad walk (d) Output Angry Walk (e) Output Fear Walk.
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(a)

(b)

(c)

(d)

(e)

Fig. 4.2: Sample key frames of experiment (a) Input Neutral Running (b) Output Happy
Running (c) Output Sad Running (d) Output Angry Running (e) Output Fear Running.

In Figure 4.3 sample key frames of input neutral punch and output angry punch

when training data (source and reference) is standing. Based on the features of angry, we
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can observe that liberalized hand-arm movement and arms stretched in towards the body,

that is shown in Figure. 4.3(b)

(a)

(b)

Fig. 4.3: Sample key frames of experiment (a) Input neutral punch (b) Output angry
punch.

In Figure 4.3 sample key frames of input neutral kick and output angry kick when

training data (source and reference) is standing. In this figure, the output Fear kick

justifies the features of Table 4.2.
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(a)

(b)

Fig. 4.4: Sample key frames of experiment (a) Input neutral kick (b) Output fear kick.

The overall computation time of the synthesizing actions with emotions is 32.40s.

Table 4.2: Feature of arm movement and gesture on emotion (Wang et al., 2014)

Emotion Features

Angry Lateralized hand-arm movement, arms stretched in, largest

amplitude of elbow motion, largest elbow extensor velocity,

highest rising arm.

Happy Arms stretched out to the front.

Sad Longest movement time, the smallest amplitude of elbow

motion, least elbow extensor velocity and hiding and with-

drawal gestures.

Fear Arms stretched sideways
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4.4 Evaluation Methods

In this section, we presented the brief description of the evaluation process of the

thesis work. A user study has been conducted on Amazon Mechanical Turk (AMT) to

evaluate the effectiveness of the proposed work.

Two different question types are designed and administered to assess both action

and emotion from the generated video outputs. In the first question type, subjects are

asked to choose the correct action and in the second question type, they are asked to

choose the correct emotion. In this work, five survey forms are created where each form

contains 30 videos of 18 actions and 5 emotions and a total of 60 questions. The collected

responses are analyzed later to calculate the accuracy of the human actions and emotion of

the proposed approach. The responses of the users are analyzed to ensure the quality of the

responses to choose the best possible responses. For example, individual responses where

the user recorded their response without waiting for the videos to finish are automatically

rejected. Similarly, if all the responses of a subject are same for consecutive questions,

they are also rejected as they do not reflect the actual attempt. In total, 50 responses per

survey form have been used in this work to measure the efficiency of the proposed work.

4.5 Evaluation Results

The subjects are given each video of emotion based action and are asked to select

the best action and emotion. The subjects were given 18 actions and five emotions along

with ”I have no idea” option. The user selected the best action and emotion from the

options. We extract all the responses of the subjects for each action and emotion class

Ci.We calculate the recognition rate using Eq. 4.1.

Recognition rate =
Number correct response for classCi

Number of Response for classCi

(4.1)
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The recognition rate of actions from the user study along with the recognition rate

calculated using Eq. 4.1 and the recognition percentage value are listed in Table 4.3.

Table 4.3: Accuracy of action recognition from user responses

Action Accuracy

Walking 97.78%

Standing 87.76 %

Running 87.20%

Jumping 87.80%

Punching 68.13%

Kicking 89.58%

Sitting 76.73%

Throwing 67.82%

Hitting 45.71%

Grabbing 50%

Pushing 39.29%

Drinking 60.34%

Dressing 45.450%

Eating 50%

Lying 83%

Talking 40%

Falling 51.85%

Cutting 40%

The recognition rate of emotions from the user study is shown in Table 4.4. Here

recognition rate calculated using Eq. 4.1 and the recognition rate percentage value are

given in Table 4.4.
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Table 4.4: Accuracy of emotion recognition from user response

Emotion Accuracy

Neutral 80.3383%

Happy 46.4706%

Sad 40.4444%

Angry 50.6579%

Fear 36.7347%

The confusion table for experimental output video of 18 actions are shown in

Table 4.5, and five emotions are shown in Table 4.5.

Table 4.5: Emotion Recognition user-study confusion matrices. In each cell: emotion
recognition percentage values are given.

User Selected Emotion

Neutral Happy Sad Angry Fear No Idea

C
or

re
ct

ed
E

m
ot

io
n

Neutral 80.3383 2.7484 2.1142 - - 14.7992

Happy 36.1765 46.4706 2.3529 2.9412 0.5882 11.4706

Sad 40.8889 - 40.4444 - 7.1111 11.5556

Angry 28.9474 5.2632 - 50.6579 5.9211 9.2105

Fear 28.5714 - 18.3673 2.0408 36.7347 14.2857

No Idea - - - - - -

4.6 Discussion

In this section, we discuss our evaluation result and state of the art. In the literature

the ratio of the action recognition rate for walk, run, kick, jump and punch are respectively

87%, 22%, 12%, 5% and 0% from the user study (Yumer & Mitra, 2016). The percentage

values of action recognition representing in the each cell of confusion (Table 4.6). We

achieve the good recognition rate for walking, running, jumping, kicking and lying. There

30



Ta
bl

e
4.

6:
A

ct
io

n
re

co
gn

iti
on

us
er

-s
tu

dy
co

nf
us

io
n

m
at

ri
ce

s.
In

ea
ch

ce
ll:

ac
tio

n
re

co
gn

iti
on

pe
rc

en
ta

ge
va

lu
es

ar
e

gi
ve

n.

U
se

rS
el

ec
te

d
A

ct
io

n
W

al
k

St
an

d
R

un
Ju

m
p

Pu
nc

h
K

ic
k

Si
t

T
hr

ow
H

it
G

ra
b

Pu
sh

D
ri

nk
D

re
ss

E
at

Ly
in

g
Ta

lk
Fa

ll
C

ut
N

oI
de

a

CorrectedAction

W
al

k
97

.7
8

-
-

-
-

-
-

-
-

-
0.

74
-

-
-

-
-

-
-

1.
48

St
an

d
-

87
.7

6
-

-
-

-
-

-
-

-
-

-
-

-
4.

08
-

-
8.

16
R

un
12

-
87

.2
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
0.

80
Ju

m
p

-
3.

75
-

87
.8

0
-

-
-

1.
22

1.
22

-
-

-
-

-
-

-
-

6.
01

Pu
nc

h
-

-
-

-
68

.1
3

-
-

6.
59

14
.3

0
6.

59
-

-
-

-
-

-
4.

39
K

ic
k

-
1.

04
1.

04
4.

17
-

89
.5

8
-

-
-

-
-

-
-

-
-

-
3.

13
-

1.
04

Si
t

-
-

-
-

-
-

76
.7

3
-

-
-

-
-

-
2.

59
5.

18
1.

72
1.

72
7.

76
T

hr
ow

-
6.

89
-

-
-

1.
15

-
67

.8
2

6.
89

-
4.

59
-

-
-

-
-

-
-

12
.6

5
H

it
-

-
-

-
31

.4
3

-
-

2.
86

45
.7

1
-

11
.4

3
-

-
-

-
-

-
-

8.
57

G
ra

b
-

11
.7

6
-

-
1.

47
-

-
-

-
50

14
.7

1
-

-
-

-
-

4.
41

17
.6

5
Pu

sh
-

1.
79

8.
93

-
-

-
-

28
.5

7
39

.2
9

-
1.

79
-

-
5.

36
-

-
14

.2
9

D
ri

nk
-

3.
45

-
-

-
-

-
-

-
13

.7
9

-
60

.3
4

-
12

.0
7

-
1.

72
-

-
8.

62
D

re
ss

-
-

-
-

-
-

-
4.

54
13

.6
4

13
.6

4
-

45
.4

5
-

-
-

-
-

22
.7

3
E

at
-

-
-

-
-

-
-

-
-

-
-

30
50

-
-

-
20

Ly
in

g
-

-
-

-
-

-
-

-
-

-
-

-
-

-
83

-
-

-
17

Ta
lk

26
-

-
-

34
-

-
-

-
-

-
-

40
-

-
-

Fa
ll

-
-

-
48

.1
5

-
-

-
-

-
-

-
-

-
-

-
-

51
.8

5
-

C
ut

-
30

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
40

30
N

oi
de

a
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

31



is some interesting outcome of our user study is the fact that hitting, throwing and pushing

are being significantly confused with hitting, throwing and pushing is presented in (Table

4.6). In this table, another action grabbing is confused with standing and pushing.

Besides, eating and drinking are confused with eating drinking. Talk is confused with

sitting and walking. In addition, falling is confused with jumping.

The state art of style transfer of human synthesis (Yumer & Mitra, 2016), provided

style user study recognition confusion matrices, and they achieved 94% neutral and

neutral is confused with proud style. Besides, Yumer and Mitra (2016) obtained 90%

angry, and angry is confused with proud. Fear is confused with neutral, and sad is shown

in our user study confusion matrices (Table 4.5).

4.7 Extension of the human action video signal

In this section, a research has been done to extend the length of an input video

signal to any given duration. To achieve that, we need to find the period of the given

human action signal and then repeat the period to generate the output video of a desired

length. First, the periodic joint is selected for a given human action to calculate the period

of that joint. The selection is done by calculating the distance between the highest peak

and second highest peak of the power spectrum. The joint for which this distance is the

maximum is considered as the periodic joint for the given human action. For example, in

current dataset, right hand joint is chosen as the most periodic joint for walking and

running actions. The most periodic joints for a walking action displays in Table 4.7.

In order to calculate the period of the most periodic joint, findpeaks method is used

to locate the local peak points in the input signal. Then the highest peak location is

identified, which is considered as the starting point of the periodicity. The ending point

will be the last peak location provided by the findpeaks method. As the datasets human

action signal is a composite signal, this approach provides a better estimation of the cycle

value for the periodic joint. This approach also generates a smoother transition of the

frames in the extended length of the video output.
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The other two approaches that are used to find the periodicity of the input signal

are Auto-correlation based approach (xcorr method in Matlab) and Fast Fourier

Transform based approach (fft method in Matlab). These two approaches provide some

estimation of the period for the given signal. But these methods work only in the cases

where the periodicity starts from the beginning of the input signal. As the datasets human

actions are composite signals, these methods are not a good candidate to calculate the

overall period of the video signal.

Table 4.7: List of skeleton joints name which contains periodic motion

Action Skeleton joint

Walking Lefthandindex1, Lefthandindex2, Leftthumb1, Leftthumb2, Lefthand,

Leftfingerbase, Leftarm,Leftupleg

Running Leftforearm, Righthandindex2, Righthandindex1, Righthand, Rightfin-

gerbase, Lefthand, Leftforearm, Lefthandindex1, Lefthandindex2, Lef-

tarm, Leftfingerbase.

Punch Leftarm, leftforearm, leftfoot,Leftfootbase1, leftfootbase2, leftupleg,

leftleg,lefthand, lefthandfingerbase1, lefthandfingerbase2, lefthandin-

dex1, lefthandindex2.

Kicking Rightforearm, Righthandindex1, Righthandindex2, Rightthumb,

Righthipjoint, Rightleg, Rightfoot, Rightfootbase, Righthipjoint

Throwing Leftffoot, Spine, Hips, Righthipjoint, Leftforearm, Rightfoot, Leftfore-

arm

Grabbing Righthandthumb, Righthand, Righthandindex1, Rightforearm, Left-

handhumb, Rightleg, Lefthand
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Chapter 5

Conclusion and Future Work

Realistic human action synthesis is very complex. The current state state of the art

still requires an exhaustive database including all possible actions and transitions to

perform a realistic style transfer. This thesis presents, synthesizing various actions with

the different set of emotions by applying style or emotion transfer algorithm. This work

has the advantage of psychological research on emotion besides the enhancing database

and animation industry. CMU motion capture dataset has been used in this research to

justify the proof-of-concept. The proposed framework can easily be extended to include

other actions and emotions. In future, we would like to include more actions and

emotions. Besides other emotions, we would like to investigate the ways of generating

actions with different personalities, ages and genders. This research poses a good platform

to use this concept in the gaming industry where actors emotion and action can easily be

synthesized to design a more realistic experience for end users. In spectral domain,

imposing direct spatial constraints can be the future direction of research.
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Hsu, E., Pulli, K., & Popović, J. (2005). Style translation for human motion. In Acm

transactions on graphics (tog) (Vol. 24, pp. 1082–1089).

Kovar, L., & Gleicher, M. (2003). Flexible automatic motion blending with registration

curves. In Proceedings of the 2003 acm siggraph/eurographics symposium on

computer animation (pp. 214–224).

Kovar, L., Gleicher, M., & Pighin, F. (2002). Motion graphs. In Acm transactions on

graphics (tog) (Vol. 21, pp. 473–482).

35



Lhommet, M., & Marsella, S. C. (2014). Expressing emotion through posture. The

Oxford Handbook of Affective Computing, 273.

Lonkar, S. (2017). Types of motion capture. Retrieved from

https://sagarlonkar.com/about-2/motion-capture/

types-of-motion-capture/ ([Online; accessed 26-Feb-2017])

Max-Planck Institute for Biological Cybernetics in Tuebingen, G. (2014). Emotional

Body Motion Database. http://ebmdb.tuebingen.mpg.de/. ([Online;

accessed 4-May-2017])

Meredith, M., Maddock, S., et al. (2001). Motion capture file formats explained.

Department of Computer Science, University of Sheffield, 211, 241–244.

Min, J., Liu, H., & Chai, J. (2010). Synthesis and editing of personalized stylistic human

motion. In Proceedings of the 2010 acm siggraph symposium on interactive 3d

graphics and games (pp. 39–46).

Mizuguchi, M., Buchanan, J., & Calvert, T. (2001). Data driven motion transitions for

interactive games.

Oppenheim, A. V., & SCHAFER. (2009). Discrete-time signal processing (Vol. 3).

Prentice Hall.

Optical Motion Capture Systems. (2017). http://metamotion.com/

motion-capture/optical-motion-capture-1.htm. ([Online;

accessed 26-Feb-2017])

Starbuck, R., Seo, J., Han, S., & Lee, S. (2014). A stereo vision-based approach to

marker-less motion capture for on-site kinematic modeling of construction worker

tasks. In Computing in civil and building engineering (2014) (pp. 1094–1101).

Team, M. (n.d.). Makehuman. Retrieved from http://makehuman.org

Vosk, B. N., Forehand, R., & Figueroa, R. (1983). Perception of emotions by accepted

and rejected children. Journal of Psychopathology and Behavioral Assessment,

5(2), 151–160.

36



Wang, X., Chen, Q., & Wang, W. (2014). 3d human motion editing and synthesis: a

survey. Computational and mathematical methods in medicine, 2014.

Wooten, W. L., & Hodgins, J. K. (2000). Simulating leaping, tumbling, landing and

balancing humans. In Robotics and automation, 2000. proceedings. icra’00. ieee

international conference on (Vol. 1, pp. 656–662).

Xia, S., Wang, C., Chai, J., & Hodgins, J. (2015). Realtime style transfer for unlabeled

heterogeneous human motion. ACM Transactions on Graphics (TOG), 34(4), 119.

Yumer, M. E., & Mitra, N. J. (2016). Spectral style transfer for human motion between

independent actions. ACM Transactions on Graphics (TOG), 35(4), 137.

37


	Synthesizing Human Actions with Emotion
	Recommended Citation

	tmp.1636142546.pdf.jnW_H

