
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

10-11-2012 

Path Integral Approach to Time-Fractional Quantum Mechanics Path Integral Approach to Time-Fractional Quantum Mechanics 

Bradley Thomas Yale 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Yale, Bradley Thomas, "Path Integral Approach to Time-Fractional Quantum Mechanics" (2012). Electronic 
Theses and Dissertations. 587. 
https://digitalcommons.memphis.edu/etd/587 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/587?utm_source=digitalcommons.memphis.edu%2Fetd%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


PATH INTEGRAL APPROACH TO TIME-FRACTIONAL QUANTUM MECHANICS 

by 

Bradley T. Yale 

 

 

 

 

 

A Thesis  

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

 

Major: Physics 

 

 

 

 

 

The University of Memphis 

May 2013



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2012 Bradley Thomas Yale  

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Dedication 

I dedicate this thesis to Bonnie, my beautiful wife, and to my dear mother and late 

grandparents who have always supported me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

I would like to thank Drs. Achar and Hanneken for introducing me to the field of 

fractional calculus, as well as Dr. Robert Marchini for starting me on this fascinating 

journey into physics. I would also like to acknowledge my best friend Matthew 

Roberson, with whom I have spent countless hours looking into various research projects, 

and learning all sorts of interesting mathematics in the process.  



v 
 

Abstract  

Yale, Bradley Thomas. MS. The University of Memphis. May 2013. Path Integral 

Approach to Time-Fractional Quantum Mechanics. Major Professor: B. N. Narahari 

Achar. 

The Schrödinger equation which is fractional in space only has been previously 

derived by Laskin in terms of the Riesz fractional derivative, and the familiar 

Schrödinger equation is recovered when the fractional order equals 2. The objective of 

the present thesis is to derive a Schrödinger equation which is fractional in time, such that 

the standard Schrödinger equation is recovered when the fractional order equals unity, 

using the path integral method of Feynman. This time-fractional Schrödinger equation 

will be solved for a free particle, and the fractional wave packet and Green’s function 

solutions will be obtained. Other topics such as the uncertainty product of a Gaussian 

under fractionalized time will be discussed. 

 It will be shown that the action integral itself must be fractionalized to the same 

order as the Lagrangian used for the Feynman path integral kernel, in order to maintain 

the correct order of the fractional derivative in the resulting Schrödinger equation. This 

suggests that all fractional classical mechanics problems involving Hamilton’s principle 

must be treated in this way as well. 

In order to maintain correct units and the normalization condition for all fractional 

orders, it is suggested that space and time be fractionalized as a pair, with a related fractal 

index, suggesting a fundamental relationship between fractal space and fractal time 

similar to standard spacetime. 
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Introduction 

Fractional calculus, while conceived shortly after the discovery of calculus, has 

not been extensively studied until fairly recently. While the physical significance of a 

derivative with non-integer order is not yet well-understood, the mathematical properties 

of many dynamical systems have been worked out and have been found to exhibit some 

intriguing behavior. The fractional harmonic oscillator, for example, undergoes a 

damping intrinsic to the system in the absence of a damping force [1]. Such anomalies 

may provide a deeper understanding of the physics of the system that is described, or at 

least an alternative method for modeling the existing physical systems. One example is 

that the only way to correctly model anomalous diffusion (an observed phenomenon) is 

by using the fractional diffusion equation. 

Some work has been done by Nikolai Laskin [2] to derive the Schrödinger 

equation which is fractional in space using Richard Feynman’s path integral approach. In 

general, by considering path integrals of a functional measure generated by the Lévy 

stochastic process, which is the generalization of the Brownian motion which normally 

defines the Feynman functional measure, a Schrödinger equation may be obtained with 

fractal dimensions of 0 < α ≤ 2 and 0 < β ≤ 2 in space and time, where the standard 

Schrödinger equation is recovered when the fractional orders of the derivatives are 

replaced by ones of integer order. 

A time-fractional Schrödinger equation has been studied by Mark Naber [3], 

where its form is assumed (not derived) with fractional order for time      . It has 

been shown that the solution retains the same form during both “subdiffusion”       

and “superdiffusion”       domains. In this thesis, the time-fractional Schrӧdinger 

equation will be derived from first principles using Feynman’s path integral formulation, 
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in a manner similar to how Laskin derived the space-fractional one. Differences will arise 

from the fact that time is somewhat simpler to work with, since the operations of 

differentiation and integration for the Lagrangian and action integral respectively are 

performed with respect to time, making the fractionalization beautifully straightforward. 

In order to maintain the correct fractional-order time derivative in the resulting 

Schrödinger equation, it will be shown that the action integral must be fractionalized to 

the same order as the Lagrangian, suggesting that fractional classical dynamics problems 

involving the action integral should be treated this way as well. There are numerous 

publications which utilize a fractional Hamilton’s principle where only the Lagrangian is 

fractionalized. This thesis will suggest a correction to these publications (and all future 

ones) on the grounds that correctly applying the principle of least action to the path 

integral approach to quantum mechanics, a more fundamental development than any 

classical mechanics problem, involves fractionalizing both quantities to the same order, 

and the correspondence between fractional classical and quantum mechanics must be 

maintained. 

The physical significance for applying fractional calculus to the path integral 

method is that the Schrӧdinger equation can be thought of as a probabilistic diffusion 

equation with an imaginary time component and diffusion coefficient. Anomalous (non-

Brownian) diffusion is one of the best-understood fractional systems since it occurs in 

nature, for example, in a biological system which involves the temporary confinement of 

diffusive proteins as they attach to lipid rafts, resulting in a net displacement    

proportional to a time scale less than  
 

  (“subdiffusion”), such that       with 

   
 

 
    [4]. Therefore, with the proven connections between fractional and non-



3 
 

fractional diffusion, and using the path integral derivation of quantum mechanics (which 

involves the classical Lagrangian) to arrive at the Schrӧdinger equation, the only missing 

link is to apply the same principles that Feynman did to fractionalized quantities in 

classical mechanics in order to arrive at a fractional imaginary diffusion equation, which 

exhibits the properties of the usual Schrӧdinger equation for a time derivative order of 

unity, and properties of anomalous diffusion for any lesser order. This would demonstrate 

that fractional calculus is compatible with what is widely considered to be the most 

fundamental approach to quantum mechanics, making it all the more attractive to search 

for new and interesting physics contained within it. 

The first part of this thesis provides the motivation for Feynman’s development of 

the path integral formulation of quantum mechanics, as well as the mathematical 

background for all the methods to be used in the fractional treatment of the quantum 

mechanical free particle, up to the non-fractional derivation of the Schrӧdinger equation. 

A brief introduction to fractional calculus will also be provided. The second part will 

contain the fractional treatment of the quantum mechanics of a free particle in one spatial 

dimension, in the derivation of the fractional-time Schrӧdinger equation, followed by the 

Green’s function solution. The fractional time evolution of a wave packet and fractional 

uncertainty are discussed, followed by the fractional infinite square well problem. 

The notations used in this thesis include                   and 

                   for Fourier and Laplace transforms respectively. Fourier 

transforms will be the preferred treatment to solve differential equations with respect to a 

spatial variable, and Laplace transforms for those with respect to time, due to the spatial 

bounds of          and temporal bounds        , consistent with the region 



4 
 

of convergence for the respective transform. All plots are done using Wolfram 

Mathematica version 8.0, and the sums of those involving functions defined by infinite 

series are carried out to 1000 terms and a precision of 60 digits. The magnitude of the 

mass m used in graphing equations will be set equal to the magnitude of the reduced 

Plank’s constant,  , such that  
 

 
  . Equations which describe important results will be 

enclosed in a box. 

1. Preliminary Material 

Motivation for the Path Integral Formulation (Absorber Theory) 

In developing the principal method used to derive the time-fractional Schrӧdinger 

equation in one dimension used in this thesis, Feynman’s path integral formulation, it is 

worthwhile to provide a brief introduction to the motivation for this novel way of treating 

quantum mechanical systems, and the reason behind the necessity to consider using the 

Lagrangian rather than the Hamiltonian in developing it. As the preliminary work for his 

PhD thesis, Richard Feynman explored the notion of a non-relativistic electromagnetic 

theory which involved point-like particles interacting directly (action at a distance), 

without the need for field theory. This would eliminate the necessity to consider the self-

interaction of the particle with its own field, which introduces complications such as the 

particle needing to have infinite mass or an extended structure, the former being 

inconsistent with the observed energy levels of high-precision experiments, and the latter 

violating locality [5]. However, by neglecting the interaction of the radiating body with 

its own field, the particle does not feel any sort of recoil from radiating energy, thus 

violating energy conservation [5]. To resolve this problem and make a viable theory, 

Feynman, under the direction of his advisor at Princeton, John Archibald Wheeler, 
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modified the theory to include only absorbers of electromagnetic energy and the 

interactions between them expressed as linear combinations of the advanced and retarded 

solutions of Maxwell’s equations [5]. It involved four fundamental assumptions:  

(1) “An accelerated point charge in otherwise charge-free space does not radiate 

electromagnetic energy” [6]. This assumption will prove to necessitate the existence of 

absorbers in all radiative electromagnetic interactions. 

(2) “The fields which act on a given particle arise only from other 

particles” [6]. This assumption makes mandatory the condition of avoiding self-

interactions. 

(3) “These fields are represented by one-half the retarded plus one-half the 

advanced Liénard-Wiechert solutions of Maxwell’s equations. This law of force is 

symmetric with respect to past and future” [6]. Complete reversibility of time is assumed 

because a unified theory of action at a distance would necessarily have such symmetry. 

(4) “Sufficiently many particles are present to absorb completely the radiation 

given off by the source” [6]. 

The source of the field described in these assumptions is an accelerating charge 

(or net contribution of charges) within this region of absorbers, and the net emitted field 

is now represented using the half-advanced and half-retarded components of the usual 

solution,  : 
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When this field interacts with an absorber, the absorber is set into motion and generates a 

force of reaction of its own, of the form 

 

 

 

                                                                 
         

 
                                                         

 

Evaluated in the neighborhood of the source, the advanced solution of the absorber’s field 

is independent of the absorber, completely determined by the motion of the source, but it 

is still interpreted as part of the contribution from the absorber. Furthermore, the net force 

exerted on the source by the sum of the advanced solutions from all the absorbers 

conveniently takes away from the source’s energy the same amount that it imparts on the 

surrounding absorbers in classical field theory. The advanced solutions still violate 

causality, of course, but this can be remedied by considering the result of all the 

contributions from both the source and absorbers: 

 

 

 

                                 

 

 
         

 
 
         

 
                                    

 

 

 

The result of all the interactions within the theory of absorbers eliminates the advanced 

solution in its explicit form, demonstrating the equivalence of absorber theory with 

classical field theory. Hence, a new theory had been established, which involves action at 

a distance rather than fields, eliminates the problem of self-interacting particles, and 
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preserves causality when the entire system is considered. Feynman’s thesis involves 

quantizing this theory. 

Before it could be quantized, however, one last fundamental issue needed to be 

addressed: the classical Hamiltonian cannot be used to describe a system in the absence 

of field variables. The Hamiltonian describes the state of a system at one specific time, 

and the linear combination of the advanced and retarded solutions of the electromagnetic 

interaction used in the new theory involves propagation backward and forward in time 

respectively. Therefore, contributions from both the past and the future must be 

considered for each radiative process, and two different notions of time must be used [5]. 

This is unfortunate, since the normal approach to dealing with a quantum mechanical 

system is to borrow the Hamiltonian method from classical mechanics and build 

Hamiltonian operators with them. In the case of classical field theory, which models a 

field as a set of harmonic oscillators, the Hamiltonian of the system consists of terms 

arising from the Hamiltonian of the particles, the field, and their interaction. The 

quantized electromagnetic field may then be represented (by the correspondence 

principle) as an infinite set of quantized harmonic oscillators; the photons which transmit 

the force are represented as transverse waves, while the actual Coulombic interaction of 

the particles takes the form of longitudinal and “time-like” oscillators [5]. 

With the failure of the Hamiltonian under the new theory, Feynman needed to 

develop a useful tool from the remaining concepts of classical mechanics. He chose the 

principle of least action arising from Lagrangian mechanics because, aside from being the 

next logical choice to consider, the notion of action involves paths over all space-time, 

where one path at one time affects another path at a different time. This allows for the 
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abandonment of the Hamiltonian which involves having to write different equations for 

fields at different moments in time in order to describe interactions.  

In developing a method to quantize his absorber theory, Feynman (using results 

from Paul Dirac’s work) stumbled upon something arguably more useful: a new way of 

thinking about quantum mechanics. The next sections introduce the principle of least 

action, and how Dirac and Feynman used it to reformulate quantum mechanics, providing 

the basis for his own theory of quantum electrodynamics involving diagrammatic 

perturbation theory—the formulation primarily used in particle physics today. 

The Principle of Least Action 

Classically, the state of the system at time   can be fully described in terms of 

position,  , and velocity,   , in generalized coordinates, and the equation of motion 

obtained by methods such as the Euler-Lagrange equation: 

 

 

 

                                                                  
 

  
 
  

   
  

  

  
                                                             

 

 

 

where                                       is the Lagrangian; note that it is 

dependent only upon the position and velocity of the particle, and implicitly on time [7]. 

The Lagrangian, like the Hamiltonian, contains all of the information of the system and 

the forces acting upon it, since the Euler-Lagrange equation is equivalent to Newton’s 

second law. The most general formulation of mechanical laws, however, is the principle 

of least action, from Hamilton’s principle of stationary action, which gives rise to the 

differential equations of motion for a particle. Dirac and Feynman both use this principle 
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in their work to reformulate quantum mechanics, and it would be useful to mention here 

how it is defined and to show its equivalence to more traditional laws of motion, such as 

Newtonian mechanics.  

Consider the time-integral of the Lagrangian between two points in time,    and 

  , and call this quantity action, denoted by  : 

 

 

 

                                                                                    
  

  

                                               

 

 

 

Action is a functional (denoted by square brackets) of the particle’s path described by the 

Lagrangian, in that it depends only upon the form of the Lagrangian. It takes a coordinate 

as an argument, uses it (by way of the Lagrangian) to determine a path, and assigns a 

particular value for the path considered [8]. A similar relationship exists in quantum 

mechanics between the expected value of an observable and the wavefunction upon 

which it acts. 

Consider now a small perturbation in the Lagrangian, ε, which is stationary at the 

endpoints (             ). This translates to an infinitesimal change in the action, 

such that: 
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Expanding the first term to first-order in ε, 

 

 

 

                                                                    
  

  
   

  

   
                                   

 

 

 

the equation becomes 

 

 

 

                                                            
  

  
   

  

   
    

  

  

                                                      

 

 

 

Upon integration by parts, equation (2.3c) becomes: 

 

 

 

                                              
  

   
 
  

  

    
  

  
  

 

  
 
  

   
     

  

  

                                    

 

 

 

Using the condition that the endpoints are stationary (             ), the first term 

vanishes, leaving: 
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It can be seen from (2.3e) that, in order to recover the Euler-Lagrange equation,    must 

equal zero [7]. This implies that the action being stationary (all first-order changes 

vanishing) is a mandatory condition for the Euler-Lagrange equation (hence Newton’s 

second law) to describe the true path that the particle takes. The Euler-Lagrange equation 

can be thought of as the functional derivative of the action, such that 

 

 

 

                                                          
        

     
 

 

  
 
  

   
  

  

  
                                                     

 

 

 

when the action is at an extremum; particularly, a minimum [7]. In this way, finding all 

of the equations of motion for a particle reduces simply to the problem of minimizing the 

corresponding action. Compare this to the Hamiltonian, which singles out a time to be 

used as the canonical conjugate of the function [9]. 

The Lagrangian in Quantum Mechanics 

The idea of using the Lagrangian in quantum mechanics was first suggested by 

Paul Dirac in his 1933 paper [9], in which he states that the Lagrangian is more 

fundamental than the Hamiltonian, because it is relativistically invariant. However, 

although the canonical coordinates and momenta of Hamiltionian methods could easily 

be translated into quantum theory, by way of Poisson brackets corresponding to 

commutation relations, Dirac had no quantum mechanical interpretation of the partial 

derivatives of the Lagrangian used in his formulation; it was a purely mathematical 

exercise motivated by his noticing a similarity between classical and quantum contact 

transformations, which are closely related to the Lagrangian [9]. The steps Dirac took 
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leading to the quantum approach to the action principle will now be summarized, to 

better illustrate those later used by Feynman. All of the equations from this section, come 

straight from Paul Dirac’s paper, “The Lagrangian in Quantum Mechanics”, with a few 

changes to variable names or indices due to personal preference.  

Consider two sets of   independent coordinates,       and      , where 

          . Classically, the canonical transformation equations can be written in 

terms of a general function            as [9]: 

 

 

 

                                                                         
  

   
                                                                      

 

 

and  

 

 

                                                                       
  

   
                                                                     

 

 

 

In the Heisenberg picture of quantum mechanics, each set of coordinates may also be 

represented as a diagonal matrix, with a transformation function         to connect the  

two representations, where 
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in the usual Dirac notation, with    and    as numerical variables corresponding to the 

operators   and   [9]. The projection of the coordinates from one coordinate basis to 

another is given by the expected relations [9]:  

 

 

 

                                                                      
     

                                                                

 

 

                                                                
      

 

   
 
                                                         

 

 

                                                                     
        

                                                            

 

 

                                                                
     

 

   
 
                                                            

 

 

 

It follows from the sequential operations                                    that, if  

      is a general function such that               , then 

 

 

 

                                                                                                                                

 

 

 

Since    and    are functions depending on both   and   (because   does), the following 

relations arise from (3.4) and recalling the classical relations [9]: 
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and 

 

 

                                                 
     

          
  

   
 
                                                    

 

 

 

Equating these with the previous relations (3.3b) and (3.3d) for         
   and         

   

respectively, equations involving both the classical quantity  , as well as the quantum 

mechanical quantity         can be obtained [9]: 

 

 

 

                                                      
 

   
 
        

  

   
 
                                                            

 

 

and 

 

 

                                                    
 

   
 
         

  

   
 
                                                           

 

 

 

 

Only one choice for         solves both (3.6a) and (3.6b): 
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where   is some constant. Currently, this relation is in terms of generalized coordinates   

and  , related by a contact transformation and a generalized function  , which comes 

directly from the classical interpretation [9]. 

 To introduce the Lagrangian into this result, let the coordinates   and   from the 

general case be functions of time, where                    , and  

                   , and let   be the classical action integral over the interval 

      [9]. The same equations from before still hold, arriving at the relation [9]: 

 

 

 

                                                        
 

 
              

 

 

                                              

 

 

 

and for infinitesimal variations in time, 

 

 

 

                                                                   
 

 
                                                          

 

 

 

A cleaner notation is to let               , where   may be considered the classical 

analogue of         [9]. It is worthy of mention here that Dirac merely correlated the 

classical relations with the quantum ones rather than explicitly equating them, but since 
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they turn out to be equal most of the time in the limit as    approaches zero (a trifle on 

which the crux of Feynman’s thesis relies), they will be treated as equal for simplicity. At 

this point, there is one key distinction between the classical and quantum representations 

to note which leads to an important result. If the interval       is divided into a sequence 

of intermediate times,                     , then by the way   is defined 

[9]: 

 

 

 

                                                                              

 

 

 

This differs from quantum mechanics, however, as sequential basis transformations are 

represented by 

 

 

 

                                                                                  

 

 

 

As seen by (3.9a) and (3.9b), quantum transformation involves integration, whereas the 

classical analogue does not. To resolve this, consider the case when   is very small, 

giving the integrand of        the form     
 

 
                 . For the correlation 

between the classical and quantum contact transformations to work, the correspondence 

principle must hold, which means that the classical result must be recovered when     

and   is finite. When this occurs, for a particular continuously-varying coordinate   , 
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  , which implies that     

 

 
       rapidly oscillates about zero [9]. This further 

implies that the integral over this integrand vanishes. Therefore, the only appreciable 

contributions to the transition probability in the classical limit come from the paths from 

which the condition holds that a large variation in the coordinates relative to the path 

change the path by a negligible amount [9]. In other words, the only appreciable 

contributions come from a path described by   which is stationary under small variations 

in  . The resulting path from all of these contributions can be written as a sum of the 

integrals over each time interval [9]: 

 

 

 

     
  

 

      
  

  

        
  

    

      
 

  

      
 

 

                             

 

 

 

Of course, this is simply the classical action integral, which may lead one to suspect that 

this development is the quantum mechanical equivalent to the principle of least action. As 

a matter of fact, the above argument demonstrates that the expansion of        should be 

 

 

 

           
 

 
      

  

 

      
  

  

        
  

    

      
 

  

                        

 

 

 

which is the true classical equivalent to (3.9b) [9]. 

Dirac’s interpretation of this result is as follows:  The time interval for the 

trajectory of a path, as with most intervals, may be divided into arbitrarily numerous 
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segments for integration. For the classical principle of least action, which requires the 

action to be stationary, only those sub-intervals which make the action stationary (which 

leave the endpoints unchanged) contribute to the actual path, and all other integrals 

vanish. The quantum analogue of the action principle now takes the same form, where the 

choice of integration domain involves finding the     which produce small variations in 

the path for comparatively large variations in  . The contributions are equally probable 

from all    , although some contribute more than others to the overall path, due to the 

difference in the phase of the complex exponential [9]. With this formulation, the 

classical action principle may now be derived from the quantum mechanical one, as 

   . The discussion will now continue from Feynman’s viewpoint, and the next 

section will come directly from his thesis. 

The Path Integral Formulation of Quantum Mechanics 

In quantum mechanics, one can think of any particular state that a particle is able 

to reach from another state as having a complex amplitude, φ, where currently, the only 

known interpretation is that φ is an amplitude of probability (a vector in Hilbert space), 

such that the probability density P is given by the inner product            , where 

   is the complex conjugate of  .  In order to reformulate quantum mechanics using the 

Lagrangian, Feynman considered Dirac’s more fundamental approach to the classical 

action, which involves the transformation function         , whose mechanism is to 

resolve how each path in the space of all quantum mechanically possible paths 

contributes to the one that a particle actually takes [9]. Feynman’s interpretation of the 

correlation between the quantum and classical transformation functions is this: Quantum 

action, not surprisingly, can be thought of as a discretized equivalent to the classical 
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action, and the classical action is therefore the phase acquired from a quantum transition 

[5]. This interpretation was translated to three postulates in his many-paths approach to 

quantum mechanics:  

(1) If an ideal measurement is performed to determine whether a particle has a 

path lying in a region of space-time, then the probability that the result will be affirmative 

is the absolute square of a sum of complex contributions, one from each path in the 

region. [10].  

(2) The paths contribute equally in magnitude, but the phase of their contribution 

is the classical action (in units of  ); i.e., the time integral of the Lagrangian taken along 

the path. [10]. 

(3) That amplitude is found by adding together the phasor values at that final 

event from all paths between the initial and final events, including classically impossible 

paths. The amplitude of the resultant summation must then be normalized relative to all 

other possible final events, and it is this normalized form of the amplitude that is referred 

to in (2) [10]. 

What Feynman did was to use the transformation function that Dirac found as the 

kernel in the integral equation for the propagated wavefunction of a particle, and to show 

that it is, in fact, equivalent to the Schrӧdinger equation [5]. This will be the same 

approach that this thesis will utilize in its derivation of time-fractional quantum 

mechanics; consequently, it is worth examining the non-fractional case. 

The transition of a particle from   
  to      

  may be written in terms of the 

transformation function       
    

   as 
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where      
      

  is the volume element in  -space [5]. Replacing the transformation 

function with its classical equivalent in the limit as      and to first-order in   , yields: 

 

 

 

       
       

            
 

 
  

     
    

 

  
         

          
      

                    

 
 
 
which is the Lagrangian equivalent to the transition amplitude using Hamiltonian 

mechanics: 

 

 

 

       
        

              
 

 
  

     
    

 

  
         

          
      

                  

 

 

 

Feynman’s proposal then is that the expression that Dirac found involving the 

exponential of the action (3.8a) is nothing but the Lagrangian form of the quantum 

propagator,              , which satisfies the relation 
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such that 

 

 

 

                        
 

 
          

 

  

       
                                

 

 

 

where     
   denotes that the integral is taken over all quantum-mechanically allowed 

paths with boundary condition        
     [5]. Note that in his derivation, Feynman 

plugs the Lagrangian directly into the exponential function, following Dirac’s recipe for a 

vanishing time interval, but the same result may be obtained if the action is evaluated 

explicitly over a vanishing time interval. In order to have the opportunity to fractionalize 

the action integral as well as the Lagrangian, the latter method will be used in the same 

derivation using fractional calculus in the second part of the thesis.  

If Dirac’s interpretation was correct, and drawing parallels between the classical 

and quantum contact transformations is valid, then this new integral equation should still 

be equivalent to the Schrӧdinger equation, providing the wavefunction of a new state, 

         , at time     , when the wavefunction of the previous state at time  , 

      , is provided. To show that it is equivalent, consider the most general form of the 

Lagrangian,   
 

 
         , where   is the mass of the particle, and      is the 

potential of the force field in which it is moving. Let    be the particle’s initial position, 
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  be the particle’s position an infinitesimal time increment later, and ε be the length of 

the infinitesimal time increment between the two positions. The integral equation 

involving the Lagrangian is then [5]: 

 

 

 

                   
  

 
 
 

 
 
    

 
 
 

                    
 

  

                  

 
 
 
Simplifying, and letting       , this equation becomes 

 

 

 

               
  
 
         

 

 

   

  
             

 

  

                         

 
 
 
What is obtained from (4.4b) is an equation in the form of a time-incremented 

wavefunction (interval length  ) on the left, in terms of a spatially-incremented 

wavefunction (interval length  ) on the right. Recall from Dirac’s formulation, that for a 

small time interval         , only contributions which make the path stationary 

         will increase the transition probability by a significant amount [9]. This 

equation then gives what was once an abstract idea from Dirac a more mathematically 

concrete structure; Control over these variables (  and  ) lets us explicitly choose the 

paths with non-vanishing contributions to the classical path, based upon the definition of 

the principle of least action. This can be done by Taylor expanding the perturbed 

wavefunctions around zero in powers of their respective variables: 
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Note that the expansions can be done in terms of mixed variables due to their derivatives 

being equal, arising explicitly from 
  

  
   and  

  

  
  . In addition,   

  

 
    

 will also be 

Taylor expanded to the same order in ε: 

 

 

 

  
  
 
       

  

 
                                                           

 
 
 
Plugging these expansions back into the integral equation: 
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Thus, by expanding the wavefunction over the spatial variable, there are three Gaussian 

integrals to evaluate on the right-hand side. To make these integrals simple to evaluate, 

the even and odd moments of a Gaussian function are given by [11]: 
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First, by matching the terms that are of zeroth-order with respect to   and   on both sides, 

a sort of normalization condition comes about without having to explicitly define it, since  

the zeroth-order wavefunction is independent of   

 

 

 

                       
 

 

   

  
   

 

  

                                     

implies 
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which further implies that 

 

 

 

      
 

     
                                                                    

 
 
 
The Gaussian integral which is first-order in   is equal to zero since it is an odd function 

integrated over all  : 

 

 

 

       
 

 

   

  
   

 

  

                                                          

 
 
 
The Gaussian with the term of order    can be evaluated as 

 

 

 

        
 

 

   

  
   

 

  

  
     

 

   

  
                                                  

 
 
 
Substituting back in all of the evaluated integrals, equation (4.7) becomes 
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Finally, comparing terms of order   yields the familiar Schrӧdinger equation [5]: 

 

 

 

  
 

  
         

  

  

  

   
                                                       

 
 
 
From this, it was shown that the integral equation involving Feynman’s propagator for a 

quantum mechanical system is equivalent to Schrӧdinger’s differential equation for the 

system. More importantly, this integral equation is derived using the principle of least 

action (from Dirac’s result), making it a more fundamental formulation of quantum 

mechanics. Perhaps the strangest and most impressive aspect of this formulation, 

however, is that the classical action of a system is used to describe its quantum 

mechanical analogue, revealing that a similar (if not the same) property which gives the 

requirement that the classical action be stationary is responsible for choosing which 

quantum state transitions contain non-negligible probability amplitudes, resulting in the 

observed path. All one needs is a classical Lagrangian, which depends only upon 

positions and velocities, and a quantum mechanical description can be written without the 

Hamiltonian [5]. 
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 This concludes the development of the Feynman path integral approach to 

reformulate quantum mechanics using Dirac’s relationship between classical and 

quantum contact transformations to find a quantum analogue to the principle of least 

action, since any quantum mechanical analysis that utilizes the Schrӧdinger equation may 

now be picked up from here. These methods, in their fractional forms, will soon be 

revisited. The last section of these preliminary pages serves to give a brief introduction to 

fractional calculus, in the same detail as it will be used in this thesis. 

2. An Introduction to Fractional Calculus 

This section will present a few topics from fractional calculus needed for 

developing the thesis: the fractional integral and derivative, the fractional Taylor 

expansion, and some special functions that appear frequently in solving fractional 

equations. Since these tools are mathematically well-understood in their respective 

situations, mathematical rigor will be sacrificed for relatively concise developments. 

The Fractional Derivative 

The fractional derivative can be obtained in the following way. Consider the 

formula 

 

 

 

    

          
         

 

 

 
 

  

 

   
               

 

 

                               

 

 

 

which follows from generalizing Leibniz’s theorem for differentiating an integral [12]. If 

this equation is integrated again, the result is 
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and if this integration is repeated       more times, a new relation for integration can 

be generalized to integer order [12]: 

 

 

 

                      
    

          
       

 

 

             

  

 

    

 

                                          

 
 

      
                 

 

 

                                                                     

 

 

 

This is Cauchy’s formula for repeated integration, which can be more concisely written 

as [12]: 

 

 

 

   
        

 

      
                 

 

 

                                               

 

 

 

Note that the nth integral vanishes at    . From this point onward,   will be taken to be 

zero.  

The fractionalization of this integral relation yields the Riemann-Liouville 

fractional integral, the starting point for many fractional calculus problems. This can be 
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easily accomplished by noting the relationship between the factorial and the gamma 

function,            , such that     [13]: 

 

 

 

   
        

 

    
                 

 

 

                                             

 

 

 

An expression for the fractional derivative can be found from the fractional integral by 

considering the relation for any well-behaved function     , 

 

 

 

  
    

 
                                                                           

 

 

 

where   
  

  

   
 is the usual derivative operator of integer-order [13]. This demonstrates 

the property of the derivative operator being the left inverse of the integral operator. A 

similar relation can be defined for the fractional case, 

 

 

 

  
 
   

 
                                                                            

 
 
 
and the two identities for      can be set equal: 
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By the composition of integration operations,   
 

    
 

          
   

       , the 

Riemann-Liouville fractional derivative emerges [13]: 

 

 

 

   
 
          

    
   

        
 

      

  

   
 

       

          

 

 

          

                  

 

 

 

Similarly, the Caputo fractional derivative is defined by the transposition of the 

differentiation and integration operations which define the Riemann-Liouville fractional 

derivative [13]: 

 

 

 

  
 

 
          

   
    

        
 

      
 

        

          

 

 

          

                   

 

 

 

Where       denotes the  th derivative of   with respect to  . The Caputo fractional 

derivative will be the preferred method of treating the fractional forms of the power series 

expansions of the upcoming derivations, since it features non-fractional initial conditions 

which are needed to describe physical systems. The restriction of     will be imposed, 

so that the interval of   is      . 
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The Fractional Taylor Expansion  

A fractional Taylor expansion over this interval using the Caputo fractional 

derivative is defined in a theorem by Odibat and Shawagfeh [14]: 

 

Let          ,     and f(t) be a continuous function in      .  

If    
 

 
                 

 
 
             are continuous on        for all j=1,…,n, 

Then for all        ,  

 

 

 

        
 

 
        

       

       
        

 

   

                                    

 

 

where 

 

 

          
 

 
            

           

           
                                 

 

 

 

Consider a function      to be used in (5.7) with    . If the interval       is 

infinitesimally small such that        , then 

 

                                     

 

 

Hence, by the squeeze theorem,    . The remainder term in the expansion centered 

around zero is then: 
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Since the Caputo fractional derivative involves taking integer-order derivatives of the 

function, and the function is now a constant with vanishing derivatives for all integer 

orders, it can be said that this term vanishes when a vanishing interval is being 

considered. Recall that this is precisely what happens in the case of the path integral 

approach to quantum mechanics, as a vanishing time interval is assumed [5]. The 

restriction that     is not problematic, as the free particle is localized at time     in 

this development, where the solution to the Schrӧdinger equation can be represented 

simply by a Dirac delta function (explained in chapter 8). All of the physics of interest 

then occurs at a time greater than zero, but even so, recall that the Dirac delta function is 

continuous everywhere, and contains discontinuous derivatives at its “location” (in this 

case at    ). This assumed initial condition therefore upholds the restrictions of 

undefined derivatives at     placed by the fractional Taylor expansion as well. It will 

also be shown in chapter 8 that the analytic Green’s function solution obtained by these 

fractional methods resembles a Gaussian, and reduces to a Dirac delta function in the 

limit as     for all fractional orders of the time derivative, as in the non-fractional case, 

implying a tractable Green’s function solution for all  . 

The Mittag-Leffler Function 

 One of the most well-known functions in fractional calculus, due to it being the 

solution to many fractional differential equations is the Mittag-Leffler function, and it 
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will certainly make an appearance in the solution to the fractional Schrӧdinger equation 

derived later. Consider the familiar exponential function, which has a series expansion of 

 

 

 

        
  

  

 

   

                                                               

 

 

 

This expansion can be generalized in a way similar to the derivative, by using essentially 

the same relationship between the factorial and the gamma function,          :  

 

 

 

        
  

      

 

   

                                                             

 

 

 

If additional parameters       are added, the Mittag-Leffler function arises [15]: 

 

 

 

         
  

       

 

   

                                                       

 

 

A common notation for the special case of     is 
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and, of course, it is trivial to show that  

 

 

 

                                                                              

 

 

 

The Laplace transform of the Mittag-Leffler function [15] 

 

 

 

                         
    

    
                                               

 

 

 

will be useful in solving the time-fractional Schrӧdinger equation as well, where the 

Laplace transform of the exponential function is recovered when      : 

 

 

 

            
 

   
                                                               

 

 

 

Since it is the more general form of it, the Mittag-Leffler function appears in fractional 

calculus about as frequently as the exponential function does in calculus of integer order. 

Functions of the Wright-Type 

 Almost equally useful as the Mittag-Leffler function in the development of 

fractional quantum mechanics is its transform, which will be necessary when discussing 
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canonical conjugates. It is related to the Wright function, another function involving a 

series [15]: 

 

 

 

         
  

         

 

   

                                                     

 

 

 

The Wright function of the first kind is that which is placed under the restriction    , 

and the second kind when       . This function is a superb analytic tool, as many 

functions can be expressed using it, such as the Bessel functions [15]: 
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The derivative of the Wright function is related simply by a change of its parameters 

[15]: 
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An auxiliary function to the Wright function with possible negative-valued indices, which 

will be useful in expressing the Green’s function solution to the fractional Schrӧdinger is 

the M-Wright function, sometimes referred to as the Mainardi function; named after 

Francesco Mainardi, who has done considerable work on fractional diffusion [15]: 

 

 

 

                                                                                

 

 

 

along with the series representations: 

 

 

 

       
     

              

 

   

 
 

 
 

     

      
               

 

   

                      

 

 

 

the second of which arises from the reflection formula for the gamma function, 

           
 

        
. Special cases of the M-Wright function occur at   
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and at   
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Where       is an Airy function given by the Taylor series 

 

 

 

            
   

           

 

   

       
     

           

 

   

                        

 

 

 

As mentioned earlier, the Fourier transform of the M-Wright function is related to the 

Mittag-Leffler function [15]: 

 

 

 

                                                                          

 

 

 

If both space and time are to be considered, there is an M-Wright function of two 

variables defined as [15]: 
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With the corresponding transform given by [15]: 

 

 

 

                                                                              

 

 

 

 This concludes part I of this thesis, the introduction to the tools that will be used 

in the development of the time-fractional quantum mechanics of a free particle. 

Beginning from here, the fractional Schrӧdinger equation will be derived using the 

procedure in section 4, and the treatment continued from there. 

3. Time-Fractional Quantum Mechanics 

Derivation of the Time-Fractional Schrӧdinger Equation 

With all of the groundwork laid, it can now be shown that a Schrӧdinger equation 

which is fractional in time can be derived using Hamilton’s Principle. There are two 

reasonable ways that one may think of to obtain the fractional action of a free particle in 

one dimension: either the fractional Lagrangian can be placed into the non-fractional 

action integral in order to obtain the contact transformation such that equation (2.2) 

becomes 

 

 

 

  
 
    

 
                                                                     

 

 

 

or the action integral can be fractionalized to the same order as the Lagrangian, yielding 
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Both methods shall be examined to determine which is more suitable for our derivation, 

beginning with fractionalizing the Lagrangian only. All fractional operations involving 

time will be taken to order 
 

 
, so that the non-fractional equations at any time can be 

recovered when    . 

The only parameter that can be fractionalized in the Lagrangian of a free particle 

is the momentum, which can be expressed in integral form as 

 

 

 

             
 

  

                                                                  

 

 

 

where    is the initial momentum and   is the force acting on the particle. In the case of 

the free particle,    , so the momentum is constant: 

 

 

 

                                                                                   

 

 

 

The position,     , can be expressed as an integral equation as well, one which involves 

the momentum: 
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In order to obtain the fractional momentum,   

 
, this integral will be fractionalized in 

accordance with equation (5.3) and, fixing the parameter   (which determines the range 

that the fractional order can take) to unity, yields 

 

 

 

        
  
 

 

  
 
  

      
 
 
  

 

  

      
  
 

      
 
 

    
 
  

                          

 

 

 

using the relation             . Notice that the range of values that α can take is not 

yet fixed, as the integral equation allows   to take any value. The range       will 

be established upon the fractional power expansion of the time variable, which utilizes 

the Caputo fractional derivative, such that only the “subdiffusion” range will be 

considered. As a result, this range of   will be assumed henceforth. The fractional 

constant momentum,   

 
, is then: 

 

 

 

  
 
      

 

 
 
      

      
 
 

                                                     

 

 

 

And the fractional Lagrangian is: 
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Integrating over the time interval to obtain the action, without fractionalizing the integral, 

and again using again the variables          and        , the action becomes 

 

 

 

  
 
    

 
     

 

 

 
      

 
  

 

  

  
   

 

 

 
      

 
  

 

  

    
       

                     

 
 
 
In order to preserve the inverse spatial units of the constant which multiples   , so that 

the integral kernel of (4.3) (which comes from the contact transformation (3.8a)), 

 

 

 

            
 

 
                                                              

 

 

 

might be unitless, all of the constants which contain units must all be raised to the same 

power as that of  . The imaginary number i will also be raised to this same power, giving 

rise to a Wick rotation (discussed by Naber in his paper), which stabilizes the poles of the 

function on the imaginary axis [3]. This leads to the fractional transformation 
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Notice that the argument of the exponential still contains units for values of    , which 

can be remedied by giving the parameter of mass fractional units. It will be argued later 

due to a result in chapter 7 that the spatial variable is actually the parameter that must be 

fractional which will ultimately lead to the suggestion in chapter 10 that fractional time is 

fundamentally linked to fractional space as in non-fractional spacetime, but for now, the 

argument will be left as it is. 

Finally, with (6.5c), the integral equation for the propagation of a quantum 

particle can be written, using Feynman’s method, as 

 

 

 

                        
 

 
  

  

  
 
     

    
             

 

  

        

                 

 
 
 
The spatially-perturbed wavefunction under the integral is to be expanded to order   , as 

in the non-fractional case. As for the temporally-perturbed wavefunction, using the 

hindsight from having done the non-fractional version of this derivation,   to the same 

power as it is in the exponential function will appear on the right-hand side upon 

evaluating all three of the Gaussian integrals which appear due to expanding the 
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spatially-perturbed wavefunction. Therefore, in order to cancel all powers of   on both 

sides, the temporally-perturbed wavefunction must be expanded to order     [14]: 

 

 

 

                
    

    

     

     
                                         

 
 
 
wh  h w ll ult m t ly r  ult      S hrӧ   g r  qu t o  th t w ll h v  th   orm: 

 
 
 

     

     
     

   

   
                                                          

 
 
 
Examining (6.6c), the inadequacies of this particular method of fractionalization become 

apparent. Perhaps the most glaring is that, with the range of   fixed from setting     in 

the Caputo fractional derivative enforcing that      , the index of the time 

derivative in the resulting Schrӧdinger equation (6.6c) vanishes when    , then 

becomes an integral as   decreases below unity, further restricting the range that   can 

take to      , inconsistent with the original fractional derivative. Also, the time 

derivative in the Schrӧdinger equation which arises is fractionalized to order     , but 

the order to which the Lagrangian was originally fractionalized was  
 

 
 , another 

inconsistency. While both of these fractional orders yield the correct non-fractional order 

of unity when    , this is the only value of   for which they are equivalent, implying  

that the method of fractionalizing the Lagrangian alone cannot be the correct one, if it is 
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to uphold the same relationship between classical and quantum mechanics that Dirac and 

Feynman’s work demonstrated [9,5]. Let us now try the other method which involves 

fractionalizing both the Lagrangian and the action integral to the same order. 

 The fractional Lagrangian for the free particle from before, which has been 

fractionalized to order  
 

 
, will now be inserted into the fractional action integral, also 

fractionalized to order  
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The last equality once again invokes the relation              . This result already 

appears more promising than the last, as the order of   in the action is now the same as 

the fractional order used in all the fractional operators up to this point,  
 

 
. This suggests 

that the Taylor expansion will need to be of the same order as well, keeping all the 

fractional treatments in the derivation consistent. Once again, in order to ensure that the 

fractional part of the phase will have units of inverse distance, the constant components 

must be raised to the same fractional power as the time component, leaving the spatial 

variable   unchanged for the moment. Putting the fractional action into the integral 

equation for the wavefunction: 
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Expanding the wavefunctions to their respective powers using (5.7) for the fractional 

expansion [14]: 
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the integral equation (6.7) becomes 
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Normalizing the zeroth-order term: 

 

               
 

 
  

  

   
 

 
 
     

 

  

 

  

  
    

 
  

 
 
    

 
 
 
 
 

      

                      

The first-order term vanishes, as in the non-fractional case, and evaluating the second-

order terms (using equation (4.8b)) yields: 

 

 

 

 
 
 

    
 
  

 
 
  

  
 
 

 
    

 

   

   
            

 

 
  

  

   
 

 
 
   

 

  

  

 
 

  
 

    
 
  

   

   
      

    

 
 

  
 

 
 

    
 
  

   

   
 
    

 
 

 
 

     

                       

 
 
 
From this, the time fractional Scrӧdinger equation can be written as: 
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Equation (6.10) reduces to the standard Scrӧdinger equation for    . Notice 

that the “diffusion coefficient”,  
  

  
 

 

 
, now depends upon  , a result that will be 

discussed further in chapter 8. Since the order of the time derivative in the fractional 

Scrӧdinger equation, 
 

 
 , now matches the highest order of the Caputo fractional 

derivative used to Taylor expand the fractional time-incremented wavefunction, as well 

as the order of both fractional operations used in the development, it therefore implies 

that the correct treatment of fractional quantum systems and, by the correspondence 

principle, fractional classical systems as well, is to fractionalize both the Lagrangian and 

the action integral to the same fractional order. 

The Time-Fractional Wave Packet and Green’s Function Solution 

The next step in the fractional treatment of quantum mechanics is to solve the 

time-fractional Schrӧdinger equation, (6.10), which was derived in the previous section. 

This can be done by taking the Fourier transform of both sides with respect to  : 

 

 

 

 
 
 

  
 
 

          
  

  
 

 
 

                                                        

 

 

 

followed by the Laplace transform of both sides with respect to  : 
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where             , which is the Fourier-transformed solution at time    . Isolating 

the double-transformed solution yields: 

 

 

 

    
 
           

 

 
  

 
 
  

 
 
   

  
   

 
 
  

 

 
 
                                               

 

 

 

The solution will be obtained by taking the inverse transforms in the reverse order as they 

were applied. Recognizing the inverse Laplace transform of the Mittag-Leffler function 

from (5.11a), 

 

 

 

   

 
 
 

 
 

 
 
 
  

 
 
   

  
   

 
 
  

 
 
 

 
 

   
 
   

   

  
 

 
 

                                            

 

 

 

the solution in Fourier space is 
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By the definition of the Fourier transform, the general solution of the free particle 

wavefunction can then be written as: 

 

 

 

  
 
      

 

   
        

 
   

   

  
 

 
 

   
 

  

                                   

 

 

When    , (7.3a) simply describes a wave packet, which defines the time evolution of 

a free particle containing a range of energies    over a range of wave numbers   : 

 

 

 

       
 

   
     

 

  

       
  

  
                                         

 

 

 

where    
    

 
 and indicates the direction that the wave is traveling, and 

 

 

 

     
 

   
       

 

  

                                                        

 

 

 

is the Fourier-transformed initial condition. We have therefore, with (7.3a), obtained the 

time-fractional solution for the free particle in terms of a Mittag-Leffler function when 

the initial condition             is known. An alternate way to express the solution 
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using a Green’s function will also be developed and explored by assuming an initial 

condition of localized probability at    , providing a deeper understanding of the 

fractional behavior of the system as it evolves. 

The time-independent Schrӧdinger equation can also be put into the form of the 

Helmholtz equation [16]: 

 

 

 

 
  

   
                                                                       

 

 

 

where   
  

  
      . Note that, in the case of the Schrӧdinger equation, this “constant” 

explicitly depends upon     . For a free particle, however,    , which leads to the 

usual general solution for a given wave number   [16]: 

 

 

 

                                                                             

 

 

 

Since the Schrӧdinger equation is separable, the temporal part can simply be multiplied to 

the spatial part [16]: 
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and the linear combination of these solutions by an integral over the continuous variable 

  reproduces equation (7.3b). 

If the Helmhotz equation is not homogeneous, but rather the source term S is a 

Dirac  -function where 

 

 

 

         
           
           

                                                 

 

 

 

and having unit area, such that 

 

 

 

           
 

  

                                                            

 

 

 

then              is known as a Green’s function, and equation (7.4) becomes [16]: 

 

 

 

 
  

   
                                                                   

 

 

 

The Green’s function, as a solution to the Helmholtz equation in general, acts as the 

response function for the system, and whatever distribution is under consideration can be 

reproduced using scaled impulse responses with the appropriate boundary conditions. 

Such is the case for charge distributions in electrostatics, where charge distributions are 
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sums of point charges represented by  -functions, which are scaled by a constant to 

represent the strength of the charge and provide the correct units [17].  

If the time dependence of the system is known, then the Green’s function 

               describes the behavior of a single localized particle over time. In the case 

of the Schrӧdinger equation, it describes the time evolution of a wavefunction when one 

point containing all the probability is set at time     . This Green’s function therefore 

has the exact same functionality as the propagator for the system, and can be thought of 

as such, satisfying the same equation as (4.3a) [16]: 

 

 

 

                      
 

  

                                                     

 

 

 

The Green’s function can be obtained using the same method of Fourier transforms as 

with the homogeneous case, or by simply using the general expression for a free particle 

given by (7.8), with the initial condition of          : 

 

 

 

                    
 

   
                

  

  
         

 

  

                 

 

 

 

Since         
 

   
  as it is defined here, this integral can be evaluated by completing 

the square of a quadratic function (with the constant term equal to zero) within an 

exponential function: 
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With   
   

  
 and     , the Green’s function solution for the quantum free particle 

initially at     becomes [16]: 

 

 

 

         
 

     
     

   

    
                                                

 

 

 

with Fourier transform, implied from equation (7.9), and noting the scaling 

relation,          
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Notice that the units of the Green’s function is         , owing to the fact that it is a 

probability distribution over space. Recall that the units of a usual wavefunction,  , are 

       
 

  since the square of the modulus,     , functions as the probability distribution. 

The normalization condition for the Green’s function is then 

 

 

 

       
 

  

      
 

     
     

   

    
 

 

  

                                 

 

 

 

which forces the constant   to equal unity.  

 Even with the simple initial condition of localized probability for (7.9), the 

Green’s function solution for the fractional free particle Schrӧdinger equation involves 

the integral of a Mittag-Leffler function: 

 

 

 

  
 
          

 
   

   

  
 

 
 

   
 

  

                                            

 

 

 

Since it equals unity when    , Instead of explicitly evaluating this integral, recall that 

the Mittag-Leffler function is related to the Fourier transform of the M-Wright function 

of two variables by equation (5.15), implying that 
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Notice that, since the Mittag-Leffler function in (7.12a) is even (in space), the symmetric 

form of the M-Wright function (5.18) is used. From (7.12b), we arrive at a more 

functional form of the fractional Green’s function solution for the free particle: 

 

  
 
      

 

 
 
  

   
 

 
 
  

 
  

  

   
 

 
 
                                             

 

 

 

Its Fourier transform will become important as well, and can be found from equation 

(4.14), once again using the scaling relation          
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The plot of (7.13a) against time for different values of α is shown below: 
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Figure 7.1: Green’s function as a function of time 

 

 

 

Figure 7.1 demonstrates anomalous subdiffusion for values of α less than 2, with 

vanishing diffusive behavior for vanishing α.  

However, there is a problem with the Green’s function (7.13a) plotted as a 

function of space, as it is currently defined. 

 

 

 



57 
 

 

Figure 7.2: Green’s function (7.13a) as a function of space 

 

 

 

It can be seen from figure 7.2 that the rate of diffusion for the free particle decreases with 

the order of time derivative, similar to the distribution in time, as seen in figure 7.1. 

However, as α decreases, the total probability appears to increase past unity, and the 

mean value is shifted to the left. To resolve this, recall that units of inverse length were 

obtained in fractionalizing the constants in the path integral kernel in (4.3), but this alone 

did not leave the exponential function with a unitless argument. Rather than 

fractionalizing the units of a parameter such as mass (which will not change the behavior 

of the graph), if the spatial variable x was raised to the fractional order 
 

 
 as to preserve 

units instead, then the plot of the fractional Green’s function would appear as such: 
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Figure 7.3: Green’s function as a function of a reduced space variable 

 

 

 

Figure 7.3 apparently demonstrates a normalized distribution for all allowed values of α. 

As α decreases, not only does the peak become narrower, but the tail of the “Gaussian” 

becomes fatter, resulting in what appears to be a distribution where the total probability is 

constant for all fractional derivative orders. While this is in no way a mathematically 

rigorous interpretation, it at least becomes a plausible argument at this stage. Note that a 

graph with the shape of figure 7.3 is also obtained by plotting the M-Wright function 

against its self-similarity variable, equal to its argument, as Mainardi does in his 

mathematical treatment of the fractional diffusion equation [15]. Physically, since the 

method of dealing with units that produces figure 7.3 makes it consistent with the 
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normalization condition of quantum mechanics, this suggests that the Green’s function 

and its transform should actually be 
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respectively, where the contribution of the spatial variables x and k to the shape of the 

graph now depends on α. This is also a reasonable interpretation due to the Green’s 

function and its transform already having fractional units of        
 

  and          
 

  

respectively, which arises from raising   to the necessary power of α/2 in (6.7) to match 

the fractional unit of time. The implication of this result is profound, as it suggests that 

time cannot be fractionalized unless space is fractionalized to a particular fractional order 

as well, and that the magnitude of all physical quantities with units composed of space or 

time must depend upon α, if the normalization condition is to hold. 

Using the relation for the special case of   

 

   , equation (5.12a), the value at 

    yields 
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which is the expected normalized Green’s function for a free particle and its transform, 

equations (7.11a) and (7.11b) respectively. 

The Fractional Time Evolution of a Gaussian Wave Packet 

Now that the fractional Green’s function for the free particle has been obtained, it 

would be beneficial to demonstrate how it can be thought of as the probability 

distribution of a Gaussian wave packet which, incidentally, is the structure of a 

wavefunction that has minimal uncertainty in conventional quantum mechanics. If the 

spirit of fractional calculus truly is to blaze new trails past the current understanding of 

physics, then extreme cases such as the Heisenberg uncertainty limit must be explored. 

The machinery of the Green’s function can be used to find the wavefunction of a 

free particle with an assumed initial wavefunction, from equation (7.8): 
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Of course, this could also be done using (7.3a), the equation for the fractional wave 

packet which depends upon initial conditions. As mentioned earlier, a logical place to 

begin exploring the physical aspects of our new fractionalized tools is to let the initial 

wavefunction         be the form of a Gaussian: 

 

 

 

        
 

        
     

  
 

   
                                                 

 

 

 

where   is the width of the peak of the distribution at half of its maximum value. If the 

structure of (8.1) appears somewhat familiar, it is because the non-fractional Green’s 

function solution (7.11a) takes a similar form: 

 

 

 

        
 

     
     

   

    
                                                     

 

 

 

It can then be seen from the probability density of the initial condition 
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that the Green’s function itself behaves as a probability distribution function having the 

same form as a Gaussian. The fact that the propagator in its most general form is a 

Gaussian shouldn’t come as a surprise if the Dirac delta function is a member of the 

Gaussian family because, according to the mean-value theorem, the evolution of a 

Gaussian describing a non-fractional (Brownian) diffusive process on any time scale will 

be another Gaussian. This can also be seen from figures (7.1) and (7.2). Furthermore, it 

can be gleaned from these two equations that the actual width of the peak considered as 

the initial condition to the system from which the propagator was derived (since complete 

localization does not exist for diffusive processes at times greater than zero) is given by 

 

 

 

   
   

 
                                                                        

 

 

 

The structure of (8.1) becomes singular as the width   vanishes, and since it is located at 

time     (by virtue of being the initial condition), it must behave as a Dirac delta 

function, in order to uphold the normalization condition using the property (7.6b). The 

equivalent thing happens to the Green’s function (8.2) as    , reproducing the 

completely localized initial condition that was assumed to obtain it. Since the Dirac delta 

function      is defined to be continuous on       with derivatives defined on      , it 

is also consistent with the fractional Taylor expansion (5.7) used for the wavefunction in 

chapter 6, making it a valid initial condition for the state of the system as    . 

Rearranging (8.4): 
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where   is the diffusion coefficient in the diffusion equation 

 

 

 

  

  
  

   

   
                                                                 

 

 

 

with separable solution 

 

 

 

                                                                         

 

 

 

which the Schrӧdinger equation obviously satisfies. The fractional version of this width, 

which comes about from fractionalizing the phase in the Feynman path integral kernel 

(6.7) to provide the correct units can then be defined as 

 

 

 

  
 
  

   

 
 

 
 

                                                                  

 

 

 

giving rise to the width of the fractional Green’s function in terms of the fractional 

diffusion coefficient   

 
  

   

  
 

 

 
, as seen in the fractional Schrӧdinger equation, (6.11): 
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What can be taken from all this is that the Green’s function can be thought of 

more generally as the probability distribution of an ensemble of particles initially 

described by a Gaussian with a time-dependent width, related to the diffusion coefficient, 

which makes the distribution appear localized on a sufficiently small time scale. The 

fractional Green’s function has a similar structure whose width is related to the fractional 

diffusion coefficient. As a result, the distribution described by the Green’s function 

(7.14a) in figure 7.3 spreads out as time increases, as seen in figure 8.1: 

 

 

 

 

Figure 8.1: Spreading of a Gaussian Wave Packet 
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It can be seen from figure 8.1 that, as time increases, distributions for all allowed orders 

of α become more spread out, as in the non-fractional case. Furthermore, the structure of 

the distribution is preserved under a time evolution as well, as seen by the same narrow 

peak and fat tail with decreasing α as in figure 7.3. 

Uncertainty of a Gaussian Distribution with Fractional Time 

The next important topic to address is how the product of uncertainties in position 

and momentum (from Heisenberg’s uncertainty principle) for the fractional free particle 

in one dimension appears, which relates the standard deviation (root mean square) in 

position: 

 

 

 

                                                                         

 

 

 

and momentum in the  -direction: 

 

 

 

                                                                        

 

 

 

where the fundamental inequality, 
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also in terms of the wave number   
 

 
 

 

 

 

     
 

 
                                                                     

 

 

 

holds for any system. The expected values of integer powers of the observable position 

are given by 

 

 

 

                           
 

  

                                                

 

 

 

where the spatial variable   may be replaced with momentum   (or  ) if the momentum 

wavefunction      (or     ) is obtained through a Fourier transform. The probability 

density      may be replaced with the Green’s function, since it acts as the probability 

distribution for the particle at any given time, as mentioned in the previous section. This 

suggests that the first and second moments of the Green’s function must be found, so let 

us examine the non-fractional case first, to demonstrate its equivalence to the fractional 

solution. 

 The non-fractional Green’s function for the free particle is given by equation 

(7.11a), put into a more concise form using the width   from (8.4): 
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Since this is an even function (a complex Gaussian with an even real part), the odd 

moments in the variable   vanish when integrated over a symmetric interval. Likewise, 

its Fourier transform, given by the kernel of equation (7.9), 

 

 

 

         
    

  
     

    

 
      

 

 
                                         

 

 

 

 is even as well in Fourier space, yielding a vanishing first moment in  , so that the 

variance of these observables is simply equal to the second moment of the Green’s 

function and its transform. Using (4.8a): 
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The product of uncertainties in position and wave number is then 

 

 

 

     
 

 
                                                                    

 

 

 

or in terms of momentum,     , 

 

 

 

     
 

 
                                                                    

 

 

 

A Gaussian distribution therefore not only satisfies the minimum uncertainty 

requirement, its product of uncertainties is equal to it. The fractional Green’s function for 

a free particle, although having a different structure for    , which would otherwise 

turn it into an exponential function, can be thought of as a kind of fractional Gaussian. 

Nevertheless, there is no rigorous proof at the moment that it will yield the absolute 

minimum uncertainty for the fractional case; at the moment, it is only a logical case study 

that should be explored. 

 Since the fractional Green’s function involves non-standard functions expressed 

as infinite series, direct computation must be abandoned for more elegant methods. The 

second fractional moment in space can be easily obtained using Francesco Mainardi’s 

work on fractional diffusion, which includes variance of the diffusive Green’s function in 
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terms of the diffusion coefficient K, demonstrating by (8.5a) that the variance in space is 

simply the width of the Green’s function [18]: 

 

 

 

  
     

 

  

                                                              

 

 

 

which can be generalized to fractional order, implied by (8.7b), [18]: 

 

 

 

   
       

 

  

              
                                             

 

 

 

Where    is now the fractional diffusion coefficient. For Green’s functions of the form 

(7.13a), with fractional order 
 

 
, this relation becomes: 

 

 

 

   
   

 
    

 

  

  
 
        

 

  
 
    

  
 
 
 
                                     

 

 

 

In the case of the fractional Schrӧdinger equation,   

 
  

  

  
 

 

 
, which suggests that 
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The expected result, (9.5a), is recovered when    .  

 

 

 

 

Figure 9.1: Spatial uncertainty under fractional time 

 

 

 

It can be seen from Fig. 9.1 that the uncertainty in position increases as the fractional 

order of the time derivative of the wavefunction decreases. 

Finding the second fractional moment in k-space appears to be difficult, since 

evaluating an integral involving a Mittag-Leffler function and a polynomial by brute 
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force would not be feasible, if it could even be done. To get around this, consider a 

Fourier-transformed function involving the transformed fractional Green’s function 

solution of a free particle, (7.13b): 

 

 

 

   
 
    

 

  
 

     
 
                                                             

 

 

 

By the definition of the Fourier-transform, one can write 

 

 

 

  
 
    

 

  
 
   

       
 
      

 

  

                    
 
                          

 

 

 

and using the Fourier-transform pair   
      

   
            , 

 

 

 

         
 
        

  

   
  

 
                                                       

 

 

 

Combining (9.8b) and (9.8c), 
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Using (9.8b) and (9.8d) provides a functional form for the fractional second moment in k, 

letting    : 

 

 

 

   
   

 
       

 
        

 

  

  
  
 

 
     

 
    

   
  
 

 
   

  

   
  

 
      

   

                 

 

 

 

To show that this is indeed the case, consider the non-fractional version of this relation 

when    : 

 

 

 

 
 

 
           

 

 
   

  

   
       

   

  
 

 
 
  

   
     

  

   
  

   

 

  
 

 
  

  

  
 

 

  
      

  

   
  

   

 
 

   
   

                  

 

 

 

The Green’s function solution for the free particle is an M-Wright function scaled by a 

constant (7.13a), and its derivatives are easier to find (using the many properties of the 

Wright function) than an integral of a more complex expression involving the product of 

a Mittag-Leffler function and a function involving its variable. Using the fractional 

Green’s function (7.13a), the fractional k-variance (9.9a) explicitly becomes 
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The only thing left to do is to find the second derivative of the M-Wright function, 

and let    . This can be done by noting the relationship of the M-Wright function to 

the Wright function (5.15a), 

 

 

 

  
 
 
 
 
 

  
 

      
 
 
 
   

 
 
  

 
 
 

  
 

                                            

 

 

 

and the derivative of the Wright function (5.14) by a simple change of index (and 

application of the chain rule), yielding 
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Hence, 

 

 

 

 
  

   
  

 
 
 
 
 

  
 

     

   

 
 

    
  
 
 
 
 
 
 

  
 

 

 

                                    

 

 

 

The negative sign which would normally arise from differentiating the Gaussian in the 

critical case twice is hidden within the gamma function, which takes a negative value at 

   . Using (9.10), the fractional variance in k-space is then 
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and the fractional variance in momentum is 

 

 

 

   
   

 
  

  
  
 
 
 
 
 
  

     
  
  

  

  
 

                                                 

 

 

 

Since     
 

 
      , the critical case gives the expected variance in momentum at 

   . However, there is a problem with (9.15) as it currently stands; as α decreases, the 

variance in momentum decreases to zero and then becomes negative, due to the behavior 

of the gamma function. To remedy this, consider that the variance is positive by 

definition, and modify eq. (9.15a) to reflect this using the modulus: 

 

 

 

   
   

 
 

  
  
 
 
 
 
 
  

      
  
   

  

  
 

                                                   

 

 

 

The plot of the square modulus of   
  is shown in figure 9.2: 
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Figure 9.2: Momentum uncertainty under fractional time 

 

 

 

As seen in figure 9.2, the uncertainty vanishes for a particular value of  , a concerning 

result that will be discussed briefly. 

Using (9.7d) and (9.15b), the uncertainty product for a fractional Gaussian, such 

as the Green’s function for a fractional free particle, is then: 
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where 

 

 

 

  
 
  

  
 
 
 
 
 
 
  

    
 
 
      

  
 
  
 

 
 

                                                  

 

 

 

(9.17) is plotted below: 

 

 

 

 

Figure 9.3: Uncertainty product of a Gaussian under fractional time 

 

 

 

Figure 9.3 demonstrates the expected minimum uncertainty product of  
 

 
 when     , 

but the uncertainty decreases with   and then vanishes at   
 

 
, which is inconsistent 

with the Heisenberg uncertainty principle. The source of this inconsistency is, of course, 
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the gamma function which appears in the momentum uncertainty; the spatial uncertainty 

is well-behaved for all allowed values of α, and upholds the non-fractional minimum 

uncertainty limit. Although the usual mathematical tools from which the uncertainty 

principle arises are not guaranteed to produce the same physical results under fractional 

operations, this unsettling result of apparent violation of the uncertainty limit certainly 

warrants further investigation. 

The Infinite Square Well Problem with Fractional Time 

 As another exercise, a free particle obeying the fractional Schrӧdinger equation 

with boundary conditions will now be examined, namely a particle confined to a region 

of length L due to an infinite potential occurring at or below     and at or above  

   , such that the potential      of the region can be described as such: 

 

 

 

      
        
            

                                                    

 

 

 

Assuming the time-fractional Schrӧdinger equation (6.11) is separable as in the non-

fractional case, the solution can be written as 

 

 

 

  
 
        

 
     

 
                                                           

 

 

 

The spatial component   

 

    is denoted as being fractional here simply because it will 

contain α-dependent constants, coming from the fractional diffusion coefficient. To get 
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(6.11) into its more familiar form where the imaginary (energy*time) component is with 

the time derivative, and the (energy*l  gth ) component is with the second-order spatial 

derivative, both sides shall be multiplied by     
 

  and set equal to the fractional energy  

  
 
 (raised to the correct power to preserve units) multiplied by the wavefunction: 

 

 

 

    
 
  

 
 
 

  
 
 

  
 
        

  

  
 

 
   

   
  

 
         

 
 

 
 
  

 
                          

 

 

 

Inserting (10.2) into (10.3) and dividing by   

 

     

 

    yields 

 

 

 

    
 
 

  
 
   

 
 
 
 

  
 
 

  
 
      

  

  
 

 
  

  
 
   

  

   
  

 
       

 
 

 
 
                        

 

 

 

which results in two differential equations to solve: 
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The fractional differential equation (10.4b) can be solved by taking the Laplace transform 

of both sides, as was applied previously to the time-fractional Schrӧdinger equation 

(7.2a): 

 

 

 

 
 
     

 
     

 
 
     

 
     

  
 

  
 

 
 

    
 
    

 

 

 

from which follows 

 

 

   
 
        

 
   

 

 
 
  

 
 
  

 
 
   

  
 

   

 
 

 

 
 
 

 

 

 

 

and taking the inverse Laplace transform yields 

 

 

  
 
      

 
     

 
  

  
 
 

  
 

 
 

                                                  

 

 

 

In order to recover the non-fractional equation,      must equal unity. 
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 The spatial differential equation (10.4c) has the same form as the non-fractional 

case, as the only difference lies with the fractional constant. The solution (applying the 

boundary condition of   

 

     ) can therefore be written as: 

 

 

 

  
 
            

 
          

 
             

 
   

 

 

 

where 

 

 

 

  
 
  

 
  

    
 

  
 

 
 

 

 

 

 

is the fractional wave number.  

The fact that k is raised to a fractional power here is not only a necessary result to 

make the argument of the Mittag-Leffler in the Fourier-transformed Green’s function 

(7.13b) unitless, it has profound implications as well. It suggests that the spatial variable 

x necessarily has a dependence on α, by virtue of its connection with the variable k in 

Fourier space, making the argument of the M-Wright function in (7.13a) also unitless, as 

needed. The   
 

  factor may suggest a Wick rotation to the proper order as assumed at the 

beginning of the derivation. Hence, by the simple act of matching the constant terms in 
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the phase of the Feynman path integral kernel with the self-similarity (Hurst) exponent of 

the time component, the spatial variables are forced to be fractional as well.  

Consider for a moment the case of a single-walled infinite potential barrier at the 

origin, that is, a free particle having zero probability to be at    . If that were the case, 

then the fractional nature of the wave number would cause the wavefunction to become 

unbounded for values of    , similar to the time-fractional Green’s function in non-

ractional space before the corrections to spatial variables (figure 7.2). Its plot is given by 

figure 10.1: 

 

 

 

 

Figure 10.1: One-sided infinite square well (spatial part) 
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However, upon application of the second boundary condition,   

 

     , which implies 

that    

 
 

  

 
, the form of the spatial part of the solution is unchanged from the non-

fractional case, despite the α-dependence of   

 
. The form of a standing wave which 

satisfies Dirichlet boundary conditions, a proper periodic sinusoid which is observed in 

Euclidean space, is therefore recovered for all values of α. Hence, changing the sinh 

function to a sin function and absorbing the i into the complex constant A, the solution for  

a free particle trapped within an infinite square well potential becomes: 

 

 

 

  
 
           

   

 
   

 
   

   
 
 

 
 

 
 

  

 

 

 

The only difference from the non-fractional case lies with the temporal part, now 

generalized to a Mittag-Leffler function. The plot of the real-valued temporal part for 

different values of α is shown in figure 10.2: 
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Figure 10.2: Infinite square well (temporal part) 

 

 

 

As seen by Figure 10.2, the probability amplitude increases past unity as α decreases, 

indicating that probability is not conserved for    . This bizarre behavior which arises 

from fractionalizing time is seen in Mark Naber’s publication [3] and interpreted by 

Hüseyin Ertik as arising from additional particles created from the potential [19]. 

4. Summary, Conclusions and Recommendations 

Summary 

 In this thesis, the standard quantum mechanics of a free particle in one dimension 

was explored under the fractionalization of time. Unlike previous works, which state that 

the derivatives of the Schrӧdinger equation could be simply generalized to arbitrary order 

[3], the time-fractional Schrӧdinger equation was actually derived from first principles 
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using Feynman’s path integral approach to quantum mechanics. This could be done based 

on the relationship of the Schrӧdinger equation to the diffusion equation, whose 

fractional form is well-understood, as well as to quantities in classical mechanics, which 

can be fractionalized as well. It was found that both the Lagrangian and the action 

integral itself must be fractionalized to produce a Schrӧdinger equation with the same 

fractional order with respect to time. It follows that the standard treatment of systems in 

fractional classical mechanics which involve Hamilton’s principle of least action in 

current literature is incorrect, and that, for a proper treatment of fractional classical 

mechanics, both the Lagrangian and action integral must be fractionalized. The order of 

the derivative in the Schrӧdinger equation so derived  
 

 
  is always in the “subdiffusion” 

range and can never be greater than 1. This can be contrasted with Naber’s (and all 

subsequent worker’s) work, where the order of the derivative can range over all values 

from 0 to 2 [3].  

The fractional Schrӧdinger equation was solved and the fractional behavior of the 

free particle was obtained in both the form of the fractional wave packet and the Green’s 

function. Anomalous “subdiffusion” was observed in the propagation through time for 

orders of time derivatives less than unity, consistent with the fact that the Schrӧdinger 

equation is of the same form as the diffusion equation, with imaginary time. The Green’s 

function and its transform, in terms of an M-Wright function and Mittag-Leffler function 

respectively, can both be thought of as having a similar form to a Gaussian, by virtue of a 

transformed Gaussian becoming another Gaussian, and related by the same measure as 

the Mittag-leffler function is to the exponential function. By knowing the structure of a 

Gaussian and how its time-dependent width is related to the diffusion coefficient, the 
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width of the fractionalized Gaussian-like function can also be related to the α-dependent 

diffusion coefficient of the fractional diffusion equation. 

 It was shown in the spatial distribution of a Gaussian under fractional time 

(Figure 7.2) that probability appears to increase past unity for the case of    . This is 

remedied by noting that the units in the argument of the Green’s function are not correct 

if time is fractionalized by itself, implying that spatial variables must depend upon α as 

well. A more physically-sound result was obtained upon providing the correct fractional 

units for the space variable. This result suggests that space and time are not to be 

fractionalized individually, but space must depend upon the order to which time is 

fractionalized. 

 The application of the Heisenberg uncertainty principle to the fractional order-

dependent Green’s function was explored, with the hopes that there would be some 

correspondence with the minimum uncertainty product that a Gaussian function exhibits. 

It was found that the spatial uncertainty, which is α-dependent, satisfies the minimum 

uncertainty requirement, and increases as the order of time derivative decreases. 

However, the momentum uncertainty exhibits unusual behavior which arises from the 

gamma function in the zeroth-order term of the Green’s function. As a result, the 

uncertainty product of a fractional quantum system described by a distribution that 

becomes a Gaussian for a first-order time derivative seemingly goes to zero for a 

fractional time derivative of order 
 

 
 in the time-fractional Schrӧdinger equation. More 

work is needed to provide insight in this area. 

 The infinite square well problem was explored with fractionalized time and it was 

shown that the structure of the spatial component retains the same form as the non-
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fractional case. The time-component behaves as a sinusoid as well, but the amplitude 

increases past unity with a decreasing fractional order α, which seemingly violates the 

conservation of probability. Also supplemented by the infinite square well problem is 

that, as a result of maintaining correct units throughout the development of fractional 

quantum mechanics, the wave number, energy, and ultimately the spatial variables as 

well must all depend on the fractional constant α, if the time dimension is to be 

fractionalized. This implies that there must be a fundamental relationship between the 

fractal dimensions of space and time, just as with non-fractional spacetime. 

Conclusions and Recommendations for Future Work 

 From the results found in this thesis, several recommendations for future work 

can be made: 

 Because of its consistency with the path integral formulation of quantum 

mechanics, the fractional generalization of classical mechanics involving 

Hamilton’s principle should involve the fractionalization of both the Lagrangian 

and the action integral to the same fractional order, rather than fractionalizing the 

Lagrangian alone. The method of fractionalizing the Lagrangian alone has been 

the sole method used in stationary action principles until now, and exclusively in 

classical mechanics. They are too numerous to cite completely, but examples 

include a paper and a notable book [20], [21]. There is now a reason to adjust this 

method to make it consistent with more fundamental physics. 

 Rather than using unitless or self-similarity variables, or forcing the units of non-

dynamic parameters to be fractional in order to maintain correct units, it is 

suggested that spatial variables should be fractional alongside the fractional 
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treatment of time. Doing so maintains the normalization condition of the resulting 

probability density (Green’s function), keeping the fractional treatment physically 

consistent. 

 In raising spatial variables to the correct fractional order as to maintain units and  

normalizability, it apparently follows (although not yet proven) that the only 

fractional diffusion equations with physical merit should be of the form 

 

 

 

 
 
  

  
 
 

   
 

   

   
         

 

 

 

suggesting that the fractal dimensions of space and time are related in a similar 

way to standard spacetime. This speculation is backed by the fact that Laskin has 

successfully derived a space-fractional Schrӧdinger equation from first principles, 

similar to how this thesis derived one for fractional time. Furthermore, if the same 

method of transforms is used to solve this completely fractionalized Schrӧdinger 

equation as was used for the time-fractional one, then the spatial variable k will be 

raised to the order α that was utilized in this thesis (7.14b) to produce correct units 

and normalizability. 

 Further studies of the Heisenberg uncertainty principle are needed, since the 

uncertainty in momentum vanishes for a certain fractional time-derivative order, 

implying condensation in k-space, although there is still a finite uncertainty in 

position for that order. Although there is no reason that fractional operators 
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should behave the same way as those which uphold the uncertainty principle as it 

is stated, as fractional operators are fundamentally different in structure, there 

should be reason to suspect that there exists a physical explanation as to what the 

correct fractional interpretation of uncertainty should be. There has not yet been 

such a satisfactory interpretation. 

References 

[1]  B. N. N. Achar, J. W. Hanneken, T. Enck, T. Clarke, Dynamics of the fractional 

oscillator, Physics Letters A 297 (2001) 361-367. 

[2]  N. Laskin, Fractional quantum mechanics and lévy path integrals, Physics Letters A  

268 (2000) 298-305.  

[3]  M. Naber, Time fractional schrӧdinger equation, J. Math. Phys. 45 (2004) 3339- 

3352. 

[4]  M. Saxton, A biological interpretation of transient anomalous subdiffusion.  

Biophysical Journal 92 (2007) 1178–1191. 

[5]  L. Brown, Feynman’s Thesis — A New Approach to Quantum Theory, World  

Scientific Publishing Co. Pte. Ltd, 5 Toh Tuck Link, Singapore, 2005. 

[6]  J. Wheeler, R. Feynman, Interaction with the absorber as the mechanism of radiation,  

Reviews of Modern Physics 17 (1945) 157-181. 

[7]  L. Landau, E. Lifshitz, Course of Theoretical Physics: Mechanics, 3rd ed., Vol. 1,  

Butterworth-Heinenann, Oxford, 1993. 



90 
 

[8]  R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book  

Company, New York, 1965. 

[9]  P. A. M. Dirac, Lectures on Quantum Mechanics, Dover Publications Inc, Mineola,  

New York, 2001. 

[10]  R. P. Feynman, Space-time approach to non-relativistic quantum mechanics,  

Reviews of Modern Physics 20 (1948) 367-387.  

[11]  D. Griffiths,  Introduction to quantum mechanics, 2nd ed., Pearson Education Inc.,  

Upper Saddle River, NJ, 2005. 

[12]  M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, 

 Graphs, and Mathematical Tables, Dover Publications, New York, 1972. 

[13]  S. Das, Functional Fractional Calculus, 2nd ed., Springer-Verlag, Berlin, 2001. 

[14]  Z. M. Odibat, N. T. Shawagfeh, Generalized taylor's formula, Applied Mathematics  

and Computation 186 (2007) 286-293.  

[15]  F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An  

Introduction to Mathematical Models, Imperial College Press., London, England, 2010. 

[16]  R. Shankar, Princples of quantum mechanics, 2nd ed., Springer, New York, 1994. 

[17]  J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999. 

 



91 
 

[18]  F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-fractional  

diffusion processes: a tutorial survey, International Journal of Differential Equations,  

2010. 

[19]  H. Ertik, D. Demirhan, H. Şirin, F. Büyükkılıç, Time fractional development of  

quantum systems, Journal of Mathematical Physics, 51 (2010). 

[20]  T. M. Atanacković, S. Konjik, L. Oparnica, S. Pilipović, Generalized hamilton's  

principle with fractional derivatives, Journal of Physics A: Mathematical and Theoretical  

43 (2010). 

[21]  V. E. Tarasov, (2010). Fractional Dynamics: Applications of Fractional Calculus to  

Dynamics of Particles, Fields and Media, Springer-Verlag, Berlin, 2010. 


	Path Integral Approach to Time-Fractional Quantum Mechanics
	Recommended Citation

	tmp.1636143079.pdf.KgsLE

