
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

11-27-2013 

Hierarchical Feature Learning Hierarchical Feature Learning 

Jayanta Kumar Dutta 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Dutta, Jayanta Kumar, "Hierarchical Feature Learning" (2013). Electronic Theses and Dissertations. 839. 
https://digitalcommons.memphis.edu/etd/839 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/839?utm_source=digitalcommons.memphis.edu%2Fetd%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


HIERARCHICAL FEATURE LEARNING

by

Jayanta Kumar Dutta

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Electrical and Computer Engineering

The University of Memphis

December 2013



ACKNOWLEDGMENTS

Most of all, I would like to thank my advisor Dr. Bonny Banerjee for his

continuous guidance from the very beginning. It has been a great privilege to work with

and learn from him. He has been an amazing mentor and advisor, not only in research, but

also other aspects of academic life.

I am grateful to the members of my thesis committee for their time and invaluable

advice and constructive feedback to improve this thesis.

I am thankful to my colleagues at the CIL lab for their suggestions and

discussions. I would also like to thank all of my friends and roommates at the UofM who

made my stay here such a memorable one.

I gratefully acknowledge the funding support for this work from the Institute for

Intelligent Systems in the form of a graduate assistantship and the Herff College of

Engineering in the form of a fellowship.

Finally this thesis is dedicated to my parents and sister. Without their support, this

thesis would not have been possible.

ii



ABSTRACT

Dutta, Jayanta Kumar. MS. The University of Memphis. December 2013.
Hierarchical feature learning. Major Professor: Dr. Bonny Banerjee.

The success of many tasks depends on good feature representation which is often

domain-specific and hand-crafted requiring substantial human effort. Such feature

representation is not general, i.e. unsuitable for even the same task across multiple

domains, let alone different tasks.

To address these issues, a multilayered convergent neural architecture is presented

for learning from repeating spatially and temporally coincident patterns in data at multiple

levels of abstraction. The bottom-up weights in each layer are learned to encode a

hierarchy of overcomplete and sparse feature dictionaries from space- and time-varying

sensory data. Two algorithms are investigated: recursive layer-by-layer spherical

clustering and sparse coding to learn feature hierarchies. The model scales to full-sized

high-dimensional input data and to an arbitrary number of layers thereby having the

capability to capture features at any level of abstraction. The model learns features that

correspond to objects in higher layers and object-parts in lower layers.

Learning features invariant to arbitrary transformations in the data is a requirement

for any effective and efficient representation system, biological or artificial. Each layer in

the proposed network is composed of simple and complex sublayers motivated by the

layered organization of the primary visual cortex. When exposed to natural videos, the

model develops simple and complex cell-like receptive field properties. The model can

predict by learning lateral connections among the simple sublayer neurons. A topographic

map to their spatial features emerges by minimizing the wiring length simultaneously with

feature learning.

The model is general-purpose, unsupervised and online. Operations in each layer

of the model can be implemented in parallelized hardware, making it very efficient for real

world applications.
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Chapter 1

Introduction

1.1 Representation and Learning Strategies in Multilayered Architectures

In recent years, there has been a surge of interest in learning feature hierarchies

from data using deep architectures largely motivated by the layered organization of certain

parts of the brain, particularly the neocortex. This interest is also fueled by a strong

hypothesis – that the learning algorithms operating in the different perceptual cortices are

very similar (Bach-y-Rita, 2004; Bach-y-Rita and Kercel, 2003; Constantine-Paton and

Law, 1978; Metin and Frost, 1989; Mountcastle, 1978; Roe et al., 1992; von Melchner

et al., 2000). George (George, 2008) observes that the common cortical algorithm

hypothesis in conjunction with the No Free Lunch theorem (Ho and Pepyne, 2002) points

toward a basic set of assumptions that are specific enough to make learning efficient while

being general enough to be applicable to a large class of problems – the essence of

intelligence.

Theoretical and empirical evidence shows that, unlike deep architectures, kernel

methods (e.g., Support Vector Machine (Vapnik, 1998)) and other “shallow” architectures

(e.g., neural networks with one hidden layer) are inefficient at representing complex

functions involved in perception (Bengio, 2009). Deep architectures, such as

convolutional neural networks (Farabet et al., 2011; LeCun and Bengio, 1995), HMAX

(Riesenhuber and Poggio, 1999; Serre et al., 2007b), and deep belief networks (Hinton,

2007), recognize objects and actions with better accuracy than shallow architectures. In

the rest of this section, we briefly review a few important issues related to representation

and learning strategies in deep architectures.

1.1.1 Open-loop vs. Closed-loop Learning

Formulating an objective function helps to understand a model’s global behavior.

Two approaches to feature learning using deep models are prevalent – closed-loop (i.e.,

with feedback) and open-loop (i.e., without feedback). In the former, an objective or
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energy function is minimized by iteratively updating connection weights with respect to

an error signal that is propagated backwards. In case of supervised learning, this signal is

often the gradient of the classification error which results in learning discriminative

features while in the unsupervised case, it is the gradient of the reconstruction error which

results in learning generative features. An appropriate regularization term is often used to

avoid overfitting and induce sparsity. Variants of deep belief networks (Hinton et al.,

2006), convolutional neural networks (LeCun et al., 1998; Lee et al., 2009), and

sparse/denoising autoencoders (Vincent et al., 2008) are trained using this approach (also

see (Larochelle et al., 2009; Ranzato et al., 2007)). One useful objective function for

unsupervised learning is the l2 norm of the reconstruction error,

E(X,D) ≡ 1

2
∥X− Dα∥22 (1.1)

where X are the signals, D is an overcomplete dictionary of non-orthogonal bases or

features, and α are the coefficients. Minimization of E subject to ∥α∥0 < n, where ∥.∥0 is

the l0 norm and n is an integer (small relative to the number of features), allows learning D

using which a sparse representation of the input is possible (Aharon et al., 2006).

Non-orthogonality and overcompleteness of features leading to sparse coding have been

claimed to explain certain observations in the response properties of cortical cells

(Olshausen and Field, 1996).

In the open-loop approach, unsupervised learning can be conceptualized as

capturing the distribution of recurring coincident patterns in the data by a feedforward

mechanism, i.e. an explicit feedback of the error signal is absent. Clustering is an example

of this approach though not the only one. Variants of Neocognitron (Fukushima, 1980;

Fukushima, 1988; Fukushima, 2003), HMAX (Riesenhuber and Poggio, 1999; Serre,

2006; Serre et al., 2007a; Serre et al., 2007b) and Hierarchical Temporal Memory (HTM

(George and Hawkins, 2005; George, 2008)) are trained using this approach.
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1.1.2 Linear vs. Part-based Representation

In hierarchical networks, complex RF structures or features in higher layer

neurons can be learned from simpler features in lower layer neurons in at least two

apparently different ways – by the principle of spatial organization that follows from the

seminal work of Hubel and Wiesel (Hubel and Wiesel, 1962; Hubel and Wiesel, 1965;

Hubel and Wiesel, 1968), and by the principle of linear superposition that is utilized

widely in machine learning applications with impressive results (Hinton et al., 2006;

Vincent et al., 2008). See (Martinez and Alonso, 2003) for a review on this issue.

In the case of spatial organization, neurons are arranged in a 2D grid. Each neuron

receives input from a unique region in space. Two or more neurons might have some

overlap (less than 100%) in their inputs. The physical size of RFs increases as we ascend

up the hierarchy. A higher layer feature is learned by generating strong connections with a

subset of neurons in the lower layer, the subset is determined by the input data.

In the case of linear superposition, a signal x is modeled as a linear combination of

features in a dictionary D, i.e. x = Dα, where each feature in D has the same dimensions

as x. Since a feature is encoded in the RF of a neuron, all neurons receive input from the

same region in space. Therefore, all neurons always have 100% overlap in their inputs.

The physical size of RFs remain the same throughout the hierarchy. As in the case of

spatial organization, a higher layer feature is learned by generating strong connections

with a subset of neurons in the lower layer, the subset is determined by the input data. Fig.

1.1 illustrates the two principles using a caricature of center-surround RFs in the lower

layer and a simple RF in the higher layer.

We observe that these two feature representations are functionally similar. In the

case of spatial organization, arrangement of neurons in a 2D grid along with lateral

connections allow the layer of neurons to encode the relative spatial location of a feature.

The same information is encoded within the RF of a neuron in the case of linear

superposition, hence they are not required to be arranged in a 2D grid. Also, they do not
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require lateral connections to encode their relative locations. However, they are more rigid

in the sense that if the parts remain the same but their relative locations change, new

features will have to be learned. In the case of spatial organization, only the weight of

lateral connections need to be altered.
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Fig. 1.1: Two ways of learning features by combining lower level features. (a) The center
surround features in the lower layer have the same location within the RF. The higher
layer feature, a vertical bar, is learned by selectively superimposing with some degree of
overlap (less than 100%) the lower layer features. The selected neurons have stronger
connections to the higher layer neuron. RF size increases as we ascend up the layers. (b)
The center surround features in the lower layer have different locations within the RF. The
higher layer feature is learned by selectively superimposing with 100% overlap the lower
layer features. The selected neurons have stronger connections to the higher layer neuron.
RF size remains constant across layers.

In the design of our architecture, we take a hybrid approach. A node, consisting of

a set of neurons with different RFs, receives input from a unique location in space.

Different nodes receive inputs from different spatial locations with some degree of overlap

(less than 100%). This is discussed in Section 2.1. In any layer in our architecture, nodes

are arranged in a 2D grid and connected via lateral connections (spatial organization)

while neurons in a node are arranged in a topographic map which minimizes the wiring
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length (Dutta and Banerjee, 2013; Hyvarinen and Hoyer, 2001; Kavukcuoglu et al., 2009)

and their RFs are learned using linear superposition.

1.1.3 Discriminative vs. Generative Models

Given an input data x for classification, the goal for discriminative hierarchical

neural models is to infer its class or label y encoded in the highest layer representation. In

probabilistic terms, a discriminative model learns the posterior p(y|x) directly which is a

mapping from the data to the class labels. In contrast, the goal for generative models is to

generate or reconstruct the data at the output as faithfully as possible. A generative model

learns the joint probability p(x, y) of the inputs x and the label y, computes p(y|x) using

Bayes rule, and selects the most likely label y for classification. In the task of

classification, a number of studies have been shown that both models have their own

regimes of performance in which each of them does better (Long et al., 2007; Ng and

Jordan, 2001). When the training set is small, classifiers based on generative models

outperform discriminative classifiers (Schmah et al., 2009).

1.2 Invariant Representation Learning

Learning features invariant to arbitrary transformations in data is a requirement for

any biological or artificial recognition system. A number of computational models have

been proposed that can learn transformation-invariant features for state-of-the-art

recognition in images, audio and videos using alternating simple and complex layers. The

simplest way is to put built-in invariances directly like translation invariance in the

architecture. Convolutional neural network (LeCun et al., 1989), SIFT descriptors (Lowe,

2004) use this approach. But it only works for known invariances and can not represent

unknown invariances. Another way to represent invariance is to learn topographic filter

maps in the simple cell layer (Hyvarinen and Hoyer, 2001; Kavukcuoglu et al., 2009;

Mairal et al., 2011). In this approach, similar features are closed by in the filter map and

invariance can be achieved by pooling units close in space together. It can be also done by

group sparse coding (Garrigues and Olshausen, 2010).
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Another approach is to use the temporal coherence in the data to learn

transformation invariance. It is believed that the inputs are more likely a consequence of

the same cause if they follow one another in time (Gregor and LeCun, 2011). Invariance

can be achieved by discovering the cause that is same for all those inputs. There are

several methods, which use this idea. In (Földiák, 1991) a trace rule has been used which

will give some benefit to fire the same complex cell in close temporal proximity.

(Einhäuser et al., 2002) learns the correlation between strong presynaptic activity precedes

by strong postsynaptic activity and (Masquelier et al., 2007) learns the correlation

between currently most activated simple unit and previously most activated complex unit

to learn invariances. Slow feature analysis (Bergstra and Bengio, 2009; Berkes and

Wiskott, 2005; Wiskott and Sejnowski, 2002) forces the representation to change slowly.

Temporal product network (Gregor and LeCun, 2010) breaks the input into two

representations, one that is common to all frames and one that is complementary. (Cadieu

and Olshausen, 2008) learns higher-order structure among the time-varying phase

variables. HTM (George and Hawkins, 2009) forms groups based on transition matrix

between states. (Gregor and LeCun, 2011) adds up the coefficients of sparse coding units

over a fixed amount of time and derives the cause for that cumulative vector.

1.3 Overview of Contributions

The main contributions of this thesis can be given as follows:

• A hierarchy of features are learned using a multilayered neural network

architecture. Two algorithms are investigated for the purpose – spherical clustering

with an adaptive threshold and sparse coding. The threshold, unique for each

neuron, does not allow outliers to affect the cluster centers. Experimental results

show that reconstruction capability is better for sparse coding than clustering,

classification accuracy is comparable for both algorithms, reconstruction/denoising

of input from a higher layer is better than that from a lower layer, and classification

accuracy obtained from a lower layer is better than a higher layer.
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• Arbitrary transformations from spatiotemporal data are learned using a two layered

neural network architecture. Two algorithms are investigated – temporal spherical

clustering with variable receptive field size and non-negative matrix factorization.

The former learns transformations of arbitrary lengths while the lengths are fixed for

the latter. A topographic structure in the feature layer is learned by exploiting

temporal coherence in the data without assuming any predefined pooling range.

1.4 Outline

This thesis will proceed as follows:

Chapter 2 will cover the architecture of the hierarchical neural network that we

will follow throughout the thesis. We will briefly describe the use of different types of

connections (e.g. feedforward, lateral, feedback) as well as the notations.

Chapter 3 will present hierarchical feature learning from sensory data. Two

different algorithms for learning feature hierarchies will be investigated. In the first one,

the bottom-up weights in each layer are learned to encode a hierarchy of overcomplete

and sparse feature dictionaries from space- and time-varying sensory data by recursive

layer-by-layer spherical clustering. This density-based clustering algorithm ignores

outliers by the use of a unique adaptive threshold for each neuron. The model is

fully-learnable with only two manually tunable parameters. The second one learns to

encode features using sparse coding. The model scales to full-sized high-dimensional

input data and also to an arbitrary number of layers thereby having the capability to

capture features at any level of abstraction. Some differences between spherical clustering

and sparse coding will be shown.

Chapter 4 will show how to learn invariance to arbitrary transformations using

temporal spherical clustering and non-negative matrix factorization. It will be shown that

the model develops complex cell-like receptive field properties in primary visual cortex.
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1.5 First Published Appearances

Most of the work presented in this thesis have first appeared as various

publications. The following list describes the representative publications roughly

corresponding to each chapter in this thesis:

• Chapter 2: (Banerjee and Dutta, 2013c; Dutta et al., 2012)

• Chapter 3: (Banerjee and Dutta, 2013a; Banerjee and Dutta, 2013b; Banerjee and

Dutta, 2013c)

• Chapter 4: (Dutta and Banerjee, 2013)
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Chapter 2

Network Architecture

2.1 Nodes as Canonical Computational Units

Our network architecture (Banerjee, 2012; Dutta et al., 2012) consists of a

hierarchy of layers of nodes (see Fig. 2.1). Each layer is composed of a simple and a

complex sublayers. A node is a canonical computational unit consisting of a lamina of

densely connected integrate-and-fire neurons (see Fig. 2.2) that is replicated throughout

the architecture. Research in sensory systems gives strong indications that the brain

applies similar computations to different problems, and has thus identified a number of

these canonical computations which have proven capable of accounting for a wide variety

of observed neurophysiological measurements. See, for example, (Cadieu et al., 2007;

David et al., 2009; Douglas and Martin, 2010; Kouh and Poggio, 2008; Rust et al., 2005;

Rust and DiCarlo, 2008). Our architecture consists of alternating simple and complex

sublayers, starting with a simple sublayer, a strategy employed by a number of

hierarchical neural models, such as the Neocognitron (Fukushima, 1980; Fukushima,

1988; Fukushima, 2003), HMAX (Riesenhuber and Poggio, 1999; Serre, 2006; Serre

et al., 2007a; Serre et al., 2007b) and convolutional neural networks (Farabet et al., 2011;

LeCun and Bengio, 1995).

2.2 Receptive Fields

A neuron in a node is connected to the neurons in the neighboring nodes in the

same layer, one layer above, and one layer below by lateral, feedforward, and feedback

connections, respectively. The first (or lowest) layer in the hierarchy receives input from

external data (e.g., images, videos, audios). The RF of each neuron is spatiotemporal; that

is, the RF has a spatial and temporal extent within which the neuron integrates

information. The size of a RF is the same for all neurons in a layer and increases as we

ascend up the hierarchy. If a neuron is excited enough by integrating activations over its

9
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Fig. 2.1: The neural network architecture used to implement our model. Each layer Li is a
pair of simple and complex sublayers. Circles denote nodes. Inter-node lateral
connections encode spatial correlations.
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Fig. 2.2: Nodes and columns in our architecture. A node is a lamina of neurons (shown
here in one-dimension) each of which responds to a unique feature. A column consists of
neurons all of which respond to the same feature. This is conceptually similar to the
ice-cube model of primary visual cortex (Hubel and Wiesel, 1977). Such a cube of nodes
and columns forms a simple sublayer in our architecture as shown in Fig. 2.3.
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Fig. 2.3: One layer in our architecture. (a) Feedforward connections from a simple to a
complex sublayer node. Circles denote neurons. W (I,S) are learned to encode spatial sets
or features in simple sublayer S. W (S,C) are learned to encode temporal sets or
transformations in complex sublayer C. Feedback connections are not shown. (b) Lateral
connections in S within a node. Intra-node lateral connections encode temporal
correlations. These lateral weights W (S,S) in conjunction with W (S,C) are modeled to
learn sequences.
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spatiotemporal RF, it spikes.1 It functions as an integrate-and-fire neuron (Abbott, 1999)

and a suspicious coincidence detector (Földiák, 1990).

At each sampling instant, our model accepts spatial data as input through the first

layer, which is passed on to higher layers in the form of activations. The goal of

computations in each node is to explain or reconstruct the input. Over time, each neuron

in a node gets tuned to a unique feature; such a sparse set of features can reconstruct many

different inputs. Functionally, a node is an overcomplete set of filters, all of which are

applied to each patch of the input data. These filters might be spatial (e.g., edges in

different orientations) or spatiotemporal (e.g., vertical edge moving in a particular

direction) depending on the temporal RF size of the corresponding neurons. For learning

spatial features with no temporal component, the temporal RF size of the neurons may be

set to unity. Such neurons are referred to as simple neurons. Complex neurons learn

spatiotemporal features with a finite temporal RF size greater than unity and the same

spatial RF size as its lower layer simple neurons. As a result of learning multiple layers of

features, where each layer treats the activations of the lower layer neurons as data, strong

connections are formed from the first layer neurons to the top layer neurons through the

intermediate layers such that rapid categorization of the input signal may be achieved

(Serre et al., 2007a). The connections that are used more often are strengthened while the

rest are weakened.

In the most general case, the neurons in layer ℓ+ 1 in our architecture have larger

RFs, both in space and time, than those in layer ℓ. In accordance with the structure of the

visual pathway, researchers have opted to design multilayered neural architectures with

alternating layers of simple and complex cell-like neurons where the simple neurons

respond to spatial features (e.g., edges in different orientations) while the complex

neurons induce scale and translation invariance to those features. Examples of such

models include the Neocognitron, convolutional neural networks, HMAX and HTM. In

1In this article, we account for every spike of a neuron as opposed to the spiking/firing rate or any
function of that (e.g., mean) or their distribution of a single or population of neurons.
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these models, connections from a simple to complex layer are hardwired for pooling and

only the connections to the simple layer are learned. In our model, all connections are

learned from the data and thus can afford the flexibility to learn spatiotemporal features of

sizes driven by the data. Further, our architecture may be used with minimal modification

to learn spatial features (e.g., from images), temporal features (e.g., from audio), or

spatiotemporal features (e.g., from videos).

2.3 Connections: Feedforward, Lateral and Feedback

Connections across layers are of two types – feedforward and feedback.

Feedforward connections help higher layer neurons to abstract more stable spatiotemporal

patterns by pooling from a number of lower layer neurons. This strategy has been used in

many multilayered networks, such as HMAX (Riesenhuber and Poggio, 1999; Serre,

2006; Serre et al., 2007a; Serre et al., 2007b), HTM (George and Hawkins, 2005; George,

2008; Hawkins et al., 2011), convolutional neural networks (Farabet et al., 2011; LeCun

and Bengio, 1995), and deep belief networks (Hinton et al., 2006; Hinton and

Salakhutdinov, 2006; Hinton, 2007). The pooling mechanism has been shown to capture

invariances to arbitrary transformations implicit in the data (Dutta and Banerjee, 2013).

Top-down feedback connections predict global spatiotemporal patterns, that is, over a

larger space and time. The strength of connections encode the recurring local correlations

(or lack thereof) in neural spikes.

Lateral connections within a layer are of two types: those that connect neurons

within a node (intra-node) encode temporal correlations while those that connect neurons

across neighboring nodes (inter-node) encode spatial correlations. Spatial correlations

have to be stored in inter-node lateral connections as each node looks at a particular region

in space. Temporal correlations have to be stored in intra-node lateral connections as

activations of neurons within a node over time depict how a feature changes in a particular

region in space over time.
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In our mdoel, a simple neuron strongly connects to a set of complex neurons in the

lower layer, encoding a set of features in space. The relative spatial locations of these

features, arranged in a 2D grid, are encoded as spatial correlations by inter-node lateral

connections in the complex layer. These connections are undirected. A complex neuron

strongly connects to a set of simple neurons in the lower layer, encoding a set of features

in time. The sequence of occurrence of these features are encoded as temporal

correlations by intra-node lateral connections in the simple layer. The direction of such a

connection signifies the direction of transition in time. Thus, lateral connections provide

spatial and temporal structure to the sets encoded by feedforward connections. Without

these lateral connections, detection of features in the input would be possible but not their

relative locations in space or time.

Notation. N (ℓ)(i) is the set of neurons in layer ℓ that connect to the ith neuron in

some layer. This is also referred to as the neighborhood in layer ℓ of the ith neuron.

W
(k,ℓ)
ji (t) is the weight or strength of connection from the jth neuron in layer k to the ith

neuron in layer ℓ at time t. A(ℓ)
i (t) and S(ℓ)

i (t) are respectively the activation and state of

the ith neuron in layer ℓ at time t. Finally, τ ℓi is the temporal RF size of the ith neuron in

layer ℓ. MT denotes transpose of matrix M.

In the next two chapters, we will describe the learning procedure for simple and

complex neurons. We will also show the use of different types of connections (e.g.,

feedforward, lateral and feedback) in learning those simple and complex neurons.
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Chapter 3

Hierarchical Feature Learning from Sensory Data

3.1 Feature Learning using Spherical Clustering

3.1.1 Objective Function

The model described in this section learns feature hierarchies from recurring

coincidences in the data in an unsupervised and online manner, minimizing the following

objective function on convergence:

ℓ(X ,W) =
1

2

n∑
i=1

∑
j∈N (i)

∥xj − wi∥2 (3.1)

where X = {x1, x2, ...xN} and W = {w1, w2, ...wn} are the set of d-dimensional data

points and features respectively, N (i) is the set of data points in the neighborhood of wi,

|
∪n

i=1N (i)| < N , |.| denotes the cardinality of a set. Each data point and feature is

normalized to have unit norm. Each layer in our model learns a set of non-orthogonal

features that soft-partitions a subset of the normalized input space; this subset, given by∪n
i=1N (i), does not contain outliers. Such a formulation may be construed as

soft-clustering on the surface of a hypersphere of unit radius (a.k.a. spherical clustering

(Dhillon and Modha, 2001)) where the outliers are not allowed to influence the cluster

centers.

3.1.2 Architecture

In this section, we will concentrate on learning feature hierarchies using the

feedforward connections and simple sublayers only.

3.1.3 Operation

At each sampling instant, our model accepts spatial data as input through the first

layer which is passed on to higher layers in the form of activations. The goal of

computations in each node is to selectively cluster the data into groups (Dutta and

Banerjee, 2013). Over time, each neuron in a node gets tuned to a unique feature which
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represents a cluster center. Functionally, a node is a bag of filters all of which are applied

to each patch of the input data.

The output (or state) of a layer is the input to the next higher layer. The same

operation is executed in each node in any layer. Thus, the feedforward weights in this

hierarchical model are learned by recursive layer-by-layer spherical clustering.

3.1.4 Neuron

In our model, the activation of a neuron is given by

A
(l)
i (t) =

∑
j∈N (l−1)(i)

W
(l−1,l)
ji (t)× A

(l−1)
j (t) (3.2)

In matrix form, A(l) = A(l−1) ×W (l−1,l) where the neighborhood information is implicit.

Since each feature in W (l−1,l) and A(l−1) are normalized, A(l) is the normalized dot

product of the input with each feature. This allows a neuron to act as a suspicious

coincidence detector (Földiák, 1990), responding with high activation if the input pattern

matches the feature encoded in its receptive field.

For a given input, all neurons in a node receive activations. The maximally

activated neuron in a node is the “winner”. While we compute the winner using a max

operation, it is more biologically plausible to consider lateral connections within a node

using which neurons inhibit each other at a faster time scale eventually settling at some

stable state. Lateral inhibition has been used for similar purposes in many models, such

as, in (Einhäuser et al., 2002), in the form of V -cells in Neocognitron (Fukushima, 2003)

and in the LISSOM model (Sirosh and Miikkulainen, 1997).

The state of a neuron is binary and is given by

S
(l)
i (t) =


1, if A(l)

i (t) > A
(l)
j (t), ∀j ̸= i, and

A
(l)
i (t) > θ

(l)
i (t)

0, otherwise

(3.3)

The threshold θ is adaptive and unique for each neuron. Only the winner in a node is
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assigned the state 1 if its threshold is crossed. This is how our model implements the

winner-take-all mechanism which allows only the neuron of highest activity to learn. We

say a neuron has fired if its state reaches unity.

Thus, a neuron integrates all inputs over its RF until it reaches its threshold when it

fires if it is the winner. As soon as it fires or if it fails to fire, it discharges and then starts

integrating again. The discharge from a neuron inhibits neighboring neurons in its own

layer. As in (Einhäuser et al., 2002), it may be assumed that this lateral inhibition is

proportional to a neuron’s total accumulated charge (or activation) and operates at a faster

time scale. The inhibition is required to ensure that neurons in a layer do not get tuned to

the same feature. The inhibition influences a neuron’s activation which in turn influences

its inhibition. This cycle ensues until a stable state is reached. In most practical cases, this

inhibition is observed to be strong enough to drive all neurons close to their baseline

activation. In our implementation, we assume this baseline to be zero which does not

affect our features qualitatively.

3.1.5 Learning: Updating Weights and Thresholds

Feedforward weights to neuron j in layer l with S(l)
j (t) = 1 are updated following

Hebbian rule.

W
(l−1,l)
ij (t+ 1) = (1− α)×W

(l−1,l)
ij (t) + α× S

(l−1)
i (t) (3.4)

where α is the learning rate that decreases with time for finer convergence, 0 < α < 1,

S(0) = A(0). This weight update rule is obtained by applying gradient descent on the

objective function in eq. 3.1 in an online setting. Feedforward weights leading to each

neuron are initialized to ones and normalized to have unit norm, which allows all neurons

in a layer to compete on an equal footing. A new neuron is not recruited unless the

incoming pattern is more similar to the initialized feature than to any of the learned

features. After each update, weights to each neuron are normalized to have unit norm.

Thus, feedforward connection from a presynaptic neuron (i) to a postsynaptic one (j) that
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fire together are strengthened while the rest (to j) are weakened. The weakening of

connections is crucial for robustness as it helps remove infrequent coincident patterns

from memory which are probably noise.

The threshold is updated as follows:

θ
(l)
i (t+ 1) =

 A
(l)
i (t), if S(l)

i (t) = 1

(1− η)× θ
(l)
i (t), otherwise

(3.5)

where η is the threshold decay parameter, a constant, 0 < η < 1. Due to the threshold,

only a subset of stimuli can trigger learning. If η = 1, all stimuli are used in learning as in

traditional clustering algorithms. If η = 0, no stimulus can cross the threshold, hence

learning does not occur. Size of the set of effective stimuli reduces with reduction in the

value of η. The threshold decay mechanism ensures that the size of the effective subset

remains fixed throughout the learning process, thereby maintaining the plasticity of the

network. The winner-take-all mechanism along with the threshold favor neurons with

sparsely distributed activity.

In the proposed model, a neuron always passes on its activations to its neighboring

neurons in all layers irrespective of whether it fires or not. This is crucial for online

operation where learning and inferencing proceed simultaneously and not in distinct

phases. If a pattern has been learned and a part of it is shown, a partial pattern of

activations will stimulate the remaining neurons of the pattern to become active thereby

completing the whole pattern. However, the strength of connections will not be altered

unless enough of the pattern has been seen (as determined by θ) and the RFs of the

presynaptic neurons are the best match to the incoming pattern in their respective nodes to

fire the postsynaptic neuron in the higher layer.

3.1.6 Experimental Results

The proposed model in this section was deployed for learning feature hierarchies

from data in different modalities in an unsupervised and online manner with the learning
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rule derived from the same objective function as in eq. 3.1. The feedforward weights were

learned layer by layer with α(t) = α(t− 1)/(1 + t/106), α(0) = 0.1. θ were initialized to

ones. Overlap between patches for adjacent nodes was 75% and 25% in the first and

second layers respectively. The top layer had only one node. The number of nodes in each

layer is a function of the % overlaps and the RF sizes of neurons.

Features for the second and third layers were reconstructed as follows. For a

neuron in the second layer, a neuron in each first layer node that most strongly connected

to it was chosen. The features represented by these neurons were weighed by the

connection strengths and spatially organized taking into consideration the % overlaps

among nodes. Once the second layer features were constructed, the same procedure was

carried out for each third layer neuron to construct their features. To reconstruct unknown

data, a winner neuron was computed in each node in the highest layer. A neuron in each

node in the lower layers was chosen based on strongest connection to the winner. The

chosen lowest layer features, each multiplied by the norm of the corresponding input data

patch and spatially organized based on the % overlaps among nodes, reconstructed the

input.

Images

Our model learned three layers of features from natural images (downloaded from

Google images). The images were converted to grayscale, and convolved with a Laplacian

of Gaussian filter to crudely highlight edges (performed by center-surround cells before

the signal reaches V1). The features learned in the first layer were edges/bars in different

orientations and phases, similar to RFs of simple cells in V1 (Hubel and Wiesel, 1962).

The features learned in the second layer were different combinations of these edges,

similar to RFs found in V2 (Hegde and Van Essen, 2000; Ito and Komatsu, 2004) (see Fig.

3.5). Features learned in the third layer were unstable and did not show any coherent

pattern. Our model also learned three layers of features from 60,000 images of ten

handwritten numerals {0, 1, ...9} from the MNIST dataset (LeCun et al., 1998). As shown
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in Fig. 3.2, parts of numerals were learned in first layer, larger parts in the second layer,

and whole numerals in the third layer. The grayscale intensity denotes the strength of a

feature. η was chosen as 10−4 for natural images and 10−1 for MNIST as there are many

more outliers in the former data set compared to the latter. Thus, the same model could

learn three layers of features from the MNIST data but only two layers from natural

images due to the absence of recurring coincidences among second layer features in the

latter case.

Fig. 3.1: Features of size 10× 10 and 20× 20 were learned from natural images in first
(left) and second layers (right). 49 out of 150 and 70 out of 100 features from first and
second layers are shown.

Videos

Spatiotemporal video features were learned in our model from 3D voxels where

time is the third dimension. Such features have often been learned from voxels for

computer vision and machine learning applications, particularly for action recognition

(see for example, (Ji et al., 2010; Le et al., 2011)). When our model was exposed to videos

of ten actions (e.g., walking, waving) performed by nine subjects from the Weizmann

dataset (Gorelick et al., 2007) with η = 10−2, the first layer neurons with RF size

10× 10× 5 learned edges in different orientations and moving in different directions.

That is, they developed orientation- and direction-selective RFs as in complex cells in V1

(Hubel and Wiesel, 1962) (see Fig. 3.3). Consequently, they respond to static edges/bars
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Fig. 3.2: A hierarchy of features were learned from handwritten numerals in MNIST
dataset in first, second and third layers with receptive field sizes 10× 10, 16× 16 and
28× 28 respectively. 400, 150 and 50 features from first (top left), second (top right) and
third (bottom) layers are shown.

in a particular orientation in different locations within their RFs, and therefore, have

learned position-invariant features.

Clustering

Our learning algorithm may be construed as a special case of clustering. We

compared its clustering performance to that of three algorithms with interesting

properties. First, the k-means is one of the most widely used clustering algorithms and its

performance will serve as a benchmark. Second is the algorithm proposed by Einhäuser et

al. (Einhäuser et al., 2002) for learning features from natural videos. It has two distinct

properties: division by past trace for achieving translation or viewpoint invariance,

proposed by Földiák (Földiák, 1990), and lateral inhibition for determining the winner.

Third is the topology adaptive self-organizing neural network or TASONN (Datta et al.,

2001) for skeletonization of data sets. It belongs to the class of algorithms known as

growing neural gas (Fritzke, 1995) which start with a very few neurons and strategically
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Fig. 3.3: 30 out of 100 features learned in first layer from action videos (e.g., walking,
waving) are shown. Each row is a spatiotemporal feature with spatial RF size 10× 10,
temporal RF size 5, and direction from left to right.

add neurons and connections with learning until a stopping criterion is met. Hence, the

final result is immune to bad initializations.

Five datasets from the UCI machine learning repository (Blake and Merz, 1998)

were used in our experiments (see Table 3.1). Table 3.2 shows the performance (mean µ ±

std. dev. σ) of four unsupervised and two supervised algorithms over 1000 trials on each

of the datasets. The advantage of TASONN and our model over k-means for initialization

is revealed by the σ. On average over all datasets, the classification accuracies of

Einhäuser et al.’s model and TASONN were 45%, k-means and our model were 64%, and

the two supervised algorithms were 74%. For measuring similarity, k-means and

TASONN use Euclidean distance while Einhäuser et al.’s and our models use dot product.

Among the four unsupervised algorithms, our model performed with highest accuracy and

lowest σ. Fig. 3.4 shows the variation in performance of our model for different values of

η for each dataset. The best performance is achieved at η = 10−2; however, for natural

data with many more outliers, η = 10−4 performs better.
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Fig. 3.4: The influence of η on the performance of our model on five UCI datasets is
shown. The errorbars indicate standard deviations.

3.2 Feature Learning using Sparse Coding

3.2.1 Objective Function

Unlike spherical clustering, sparse coding uses more than one neuron to represent

the input. If X = {x1, x2, ...xN} and W = {w1, w2, ...wn} are the set of d-dimensional

data points and features respectively, A = {a1, a2, ...aN} are the set of n-dimensional

coefficient vectors, then a data point x can be represented as a linear combination of the

features, satisfying ∥x−Wa∥p ≤ ϵ. For p ≥ 1, we can define the lp norm of a k

dimensional vector y as ∥y∥p = (
∑k

i=1 |y[i]|p)
1
p , where y[i] denotes the i-th coordinate of

y. In this work we will use p = 2 for the representation error.

But if d <n and W is a full-rank martix, there are infinite number of solutions

possible for this representation problem. In that case a sparsity function can be used as a

Table 3.1: Benchmark UCI datasets

Name of No. of No. of No. of
dataset points dimensions classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 6

Vehicle 846 18 4
Segment 2310 19 7
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Table 3.2: Performance of algorithms on the UCI datasets

Name Unsupervised (µ± σ) Supervised (µ)
of k-means Einhäuser et al.’s Our model TASONN SVM Mean

dataset (Matlab) model (η = 0.01) model (Matlab) Classifier
Iris 82.7± 12.4 47.1± 4.3 71.4± 2.9 90.3± 1.3 76.7 93.3

Wine 95.0± 4.0 59.4± 1.7 89.6± 1.9 42.8± 2.6 99.4 97.2
Glass 43.2± 2.8 46.6± 2.3 48.7± 1.6 45.7± 4.0 59.8 51.4

Vehicle 37.0± 0.7 30.1± 0.6 39.1± 2.0 27.7± 1.3 73.9 45.3
Segment 60.2± 6.8 37.0± 1.8 67.2± 2.4 18.7± 0.7 60.3 84.2

regularization term which can be viewed as a selection of relevant or important features.

The overall goal is to minimize the following objective function on convergence:

ℓ(X ,W) =
1

2N

N∑
i=1

∥xi −Wai∥22 + ϕ(ai) (3.6)

where ϕ(ai) is the sparsity function. Generally we define the ∥l∥0 norm as the sparsity

measure which counts the number of nonzero elements in a vector:

∥y∥0 ≡ #{i : y[i] ̸= 0}, where n is a positive integer. Sometimes ∥l∥1 norm is also used

to make the optimization problem convex.

3.2.2 Neuron

The task of the neruons in each layer is to explain the input where explanation is

construed as reconstruction of the input A(l−1) using the learned features and their

activations A(l), by minimizing the following loss function:

Erecon(A(l−1)|W (l−1,l)) ≡ 1

2
∥A(l−1) −W (l−1,l) × A(l)∥22 (3.7)

subject to ∥A(l)∥0 ≤ n

where ∥A(l)∥0 ≡ #{i : A(l)
i ̸= 0}, n is a positive integer, and each column of W (l−1,l) is a

feature that has been normalized to have unit norm. The condition on A(l) constrains the

maximum number of features used in the reconstruction, thereby inducing sparsity.
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If n is greater than or equal to the number of available features (i.e., number of

columns in W (l−1,l)), the simple neurons’ activations may be computed using ordinary

least squares in closed form as: A(l) = (W (l−1,l)T ×W (l−1,l))−1 ×W (l−1,l)T × A(l−1). If n

is less than the number of features, reconstruction in the model is achieved by an iterative

process. This process may be implemented as orthogonal matching pursuit (OMP) (Pati

et al., 1993) which is a greedy forward selection algorithm that starts with an empty list

and includes at each iteration the feature most correlated with the current residual.

Initially, the input (i.e., prediction error) is the residual. At each step, the feature for the

maximally activated (absolute values of activations are considered) or winner simple

neuron is included in the list, and all the activations are updated by computing the

orthogonal projection of the input onto the linear subspace spanned by the features

selected so far. The residual is updated as the difference between the input and the sum of

selected features times their activations. This procedure continues until n features have

been used. If n = 1, OMP reduces to computation of activation for spherical clustering

(Dhillon and Modha, 2001) which is computationally more efficient than iterative

algorithms, such as OMP with n > 1, and can be used to learn hierarchy of features from

spatiotemporal data (Banerjee and Dutta, 2013a; Banerjee and Dutta, 2013b; Dutta and

Banerjee, 2013) but has limited explanatory power.

3.2.3 Learning

Learning Lateral Connections: Consider an interconnected set of neurons, need

not be fully connected but in the same layer. If the connection weights encode the

correlations of neuronal activations, i.e.

Wij(t) = Ai(t)× Aj(t), (3.8)

the activation of the ith neuron may be spatially predicted from the activations of its

neighboring neurons as:
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Âi(t) =
1

κ

∑
j∈N (i),j ̸=i

Wji(t)× Aj(t) (3.9)

where κ =
∑

j∈N (i),j ̸=iA
2
j is the normalization factor. This is a form of divisive

normalization widely used for various purposes, such as enhancing sensitivity and

discrimination, eliminating nonlinear statistical dependencies, etc. (Carandini and Heeger,

2012) in different modalities (Heeger, 1992; Olsen et al., 2010; Simoncelli and Schwartz,

2000; Wainwright et al., 2002). If the activations Aj have zero mean and unit variance,

κ = 1. Otherwise, if κ is dropped, the structure in the input is still retained but with a

different amplitude.

When a few neurons are activated by the partial presence of a learned input, the

above model can predict remaining part of the input, thereby functioning as an associative

memory. Beyond some minimum neighborhood size, smaller the neighborhood, stronger

the memory i.e., more patterns can be stored accurately. If each neuron in layer ℓ encodes

a feature in W (ℓ−1,ℓ), estimating the activations of these neurons from the neighboring

neurons in its own layer provides a means for estimating the activations of neurons in the

lower layers. To keep notations simple, this may be expressed in matrix form as:

Â(ℓ−1) =W (ℓ−1,ℓ) × Â(ℓ) =W (ℓ−1,ℓ) ×W (ℓ,ℓ) × A(ℓ) (3.10)

This expression does not make explicit the neighborhood information which plays a

crucial role. A model that includes all neurons in a layer in the neighborhood will form a

particularly inefficient storage architecture. We will continue with the matrix notation to

keep expressions simple assuming the neighborhood to be implicit.

It is beneficial to keep a memory trace of the past as opposed to altering the

connection weights abruptly with each input. This may be achieved by using a forgetting

term β as:
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Wij(t+ 1) = β ×Wij(t) + Ai(t)× Aj(t) (3.11)

where 0 < β < 1; β may be initialized close to zero and increased exponentially with the

number of observations.

Learning Feedback Connections: In our model, the top-down or feedback weights

W (ℓ,ℓ−1) encode the correlation of neuronal activations between neurons in layers ℓ and

ℓ− 1. Thus, following equation 3.11,

W
(ℓ,ℓ−1)
ij (t+ 1) = β ×W

(ℓ,ℓ−1)
ij (t) + A

(ℓ)
i (t)× A

(ℓ−1)
j (t) (3.12)

Learning Feedforward Connections: The feedforward connections encode

features in our neural architecture. We use block coordinate descent (BCD) with warm

restart to learn these connections. Computational benefits of BCD, such as local

computation, parameter free learning and faster convergence, over other gradient

descent-like algorithms are well-known (Mairal et al., 2010). For the derivation of

parameter update equations, refer to appendix in (Kong and Wang, 2012). Here we show

how these equations may be implemented by exploiting the lateral and feedback

connections in our model to learn the feedforward connections.

Using BCD, the ith feature is updated as:

△W (ℓ−1,ℓ)
i = γ × ((W (ℓ,ℓ−1)T)i −W (ℓ−1,ℓ) ×W

(ℓ,ℓ)
i ) (3.13)

where γ is a normalization factor, the subscript i refers to the ith column of the matrix.

Each column (i.e. feature) of W (ℓ−1,ℓ) is normalized to have unit norm after each update.

As shown in (Mairal et al., 2010; Kong and Wang, 2012), this learning rule minimizes the

well-known loss function in equation 1.1 for an optimal dictionary of features keeping the

activations fixed. Convergence properties of this learning rule are explicated in (Bertsekas,

1999; Bottou and Bousquet, 2008; Mairal et al., 2010).
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Given the activation A(ℓ), W (ℓ−1,ℓ) ×W (ℓ,ℓ) × A(ℓ) estimates the activations Â(ℓ−1)

(ref. equation 3.10). Since W (ℓ,ℓ−1) encodes correlations between activations of layers ℓ

and ℓ− 1 (ref. equation 3.12), (W (ℓ,ℓ−1))T × A(ℓ) also estimates Â(ℓ−1). Thus, features

encoded in the feedforward weights are learned one by one to account for the difference of

estimations from two sources. By keeping the weight update rule independent of

activations, BCD explains interlayer correlations by the features and lateral correlations

thereby learning from relations in the input (Banerjee, 2013).

3.2.4 Experimental Results

The proposed model in this section was also deployed for learning feature

hierarchies from images in an unsupervised and online manner. The layers were learned

one by one. Overlap between spatial patches for adjacent nodes was 50% in the first layer.

The top layer had only one node. The number of nodes in each layer is a function of the %

overlaps and the RF sizes of neurons in the different layers. The second layer features are

reconstructed as follows. For a neuron in the second layer, a sparse set of neurons in each

first layer node that strongly (excitatory or inhibitory) connects to it is chosen. The

features represented by these neurons are weighed by the connection strengths and

spatially organized taking into consideration the % overlaps.

Our model learned two layers of features from thousands of natural images

(downloaded from Google images). The images were converted to grayscale, and

convolved with a Laplacian of Gaussian filter to crudely detect edges (performed by

center-surround ganglion cells before the signal reaches V1 (Hartline, 1940; Barlow,

1953; Kuffler, 1953)). The features learned in the first layer were edges/bars in different

orientations and phases (see Fig. 3.5b), similar to RFs of simple cells in V1 (Hubel,

1995). The features learned from the same data without any preprocessing, as shown in

Fig. 3.5, are more useful for image reconstruction.

The second layer was learned using the same RF size as the first layer, which used

the output of the first layer as input. After learning, the second layer weights became
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(a) (b)

Fig. 3.5: Features of size 15× 15 learned from natural images in first layer without any
preprocessing (a) and after applying a Laplacian of Gaussian filter (b). A total of 256
features were learned in each case.

sparse. Each second layer unit was strongly connected to a small subset of first layer units

with positive or negative values and the other values were quite small. The second layer

bases are shown in Fig. 3.6. This result is similar to the model in (Lee et al., 2008) where

the second layer bases encoded co-linear first layer features as well as complex features,

such as intersections and angles. Several studies (Hegde and Van Essen, 2000; Ito and

Komatsu, 2004) have shown that cells in V2 respond to such complex features.

Our model also learned two layers of features from 60,000 images of ten

handwritten numerals {0, 1, ...9} from the MNIST dataset (LeCun et al., 1998). As shown

in Fig. 3.7, parts of numerals were learned in first layer while the neurons in second layer

learned to respond to at least one instance of all the ten numerals. In the features, black

color denotes inhibitory connection, white excitatory and grey neutral (close to zero).

During learning from data with no temporal continuity, we set the temporal RF size (τ ) of

neurons to unity. These features can now be used for classification. Using our model, we

also reconstructed very noisy images. As shown in Fig. 3.8, the reconstructions from
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Fig. 3.6: 200 features learned by the simple sublayer of L2 from the L1 simple features
shown in Fig. 3.5b. In each group of five patches arranged in a row, the leftmost patch
represents the L2 feature while the following four patches are the four features of L1

simple neurons arranged in descending order of their connection strength to the L2

neuron. Each L2 feature is the weighted sum of the L1 simple features. Cells in V2 are
known to respond to such complex features.
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second layer are much better than those from the first layer. This is expected as the higher

layer has a more global view of the input and can restrict certain lower layer neurons from

participating in reconstruction which would have otherwise added noise. The learning

mechanism used in our model infuses high storage capacity. For example, it can learn

features from 7× 106 image patches, 12× 12 pixels each, by only 256 simple neurons in

one layer; these features can be used for state-of-the-art denoising (Mairal et al., 2010).

This capacity grows manifold when stacked in multiple layers as done in our model.

Further, the intermediate complex layers in our model induce transformation invariance

which make the memory even more efficient and allows abstraction of higher-level

features.

(a) (b)

Fig. 3.7: Features learned from 60,000 handwritten numerals in MNIST dataset in first (a)
and second layers (b) with RF size 10× 10 and 28× 28 respectively. A total of 400 and
100 features were learned in the first and second layers respectively.

3.3 Comparison between Spherical Clustering and Sparse Coding

Clustering tries to learn centroids so that one input can be represented by only one

cluster center. On the other way, sparse coding learns distributed representation as it can

represent an input using multiple features. Empirical studies showed that spherical
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Fig. 3.8: In the left columns are shown noisy images generated by randomly inverting the
intensities of at least 25% pixels. The reconstruction of these images from the first and
second layers of our model are shown in the middle and right columns respectively.
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Table 3.3: Classfication accuracy on MNIST using spherical clustering

Classification layer Accuracy(%)
Layer-1 (RF = 10x10) 96.64
Layer-2 (RF = 16x16) 91.94
Layer-3 (RF = 28x28) 76.72

All layer together 97.1

Table 3.4: Classfication accuracy on MNIST using sparse coding

Classification layer Accuracy(%)
Layer-1 (RF = 10x10) 87.47
Layer-1 (RF = 28x28) 96.19
Layer-2 (RF = 28x28) 85.45

clustering also learns sparse projections of the data under right conditions but fails as the

data dimensionality increases. For details see (Coates and Ng, 2012). Sparse coding

allows the features to develop both on-center and off- center receptive fields as it can use

both positive and negative coefficients to explain the input. From Table 3.3 and 3.4, we

can see that the classification accuracy for clustering and sparse coding is comparable

which is consistent with other studies (Coates et al., 2011). In case of reconstruction

sparse coding does better as it is allowed to use multiple features. And also the

reconstruction from higher layer is better than lower layer. But a surprising result is that,

the classification accuracy using the lower layer features are better than using higher layer

features. One reason behind this is, applying a sparse learning algorithm to features that

are already sparse cannot help much because sparsity can not be increased in this way.

Also, when recursive layer by layer algorithm is used, higher layer learns more general

structures and discards discriminative information.

One way to solve this problem is to add an invariant representation layer so that it

can discard extraneous detail (like small translations of edges) in order to simplify the

data. Once the data has been “smoothed” in this way, higher layers of sparse learning

might actually discover structure that was not apparent before. In the next chapter, we will

discuss about how to learn invariant representation from time varying data.
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Chapter 4

Learning Invariant Representation

In this chapter, a two-layer network architecture is presented where the first and

second layers are called simple and complex layers respectively. Each layer in our

heirarchical architecture is composed of these simple and complex sublayers (see Fig.

2.3).

4.1 Invariant Representation Learning using Temporal Spherical Clustering

The model described in this section uses both topographic and temporal coherence

approaches (see section 1.2 for details) and combines them in a simpler way. The model

learns topographic organization of the simple cells from time varying data, assuming that

the visual field changes slowly over time and also uses the same higher level

representation for several consecutive time frames. It can learn variable length

transformations by using an unique adaptive threshold for each complex neuron.

4.1.1 Objective Function

Formally, we define a set X as a finite collection of distinct alphabets, written as

X = {x1, x2, ...xN} where xi is a d-dimensional alphabet or feature or event, i ̸= j

implies xi ̸= xj , and N is the cardinality of X , i.e. |X | = N . We define a sequence ζ over

the set X as a finite ordered list of alphabets from X , written as ζ = ⟨x1, x2, ...xn⟩ where

xi ∈ X , i < j implies xi occurs before xj , i ̸= j does not imply xi ̸= xj , and n is the

length of ζ . Therefore, learning a subset of features from recurring coincidences in the

data requires clustering X into a set of k clusters C = {C1, C2, ...Ck}. Soft-clustering is a

better option for natural data.

Formation of a cluster may be viewed as a pseudo-event that occurs where (in case

of spatial clustering) or when (in case of temporal clustering) all or most of the events in

the cluster occur. Let,
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S
(l−1)
i (p) =

 1, if xi occurs at p

0, otherwise
(4.1)

S
(l)
j (p) =

 1, if Cj occurs at p

0, otherwise
(4.2)

where p denotes location in case of spatial clustering and time in case of temporal. Also,

W
(l−1,l)
ij = Pr(S

(l)
j = 1 | S(l−1)

i = 1) (4.3)

Clustering may then be defined as an optimization problem that minimizes the following

objective function:

ℓ(S(l−1),S(l);W (l−1,l)) =
1

2

k∑
j=1

N∑
i=1

∥W (l−1,l)
ij − 1

|P (l)
j |

∑
p∈P (l)

j

S
(l−1)
i (p)∥2 (4.4)

where W (l−1,l) = [W
(l−1,l)
ij ]N×k are the parameters of the model, S(l−1) = [S

(l−1)
i (p)]N×P

and S(l) = [S
(l)
j (p)]k×P (p = 1, ...P) are the observations. P (l)

j = {p : S(l)
j (p) = 1}. The

W (l−1,l) that minimizes ℓ is a maximum a posteriori probability (MAP) estimate assuming

uniform prior. This formulation is similar to correlation clustering (Bagon and Galun,

2011); it automatically recovers the underlying number of clusters k.

4.1.2 Neuron

A complex neuron in L2 integrates activations from presynaptic neurons in L1 (see

Section 3.1 for learning in L1) over its temporal RF and fires if the integrated input crosses

its threshold. The activations of complex neurons in L2 at time t are:

A(2)(t) =
t∑

h=t0

S(1)(h)×W (1,2)(h) (4.5)
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where t0 is a time instant from when the neurons start integrating, t− t0 ≤ τ (2). Each

feature in W (1,2) is normalized to have unit norm. A complex neuron acts as a temporal

coincidence detector.

The state of the ith neuron in any layer l is binary, given by

S
(l)
i (t) =

 1, if A(l)
i (t) > A

(l)
j (t),∀j ̸= i, and A(l)

i (t) > θ
(l)
i (t)

0, otherwise
(4.6)

where θ(l)i (t) is the threshold of the ith neuron in layer l at time t. This threshold is

adaptive and unique for each neuron. Only the maximally activated neuron (or winner) in

a layer is assigned the state 1 if its threshold is exceeded. Our model implements the

winner-take-all mechanism which allows only the neuron of highest activity to learn. We

say a neuron has fired if its state reaches 1.

4.1.3 Learning

Feedforward weights to neuron j in layer l with S(l)
j (t) = 1 are updated following

Hebbian rule.

W
(l−1,l)
ij (t+ 1) = (1− α)×W

(l−1,l)
ij (t) + α× S

(l−1)
i (h) (4.7)

where t0 ≤ h ≤ t, α is the learning rate that decreases with time for finer convergence,

0 < α < 1, S(0) = A(0). This weight update rule is obtained by applying gradient descent

on the objective function in eq. 4.4 in an online setting. Feedforward weights leading to

each neuron are initialized to ones and normalized to have unit norm, which allows all

neurons in a layer to compete on an equal footing. A new neuron is not recruited unless

the incoming pattern is more similar to the initialized feature than to any of the learned

features. After each update, weights to each neuron are normalized to have unit norm.

Thus, feedforward connection from a presynaptic neuron (i) to a postsynaptic one (j) that
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fire together are strengthened while the rest (to j) are weakened. The weakening of

connections is crucial for robustness as it helps remove infrequent coincident patterns

from memory which are probably noise.

In L1, the lateral weight from neuron i to j is also updated following Hebbian rule

as:

W
(1,1)
ij (t+ 1) = (1− α)×W

(1,1)
ij (t) + α× S

(1)
i (t− 1)× S

(1)
j (t) (4.8)

Thus, connection from a presynaptic neuron (i) to a postsynaptic one (j) that fire at

consecutive time instants are strengthened while the rest (from i) are weakened. The

weights are randomly initialized in (0.5− δ, 0.5 + δ), δ → 0, such that
∑

j W
(1,1)
ij = 1,

and the above learning rule ensures that constraint continues to be satisfied. Since S(1) is

extremely sparse, W (1,1) can store a number of patterns from their correlations at

consecutive time instants.

The threshold is updated as follows:

θ
(l)
i (t+ 1) =

 A
(l)
i (t), if S(l)

i (t) = 1

(1− η)× θ
(l)
i (t), if S(l)

i (t) = 0 and t− t0 = τ (l)
(4.9)

where η is the threshold decay parameter, a constant, 0 < η < 1. Due to the threshold,

only a small subset of stimuli can trigger learning. The threshold decay ensures that the

size of this subset remains fixed throughout the learning process, thereby maintaining the

plasticity of the network. The winner-take-all mechanism along with threshold favor

neurons with sparsely distributed activity.
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4.1.4 Experimental Results

The proposed model was deployed for learning visual features in a node from

spatiotemporal data in an unsupervised and online manner. The feedforward weights were

learned layer by layer with α(t) = α(t− 1)/(1 + t/106), α(0) = 0.1. θ(l) were initialized

to a value slightly greater than τ (l) such that the longest sequences may be captured.

η = 10−6. As stimuli we used 17 videos recorded at different natural locations with a

CCD camera mounted on a cat’s head exploring its environment (Betsch et al., 2004).

These videos provided a continuous stream of stimuli similar to what the cat’s visual

system is naturally exposed to, preserving its temporal structure. The same catcam videos

were used in (Einhäuser et al., 2002; Masquelier et al., 2007) for evaluating models on

learning complex cell RF properties. As preprocessing, each frame (320× 240 pixels) was

converted to grayscale and convolved with a 3× 3 Laplacian of Gaussian kernel followed

by rectification to crudely highlight edges, believed to be performed by center-surround

cells before the signal reaches V1. Spatiotemporal voxels of size 10× 10 pixels spanning

over the entire duration of a video were extracted at fixed points from a 9× 11 grid,

sampled every 25 pixels. These 99 voxels from each video formed our stimuli, leading to

a total of about 5.3 million patches from the 17 videos.

4.1.5 Simple Layer

Our model was simulated with 625 simple neurons in L1 with spatial RF size

10× 10 pixels. Each simple neuron learned a unique visual feature from the stimuli.

Qualitatively, the features belonged to three distinct classes of RFs – small unoriented

features, localized and oriented Gabor-like filters, and elongated edge-detectors (see Fig.

4.1). Such features have been observed in macaque V1, and have been reported to be

learned by computational models such as SAILnet (Zylberberg et al., 2011) and SSC

(Rehn and Sommer, 2007).

If lateral connections encode transition probabilities and minimization of wiring

length is an objective, neurons that fire in close temporal proximity will end up being
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Fig. 4.1: Features learned by 625 neurons in L1 from the catcam video.

spatial neighbors. Furthermore, if the stimulus changes gradually, neighboring neurons

will develop similar feature preferences. In order to learn features in a topographic map,

we organize the simple layer neurons on a 2D grid. At any time t, the activation Ai of the

winner neuron i at time t− 1 is propagated to its neighbor j (j ̸= i), the effect of which

exponentially decreases with square of the distance dij between i and j on the grid. For

neighbor j at time t, the propagated activation is:
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ψ
(1)
ij (t) =

 e−γ×d2ij , if i ̸= j

0, otherwise
(4.10)

where γ is a constant, γ = 2. At any time t, in addition to feedforward activation, each

simple neuron receives an activation from a neighboring winner in the same layer. The

simple layer activation is:

A(1)(t) = A(0)(t)×W (0,1)(t) + S(1)(t− 1)× ψ(1)(t) (4.11)

where ψ(1) = [ψ
(1)
ij ]|L1|×|L1|, |L1| is the number of neurons in L1. The second term

biases neighboring neurons to become the winner at the next instant. As a result, simple

neurons that fire in close temporal proximity end up being spatially close in the 2D grid.

Consequently, the wiring length for pooling by complex neurons is reduced, in agreement

with biological evidence (Blasdel, 1992; DeAngelis et al., 1999). The topographic map is

shown in Fig. 4.1. The pooling region in this topographic map as learned by each complex

neuron is shown in Fig. 4.5.

4.1.6 Complex Layer

Our model was simulated with 25 complex neurons in L2 with temporal RF size of

21 sampling instants. Being exposed to the catcam videos, each complex neuron got

strongly connected to a subset of simple neurons in L1 i.e., it learned a unique

transformation to which it is now invariant. The spatial feature encoded by each simple

neuron in this subset is an instance of the transformation. The activation of a complex

neuron is high if the spatial stimulus matches any of these spatial features, and low

otherwise. Thus, the response of complex neurons in our model is akin to that of complex

cells in V1.

Due to the nature of stimulus, our model was exposed to sequences of spatial

stimuli in the catcam video. Repeating sequences, if learned, would be useful for

prediction. When trained with a sequence (e.g., ⟨A,B,C,D,E⟩), a complex neuron in our
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model responds much more vigorously (as measured by its activation) to the

corresponding set (e.g., {A,B,C,D,E}) than to any other (e.g., {I, J,K}), where each

alphabet refers to a unique spatial feature. Further, it responds more vigorously to the

training sequence than to any other (e.g., ⟨E,D,C,B,A⟩), thereby manifesting the

complex neuron’s direction selectivity. This is achieved by exploiting the set learned by

the complex neuron in conjunction with the transition probabilities learned by the lateral

connections in the simple layer. The difference in activations towards the training

sequence and any of its other permutation depends on how often other permutations of the

set are presented. If no other permutation is presented, the difference in activations is

high. In V1, 10-20% cells show marked direction selectivity (Hubel, 1995).

Prediction in our model amounts to computing the probability of the ith simple

neuron being the winner at time t+ 1 given that the jth simple neuron was the winner at

time t, i.e. probability of S(1)
i (t+ 1) = 1 given S(1)

j (t) = 1, which depends on the

transition probabilities as well as the sets learned by the complex neurons. At any instant,

the winner complex neuron (say, k) restricts the set for the expected winner simple neuron.

The highest expected one is then chosen from this set using the transition probabilities.

Pr(S
(1)
i (t+ 1) = 1 | S(1)

j (t) = 1) = κ× (
W

(1,2)
jk∑

kW
(1,2)
jk

× W
(1,2)
ik∑

iW
(1,2)
ik

+W
(1,1)
ji ) (4.12)

where κ is the uniform prior distribution. Fig. 4.2 shows the entropy of the system as it

converges with learning. Fig. 4.5 shows the sets and sequences learned by eight L2

neurons in our model. To reconstruct the sequence learned by a L2 neuron, we select the

strongest connected feature from its set; its successor is that feature from the set that has

the strongest lateral connection (the algorithmic implementation of equ. 4.12), and so on

until a feature is repeated, signifying the end of sequence.
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Fig. 4.2: Entropy of the system as it learns from natural stimuli.

4.2 Invariant Representation Learning using Generative Model

We can also apply the same approach like (Gregor and LeCun, 2011) but a slightly

different objective funtion to learn the complex layer.

4.2.1 Objective Function

The complex neurons in L2 can be learned by minimizing the following objective

function:

l(W (1,2), A(2)) =
1

2
∥(

τ∑
t=t0

|A(1)(t)|)−W (1,2)A(2)∥22 (4.13)

subject to W (1,2), A(2) ≥ 0

where,

A(1)(t) = min
A(1)

1

2
∥A(0)(t)−W (0,1)A(1)(t)∥22 (4.14)

subject to ∥A(1)(t)∥0 ≤ n

(See Section 3.2 for learning in L1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.3: Sequences and feedforward connection strengths learned by eight (out of 25) L2

neurons from the catcam videos are shown in (a) through (h). In (a), the top figure shows
the sequence of length 9 learned by this L2 neuron. The bottom figure shows the
connection strengths to the 625 L1 neurons learned by this L2 neuron. Similarly for (b)
through (h). The L2 neurons learn variable length sequences even with the same τ (2)

(=21).

It is an online version of Non-negative Matrix Factorization (NMF). It is well

known that NMF can learn part based representation (Lee and Seung, 1999; Hoyer and

Dayan, 2004). That means, if there are some simple neruons those co-occur frequently in

close time interval, they will be strongly connected to one complex neuron.

4.2.2 Neuron

The task of the complex neurons is to reconstruct the accumulated simple neurons’

activation using the learned weights between simple and complex layers, by minimizing

the following loss function:

l(A(2)|W (1,2)) =
1

2
∥(

τ∑
t=t0

|A(1)(t)|)−W (1,2)A(2)∥22 (4.15)
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subject to A(2) ≥ 0

The solution of the objective function can be found using non-negative least square

(Lawson and Hanson, 1995).

4.2.3 Learning

Learning can be done either by Stochastic Gradient Descent or the method

described in section 3.2.3. After each update an additional thresholding should be done to

keep the weights non-negative.

4.2.4 Experimental Results

The proposed model was deployed for learning from the same data described in

Section 4.1. The data was preprocessed like in (Coates and Ng, 2012). Each image patch

was first contrast normalized by subtracting the mean and divide by the standard

deviation. A small value was added to the variance to avoid divide by zero problem. After

contrast normalization each voxel was whitened by ZCA transform.

The network was simulated with 225 neurons in simple layer and 50 neurons in

complex layer with the parameters n = 10 and τ = 10. The responses of the neurons in L1

and L2 are akin to that of simple and complex cells in V1.
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Fig. 4.4: Features learned by 225 neurons in simple sublayer of L1 from the catcam
videos.

Fig. 4.5: Ten most strongly connected simple features (from Fig. 4.4) to each of 10 (out of
50) complex neurons in L1. These connections were learned from the catcam videos.
Temporal RF size was 10.
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Chapter 5

Conclusion

This thesis has presented a hierarchical neural network that learns a hierarchy of

overcomplete and sparse feature dictionaries in an unsupervised and online manner by

capturing repeating coincident patterns from space- and time-varying data. The model

learns meaningful features in each layer that correspond to objects in higher layers and

object-parts in lower layers. Two algorithms are investigated: recursive layer-by-layer

spherical clustering and sparse coding to learn feature hierarchies. For the spherical

clustering, we have presented a fully-learnable model, with only two manually tunable

parameters. We have used the McCulloch-Pitts neuron model with a variable threshold

that is unique for each neuron and adaptive to the data. A constant parameter was used to

decay this threshold such that the influence of outliers on learning may be controlled. This

is crucial for using the same model for learning from data with different proportion of

outliers, such as, natural images with a large number of outliers and clean handwritten

numerals, as in MNIST dataset, with very few outliers. Learning was facilitated by the

Hebbian rule and winner-take-all mechanism. For the case of sparse coding, higher layer

neurons, when exposed to noisy data, could denoise the data better than their lower layer

counterparts, thereby justifying a hierarchical organization. Classification accuracy is

comparable for both algorithms and classification accuracy obtained from a lower layer is

better than a higher layer. The architecture scales to realistic-sized high-dimensional data

and an arbitrary number of layers.

Learning features invariant to arbitrary transformations in the data is a requirement

for any recognition system, biological or artificial. In each layer of the hierarchy, there

should be some procedure so that the responses of the features are invariant to small

transformations and distortions for robust recognition. Biological evidence and

computational models have supported the role of simple-complex layers in V1 in

achieving this goal. We have presented a two-layered neural model that learns features in
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simple layer and feature subset invariant to arbitrary transformations in complex layer

using spatial and temporal spherical clustering respectively. When exposed to natural

videos recorded with a camera mounted on a cats head, the first layer neurons learned

spatial features that resemble the RFs in macaque V1 while the second layer neurons

learned arbitrary transformations in the data; their activations were then invariant to these

transformations akin to the response of complex cells in V1. The simple and complex RFs

were learned by spherical clustering in space and time respectively where the outliers

were not allowed to influence the cluster centers. The model could make higher-order

predictions by simultaneously exploiting the transformations learned in the complex layer

and transition probabilities learned by the lateral connections in the simple layer. We

showed the convergence of this predictive model while learning from the catcam videos.

Unlike other models with predefined pooling regions or presumed group sparsity for

learning topographic maps from spatial data, we used temporal continuity of data and

physical constraints to learn topographic feature map. We have also presented a generative

model that can learn arbitrary transformations from the data using non-negative matrix

factorization.

We have separately presented a hierarchical neural network to learn feature

hierarchies and procedure for learning features invariant to arbitrary transformations in the

data. In the future, we will include this invariance learning procedure in the hierarchical

network to do robust and state-of-the art recognition performance in different real world

data sets.

48



REFERENCES

Abbott, L. F. (1999). Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain
Research Bulletin, 50(5/6):303–304.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing,
54(11):4311–4322.

Bach-y-Rita, P. (2004). Tactile sensory substitution studies. Annals New York Acad. Sci.,
1013:83–91.

Bach-y-Rita, P. and Kercel, S. W. (2003). Sensory substitution and the human-machine interface.
Trends in Cognitive Sci., 7(12):541–546.

Bagon, S. and Galun, M. (2011). Large scale correlation clustering optimization. Comput. Res.
Repos., arXiv:1112.2903.

Banerjee, B. (2012). Learning lateral connections among neurons from correlations of their
surprises. 28th Symp. Comput. Foundations of Perception and Action. Center for Visual
Science, University of Rochester, NY.

Banerjee, B. (2013). How can the blind men see the elephant? In Risi, S., Lehman, J., and Clune,
J., editors, How Should Intelligence be Abstracted in AI Research, number FSS-13-02 in
AAAI Fall Symp., page [Forthcoming]. Arlington, VA.

Banerjee, B. and Dutta, J. K. (2013a). Hierarchical feature learning from sensorial data by
spherical clustering. In IEEE BigData Workshop on Scalable Machine Learning, page
[Forthcoming], Santa Clara, CA.

Banerjee, B. and Dutta, J. K. (2013b). An online clustering algorithm that ignores outliers:
Application to hierarchical feature learning from sensory data. In IEEE ICDM Workshop on
Incremental Clustering, Concept Drift and Novelty Detection, page [Forthcoming], Dallas,
TX.

Banerjee, B. and Dutta, J. K. (2013c). SELP: A general-purpose framework for learning the norms
from saliencies in spatiotemporal data. Neurocomputing: Special Issue on Brain Inspired
Models of Cognitive Memory, page [Forthcoming].

Barlow, H. B. (1953). Summation and inhibition in the frog’s retina. J. Physiology, 119(1):69–88.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1):1–127.

Bergstra, J. and Bengio, Y. (2009). Slow, decorrelated features for pretraining complex cell-like
networks. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., and Culotta, A.,
editors, Advances in Neural Information Processing Systems, volume 22, pages 99–107. MIT
Press.

Berkes, P. and Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell
properties. J. Vision, 5(6):579–602.

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific, Belmont, MA.

49
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Einhäuser, W., Kayser, C., König, P., and Körding, K. P. (2002). Learning the invariance properties
of complex cells from their responses to natural stimuli. European J. Neurosci.,
15(3):475–486.

Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., and Talay, S.
(2011). Large-scale FPGA-based convolutional networks. In Bekkerman, R., Bilenko, M.,
and Langford, J., editors, Scaling up Machine Learning: Parallel and Distributed
Approaches. Cambridge University Press.
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