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ABSTRACT 

Parker, Ashley Cox. MS. The University of Memphis. August 2011. Design and 

Preliminary Investigation of Crosslinked Chitosan Sponges for Tailorable Drug Delivery 

and Infection Control. Major Professor: Dr. Warren Haggard. 

 

Musculoskeletal wound infections can be difficult to treat, often resulting in 

multiple surgeries and increased costs, and can be complicated by antibiotic resistant 

bacteria.  The aim of this study was to use genipin, alone or with poly(n-

isopropylacrylamide) (PNIPAM), to crosslink chitosan sponges for a tailorable, 

degradable local drug delivery system to treat known musculoskeletal pathogens.   

Lyophilized uncrosslinked, genipin crosslinked, and PNIPAM/ genipin crosslinked 

chitosan sponges were evaluated in vitro for degradation, antibiotic uptake, elution, 

biologic activity, and biocompatibility.  Crosslinked chitosan sponges exhibited 

decreased degradation and increased antibiotic uptake and elution.  PNIPAM/genipin 

crosslinked sponges had the highest and prolonged release of antibiotics.  Vancomycin 

and amikacin eluted from all sponges was active against Staphylococcus aureus and 

Pseudomonas aeruginosa, and did not have significant cytotoxic effects.   These results 

indicate that genipin crosslinked and PNIPAM/genipin crosslinked chitosan sponges have 

potential as tailorable adjunctive treatments for infection control, suitable for extended 

degradation and antibiotic release times.   
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PREFACE 

The main body of this thesis is a journal article entitled “Design and Preliminary 

Investigation of Crosslinked Chitosan Sponges for Tailorable Drug Delivery and 

Infection Control.”  This manuscript will be submitted to the Journal of Biomedical 

Materials Research Part B: Applied Biomaterials.  
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CHAPTER 1: 

INTRODUCTION 

1.1  Statement of Clinical Problem 

 Wound infection and the development of osteomyelitis, a bone infection caused 

by bacteria or a fungus, can be a challenging problem to treat in orthopaedics, especially 

with complex musculoskeletal trauma, and can result in multiple surgeries and increased 

costs.
1, 2

 Orthopaedic injuries comprise approximately 65% of total injuries during 

military combat and osteomyelitis occurs in 2 to 15% of the patients with combat related 

injuries.
3
  Wound infection can also be complicated by wound contamination with 

antibiotic resistant bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA), 

which can increase the occurrence of osteomyelitis and nosocomial infections, infections 

acquired in hospitals.
4
  The development of a biodegradable local drug delivery system 

whose drug release could be tailored depending on intended application, injury, and 

antibiotic would allow for more controlled and optimized local drug delivery, providing a 

more efficacious therapy for infection control.  

1.2  Hypothesis  

We hypothesize that in situ crosslinking of point of care antibiotic loaded chitosan 

sponges will allow for tailorable and controlled drug elution, while maintaining activity 

against resistant organisms, such as Staphylococcus aureus (S. aureus).  The sponges will 

be biocompatible and degradable, in order to eliminate a second surgery for removal of 

the drug delivery system.  
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CHAPTER 2: 

LITERATURE REVIEW 

2.1  Wound Healing 

A wound can be commonly defined as a body injury that typically results in 

lacerations to skin and usually contains underlying damage to other tissues.  Complex 

wounds typically involve multiple tissues and often do not heal quickly or even 

completely.
5
  Comorbidities often occur and can contribute to the onset of infection and 

impair wound healing.
5
  Long wound healing times can decrease patients’ quality of life, 

physically, psychologically, and financially.
5
  Complex, open orthopedic wounds are 

often contaminated and infection development is a serious complication.
6
   To understand 

the issues with wound healing and how to correct these issues and improve healing time, 

it is important to understand the principles of wound healing.   

Wound healing involves four stages: haemostasis, inflammation, proliferation, 

and remodeling.  In haemostasis, platelets are activated upon injury and release chemicals 

such as fibronectin to promote platelet aggregation and platelet derived growth factor 

(PDGF) and transforming growth factor β (TGF-β) to mediate the wound healing 

process.
7
 Within 24 hours of injury, inflammation begins when neutrophils are recruited 

to the injury site through chemotaxis and serve as the first line of defense against 

infection.
7
  Neutrophils remove bacteria, foreign materials, and necrotic tissue from the 

wound.
7
  Neutrophils are eventually replaced as the predominant cell type by monocytes, 

which differentiate into macrophages that also work to remove residual bacteria, foreign 

material, and non-viable tissue.
7
  Both neutrophils and macrophages initiate the 

proliferative phase by releasing various factors that recruit and activate fibroblasts and 
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endothelial cells.
7
  The proliferation phase of wound healing begins with fibroblast 

proliferation and collagen deposition in order to form a stable extracellular matrix in the 

wound. 
7
 Granulation tissue is formed, epithelial cells construct an epithelial layer over 

the wound, and endothelial cells initiate angiogenesis.
7
 In the remodeling phase, the 

granulation tissue becomes a scar.
7, 8

   

 

2.2  Wound Management  

Wound management often provides faster and more comfortable wound healing, 

which increases patients’ quality of life.  The common steps utilized in wound 

management with orthopaedic injuries and surgical sites are debridement, irrigation, 

dressings, fixation, closure, and antibiotic therapy.
5
  All of these steps are utilized by 

surgeons in order to prevent further damage to the tissues, or even amputation.    

Debridement is the surgical removal of foreign debris, necrotic bone and soft 

tissue from a wound, which creates a sterile healthy wound bed.
5
  Patients that undergo 

debridement within 6 to 24 hours from injury have shown to have a decreased risk for 

infection.
5, 9

  However, there are different opinions about the time dependence of 

debridement.  One study found no correlation between the time to operative debridement 

to the risk of infection in patients with open high energy lower extremity trauma.
10

  

Additionally, debridement can sometimes be logistically difficult in patients with 

complex, multiple trauma.
5
  

Irrigation is the use of a solution, usually saline, to cleanse a wound of bacteria 

and traumatized tissue, and can be delivered either at low or high pressure.
5
  While 

irrigation does decrease the bacterial load, it has been shown that in high pressure 
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irrigation, the irrigation fluid can spread in a lateral direction, contributing to the 

development of postoperative edema.
11

  Because of the consequential increase of wound 

infection susceptibility, it is recommended that irrigation not be used as a preventive 

measure but is reserved for contaminated wounds.
11

  While antibiotic solutions can be 

utilized, saline is often recommended because the antibacterial solutions can create 

irritation in the wound.
5
  

Wounds are also often covered with dressings, to prevent drying of tissue, which 

can cause cell death, necrosis, and infection.
5, 12

  Moist wound healing promotes 

angiogenesis and epithelialization, thereby improving wound healing for patients.
5
    

Some of the typical wound dressings include film dressings, foams, alginates, and even 

chitosan dressings.
5, 13

  Some of the dressings contain silver or topical antibiotics, in order 

to decrease bacterial colonization.
5, 13

  However, topical antimicrobials can cause 

dermatitis and even facilitate Pseudomonas aeruginosa (P. aeruginosa) growth.
13

  

Antimicrobial creams with malic acid or hypochlorite solutions do reduced bacterial 

colonization; however, they can also  increase inflammation of the nearby tissue.
5
  

Both fixation and closure prevent further complications with wounds.  Fixation 

stabilizes the bone and allows for weight bearing, rapid bone healing, and the use of the 

limb before complete healing.
14

  Some of the devices utilized in fixation include plates, 

screws, nails, rods, and pins, depending on which area is being stabilized.
5, 14

  While 

fixation is a critical component of healing, fixation hardware creates another surface on 

which bacteria can colonize, often resulting in biofilm development.
15

  Closure of a 

wound can decrease the risk of infection and is often conducted with skin allografts or 
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muscle flaps.
5
  Closure with skin grafts promotes vascularization, but needs excellent 

wound preparation and can have poor appearance and durability.
5
   

 

2.3  Wound Infection 

Although prevention of infection is the preferred route, treatment of bacterial 

infections is conducted with antibiotic therapy.  S. aureus is the most common organism 

that causes osteomyelitis, but P. aeruginosa, Staphylococcus epidermis, Enterococcus 

spp., Streptococcus spp., Mycobacterium spp, and Enterobacter spp. are also associated 

with osteomyelitis, as well as numerous other wound infections.
16, 17

 S. aureus is a 

common bacteria and is present in many places; approximately one third of the general 

population is colonized with the bacteria.
18

  Wound healing can also be further 

complicated by wound contamination with antibiotic resistant bacteria, which can 

increase the risk of osteomyelitis and nosocomial infections.  MRSA is a serious concern 

in modern medicine and a problem in wound healing.
4
  MRSA is a common cause of 

nosocomial infections, which compose approximately 40-70% of S. aureus infections in 

hospital intensive care units.
19

  However, in addition to causing nosocomial infections in 

patients that are already sick, MRSA also has the capability of causing aggressive 

infections in children and other young and otherwise healthy people.
20

  According to the 

Center for Disease Control and Prevention (the CDC), MRSA infections are on the rise in 

hospitals; in 2005, 18,650 patients died in hospitals from MRSA infections.
4
  

 Another problem associated with wound healing in complex injuries is the 

possible production of biofilms.  According to an estimate by the CDC, approximately 

65% of bacterial infections are associated with biofilms.
21

  Biofilms are adherent 
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bacterial populations of single or mixed colonies with an exopolysaccharide matrix.
22

  

Bacteria can produce biofilms on implants or other surfaces and during the adhesion 

process, bacteria change their phenotypes.
22

  These phenotypic changes enable the 

bacteria to respond to environmental conditions in varying ways, and communication 

between bacterial cells can also be established.
22

  The communication and reactions to 

environmental changes of adherent bacteria in biofilms also enables protection against 

many antibacterial and antimicrobial agents.
23

 In biofilms, the metabolic activity of the 

bacteria is reduced and the adherent bacterial cells ingest less antibiotic than planktonic 

bacteria with higher metabolic activity, resulting in less susceptibility to antibiotics and 

an increased minimal inhibitory concentration (MIC).
23

  The MIC and minimum 

bactericidal concentration (MBC) can be defined as the lowest concentrations of 

antibiotic or antimicrobial that inhibits growth or kills 99.9% of bacteria after an 

overnight incubation, respectively.
24

  Researchers have found the MIC and MBC for 

nonadherent P. aeruginosa to be 1 µg/ml and 50 µg/ml, respectively, but adherent P. 

aeruginosa in biofilms on urinary catheters remained viable after 12 hours of exposure to 

1,000 µg/ml of tobramycin.
22, 25  Systemic antibiotics cannot reach such a high 

concentration at a localized site without toxicity, thereby becoming ineffective against the 

biofilms.
23

   

 

2.4  Antibiotic Therapy 

Some of the antibiotics that can be used for treating S. aureus include linezolid, 

minocycline, co-trimoazole, clindamycin, tigeycline, cefazolin, oxacillin, nafcillin, 

rifampicin, vancomycin, and daptomycin.
26

  Clindamycin, co-trimoxazole, linezolid, and 



7 
 

minocycline are typically provided as treatment for skin and soft tissue infections and 

necrotizing pneumonia.
26

  However, there can be resistance issues with clindamycin, co-

trimoxazole, linezolid, and minocycline, especially in patients with  health care risk 

factors.
26

  Oxacillin, nafcillin, or cefazolin are typically given to patients without health 

care risk factors while cultures are being taken.
26

   Tigecycline is indicated for intra-

abdominal infections with no clinical data involving osteomyelitis; resistance to 

tigecycline has also been reported.
27

  Rifampcin is an option for treatment but should not 

be used without another antibiotic because of the rapid development of resistant 

bacteria.
26

 Daptomycin, a cyclic lipopeptide, has activity against Gram-positive bacteria, 

including S. aureus and MRSA.
27, 26 

However, there is little data and experience using 

daptomycin as a treatment for children under 18 years old.
26

  S. aureus has remained 

sensitive to vancomycin overall, until the first vancomycin resistant S. aureus strains 

emerged in the United States in 2002. Vancomycin is a glycopeptide that binds to the D-

alanyl-D- alanine cell well precursor used in peptidoglycan crosslinking, which inhibits 

cell wall synthesis.
28

  However, vancomycin remains the antibiotic of choice with 

clinicians for MRSA, possibly until a new suitable antibiotic is found.
26, 27, 29

   For Gram- 

negative bacteria, such as Pseudomonas aeruginosa, aminoglycosides such as 

gentamycin, kanamycin, tobramycin, and amikacin are often used.
30

  Amikacin is 

commonly used to treat resistant gram-negative bacteria because amikacin has fewer 

points susceptible to enzymatic attack than the other aminoglycosides.
30
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2.5  Local Drug Delivery 

Because systemic antibiotics cannot be administered at very high concentrations 

to fight localized resistant bacteria or biofilms, local drug delivery is emerging as an 

effective route for treating wounds and minimizing bacterial infections.
31

  In addition to 

issues with antibiotic resistance, toxicity issues can arise with systemic drug delivery 

because drugs are delivered to the entire body.
31

 The organisms that are typically 

antibiotic resistant with systemic antibiotic delivery concentration levels can be  

susceptible to the higher levels of antibiotics provided in local delivery.
31

 Additionally, 

the drug can take a longer time to reach the wound when delivered systemically and some 

avascular areas of the body are unreachable.
31

  In severe cases of infection and 

osteomyelitis, the local blood supply can be compromised and antibiotics cannot be 

delivered systemically to the infection site.
31

  In local drug delivery, ideally the wound 

area is targeted and the drug therefore has less impact on other parts of the body.  The 

ideal local drug delivery system would be implanted, deliver the antibiotics at appropriate 

levels, and then degrade so there would be no need for a second surgical procedure.
31

   

 

2.6  Current Treatment Options 

 Several materials are currently being utilized as local drug delivery systems, but 

many of these materials have disadvantages.  Polymethylmethacrylate (PMMA) is one of 

the most common materials used as a local drug carrier and comes in two forms: 

antibiotic loaded bone cement for arthroplasties and antibiotic loaded beads for 

musculoskeletal infections.
2
 PMMA beads have shown to reduce the infection rate in 

severe open fractures from 12% to 3.7% when they were applied in combination with 
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systemic drug delivery.
6
  Antibiotic loaded PMMA bone cement also reduced the 

revision rate for patients with total hip replacements.
11

 The revision rate for patients 

receiving only systemic antibiotics was 4.3 times greater than for patients receiving 

systemic and localized drug delivery through the antibiotic loaded bone cement.
32

  While 

PMMA has shown to be successful against bacterial infections, some major 

disadvantages of the material are the need for surgical removal, possible biofilm 

formation, and the development of antibiotic resistant bacteria.
23

  After the initial high 

antibiotic release from gentamicin loaded bone cement, the long term, low concentration 

of antibiotic around implants has shown the potential to develop antibiotic resistant 

bacteria strains.
23, 33

  Antibiotic loaded bone cement has shown bacterial growth in in 

vitro studies, which can easily lead to the development of biofilms on the surface.
34

 

 Another material used as a local delivery system in orthopaedic applications is 

calcium sulfate.  Calcium sulfate is a biocompatible, biodegradable material with 

osteoconductive properties that exhibits a bolus release followed by an extended drug 

release from several hours to weeks, depending on the formulation.
35, 36

  Because calcium 

sulfate degrades over time, the need for surgical removal is eliminated and clinical 

studies and animal models have shown success with minimizing infection through the use 

of antibiotic loaded calcium sulfate pellets.
37-39

  Though calcium sulfate has been 

successful at reducing infection, wounds treated with calcium sulfate can develop sterile 

draining sinuses, mimicking infected draining sinuses, which many surgeons dislike.
40, 41
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2.7  Chitosan 

Chitosan, a positively charged linear polysaccharide produced by deacetylation of 

chitin from crustacean shells, has been studied and utilized extensively in bioadhesion, 

drug delivery and tissue engineering research and demonstrates promising properties for 

such biomedical applications.
42

 Advantages of chitosan include low cost, 

biodegradability, high biocompatibility, availability, and functional groups that allow for 

easy chemical modification.
30

 The structure of chitosan is provided in Figure 1.  
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Fig. 1. Chemical structure of chitosan
30 

 

 

 Chitosan has inherent antibacterial properties
43

, has shown to promote wound 

healing
44, 45

 and is presently a Food and Drug Administration approved haemostatic 

wound dressing utilized by the US military for the control of combat injuries.
46

  When 

used as a drug delivery system, chitosan effectively carries antibiotics and exhibits 

predictable elution rates and biodegradation.
43

  The development of a chitosan local drug 

delivery system whose drug release could be tailored depending on intended application, 

injury, and antibiotic has the potential to improve and optimize local drug delivery.   
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Chitosan has been studied and successfully utilized for local drug delivery in film 

form,
43, 47, 48

 microspheres,
49, 50

 and sponges.
51-56

   Some of the properties that have shown 

or have the potential to affect the behavior of chitosan as a local drug delivery system 

include degree of deacetylation, molecular weight, swelling, crosslinking, antibiotic type, 

pH, drug concentration of various antibiotics, the time point at which antibiotic is loaded, 

and type of chitosan.
47, 48, 51, 52, 56

  Additionally, combining chitosan with another polymer 

or chemical modification of chitosan can alter the drug elution rate.
50, 57

   

The antibiotic concentration loaded into the sponges can have an impact on the 

release profile of the drug.  In one study, chitosan and ethylcellulose sponges loaded with 

a low dose of insulin (1 mg) released a higher percentage of drug content than the same 

sponges loaded with a high dose of insulin (1.75 mg and 2 mg).
52

  However, the opposite 

was true in crosslinked chitosan sponges loaded with platelet derive growth factor BB 

(PDGF-BB); sponges loaded with 400 ng of PDGF-BB released more of the growth 

factor than sponges loaded with 100 ng or 200 ng.
53

  Because the sponge material and the 

type of drug typically vary in reported experiments and also influence drug elution, the 

influence of antibiotic concentration on the drug release rate needs to be investigated on a 

case by case basis.  

 The production process of the sponge, especially when the drug is loaded into the 

sponge, makes a significant difference in the drug elution rate.  Multiple studies have 

shown chitosan sponges to exhibit slower drug release when the antibiotic was loaded 

during the production of the sponge
52, 56

 rather than loaded post production of the 

sponges.  However, one of the goals of this project is to develop a chitosan sponge that is 

able to be loaded with the drug at the point of care to generate an adaptable drug delivery 
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system.  Drug loading after the sponge is produced would allow the physicians to select 

and  load antibiotics immediately before implantation and would allow for more control 

of the antibiotics and dosages.  Therefore, the best way to create an easily adaptable 

chitosan drug delivery system is through drug loading at the site of use (point of care 

loading), allowing the drug to permeate and interact with the sponge, rather than the 

entrapment of the drug during production of the sponges.   

 
 Molecular weight influences numerous properties of a material, including 

mechanical properties and drug release.  Nuthanid and co-workers determined that high 

molecular weight chitosan lead to films with better mechanical properties than films with 

low molecular weight chitosan, due to the increased entanglements in the higher 

molecular weight chitosan.
48

  Additionally, in the high molecular weight chitosan, the 

chitosan with a higher degree of deacetylation also lead to better mechanical properties, 

most likely due to the denser packing of the additional amino groups.
48

   

When studying either films or sponges for use in the body, both swelling and 

adhesion to tissue are important properties to study.  In the previously studied chitosan 

films, all of the films swelled initially in phosphate buffer solution, and then decreased in 

volume with time while becoming denser at the same time.
48

  Researchers suggest that 

this decrease in volume is most likely attributed to crosslinking between the amino 

groups and the phosphate, also explaining the increase in density.
48

   Bioadhesion is 

important in wound healing because the material needs to be able to stay in place in order 

to deliver the drugs to the target site.  In previous research on chitosan sponges, some of 

the sponges studied in an animal study did not adhere to the local tissues of goats, 

reducing the effectiveness of the local drug delivery.
58

 Increasing the bioadhesion of the 
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chitosan sponges would allow for the sponge to stay in place and deliver the antibiotics in 

a controlled manner.  

 

2.8  Crosslinking Chitosan 

 Crosslinking chitosan can have a significant effect on the drug release profile of a 

local delivery system.  In one study, crosslinking chitosan sponges with 1.33% 

glutaraldehyde reduced the drug release rate of micronized triamcinolone acetonide at pH 

7.4 by over 50%.
51

 Crosslinking sponges composed of both chitosan and gelatin with 5% 

(w/w) glutaraldehyde also reduced the release of the drug, prednisolone, when used in 

acetic, formic, or lactic acid.
56

  Crosslinked chitosan hydrogels can be achieved through 

small molecule, photo sensitive, enzymatic, and polymer polymer crosslinking.
50

  Some 

small molecule crosslinkers that have been studied with chitosan are glutaraldehyde, 

diglycidyl ether, diisocyanate, diacrylate, and genipin.
50, 51, 56, 59

  

Chitosan hydrogels have also been successfully crosslinked through disulfide 

bridges using dimethyl 3, 3 dithio bis propionimidate (DTBP) or N-acetyl-L-cysteine 

(NAC) as the crosslinkers.
60,61 

 Crosslinked chitosan hydrogel scaffolds prepared with 

DTBP exhibited similar properties to glutaraldehyde crosslinked chitosan scaffolds, but 

showed greater strength and less toxicity.
60

  The release of insulin and bovine serum 

albumin could be controlled in chitosan hydrogels crosslinked with NAC by changing the 

composition, loading, and disulfide bond contents.
61

  These NAC crosslinked chitosan 

hydrogels were porous and biocompatible as well.
61

   

 Photo-cross linking offers different advantages including safety, low cost, ease of 

production, and speed.  A photo-sensitive chitosan hydrogel was developed by Ono and 
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researchers through functionalizing chitosan with azide groups, which after ultraviolet 

(UV) irradiation, are coverted into reactive nitrene groups that bind chitosan’s free amino 

groups.
62

  This hydrogel exhibited successful controlled release of growth factors.
62, 63

  

However, photo-cross linking can require a photosensitizer, which can create additional 

toxicity issues.  Riboflavin phosphate is a photosensitizer that has been researched to 

crosslink collagen in rabbit and porcine eyes and has not shown immediate toxicity, 

although long term side effects have not been evaluated.
64

  The use of the riboflavin 

phosphate and UVA at 370 nm created a crosslinked collagen surface, increasing the 

corneal rigidity.
64

   If an additional biocompatible polymer is selected, polymer-polymer 

cross linking can reduce potential toxicity issues associated with small molecule and 

photo cross linking.  A hydrogel of chitosan and hyaluronic acid has been cross linked 

through the formation of Schiff bases between the polymers and was stable for at least 

four weeks and could be loaded with chondroctyes.
65

 Polymer polymer crosslinking has 

also been studied with chitosan and oxidized dextran polysaccharides and alginate.
66, 67

  

 

2.9 Genipin 

 Genipin is a commonly used small linker molecule for crosslinking chitosan and 

is derived from geniposide by enzymatic hydrolysis with β-glucosidase.
68, 69

  The genipin 

chemical structure is shown in Figure 2.
68, 69

  Geniposide is isolated from fruits from the 

plant, Gardenial jasminoides Ellis, and has been used in traditional Chinese medicine.
68

 

Extracts from the fruits are also used in a food dye known as gardenia blue, which forms 

a blue pigment through the reaction of genipin with amino acids in the presence of 

oxygen.
69, 70
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Fig. 2. Genipin chemical structure
69 

 

 

Physiological studies have demonstrated that geniposide is converted to genipin in 

the gastrointestinal tract in rats, with no adverse effects.
69, 71

  Genipin crosslinked 

chitosan microspheres injected intramuscularly into the skeletal muscle of rats exhibited a 

smaller inflammatory reaction and slower degradation than glutaraldehyde crosslinked 

chitosan microspheres.
72

 In another study, researchers studied the cytotoxicity of genipin 

and glutaraldehyde to 3T3 fibroblasts and found that genipin was approximately 10,000 

times less cytotoxic than glutaraldehyde.
73

   

Genipin has been used to crosslink chitosan films and microspheres for heparin 

removal, protein release, and drug release.
59, 68, 74, 75

  Yuan and researchers evaluated the 

crosslinking of chitosan microspheres with genipin for albumin release and found that as 

crosslinking time and genipin concentration increased, the overall release of albumin 

decreased.
68

  In addition to drug or protein release, crosslinking chitosan delivery systems 

with genipin can change other properties.  Crosslinking chitosan/poly (ethylene oxide) 

blended films with genipin resulted in films with greater tensile strength, elongation at 
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break, increased hydrophobicity, and slower degradation.
59

  Chitosan and silk fibroin 

sponges have also been crosslinked with genipin for cartilage engineering, but sponges 

formed from chitosan alone have not been studied with genipin.
76

 

 

2.10  Poly(N-isopropylacrylamide) 

Chitosan has also been studied in combination with other materials, including 

gelatin,
56

 ethylcellulose,
52

 collagen and hyaluronan,
54

 alginate,
53

 and chrondroitin 

sulfate,
77

 to form sponges for local drug delivery systems.  Additional polymers are often 

selected in order to complement the deficiencies of chitosan or to generate a new property 

for a specific application.  One such example is the preparation of “smart” hydrogels by 

grafting poly(N-isopropylacrylamide) (PNIPAM) onto chitosan.
57

  PNIPAM is a 

thermally responsive polymer, whose chemical structure is shown below in Figure 3, that 

exhibits a lower critical solution temperature (LCST) and contracts when heated above its 

LCST.
57

  An originally clear PNIPAM solution will also become opaque above its 

LCST.
78

  As a hydrogel, PNIPAM can be a liquid at room temperature and undergo 

gelation in contact with the body.
57

   

 

 

CH3CH3

NHO

CH3CH3

n  

Fig. 3. Poly(N-isopropylacrylamide) chemical structure
79 
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Chitosan and PNIPAM have been combined to form semi-interpenetrating 

networks (semi-IPNs), where one of the polymers is crosslinked, and full interpenetrating 

networks (full-IPNs) where both polymers are crosslinked.
80, 81

  An interpenetrating 

network is a blend of two polymer networks lacking covalent bonds between the two 

networks and this type of polymer blend can be utilized to combine properties of different 

materials.
82

  Differences between semi-IPNs and full-IPNS of chitosan and PNIPAM 

have been found in FTIR spectra, phase transition behavior, and swelling behavior.
81

  A 

semi-IPN of glutaraldehyde crosslinked chitosan and PNIPAM swelled faster than a full- 

IPN because the PNIPAM was simply embedded in the gel and the swelling behavior was 

based on swelling of the chitosan.
78, 81

  However, in a full-IPN of formaldehyde 

crosslinked chitosan and methylene bis-acryalmide crosslinked PNIPAM, there was not 

as much swelling above the LCST because the chitosan swelled while the PNIPAM 

contracted due to the collapse of the polymer chain.
81

  This stress inducing swelling 

behavior could create other potential problems, such as stress cracking of the hydrogel.
81

    

Multiple research studies with PNIPAM based hydrogels have shown minimal 

cytotoxic effects on various types of cells.
83-85

  PNIPAM with iron oxide particles was 

found to have 85-90% cell viability, as compared to approximately 97% cell viability in 

cells grown directly on the polystyrene plate.
83

  In another study with a PNIPAM based 

injectable hydrogel, researchers found that rats injected subcutaneously with the polymer 

solution exhibited an initial acute wound healing phase and the tissue returned to its 

normal state after 30 days.
84

  Polymer solutions of a synthesized, uncrosslinked PNIPAM 
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and chitosan compound did not significantly inhibit the growth rate of primary cultured 

corneal epithelial cells.
85

   

In the semi-IPNs of chitosan and PNIPAM, PNIPAM is typically the polymer that 

is crosslinked, either with tetraethylene glycol diacrylate (TEGDA) or methylene bis-

acrylamide; however, toxicity issues could arise with these small linker crosslinkers.
80

  

Chitosan has been crosslinked when combined with PNIPAM in a semi-IPN, but it has 

been crosslinked with glutaraldehyde, not genipin.
86

  Chitosan has also been successfully 

utilized as a thermo sensitive membrane for a wound dressing in combination with 

poly(urethane) and PNIPAM.
87

 This combination of PNIPAM with chitosan could extend 

chitosan’s properties to injectable biomedical applications and generate a system that 

would be pH and temperature responsive.  It could also be investigated whether the 

combination of PNIPAM and chitosan could create a sponge that could swell even further 

when introduced into the body, possibly allowing for better bioadhesion and drug 

delivery.  

 

2.11  Conclusions 

 Musculoskeletal wound infections continue to be a painful, expensive, and at 

times deadly medical problem, difficult to treat and further complicated by an increasing 

emergence of antibiotic resistant bacteria.  Debridement, irrigation, fixation, closure, and 

systemic antibiotic therapy cannot stop all infections, and prevention is a key component 

to minimizing infection.  The delivery of antibiotics, such as vancomycin and amikacin 

for the inhibition of both gram positive and negative bacteria, through degradable, local 

delivery systems is ideal because of the possibility of higher antibiotic dosage, as 



19 
 

compared to systemic delivery, and the elimination of an additional surgery to remove the 

delivery system.  The current local delivery systems have their drawbacks, including 

burst release, possible biofilm formation, need for surgical removal, and the formation of 

sterile draining sinuses.
23, 40, 41, 88

  We hypothesize that crosslinking chitosan sponges with 

genipin or creating a semi-IPN of genipin crosslinked chitosan and PNIPAM will create a 

more tailorable adjunctive treatment that allows for antibiotic selection and point of care 

loading, sustains antibiotic elution and degradation properties, maintains activity against 

Gram-positive or Gram-negative bacteria, such as S. aureus or P. aeruginosa, and 

demonstrates sufficient biocompatibility.  The specific aims of this research study are as 

followed: 

1. Create degradable genipin crosslinked and PNIPAM/ genipin crosslinked chitosan 

sponges that easily absorb antibiotics in one minute of loading 

2. Deliver vancomycin and amikacin from the crosslinked sponges through 72 hours 

and maintain specific biologic activity against S. aureus and P. aeruginosa, 

respectively 

3. Ensure that neither the crosslinked sponges nor their antibiotic eluates initiate a 

cytotoxic effect on cells after 24  hours of exposure 

4. Evaluate the bioadhesive strength of the uncrosslinked and crosslinked chitosan 

sponges 
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CHAPTER 3: 

Design and Preliminary Investigation of Crosslinked Chitosan Sponges for 

Tailorable Drug Delivery and Infection Control 

 

3.1  Introduction 

Complex musculoskeletal wounds, both in civilian and military populations, can 

be difficult to treat because they are often contaminated and infection development is a 

serious complication, which may result in longer healing time, multiple surgeries, and 

increased costs.
1, 2, 3

  Orthopaedic injuries comprise approximately 65% of total injuries 

during military combat and osteomyelitis, a bone infection caused by bacteria or a 

fungus, occurs in 2 to 15% of the patients with combat related injuries.
4
  Infection is also 

especially troublesome in complex open extremity fractures from high energy trauma; 

typical infection rates of civilian open fractures are 17.5-21.2%, while infection rates of 

closed fractures are only 3.6-8.1%.
5
  Staphylococcus aureus (S. aureus) is the most 

common bacterial organism that causes osteomyelitis and is very prevalent; 

approximately one third of the general population is colonized with the bacteria.
6
  Wound 

infections are also often typically polymicrobial and can be further complicated by 

wound contamination with antibiotic resistant bacteria such as methicillin-resistant S. 

aureus (MRSA).
7
  MRSA is a common cause of nosocomial infections, which compose 

approximately 40-70% of S. aureus infections in hospital intensive care units.
8
  S. aureus 

has remained sensitive to vancomycin, a glycopeptide that is often the antibiotic of choice 

with clinicians for MRSA.
9
  For Gram-negative bacteria associated with wound 

infections such as Pseudomonas aeruginosa (P. aeruginosa), amikacin, an 
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aminoglycoside, is a commonly selected antibiotic due to fewer points for enzymatic 

attack than other aminoglycosides.
10

  

Local antibiotic delivery is emerging as an effective route for treating wounds and 

minimizing bacterial infections because systemically delivered antibiotics cannot be 

administered at very high concentrations to fight localized resistant bacteria or biofilms.
11

 

The higher levels of antibiotics provided in local delivery, as compared to systemic 

delivery, may kill bacteria before antibiotic resistance develops.
11

 In addition to issues 

with antibiotic resistance, toxicity issues can arise with systemic drug delivery because 

drugs are delivered to the entire body.
12  In severe cases of infection and osteomyelitis, 

the local blood supply is compromised to the extent that antibiotics cannot be delivered 

systemically.
13

  In local drug delivery, the local wound area is targeted and thus drugs are 

more effective and have less impact on other parts of the body.  Polymethylmethacrylate 

(PMMA) and calcium sulfate are two common local drug delivery systems, but both 

materials have disadvantages.  PMMA sometimes needs to be surgically removed and 

there is also potential for biofilm formation and antibiotic resistant bacteria 

development.
1, 12

  Wound treated with calcium sulfate may develop sterile draining 

sinuses, mimicking infected draining sinuses, which many surgeons disfavor.
14-17

   

Chitosan, a positively charged linear polysaccharide produced by deacetylation of 

chitin from crustacean shells, is a low cost, biodegradable, and biocompatible material 

that has shown success in local drug delivery systems. 
18

  When used as a drug delivery 

system, chitosan effectively carries antibiotics and exhibits predictable elution rates and 

biodegradation.
19

  In a lyophilized sponge delivery system, chitosan has shown to 
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predictably release antibiotics and effectively inhibit the growth of S. aureus and P. 

aeruginosa.
20

  

Crosslinking chitosan can have a significant effect on the drug release profile of a 

local delivery system.  In one study, crosslinking chitosan sponges with 1.33% 

glutaraldehyde reduced the drug release rate of micronized triamcinolone acetonide at pH 

7.4 by over 50%.
21

 Genipin is another commonly used small linker molecule for 

crosslinking chitosan and has been shown to be 10,000 times less cytotoxic on 3T3 

fibroblasts than glutaraldehyde. 22
  Genipin has been used to crosslink chitosan films and 

microspheres for heparin removal, protein release, and drug release.
23-27

  Chitosan and 

silk fibroin sponges have also been crosslinked with genipin for cartilage engineering, but 

sponges formed from chitosan alone have not been studied with genipin.
28

  

Chitosan and poly(N-isopropylacrylamide) (PNIPAM), a thermally responsive 

polymer,  have also been combined to form semi-interpenetrating networks (semi-IPNs), 

where one of the polymers is crosslinked, and full interpenetrating networks (full-IPNs) 

where both polymers are crosslinked.
29, 30

  In the semi-IPNs of chitosan and PNIPAM, 

PNIPAM is typically the polymer that is crosslinked, either with tetraethylene glycol 

diacrylate (TEGDA) or methylene bis-acrylamide; however, toxicity issues could arise 

with these small linker crosslinkers.
29

  Chitosan has been crosslinked when combined 

with PNIPAM in a semi-IPN, but it has been crosslinked with the more toxic 

glutaraldehyde, not genipin.
31

    

 In this in vitro investigation, we evaluated the properties of genipin crosslinked 

chitosan sponges and genipin crosslinked chitosan sponges with PNIPAM for a local 

antibiotic delivery system.  The sponges’ degradation properties were ascertained to 
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determine in vitro degradation timing and Fourier Transform Infrared Spectroscopy 

(FTIR) analysis was conducted to examine the crosslinking reaction of the chitosan 

sponges.  To determine if the sponges could effectively release the antibiotics, 

vancomycin and amikacin, and inhibit the growth of infectious bacteria, the antibiotic 

uptake, elution, and activity against specific strains of S.aureus and P. aeruginosa were 

studied.  In order to assess short term cytotoxicity, the impact of the sponges and 

antibiotic eluates on the cell viability of 3T3 fibroblasts was evaluated.   

 

3.2 Materials and Methods 

Materials 

 Chitosan powder at 71% degree of deacetylation (DDA) with 1480 cP intrinsic 

viscosity and approximately 426,800 g/mol molecular weight was obtained from Primex 

(Iceland) and genipin was obtained from Wako (Richmond, VA).  Poly (n-

isopropylacrylamide) (PNIPAM) with a molecular weight of approximately 10,000-

15,000 g/mol was purchased from Sigma Aldrich (St. Louis, MO).  All other reagents 

were purchased from Fisher Scientific (Pittsburg, PA) and were of analytical grade. 

Vancomycin, amikacin, and 2 x crystallized chicken white egg lysozyme were obtained 

from MP Biomedicals (USA) and trypticase soy broth (TSB) was purchased from 

Beckton, Dickinson, and Company (Franklin Lakes, NJ).  NIH 3T3 mouse fibroblasts 

were purchased from ATCC (Manassas, VA).  Dulbecco’s Modified Eagle Medium 

(DMEM), fetal bovine serum (FBS), and 100x penicillin (10,000 units/mL), streptomycin 

(10 mg/mL), and amphotericin B (25 µg/mL) solution were purchased from Fisher 

Scientific. The Live/Dead® stain kit for mammalian cells and the Cell Titer-Glo® 
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Luminescent Cell Viability assay were obtained from Invitrogen (Carlsbad, CA) and 

Promega (Madison, WI), respectively. 

Sponge Preparation 

 Three different chitosan sponge test groups were created: an uncrosslinked 

chitosan sponge (control), a genipin crosslinked chitosan sponge (genipin crosslinked), 

and a sponge with genipin crosslinked chitosan mixed with PNIPAM (PNIPAM/genipin 

crosslinked)  To create the sponges, a 1% (w/v) chitosan solution was prepared by 

dissolving the chitosan powder in 1% (v/v) blended lactic/ acetic acid (75:25), under 

constant stirring for 24 hours.  In order to remove any insoluble chitosan from the 

solution, the solution was filtered through a 180 µm nylon screen and allowed to degas at 

ambient temperature for approximately one hour.  For the uncrosslinked chitosan 

sponges, 20 mL of the filtered 1% (w/v) chitosan solution was cast into separate fluted 

aluminum weighing dishes (Fisher Scientific, 42 mL) and placed into a -80°C freezer 

(C90-14A31; Kendro Lab Products, Asheville, NC) for one hour.   

In order to crosslink the chitosan, genipin was added to the 1 % (w/v) filtered 

chitosan solution in order to reach a genipin concentration of 5 mM, determined from 

previous formulation research.  The genipin and chitosan solution was stirred for 3.5 

hours at 35°C before 20 mL of the solution was cast into aluminum weighing dishes and 

placed in the -80°C freezer for one hour.  As the crosslinking time increased, a blue color 

developed in the genipin and chitosan solution.  To make sponges from genipin 

crosslinked chitosan and PNIPAM, PNIPAM was added to deionized water to reach 0.4% 

(w/v), a concentration determined from previous formulation research.  Lactic acid, acetic 

acid, and chitosan were then added to the PNIPAM and deionized (DI) water solution in 
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order to reach a solution of 1 % (w/v) chitosan, 1% (v/v) blended acid (75:25 lactic to 

acetic acid), and  0.4% (w/v) PNIPAM.  After mixing for 24 hours, the chitosan and 

PNIPAM solution was filtered through a 180 µm nylon mesh.  Next, genipin was added 

to the solutions to reach a concentration of 5 mM, solutions constantly mixed for 1.5 

hours and then degased at ambient temperature for approximately one hour.  The 

PNIPAM/ genipin crosslinked chitosan solution was cast into separate aluminum 

weighing dishes in 20 mL amounts, covered with parafilm, and allowed to continue 

crosslinking at ambient temperature for a cumulative 24 hours of crosslinking.  The same 

blue color development seen in the genipin crosslinked chitosan sponges appeared in the 

PNIPAM/genipin and chitosan solution and the solutions were placed into a -80°C 

freezer for one hour.   

After all three types of sponges were frozen at -80°C for one hour, they were 

removed from the freezer and placed into a freeze-dryer (FreeZone 2.5; Labconco, 

Kansas City, MO) for 48 hours.  The sponges were removed after lyophilization and 

soaked in 0.2 sodium hydroxide (NaOH) solution and rinsed in distilled water until 

neutral pH was achieved.  However, the sponges used in the direct contact cytotoxicity 

testing were soaked in 1 M NaOH because of residual acidity in the uncrosslinked 

chitosan sponges.  The hydrated sponges were refrozen at -80°C for one hour and then 

relyophilized for 48 hours.  The sponges were removed and sterilized by low dose 

gamma irradiation (25.9-29.6 kGy).  
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Sponge Degradation 

 To measure the effect of crosslinking on the degradation, unloaded uncrosslinked, 

genipin crosslinked, and PNIPAM/genipin crosslinked chitosan sponges, were subjected 

to degradation testing.  Samples with an approximate initial dry weight of 30.30 mg were 

obtained from three replicate sponges of each type. One sample from each replicate 

sponge type was measured for change in mass at each time point. Pieces of dehydrated 

uncrosslinked and crosslinked chitosan sponges were weighed on a Mettler Toledo 

XS205 Dual Range scale (Columbus, OH) and then submerged in 10 mL of phosphate 

buffered saline (PBS) supplemented with 100 µg/mL lysozyme, 100 units/mL penicillin, 

0.1 mg/ml streptomycin, 0.25 µg/mL amphotericin B.  Lysozyme is an enzyme present in 

the human body and has shown to quickly degrade chitosan in vitro.
32

 The samples were 

incubated at 37°C for six weeks and samples (n=3/group) were taken at 1, 2, 3, and 6 

weeks.  In order to maintain sufficient lysozyme activity, the lysozyme solution was 

completely refreshed each week.  At each time point, the lysozyme solution was removed 

and the sponges were washed with 10 mL deionized water, in order remove any residual 

salts from the PBS.  To remove the deionized water wash solution, the sponges were 

placed in fluted aluminum weighing dishes, with known weights, in a convection oven at 

30°C for one hour.  After one hour, the sponges were placed in a dessicator for 24 hours 

and the new sponge weights were measured.  The percent of the sponge remaining at 

each time point was determined using the following equation: 

 

 

Percent remaining      
 ponge weight at x weeks

Initial dry sponge weight
  100 
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Evaluation of Crosslinking 

 The presence of crosslinking in the chitosan sponges was determined by Fourier 

Transform Infrared Spectroscopy (FTIR).  FTIR spectra of the sponges were recorded 

using diffuse reflectance (DRIFT) FTIR on a Nicolet Magna IR Spectrometer 550 

(ThermoScientific) with a helium neon class II laser.  The sponges were ground into 

powder, dried in a convection oven at 30°C, and combined with potassium bromide.  The 

spectra were acquired with 64 scans and a resolution of 4 cm
-1

 and OMNIC
TM

 software 

was used to analyze the results.    

Antibiotic Uptake and Elution 

 Because wound infections are often polymicrobial with both Gram-positive and 

Gram-negative bacteria present, both single and dual antibiotic loaded sponges were 

tested.  To determine the sponges’ antibiotic uptake and elution characteristics, 5 mg/ml 

solutions or either vancomycin, amikacin, or both 5 mg/ml vancomycin and 5 mg/ml 

amikacin were loaded into sponges.  Using three replications of each sponge type for 

each of the three antibiotic solutions, sponges of known weights were submerged in 10 

mL of the antibiotic solution for one minute.  After one minute, the sponge was removed 

and the volume of unabsorbed antibiotic solution was measured.  The volume of 

antibiotic uptake was normalized by the sponge weight.   

 Immediately after the 1 minute in situ antibiotic loading, the sponges were 

completely submerged in 20 mL of sterile PBS and incubated at 37°C.  At 1, 3, 6, 24, 48, 

72, and 96 hours the PBS was completely refreshed, saving 1 mL aliquots at -20°C for 
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analysis of released antibiotics.    Fluorescence polarization immunoassay (TDxFLx; 

Abbott Labs; Abbott Park, IL) was utilized to quantify the concentration of antibiotics 

eluted from the sponges with amikacin and vancomycin specific reagent kits. 

Antibiotic Activity 

The specific antibiotic activity of the eluates against S. aureus (Cowan I strain) 

and P. aeruginosa (ATCC 27317) was tested using turbidity assays.  Dilutions (1:10) of 

vancomycin eluates were tested against S. aureus and 1:10 dilutions of amikacin eluates 

were tested against  P. aeruginosa.  Vancomycin eluates were added in two hundred 

microliter amounts to 1.75 mL of trypticase soy broth (TSB) along with 50 µL inoculum 

of S. aureus containing approximately 2x10
6
 colony forming units (CFU).  Amikacin 

eluates (200 µL) were added to 1.75 mL of TSB and 50 µL inoculum of P. aeruginosa 

containing approximately 2x10
6
 CFU.  Positive controls with bacteria but no antibiotic 

eluates and negative controls with only sterile TSB were also prepared. All samples were 

mixed and incubated at 37°C for 24 hours.  After incubation, the samples were mixed 

again and the absorbance at 530 nm was recorded.  

In vitro cytotoxicity 

 For cytotoxicity testing of the antibiotic eluates from the sponges, NIH 3T3 

fibroblasts were grown in DMEM, supplemented with 100 units/mL penicillin, 0.1 mg/ml 

streptomycin, 0.25 µg/mL amphotericin B, and 20% FBS in an incubator at 37°C and 5% 

CO2.  Twenty percent FBS was used instead of 10% FBS because of eventual dilution of 

the serum with the antibiotic eluates.  The cells were then seeded at 3 x 10
4
 cells/cm

2
 in 

96 well plates made of tissue culture polystyrene (TCP) and allowed to attach overnight . 

Each antibiotic eluate from each elution time point (n = 3) from the sponges and a 
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negative control of sterile 1 x PBS solution (n = 9) were added in 100 µl volumes to the 

wells containing cells and growth media, for a total of 200 µl of media and eluate or PBS 

in each well, and allowed to incubate for 24 hours.    After incubation, the culture media 

was removed and replaced with serum free DMEM and an equal volume of Cell Titer-

Glo® Reagent Solution.  The cell solutions were transferred into opaque 96 well plates 

and the luminescence was read at 590 nm in a 96 well plate reader (Bio-Tek Instruments 

Inc; Ontario, Canada).  The results were reported as cells/cm
2
, which was determined 

from a standard curve generated by a known dilution of cells.  

Direct contact assay using NIH 3T3 fibroblasts was used to evaluate any potential 

cytotoxicity of the experimental crosslinked sponges as compared to control sponges. 

Cells were grown in DMEM, supplemented with 10% FBS, and 100 units/mL penicillin, 

0.1 mg/ml streptomycin, 0.25 µg/mL amphotericin B.  The cells were seeded at 3 x 10
4
 

cells/cm
2
 in 48 well TCP cell culture plates and allowed to attach for 24 hours to establish 

a monolayer.  A standard size hole punch (2” Reach Punchline; McGill, Inc.; Marengo, 

IL) was used to cut 6 mm in diameter samples of each sponge with an average weight of 

approximately 6 mg.  The samples (n = 3 for each sponge type) were soaked in 

approximately 2 ml of 70% ethanol for over one hour and then rinsed with sterile PBS, 

warmed to 37°C, four times.  The third  PBS rinse was extended to 30 minutes so that 

any remaining ethanol could be removed through diffusion.   The sponges were placed in 

direct contact with the cell monolayer.  Polytetrafluoroethylene (PTFE) disks, with a 6 

mm diameter and 4 mm thickness were utilized as controls.  After 24 hours of incubation 

at 37°C and 5% CO2, the culture media was removed and replaced with serum free 

DMEM and an equal volume of Cell Titer-Glo® Reagent solution.  The cell solutions 
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were transferred to an opaque 96 well plate and the luminescence was read at 590 nm on 

a plate reader.   The results were reported as cells/cm
2
  determined from a standard curve 

generated by a known number of cells and percent cell viability, with the cells exposed to 

the PTFE disks as 100% viable cells.  Live/Dead® staining was also utilized to 

qualitatively assess the cells’ viability (n = 2) and was conducted at 100 x magnification 

with a fluorescent light microscope (Nikon Eclipse ® TE300; Tokyo, Japan), a digital 

camera (Q Imaging Retiga Fast Color ® 1394; British Columbia, Canada) and imaging 

computer software (BioQuant OSTEO II ®; Nashville, TN).  Green and red fluorescence 

of cells, from the calcein AM and Eth D-1 reagent staining, indicated viable and non 

viable cells, respectively.    

Statistical Analysis 

 All quantitative data are expressed as mean ± standard deviation ( n ≥ 3 for all 

groups).  Two way analysis of variance (ANOVA) was used on data from degradation, 

antibiotic uptake, elution, and eluate cytoxicity testing to determine the differences 

between antibiotic or time and sponge independent variables and one way ANOVA was 

utilized on sponge cytotoxicity data.  If statistically significant differences were detected, 

then the Holm-Sidak post hoc analysis was used for multiple comparisons.  Analysis was 

performed using 2004 SigmaStat (San Jose, CA) and Microsoft Excel software 

(Microsoft, Inc, Redmond, WA) and p < 0.05 was considered statistically significant.   

 

3.3 Results  

 The results of the degradation study are shown in Figure 1, demonstrating the 

percent remaining of the mass of the original uncrosslinked and crosslinked chitosan 
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sponges.  Both types of crosslinked sponges exhibited statistically significant differences 

from the uncrosslinked chitosan control sponges at each time point (p < 0.0001), and 

from each other at week 3 (p = 0.014).  Statistically significant differences in degradation 

over time appeared at week 6 in the genipin crosslinked and PNIPAM/ genipin 

crosslinked sponges (p < 0.0001).  The uncrosslinked sponges demonstrated a fast initial 

degradation, with only an average of 4.49 ± 2.58 weight (wt) % remaining at week one 

and an average of 2.62 ± 1.17 wt% remaining at week six.  Both types of crosslinked 

sponges showed a slower degradation, with 78.8 ± 1.15 and 73.9 ± 1.27 wt% remaining 

at week one and 64.74 ± 6.50 and 60.96 ± 0.80 wt% remaining at week six in the genipin 

crosslinked and PNIPAM/ genipin crosslinked sponges, respectively.  

  

 

 

 

Figure 1.  The degradation of uncrosslinked and crosslinked chitosan sponges without 

antibiotics in 100 µg/ml lysozyme solution represented as mean ± standard deviation.      

n = 3 for all groups (** vs. all others, p < 0.0001; † vs. other timepoints in same sample, 

p < 0.0001)  
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Infrared spectra of uncrosslinked and crosslinked chitosan sponges are shown in 

Figure 2.  Significant absorbance was observed at 1739, 1576, 1472, 1210, 1052, 921, 

and 669 cm
-1

.  The peaks at 1576 and 1210 cm
-1

 were assigned to primary amine 

scissoring and C-N stretching in aliphatic amines, respectively.  The peak at 1052 cm
-1

 

corresponded to C-O stretching and the 669 cm
-1

 peak was assigned to N-H wag in 

primary and secondary amines.  The absorbance peaks at 1472, and 921 cm
-1

 did not 

correspond to peaks previously found to be associated with genipin crosslinking of 

chitosan.
27

   

 

 

 
Figure 2.  FTIR spectra of (a) uncrosslinked chitosan sponge (blue), (b) genipin 

crosslinked chitosan sponge (purple), and (c) PNIPAM/genipin crosslinked chitosan 

sponge (red)  (n = 2 for all groups)  
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The absorbance peaks at 1739 and 1576 cm
-1

 decreased slightly upon the addition 

of genipin to the chitosan sponges and decreased significantly from the addition of 

PNIPAM and genipin to the chitosan sponges.  Decreases in absorbance were also 

measured for the peak at 1052 cm
-1 

from the incorporation of PNIPAM and genipin, as 

well as genipin alone, into the uncrosslinked sponges, accompanied by an increase in 

absorbance at 669 cm
-1 

from crosslinking the chitosan sponges.  The absorbance peak at 

1210 cm
-1 

exhibited an increase in absorbance from the addition of PNIPAM and genipin 

into the chitosan sponges, and a decrease in absorbance from the addition of only genipin 

to the uncrosslinked chitosan sponges.   

The uptake of vancomycin, amikacin, and dual loaded vancomycin and amikacin 

solutions by the uncrosslinked and crosslinked chitosan sponges is reported as milliliters 

of antibiotic solution absorbed in one minute per gram of chitosan sponge (Figure 3).  

The uncrosslinked, genipin crosslinked, and PNIPAM/genipin crosslinked chitosan 

sponges absorbed an overall average of 2.78 ± 1.19, 5.44 ± 1.35, 5.74 ± 0.61 mL/min of 

antibiotic solution (non-normalized to weight), respectively.  Both types of crosslinked 

chitosan sponges exhibited significantly higher antibiotic uptake (mL/min/g) than the 

uncrosslinked chitosan sponges (p < 0.0001), but both the genipin crosslinked sponges 

and the PNIPAM / genipin crosslinked sponges were statistically similar.   There were no 

statistically significant differences between antibiotics absorbed in each sponge type 
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Figure 3.  The antibiotic uptake of vancomycin, amikacin, and dual loaded vancomycin 

and amikacin solutions by uncrosslinked and crosslinked chitosan sponges, normalized to 

sponge weight, represented as mean ± standard deviations ( n = 4 for all groups).  The 

uncrosslinked chitosan sponges absorbed significantly less antibiotic solution than both 

types of crosslinked sponges (*vs all other crosslinked sponges, p < 0.001). 

 

 

 

 

 The elution studies indicated that the all three types of sponges eluted the highest 

levels of vancomycin and amikacin at the 1 hour time point, after which the antibiotic 

release levels were reduced (Figures 4 and 5). The PNIPAM/genipin crosslinked chitosan 

sponges, either single loaded, dual loaded, or both, eluted significantly higher quantities 

of vancomycin than the uncrosslinked chitosan sponges through 96 hours (Figure 4).  The 

PNIPAM/ genipin crosslinked chitosan sponges also released significantly more 

vancomycin than the genipin crosslinked sponges from 24 hours to 96 hours of antibiotic 

release.  The dual loaded PNIPAM/ genipin crosslinked chitosan sponges also eluted 

significantly more amikacin than the uncrosslinked chitosan sponges from 24 hours 

through 96 hours (Figure 5).   
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Figure 4. The vancomycin elution from (A) 1 to 96 hours and (B) an expanded view of  

48 to 96 hours from uncrosslinked and crosslinked chitosan sponges, both single and dual 

loaded, represented as mean ± standard deviation (n = 3 for all groups). (* vs. each other, 

p ≤ 0.001; † vs. each other, p ≤ 0.003; ** vs. all others, p ≤ 0.001) 

0

4000

8000

12000

16000

20000

24000

0

200

400

600

800

1000

1200

1 3 6 24 48 72 96

V
a

n
co

m
y

ci
n

 R
el

e
a

se
d

 (
µ

g
 )

V
a

n
co

m
y

ci
n

 R
el

e
a

se
d

 (
µ

g
/m

l)

Time (hours)

Uncrosslinked single loaded

Uncrosslinked dual loaded

Genipin crosslinked single loaded

Genipin crosslinked dual loaded

PNIPAM/genipin crosslinked single loaded

PNIPAM/genipin crosslinked dual loaded

0

200

400

600

800

1000

1200

1400

0

10

20

30

40

50

60

70

48 72 96

V
a

n
co

m
y

ci
n

 R
el

e
a

se
d

 (
µ

g
)

V
a

n
co

m
y

ci
n

 R
el

e
a

se
d

 (
µ

g
/m

L
) 

Time (hours)

Uncrosslinked single loaded

Uncrosslinked dual loaded

Genipin crosslinked single loaded

Genipin crosslinked dual loaded

PNIPAM/ genipin crosslinked single loaded

PNIPAM/ genipin crosslinked dual loaded

* 

* 

* 
* 

* 

* 

** 

** 

** 

** 
** 

* 

p = 0.004 

† 

† 

p = 0.005 

† 
† 

† 
† 

* 
* * 

* 

† 

† 

p = 0.007 

** 

** 
* 

* * 

(A) 

(B) 



36 
 

 
 

 

 

  
Figure 5. The amikacin elution from (A) 1 to 96 hours and (B) an expanded view of 48 

to 96 hours from uncrosslinked and crosslinked chitosan sponges, both single and dual 

loaded, represented as mean ± standard deviation (n = 3 for all groups).  (* vs. each other, 

p ≤ 0.001; † vs. each other, p ≤ 0.003; ** vs. all others, p ≤ 0.001) 
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The PNIPAM/genipin crosslinked sponges exhibited a higher percent total release of 

single loaded vancomycin and amikacin that was loaded into the sponges than the 

uncrosslinked and genipin crosslinked sponges, but did not elute more dual loaded 

vancomycin and amikacin than the other two sponge types (Table 1). 

 

 

Table 1. Total % release of antibiotics from uncrosslinked and crosslinked sponges (n = 

3 for all groups) 

 

Uncrosslinked 

Genipin 

crosslinked 

PNIPAM/genipin 

crosslinked 

Vancomycin Single Loaded 74.64 ± 29.99 71.87 ± 10.87 100 ± 4.68 

Amikacin Single Loaded 87.24 ± 12.22 83.23 ± 4.93 89.78 ± 10.03 

Vancomycin and Amikacin 90.45 ± 33.69 94.05 ± 7.54 93.53 ± 1.60 

 

  

 

From activity testing, the vancomycin eluates from the uncrosslinked chitosan 

sponges, both single and dual loaded, demonstrated sufficient activity against S. aureus 

with no bacterial growth through 24 hours (Table 2).  Vancomycin eluates from genipin 

crosslinked sponges and PNIPAM/genipin crosslinked sponges were active against S. 

aureus through 48 and 72 hours, respectively.   Amikacin eluates from single loaded 

uncrosslinked sponges, dual loaded genipin crosslinked sponges, and both single and dual 

loaded PNIPAM/ genipin crosslinked sponges were active against P. aeruginosa through 

24 hours (Table 3).  Eluates from the dual loaded uncrosslinked sponges and single 

loaded genipin crosslinked chitosan sponges only inhibited bacterial growth through 6 

hours.   
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Table 2. Average activity of 1:10 dilutions of vancomycin eluates from uncrosslinked 

and crosslinked chitosan sponges against S. aureus (n = 3 for all groups) 

Staphylococcus aureus   Time (hours) 

Sponge type Loading 1 3 6 24 48 72 96 

Uncrosslinked chitosan Single - - - - + + + 

Uncrosslinked chitosan Dual - - - - + + + 

Genipin crosslinked chitosan Single - - - - - + + 

Genipin crosslinked chitosan Dual - - - - - + + 

PNIPAM/genipin crosslinked chitosan  Single - - - - - - + 

PNIPAM/genipin crosslinked chitosan Dual - - - - - - + 
(-) represents no bacterial growth detected (+) bacterial growth detected  

 

 

 

 

Table 3. Average activity of 1:10 dilutions of amikacin eluates from uncrosslinked and 

crosslinked chitosan sponges against P. aeruginosa (n = 3 for all groups) 

Pseudomonas aeruginosa   Time (hours) 

Sponge type Loading 1 3 6 24 48 72 96 

Uncrosslinked chitosan Single - - - - + + + 

Uncrosslinked chitosan Dual - - - + + + + 

Genipin crosslinked chitosan Single - - - + + + + 

Genipin crosslinked chitosan Dual - - - - + + + 

PNIPAM/ genipin crosslinked chitosan Single - - - - + + + 

PNIPAM/ genipin crosslinked chitosan Dual - - - - + + + 

(-) represents no bacterial growth detected (+) bacterial growth detected  
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The effects of the vancomycin and amikacin eluates, both single and dual loaded, 

from the uncrosslinked and crosslinked chitosan sponges on 3T3 fibroblasts after 24 

hours of exposure are shown in Figure 6.  All three types of antibiotic eluates, 

vancomycin single loaded, amikacin single loaded, and vancomycin and amikacin dual 

loaded, exhibited similar effects on the number of cells as compared to the PBS control 

from 3 to 96 hours.  In the single loaded vancomycin and amikacin eluates from the 

PNIPAM/ genipin crosslinked sponges, there was even a consistent growth of cells 

beyond the PBS control and the eluates from the uncrosslinked and genipin crosslinked 

chitosan sponges.  At 1 hour, the highest antibiotic elution concentration, there were 

significantly fewer cells, as compared to the PBS control, from all three types of 

antibiotic eluates released from all three sponges.  This lower cell number corresponds to 

higher levels of antibiotics present in the first time point, which have been reported to be 

cytotoxic at high levels.
33
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Figure 6.  Number of viable cells determined with Cell-Titer Glo® assay after 24 hours 

of exposure to (A) vancomyin eluates, (B) amikacin eluates and (C) dual loaded 

vancomycin and amikacin eluates from uncrosslinked and crosslinked chitosan sponges 

represented as mean ± standard deviation. n = 3 for all groups (** vs. all others, p ≤ 

0.001; *, p≤ 0.001; †, p ≤ 0.003) 
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Figure 6.  Number of viable cells determined with Cell-Titer Glo® assay after 24 hours 

of exposure to (A) vancomyin eluates, (B) amikacin eluates, and (C) dual loaded 

vancomycin and amikacin eluates from uncrosslinked and crosslinked chitosan sponges 

represented as mean ± standard deviation. n = 3 for all groups (** vs. all others, p ≤ 

0.001; *, p≤ 0.001; †, p ≤ 0.003) 

 

 

 

 The effect on cell viability after 24 hours of direct contact to uncrosslinked and 

crosslinked chitosan sponges, with no antibiotics loaded, is provided in Table 4.   All 

three types of sponges exhibited higher number of cells than the control biomaterial, 

PTFE, with significant differences between the uncrosslinked and PNIPAM/genipin 

crosslinked sponges and PTFE (p< 0.0001).   Significant differences were also seen 

between the uncrosslinked and genipin crosslinked chitosan sponge (p = 0.00053).   
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Table 4. Cell viability, determined by Cell-Titer Glo® assay, after 24 hours of exposure 

to uncrosslinked and crosslinked chitosan sponges, and PTFE disks 

Sample Viable cells (cells/cm
2
) Cell Viability (%) 

Uncrosslinked†   107585 ± 3474 140.05 ±4.52 

Genipin crosslinked†   88273 ± 7438 114.91 ±9.68 

PNIPAM/genipin crosslinked  99335 ± 15022 129.31 ± 19.56 

PTFE control* 76816 ± 7964 100 ± 10.37 

Data represented as mean ± standard deviation (n = 3 for all groups), 
a
 Cells exposed to 

PTFE corresponded to 100  cell viability (†, p = 0.00053; * vs. all others except genipin 

crosslinked, p < 0.0001) 

 

 

 

Live/Dead® staining also revealed that the cells exposed to the uncrosslinked and 

crosslinked chitosan sponges exhibited similar cell shape and viability as the cells 

exposed to the PTFE disks (Figure 7).  The uncrosslinked and crosslinked chitosan 

sponges exhibited low cytotoxicity, as indicated by the few number of dead cells present 

in all samples.  
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Figure 7. Representative fluorescence overlay images of 3T3 fibroblasts adjacent to test 

samples with Live/Dead® stain after 24 hours of exposure to (A) uncrosslinked chitosan 

sponge, (B) genipin crosslinked chitosan sponge, (C) PNIPAM/ genipin crosslinked 

chitosan sponge, and (D) PTFE disk (known biomaterial control); green and red represent 

viable and non viable cells, respectively. (100x magnification) 

 

 

 

3.4 Discussion 

The treatment of musculoskeletal infections is becoming complicated by the 

increased emergence of antibiotic-resistant bacteria and increases the need for local drug 

delivery over systemic delivery.  The current local delivery systems have their 

drawbacks, including burst release, possible biofilm formation, need for surgical removal, 
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and the formation of sterile draining sinuses.
12, 14, 15, 20

  This in vitro study proposes the 

creation of a local drug delivery system with tailorable elution and degradation 

properties, by crosslinking chitosan sponges either with genipin alone, or as a semi- IPN 

with genipin crosslinking and PNIPAM incorporation.   These crosslinked sponge 

delivery systems need to be degradable, able to absorb and elute biologically active 

antibiotics , and exhibit low cytotoxicity.   

In order to determine sponge degradation, the in vitro degradation properties were 

investigated.  The finding of this study was that both genipin crosslinked and 

PNIPAM/genipin crosslinked chitosan sponges degrade slower with 64.74 ± 6.50 and 

60.96 ± 0.80 wt% remaining respectively, in comparison to 2.62 ± 1.17 wt% of the 

uncrosslinked chitosan sponges remaining at week six.  No previous reported studies 

have evaluated the in vitro degradation properties of genipin crosslinked chitosan 

sponges.  However, these results follow the same trend reported in an in vivo study of 

uncrosslinked and glutaraldehyde or genipin crosslinked chitosan microspheres.
34

  Mi 

and researchers found that, after intramuscular injection of chitosan microspheres into the 

skeletal muscle of Wistar rats, the uncrosslinked and glutaraldehyde crosslinked chitosan 

microspheres were severely degraded at 20 weeks post-operation, while the genipin 

crosslinked microspheres were significantly less degraded.
34

  While the slower 

degradation in the crosslinked sponges was expected, the degradation of the 

uncrosslinked chitosan sponges is much higher than values reported for chitosan films 

and sponges found in previous reports.
32, 35, 36

   Slow or rapid sponge degradation can 

impact active agent elution and the response of pathogenic bacteria within a wound.
37

  

Tomihata and researchers reported films of 1 wt% chitosan (73% DDA) in 1% acetic acid 
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to have approximately 90 wt% remaining after 50 hours in 4 mg/ml lysozyme solution.
32

  

Another study found films made from 1.5 wt% chitosan in 1% lactic acid and 1% acetic 

acid to have approximately 50 wt% and 25 wt% remaining after 100 hours in 100 µg/ml 

lysozyme solution. 
35

 Smaller lyophilized 1 wt% chitosan sponges (5 x 10 mm) had 18.08 

± 4.28 % weight loss after 24 hours in 8 mg/ml lysozyme solution.
36

  

In order to determine that crosslinking of the chitosan sponges occurred, FTIR 

spectra were obtained from all three sponge types.  The increase in absorbance of the N-

H wag peak at 669 cm
-1 

from primary and secondary amines in the spectra of the 

crosslinked sponges, as compared to the uncrosslinked, could illustrate an increase in 

secondary amine groups in the amide linkages during crosslinking.   As seen in 

previously reported research, the crosslinking reaction is demonstrated by the decrease in 

absorbance of the primary amine peak at 1576 cm
-1

 and the C-O stretching peak at 1052 

cm
-1

.
27

  When crosslinking occurs, the chitosan loses primary amines and the ester group 

in genipin is converted to amide linkages.
27, 38

  Oxygen radical-induced polymerization of 

genipin could explain the decrease in absorbance of the C-N stretching peak at 1210 cm
-1 

with the addition of genipin to the chitosan sponge.  The green/blue color development as 

crosslinking occurred could also be an indicator of the genipin polymerization, or simply 

the reaction of genipin with primary amines.
27, 38

 

Antibiotic uptake and elution are two of the most important properties for a local 

drug delivery device and have been investigated in many chitosan delivery systems, 

including sponges
20

, microspheres
23, 39

, hydrogels
31

, and films
35

.    It has been previously 

reported that point of care antibiotic loading, loading of antibiotics during surgery or 

treatment, of local drug delivery systems provides the advantage of  the physician’s 
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ability to select an antibiotic  based on the patient’s needs.
40

  The similar values in 

antibiotic uptake between both crosslinked sponges suggests that the increase in 

antibiotic uptake, compared to the uptake in the uncrosslinked sponges, is due more to the 

genipin crosslinking than to the presence of PNIPAM.  Noel et al previously reported 

vancomycin and amikacin uptake to be approximately 7 mL/min in uncrosslinked 

chitosan sponges constructed with 25 mL of 1% (w/v) chitosan solution; however, after 

the normalization of uptake to approximate sponge weight, the uptake values of both 

antibiotics in the uncrosslinked sponges are similar to those reported in this research.
20

  

The increase in antibiotic uptake in both of the crosslinked chitosan sponges 

corresponds to an overall increase in antibiotic elution as well.  The results of this elution 

study differ from previous research with antibiotic or albumin pre-loaded genipin 

crosslinked chitosan microspheres; as crosslinking increased the overall antibiotic or 

protein release decreased.
23, 39

  However, this difference is expected because the 

antibiotic and protein were both pre-loaded during construction of the microspheres, as 

opposed to point of care loading after the microspheres were created. In another reported 

study, the overall drug release increased as glutaraldehyde crosslinking increased in full-

IPN hydrogels of bis(acrylamide) crosslinked PNIPAM and glutaraldehyde crosslinked 

chitosan with point of care loading.
31

  The concentration of vancomycin released after 1 

hour from the uncrosslinked, genipin crosslinked, and PNIPAM/genipin crosslinked 

chitosan sponges in this study is approximately 75, 40.8, and 16.2%  lower than 

vancomycin released after 1 hour, 1007.4 ± 162.8 µg/ml, from uncrosslinked sponges 

previously reported in the Noel study.
20

  The same study reported the uncrosslinked 

chitosan sponges released 881.5 ± 15.4 µg/ml of amikacin after 1 hour, which is 
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approximately 52, 8, and 18% higher than the amikacin released from the uncrosslinked, 

genipin crosslinked, and PNIPAM/genipin crosslinked sponges in this study, 

respectively.    However, if the previously reported elution values from the Noel study are 

normalized to approximate sponge weight, there should be no significant differences 

from this research.
20

   

The biologic activity of the eluted vancomycin and amikacin was verified by 

measuring the  effective activity against specific strains of S. aureus and P. aeruginosa, 

with MICs of 0.5 – 1 µg/ml and 4 µg/ml, respectively.
20

  The single loaded vancomycin 

eluates from the uncrosslinked, genipin crosslinked, and PNIPAM/ genipin crosslinked 

chitosan sponges inhibited growth of S. aureus through 24, 48, and 72 hours, 

respectively.  Single loaded amikacin eluates from the uncrosslinked, genipin 

crosslinked, and PNIPAM/ genipin crosslinked chitosan sponges inhibited growth of  P. 

aeruginosa through 24, 6, and 24 hours, respectively.  Noel et al previously reported that 

vancomycin and amikacin eluates from uncrosslinked chitosan sponges inhibited S. 

aureus and P. aeruginosa through 72 and 48 hours, respectively.
20

  However, the longer 

inhibition times correspond to higher levels of antibiotics released from larger sponges, 

and after normalization to sponge weight, the inhibition times would be similar to the 

inhibition found in this study, based on the MIC levels. 
20

  As previously mentioned, the 

activity assay was conducted with a 1:10 dilution of the antibiotic eluates; this dilution 

factor accounted for bacterial growth when original eluates were above MIC levels.   

The cytotoxicity testing of the sponges and the antibiotic eluates was investigated 

in order to assess the biocompatibility of the sponges, the antibiotics, and any potential 

leachable substances from the sponges.    The direct contact cytotoxicity test with the 
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sponges resulted in viable cells and low cytotoxicity when exposed to all three sponge 

types for 24 hours.  Cell viability percentages for L929 fibroblasts exposed to genipin 

crosslinked chitosan and silk fibroin sponges for 24 hours were previously reported to be 

79.1 ± 13.3, 53.5 ± 21.1, and 69.5 ± 29.7% cell viability for sponges with 80/20, 50/50, 

and 20/80 chitosan to silk ratios, respectively.
28

  However, the reported cell viability 

percentages were calculated with cells grown directly on tissue culture plastic as the 

control 100% cell viability.
28

  When cells exposed to PTFE controls represent 100% cell 

viability, the previously reported cell viability percentages are similar to the cell viability 

percentages for the uncrosslinked, genipin crosslinked, and PNIPAM/genipin crosslinked 

sponges in this study.
28

   The increased number of viable cells exposed to the 

uncrosslinked and crosslinked sponges compared to the PTFE control could be caused by 

the increased structural porosity in the sponges versus the solid PTFE disks.  The 

cytotoxicity test with the antibiotic eluted from the sponges also resulted in viable cells 

and low cytoxicity.  The PNIPAM/genipin crosslinked chitosan sponge eluates resulted in 

a large number of viable cells, indicating that the PNIPAM/genipin crosslinked chitosan 

sponges harbor a favorable environment for cell proliferation with these study conditions.  

 

3.5 Summary and Conclusions   

This in vitro study demonstrates that crosslinking chitosan sponges with genipin 

or genipin and PNIPAM creates novel, point of care antibiotic loaded, crosslinked 

sponges which exhibit potential for use as a degradable adjunctive therapy for 

musculoskeletal infection control.  Crosslinking chitosan sponges with genipin and 

genipin crosslinking in the presence of PNIPAM resulted in an increase in vancomycin 
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and amikacin uptake, release of antibiotics for improved bactericidal efficacy against 

known pathogens, and a decrease in degradation, as compared to uncrosslinked chitosan 

sponges.  The crosslinking of the chitosan sponge appears beneficial when a slower 

degradation or an increased release of vancomycin or amikacin is desired, and the 

addition of PNIPAM to genipin crosslinked chitosan sponges even further increases, and 

sustains, the release of vancomycin or amikacin.  The novel crosslinked chitosan sponges 

and their antibiotic eluates elicited minimal cytotoxic response from cells, similar to other 

biomaterials.  Limitations of this study are, 1) the short duration of the cytotoxicity study, 

2) the biologic activity assays were only conducted against planktonic bacteria, not 

adherent bacteria typically associated with biofilms, and 3) the translation of in vitro 

research results to in vivo efficacy.  For an accurate evaluation of clinical performance, in 

vivo studies with the crosslinked chitosan sponges should be pursued in the future.  In 

order to fully characterize the properties of the crosslinked sponge delivery systems, 

further investigations into the swelling and more extended degradation and elution 

studies of the sponges are needed. 
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CHAPTER 4: 

CONCLUSIONS 

 In this preliminary in vitro study, novel genipin crosslinked sponges and sponges 

made from a semi-interpenetrating network of genipin crosslinked chitosan and poly(n-

isopropylacrylamide) were developed for potential use as nontoxic, degradable, local 

drug delivery systems to minimize or treat musculoskeletal infections.  Both crosslinked 

sponges demonstrated decreased degradation, when compared to the uncrosslinked 

chitosan sponges.  The genipin crosslinked and PNIPAM/genipin crosslinked sponges 

absorbed and released more vancomycin and amikacin than the uncrosslinked sponges.  

The incorporation of PNIPAM into a genipin crosslinked sponge also prolonged the 

release of both antibiotics and the antibiotics’ corresponding specific biologic activity.  

The antibiotic eluates from all of the sponges exhibited effective biologic activity against 

the known musculoskeletal pathogens, Staphylococcus aureus and Pseudomonas 

aeruginosa, and, along with the sponges, did not induce any short term cytotoxic effects.    

 The preliminary in vitro data from this study demonstrates that the incorporation 

of the nontoxic crosslinker genipin, either alone or with the thermo-responsive polymer 

PNIPAM, into chitosan sponges creates tailorable drug delivery systems that may show 

future promise for in vivo studies and translation to clinical evaluations.   The ability of a 

physician to select a type of sponge, antibiotic, and antibiotic concentration based on a 

patient’s needs could potentially result in faster and more efficacious treatment of 

infections, and even a possible reduction of antibiotic resistance development in the 

patient.  While additional in vivo and in vitro studies are needed in order to assess the true 

effectiveness and long term biocompatibility of these crosslinked sponges, this 
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preliminary study has demonstrated that crosslinking chitosan sponges, with genipin and 

PNIPAM and genipin, is beneficial when a more sustained degradation and antibiotic 

elution time is desired.   
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CHAPTER 5: 

FUTURE WORK 

 In order to fully evaluate the properties of the crosslinked sponges, additional in 

vitro materials characterization tests are needed, including swelling measurements, more 

extended degradation studies with non loaded and antibiotic loaded sponges, and more 

extended elution studies, with additional antibiotics.  The bioadhesive strength of the 

sponges when loaded with PBS and antibiotics also needs to be assessed, with a greater 

number of samples. Long term cytotoxicity and cell proliferation tests would provide 

beneficial information about the impact of the sponges on cells before additional in vivo 

tests are conducted.  Specifically, an in vivo degradation study in rats would provide a 

more accurate degradation profile of the sponges and local tissue response.  In addition to 

an in vivo degradation study, a proof of principle infected mouse catheter animal model 

would demonstrate the true efficacy of sponges as a local antibiotic delivery system 

preventing and treating bacterial infections.  
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APPENDIX A: 

Crosslinking Chitosan Sponges with Dimethyl 3, 3 dithio bis propionimidate 

(DTBP) 

Introduction 

 Chitosan hydrogels have also been successfully crosslinked through disulfide 

bridges with dimethyl 3, 3 dithio bis propionimidate (DTBP), but the hydrogels were not 

in a lyophilized sponge form.
62 

 Crosslinked chitosan hydrogel scaffolds prepared with 

DTBP exhibited similar properties to glutaraldehyde crosslinked chitosan scaffolds, but 

showed greater strength and less toxicity.
62

 Therefore, DTBP crosslinked chitosan 

sponges were created and evaluated through a vancomycin elution screening study.   

Materials and Methods 

 DTBP and Tris were purchased from Sigma Aldrich (St. Louis, MO) and Fisher 

Scientific (Pittsburgh, PA).  A 5 mM DTBP solution was prepared by adding 0.03865 

grams of DTBP to 25 mL of 0.2 M Tris solution, at a pH of 9, and mixing.  A lyophilized 

and neutralized 1 % (w/v) chitosan sponge, with 71% DDA, was submerged into the 

DTBP solution and allowed to crosslink at ambient temperature for approximately 25 

hours.  The sponge was then rinsed multiple times with deionized water, until a neutral 

pH was reached.   The sponges were then placed in the -80°C freezer for one hour and 

then lyophilized for 24 hours.   

The DTBP crosslinked sponge, with a weight of 0.1739 grams, was submerged 

into ten milliliters of a 5 mg/ml vancomycin solution for one minute.  Immediately after 

vancomycin loading, the sponge was submerged in 20 mL of sterile 1 x PBS and was 

incubated at 37°C for the duration of the study.  One milliliter aliquots were taken at 1, 2, 

25, and 72 hours, with complete PBS refreshment at each time point.  The elution 
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samples were immediately frozen after acquisition.  Fluorescence polarization 

immunoassay (TDxFLx) with a vancomycin specific reagent kit was used to quantify the 

vancomycin released from the sponge.  

 

Results and Discussion 

 The 5 mM DTBP crosslinked chitosan sponge was smaller in size, with a 50% 

smaller diameter, than the uncrosslinked, genipin crosslinked, and PNIPAM/genipin 

crosslinked chitosan sponges and appeared less porous.  A photograph of the crosslinked 

sponge was taken with a digital camera, as seen in Figure 1.  The DTBP crosslinked 

sponge absorbed only 0.5 mL of the vancomycin solution, which was 82.0, 90.8, and 

91.3% less than average volume of antibiotic solution absorbed by the uncrosslinked, 

genipin crosslinked, and PNIPAM/genipin crosslinked chitosan, respectively.   

 

 

 

Fig. 1. Photograph of 5 mM DTBP crosslinked chitosan sponge 
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The low amount of vancomycin released from the DTBP crosslinked chitosan 

sponge can be seen in Figure 2.  However, this low elution was expected due to the low 

antibiotic uptake.  Because of the reduced apparent porosity, vancomycin uptake and 

elution, the DTBP crosslinked chitosan sponges did not appear to be effective for a local 

drug delivery system and were not studied more extensively.  While the DTBP 

crosslinked sponge was not absorbent enough to effectively release antibiotics, it might 

demonstrate greater potential as a tissue engineering scaffold because of better strength 

and handling properties, as compared to the uncrosslinked and genipin crosslinked 

chitosan sponges.   

 

 

 

Fig. 2. The vancomycin elution from a DTBP crosslinked chitosan sponge (n = 1) 
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APPENIDIX B: 

Bioadhesion Testing 

Introduction 

Bioadhesion is critical in musculoskeletal infection control because the material 

needs to be able to stay in place in order to deliver the drugs to the target site.  In 

previous research on chitosan sponges, some of the sponges studied in an animal study 

did not adhere to the local tissues of goats, reducing the effectiveness of the local drug 

delivery.
60

 Measuring the bioadhesive strength of the sponges in vitro could provide a 

method of comparison between the uncrosslinked and crosslinked chitosan sponges  

before in vivo testing.   

Experimental methods of analyzing and measuring bioadhesion vary greatly and 

no standard test methods have been developed.
92

 Thus, it can be difficult to compare data 

from different experiments.  Various types of mechanical tests have been developed for 

testing bioadhesion, both in vivo and in vitro.  One research group developed a 

customized piece of equipment for bioadhesion tensile testing, where mouse skin was 

placed on either side of the hydrogel and bonding strength of the hydrogels was reported 

as the maximum detachment force.
93

  While studying a fucoidan-chitosan hydrogel for 

burn healing applications, researchers used a Texture Analyzer and chicken back skin and 

calculated the work of adhesion as the area under the curve of a force distance plot.
94

    

Tensile and shear measurements are the most common mechanical tests utilized for 

bioadhesion testing.
92

  In this preliminary study, a standard tensile testing method was 

modified for bioadhesive strength measurements of the uncrosslinked and crosslinked 

chitosan sponges.     
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Materials and Methods 

 USDA grade boneless beef chuck steak was purchased from a local grocery store, 

Kroger, and was allowed to equilibrate to ambient laboratory temperature.  The steak was 

cut into pieces to fit on a stage fixture, with a 7.62 cm diameter, attached to a Instron 

33R, model 4465, Universal Testing Machine (Norwood, MA).  The steak was attached 

to the stage with Scotch® double sided tape.  A washer style disk made of ultra high 

molecular weight polyethylene (UHMWPE), with a full diameter, a cut out inner 

diameter, and thickness of 7.62, 3.06, 0.635 cm, respectively, was centered and fixed 

onto the top of the steak, held in place temporarily with standard office binder clips 

(Figure 3).  The UHMWPE washer contained one rough side for attachment to the meat, 

and one smooth side so as not to interfere with the adhesive strength of the sponges. The 

binder clips were removed from the meat and UHMWPE washer approximately one 

minute before testing and were replaced between each sponge bioadhesion test.  The 

UHMWPE washer was clamped onto the steak until the meat was raised just slightly 

higher than the disk itself, as seen in Figure 3, so that the sponges would only attach to 

the steak. In order to keep the meat from drying, the meat was sprayed with deionized 

water, which was allowed to absorb for approximately 5-10 minutes, between 

bioadhesion testing of each sponge. A similar fresh piece of chuck steak was cut and 

fixed to the testing machine every time a sponge group was changed. 
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Fig. 3. Bioadhesion testing preparation by temporarily clamping boneless chuck steak 

and a UHMWPE washer with binder clips, in order to keep the two materials in place and 

to raise the meat above the washer.  

 

 

 

 

Three replications of uncrosslinked, genipin crosslinked, and PNIPAM/genipin 

crosslinked chitosan sponges were submerged in 10 mL of deionized water for 1 minute 

and centered and attached to the top stage of the universal testing machine with Scotch® 

double sided tape (Figure 4). Using a 500 N load cell automated by Instron Bluehill 

software, a compression preload of approximately 15 N was applied to each sponge.  

Immediately after applying the preload force, the sponge and the meat were pulled apart 

in tension at a rate of 50 mm/min.  Data was recorded every 30 milliseconds and was 

provided in maximum force (N) values, which was divided by the surface area of the 

exposed steak to determine adhesive strength (kPa).  All quantitative data are expressed 

as mean ± standard deviation (n ≥ 3 for all groups).  Statistical analysis of the 
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bioadhesion data was conducted using one way ANOVA and Holm-Sidak post hoc 

analysis. Analysis was performed using 2007 Microsoft Excel software (Microsoft, Inc, 

Redmond, WA) and a p value of < 0.05 was considered statistically significant.   

 

 

 

Fig. 4.  Bioadhesion testing fixtures with a genipin crosslinked chitosan sponge attached 

to the top cylindrical fixture of the universal testing machine 

 

 

 

 

Results and Discussion 

 

 The bioadhesive strength in kPa of each type of chitosan sponge is provided in 

Figure 5.  The maximum force required for the uncrosslinked, genipin crosslinked, and 

PNIPAM/genipin crosslinked chitosan sponges to detach was 11.17 ± 3.18, 7.33 ± 1.46, 

and 8.44 ± 0.99 N, respectively. There was a significant difference between the 

uncrosslinked and genipin crosslinked chitosan sponges (p = 0.001).  Crosslinking the 

chitosan sponge appears to slightly reduce the bioadhesive strength, not increase the 
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bioadhesion as originally hypothesized.  The maximum detachment force of the all three 

sponge types are higher than peak detachment force reported for 2 % (w/v) chitosan films 

made with either 2 % (w/v) acetic or 1% (w/v) lactic acid, 0.47 ± 0.03 and 0.71 ± 0.02 N, 

respectively.
95

  However, the maximum detachment forces of the uncrosslinked and 

crosslinked chitosan sponges found in this study were lower than the average peak 

detachment force value, 46.93 N, found for 1% chitosan sponges (85% DDA) made with  

2% acetic acid.
96

  The bioadhesion testing methods used to obtain the maximum 

detachment force values in the two previous studies are similar to the modified tensile 

test presented here, but the two previous studies utilized a texture analyzer and chicken 

pouch tissue or rabbit thigh muscle.
95, 96

    

While in vitro bioadhesion tests provide useful material characterization 

properties, the wide variety of testing methods and types of data seen in previous research 

makes direct comparisons between studies difficult.  However, modified in vitro 

bioadhesion tests do provide a faster and easier method of comparison between different 

materials, as compared to in vivo studies.  Limitations of this modified tensile test for 

bioadhesion include 1) the test was conducted with a large load cell and needs to be ran 

with a smaller load cell for more accurate results, 2) to better simulate physiological 

conditions, the sponges need to be loaded with PBS, instead of deionized water, and 3) 

the bioadhesion of the sponges should be tested on different types of tissues. 

Additionally, while in vitro bioadhesion tests provide useful material characterization 

properties, the most accurate bioadhesion test is an in vivo animal model.  In vitro results 

can be difficult to translate to in vivo studies and bioadhesion characteristics in vivo, 

especially in a musculoskeletal wound, are different from in vitro bioadhesion properties.   
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Fig. 5. Adhesive strength (kPa) of uncrosslinked, genipin crosslinked, and PNIPAM/ 

genipin crosslinked chitosan sponges to USDA grade boneless chuck steak, represented 

as mean ± standard deviation with n = 3 for all groups (*, p = 0.001) 
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APPENDIX C: 

Photographs of Uncrosslinked and Crosslinked Chitosan Sponges 

 Photographs of the uncrosslinked, genipin crosslinked, and PNIPAM/genipin 

crosslinked were acquired with a Kodak Easy Share DX4530 digital camera. Neutralized 

uncrosslinked, genipin crosslinked, and PNIPAM/ genipin crosslinked chitosan sponges 

can be seen in Figure 6.  The genipin crosslinked chitosan sponge exhibits a green color, 

due to the crosslinking reaction.  The PNIPAM/ genipin crosslinked chitosan sponge 

exhibits a slightly bluer color than the genipin crosslinked chitosan sponge.   

 

 

 

Fig. 6. Photographs of neutralized (A) uncrosslinked chitosan sponge (B) genipin 

crosslinked chitosan sponge and (C) PNIPAM/ genipin crosslinked chitosan sponge 

 

(A) (B) 

(C) 
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APPENDIX D: 

Water Uptake in the Uncrosslinked and Crosslinked Chitosan Sponges 

 In addition to antibiotic solution uptake studies, the uptake of deionized water into 

the uncrosslinked and crosslinked sponges was investigated to determine if antibiotics are 

absorbed differently than water.  The same procedure for uptake was followed as outlined 

in the materials and methods section of Chapter 3, except 10 mL of deionized water was 

used in place of 10 mL of 5 mg/ml antibiotic solution.  The volume of water absorbed 

into the sponges and the volume of water absorbed, normalized to the weights of the 

sponges, is provided in Table 1.  Significant differences were seen between the 

uncrosslinked and genipin crosslinked sponges (p = 0.0015) and between the 

uncrosslinked and PNIPAM/genipin crosslinked sponges (p = 0.0017).   

 

 

Table 1. Deionized (DI) water uptake in uncrosslinked and crosslinked chitosan sponges 

(n = 3 for each group) 

Sponge  

DI Water Uptake 

(mL) 

DI Water Uptake (mL/ g of 

sponge) 

Uncrosslinked 
*, † 

1.63 ± 0.39
 

7.86 ± 2.51
 

Genipin crosslinked
* 

4.83 ±  1.27
 

20.52 ± 5.80
 

PNIPAM/genipin 

crosslinked
† 

5.35 ±  0.07
 

29.41 ± 1.00
 

Data represented as mean ± standard deviation (*, p = 0.0015; †, p = 0.0017)  

 

 

 The volume of water absorbed by the sponge normalized to sponge weight was 

lower in the uncrosslinked and genipin crosslinked chitosan sponges than the volume of 

antibiotic solution absorbed (see Figure 4 in Chapter 3).  However, the PNIPAM/genipin 



80 
 

crosslinked sponges absorbed more water (mL/g) than antibiotic solution (mL/g).  The 

introduction of PNIPAM into the genipin crosslinked sponges might make the sponge 

more absorbent overall because of the increase of interpenetrating polymer chains, but 

could also be causing steric hindrance issues with the antibiotics.  
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APPENDIX E: 

 Degradation of Uncrosslinked Chitosan Sponges Neutralized in 1 M NaOH 

 The high degradation of the uncrosslinked chitosan sponges reported in Chapter 3, 

significantly higher than values previously reported, raised concerns about residual 

acidity in the sponges.  In order to evaluate the neutralization process and the resulting 

degradation, uncrosslinked chitosan sponges were constructed by the same procedure as 

noted in Chapter 3 and neutralized in 1 M, instead of 0.2 M, NaOH.  The sponges were 

submerged in the NaOH solution for approximately two to three minutes, until bubbles 

were no longer emerging from the sponges.  The sponges were then submerged in 

approximately 750 mL of distilled water and stirred constantly on a stir plate.  After ten 

minutes, the pH of the water was tested using an Accumet basic AB15 pH meter and 

electrode and the distilled water was refreshed.  The sponges were allowed to stir in the 

distilled water for approximately 30 more minutes, the water was refreshed again and the 

same procedure was followed two more times.  Both the pH of the water and the pH of 

the sponges were tested using a pH electrode and pH strips.  The sponges were returned 

to the -80°C freezer for one hour, and then re-lyophilized for 48 hours.   

 The sponges were cut into pieces, with three replicates for each time point, and 

tested for degradation following the same protocol outlined in Chapter 3.  Because the 

originally tested uncrosslinked sponges degraded so quickly, degradation samples were 

analyzed after 1, 3, 5, 7, and 14 days, instead of after 1, 2, 3, and 6 weeks.   

 The results from degradation study on the neutral uncrosslinked chitosan sponges 

are provided in Figure 7.  The percent remaining of the sponges neutralized in 1 M NaOH 

is significantly higher than the percent remaining of the sponges neutralized in 0.2 M 
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NaOH seen in Chapter 2.  After one week in the lysozyme solution, 92.24 ± 0.66% of the 

original 1 M NaOH neutralized sponges remained, while only 4.49 ± 2.28% of the 0.2 M 

NaOH chitosan sponges remained.  However, there were no significant differences 

between the degradation times of the 1 M NaOH neutralized sponges (p = 0.99).   

 

 

 

Fig. 7. The degradation of unsterilized and uncrosslinked chitosan sponges, neutralized 1 

M NaOH, without antibiotics in 100 µg/ml lysozyme solution represented as mean ± 

standard deviation.  n = 3 for all groups (p = 0.99) 

 

 

These degradation results indicate there is a difference in the acidity of the 

sponges, when neutralized in different concentrations of NaOH.  While sterilization 

might also be a factor in the differences in degradation, sterilization should theoretically 
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crosslinking induced through the gamma irradiation process.  Although direct 

comparisons with the crosslinked chitosan sponges cannot be made because of 

sterilization differences and a shorter study time, the degradation trend of completely 

neutralized uncrosslinked chitosan sponges can be seen through this preliminary study.  

For comparison with the crosslinked sponges, another in vitro degradation study should 

be conducted with sterilized, 1 M NaOH neutralized, uncrosslinked chitosan sponges for 

six weeks.  

 

 

 

 

 


	Design and Preliminary Investigation of Crosslinked Chitosan Sponges for Tailorable Drug Delivery and Infection Control
	Recommended Citation

	tmp.1636142749.pdf.BgRvI

