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Abstract 

Visceral adipose tissue (VAT) physiology is negatively affected by chronic 

glucocorticoid (GC) usage, and is exacerbated by a “Western” diet. However, the impact of 𝜔-3 

supplementation into a “Western” diet, during chronic GC usage, remains unknown. Therefore, 

we determined the impact of both diets (“Western” vs. 𝜔-3 supplemented) in conjunction with 

chronic GCs, on VAT physiology. Sixty-four male C57BL/6 mice (n=8-16/group) were 

subjected to 4-weeks of dietary intervention (high fat lard [HFL] vs. high fat fish oil [HFO], with 

or without prednisolone [40mg/kg/m2] daily). We hypothesized that 𝜔-3 supplementation would 

protect VAT physiology from chronic GC-induced negative effects. Overall, both HFO groups 

gained less body weight, displayed less VAT and smaller adipocytes, retained a greater 

percentage of M2-polarized macrophages, and exhibited beneficial alterations in gene expression 

as compared to both HFL groups. Our data indicate that VAT physiology is protected by an 

increase in dietary 𝜔-3s, irrespective of GC usage. 
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Chapter 1 

Introduction 

Background 

Metabolic syndrome (MS) is a clustering of metabolic irregularities, and considered by 

some to develop directly from complications of obesity.1,2 It is generally considered to have 3 

etiologic categories: 1) obesity and disorders of adipose tissue, 2) insulin resistance, and 3) 

various independent molecular factors (ie; hepatic, immunologic, vascular).2 However, as the 

development of MS is a complex process, other known contributing factors also include age, 

inflammatory status, and hormonal changes.2 In spite of all the contributing factors that lead to 

MS, abdominal obesity and abnormal body fat distribution are central.2  

There is sufficient evidence that obesity independently contributes to metabolic 

irregularities (ie; hypertension, hypercholesterolemia, hyperlipidemia, hyperglycemia) that drive 

the MS phenotype.2 Recently, statistics from the Centers of Disease Control show that roughly 

70% of adults age 20 years and over were classified as overweight (includes obesity) in 2013-

2014.3 Additionally, ~20% of adolescents age 12-19, ~17% of children age 6-11, and ~9% of 

children age 2-5 were classified as obese in 2013-2014.3 Unfortunately, the underlying etiology 

of obesity results from various complex relationships between an individual’s genetics, diet, and 

environment.  

One such group that has an increased risk for developing MS and its associated long-term 

complications is the pediatric acute lymphoblastic leukemia (ALL) population.4-6 ALL is a 

pediatric cancer of the bone marrow, and has a now ~90% event-free survival rate.4,5 Throughout 

treatment these young patients receive an assortment of chemotherapeutics along with 

glucocorticoids (GC).4,5 However, chronic exposure to GC is associated with various metabolic 
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irregularities, such as abdominal adiposity, hyperglycemia and insulin resistance (IR), and 

dyslipidemia among others.7,8 These metabolic disturbances increase the risk of developing MS, 

diabetes, and cardiovascular disease for not only the pediatric ALL population, but also other 

chronic GC users.5,9-14 More so, GC-induced side effects such as abdominal obesity are 

exacerbated by the consumption of a high fat “Western” type diet.10,12,15,16 This project seeks to 

elucidate the relationship and response between visceral adipose tissue to chronic GC exposure 

and diet type, using C57BL/6 mice as a model. This particular strain of mice, is a well-known 

model for experiments mimicking human metabolic derangements that are observed in obesity.17 

Adipose Tissue Biology 

Adipose tissue is a multicellular, endocrine organ that influences the function of nearly 

all other organ systems, by producing a diverse set of signaling molecules.18-20 It acts as a 

flexible caloric reservoir, responding to energetic and hormonal cues to either expand (fatty acid 

synthesis, lipogenesis) during energy excess or downsize (lipolysis, fatty acid oxidation) and 

release free fatty acids (FFA) during energy deficit.18,21 This flexibility is protective, and 

prevents the excessive lipidation and resultant lipotoxicity of other cells.18,21 Adipose tissue’s 

ability to respond to changes in energy demand, reflect the individual adipocytes ability to adapt 

to nutrient intake.18  

Adipose tissue endocrine function is the collective secretome of individual adipocytes 

and other resident cells, termed “adipokines”.18,22,23 Acting both locally and systemically, 

adipokines communicate whole body energy status, modulate energy intake and metabolism, 

immune processes, vasculogenesis, and matrix remodeling.18,22,23 Two well-studied adipokines 

include leptin, which is best known for its satiety function, and adiponectin, known for inducing 

insulin sensitivity in metabolic tissues.18 The secretome profile of adipose tissue however shifts 
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dynamically in response to energy status, serving as a window into its physiology.18 This 

cohesive dialog links adipocyte biology and adipose tissue physiology to whole body 

homeostasis.18  

Adipose tissue differs in regard to its anatomical location (subcutaneous adipose tissue 

[SAT], visceral adipose tissue [VAT], and intramuscular adipose tissue) and displays different 

structural organization, cellular type/size, and function.23 SAT is classified as either superficial 

(sSAT) or deep (dSAT), and VAT is classified as omental, mesenteric, retroperitoneal, gonadal, 

or pericardial in humans.23 While both SAT and VAT are important, attention is primarily on 

VAT as it is associated with metabolic dysfunction.24  

Adipocytes, being the predominant cell type within adipose tissue, are key to maintaining 

energy homeostasis.18 They store energy as triglycerides (TG) within their cellular lipid droplet 

without the development of lipotoxicity, and hydrolyze those TG into FFA for fatty acid (FA) 

oxidation.18,21 The capacity of a mature adipocyte to carry out its normal functions (ie; lipolysis, 

lipogenesis, FA oxidation, FA synthesis) describes its metabolic status.23 Interestingly, visceral 

adipocytes have a greater rate of lipolysis and FFA release than subcutaneous adipocytes, part of 

what makes subcutaneous adipocytes ideal for long-term energy storage.23  

Adipose tissue can be further classified as brown adipose tissue (BAT) or white adipose 

tissue (WAT), which is based on the primary type of adipocyte within that tissue.18,21,23 

Adipocyte classification is based on a color spectrum of white, beige (or brite), and brown, due 

to their differences in mitochondrial density and cellular lipid content.18,23 White adipocytes are 

the “classical” fat cells and make up the majority within WAT.18 They are also positively 

associated with metabolic dysfunction, as visceral and subcutaneous regions of WAT expand 

during energy excess.18,23 On the other hand brown adipocytes, which are central for 
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thermogenesis in mammals, make up the primary cell type within BAT.18,23 Another distinct type 

of brown adipocyte is the beige adipocyte, which has a mixed phenotype and arises from WAT 

in response to cold or hormonal stimuli.18 Of note, in human adults BAT is a much smaller 

percentage of total adipose tissue compared to WAT, but can be found in the thorax and 

abdominal region.23  

Excess energy that is partitioned into adipocytes results in adipocyte hypertrophy and 

adipogenesis (hyperplasia), when the rate of lipogenesis is greater than lipolysis and FA 

oxidation.18,19,25 Excessive expansion however can be healthy or unhealthy, as it puts stress on 

the adipocyte, as well as has chemical (ie; oxygen) and physical limitations (ie; extracellular 

matrix [ECM] remodeling).18 As hypertrophy of the adipocyte occurs, the cell starts 

accumulating reactive oxygen species and toxic lipid species. 18,19,22 This leads to cellular stress, 

lipid spillover and insulin resistance. 18,21 If unresolved, the adipocyte will undergo apoptosis.18 

Adipogenesis on the other hand, reflects the balance between pre-adipocyte 

proliferation/differentiation/apoptosis and turnover of mature adipocytes.19 Stem cells which may 

undergo commitment to become pre-adipocytes, require the appropriate signaling and gene 

expression to differentiate into mature adipocytes.26 Transcription factors required for this 

process include peroxisome proliferator gamma (PPAR𝛾) and members of the CCAAT-

enhancer-binding-proteins (C/EBP) family.19,27 GC are one of the hormones required for pre-

adipocyte differentiation, and induce key transcription factors required for the complete 

induction of a fully mature adipocyte.16,28  

For healthy tissue expansion, that accommodates adipocyte hypertrophy and 

adipogenesis, the ECM must be modified and provide a flexible environment for growth.18,21 For 

adipocytes and adipose tissue stroma, the ECM provides structural support and chemical signals 
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that help maintain their proper function (ie; direct mesenchymal stem cell lineage specification, 

proliferation, and differentiation).18,21 Specific proteolytic enzymes that are key to modifying the 

ECM include fibrinolytic and matrix metalloproteinases.21 Dysregulation of ECM synthesis and 

turnover leads to fibrosis within adipose tissue and its dysfunction, propagating metabolic 

dysfunction.21  

Diet Composition and Obesity 

A high fat diet (HFD) is defined as any diet that provides more than 30% of energy as fat. 

HFDs rich in saturated FAs and ω-6 polyunsaturated fatty acids (PUFAs), like the “Western” 

type diet, are consistently used to generate successful models of obesity in laboratory 

animals.29,30,31 This has allowed the recreation of conditions associated with human obesity and 

MS, including weight gain, IR, hyperglycemia, dyslipidemia, hypertrophy of adipocytes, 

adipogenesis, altered adipokine levels, and altered local and systemic inflammatory 

markers.29,30,31 Several studies have undertaken characterizing the effects of both a “Western” 

type diet and chronic GC usage in various tissues.32,33 A limited number of studies have even 

examined the combined effects, albeit with varying percentages and types of dietary fat.34-36 

However, to date no studies have examined early onset changes in young animals, within the 

whole body or visceral adipose tissue, during both consumption of a “Western” type diet and 

chronic GC usage.  

On the other hand, HFDs rich in ω-3’s PUFAs (ie; 𝛼-linolenic acid [ALA], 

Docosahexaenoic Acid [DHA] and Eicosapentaenoic Acid [EPA]) have been identified as 

protective and do not induce the same metabolic effects as the “Western” type diet.37,38 This is 

because they elicit various beneficial effects like: 1) reduce the amount of arachidonic acid (AA) 

in cell membranes, 2) increase FA oxidation, thereby reducing adiposity and immune cell 
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infiltration, 3) yield higher levels of adiponectin, with a resultant increase in insulin sensitivity, 

and 4) competitively displace AA from enzymatic action by cyclooxygenase (COX), 

lipoxygenase (LOX), and cytochrome p-450 (CYP450) enzymes, thus reducing pro-

inflammatory eicosanoid synthesis.37,39,40 Furthermore, supplementation of ω-3’s into a 

“Western” type diet raises the 𝜔-3:𝜔-6 ratio, allowing for a more optimal balance.38-42 This is 

described as beneficial for health, as 𝜔-6 PUFAs (ie; linoleic acid and AA) promote pro-

inflammatory processes.38-40 Thus supplementation with 𝜔-3 PUFAs should reduce the 

consequences of consuming a “Western” type diet, as well as help reduce the negative effects 

associated with chronic GC usage. The attenuation of negative effects elicited by GC, is in part 

due to the ability of 𝜔-3’s to increase FA oxidation and promote insulin sensitivity.  

Adipose Tissue Lipid Metabolism: Esterification and Hydrolysis  

Upon uptake of plasma FFA into the adipocyte, and a series of steps within the 

glycerophospholipid synthesis pathway, FFA get converted into phosphatidic acid.18,22 From 

here, phosphatidic acid can be shunted into either the synthesis of various phospholipids or 

synthesis of TG, both represent separate arms of glycerolipid synthesis.18,22 FFA that are 

esterified into TG (lipogenesis) get stored within the lipid droplet.18,22 Lipogenesis primarily 

occurs in adipose tissue, but does also occur in the liver.25 GC act synergistically with anabolic 

hormones, like insulin, to promote lipid storage and adipocyte hypertrophy.16 

The cellular lipid droplet, once thought to be inert, is now known to play an active role in 

maintaining systemic energy balance.18 In white adipocytes, the large generally unilocular lipid 

droplet occupies most of the cell, placing its borders near the endoplasmic reticulum (site for TG 

synthesis) and mitochondria (site for TG hydrolysis).18 The lipid droplet membrane proteome, 

which includes structural proteins and metabolic enzymes specific to the adipocyte, is crucial for 
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metabolism.18 During periods of low energy and/or hormonal stimulation, the adipocyte reduces 

its lipid stores through hydrolysis of TG.18,22 This hydrolytic action is carried out in a stepwise 

process by various adipocyte specific lipases, that sequentially cleave one FA from the TG until 

three FAs and one glycerol are released.22 Hydrolysis by hormone sensitive lipase (HSL) and 

possibly other non-HSL TG lipases are regulated by perilipin, a lipid droplet scaffolding protein 

that is enriched in white adipocytes.18,22 

Adipose Tissue, Obesity, and Inflammation  

Obesity, particularly visceral adiposity, creates a state of chronic low-grade sterile 

inflammation, which is considered central in the development of obesity-related metabolic 

dysfunction.43,44 Inflammation is the body’s protective response to infection (non-sterile) and 

cellular injury (sterile), that encompasses both the innate and adaptive arms of the immune 

system. However, it is intended only to resolve the insult and promote healing, not be sustained. 

The sterile inflammatory response begins with cellular recognition of injury, and release of 

chemical mediators from the site of injury (either from the injured cell, surrounding cells, or 

resident immune cells).45 These released chemical mediators, which include cytokines, 

chemokines, and eicosanoids, recruit phagocytic cells to the site of injury.45 These phagocytic 

cells function to contain the insult, as well as to recruit additional immune cells to assist in 

removing dead cells and initiate healing.45 Adipose tissue hosts a wide variety of cells, that shift 

dynamically in response to stress and injury.  

Adipose tissue generally consists of adipocytes, the stromal vascular fraction (SVF), and 

ECM.19,20 Healthy adipose tissue SVF is composed of various cell types, which include: pre-

adipocytes, fibroblasts, endothelial cells, erythrocytes, pericytes, stem cells, and quiescent 

immune cells (which produce interlukin-4 [IL-4], IL-13, IL-10, and IL-2).19,20,43,46 However, 
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during obesity the microenvironment within adipose tissue changes resulting in: 1) increased 

adipocyte hypertrophy and stress, 2) increased reactive oxygen species and toxic lipids, 3) 

hypoxia, and 4) lipid spill over from adipocytes.20 This leads to the activation and recruitment of 

immune cells, with a resultant production of pro-inflammatory mediators, e.g. tumor necrosis 

factor-α [TNF-α], IL-6, monocyte chemoattractant protein-1 [MCP-1], inducible nitric oxide 

synthase [iNOS], interferon-𝛾 [INF-𝛾], and IL-1𝛽, all of which affect adipocyte and adipose 

tissue function.19,20,43,44,47 This immune milieu fluctuation reflects the delicate relationship 

between metabolism and immune system.20 

Glucocorticoid Effects 

Pharmaceutical GC have a widespread use within the pediatric and adult population both 

in the U.S. and abroad.9,48,49 They are prescribed for a variety of pathologies due to their 

powerful immunosuppressive and anti-inflammatory effects.4,5,9,49 Chronic usage of GC 

however, is associated with significant side effects due to their physiological requirement for life 

and ability to effect nearly all cells in the body.1,9,48-52  

Acutely, GC alter various pathways that are important for both producing a stress 

response and initiating physiologic responses that follow a diurnal rhythm.49,50 These different 

responses elicited by GC are dependent on many factors, including timing, duration, 

concentration, and location within the body. Basal GC levels are regulated by the master 

circadian clock in the superchiasmatic nucleus of the hypothalamus, creating a diurnal rhythm 

with peak concentrations in the morning and a gradual decline throughout the day.49,50,52-55 In 

addition to basal levels, there is also daily variability resulting from pulsatile secretions in 

response to mental and physical status.49,50,52,55  
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Upon their release, GC shift metabolic processes towards catabolism and away from 

anabolism, in order to supply glucose to the body.49-52,54,56 This occurs through multiple 

mechanisms including: gluconeogenesis and glycogenolysis, insulin resistance, and skeletal 

muscle and adipose tissue breakdown.49-52,54,56 GC influence however, also spans the central 

nervous system, immune system, and cardiovascular system.50,53,54 These affects however are 

transient and reactionary, with the intent of either overcoming a stressful stimuli or adjusting the 

body’s activities towards the periodicity of day and night.1,51,52,54,55  

The appropriate diurnal rhythmicity of GC release is imperative for maintaining 

homeostasis.49,51,54,57 Disruption of this rhythmicity occurs during chronic exposure to GC, such 

as during chronic stress, Cushing’s syndrome, shift work, or pharmacological treatment.49,51,54,57 

Phenotypic alterations induced by chronic exposure include abdominal obesity, hepatosteatosis, 

IR and hyperglycemia, myopathy, immunosuppression, and hypertension among 

others.16,49,51,54,57 The development of abdominal obesity induced by GC represents 

lipodystrophy, seen as the preferential expansion of visceral adipose depots and reduction of 

subcutaneous depots.16 This preference is attributed to a greater local concentration of GC, as 

well as a greater expression of the glucocorticoid receptor (GR) in visceral adipose depots.16 Our 

hypothesis is that dietary supplementation of 𝜔-3 PUFAs, in the form of fish oil, will rescue 

visceral adipose tissue function from the negative effects of chronic GC usage and a “Western” 

type diet. We expect that once GC are administered, metabolic dysfunction by way of specific 

parameters will follow and be exacerbated by diet type. 

Study Aims 

 Aim 1: Determine phenotypical changes in visceral adipose tissue associated with diet 

and/or glucocorticoid treatment.  
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 Aim 2: Determine transcriptional changes that are induced in visceral adipose tissue with 

glucocorticoid treatment when consuming a high fat lard diet, rich in 𝜔-6 polyunsaturated fatty 

acids.  
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Chapter 2 

Material and Methods 

Animals and Experimental Setup 

For this study, we used C57BL/6 male mice (n=64). Breeder pairs were obtained from 

Envigo Laboratories, Inc. (Indianapolis, IN), and were bred in the animal facility at the 

University of Memphis. Mice were housed in standard cages within a climate-controlled room 

(21˚C) on a 12:12-h light-dark cycle (lights turned on at 0800 hr.). Mice had access to food and 

water ad libitum. All housing and experimental procedures were in accordance with the 8th 

edition of the Guide for the Care and Use of Laboratory Animals, and approval by The 

University’s Institutional Animal Care and Use Committee was obtained.  

All mice were weaned at 3 weeks of age to a standard rodent chow (CH, n=16) [2018 

Taklad Global 18% Protein] or a high fat lard diet (HFL, n=48) [D10011203] with 45% of the 

energy from fat (45% Kcal from lard-based fat, 41% carbohydrate, 20% sucrose, 9% cornstarch, 

12% maltodextrin 10) with a 𝜔-6:𝜔-3 ratio of ~13:1. All diets were purchased from Research 

Diets, Inc. (New Brunswick, NJ) in pelleted form. The composition for experimental diets are 

given in Table 1A and 1B. At 5-weeks of age, all mice were separated into individual cages and 

received 0.2-0.3g of sweet potatoes daily. After 1 week of entrainment, mice consuming the HFL 

diet were either maintained on this diet or switched to an isocaloric high fat diet with the 

majority of fat coming from Menhaden fish oil (HFO, n=24) [D05122102]. The HFO diet has a 

𝜔-6:𝜔-3 ratio of ~1:4. Mice weaned onto the CH diet remained on CH for the duration of the 

experiment as the control group. The HFL and HFO groups were further randomly divided with 

half receiving GC in the form of oral prednisolone (40mg/kg/m2) daily, using sweet potatoes as 
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the vehicle (GC+). The control group received vehicle alone (GC-). Prednisolone (3mg/mL) 

[Rx#1144364] was purchased from People’s Custom Pharmacy.  

Glucocorticoid treatment lasted a total of 28 days (4 weeks). This treatment time and 

dose was based on the GC therapy given to pediatric patients undergoing treatment for ALL. 

Groups will be identified as follows: HFL GC+ (n=12), HFL GC- (n=12), HFO GC+ (n=12), 

HFO GC- (n=12), CH GC+ (n=8), CH GC- (n=8). At the end of GC therapy (mice 10-weeks of 

age) animals were euthanized by CO2 inhalation. During the experimental time, animals were 

monitored for body weight, feeding habits and food consumption.  

 

Table 1. Composition of experimental diets. HFL with 45% Kcals/g from lard; HFO with 45% 
Kcals/g from menhaden oil. (A) ingredients in HFL 𝜔-6 and HFO 𝜔-3 diets; (B) fatty acid 
composition of HFL 𝜔-6 and HFO 𝜔-3 diets.  
A 

Ingredients HFL HFO 
 gm (%) kcal (%) gm (%) kcal (%) 
Protein 24 20 24 20 
Carboyhydrate 41 35 41 35 
Fat 24 45 24 45 
Total  100  100 
kcal/g 4.72  4.72  
     
Casein, 80 Mesh 200 800 200 800 
L-Cystine 3 12 3 12 
Sucrose 172.8 691 172.8 691 
Corn Starch 72.8 291 72.8 291 
Maltodextrin 10 100.0 400 100.0 400 
Cellulose, BW200 50 0 50 0 
Soybean Oil 25 225 25 225 
Lard 177.5 1598 0 0 
Menhaden Oil (200 ppm tBHQ) 0 0 177.5 1598 
tBHQ 0.0355 0 0.0355 0 
Mineral Mix S10026 10 0 10 0 
Vitamin Mix V10001 10 40 10 40 
Choline Bitartrate 2 0 2 0 
Cholesterol 0.58 0 0 0 

*BHQ: tert-Butylhydroquinone 
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Table 1. Composition of experimental diets. HFL with 45% Kcals/g from lard; HFO with 45% 
Kcals/g from menhaden oil. (A) ingredients in HFL 𝜔-6 and HFO 𝜔-3 diets; (B) fatty acid 
composition of HFL 𝜔-6 and HFO 𝜔-3 diets.  
B 

Ingredients (g) HFL HFO 
Lard 177.5 0 
Menhaden Oil, ARBP-F 0 177.5 
Soybean Oil 25 25 
Total 202.5 202.5 
C14:0, Myristic 2.1 14.0 
C16:1, Palmitoleic, n7 2.5 17.7 
C18:0, Stearic 19.8 6.6 
C18:2, Linoleic, n6 56.2 16.1 
C18:3, Linolenic, n3 4.2 4.3 
C18:4, Stearidonic, n3 0 6.0 
C20:0, Arachidic 0.4 0.3 
C20:4, Arachidonic, n6 0.5 0 
C20:4, n3 0 3.1 
C20:5, Eicosapentaenoic, n3 0 23.3 
C22:5, Docosapentaenoic, n3 0.2 4.1 
C22:5, n6 0 0.6 
C22:6, Docosahexaenoic, n3 0 29.0 
Total 190.7 189.6 
Saturated (g) 60.2 59.8 
Saturated (%) 31.6 31.5 
Monounsaturated (g) 67.7 41.3 
Monounsaturated (%) 35.5 21.8 
Polyunsaturated (g) 62.8 88.5 
Polyunsaturated (%) 32.9 46.7 
ω-6 (g) 57.0 17.9 
ω-3 (g) 4.4 66.6 
ω-6/ω-3 ratio 12.9:1 (~13:1) 1:3.7 (~1:4) 

 

Glucose Tolerance Test 

Two days prior to euthanasia (day 26 post GC treatment initiation) mice were subjected 

to a glucose tolerance test (GTT). Mice were fasted for 6 hours prior to baseline fasting blood 

glucose sampling via the tail vein. Glucose levels were determined by a handheld glucometer 

(Onetouch Ultra 2 Meter, Bayer Healthcare, Tarrytown, New York). Mice then received an 

intraperitoneal injection of glucose (2g/kg body weight) and blood was collected every 30 

minutes for 90 minutes and glucose levels determined.  
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Tissue and Blood Collection 

Immediately before euthanasia, blood was collected from the facial vein into EDTA-

coated tubes for plasma isolation. After euthanasia, spleen and epididymal adipose tissue were 

harvested and immediately weighed. A portion of epididymal adipose tissue were snap frozen in 

liquid nitrogen for the use of transcript and protein analysis. Another portion of epididymal 

adipose tissue were fixed in 10% phosphate buffered formalin (Fischer Scientific Co. LLC) for 

histological analysis. A final portion of epididymal adipose tissue, approximately 0.5g, was 

placed into DMEM/High Glucose [4.0mM L-Glutamine, 4500 mg/L Glucose, sodium pyruvate] 

(HyClone, HyClone Laboratories, Inc., Logan, UT) for immune cell isolation. Whole spleens 

were harvested and placed into RPMI 1640 1x with L-glutamine solution (Corning, Mediatech, 

Inc., Manassas, VA) containing 2% FBS for cell isolation.  

Histology and Adipocyte Size Determination 

Fixed adipose tissue were imbedded in paraffin, sectioned to a thickness of 5𝜇m and 

stained with Hematoxylin and Eosin (H&E). Representative areas were used to determine 

adipocyte size using an imager M2 microscope (Axiocam MRC, Zeiss, Oberkochen, Germany) 

and Axiovision r4.8.2 software. Images of adipose tissue slides were captured on 10x and 20x 

magnification. Adipocyte size was estimated using Axiovision r4.8.2 software by circling all 

whole adipocytes that were in complete view in the 20x magnification pictures taken. A 

minimum of 2 pictures per slide per mouse, and up to 3 pictures per slide per mouse, were used 

for obtaining adipocyte size.  

Cytokine and Adipokine Analysis  

Plasma and adipose tissue lysates were used for cytokine and adipokine measurements. 

Adipose tissue lysates were prepared from snap frozen tissue samples by rinsing samples in 
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1xPBS, cutting into 1-2mm pieces, homogenizing with Kinematica Polytron PT 10-35 

(Brinkmann Instruments, Rexdale, Ont. Canada) in 1xPBS. Then an equal volume of Cell Lysis 

Buffer 2 (R&D Systems, Minneapolis, MN) was added and tissues were lysed at room 

temperature for 30 minutes with gentle agitation. Debris was removed by centrifugation. 

Cytokine and adipokine assay was prepared according to the R&D Magnetic Luminex 

Bead Assay (R&D Systems, Minneapolis, MN) instructions and plated in duplicates, along with 

quality controls and standards. Samples were analyzed on the Luminex MAGPIX analyzer. 

Analytes included: TNF-𝛼, IL-4, IL-10, IL-𝛼, IL-1𝛽, IL-6. Leptin. Data was then generated 

using the xPONENT program, build 4.2.1324.0, and exported to excel for further analysis.  

Cell Isolation 

Cells were isolated from whole spleen and epididymal adipose tissue. Spleens were 

homogenized in media (RPMI with 2% FBS) using a 40µm nylon sterile cell strainer 

(Fisherbrand, Fischer Scientific, CO LLC, Dallas, TX). Cells were pelleted and red blood cells 

lysed using Cell Lysis Buffer [155mM NH4Cl + 12mM NaHCO3 + 0.1mM EDTA]. After lysis, 

cells were washed with 1xPBS and 2%FBS, and then re-suspended in 3mL of 1xPBS with 

2%FBS on ice for cell counting.  

 Adipose tissue was cut into small pieces in DMEM containing 2 mg/mL type II 

collagenase (Worthington, Lakewood, NJ), using ~2mLs per fat pad. Samples were incubated at 

37˚C while shaking (240 RPM) for 40 minutes. Homogenate was then diluted with media and 

filtered through a 40µm nylon sterile cell strainer. Cells were then centrifuged at 500 RPM, 4˚C 

for 10 minutes and re-suspended in 500µL 1xPBS with 2% FBS on ice for cell counting.  

 For counting of cells, a 10µL aliquot of samples were mixed in a 1:1 ratio with 10µL 

Trypan Blue solution (Corning, Mediatech, Inc., Manassas, VA) and loaded onto a 
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hemocytometer (Marienfeld, Lauda-Königshofen, Germany) for counting. Cell counts per 

sample were then extrapolated by averaging 4 (5x5) squares per sample.  

Flow Cytometry 

 Approximately 1-5x106 cells were used per sample for antibody staining. Cells were 

then incubated with fragment crystallizable block (Fc block) (FcX, Biolegend, San Diego, 

California) diluted in 1xPBS with 2% FBS [1:50], on a horizontal orbital plate shaker protected 

from light, and at room temperature for 10 minutes to decrease non-specific binding of 

antibodies. After blocking, cells were then incubated with specific antibodies at optimum 

concentrations (Table 2) in the presence of Live Dead Aqua (Life Technologies, Eugene, OR) for 

30 minutes, on a plate shaker protected from light, and at room temperature. All samples were 

fixed using Fixation/Permeabilization solution (eBioscience, San Diego, California) overnight at 

4˚C according to the manufacturer’s instructions.  

All samples were analyzed using a LSR II Flow Cytometer (BD Biosciences, San Jose, 

California) and BD FACSDIVA software (BD Biosciences, San Jose, CA). Data obtained was 

then further analyzed using FlowJo software (FlowJo LLC, Ashland, OR).  
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Table 2. Antibodies used for flow cytometry. Stain 1 for Lymphocytes and Myeloid cells, 
Stain 2 for Lymphocytes. 

 Marker Clone Concentration Conjugate Source 

Live/Dead LDA  1:200 Pacific Orange Life 
Technologies 

Stain 1      

 CD11b M1/70 1:100 FITC BioLegend 

 GR1 RB6-8C5 1:100 APC BioLegend 

 CD45R/B220 RA3-6B2 1:100 APC/Cy7 BioLegend 

 F4/80 BM8 1:100 Pacific Blue BioLegend 

 CD11c N418 1:100 PE/Cy7 BioLegend 

 TCR𝛽-chain H57-597 1:100 PE BioLegend 

Stain 2      

 CD3𝜀 145-2C11 1:100 PE/Cy7 BioLegend 

 CD8a GK1.5 1:100 APC BioLegend 

 CD4 53-6.7 1:100 APC/Cy7 BioLegend 

 

Microarray 

Epididymal fat pads from mice on the HFL GC+ (n=4) and HFL GC- (n=4) groups were 

used for microarray gene expression analyses. Adipose tissue aliquots of ~0.5mg were kept at -

80˚C until ready for mRNA isolation. Total RNA was isolated using QIAzol Lysis Reagent 

(Qiagen, Hilden, Germany) and RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany). RNA 

integrity was determined by agarose gel electrophoresis, using Agilent RNA Nano Chips 

(Agilent Technologies, Waldbronn, Germany) and Agilent RNA 6000 Nano Reagents part 1 

(Agilent Technologies, Waldbronn, Germany) on the Agilent Bioanalyzer (Agilent 

Technologies, Waldbronn, Germany). RNA quantity (OD-260) and purity (260/OD-280) were 
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determined using the NANO drop 2000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). 

Eight mouse RNA samples were analyzed using Affymetrix MoGene 2.0 ST arrays, 

following the manufacturers protocol for GeneChip Whole Transcript PLUS Reagent kit, for 

expression arrays (Affymetrix, Santa Clara, CA). Microarrays were then run on the GeneChip 

Scanner 3000 7G system (Affymetrix, Santa Clara, CA), with .CEL files created by the onboard 

Affymetrix GeneChip Command Console Software (Affymetrix, Santa Clara, CA).  

Data was exported into Partek Genomics Suite 6.6 software (Partek Incorporated, St. 

Louis, MO) for statistical analysis and gene cross reference in Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways. Array data was normalized using robust multiarray average 

(RMA), and differentially expressed genes were identified as those with a p-value <0.05 and a 

fold change value >+1.5 relative to controls (HFL GC-).  

Data were also analyzed using DAVID Bioinformatics Resources 6.8 (National Institute 

of Allergy and Infectious Disease, National Institutes of Health) and MGI 6.08 (The Jackson 

Laboratory) for further pathway and gene ontology analysis. Identified Genes of interest, which 

met both statistical significance and fold change threshold, were then validated using quantitative 

reverse transcriptase-polymerase chain reaction (RT-PCR). 

Reverse Transcriptase-Polymerase Chain Reaction 

Specific genes of interest (Table 3) were validated by quantitative RT-PCR in HFL GC- 

(n=4), HFL GC+ (n=4), HFO GC- (n=4), HFO GC+ (n=4), CH GC- (n=3), and CH GC+ (n=3) 

groups. Total RNA was isolated from adipose tissue aliquots (~0.5mg) using QIAzol Lysis 

Reagent (Qiagen, Hilden, Germany) and RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, 

Germany). RNA integrity was determined by agarose gel electrophoresis, using Agilent RNA 
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Nano Chips (Agilent Technologies, Waldbronn, Germany) and Agilent RNA 6000 Nano 

Reagents part 1 (Agilent Technologies, Waldbronn, Germany) on the Agilent Bioanalyzer 

(Agilent Technologies, Waldbronn, Germany). RNA quantity (OD-260) and purity (260/OD-

280) were determined using the NANO drop 2000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). cDNA was then synthesized from 1ug RNA using High-Capacity cDNA 

Reverse Transcription kit (Applied Biosystems, Foster City, CA) on the T100 Thermal Cycler 

(Bio-Rad, Hercules, CA).  

Quantitative RT-PCR was performed using Bio-Rad CFX96 Touch real-time PCR system 

and PowerUp SYBR Green Master Mix (Life Technologies, Carlsbad, CA). Primers (Table 3) 

were purchased from Integrative DNA technologies (Coralville, IO). Murine HMBS served as 

the endogenous control.58 Relative expression levels were calculated using the 2-∆∆CT method and 

normalized to HMBS on CFX Manager Software v3.1 (Bio-Rad, Hercules, CA). 

 
Table 3. Primer designs for Mus musculus sequences  

Gene 
Sequence 
Length Forward 5’Æ3’ Reverse 5’Æ3’ 

Orm1 779 CTGCTTCTTCTCCTGCTGAC GACTGTCCCTCTATGCCAAA 

Orm2 774 CTTTCTTGGTCTCCTTCTCCAG AGAAGGCTGTCACACACG 

Fads2 1508 CTCCCAAGATGCCGTAGAAAG GCTCATCCCTATGTACTTCCAG 

Isyna1 1850 CCAGACCACTGTGTGGTGAT TGGAGCACCAAGGTGTTTGT 

HMBS 1611 CGTGGGAACCAGCTCTCTGA GAGGCGGGTGTTGAGGTTTC 
 

Statistical Analysis 

Statistical procedures used for analysis of data from: dietary intake, anthropometric 

measurements, adipocyte size, cytokine/adipokine assay, and immune cell populations were 

performed in GraphPad Prism version 6 and 7. Data are presented as means ± standard error of 
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the mean (SEM). Statistical significance between different experimental groups was determined 

using non-parametric Mann-Whitney test, due to small n values and unknown distribution of the 

data, and Welch’s t-test. As well as repeated measures 2way ANOVA with Tukey’s multiple 

comparisons test. P-values <0.05 were considered statistically significant.  
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Chapter 3 

Results 

A High Fat Lard Diet in Conjunction with Glucocorticoids Induce Metabolic Dysfunction 

Not Seen in a High Fat Fish Oil Diet 

Mice exposed to the HFL diet, containing 45% kcal from lard (𝜔-6 PUFA), gained more 

weight overall during the intervention period than their CH and HFO fed counterparts (Figure 1a 

and 1b). Specifically, HFL GC- mice gained more weight in total than their isocaloric HFO fed 

counterparts (Figure 1a and 1b) despite no significant difference in food intake (Figure 2). On the 

other hand, HFO GC+ mice gained significantly more than their CH GC+ counterparts (Figure 

1a), despite dietary differences in energy density [(HFO 45% fat, 4.72kcal/g) vs. (CH 6% fat, 

3.2kcal/g)] (Figure 2). 

GC administration caused a decrease in weight gain for groups consuming the HFL and 

CH diets only, albeit not significant (Figure 1a). This trend however was not seen with animals 

on the HFO diets, where the HFO GC+ group gained slightly more weight than their GC- 

counterparts. It is well documented that GC induce muscle atrophy in rodents.7,8 This data 

therefore suggests that the 𝜔-3 rich diet is protective against muscle atrophy induced by GC, 

however for this study we were unable to confirm this by way of body composition analysis.  

Changes in weight between groups during the intervention period began at week 2, when 

mice were approximately 8 weeks old. Differences were maintained until sacrifice at week 4, 

when mice were approximately 10 weeks old. HFL groups had significantly greater increases in 

weight when compared to both CH and HFO counterparts, from week 2 onward (Figure 1b). At 

sacrifice, HFL fed mice weighed on average 6.38% more than HFO fed mice, and 11.91% more 

than CH fed mice.  
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Figure 1a. Weight gained during the 4-week intervention. Groups: CH GC- and GC+ n=8, 
HFL GC- and GC+ n=10, HFO GC- and GC+ n=10. Total body weight was measured bi-weekly 
from the beginning to the end of intervention. Weight at the end of intervention was then 
subtracted from the weight at the beginning of intervention, to calculate the difference. 
Significant differences were observed between: CH GC- vs HFL GC-, CH GC+ vs HFL GC+, 
CH GC+ vs HFO GC+, and HFL GC- vs HFO GC- groups. Data analyzed using Mann-Whitney 
test. Results represent mean ± SEM. 
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Figure 1b. Weight gained during the 4-week intervention. Groups: CH GC- and GC+ n=8, 
HFL GC- and GC+ n=10, and HFO GC- and GC+ n=10. Total body weight measured bi-weekly 
from beginning to end of intervention. Significance identified at: week 2 [(CH GC- vs HFL 
GC+), (HFL GC- vs HFO GC+), (HFL GC+ vs HFO GC+)], week 3 [(CH GC- vs HFL GC-), 
(CH GC- vs HFL GC+), (CH GC+ vs HFL GC-), (CH GC+ vs HFL GC+), (HFL GC- vs HFO 
GC+)], and week 4 [(CH GC- vs HFL GC-), (CH GC- vs HFL GC+), (CH GC+ vs HFL GC-), 
(CH GC+ vs HFL GC+), (HFL GC- vs HFO GC-), (HFL GC- vs HFO GC+), (HFL GC+ vs 
HFO GC+)]. Data analyzed using repeated measures 2way ANOVA with Tukey’s multiple 
comparisons test. Results represent mean ± SEM. *p<0.05 
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Figure 2. Average daily food consumption (kcal). Food consumption was measured twice 
weekly for all mice. Groups: CH GC- n=4, CH GC+ n=5, HFL GC- and GC+ n=10, HFO GC- 
and GC+ n=10. Average daily food consumption in kcals per mouse was obtained by multiplying 
the amount of food consumed in grams per day by the energy value for each diet [(4.72 kcal/g, 
HFL and HFO diets) and (3.2 kcal/g, CH diet)]. Both HFL groups took in significantly more 
kcals per day than their CH counterparts. Whereas only HFO GC- mice took in significantly 
more kcals per day than CH GC- mice. Data analyzed using Mann-Whitney test. Results 
represent mean ± SEM. 
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induce expression of transcripts involved in FA oxidation as compared to FA synthesis when 

consuming a high fat diet.59,60  

Chow
-G

C

Chow
+ GC

HFL -G
C

HFL +G
C

HFO
-G

C

HFO
+GC

0

5

10

15

20

Average daily food consumption (kcal)

En
er

gy
in

ta
ke

(k
ca

l/d
)

P=0.0020

P=0.0007

P=0.0360



 25 

 

 

Figure 3. Energy efficiency: weight gained per kcal of food consumed. Groups: CH GC- n=4, 
CH GC+ n=5, HFL GC- and GC+ n=10, HFO GC- and GC+ n=10. Weight gained during 4 week 
intervention was divided by the amount of kcals consumed. Significant differences were 
observed between: CH GC+ vs HFL GC- and HFL GC- vs HFO GC- groups. Data analyzed 
using Mann-Whitney test. Results represent mean ± SEM. 
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Figure 4. Glucose tolerance test over time. Blood glucose concentration was measured over a 
90-minute period after IP injection with 2g glucose/kg body weight at week 10 (or day 28). 
Groups: CH GC- n=4, CH GC+ n=6, HFL GC- and GC+ n=10, HFO GC- n=6, HFO GC+ n=10. 
Both HFL and HFO mice showed significantly greater blood glucose concentrations in 
combination with slower glucose clearance, compared to CH mice at time points 30 and 60 mins. 
Data analyzed using repeated measures 2way ANOVA with Tukey’s multiple comparisons test. 
Results represent mean ± SEM. *p<0.05 
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Figure 5. Difference in glucose concentration between fasting and 90-minute time points. 
The difference in blood glucose concentration, measured at week 10, between the initial fasting 
concentration and the 90-minute time point was calculated. Groups: CH GC- and GC+ n=5, HFL 
GC- n=10, HFL GC+ n=13, HFO GC- n=6, and HFO GC+ n=10. There was no statistical 
significance between groups, however both HFL groups show greater variability in blood 
glucose concentration compared to others. Data analyzed using Mann-Whitney test. Results 
represent mean ± SEM.  
 

A High Fat Lard Diet in Conjunction with Glucocorticoids Induce Negative Visceral 

Adipose Tissue Alterations Not Seen in a High Fat Fish Oil Diet 

At sacrifice the epididymal fat pads (left and right), which represent visceral adipose 

tissue, were harvested and weighed. Both HFL groups exhibited statistically greater amounts of 

visceral adipose tissue (g) compared to their CH and HFO counterparts (Figure 6). Specifically, 

HFL GC+ mice (mean=1.46g) had a 201.0% greater amount of visceral fat than CH GC+ 

(mean=0.49g) and a 69.6% greater amount than HFO GC+ (mean=0.86g) mice. Whereas, HFL 

GC- mice (mean=1.49g) had a 292.9% greater amount of visceral fat than CH GC- 

(mean=0.38g) and a 90.1% greater amount than HFO GC- (mean=0.79g) mice. On the contrary, 

HFO GC+ mice had a 77.4% greater amount of visceral fat than CH GC+ mice, and HFO GC- 
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had a 106.6% greater amount than CH GC- mice. Seeing as both HFL groups gained near 

identical amounts of visceral fat (Figure 6 and Figure 7), this further supports the idea that 

differences between HFL GC- and GC+ groups in overall weight gained (Figure 1a) are likely 

due to differences in skeletal muscle mass.  

Additionally, the differences in adipose tissue mass (g) between groups was mirrored in 

percentage visceral fat of total body weight (Figure 7). These data suggest that the HFO diet 

protects against visceral adipose tissue accumulation, even in the presence of GC. This reduction 

in fat accumulation coincides with prior literature, which shows fish oil based diets increase the 

expression of transcripts involved in FA oxidation and decreases transcripts involved in FA 

synthesis.59  

 

 

Figure 6. Visceral adipose tissue weight (g). Visceral adipose tissue, represented by the 
epididymal fat pad, was weighted at sacrifice. Groups: CH GC- and GC+ n=8, HFL GC- and 
GC+ n=10, HFO GC- and GC+ n=10. Adipose tissue (g) was significantly different between: 
HFL GC+ vs CH GC+, HFL GC- vs CH GC-, HFL GC+ vs HFO GC+, HFL GC- vs HFO GC-, 
CH GC+ vs HFO GC+, and CH GC- vs HFO GC- groups. Data analyzed using Mann-Whitney 
test. Results represent mean ± SEM. 
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Figure 7. Percent visceral fat of total body weight. Visceral adipose tissue, represented by the 
epididymal fat pads, was weighted at sacrifice. The percent visceral fat of total body weight was 
calculated by, dividing the amount of visceral adipose tissue (g) by the total body weight (g) and 
moving the decimal place two spaces to the right. Groups: CH GC- and GC+ n=8, HFL GC- and 
CG+ n=10, HFO GC- and GC+ n=10. Percentage of visceral fat out of total body weight was 
significantly different between: HFL GC+ vs CH GC+, HFL GC- vs CH GC-, HFL GC+ vs HFO 
GC+, HFL GC- vs HFO GC-, CH GC+ vs HFO GC+, and CH GC- vs HFO GC- groups. Data 
analyzed using Mann-Whitney test. Results represent mean ± SEM. 
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mechanism, as hypertrophy of adipocytes cause cellular stress which can lead to insulin 

resistance and cell death if unresolved.18,19,21,22 HFO fed mice exhibited smaller adipocytes 

compared to HFL counterparts (Figure 8a and 8b), with a difference in area of 1720𝜇m2, 

supporting the notion that fish oil based diets promote oxidative pathways, decreasing the burden 

of storage on cells.59 

Additionally, larger differences in adipocyte size are observed between HFL GC+ and 

GC- groups compared to counterparts (Figure 8a and 8b), which suggests that GC may 

exacerbate adipocyte hypertrophy in the presence of a HFL diet. This greater difference in size 

within groups is not recapitulated in HFO or CH fed mice (Figure 8a and 8b), suggesting that 

HFO and CH diet types protect against adipocyte hypertrophy while in the presence of GC. As 

the only difference between HFO and HFL diet types is the primary source of fat (Table 1), this 

supports the idea of beneficial vs harmful lipid species regarding cell physiology. 
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Figure 8a. Adipocyte size. Random images of visceral adipose tissue histology were selected 
for adipocyte size analysis. The area of all adipocytes within the plain of view per slide per 
mouse were determined and averaged for individual mouse values. Groups: CH GC- n=202, CH 
GC+ n=226, HFL GC- n=178, HFL GC+ n=182, HFO GC- n=221, HFO GC+ n=230. 
Significant differences are present between all experimental groups. Data analyzed using Mann-
Whitney test. Results represent mean ± SEM.  
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Figure 8b. Adipocyte area. Representative images of visceral adipose tissue demonstrate the 
hypertrophy that occurs with high fat diet consumption and GC usage. All pictures taken using 
20X magnification.  
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To further characterize the differences in adipocytes by size, individual cells were plotted 

in a histogram for frequency and distribution analysis (Figure 9). Groups from largest to smallest 

mean adipocyte size are: HFL GC+ [mean= 5713𝜇m2], HFL GC- [mean= 4728𝜇m2], HFO GC+ 

[mean= 3572 𝜇m2], HFO GC- [mean= 3429𝜇m2], CH GC- [mean=2462𝜇m2], CH GC+ 

[mean=2351𝜇m2] (Figure 9). This view again describes a trend of adipocyte hypertrophy by both 

diet type and presence of GC. Coinciding with Figures 8a and 8b, larger differences in adipocyte 

size between HFL GC+ and GC- groups (𝛿=985𝜇m2) are observed (Figure 9), whereas smaller 

differences are seen between HFO GC+ and GC- (𝛿=143𝜇m2), and CH GC- and GC+ 

(𝛿=111𝜇m2].  

  

 

Figure 9. Distribution of adipocyte size. Individual adipocytes, chosen at random from adipose 
tissue histology, were plotted for frequency and distribution analysis. Groups: CH GC- n=202, 
CH GC+ n=226, HFL GC- n=178, HFL GC+ n=182, HFO GC- n=221, HFO GC+ n=230. Mean 
adipocyte size for HFL GC- (4728𝜇m2), HFL GC+ (5713𝜇m2), HFO GC- (3429𝜇m2), HFO GC+ 
(3572 𝜇m2), CH GC- (2462𝜇m2), and CH GC+ (2351𝜇m2) were obtained from descriptive 
statistics generated of plotted data.  
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Dietary Lipids Alter Select Cytokine and Adipokine Levels 

 The adipokine leptin, synthesized and secreted by adipose tissue, increases systemically 

during obesity to help regulate feeding behavior and act as a pro-inflammatory immune 

modulator.61 In concordance with this, we identified significantly higher plasma leptin levels in 

HFL mice compared to HFO and CH counterparts (Figure 10). The observed increase in plasma 

leptin levels positively correlate to increases in adipose tissue mass (Figure 6), a well described 

trend in the literature. As leptin levels are decreased in HFO mice (compared to HFL mice), this 

suggests that fish oil based diets protect against hyperleptinemia, which likely results from an 

overall reduction in adipose tissue mass. 

 

 

Figure 10. Plasma leptin levels. Plasma samples were obtained immediately prior to sacrifice at 
week 10. Groups: CH n=1, HFL n=13, HFO n=11. Leptin concentration was obtained using a 
multiplex magnetic bead assay. HFL mice showed increased circulating plasma leptin compared 
to their HFO counterparts. CH mice had little circulating plasma leptin. Only HFL vs HFO data 
was analyzed using Mann-Whitney 2-tailed test. Results represent mean ± SEM. 

Chow
HFL

HFO
0

1000

2000

3000

4000

5000

PLasma Leptin diet

Le
pt

in
(g

/m
l)

P=0.0423



 35 

 

As obesity and consumption of a high fat diet are known to cause systemic and local 

inflammation, plasma and select tissue cytokine levels were measured. Pro- and anti-

inflammatory cytokines assayed for include: TNF-α, IL-1β, IL-1α, IL-4, IL-10, and IL-6. 

Surprisingly, we only detected significant differences in IL-6, between HFO and HFL fed mice 

within adipose tissue (Figure 11). According to the literature, this observed increase in IL-6 

within HFO fed mice would generally be interpreted as a sign of greater adipose tissue 

inflammation, which contradicts the anti-inflammatory nature of 𝜔-3s. However, as IL-6 can 

function as both a pro- and anti-inflammatory cytokine, and recent data suggest its role in 

maintaining insulin sensitivity during a high fat diet challenge, we don’t interpret this as a sign of 

inflammation.62  

No other significant differences were observed for the additional cytokines (Data not 

shown). The absence of major differences in systemic and tissue cytokines within these mice, 

suggest that they have not yet reached a pro-inflammatory status. This may be a result of their 

young age (6 weeks-old to 10 weeks-old) during the intervention period, or the result of 

opposing anti-inflammatory actions by GC.  
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Figure 11. Visceral adipose tissue IL-6 levels. Adipose tissue IL-6 levels were determined 
from sample lysates collected at sacrifice (week 10). Groups: HFO n=4, HFL n=4. The 
concentration of IL-6 was obtained using a multiplex magnetic bead assay. HFO fed mice had 
significantly higher levels of adipose tissue IL-6 compared to HFL fed mice. Data analyzed 
using Mann-Whitney 2-tailed test. Results represent mean ± SEM. 
 

Dietary Lipids Alter Visceral Adipose Tissue Immune Cell Populations 

 As the adipose tissue immune cell milieu is purported to change during a high fat dietary 

challenge, isolated immune cells were phenotyped (using stains from Table 2) in order to 

characterize resident cell populations.20 We observed a greater infiltration of LDA-/B220-

/CD11b+ cells into adipose tissue of mice fed the high fat diet types (Figure 12, Top), which can 

represent macrophages, monocytes, or neutrophils.63,64 Additionally, HFL fed mice had a 

significantly greater percentage of these cells compared to CH counterparts (Figure 12, Bottom). 

Slight, but not significant, differences were seen between HFO and HFL diet types (Figure 12, 

Bottom).   
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Figure 12. High fat diet increases visceral adipose tissue B220-/CD11b+ cell infiltration. 
Adipose tissue immune cells were harvested immediately after sacrifice. Cells were then stained 
for specific populations (Table 2). Top) FACS data analyzed in FlowJo, gated on LDA-/B220-

/CD11b+, represented on log10 scale. Both HFO and HFL mice exhibit an increased percentage of 
CD11b+ cells in adipose tissue, as compared to CH fed mice. This immune cell population 
represents adipose tissue: macrophages, monocytes, neutrophils. Bottom) Groups: CH n=7, HFL 
n=7, HFO n=7. Data analyzed using Mann-Whitney 2-tailed test. Results represent mean ± SEM. 
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activated M2 macrophages, in HFO fed mice (Figure 13, Bottom Left). M2 macrophages are 

resident anti-inflammatory cells, that have been shown to undergo phenotypic switching to pro-

inflammatory classically activated “M1” macrophages during obesity.63,64 However, the greater 

presence of M2 macrophages in HFO mouse adipose tissue suggests a healthier environment, 

compared to HFL adipose tissue.  

Second, we observed a significantly greater percentage of F4/80+ and CD11c+ cells, 

representing classically activated M1 macrophages, in HFL fed mice (Figure 13, Bottom Right). 

Accumulation of M1 polarized cells within adipose tissue, is pivotal to the development of 

adipose tissue inflammation and insulin resistance.63,64 M1 macrophages have shown to infiltrate 

adipose tissue in response to cytokine and chemokine release, as well as FA spill-over, both of 

which occur in stressed adipocytes.   
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Figure 13. Diet specific macrophage populations. Adipose tissue immune cells were harvested 
immediately after sacrifice. Cells were then stained for specific populations (Table 2).  
Top) FACS data analyzed in FlowJo, gated on LDA-/B220-/CD11b+/ GR1Lo/F480+/CD11c+, 
represented on log10 scale.  
Bottom Left) Groups: HFL n=5, HFO n=5. HFO mice exhibited a greater percentage of F4/80+ 
and CD11c- cells compared to HFL mice. This immune cell population represents adipose tissue 
alternatively activated “M2” macrophages.  
Bottom Right) Groups: HFL n=5, HFO n=5. HFL fed mice exhibited a greater percentage of 
F4/80+ and CD11c+ cells compared to HFO fed mice. This immune cell population represents 
adipose tissue classical activated “M1” macrophages.  
Data quantification represented in graphs analyzed using Mann-Whitney 2-tailed test. Results 
represent mean ± SEM. 
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Spleen lymphocyte populations are well known to decrease during GC usage, due to their 

cytolytic effects on immature thymocytes.65 However, less is known about the impact of diet 

type. Thus, spleen cells where phenotyped (using stains from Table 2) based on diet. Cells were 

gated first by LDA-/CD3+, and then whether they were CD4+ or CD8+ (Figure 14, Top). No 

major differences were seen in the percentage of CD4+ cells, however slight differences were 

observed in the amount of CD8+ cells (Figure 14, Top). HFO fed mice had a 4% reduction in 

CD8+ cells compared to HFL fed mice, and a 5% reduction compared to CH mice (Figure 14, 

Top). CD8+ cells are a critical subpopulation of lymphocytes that include both cytotoxic T-cells, 

which mediate tumor and viral suppression, and a group of suppressor T-cells, which dampen 

certain immune responses. 
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Figure 14. Diet Specific Spleen T-cell Populations. Spleen immune cells were harvested 
immediately after sacrifice. Cells were then stained for specific populations (Table 2).  
Top) FACS data analyzed in FlowJo, gated on LDA-/CD3+/CD4+, represented on log10 scale.  
Bottom) Groups: CH GC- n=5, CH GC+ n=4, HFL GC- n=6, HFL GC+ n=9, HFO GC- n=6, 
HFO GC+ n=10 No significant differences were observed between groups. These immune cell 
populations represent spleen CD4+ and CD8+ cells. Data quantification represented in graphs 
analyzed using Mann-Whitney 2-tailed test. Results represent mean ± SEM. 
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A High Fat Lard Diet in Conjunction with Glucocorticoids Alters Gene Expression in 

Visceral Adipose Tissue 

 Microarray analysis of visceral adipose tissue gene expression was used to further 

examine GC action in driving observed phenotypes when consuming a HFL diet. To identify 

candidate genes, we used the Affymetrix GeneChip Mouse Gene 2.0 ST array, a whole-transcript 

array, to determine differences in transcriptome profiles between HFL GC+ (n=4) and HFL GC- 

(n=4) groups. Using Partek Genomics Suit 6.6 software, we identified a total of 3,112 visceral 

adipose tissue transcripts, with a significant p-value of <0.05 for GC+.  

 In order to identify the impact of GC during consumption of a HFL diet on regulation of 

gene expression, we next identified HFL GC+ induced genes using a false discovery rate (FDR) 

with a significance set at 0.05 and a stringency of +1.5-fold change. In doing so, we identified 

250 regulated transcripts that were differentially expressed compared to the HFL GC- control. 

These genes were further divided into either down-regulated 52% (130) or up-regulated 48% 

(120).  

To further classify the nature of GC responsive gene activation in HFL fed mice, we 

examined the functional gene ontologies of the GC-responsive genes (n=250) in visceral adipose 

tissue using DAVID Bioinformatics Resource 6.8. Table 4a and 4b summarize the main 

significant ontologies of up- and down-regulated genes induced by GC in visceral adipose tissue 

of HFL fed mice.  

GC-induced up-regulated visceral adipose tissue gene expression related to transport of 

molecules, response to cAMP, and positive regulation of ERK1 and ERK2 cascade (Table 4a). 

Suggesting primary alterations within cellular signaling, as well as activities regarding the cell 

cycle and cellular differentiation. Whereas, down-regulated gene expression related to lipid and 
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fatty acid metabolism, cell adhesion, and positive regulation of gene expression (Table 4b), 

unsurprisingly indicating alterations in lipid synthesis and degradation.  

 

Table 4. Gene ontology. Functional classification of 120 GC-upregulated genes (p=<0.05, fold 
change = >+1.5) using DAVID Bioinformatics Resource 6.8 for analysis and pathway 
enrichment in Biological Processes. Relevant processes listed in order of significance.  
A 

Term GO Number Gene 
count 

% Enriched P-value Adjusted 
P-value 

response to cAMP GO:0051591 4 3.4 2.70E-03 8.10E-01 

response to cold GO:0009409 3 2.5 2.00E-02 1.00E+00 

cellular response to 
hormone stimulus 

GO:0032870 3 2.5 2.70E-02 1.00E+00 

amyloid precursor protein 
catabolic process 

GO:0042987 2 1.7 3.20E-02 9.90E-01 

regulation of immune 
system process 

GO:0002682 2 1.7 3.20E-02 9.90E-01 

microtubule polymerization GO:0046785 2 1.7 6.30E-02 9.90E-01 

transport GO:0006810 16 13.6 6.60E-02 9.90E-01 

response to organic cyclic 
compound 

GO:0014070 3 2.5 7.00E-02 9.90E-01 

cellular response to fluid 
shear stress 

GO:0071498 2 1.7 7.80E-02 9.90E-01 

inactivation of MAPK 
activity 

GO:0000188 2 1.7 7.80E-02 9.90E-01 

positive regulation of 
ERK1 and ERK2 cascade 

GO:0070374 4 3.4 8.20E-02 9.80E-01 

wound healing GO:0042060 3 2.5 9.20E-02 9.90E-01 
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Table 4. Gene ontology. Functional classification of 130 GC-downregulated genes (p=<0.05, 
fold change = >+1.5) using DAVID Bioinformatics Resource 6.8 for analysis and pathway 
enrichment in Biological Processes. Relevant processes listed in order of significance.  
B 

Term GO Number Gene 
count 

% Enriched P-value Adjusted 
P-value 

lipid metabolic process GO:0006629 8 6.8 1.40E-02 1.00E+00 

cell adhesion GO:0007155 8 6.8 1.80E-02 1.00E+00 

negative regulation of cell 
projection organization 

GO:0031345 2 1.7 2.20E-02 1.00E+00 

amino acid transport GO:0006865 3 2.5 2.30E-02 9.90E-01 

positive regulation of 
canonical Wnt signaling 

pathway 

GO:0090263 
3 2.5 5.30E-02 1.00E+00 

fatty acid catabolic process GO:0009062 2 1.7 5.40E-02 1.00E+00 

fatty acid metabolic 
process 

GO:0006631 4 3.4 5.60E-02 1.00E+00 

mesodermal cell 
differentiation 

GO:0048333 2 1.7 5.90E-02 9.90E-01 

regulation of insulin 
receptor signaling pathway 

GO:0046626 2 1.7 6.40E-02 9.90E-01 

positive regulation of gene 
expression 

GO:0010628 6 5.1 7.00E-02 9.90E-01 

lipoprotein transport GO:0042953 2 1.7 8.50E-02 9.90E-01 

canonical Wnt signaling 
pathway 

GO:0060070 3 2.5 8.70E-02 9.90E-01 

long-chain fatty acid 
metabolic process 

GO:0001676 2 1.7 9.50E-02 9.90E-01 

 

To more stringently examine the impact of GC during consumption of a HFL diet on 

regulation of gene expression, we further identified GC-induced genes from the 250-gene pool 

using a stringency of +2.0-fold change. In doing so, we identified 58 regulated transcripts that 

were differentially expressed compared to the HFL GC- control. These genes were additionally 

divided into either down- 65.5%(38) or up-regulated 34.5%(20) groupings.  
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To further classify the nature of these 58 GC responsive genes, we examined functional 

gene ontologies using MGI 6.08 informatics tool. GC-induced up-regulated visceral adipose 

tissue gene expression (20, 34.4%) related to regulation of gene expression [Id3, Cryab, Fos, 

Peg10], apoptosis [Id3, Cryab, Peg10, Fgf13], cell cycle [Id3, Oxtr, Cryab, Fgf13], cell 

differentiation [Peg10], signaling and signal transduction [Rgs7, Oxtr, Rgs1, Fos, Dock8], cell 

stress [Oxtr, Cryab, Duoxa1, Fos, HSPb7], immunological processes [Orm1, Rgs1, Duoxa1, 

Dock8, Orm2], transport [Orm1, Duoxa1, Gabrr2, Slc22a4, Orm2, Fgf13], microtubule 

polymerization and depolarization [Tppp, Cryab, Fgf13], carbohydrate metabolism [Irs3, Gfpt2, 

Lctl], lipid metabolism [Irs3, Slc22a4], and protein metabolism [Duoxa1, Gfpt2] (Table 5). 

Whereas, down-regulated visceral adipose tissue gene expression (38, 65.5%) related to lipid 

metabolism [Fads2, Isyna1, Saa1, Cyp39a1], transport [Slc16a2, Gabra4, Tbc1d8, Atp1b1, 

Kcnip3, Ano1], oxidation-reduction processes [Fads2, Cyp2c29, Tdo2, Cyp39a1], apoptosis 

[Ngfrap1, Perp, Gadd45g, Fgfr2, Kcnip3, Krt8], cell adhesion [Ncam1, Cnn1, Cdh3, Perp, 

Atp1b1, Ptprf], signaling and signal transduction [Ncam1, Cdh3, Tbc1d8, Fzd6, Fgfr2, Ptprf, 

Ano1], cell stress [Ncam1, Tat, Gadd45g, Fgfr2, Rcan1, Fkbp11, Ano1], protein metabolism 

[Tat, Perp, Tdo2, Xk, Mmp7, Cpxm2, Cfi], regulation of gene expression [Cdh3, Tc2n, Tceal9, 

Kcnip3], carbohydrate metabolism [Cdh3, Baiap2l1], immunological processes [Perp, Saa1, 

Gadd45g, Rcan1, Cfi, Apobec3, Krt8], cell differentiation [Cdh3, Gadd45g, Fzd6, Fgfr2, Krt8], 

cell cycle [Gadd45g, Xk, Fgfr2, Mmp7], actin organization [Baiap2l1, Pdlim3],and ECM 

remodeling [Mmp7, Cpxm2] (Table 5).  
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Table 5. Altered transcripts in visceral adipose tissue. Relative expression levels of top GC-
regulated transcripts (n=58) in visceral adipose tissue from mice fed a HFL diet, using Partek 
Genomics Suite 6.6 software. All genes listed met significance criteria using a FDR with 
significance set at 0.05.  

Gene Symbol Fold 
Change 

Gene Symbol Fold Change Gene Symbol Fold Change 

Igkv15-103 -5.62152 Fzd6 -2.25952 Id3 2.00794 

Fads2 -4.1868 Baiap2l1 -2.24192 Rgs7 2.01133 

Isyna1 -4.1407 Fgfr2 -2.23424 Oxtr 2.01967 

Slc16a2 -3.47202 Mmp7 -2.21776 Orm1 2.0276 

Ngfrap1 -3.31542 Rcn1 -2.18259 Rgs1 2.03062 

Ncam1 -3.31107 Ptprf -2.17483 Tppp 2.03974 

Cnn1 -3.27052 Cpxm2 -2.15429 Irs3 2.06418 

Cyp2c29 -3.08092 Cfi -2.15025 Cryab 2.1818 

Tat -3.05592 Apobec3 -2.13661 Duoxa1 2.19882 

Cdh3 -3.04589 Kcnip3 -2.09492 Gfpt2 2.21176 

Gabra4 -2.98103 Krt8 -2.08657 
Prr32 2.25922 

Tbc1d8 -2.90514 Fkbp11 -2.07908 Fos 2.30652 

Perp -2.89987 Prr15 -2.06956 Dock8 2.36998 

Atp1b1 -2.69608 Pdlim3 -2.06411 Gabrr2 2.39803 

Tdo2 -2.55267 Ano1 -2.06336 
Peg10 2.39946 

Saa1 -2.50861 Fam134b -2.06004 Slc22a4 2.44775 

Gadd45g -2.36481 Cyp39a1 -2.03985 Lctl 2.77248 

Xk -2.36175 Hyls1 -2.00243 Fgf13 2.77714 

Tc2n -2.30871   Hspb7 3.02118 

Wbp5 -2.26173   Orm2 3.81752 
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The combination of a HFL diet, mimicking the “Western” type diet, and chronic GC 

treatment promoted the largest changes in adipose tissue accumulation, adipocyte hypertrophy, 

and early immune alterations. Thus, we were particularly interested in transcripts associated with 

lipid metabolism and immune processes.  

Transcripts of interest that are involved in lipid metabolism include Fads2 and Isyna1, 

both of which were down-regulated in mice receiving GC. Fatty acid desaturase 2 (Fads2) is the 

rate limiting fatty acid desaturase (within a series of steps), in converting the essential PUFAs 

ALA [18:3n-3] and linoleic acid (LA) [18:2n-6] into their corresponding long-chain 

counterparts: EPA [20:5n-3], DHA [22:6n-3], and AA [20:4n-6] within the endoplasmic 

reticulum.66,67 PUFAs are incorporated into the diacylglycerol-backbone of phospholipids within 

the plasma membrane and subcellular membranes.67 Here they act as structural determinants, 

contributing to the hydrophobic scaffold of various integral membrane proteins, and function as 

docking sites of protein domains in cellular transport and cellular signaling.67 Fads2 expression is 

shown to be negatively regulated by EPA and AA in vitro.66 Alterations in Fads2 expression and 

activity perturbs cellular PUFA content, which impacts various processes like: membrane 

signaling and transport, eicosanoid production and signaling, and gene expression.66 Knock-out 

rodent models for Fads2 show: resistance to obesity, altered lipogenesis, and male and female 

sterility.67 More so, as PUFAs play numerous roles in adipocyte processes (ie; gene expression, 

adipokine secretion, macrophage recruitment, insulin signaling, and lipid droplet formation), 

perturbations in their cellular concentrations, via alterations in Fads2 activity, lead to alterations 

in adipocyte function.66 Interestingly, prior research by Barber E, et al. (2013) show that 𝜔-3 

PUFAs (EPA, DHA, DPA) suppress lipid storage in adipocyte lipid droplets in vitro, partly by 

increasing lipolysis and decreasing expression of proteins related to lipid droplet formation.68 
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On the other hand, inositol-3-phosphate synthase 1 (Isyna1) is the rate limiting enzyme 

that catalyzes the first step in biosynthesis of all inositol containing compounds.69,70 Isyna1 

converts glucose-6-phosphate into myo-inositol 3-phosphate, which can be dephosphorylated to 

yield free myo-inositol.69,70 Myo-inositol is a critical component of membrane phospholipids and 

precursor for the phosphoinositide signaling pathway, as it can be phosphorylated at multiple 

positions to yield various inositol phosphates and phosphoinositols.69,70 Myo-inositol and its 

derivatives have an established role in insulin signaling.71 Perturbation of their synthesis leads to 

disruption in insulin signaling, which effects not only carbohydrate metabolism but also lipid 

synthesis and degradation.72 The anti-lipolytic effects of insulin are primarily attributed to 

inhibition of hormone sensitive lipase through activation of cAMP-specific phosphodiesterase’s. 

More so, synthesized myo-inositol can be converted downstream into phosphatidic acid, the 

critical precursor molecule for diacylglycerol and triacylglycerol synthesis.70 However, the 

contribution of inositol to triacylglycerol synthesis is unknown.  

Transcripts of interest that are involved in immune processes include Orm1 and Orm2, 

both of which were up-regulated in mice receiving GC. Acute phase proteins orosomucoid-1 

(Orm1) and Orm2, are abundant within plasma and are generally produced by the liver. Their 

expression is induced by stressful conditions, like inflammation and obesity, where they act as 

immunomodulators.73 Their immunomodulatory role consists of inhibiting mitogen-induced 

proliferation of lymphocytes and aggregation of platelets, as well as chemotaxis, superoxide 

generation, and neutrophil aggregation.73 Interestingly, Orms fall under the lipocalin family of 

proteins, which possess a pocket for lipid binding.73 As such, they have been shown to interact 

with several lipid molecules, including fatty acids.73 Using a high fat diet-induced obesity model, 

Lee YS, et al. (2010) showed that both Orm1 and Orm2 proteins are significantly induced within 
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epididymal adipose tissue in response to both metabolic and inflammatory signals.73 Acting to 

suppress inflammation and aid in maintaining energy homeostasis, suggesting their role in 

coordinating metabolic homeostasis within adipose tissue.73  

Taken together, these various GC-regulated genes provide novel insights into early 

transcriptional changes occurring within visceral adipose tissue while consuming a HFL diet, 

which mimics the “Western” type diet. As well as shedding light on potential mechanisms, still 

poorly understood, that drive visceral adiposity and metabolic dysfunction. Furthermore, they 

yield targets for future investigation.  

A High Fat Fish Oil Diet Differentially Alters Gene Expression in Visceral Adipose Tissue 

Compared to a High Fat Lard Diet 

Comparative analysis of relative gene expression changes within visceral adipose tissue 

was measured using quantitative RT-PCR between: HFO GC+, HFO GC-, HFL GC+, HFL GC-, 

CH GC+, and CH GC- mice. This was done in part to validate selected genes from microarray 

analysis within HFL GC+ and GC- mice, as well as examine differences by diet type. Genes 

assessed include: FADS2, ISYNA1, ORM1, and ORM2, with HMBS serving as the endogenous 

control.  

Microarray results (using genes ISYNA1, FADS2, ORM1, ORM2) were validated within 

HFL GC- and GC+ mice, normalized to the endogenous control HMBS (Figure 15). This 

revealed consistent GC-induced down-regulation of both ISYNA1 and FADS2 genes in the HFL 

diet type. As well as consistent, GC-induced up-regulation of both ORM1 and ORM2 genes.   

 



 50 

 

Figure 15. Validation of microarray results. Genes chosen for validation include: ISYNA1, 
FADS2, ORM1, and ORM2. Groups used include HFL GC+ (n=4) and HFL GC- (n=4). Data 
represents the relative expression of genes normalized to HMBS endogenous control gene. Data 
analyzed using Welch’s test. Results represent mean ± SEM. 
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comparison to its downstream product AA) compared to our HFO diet composition, which 

contains a greater amount of EPA and DHA (the downstream products of ALA).   

 

 

Figure 16. FADS2 expression among experimental groups. Groups used include: CH GC+ & 
GC- (n=3), HFL GC+ & GC- (n=4), and HFO GC+ & GC- (n=4). Data represents the relative 
expression of FADS2 normalized to HMBS endogenous control gene.  Data analyzed using 
Welch’s test. Results represent mean ± SEM. 
 

We also observed a GC-induced down-regulation of ISYNA1 within only the HFL GC+ 

group compared to the HFL GC- group (Figure 17). More so, the HFL GC- group was the only 

group to exhibit a dramatic increase in ISYNA1 expression, as compared to CH GC- and HFO 

GC- groups (Figure 17). This suggests a HFL-diet specific increase in ISYNA1. Unfortunately, 

only one study to date has explored ISYNA1 expression in regard to adipocyte function, using 

3T3-L1 cells.76 Kim S, et al. (2007) showed that ISYNA1 expression is increased during early 

adipogenesis, 2 days following incubation with differentiation cocktail.76 Additionally, no 

studies to date have reported ISYNA1 expression being regulated by GC.  
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Figure 17. ISYNA1 expression among experimental groups. Groups used include: CH GC+ 
& GC- (n=3), HFL GC+ & GC- (n=4), and HFO GC+ & GC- (n=4). Data represents the relative 
expression of ISYNA1 normalized to HMBS endogenous control gene. Data analyzed using 
Welch’s test. Results represent mean ± SEM. 
 

Lastly, we observed a GC specific increase in ORM1 and ORM2 expression, however 

only within mice fed the HFL diet type (Figure 18). Suggesting a diet and GC specific alteration 

in early stress sensors of visceral adipose tissue. Interestingly, both ORM1 and ORM2 genes 

have been previously shown to contain GC responsive elements within their proximal promotor 

regions.77 Furthermore, both HFO groups exhibited no relative increase in ORM1 and ORM2 

expression compared to both CH mice and HFL GC- mice (Figure 18). Suggesting that a high fat 

diet alone does not immediately increase the expression of these acute phase proteins, but rather 

the combination of both a HFL diet and chronic GC treatment can induce their expression. 

Further supporting the role of ORM1 and ORM2 as early signals of cellular stress and 

inflammation.  
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Figure 18. ORM1 and ORM2 expression among experimental groups. Groups used include: 
CH GC+ & GC- (n=3), HFL GC+ & GC- (n=4), and HFO GC+ & GC- (n=4). Data represents 
the relative expression of ORM1 and ORM2 normalized to HMBS endogenous control gene. 
Data analyzed using Welch’s test. Results represent mean ± SEM. 
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Chapter 4 

Discussion, Conclusions, and Recommendations 

Discussion 

With the rise in obesity over the past decades, researchers have focused on understanding 

the relationships between diet composition, metabolic dysfunction, and chronic illness. As such, 

we have developed a greater understanding of how dietary components (ie; types of fat and 

proteins, etc.) impact cellular and tissue physiology in various systems. Even further, we know 

now that metabolism and metabolic byproducts are intricately linked to immune function, 

behavior, reproduction, and gut health. Unfortunately, much of this prior research has solely 

focused on carbohydrates and proteins, leaving dietary lipids out of the picture. However, recent 

research has shown that lipids play critical functions throughout the body as bioactive signaling 

molecules, either directly or through enzymatic activity.  

In the US, a typical “Western” diet consists of approximately 51% kcals from 

carbohydrates (primarily simple), 16% kcals from protein (primarily red meats), and 33% kcals 

from fat (primarily saturated and 𝜔-6 fats).78,79 High fat diets are considered any diet where 

>30% of kcals come from fat. Although the amount of fat is important, more recent emphasis is 

being placed on the source of fat (ie; saturated vs. unsaturated lipids). Saturated fats (ie; 

palmitate), which contain no double bonds in their hydrocarbon chain, are well known to cause 

cellular stress and metabolic dysfunction.79 This is in part due to their structural nature, as they 

can pack tightly in cell membranes (modulating membrane fluidity and cell signaling), and act as 

ligands for toll like receptors on leukocytes. Limiting their percentage in the diet has shown great 

improvements in metabolic parameters, like insulin sensitivity and weight gain.  



 55 

On the other hand, unsaturated fats which consist of monounsaturated (ie; 𝜔-9) and 

polyunsaturated (ie; 𝜔-3 and 𝜔-6) fats, contain different amounts of double bonds at various 

locations in their hydrocarbon chain, appearing kinked in structure.79 Their incorporation into the 

diet is generally associated with better health outcomes and metabolic function. Although as we 

will discuss, 𝜔-6 fats especially in greater proportion to 𝜔-3 fats, such as in the “Western” diet, 

can lead to significant metabolic dysfunction.79 This optimal ratio between 𝜔-6 and 𝜔-3 fats, 

which has been at the forefront of recent research to improve health outcomes, can be achieved 

in one of two ways: 1) by altering the diet in such a way that there are less 𝜔-6’s and more 𝜔-

3’s, or 2) by supplementing 𝜔-3’s directly into a diet high in 𝜔-6’s.  

MS is a clustering of metabolic irregularities, considered by some to develop directly 

from complications of obesity and disorders of adipose tissue. MS increases the risk for 

developing chronic diseases, such as type 2 diabetes and cardiovascular disease, later in life.1,2 

One group shown to be at an increased risk for developing MS, is the pediatric acute 

lymphoblastic leukemia population.4-6 This is due in part to their treatment regiment, as they 

receive an assortment of chemotherapeutics and GC over a 2-2.5 year period.4,5 Chronic 

exposure to GC is associated with various metabolic irregularities, such as abdominal adiposity 

and insulin resistance, and has shown to be exacerbated by a high fat “Western” diet.7,8,10,12,15,16  

No studies to date have examined the effects of dietary supplementation with 𝜔-3 PUFAs 

into a high fat diet while receiving chronic GC treatment, in regard to measures of visceral 

adipose tissue in a younger animal model. Past research has focused on older rodent models that 

consume high fat diets (generally containing ~60% of kcals from fat, which is not 

physiologically relevant) and generally for much longer experimental durations, either with or 

without GC (acutely or chronically). Other studies have looked at the positive effects of 𝜔-3 
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supplementation, either into a model using GC or using high fat diets singularly. One exception 

to this, is a study by Mark PJ et al. (2014) where they looked at the ability of 𝜔-3 PUFAs, 

supplemented at birth into the diets of offspring from GC treated mothers, to rescue progeny 

from the reprogramming effects of GC.80 They found that postnatal dietary supplementation with 

𝜔-3’s limited the adverse fetal programing, brought on by GC treatment in mothers, on adipose 

tissue in offspring.80  

Based on this information, we hypothesized that a high fat “Western” type diet would 

generate metabolic dysfunction, visceral adipose tissue expansion, and a pro-inflammatory 

milieu, such that it would drive the MS phenotype. We further hypothesized that these 

dysfunctions could be rescued by a fish oil based diet, rich in ω-3 PUFAs, possibly through its 

anti-inflammatory and lipid oxidative actions. This study focused on dissecting the relationship 

between specific dietary lipids and chronic GC treatment, in the context of metabolic function, 

immune parameters, and adipocyte morphological alterations, and gene expression in a young 

C57BL/6 murine model.  

A High Fat Fish Oil Diet Reduces the Development of Metabolic Dysfunction Even in the 

Presence of Glucocorticoids Compared to a High Fat Lard Diet 

Consistent with and extending previous research, our results show that a HFL diet (~13:1, 

𝜔-6:𝜔-3), which mimics the “Western” diet, is broadly deleterious. Six-week-old male mice in 

the HFL GC- group gained more weight in total over the 4-week intervention period than their 

isocaloric 𝜔-3 rich HFO GC- (~1:4, 𝜔-6:𝜔-3) counterparts. The observed differences in weight 

gain, occurred despite near equivalent food intake. Our observations coincide with the literature, 

which shows that 𝜔-3 PUFAs stimulate fatty acid oxidation in part through activation of 

peroxisome proliferator-activated receptors (PPARs).79,80  
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Interestingly, HFL GC+ mice gained less weight overall, despite identical food 

consumption, than their HFL GC- counterparts. We attributed this to a loss of lean muscle mass, 

as muscle atrophy is a well-known consequence of GC usage. On the contrary, HFO GC+ mice 

did not exhibit a decrease in total weight gain compared to their HFO GC- counterparts, which 

suggests that the HFO diet type is protective against GC-induced muscle loss. Prior research into 

the effects of 𝜔-3’s on skeletal muscle health in both human and rodent models, show that they 

have intrinsic anabolic/anti-catabolic properties in skeletal muscle.81 However, only one study to 

date has looked directly at the effects of 𝜔-3 supplementation on GC-induced muscle atrophy. 

Fappi A, et al. (2014) supplemented 10-12 week-old male Wistar rats, fed a standard rodent diet, 

with a commercial 𝜔-3 supplement for 40 days.82 At day 30, rats started receiving subcutaneous 

dexmethasone for a total of 10 days.82 Our preliminary data however, seem to contradict the 

findings of Fappi A, et al. (2014), who report that 𝜔-3 supplementation does not protect against 

GC-induced muscle atrophy in gastrocnemius and tibialis anterior (type 2B fast twitch glycolytic 

muscle fibers).82 Discrepancies between findings may be attributed to differences in diet as they 

used only a standard rodent chow, differences in rodent metabolism of GC, or the differences in 

GC potency as they used dexamethasone.  

These significant differences in weight gained during the intervention period, began at 

week 2 when mice were approximately 8 weeks old and were maintained until sacrifice, when 

mice were approximately 10 weeks old. In total, HFL fed mice weighed on average 6.38% more 

than HFO fed mice. Specifically, HFL GC- mice weighed on average 8.2% more than HFO GC- 

mice, and HFL GC+ mice weighed on average 4.5% more than HFO GC+ mice. However, 

despite both diets being isocaloric and near identical food consumption for all groups, both HFL 
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groups gained more weight in grams per kcal of food consumed than their HFO counterparts. 

This suggests a greater energy efficiency in both HFO groups compared to HFL groups.59,60,79  

In addition to weight gain, dysfunctional carbohydrate metabolism, seen as 

hyperglycemia and insulin resistance, is another defining hallmark associated with obesity and 

GC usage.81 A reduction in glucose clearance can result from the inhibition of insulin signaling 

within cells, which has been shown to be induced by inflammatory cytokine signaling (ie; TNF-α 

and IL-6). To explore this, we subjected mice at 10 weeks (prior to sacrifice) to a glucose 

tolerance test. Surprisingly, these data revealed no differences in fasting glucose or glucose 

clearance between either HFL or HFO groups. Although a little disappointing, this may be 

attributed to the young age of mice during the intervention period and/or a lack of inflammation. 

In fact, much of the prior research studying the effects of high fat diets and GC usage are in older 

mice and/or for longer durations. However, despite the lack of differences in glucose clearance, 

we did observe a greater variation in blood glucose levels at the final 90-minute reading for both 

HFL groups that was not recapitulated in either HFO groups.  

A High Fat Fish Oil Diet Reduces the Expansion of Visceral Adipose Tissue and Adipocyte 

Hypertrophy Even in the Presence of Glucocorticoids Compared to a High Fat Lard Diet  

Adipose tissue is a flexible caloric reservoir, responding to energetic and hormonal cues 

to either expand (fatty acid synthesis, lipogenesis) during energy excess or downsize (lipolysis, 

fatty acid oxidation) and release free fatty acids during energy deficit.18,21 This flexible nature of 

adipose tissue, protects other organs from lipidation and lipotoxicity. To explore the impact of 

diet type and GC usage on visceral adipose tissue expansion, we extracted both left and right 

epididymal fat pads from mice. Unsurprisingly, both HFL groups exhibited greater amounts of 

visceral adipose tissue in grams compared to their HFO counterparts. More so, as both HFL 
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groups gained near identical amounts of visceral fat, this further supports the idea that 

differences between overall weight in HFL GC- and GC+ groups is likely due to differences in 

skeletal muscle mass. These data support the notion that the HFO diet type protects against 

visceral adipose tissue accumulation, and more importantly irrespective of GC treatment.  

Adipocyte hypertrophy which occurs during energy excess, represents a balance between 

lipogenesis and lipolysis.18,19,25 Excessive hypertrophy of adipocytes however, leads to an 

increase in reactive oxygen species, endoplasmic reticulum stress, and lipid spillover.18 

Interestingly, it has previously been shown that stem cells in the stromal vascular fraction of 

visceral adipose tissue have a lower potential for adipogenesis or proliferation compared to stem 

cells within subcutaneous adipose tissue. To explore the impact of diet type and GC usage on 

visceral adipocyte hypertrophy, we measured the area of adipocytes from each experimental 

group. Both HFL GC+ (mean= 5713𝜇m2) and GC- (mean= 4728𝜇m2) groups had significantly 

larger adipocytes compared to their HFO GC+ (mean= 3572 𝜇m2) and GC- (mean= 3429𝜇m2) 

counterparts. Supporting the notion that fish oil based diets promote oxidative pathways and 

reduce the burden of lipid storage on adipocytes.59 Moreover, differences were noted between 

HFL GC+ and GC- mice (𝛿=985𝜇m2), with those receiving GC having slightly larger 

adipocytes. However, this trend was not as drastically observed between HFO GC+ and GC- 

mice (𝛿=143𝜇m2), suggesting that GC may exacerbate adipocyte hypertrophy in the presence of 

a HFL diet.  

This idea of GC-induced hypertrophy however poses an interesting conundrum, as GC 

have a well-known role in adipogenesis, which should reduce overall hypertrophy of individual 

adipocytes by creating more adipocytes. With this in mind, we pose the idea that GC may 

regulate some aspect upstream of the adipogenesis pathway, which might explain why 
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hypertrophy of adipocytes is occurring more so in GC treated groups as compared to non-GC 

treated groups. In line with this, we identified a significant decrease in the expression of 

ISYNA1 within HFL CG+ treated mice. Recent data by Jeffery et al, (2015) show that activation 

of adipogenic precursors within adipose tissue is dependent on the phosphoinositide 3-kinase 

(PI3K)-AKT2 pathway, which would be perturbed by a reduction in ISYNA1.84  

A High Fat Fish Oil Diet Positively Modulates Immune Parameters Compared to a High Fat 

Lard Diet 

To determine if the increase in weight generated an increase in systemic and tissue 

cytokine secretion, specifically TNF-𝛼, IL-4, IL-10, IL-𝛼, IL-1𝛽, IL-6, we used a bead-based 

multiplex assay to determine protein levels. Surprisingly, the only observed difference between 

dietary groups was in IL-6 levels within adipose tissue. Where HFO fed mice had a greater 

amount of IL-6 than their HFL counterparts. This was quite shocking, as literature describes 

increased levels of IL-6 being associated with greater adipose tissue inflammation and resultant 

insulin resistance, which contradicts the anti-inflammatory nature of 𝜔-3s. However recent 

findings utilizing an IL-6-/- KO model, suggest that IL-6 specifically during a high fat diet 

challenge is needed to maintain insulin sensitivity, although the underlying mechanisms are not 

yet understood.62  

The lack of other differences in systemic and tissue cytokines levels between HFL and 

HFO groups, suggests that these mice have not yet reached a pro-inflammatory state. This may 

again be attributed to a couple of reasons 1) young age during the intervention period, 2) short 

time frame of high fat feeding, and 3) the use of prednisolone which is not as bioactive as 

dexamethasone, used more commonly in studies. It might also be, that as this time-point the GC 

are still acting in an anti-inflammatory manor and GC-resistance has not yet occurred. However, 
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when we assayed for the adipokine leptin in both plasma and tissue lysates, we observed 

significantly higher plasma levels in HFL fed mice compared with HFO counterparts. Our 

observation agrees with prior research, as increases in leptin are positively associated with 

increases in adipose tissue mass. Leptin, which is synthesized and secreted by adipose tissue, 

increases systemically during obesity to help regulate feeding behavior and act as a pro-

inflammatory immune modulator.61 This suggests that fish oil based diet protects against 

hyperleptinemia, which likely results from an overall reduction in adipose tissue mass. 

An additional aspect for determining immune changes in response to diet type and GC 

usage, is by phenotyping immune cell populations using flow cytometry.20 In adipose tissue, we 

observed a greater infiltration of LDA-/B220-/CD11b+ cells for all mice fed the high fat diet 

types, which can represent macrophages, monocytes, or neutrophils.63,64 Slight, but not 

significant, differences were seen between HFO and HFL groups. From this CD11b+ cell 

population, we gated cells further by F4/80+ and CD11c+. This revealed two distinct macrophage 

populations based on the presence of CD11c (this marker would indicate pro-inflammatory M1-

type macrophages). The fraction of CD11c+ cells were increased with the HFL diet (with no 

difference between GC- and GC+) compared to the HFO diet. This suggests that even though 

there is an increase in macrophage infiltration into visceral adipose tissue with the HFO diet, the 

cells are M2-polarized which have an immunosuppressive function. This is consistent with the 

literature.63,64  

 M2 macrophages are resident anti-inflammatory cells, that have been shown to undergo 

phenotypic switching to pro-inflammatory classically activated “M1” macrophages during 

obesity.63,64 Accumulation of M1 polarized cells within adipose tissue, is pivotal to the 

development of adipose tissue inflammation and insulin resistance.63,64 M1 macrophages are 
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known to infiltrate adipose tissue in response to cytokine and chemokine release, as well as FA 

spill-over, both of which occur in stressed adipocytes. Together these data provide a clear 

difference between immune cell populations (M1 vs M2 macrophages) within visceral adipose 

tissue, that is dependent on the type of fat (𝜔-6 vs 𝜔-3) present within the diet. Furthermore, the 

greater fraction of M2-polarized macrophages within visceral adipose tissue of HFO fed mice, 

suggests a healthier environment not see in adipose tissue of HFL fed mice.  

Finally, we characterized T-cell compartments within spleens of HFL and HFO fed mice, 

as little is known regarding the effect of diet type on splenocyte populations. Cells were gated 

initially by LDA-/CD3+, and then whether they were CD4+ or CD8+. No major differences were 

observed in the percentage of CD4+ cells between all experimental groups. However, slight 

differences were observed in the amount of CD8+ cells, with HFO fed mice having a 4% 

reduction in total CD8+ cells compared to HFL fed mice. This coincides with prior research, 

although limited, which show that 𝜔-3 fatty acids can suppress CD8+ T-cell activation and 

proliferation via elevated levels of myeloid-derived suppresser cells.85 CD8+ cells are a critical 

subpopulation of lymphocytes that include both cytotoxic T-cells, which mediate tumor and viral 

suppression, and a group of suppressor T-cells, which dampen certain immune responses. 

Interestingly, an increased presence of CD8+ T-cells in response to a high fat diet has been 

shown to increase the risk for atherosclerosis, a key component in the development of 

cardiovascular disease.86, We also observed a trend in greater percentage of CD8+ cells within 

both high fat diet types receiving GC, not observed within the standard rodent chow diet type. 

Again however, there was still an overall decrease in CD8+ cells with HFO fed mice compared to 

both HFL and CH counterparts.  
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A High Fat Lard Diet in Conjunction with Glucocorticoids Modulates Visceral Adipose Tissue 

Gene Expression 

Microarray analysis of visceral adipose tissue gene expression was used to further 

examine GC action in driving observed phenotypes. Using the Affymetrix GeneChip Mouse 

Gene 2.0 ST array, we determined differences in transcriptome profiles between HFL GC+ and 

HFL GC- groups. In total, we identified 3,112 visceral adipose tissue transcripts that were 

significantly different in HFL GC+ mice compared to HFL GC- mice. Of these transcripts, 250 

GC-regulated genes were differently expressed by +1.5 relative to GC- controls. Using greater 

stringency in relative expression, we identified 58 GC-regulated genes that were differentially 

expressed by +2.0. Within this group, 65.5%(38) were down-regulated in response to GC and 

34.5%(20) were up-regulated.  

In classifying these GC-regulated genes, using functional gene ontologies, we identified 

several interesting processes, both up- and down-regulated, in response to chronic GC treatment 

during consumption of a HFL diet. Up-regulated genes related to the regulation of gene 

expression, apoptosis, cell cycle, signaling and signal transduction, cell stress, and immunologic 

processes. Whereas down-regulated genes related to: lipid metabolism, oxidation-reduction 

activity, apoptosis, cell adhesion, signaling and signal transduction, cell stress, cell 

differentiation, immunologic processes, and regulation of gene expression. 

As the combination of a HFL diet and chronic GC treatment promoted the largest 

changes in adipose tissue accumulation, adipocyte hypertrophy, and early immune alterations we 

further analyzed transcripts involved in those processes. Down-regulated transcript Fads2, 

encodes the rate limiting desaturase necessary for converting essential PUFAs, ALA and LA, 

into their corresponding long-chain counterparts; EPA, DHA, and AA.66,67 Alterations in Fads2 
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activity perturbs cellular PUFA composition and impacts various processes like membrane 

signaling, eicosanoid production, and gene expression.66 As PUFAs play critical roles within 

many adipocyte activities, disruption in their production leads to alterations in adipocyte and 

adipose tissue function.66  

Down-regulated transcript Isyna1, encodes the rate limiting enzyme necessary for 

biosynthesis of all inositol containing compounds.69,70 It converts glucose-6-phosphate into myo-

inositol 3-phosphate, which can be dephosphorylated to yield free myo-inositol.69,70 Myo-inositol 

is a critical component of membrane phospholipids, and precursor for the phosphoinositide 

signaling pathway which functions in insulin signaling.71 Additionally, myo-inositol can be 

converted through a series of steps into phosphatidic acid, the critical precursor molecule for 

diacylglycerol and triacylglycerol synthesis.70  

Whereas up-regulated transcripts Orm1 and Om2, encode acute phase proteins that 

function as early immunomodulators within adipose tissue.73 Induction of their expression occurs 

during inflammation and obesity. Orm1 and Orm2 proteins act to suppress excess inflammation 

and maintain energy homeostasis, playing a role in the coordination of metabolic homeostasis 

within adipose tissue.73 Together these GC-regulated genes shed new insight into early 

transcriptional changes occurring within visceral adipose tissue while consuming a HFL 

“Western” type diet.  

A High Fat Fish Oil Diet, Irrespective of Glucocorticoid Treatment, Differentially Alters 

Transcript Levels Compared to a High Fat Lard Diet 

Comparative analysis of relative gene expression changes within visceral adipose tissue 

were measured using quantitative RT-PCR between both HFO and HFL groups to identify diet 
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and GC specific differences. Relative gene expression changes for FADS2, ISYNA1, ORM1 and 

ORM2 additionally validated our microarray results between HFL GC+ and GC- mice.  

We identified a GC-induced reduction in relative expression of the FADS2 gene across 

both HFO and HFL groups. Unfortunately, minimal research has looked at FADS2 expression in 

conjunction with GC treatment. Of the few studies that have explored this relationship, all report 

GC-induced increases within SAT depots.74,75 This data is therefore novel in that it is the first 

time that GC down-regulation of FADS2 expression within visceral adipose tissue has been 

demonstrated. Additionally, in agreement with prior literature which shows FADS2 undergoes 

negative feedback inhibition from LA and ALA metabolites, AA and EPA-respectively, our data 

shows a diet specific trend in FADS2 expression. A greater relative expression was seen within 

HFL fed mice as compared to HFO fed mice, most likely due to the higher amount of EPA and 

DHA (metabolites of ALA) within the HFO diet. Whereas the HFL diet contained primarily LA 

and very little of its metabolite AA. 

We also observed a GC-induced down-regulation of ISYNA1, however only within the 

HFL GC+ group as compared to the HFL GC- group. To date, no studies have shown ISYNA1 

undergoes regulation by GC, more so if this gene contains GC responsive elements. 

Interestingly, HFL GC- mice were the only group to exhibit a dramatic increase in ISYNA1 

relative expression. Suggesting a HFL diet specific increase in ISYNA1 expression. Alas, only 

one study to date has explored ISYNA1 expression within adipocytes, using 3T3-L1 cells.76 Kim 

S, et al. (2007) showed ISYNA1 expression to be increased during early adipogenesis, 2 days 

following incubation with the differentiation cocktail, in 3T3-L1 cells.76 

Finally, we observed a GC specific increase in ORM1 and ORM2 relative expression 

within mice fed the HFL diet only. Suggesting a diet and GC specific alteration in early stress 
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sensors within visceral adipose tissue. Additional minor differences in ORM2 expression were 

noted between HFL GC- and HFO GC- groups, with the HFO GC- group having a lower relative 

expression. Interestingly, ORM1 and ORM2 genes are shown to contain GC responsive elements 

within their proximal promotor regions.77 More so, as both HFO groups exhibited a lower 

relative expression of ORM1 and ORM2, compared to HFL counterparts, this suggests that a 

high fat diet alone does not immediately increase the expression of these acute phase proteins. 

Rather the combination of both a HFL diet, rich in 𝜔-6s, and chronic GC treatment, is needed to 

induce their expression.  

Conclusions 

In summary, this study examined the effects of ω-3 and ω-6 dietary lipids with and 

without GC in young male C57BL/6 mice. Measures for metabolic function, adipose tissue 

morphology, immune cell characterization, cytokine/adipokine profiles, and visceral adipose 

tissue gene expression were analyzed. The fish oil based diet broadly protected against overall 

weight gain, visceral adipose tissue accumulation and adipocyte hypertrophy even in the 

presence of GC. Additionally, the fish oil based diet retained a greater percentage of resident 

anti-inflammatory M2-polarized macrophages, whereas the lard based diet accumulated a greater 

percentage of pro-inflammatory M1-polarized macrophages. Transcriptome analysis revealed 

that GC, in conjunction with a HFL diet, down-regulate transcripts involved in lipid metabolism 

whilst up-regulating immunomodulators within visceral adipose tissue. Finally, differences in 

gene expression between HFO GC+ & GC- treated mice and HFL GC+ & GC- treated mice 

depict lipid specific and GC-specific regulation of critical transcripts involved in energy and cell 

homeostasis. These results support the supplementation of ω-3 PUFAs into a high fat lard diet, 
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even in the presence of chronic GC treatment, at an early age. Directly benefiting metabolic and 

immune parameters, as well as beneficially regulating gene expression in young mice.  

Recommendations for Future Research 

 The novel findings presented here, highlight the need for further investigation on many 

fronts. First, investigation into the effects of fish oil based diets on visceral adipose tissue whole 

transcriptome is needed to better delineate differences underlying diet specific drivers of 

observed phenotypes. Second, further investigation into the potential protective nature of fish oil 

based diets on GC-induced muscle atrophy is needed, as skeletal muscle is a major buffer of 

blood glucose and a primary site for fatty acid oxidation. Third, further study into the role of 

visceral adipose tissue IL-6 expression should be explored, as its function may be context 

specific such as in skeletal muscle. Fourth, the impact of GC on the regulation of adipose tissue 

stem cell populations should be at the forefront of investigation. As GC have a well-known role 

in adipogenesis, we were surprised to see that GC induced hypertrophy of visceral adipocytes 

more so than driving the formation of new adipocytes, and thus offsetting the burden of lipid 

storage. This is likely a depot specific phenomena, as chronic GC usage is known to reduce 

subcutaneous depots.  

Larger experimental groups would also provide greater statistical power, and allow for a 

better understanding of association between various factors where effect size is small. As well as 

a more focused approach toward understanding the many underlying biomolecular pathways 

responsible for phenotypic changes identified and discussed here. Additionally, future studies 

should look into altering the ω-3:ω-6 PUFA ratio, to identify the optimal dosage of ω-3 PUFA 

supplementation in humans. 
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Appendices 

 
         IACUC Approval 

IACUC PROTOCOL 
FOR USE OF LIVE VERTEBRATES FOR RESEARCH, TEACHING OR DEMONSTRATION 

UNIVERSITY OF MEMPHIS 
 
 
IACUC Protocol #                                               Date Submitted to IACUC  
 
Dates Protocol will be in effect:                              from                                  to  
(not to exceed three years including two yearly renewals) 
 
Is this protocol related to an external grant or contract application?                 Yes           No  X 
 
If yes, complete the following: 
 
Agency:                                                                           Date Submitted 
 
Grant # 
 
University account for Animal Care Facility per diem charge:   
 
If the protocol is not related to an external grant or contract application, complete the 
following: 
 
University account for Animal Care Facility per diem charge:   
 

Project Title: (If project relates to a grant or contract application, give that title; if the project is 
related to a class, give the course name and number): 
 

 
I. Personnel 
 
Investigator/Instructor:  
 
Department:  
 
Academic Rank:  
 

Campus phone:                                                     Emergency phone:   

Effect of a dietary intervention on glucocorticoid-induced metabolic syndrome. 

 7/21/14 

  

 9/2/14 9/1/17 

  

 

 211700 

0749 

Marie van der Merwe 

Health and Sport Sciences 

Assistant Professor 

901 678 3476 901 406 7458 
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Attending Veterinarian:    
 
Phone:                                                                   Emergency phone:  
 
List all individuals that will handle animals using this protocol and their level of expertise (e.g. 
relevant qualifications). If the protocol applies to a class then so specify. 

 
If additional personnel become involved in handling animals used in this protocol, it is the 
responsibility of the principal investigator to notify the Animal Care Facility in writing 
before they start. 
 
If applicable, has the investigator/instructor and all personnel listed above  
received the appropriate vaccinations (tetanus, rabies)?                                   Yes           No   
 
Is it necessary for personnel listed on this protocol to be tested for TB?          Yes           No X  
 
If you have questions about the kind of vaccination or about TB, call the Animal Care 
Facility at 678 2034. 
 
All U of M personnel involved in this protocol must complete the animal care and use 
training program (satisfactory completion of, or concurrent registration in Biol 7006/8006), 
or have completed a comparable training program at another institution before animals 
can be procured or before the experiments/teaching or demonstration.   In submitting this 
protocol, I, as Principal Investigator/Instructor accept the responsibility for compliance 
with this requirement. 
 
In addition, the Principal Investigator/Instructor must be willing to provide appropriate 
supervision for all persons working on this protocol.  In the case of a class, the Instructor 
must be responsible for training any students in classes involved prior to using animals. 
 
II.  Project Description 
 
A. Summary (Enter a brief description below of your project, using lay terminology): 
 

Marie van der Merwe – PhD (Molecular Pharmacology), Postdoctoral Fellowship (Bone Marrow 
Transplantation): More than 10 years of experience using mice as a research model. 
 
Simone Godwin – BA (Anthropology), Animal husbandry internship at Duke Lemur Center 
(Durham), Primate conservation and rehabilitation internship at Alouatta Sanctuary (Panama) 
 
LeeAnna Beech – B.S (Dietetics), A.S (Science), Animal trainer certification at Dolphin Quest 
(O’ahu) 

Karyl Buddington 

901 678 2359   901 258 1232 
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B. Describe IN DETAIL the procedures you will follow. You may do this in either of two 
 ways (Check one of the options below and follow the associated instructions): 
 
1. Accompanying documentation (include documentation in box below).                           X 
   
 OR 
 
2. By reference to previously published work (provide a complete bibliographic citation 

in the box below, and describe any variations from the published technique).            
 

Acute lymphoblastic leukemia (ALL) treatment increases the risk for pediatric patients to develop 
obesity and symptoms similar to metabolic syndrome including type-2 diabetes and dyslipidemia. 
The treatment includes many chemotherapies and also high doses of glucocorticoids. The long 
term use of glucocorticoids has been associated with the increases in weight and also symptoms 
similar to metabolic syndrome. The goal of this experiment is to determine if dietary interventions 
can reduce risk and long term consequences associated with the use of glucocorticoids.  
 
We will use a mouse model (C57BL/6) that will receive a 45% fat (lard) diet, similar to a Western 
diet. Control mice will be on a “normal” 10% fat diet. As an intervention, the fat source will be 
altered to a 45% fish oil diet (omega-3 fatty acids). Omega-3 fatty acids have been shown to 
reduce inflammation and decrease risk of development of glucose intolerance. While on the 
various diets, mice will be given the glucocorticoid, prednisone at a dose of 40mg/m2/day for 28 
days. Prednisone will be administered orally using a vehicle on a daily basis. 28 days reflect the 
induction phase of ALL treatment during which time the patients receive high doses of prednisone 
and experience a dramatic increase in weight.  
 
Eating habits (amount of food consumed) and weights of mice will be monitored twice a week. 
After two weeks (14 days), half of each group of mice will be anaesthetized to perform a DEXA 
scan (whole body fat composition) Blood will be drawn to determine glucose and insulin levels. A 
glucose tolerance test will be performed by administering glucose and then measure glucose levels 
in blood at various time points. The mice will be sacrificed to harvest brain, adrenal glands, liver, 
spleen, mesenteric lymph nodes and adipose tissue for analysis. The remainder of the mice will go 
through the same process at 28 day after the start of glucocorticoid treatment.  
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Mice: C57BL/6 male mice will be used for this study and obtained from breeder pairs that are 
bred and housed at the animal facility on the University of Memphis campus.  
Diets and treatments:  All of the mice will be weaned at 3 weeks of age to the western diet with 
45% lard and 41% carbohydrate (20% sucrose, 9% corn starch and 12% Maltodextrin 10). For 
Specific Aim 1 the mice will remain on this diet.  For Specific Aim 2 the lard component will be 
replaced using fish oil at the start of glucocorticoid treatment to provide the long chain omega-3 
fatty acids.  The diets will be purchased from Research Diets, which has experience in producing 
the western diet for rodent studies. 
Glucocorticoid therapy:  To resemble the age group of ALL patients treated at St Jude, mice will 
be 6 weeks of age at the start of glucocorticoid therapy. Mice of this age are comparable to a 4 
year old child.  The glucocorticoid treatment will last for 28 days.   Prednisone (40 mg/m2/day) 
will be orally administered on a daily basis by adding it to a vehicle of canned sweet potato or 
other canned fruits or vegetables. If the vehicle is not sufficient to mask the taste of prednisone, 
we might use prednisolone that is bioequivalent to prednisone, but is more palatable. This might 
only be needed for the first couple of doses as the increase of appetite drivel by the glucocorticoid 
might drive the consumption of the drug in vehicle. If prednisolone is not efficiently consumed, 
we will administer the drug by gavage. Again, this might only be required for the first couple of 
days until their appetite increases.  
Experimental design: 
For Specific Aim 1, 40 male mice will be divided into 2 experimental groups, with all mice fed 
the western diet with lard and with or without the addition of the glucocorticoid (GC) treatment 
(20/group).  Half of each group - 10 mice – will only be treated for 14 days.  This group will be 
anaesthetized (isoflurane) after a 10 h fast, a DEXA scan performed (anesthetized for 15 min) and 
blood collected via the saphenous vein in one of the back legs to determine fasting glucose and 
insulin levels and also determine cytokine levels. For the glucose tolerance test, these mice will be 
given a 1g glucose/kg body weight intraperitoneally and blood collected every 30 minutes for 90 
minutes to measure glucose levels. Mice will then be euthanized (CO2 inhalation) to collect brain, 
adrenal glands, liver, spleen, mesenteric lymph nodes and adipose tissue for histology, 
biochemistry and immune cells harvest. This data will reveal if there is any early indication of the 
metabolic phenotype. The remainder of the mice will remain on the glucocorticoid treatment for 
another 14 days at which point this group will be anaesthetized (isoflurane) after a 10 h fast, a 
DEXA scan performed and blood collected via the saphenous vein in one of the back legs to 
determine fasting glucose and insulin levels and also determine cytokine levels. For the glucose 
tolerance test, these mice will be given a 1g glucose/kg body weight intraperitoneally and blood 
collected every 30 minutes for 90 minutes to measure glucose levels. Mice will then be euthanized 
(CO2 inhalation) to collect brain, adrenal glands, liver, spleen, mesenteric lymph nodes and 
adipose tissue for histology, biochemistry and immune cells harvest.  
 
The same experimental approach will be used for Specific Aim 2, except the lard diet will be 
replaced by the fish oil based western diet. 
 
 
Specific Aim Western Diet type                     Treatment 
1 (n = 40) Lard                        Plus Glucocorticoid No Glucocorticoid 
2 (n = 40) Fish Oil            Plus Glucocorticoid No Glucocorticoid 
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C. Rationale for Involving Animals and the Appropriateness of Species and Number Used. 
 
Indicate (here) briefly the short and/or long-term benefits (to humans and/or other animals) of 
this use of animals for research, teaching or demonstration.  In addition, state briefly why living 
animals are required for this study, rather than some alternative model. 
 

 
D. Do the procedures described in B above, have the potential to inflict more 
 than momentary pain or distress (this does not include pain caused by  
 injections or other minor procedures)?                                                     Yes           No  X 
 
If yes, please address the following:  
I have considered alternatives to procedures that might cause more than momentary or slight 
pain/distress, and I have not found such alternatives.  As such, I have used one or more of the 
following methods and sources to search for such alternatives: (check below each method used) 
 

 Agricola Data Base  Medline Data Base  CAB Abstracts 

 TOXLINE  BIOSIS  Lab. Animal Sci. Journal 

 Lab. Animals Journal  Lab Animal  Animal Welfare Info Center 

 ATLA (Alternatives to Laboratory Animal Journal)  Quick Biblio. Series 

 Lab Animal Welfare Bibliography (QL55L27311988)  "Benchmarks" 

 "Alternatives to Animal Use in Research, Testing and Education" 

 Current Contents 

 CARL 

The goal of this experiment is to mimic the metabolic syndrome that is induced in the pediatric 
population treated for acute lymphoblastic leukemia. No restriction or dietary advice is currently 
given to these patients. We are interested in the kinetics of the onset of the syndrome and also 
what role the immune system plays is setting up the environment for the disorder.  
 
The C57BL/6 diet induced obesity (dio) mouse model has been used previously to look at the 
effect of excess weight on various organ systems. As we are interested in the interaction between 
the immune system and other organs and what role it plays in the onset of metabolic phenotype, 
we cannot use isolated cell lines or model organisms such as yeast. Additionally, many reagents 
have been developed for the use of mouse tissues, especially antibodies that will be used to 
identify immune populations. 
 
There will be 10 mice per group for each time point. This number should be sufficient to 
determine statistical significance. (There will also be 16 mice on regular chow to use as controls.) 
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 Direct contact with colleagues (if selected, you MUST document this below) 

 
List search words for the literature search:   
 
 
 
 
What is the length of time that the literature search covers? 
 
 
 
III. Animal Use 
 
A. List all animal species to be used (example below). 
  
Species Number1 Age2 Sex2 Weight2 Where Housed  
 (Bldg./Rm#) 

Hooded Wistar rats  45 2 months male 250-350 gm Psychology Bld./422I 

C57BL/6 mice 60 2 months Male 20-25 gm Psychology Bld./422I 

      

      

      

      

 
        1Individuals using ectotherms need to only approximate numbers. 
  2Individuals using fish or other ectotherms need not answer this question. 
 
Is any species threatened or endangered?                                                          Yes           No  X 
 
B.  Source of animals 
 
X  Commercial vendor (Source: Jackson Labs) Female mice will be purchased to breed with male mice 
available on the UM campus 
X  Bred at The University of Memphis  

 Captured from wild  

 Transferred from another study (IACUC Protocol Number                                                       ) 

 Donated (Source                                                                                                                         ) 

 Tennessee Wildlife Resources Agency 

 Purchased and supplied by TMGC  
Is the supplier a USDA approved source?                                                         Yes           No   
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If not, explain why:  
 

 Animals are already in residence at U of M 
 
C. Will surgery be conducted on animals?                                                    Yes           No   
 
If yes, complete this section: 
 

 Non Recovery Surgery  Recovery Surgery 
 Multiple Survival Surgery (if the latter is checked, complete section F) 

 
Surgeon(s) (Name/Job/Title/Academic Rank) Location of Surgery (Bldg. & Room #) 
 

 
D.  Will Anesthetic(s), Analgesic(s), or  
 Tranquilizing agents be administered?                                                     Yes  X         No   
                   
If yes, complete this section (example below). 
  
Species & Sex Agent Dose Route Performed by 
 (Name/Title/Academic Rank) 

male Hooded Wistar rats sodium pentobarbitol 50 mg/kg   i.p. Mr. Smith/Research 

Technician/B.Sc. 

C57/BL6 mice Isoflurane     2-4% Inhalation Marie van der Merwe/ Assistant 

Professor 

Simone Godwin/Masters Student 

LeeAnnaBeech/Masters Student  

     

     

     

     

 
E. Will euthanasia be carried out?                                                             Yes  X         No                    
If yes, complete this section (example below). 
  
Species & Sex Agent Dose Route Performed by 
 (Name/Title/Academic Rank) 

male Hooded Wistar rats sodium pentobarbitol 150 

mg/kg   

i.p. Mr. Smith/Research Technician/B.Sc. 
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C57BL/6 CO2 3L/min Inhalation Marie van der Merwe/ Assistant 

Professor 

Simone Godwin/Masters Student 

LeeAnnaBeech/Masters Student 

     

     

     

     

 
If no, describe disposition of animal(s) at conclusion of this study in box below. 
 

 
F. Will special housing, conditioning, diets or other conditions  
 be required?                                                                                              Yes  X         No   
 
If yes, please explain in box below. 
                         

 
 
 
G. Will animals be removed from the U of M campus at any time?             Yes           No  X 
 
If yes, please indicate to where and for how long in box below. 
 

 
H. If they are to be housed for more than 24 hours outside approved facilities at U of M, 
provide a scientific justification in box below. 
 

IV. Toxic and Hazardous Substances 
 
A. Check off any of the following below that will be used in these experiments? 
 

 Infectious agents (Fill out a, b) 
 Radioisotopes (Fill out a, b, e) 
 Toxic chemicals or carcinogens (Fill out a, b) 

 

Mice will be on special high fat (either lard/fish oil) diets in addition to receiving daily oral 
glucocorticoids.  
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 Recombinant DNA (Fill out a) 
 Experimental drugs (Fill out a) 
 Malignant cells or hybridomas (Fill out a, c) 
 Adjuvants (Fill out a) 
 Controlled substances (Fill out a, d, e) 

 
For each checked off category, answer the questions indicated below: 
 
a. Identify the substance(s) and completely describe their use, including how will be injected 

or given to the animal(s):  
 

 
b. Describe all procedures necessary for personnel and animal safety including  biohazardous 

waste, carcass disposal and cage decontamination: 
 

 
c. If transplantable tumors or hybridoma cells are to be injected into the 
 animals, have the tissues/cells been tested for inadvertent contamination  
 by viruses or mycoplasma?                                                                       Yes           No  

 
 
If yes, what was the result (indicate in box below). 
 

 
d. In the box below, provide a complete list of these substances, and if their use is not 

explicitly explained in the materials already provided, explain their use and role in the 
research. 

 
Provide DEA license # covering the use of these substances:   
 
To whom (or what entity) is the license issued?   
 
e. Provide Radioisotope License Number:   
 
To whom is the license issued?   
 
V. Categories of Animal Experimentation Based Upon Level of Manipulation and Pain: 
 (check off each category that is applicable to this application) 
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X A. Animals will be involved in teaching, research, experiments or tests involving  no 

pain, distress, or use of pain-relieving drugs. 
 
X B.  Animals  will be subject to mild stress only (e.g., food or water deprivation of less 

than 24 hours for use in behavioral studies such as operant conditioning; physical 
restraint for less than 30 minutes), and will not be subject to surgery, painful stimuli, 
or any of the other conditions described below. Procedures described in this protocol 
have the potential to inflict no more than momentary or slight pain or distress on the 
animal(s)----that is, no pain in excess of that caused by injections or other minor 
procedures such as blood sampling.  

 
X C. Animals will have minor procedures performed, blood sampling, etc. while 

anesthetized.  
 
X D. Live animals will be humanely killed without any treatments, manipulations, etc. but 

will be used to obtain tissue, cells, sera, etc.  
 

 E. Live animals will have significant manipulations, surgery, etc. performed while 
anesthetized. The animals will be humanely killed at experiment termination without 
regaining consciousness.  

 
 F. Live animals will receive a painful stimulus of short duration without anesthesia 

(behavior experiments with flight or avoidance reactions--e.g., shock/reward) 
resulting in a short-term traumatic response. Other examples in this category are, 
blood sampling, injections of adjuvants, or drugs, etc.  

 
 

 G. Live animals will have significant manipulations performed, such as surgery, while 
anesthetized and allowed to recover. Such procedures cause post-anesthetic 
pain/discomfort resulting from the experiment protocol (e.g., chronic catheters. 
surgical wounds, implants) which cause a minimum of pain and/or distress. Also 
included are mild toxic drugs or chemicals, tumor implants (including hybridomas). 
tethered animals, short-termed physically restrained animals (up to 1 hour), 
mother/infant separations.  

 
 H. Live animals will have significant manipulations or severe discomfort, etc. without 

benefit of anesthesia, analgesics or tranquilizers. Examples to be included in this 
category are: toxicity testing, radiation sickness, irritants, burns, trauma, biologic 
toxins, virulence challenge, prolonged: restrictions of food or water intake, cold 
exposure, physical restraint or drug addiction. All use of paralytic agents (curare-like 
drugs) must be included in this category.  Describe any abnormal environmental 
conditions that may be imposed.  Describe and justify the use of any physical restrain 
devices employed longer then 1 hour.  

 
VI. Justifications for Category G Studies and Deviations from Standard Techniques 
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Describe in the box below any steps to be taken to monitor potential or overt pain and/or distress 
during the course of this study and how such pain or distress will be alleviated. Be as detailed as 
necessary to justify your procedure.   
 

 
VII. Certifications 

(By submitting this protocol, I am acknowledging that I comply with the certifications 
included in Section VII.)  (check one) 

 
X Animal Use for Research. I certify that the above statements are true and the protocol 

stands as the original or is essentially the same as found in the grant application or 
program/project. The IACUC will be notified of any changes in the proposed project, or 
personnel, relative to this application, prior to proceeding with any animal experimentation. 
I will not purchase animals nor proceed with animal experimentation until approval by the 
IACUC is granted. 

 
 
 Animal Use for Teaching/Demonstration. I certify that the information in this application is 

essentially the same as contained in the course outline and a copy of the laboratory 
exercises using animals is on file in the IACUC office. The IACUC will be notified of any 
changes in the proposed project, or personnel, relative to this application, prior to 
proceeding with any animal experimentation. I will not proceed with animal 
experimentation until approval by the IACUC is granted.  

 
 
Estimate the cost of maintaining animals used in this protocol based on current per diem charge 
at University of Memphis. 
 
Please specify cost per unit of time:  
 
Specify anticipated total costs for project duration:   
 
As supervisor of this project it is required that you inform your department chair 
concerning any animal per diem costs related to this project that are to be paid by the 
department.  
 
By submitting this protocol, the Principal Investigator/Course Director indicates that the 
following have been considered: 
 
1. Alternatives to use of animals. 
2. Reduction of pain and stress in animals to the lowest level possible.  
3. The proper needs of the animals with respect to housing and care.  
4. The lowest number of animals used that will give the appropriate experimental results.  

 

    $ 24/day  (24c/cage/day) 

   $ 1680 
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5. Use of the most primitive species that will give the appropriate experimental results.  
6.  Proper training of all personnel in the care and handling of the species used and in the 

procedures called for in this protocol before beginning the experiment/teaching or 
demonstration.  

7. That this protocol is not an unnecessary repeat of results already in the literature or in the 
case of teaching/demonstrations, results that can be demonstrated using models or video 
material.  

 
Principal Investigator/Course Director (Type Name) 
 
e-mail address 
 
Date   
 
 
Federal Law requires that members of the IACUC be given adequate time to read and review 
protocols including any changes or revisions in them. 
 
The University of Memphis IACUC evaluates protocols on a continuous basis.  Any protocols or 
modifications or renewals to any protocols to be considered at this time must be received by the 
Animal Care Facility no later than the end of the second week of the previous month. 
 
Incomplete protocols will be returned to the principal investigator. We will not accept a FAXed 
protocol, renewal form or changes to a protocol. 
 
E-mail the completed protocol to Dr. Guy Mittleman (Dept. Psychology):  
 
mailto:<g.mittleman@mail.psyc.memphis.edu>?subject=RE:  IACUC Application  
 
January, 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Marie van der Merwe 

    mvndrmrw@memphis.edu 

    7/21/14 
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