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ABSTRACT 

Taylor, Christopher Adam. M.S. The University of Memphis. May, 2016. 

Investigation of a Tunable 3D Patterned Illumination Design Implementation for 

Structured Illumination Microscopy. Major Professor: Dr. Chrysanthe Preza. 

 

This thesis proposes methods to investigate a novel tunable incoherent 3D patterned 

illumination suitable for Structured Illumination Microscopy (SIM). A Matlab simulation 

was designed for the novel tunable illumination in a single and double slit configuration. 

An experimental setup of the single and double slit configurations was designed and used 

to acquire experimental data, which was compared with simulation predictions. The 

comparison aims to scrutinize the lateral and axial frequencies of the sinusoidal 

illumination pattern and to determine the accuracy of the simulation with real world 

optics parameters. The simulation result provides a model of the 3D patterned 

illumination, which is necessary for future use in a SIM setup. An accurate model of the 

illumination pattern will facilitate designing the forward and inverse SIM imaging 

models in a different study. The novel incoherent tunable illumination design will 

theoretically produce better super resolution and optical sectioning capability than current 

SIM setups that rely on coherent illumination. 
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CHAPTER 1 INTRODUCTION 

1.A Conventional Widefield Microscopy and Structured Illumination Microscopy 

Conventional widefield microscopy is a widely used tool for biological 

researchers to investigate living cells or objects at the micrometer scale, but has some 

limitations. The resolution of the widefield microscope is fundamentally limited by the 

wavelength of light and the numerical aperture of the objective lens. In 1873, Abbe 

defined this limitation as the diffraction limit 𝑑 =  
𝜆

2𝑁𝐴
 where d is the radius of the spot 

produced by light with a wavelength of 𝜆, and 𝑁𝐴 is the numerical aperture of the optics 

[1]. An optical imaging system that can produce images at its maximum theoretical 

resolution limit is said to be “diffraction limited” [2]. For example, an optical system 

using light with a wavelength of 635 nm and an objective lens with a NA of 1.4 would 

have a lateral resolution of 226.8 nm. 

Another fundamental limitation of the widefield microscope is lack of optical 

sectioning capability. Optical sectioning refers to the process of capturing images at 

different depths of a sample without intensity contributions from objects in adjacent 

planes. A compilation of two dimensional images can be stacked in the direction of the 

optic axis to provide a three dimensional image. However, in practice in-focus as well as 

out-of-focus light from other depths of the sample contributes to each 2D image which 

can be disadvantageous; especially when trying to focus deep into a sample. The lack of 

optical sectioning capability can be better understood by looking at the optical transfer 

function of the microscope. 
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Figure 1-1. Transverse and axial cut of the 3D wide field OTF, normalized 

coordinates. Reprinted from [3]. 
 

The optical transfer function of the conventional widefield microscope has what is 

colloquially known as the “missing cone problem”, because the missing axial spatial 

frequencies define a cone shape along the Z-Axis [4]. The missing axial frequencies have 

a profound effect on the axial resolution. The widefield microscope has an axial 

resolution that is approximately half the transverse resolution. If the missing information 

could be recovered, the optical system could achieve true optical sectioning capability.  

Structured Illumination Microscopy (SIM) attempts to solve these two problems 

of the widefield microscope by modulating the light distribution which excites the 

sample. SIM can theoretically extend the lateral resolution to a maximum of two times 

the diffraction limit. Any resolution above the diffraction limit is known as “super 

resolution” (SR) [5]. A spatially structured illumination pattern is used to modulate high 

frequency information into the pass band of a microscope [5]. More recent versions of 

SIM have also been demonstrated to increase axial resolution and produce optical 

sectioning capabilities [5, 6]. Filling the “missing-cone” in the optical transfer function is 

synonymous with capturing axial spatial frequencies that enable improved axial 

resolution and optical sectioning capability.  
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The field of structured illumination microscopy encompasses a large variety of 

different techniques used to produce structured illumination; some of these techniques are 

discussed in Chapter 2. This research investigates a new method for generating a “tunable 

structured illumination pattern” with an incoherent light source, a multiple slit aperture, 

and a biprism [7]. 

1.B Thesis Research Overview 

The proposed research presents a new structured illumination technique that aims 

to provide lateral super resolution, optical sectioning capability in microscopy, and 

tunability of the lateral illumination frequency over a certain range of spatial frequencies. 

The three-dimensional illumination pattern is laterally and axially modulated which 

allows the optical system to pass “missing-cone” information and lateral super resolution 

information.  

The thesis builds on the work of Ana Doblas et al. [7] to investigate an 

illumination pattern that can be used in an incoherent structured illumination microscopy 

setup. Doblas et.al. have previously established that a sinusoidal illumination pattern can 

be created through interference by using a slit aperture followed by a converging lens, 

and a Fresnel biprism. When a wavefront from a point source illuminates the biprism, the 

exiting wavefront is split into two waves that proceed from two virtual point sources that 

are mutually coherent. This configuration will be referred to as the fixed lateral frequency 

setup. The fixed lateral frequency setup is capable of producing a pattern with a spatial 

frequency close to the cutoff frequency of a microscope objective while maintaining a 

high contrast intensity pattern despite using an incoherent light source. The novel tunable 

setup (refer to Figure 2-1) being investigated in this thesis is a variation of the fixed 
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lateral frequency setup that additionally allows for a tunable illumination pattern in a set 

range of lateral frequencies. The range of spatial frequencies is predominantly determined 

by characteristics of the biprism such as its apex angle and refractive index. The 

frequency of the pattern is tuned by the distance between the biprism and the slit aperture. 

This type of 3D illumination pattern can theoretically produce an OTF in the optical 

imaging system capable of lateral super resolution and optical sectioning similar to 3-

wave interference, but with the added benefit of eliminating coherent noise (discussed 

further in Section 2.B). Lateral super resolution and optical sectioning capabilities are not 

the focus of this thesis; however, they are part of the motivating factors for this research. 

Based on Doblas et al. previous work, the illumination pattern will theoretically have a 

high signal to noise ratio, which will be useful for 3D super resolution in optically thick 

samples. The focus of this thesis will be investigating the illumination pattern generated 

by the new variation of the biprism setup and how it compares to theoretical predictions 

from simulation. 

1.C Objectives 

The two main objectives of this research are to: 1) implement both a simulation 

and experimental setup of the novel tunable illumination pattern, and 2) develop methods 

for measuring and comparing simulation data, experimental data, and theoretical 

calculations. The two configurations to be tested contain a single or a double slit aperture. 

The single slit aperture study focuses on testing the lateral frequency component of the 

system, while the double slit aperture study focuses on testing the axial frequency 

component. Both of these studies evaluate varying biprism positions to observe the 

tunability of the system. 
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1.D Contributions 

This research contributes to Dr. Preza’s NSF project to build a novel SIM system. 

There are 3 parts to this new system: the structured illumination pattern, PSF engineering 

to reduce spherical aberration, and computational methods for the inverse model to 

reconstruct the image from raw SIM data. This thesis will contribute to the first part of 

this project to provide a simulation model for the illumination pattern that can be used in 

the forward imaging model for the SIM system. Along with the simulation model, robust 

tools to measure and compare simulation, experimental, and theoretical data will be 

needed to verify the accuracy of the model.  

This study focuses on developing a robust simulation for the novel tunable 

illumination pattern that can be used in the forward imaging model. It is important that 

the simulation model accurately describes the data from the experimental setup. The 

simulation model for the novel illumination setup will eventually be used in the forward 

imaging model of the SIM system, which is vitally important for developing an accurate 

inverse model that will be capable of handling raw experimental SIM data. Verification 

of simulation with the experimental illumination setup is important because it will 

eventually be paired with an open SIM setup, where the entire SIM system can be studied 

before attempting to adapt the illumination pattern to a commercial widefield microscope. 

There are two methods evaluated in the thesis that were designed to measure the 

lateral and axial frequency components of the 3D illumination pattern, the Average 

Frequency Algorithm and the Power Spectral Density method. Both methods will be 

discussed in Section 3.F and 3.G. 
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1.E Benefits to Biological Researchers 

For biological and medical research, there is a need for improved live cell 

imaging. Current SIM systems offer super-resolution (SR) imaging for thin samples only 

(essentially 2D imaging), and confocal techniques allow for 3D imaging with enhanced 

optical sectioning but minimal improvements in lateral resolution. SIM combines the best 

advantages of confocal scanning microscopy and conventional widefield microscopy. 

Imaging applications require the highest resolution, sufficient imaging depths for thick 

samples, minimal sample disruption, and fast data-acquisition. By transforming SIM into 

a 3D SR tool, biological researchers can investigate issues around cell motility, behavior, 

and regulation in 3D environments that mock the spatial organization of organs. 
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CHAPTER 2 BACKGROUND 

2.A Structured Illumination Microscopy (SIM) 

As previously mentioned, the motivation behind this research is to investigate a 

tunable illumination pattern to develop an improved SIM system that can obtain 3D 

cellular information through optically thick specimens. SIM is an important modality 

because it pushes the limits of wide field microscopes without the disadvantages of 

confocal microscopy. A confocal microscope is capable of capturing 3D images, by 

scanning a 3D object point by point. The images produced have the property of optical 

sectioning because the setup rejects out-of-focus light, thus eliminating the “missing-cone 

problem” that was described in Section 1.A. However, because confocal must scan an 

image pixel by pixel in three dimensions, it is unsuitable for live cell imaging as the 

process will produced blurred images from a dynamic sample. Generally confocal excels 

at capturing 3D images of static specimens that can be subjected to large amounts of 

photons. The small pinhole used in the point-wise scanning method has to be large 

enough to allow in-focus light to pass, while also being small enough to improve spatial 

resolution and block out-of-focus light [8]. SIM has an advantage over confocal in that it 

requires only one dimensional scanning through the Z-axis while no light signal is lost. 

Certain variations of SIM can also solve the “missing-cone problem” that inhibits 

conventional wide field microscopy. 

To understand how SIM development has evolved, we will review below the 

three main SIM approaches based on: 1) incoherent illumination; 2) 2-wave coherent 

illumination; and 3) 3-wave coherent illumination. 
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2.B Recent Advances in 3D SIM 

Incoherent SIM as discussed in Karadaglic and Wilson’s paper [9]  is 

demonstrated as a two-dimensional structured illumination pattern; the pattern only has 

modulation in the lateral direction. The system can achieve optical sectioning capability, 

but cannot achieve lateral super resolution. The method illuminates the sample with 

spatially structured excitation light, so that the illumination pattern is strongest in the 

focus of the sample and decreases in contrast with defocus. The structured illumination is 

a sinusoidal fringe pattern of bright and dark bands with a certain frequency. At least 3 

images must be acquired with a phase shift in the excitation pattern in order to capture 

adequate SIM data to reconstruct the underlying high resolution image. One disadvantage 

of this type of SIM system is that the contrast of the illumination pattern is rapidly 

attenuated due to the nature of the optical transfer function for an incoherent imaging 

system. In effect, the contrast of an illumination pattern is diminished as the modulation 

frequency of the pattern approaches the cut-off frequency of the imaging system. For this 

reason, the incoherent illumination approach cannot achieve lateral super resolution at the 

theoretical limit of twice the conventional widefield microscope’s lateral resolution. The 

method must use a low frequency pattern (approximately one-third of the cut-off 

frequency of the objective lens) in order to obtain high contrast fringes [8, 10]. The low 

frequency pattern enables optical sectioning capability and is capable of achieving axial 

resolution similar to a confocal microscope. A commercial example of this method is the 

Zeiss ApoTome™.  

 In 2-wave coherent illumination SIM, the 2D fringe pattern is created by the 

interference of the two waves, and thus the system can achieve either optical sectioning 
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or lateral super resolution, but not both at the same time [8] . The system can achieve 

maximum lateral super resolution by using a fringe pattern with frequency close to the 

cut-off frequency of the objective lens. Lowering the frequency of the pattern allows the 

system to provide imaging with optical sectioning capability [11]. The optical transfer 

function for coherent imaging does not attenuate the contrast of the fringe pattern. The 

sample is illuminated by a spatially structured illumination pattern that makes normally 

inaccessible high-resolution information visible in the observed image in the form of 

Moire fringes [8]. At least three raw SIM images per illumination direction, (typically 9 

total) must be captured by shifting the illumination pattern through three phases. The raw 

SIM data is then processed to extract the underlying high resolution image.  

A 3-wave coherent illumination SIM system as discussed by Gustafsson can 

simultaneously achieve optical sectioning and lateral super resolution (also known as 3D 

super resolution) [5]. Unlike the previous SIM modalities presented, 3-wave coherent 

illumination SIM produces a 3D illumination pattern that is both laterally and axially 

modulated. The effective OTF of the 3-wave system can fill the missing cone while also 

achieving lateral super resolution simultaneously. The system requires at least 5 shifted 

phases of the illumination pattern per illumination direction (typically 15 total) in order to 

reconstruct a high resolution image from the raw data [5, 8]. The Zeiss Elyra™ is a 

commercial example of 3-wave Structured Illumination Microscopy. The Zeiss Elyra™ 

uses 3-wave coherent structured  illumination and has been shown to achieve double the 

resolution at 100 nm laterally and 200 nm axially [12]. 
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2.C Novel Tunable Illumination Pattern 

Recently, a new type of structured illumination based on a Fresnel biprism was 

shown to have advantages over Gustafsson’s 3-wave coherent illumination. A 2-wave 

incoherent pattern that has similar imaging properties to Gustafsson’s 3-wave SIM can be 

created by using at least a two or more slit aperture, a biprism, and a converging lens. In 

this section, we will highlight the importance of each of these three elements in the 

illumination system and the overall advantages of the system compared to previous SIM 

modalities.  

The Fresnel biprism is the optical element responsible for generating the 

sinusoidal illumination pattern. The biprism is essentially two thin equal prisms joined at 

their base. By illuminating the biprism with a monochromatic point source, two mutually 

coherent virtual sources are created at the source plane [7]. The interference between 

these two virtual sources generates a sinusoidal pattern after the biprism, which is similar 

to Young’s double slit experiment where two waves interfere.  

A slit can replace the point source and be used to illuminate the biprism (Figure 

2-1). The slit acts as a stack of point sources along y and does not influence the visibility 

of the fringe pattern, but does affect its maximum irradiance [7]. When illuminating the 

biprism with a single slit, two virtual slits will appear on either side of the source slit at 

the source plane. The illumination pattern resulting from a single slit and a biprism is 

comparable to a 2-wave illumination system, where the two virtual sources interfere to 

form a sinusoidal pattern of fringes. When two slits are spaced symmetrically on either 

side of the apex of the biprism, a 2-wave interference pattern is generated after the 

biprism with a sinusoidal pattern laterally and axially. This novel illumination pattern has 
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SIM imaging properties comparable to 3-wave coherent SIM, but without the 

disadvantages of coherent light. 

In order to obtain a lateral period that does not change with axial distance, a 

converging lens is placed after the biprism so that the slit aperture is placed in the front 

focal plane of the converging lens. The spherical wavefront emitted from the slit aperture 

(and thus the virtual sources) is transformed to a parallel wavefront by the converging 

lens. In this configuration, the interference pattern after the converging lens maintains a 

constant lateral period with changing axially distance (z). 

There are a few key advantages of this new type of 3D illumination pattern that 

are investigated and implemented as part of this thesis research. The setup is capable of 

tuning the illumination pattern’s lateral spatial frequency by changing the distance 

between the biprism and the grating (refer to Figure 2-1). The range of available 

frequencies is determined by the angle of the biprism and its axial displacement with 

respect to the slit aperture. Both of these parameters can be chosen in order to achieve the 

maximum spatial frequency for the microscope objective lens. This system property is in 

contrast to commercial SIM systems such as the Zeiss ApoTome™ that rely on a discrete 

number of spatial grid frequencies that are specifically designed for a particular set of 

objective lenses. The new biprism-based setup is much more flexible by allowing for a 

continuous range of spatial frequencies. The biprism setup also has an additional 

advantage over current incoherent SIM systems. The Zeiss ApoTome™, for example, is 

capable of using only low frequency illumination patterns when compared to the cut off 

frequency of the objective lens in order to maintain high contrast as discussed in Section 

2.B. However, the biprism setup is able to maintain high contrast fringes even while 
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approaching the cutoff frequency of the objective [7]. Using this new illumination pattern 

for SIM will allow the system to capture more high frequency information during SIM 

data acquisition. Another advantage over current incoherent SIM systems is that the 

illumination pattern is axially modulated. This axial modulation will allow the system to 

pass frequencies normally lost in the “missing-cone” region while also achieving lateral 

SR. The axial modulation for two slits is similar to a 3-wave coherent system, but the 

biprism system eliminates coherent noise by using incoherent light. 

 

 

Figure 2-1. Two Slit diagram. A two slit aperture followed by a Fresnel biprism and 

a converging lens. The aperture is illuminated by a spatially incoherent light source. 

f is focal length of the converging lens and η is the distance between the biprism and 

the slit aperture. Increasing η increases the lateral frequency of the illumination 

pattern behind the converging lens. η is confined to the length of f. 

 

  

𝑥0 
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2.D Basic Theory and Simulation of the Irradiance Signal in the Fixed Lateral 

Frequency Setup 

This section discusses the pattern produced by a Fresnel biprism for the fixed 

lateral frequency setup (also known as the slit - converging lens - biprism setup 

investigated by Doblas et al.). It should be noted that in the paper by Doblas et al. [7], the 

slit-biprism (spherical) and the slit-converging lens-biprism (parallel) setups were 

discussed and analyzed. Doblas et al. named the slit-converging lens-biprism setup as the 

“parallel configuration” because the parallel wave front after the converging lens can 

maintain a uniform lateral period through z. The novel tunable slit-biprism-converging 

lens setup investigated in Chapters 3 and 4 of this thesis is based on the model of the 

fixed lateral frequency setup, so it is important to understand the working principles of 

the setup. In what follows, the pertinent equations and variables (refer to Table 2-1) are 

relevant to the fixed lateral frequency setup (non-tunable illumination pattern) based on 

previous work done by Doblas et al. [7]. 

Table 2-1. List of Important variables related to Simulating the Irradiance Signal. 

Found in Equation 1-6 

 

𝜆 Wavelength of Source [mm] 

𝑛 Refractive Index of Biprism 

𝛿 Biprism Angle [radians] 

𝑥0 Slit Separation [mm] 

Δ Slit Width [mm] 

𝜂 Biprism Position (distance from source plane) [mm] 

𝑓 Focal Length of Converging lens  (distance from source plane) [mm] 
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We define the source plane where the point source emits a spherical wave front at 

distance η before the biprism, and an observation plane where the pattern is observed at 

distance z after the converging lens (Figure 2-1).  When a spherical wave front 

illuminates a biprism, the wave front is split into two spherical waves that can be traced 

to two virtual sources that lie at the source plane. The two virtual sources are separated 

by the distance [13] 

𝒂 = 𝟐𝜼(𝒏 − 𝟏)𝜹      (2-1) 

The virtual sources are mutually coherent and a parageometrical description of the 

irradiance distribution can be written as 

𝑰𝟎(𝒙, 𝒚, 𝒛; 𝜼) = 𝟏 + 𝑽(𝒛)𝒄𝒐 𝒔 (
𝟐𝝅𝒙

𝒑𝒙
) , 

 

(2-2) 

where the visibility of the pattern is 

𝑽(𝒛) =
𝒔𝒊𝒏 (𝝅𝑵

𝑴𝒔𝒙𝟎

𝒑𝒙
)

𝑵𝒔𝒊𝒏 (𝝅
𝑴𝒔𝒙𝟎

𝒑𝒙
)

 𝒔𝒊𝒏𝒄 (𝚫
𝑴𝒔

𝒑𝒙
) 

 

(2-3) 

and                                     𝑴𝒔 =  
−𝒛

𝒇
 . (2-4) 

The lateral period of the interference pattern is 

𝒑𝒙 =
𝝀

𝟐(𝒏 − 𝟏) 𝐭𝐚𝐧(𝜹)
 . 

 

(2-5) 

The period for the visibility of the resonant planes for a double slit setup (single slit does 

not produce an axial frequency term) is 

𝒑𝒛 =  
𝒇

𝒙𝟎
 𝒑𝒙 =  

𝝀𝒇

𝟐𝒙𝟎(𝒏 − 𝟏) 𝐭𝐚𝐧(𝜹)
 , 

(2-6) 

and the axial period of the interference pattern is 
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𝐩𝐦 = 𝟐𝐩𝐳 . (2-7) 

The pattern obtained from the parageometrical model is modified by diffraction 

effects due to the apex of the biprism [7]. The amplitude distribution after the biprism can 

be calculated by using the Fresnel-Kirchoff integral, assuming the biprism is a thin 

object. Equations (2-8) and (2-9) more accurately describe the Irradiance signal than 

Equation (2-2) by taking into account the diffraction effects of the biprism’s apex. 

Equation (2-8) fully describes the illumination pattern and has the same form as equation 

(2-2) as shown in Ref. [7]. 

𝑰𝟎(𝒙, 𝒚, 𝒛; 𝜼) =  

|

| 𝐞𝐱𝐩 (−𝒋
𝝅

𝝀𝒛
(𝒙 + 𝝀𝒛𝒖𝟎)𝟐) {

𝟏 + 𝒋

𝟐
+ 𝑭𝒓𝒆𝒔 [√

𝟐

𝝀𝒛
(𝒙 + 𝝀𝒛𝒖𝟎)]}

+ 𝐞𝐱𝐩 (−𝒋
𝝅

𝝀𝒛
(𝒙 − 𝝀𝒛𝒖𝟎)𝟐) {

𝟏 + 𝒋

𝟐
− 𝑭𝒓𝒆𝒔 [√

𝟐

𝝀𝒛
(𝒙 − 𝝀𝒛𝒖𝟎)]}

|

|

𝟐

 

(2-8) 

where   𝑭𝒓𝒆𝒔[𝜶] =  ∫ 𝒆𝒙𝒑 (𝒋
𝝅

𝟐
𝒙𝟐) 𝒅𝒙 = 𝑪(𝜶) + 𝒋𝑺(𝜶),

𝜶

𝟎
 (2-9) 

and   𝒖𝟎 =
(𝒏−𝟏) 𝐭𝐚𝐧 𝜹

𝝀
 . (2-10) 

 

The interference terms of the parageometrical description and the Fresnel-

Kirchoff description have the same lateral period as well as axial period for the two slit 

setup [7]. The fixed lateral frequency simulation model also accounts for the finite width 

of the slit aperture by convolving the 𝐼0(𝒙, 𝒚, 𝒛; 𝜼) function with a rectangle of width Δ to 

produce the final irradiance signal 𝐼(𝒙, 𝒚, 𝒛; 𝜼). Furthermore, this convolution of a rect(.) 

function is modeled as the multiplication of a sinc(.) function in the frequency domain. 

For the purpose of this thesis research, it is important to note that Doblas concluded the 

pattern will maintain strong visibility as long as the slit width is sufficiently smaller than 
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the slit separation for multiple slit configurations. A sufficiently small slit width is 

approximately an order of magnitude smaller than the slit separation. Large slit widths 

will significantly reduce visibility of the pattern with increasing z. For a more in depth 

analysis of the visibility of the pattern, refer to [7]. 
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CHAPTER 3 METHODOLOGY 

3.A Simulation of Tunable Illumination Pattern 

The two main objectives are to investigate a new optical setup for a novel tunable 

illumination and develop methods to measure the lateral and axial frequencies of its 

structured illumination pattern. The approach is to extend the previous study of the fixed 

lateral frequency illumination pattern [7]. First, in order to investigate the new optical 

setup we simulate and test a configuration consisting of a slit aperture followed by a 

biprism, then a converging lens (the novel tunable setup, Figure 2-1). The illumination 

configuration allows for a tunable frequency pattern based on changing the position of 

the biprism with respect to the slit aperture. In this study, the fixed lateral frequency 

simulation has been extended to scale the illumination pattern in proportion to the 

distance of the biprism from the slits. Second, simulation is used to develop methods to 

measure the frequency of the illumination pattern laterally and axially. The fixed lateral 

frequency simulation uses a normalized X coordinate; therefore, the lateral frequency 

cannot be quantified. Doblas et al. [7] have developed the theoretical equations for 

calculating the lateral and axial frequencies, which are used to verify the methods 

developed as part of this thesis for measuring the lateral and axial frequencies. It is 

important to note that the extension of the fixed lateral frequency simulation also includes 

the ability to specify the simulation’s lateral and axial resolution in terms of mm/pixel, 

which is useful for quantitatively comparing simulated and experimental data. 

Simulation Objective 1. The following describes how the fixed lateral frequency 

simulation has been extended to scale the illumination pattern relative to the position of 

the biprism. Generation of the pattern is based on the principle of the Fourier transform 
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relationship between the cosine function in the frequency domain and two delta functions 

in the space domain. The virtual sources created by the biprism act as two delta functions 

in the space domain. According to the Fourier transform relationship, the distance 

between the two delta functions is directly proportional to the frequency of the cosine 

function. From this, we can establish that the distance between the virtual slits is directly 

proportional to the lateral frequency of the illumination pattern, so if the distance between 

the two virtual sources is halved then the frequency is also halved. Doblas et al. [7] states 

that the distance between the virtual slits (𝑎) is directly proportional to the distance 

between the biprism and the slit aperture (𝜂) in Equation      (2-1). The frequency of the 

illumination pattern can be scaled based on the ratio (
𝜂

𝑓𝑐
) of the biprism distance from the 

slit aperture (𝜂) and the focal distance of the converging lens (𝑓𝑐). 

To calculate the new lateral and axial periods of the pattern produced by the novel 

tunable illumination setup, Equations (2-5) and (2-6) were multiplied by the inverse of 

the frequency scaling ratio (
𝜂

𝑓𝑐
) to produce the new lateral and axial period for the novel 

tunable illumination setup:  

𝒑𝒙 =
 𝝀𝒇𝒄

𝟐𝜼(𝒏 − 𝟏)𝐭𝐚𝐧 (𝜹)
 

and 

(3-1) 

𝒑𝒎 = 𝟐𝒑𝒛 =  𝟐
𝒇𝒄

𝒙𝟎
𝒑𝒙 =

𝟐𝝀𝒇𝒄
𝟐

𝟐𝒙𝟎𝜼(𝒏 − 𝟏)𝐭𝐚𝐧 (𝜹)
  , 

(3-2) 

where the variables have already been defined in Table 2-1. 

Simulation Objective 2. The following describes a method to remove the x 

normalization factor as used in Doblas et al. [7] such that the revised simulation starts at 

a base scale of 1 mm/pixel enabling the user to simply specify any mm/pixel value to 

Comment [CP(1]: Is this the period of the 

pattern or of the visibility?  
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simulate any camera with a specific pixel pitch. The fixed lateral frequency simulation’s 

parameters are defined in mm, so for consistency the novel tunable simulation’s pixel 

pitch was defined in mm/pixel.  

The x normalization factor was not explicitly stated in Doblas et al. [7], so it was 

calculated using the following procedure. Using a set of arbitrary parameters, the 

theoretical lateral period was calculated using Equation (3-1), which gives the period in 

millimeters. A simulation using a set of arbitrary parameters then produces an irradiance 

signal with a lateral period that can be measured in terms of pixels. The normalized 

mm/pixel value is determined by these two quantities and was found to be   

𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 
𝒎𝒎

𝒑𝒊𝒙𝒆𝒍
≝  

𝟐

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒊𝒙𝒆𝒍𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒙 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏
 

(3-3) 

Multiplying the x-axis by the inverse of Equation (3-3) brings the system to a 1 

mm/pixel scaling. Now that the simulation starts at a base scale of 1 mm/pixel, the user 

can simply specify any mm/pixel value to simulate any camera with a specific pixel pitch 

in order to compare simulation and experimental measured frequencies both laterally and 

axially. 

Simulation Normalization. In all cases where the simulated data is compared to 

experimental data, the simulation data is normalized so that the total power of the 

simulation matches experimental data. An average along the y-dimension is calculated 

for each x value in a given z-plane, assuming that the illumination pattern is vertically 

aligned. The averages are summed along x to find the total power of the image in a 

particular z-plane. The simulated data is simply summed along the x- dimension because 

only one y value is simulated (the center value). The simulated data for the particular z-
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plane is multiplied by the ratio of the total power of the experimental image to the total 

power of the simulated data (Equation (3-4)). 

𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =

𝟏
𝑵𝒚

∑ ∑ (𝒅(𝒙, 𝒚, 𝒛𝟎))𝒚𝒙

∑ 𝒊(𝒙, 𝟎, 𝒛𝟎)𝒙
, 

(3-4) 

 

where  𝑵𝒚 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒊𝒙𝒆𝒍𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒚 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏  

and  𝒛𝟎 = 𝒂 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒁 𝒑𝒍𝒂𝒏𝒆.  

  

Comment [CP(2]: Define N_y below and z_0, is  
y=0 the center? confusing 
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3.B Single Slit Variable Aperture Configuration 

The purpose of the single slit experiment is to verify the tunability of the 

frequency pattern by changing the biprism position, and to show that the frequency of the 

pattern remains constant through the Z-Axis. As discussed in Section 0, the frequency of 

the pattern should be uniform through Z and there should not be any axial modulation 

with the single slit setup.  

An imperial micrometer variable slit aperture (ThorLabs Model# VA100) is used 

for the single slit configuration.  The variable aperture was not fully closed at tick marker 

zero. In order to find the actual closed position of the variable slit, the slit was calibrated 

at 0 when no light reached the camera. It was found the actual closed position of the 

variable slit to be at tick marker -0.003 inches. Measurements of the variable single slit 

reported in this thesis are pre-adjusted with the calibration and reported as true values. 

 

 

Figure 3-1. Single Slit Aperture from ThorLabs for size reference. Reprinted from 

[14]. 
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3.C Double Slit Aperture Configuration 

The purpose of the double slit experiment is to verify the axial modulation along 

the Z-Axis as described in Section 2.C. The frequency of the pattern should maintain the 

same lateral frequency as a single slit experiment with similar parameters (biprism 

position, biprism angle, converging lens, wavelength of light, etc.). The double slits 

aperture shown in the figure below has a slit width of 70um and slit separation of 200, 

300 and 500 um from left to right. A double slit aperture on a glass plate from Mansion 

Schools Model# U22014 is used for the double slit experiment. 

 

 

Figure 3-2. Double Slit Aperture from Mansion Schools. Changing slit separations 

requires readjusting lateral alignment with the biprism. Reprinted from [15]. 
 

3.D Coherent and Incoherent Illumination  

For coherent illumination, a laser with a wavelength of 635 nm is used to align the 

optical elements and collect coherent data. The beam of the coherent light was used to 

verify the alignment of the optical elements. A neutral density filter is placed in the 
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beam’s path, so the Axiocamera can capture pictures of the illumination directly. Without 

the neutral density filter, the coherent light saturates the camera’s exposure. 

For incoherent illumination, an LED with a wavelength of 470 nm and variable 

intensity is used to collect incoherent data. The two sources are toggled in and out of the 

optical system via a flipper mirror. The variable intensity and exposure settings on the 

Axio camera allow for direct capture of the illumination without a neutral density filter. 

As discussed in Section 2.C, the incoherent illumination is the primary source for 

investigation. The novel tunable incoherent illumination setup has theoretically better 

super resolution and optical sectioning capability than previous incoherent illumination 

setups used in SIM. The novel setup will also theoretically produce a better signal to 

noise ratio because coherent noise is eliminated from the system.  

3.E Biprisms 

Two biprisms were investigated (FBP2020G-175 and FBP2020G-179). The angle 

of the biprism determines the frequency range of the structured illumination. The two 

biprisms were used to verify that the change in the biprism angle would match the 

frequency change in simulation and experiment. It should be noted that the higher 

frequency range of the FBP2020G-175 biprism could not be captured directly by the 

Axio camera’s 6.4 µm per pixel resolution. At that pixel size the camera has 156.25 

pixels per mm or approximately a 78 lp/mm sampling rate. According to the Nyquist 

Theorem, the sampling rate must be twice the frequency of the pattern; therefore, the 

camera can adequately sample 39 lp/mm without aliasing. The FBP2020G-175 biprism 

can theoretically produce a pattern with a frequency range of 19.14 lp/mm to 95.68 

lp/mm for an arbitrarily chosen (η) range of 30 to 150 mm for f = 150 mm and a 
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wavelength of 470 nm. Refer to Section 3.A on theoretical calculations for the lateral 

period/frequency. One solution to this problem is to magnify the illumination pattern with 

a secondary lens relay in order to avoid aliasing at the camera’s lateral resolution. 

3.F Calculation of Lateral Frequency in Experimental Data with the Average 

Frequency Algorithm (AFA) 

A new Matlab function was created in order to calculate the frequency of the 

fringe pattern in an XY plane (lateral frequency). The technique finds the peaks of the 

sinusoidal pattern, calculates the distances between the peaks using the known mm/pixel 

ratio, and averages the distances together to find a collective period. This algorithm, 

referred to the Average Frequency Algorithm (AFA) was created to find the frequency of 

an intensity profile (Figure 3-3) through the illumination pattern along the x direction 

while ignoring background noise. A profile with a significant number of noisy peaks 

would create an overestimation of the frequency.  

The algorithm follows these steps to find the true peaks. First, it sets a window to 

include peaks that are within 40% of the max peak, in order to avoid peaks due to the 

background noise. Second, it finds all the peaks within the window and removes noisy 

peaks that are beyond a set frequency limit. For example, a frequency limit is set to 

double (100% error) the measured frequency obtained from simulated data, so the 

algorithm will accept any peaks that are within 100% error of the simulation frequency 

and reject any peaks that would overestimate the frequency by 100%. This is the same as 

rejecting any noisy peaks that are closer than 50% of the simulation period to a real peak. 
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Figure 3-3. Example of Experimental Coherent Data With Noisy Peaks. The blue x’s 

represent peaks found by MATLAB’s findpeaks() function. The red o’s represent 

peaks found with the adjusted algorithm. Using the red o’s as peak data points, the 

experimental frequency is calculated as 4.62963 lp/mm. The experimental data has a 

-1.73% error compared to Simulation frequency: 4.7185 lp/mm. Light wavelength 

635nm, Biprism FBP2020G-179, Biprism position 𝜼 50mm, converging lens f 

150mm, camera resolution 0.0064 mm/pixel. 

 

We expect the algorithm to reach the maximum 100% error if there is no fringe 

pattern or if the data is pure noise. Figure 3-5 and Figure 3-6 are intensity line profiles at 

y =400 and y=450 using identical average frequency algorithm parameters, where y is the 

pixel row in the image being examined (Experimental data in Figure 3-4). At y=400, 

there is a fringe pattern of 4.88 lp/mm that has a 3.32% error in comparison to the 

simulation frequency of 4.7185 lp/mm. At y =450, there is no fringe pattern and the 

algorithm is looking at background noise, therefore the algorithm estimates a frequency 

at the maximum 100% error. 
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Figure 3-4. Left Incoherent Simulation Data. Right Experimental Coherent Data. 

Although the left is incoherent data and the right is coherent data, the lateral 

frequency of both patterns should be the same. Figure 3-5 and Figure 3-6 are 

intensity line plots through the experimental coherent data. 
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Figure 3-5. Magnified intensity line profile for y = 400. Fringe pattern of 4.88 

lp/mm. 

 

 

Figure 3-6. Intensity line plot through y = 450. Background noise. AFA 

approximates a frequency that maxes out at 100% error as defined by the user. 
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3.G Power Spectral Density (PSD) Analysis of the Illumination Pattern’s Lateral 

Frequency  

Another way to calculate the frequency of the pattern is to analyze the PSD of a 

line profile through the structured illumination. The PSD of the signal describes the 

power present in the signal as a function of frequency [16]. The PSD can be calculated 

via the following algorithm in Matlab using the variables described in  

Table 3-1: 

 

𝒀 =  𝒇𝒇𝒕(𝒔𝒊𝒈𝒏𝒂𝒍, 𝒏𝑺𝒂𝒎𝒑𝒍𝒆𝒔) (3-5) 

𝑷𝒚𝒚 = 𝒀.∗ 𝒄𝒐𝒏𝒋(𝒀)/𝒏𝑺𝒂𝒎𝒑𝒍𝒆𝒔 (3-6) 

𝒇 =

𝟏
𝒎𝒎𝑷𝒆𝒓𝑷𝒊𝒙𝒆𝒍

𝒏𝑺𝒂𝒎𝒑𝒍𝒆𝒔
∗ (𝟎: (

𝒏𝑺𝒂𝒎𝒑𝒍𝒆𝒔

𝟐
− 𝟏)) 

 

(3-7) 

  

  

Table 3-1. Variables used in calculating Power Spectral Density. 

 

𝑠𝑖𝑔𝑛𝑎𝑙 Line profile through the illumination pattern 

𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 Number of samples in the line profile 

𝑃𝑦𝑦 Power Spectral Density of the signal 

𝑚𝑚𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙 mm/pixel of the signal 

𝑓 The frequency axis for the first half of the PSD. (The remainder of 
the points are symmetric) 
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In the following figures, an example is shown on the PSD method and how the 

lateral frequency is calculated in experimental data acquired with a single slit 

configuration. Figure 3-7 shows the experimental irradiance signal and the line profile 

taken through the center of the data at y=500. Figure 3-8 shows the line profile as a 

function of intensity vs. the x axis in pixels. Figure 3-9 shows the PSD of the line profile 

calculated using Equations (3-5), (3-6), and (3-7). The local maximum in the PSD 

represents the strongest frequency component, which indicates the frequency of the line 

profile. Note that there is some low frequency noise in the PSD for experimental data. In 

the case of simulation data, the low frequency noise is virtually absent. 

 

Figure 3-7. Experimental Irradiance Signal. Note: even though the line profile is not 

taken through the brightest section of the pattern, the PSD can still accurately 

describe the frequency of the pattern. 
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Figure 3-8. Intensity Line Profile taken at y=500 from the Irradiance Signal. By 

Analyzing the PSD, the frequency of the pattern is determined to be 17.11 lp/mm. 

 

 

Figure 3-9. Power Spectral Density of the line profile in Figure 3-8. The local 

maximum at 17.11 indicates the lateral frequency of the pattern. 
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Figure 3-10 shows the calculated lateral frequencies using the PSD method for Z 

planes between 50 and 150mm at 5 mm intervals. As in the simulation, the pattern is 

expected to maintain a consistent lateral frequency through Z. An average of the 

calculated lateral frequencies through Z is indicated by the solid lines. The average 

frequencies of the AFA and the PSD methods for simulation and experimental data are 

compared in Table 3-2. The table indicates that the two methods have minimal 

differences in calculating the lateral frequency of the illumination pattern. 

 

 

Figure 3-10. Calculated lateral frequencies using the PSD method through z at 5mm 

intervals of data acquired with a single slit configuration. We expect the pattern to 

maintain the same lateral frequency through z as indicated by the simulation. 

Table 3-2. Comparison of AFA method and PSD method for calculating lateral 

frequency in simulation and experimental data for a single slit configuration. 
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 AFA PSD %  Difference 

Simulation 16.59 lp/mm 16.54 lp/mm 0.3% 

Experiment 17.24 lp/mm 17.27 lp/mm 0.17% 

 

The procedure of the PSD method is summarized as: For both AFA and PSD 

analysis, a line profile through X is acquired at each Z plane, and the PSD is calculated 

for each line profile. The PSD is analyzed for the local maximum, which indicates the 

lateral frequency of the pattern. The experimental pattern is expected to have one 

dominant frequency component in planes of resonance, with some low frequency noise. 

For the single slit case, the lateral pattern through Z is constant. For the double slit case 

and for configurations with more than two slits, the planes defined as planes of non-

resonance may not show the lateral frequency as the most dominant local maximum in 

the PSD (low frequency noise may be more dominant). Therefore, the average lateral 

frequency should only be composed of calculated frequencies from the planes defined as 

planes of resonance. 

3.H Power Spectral Density (PSD) Analysis of the Illumination Pattern’s Axial 

Frequency 

The AFA method is not suitable for determining the axial frequency in 

experimental data because a line profile representing the axial sinusoid is required. In the 

case of experimental data, the pattern can easily skew off the axial axis that the camera is 

panning through. In simulation data, the AFA method could work to find the axial 

frequency because of perfect symmetry, but a more robust method was investigated for 



33 

 

experimental data. The new method called the power spectral density (PSD) method was 

applied to double slit simulation data and could accurately measure the axial frequency. 

The PSD method allows for calculating the axial frequency indirectly by 

analyzing each z plane, meaning the calculation is independent of the axial skew of the 

pattern with respect to the axial axis of the camera. The planes defined as planes of 

resonance are correlated to the strength of the PSD at the lateral frequency of the pattern. 

In other words, by plotting the PSD intensity for the expected lateral frequency as a 

function of z, the local maximums of that plot represent planes of resonance. Figure 3-11 

shows the PSD Intensity plotted through Z for the calculated lateral frequency of 16.71 

lp/mm in a simulated double slit configuration. Each local peak represents a plane of 

resonance where the calculated lateral frequency has the most power. The power 

increases as the irradiance signal widens with increasing Z. An axial frequency can be 

calculated from these peaks. Each peak represents an alternating maximum and minimum 

of the axial sinusoid; it takes two planes of resonance to complete an axial period. The 

calculated axial frequency from Figure 3-11 is 0.0217 lp/mm, while the theoretical axial 

frequency is 0.0221 lp/mm (which reflects a 1.81% error). 
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Figure 3-11. Power Spectral Density Intensity (watts/lp/mm) of the lateral frequency 

plotted through Z between 50 and 150 mm at 1mm intervals. Each local maximum 

represents a plane of resonance where the predicted lateral frequency is the 

strongest. 

 

 

Figure 3-12. Simulated Irradiance Signal for reference. Notice the four resonant 

planes between 50-150 coincide with the peaks in Figure 3-11. 
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3.I Setup of ThorLabs BSC203 Stepper Controller with Micro-Manager 

Software 

This section covers the initial setup of the two ThorLabs motorized linear 

translations stages LNR50S that are used to control the lateral position of the biprism and 

the axial position of the sample stage. Note that neither of these stages are required to 

take data on the illumination pattern, but both are vitally important to automating the SIM 

system for taking raw SIM data. The two motorized stages are connected to the BSC203 

stepper controller via RS232 comms pins, which is then connected to a computer via a 

USB cable.  

 Before attempting anything with Micro-Manager, the user must first install the 

APT drivers for BSC203 which are included in the 32-bit ThorLabs APT or Kinesis 

Software packages. It is recommended to install the newer Kinesis Software found here 

[17] on ThorLabs website because APT is only made available for legacy purposes and 

will not be updated in the future. The user must install the 32-bit version for use with 

Micro-Manager because the 64-bit version of Micro-Manager does not support the 64-bit 

APT drivers. Once the Kinesis Software has been installed, verify the user can 

manipulate the stage with the software package to ensure that the APT drivers are 

working properly. 

In order to use Micro-Manager to control the motorized stages, a virtual COM 

port must be created. Micro Manager is expecting to communicate with the stages 

through the RS232 connection directly, instead of through USB. [1] Open the windows 

device manager. [2] Click the USB serial bus controllers and right click the APT USB 
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Device for the Properties menu. [3] In the Advanced tab of the Properties menu, check 

‘Load VCP’ box. [4] Restart the BSC203, and the device should appear under ‘Ports 

(COM & LPT)’. Take note of the COM port number (e.g. COM3). Please reference the 

ThorLab’s user manual for additional information [18]. 

After the above setup is completed, Micro-Manager is ready to auto detect the 

BSC203 stepper controller. Note that only the 32-bit version of Micro-Manager will 

recognize the APT drivers. Download an additional APT.dll file available here [19] on 

the Mirco-Manager website. Unzip the file and place it directly in your Micro-Manager 

folder. From here use the Micro-Manager’s Hardware Configuration Wizard to add the 

stage to a configuration setup. When adding the two stages, they are uniquely identified 

by the serial numbers located on the back of the BSC203 stepper controller. At the time 

of this writing, the biprism stage has been setup with the first serial number () and the 

sample stage has been setup with the second serial number (). For more information on 

the setup of the ThorLabs APT stage with Micro-Manager refer to the documentation on 

the website [20] and also the APT Communications Protocol on page 11 for information 

about the RS232 Interface [21]. 
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CHAPTER 4 RESULTS 

4.A Preliminary Simulation Results 

The basic principle of the novel tunable illumination pattern is established by 

observing the qualitative effects of changing the position of the biprism. This preliminary 

simulation shows that the biprism position with respect to the focal length of the 

converging lens is linearly proportional to the frequency of the pattern as discussed in 

Chapter 3. Figure 4-1 shows the parameters used and how the biprism was positioned 

relative to the slit aperture and the focal lens. Refer to Figure 4-2 and Figure 4-3 to see a 

visual examination of how decreasing the biprism position from 190mm to 100mm 

causes a decrease in the lateral frequency of the pattern in simulation. This effect is 

predicted by Equation (3-1) in Section 3.A. 

 

 

Figure 4-1. Novel Tunable Illumination setup. The slit(s) source plane and the 

converging lens remain in a fixed position at a distance equal to the focal length of 

the converging lens. The biprism is allowed to move between the two components, 

which allows the user to tune the lateral frequency of the pattern or alter the phase. 
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Figure 4-2. Irradiance signal for a two slit aperture where only one plane of 

resonance is shown. Notice the fringe pattern for a biprism position of 190mm. 

 

 

 

Figure 4-3. Irradiance signal for a two slit aperture where only one plane of 

resonance is shown. Notice the fringe pattern for a biprism position of 100mm. 

 

Notice in Figure 4-2 and Figure 4-3 how the lateral frequency of the fringe pattern 

decreases by approximately one-half (lateral period doubles) as the biprism position is 

reduced by approximately one-half.  

4.B Verify the Tunable Lateral Frequency of the Simulation 

To test the accuracy of the simulation, the lateral frequency was measured and 

compared to the theoretical calculation. In this study, by keeping all the parameters 

constant and varying only the position of the biprism, it is shown that the simulation of 

the single slit setup produces a pattern that matches the theoretical values predicted by 

Equation (3-1). Refer to Table 4-1 for specific simulation parameters used in this study. 
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For instance, Figure 4-4 and Figure 4-5 below show the irradiance signal 

simulated with the biprism position equal to 50 mm and 130 mm, respectively, for a 

converging lens position of 150 mm. These data verify that the simulation matches 

expected theoretical calculations with 0.38% error and 0.07% error respectively. The 

percent error was calculated using the following: |
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
| ∗ 100. The 

vertical black bars indicate the window used to calculate the frequency as an average over 

multiple peaks using AFA. 

 

 

Figure 4-4. An intensity line profile through x at the 100
th

 z-slice for a biprism 

position of 50mm. Single slit data. The measured lateral frequency for simulated 

data has a 0.38% error relative to the theoretical calculations. 
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Figure 4-5. An intensity line profile through x and 100
th

 z-slice for a biprism 

position of 130mm. Single slit data. The measured lateral frequency for simulated 

data has a 0.07% error relative to the theoretical calculations. 

 

Table 4-1. Simulation parameters describing the source, biprism, slit, and 

converging lens. Note that the slit separation is irrelevant for the single slit setup. 

 

𝜆 470 * 10^-6 mm wavelength of source 

𝑛 1.515 refractive index of the biprism 

𝛿 0.5 ∗
𝜋

180
 

radians biprism angle 

𝑥0 N/A mm slit separation 

Δ 0.0508 mm slit width 

𝜂 50 AND 130, respectively mm position of biprism 

𝑓 150 mm focal length of converging lens 
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4.C Single Slit Data Comparison of Simulated and Experimental Data 

Based on the same parameters from Section 4.B, the figures in this section 

compare the percent error of the calculated lateral frequency between simulated and 

experimental data for two different biprism positions at 𝜂 = 50 mm and 𝜂 = 130 mm. 

Figure 4-6 and Figure 4-7 show data for 𝜂 = 50  mm while Figure 4-8 and Figure 4-9 

show data for 𝜂 = 130  mm. Refer to Table 4-1 for the specific parameters of the 

configuration. 

The illumination configuration with a single slit is expected, based on theory, to 

maintain a structured intensity pattern with consistent lateral frequency through all Z 

planes, without any axial modulation. Figure 4-7 and Figure 4-9 show the theoretically 

calculated lateral frequencies are consistent with the averages calculated using simulated 

and experimental data.  

Figure 4-6 and Figure 4-8 compare intensity profile from two specific axial planes 

(at 50 mm and 100 mm along the Z axis) taken from the simulated and experimental data, 

while Figure 4-7 and Figure 4-9 show the overall average of measured lateral frequencies 

from all Z planes captured through the illumination pattern. Figure 4-7 and Figure 4-9 

show the simulation coincides with theoretical predictions, while the experimental data 

for 𝜂 = 50 mm and 𝜂 = 130 mm have an approximate 7.2% and 3.7% error, respectively 

compared to the simulated results in average measured lateral frequency. 
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Figure 4-6. Intensity line profile comparison of two z planes at 50mm and 100mm 

for biprism positon of 50mm. Simulation in blue on the left and experimental data 

on the right in red. Approximately a 7.7% error in measured lateral frequency 

between simulated and experimental data at z = 50 mm and z = 100 mm. 

 

 

Figure 4-7. Average Frequency calculated by AFA in each z plane where data was 

collected (5mm increments from 50-150 mm). The data verifies the lateral frequency 

of the pattern is consistent through z. The experimental data has a relative ~7.2% 

error compared to the simulated data for the overall average lateral frequency for z 

planes 50-150 mm. 
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Figure 4-8. Intensity line profile comparison of two z planes at 50mm and 100mm 

for biprism positon of 130mm. Simulation in blue on the left and experimental data 

on the right in red. Approximately a 3.7% error in measured lateral frequency 

between simulated and experimental data at z = 50 mm and z = 100 mm. 

 

 

Figure 4-9. Average Frequency calculated by AFA in each z plane where data was 

collected (5mm increments from 50-150 mm). Verifies the lateral frequency of the 

pattern is consistent through z. The experimental data has a relative ~3.7% error 

compared to the simulated data for the overall average lateral frequency for z 

planes 50-150 mm. 
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4.D AFA Results for Double Slit Configuration in Simulation 

The AFA method works accurately well in planes of resonance, but becomes 

erratic in planes of non-resonance. In non-resonant planes, the visibility of the pattern is 

reduced due to deconstructive interference. Therefore, a non-resonant line profile is not 

periodic. In Figure 4-10, results from the AFA method show a large standard deviation 

for the average frequency in the planes of non-resonance. When AFA was first 

developed, the idea of identifying non-resonant planes via these large variances was 

considered, but, as described in Section 4.E below, the PSD method emerged as a more 

accurate way of identifying planes of resonance. Therefore, the results of the AFA 

method are considered only for the lateral frequency of the illumination pattern in two slit 

configurations. 

 

 

Figure 4-10. Average Frequency and Standard Deviation through z at 1mm 

intervals calculated using AFA. The non-resonant planes show a significantly higher 

standard deviation in the frequency than in the frequency in resonant planes. 
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Figure 4-11. Simulated Irradiance Signal for reference to Figure 4-10. Notice the 

five non resonant planes at Z = 58, 80, 103, 125 and 149 coincide with AFA 

calculations. 

 

  



46 

 

4.E Double Slit Data Comparison of Simulation and Experimental 

The PSD method is used to analyze the lateral and axial frequencies of double slit 

configuration data. Six total configurations are analyzed; three configurations with 

varying slit separations (0.200 mm, 0.300 mm, and 0.500 mm) and two biprism positions 

(50 mm and 120 mm) for each slit separation are presented in this section. The 0.200 mm 

separation and 50 mm biprism position is the best example out of the three 50 mm 

biprism configurations. The other two (0.300 mm and 0.500 mm) are highly distorted 

when the XZ image is stitched together (Figure 4-24 and Figure 4-34). When calculating 

the lateral frequency for each Z plane, the PSD method only searches for the most 

dominant frequency within 50% of the theoretical frequency. This filter is appropriate 

because the single slit data comparison reflects that the experimental data is well below 

50% error relative to the theoretical frequency. Refer to Table 4-2 for the list of 

simulation and experimental parameters. 

 

Table 4-2 Simulation and experimental parameters describing the wavelength of the 

source, biprism, slit, and converging lens. 

 

𝜆 470 * 10
-6

 mm wavelength of source 

𝑛 1.515 refractive index of the biprism 

𝛿 0.5 ∗
𝜋

180
 

radians biprism angle 

𝑥0 0.200, 0.300, and 0.500 mm slit separation 

Δ 0.070 mm slit width 

𝜂 50 and 120 mm position of biprism 

𝑓 150 mm focal length of converging lens 
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Results acquired using the first configuration (0.200 mm separation and 50 mm 

biprism position) are presented in Figure 4-12 through Figure 4-16. In Figure 4-12, the 

low frequency outliers in the first 120mm are sample from a non-resonant plane and their 

value lowers the overall calculated average for the lateral frequency. By removing these 

outliers, the adjusted average for Z planes 150 through 250 is 5.88 lp/mm. 

 

  

Figure 4-12. Calculated lateral frequencies through Z using PSD method. 

Experimental Frequency range filter 3.18-9.56 lp/mm.  
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Figure 4-13 and Figure 4-14 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. Refer to Section 3.H. 

 

 

Figure 4-13. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-12. 

 

 

Figure 4-14. Experimental XZ image for 0.200 mm slit separation and 50 mm 

biprism position. 
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Figure 4-15 and Figure 4-16 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-15. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-12. 

 

 

Figure 4-16. Simulation XZ image for 0.200 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the second configuration (0.200 mm slit separation, 120 

mm biprism position) are presented in Figure 4-17 through Figure 4-21. The outliers in 

Figure 4-17 correspond to planes of non-resonance and low PSD intensity indicated by 

Figure 4-18. The adjusted average for Z planes 150 through 250 is 14.0873 lp/mm. 

 

 

Figure 4-17. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 4-18 and Figure 4-19 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 4-18. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-17. 

 

 

Figure 4-19. Experimental XZ image for 0.200 mm slit separation and 120 mm 

biprism position. 
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Figure 4-20 and Figure 4-21 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-20. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-17. 

 

 

Figure 4-21. Simulation XZ image for 0.200 mm slit separation and 120 mm biprism 

position. 
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Results acquired using the third configuration (.300mm slit separation, 50 mm 

biprism position) are presented in Figure 4-22 through Figure 4-26. The adjusted average 

for Z planes 150 through 250 is 5.9159 lp/mm. 

 

 

Figure 4-22. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 3.19-9.56 lp/mm. 
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Figure 4-23 and Figure 4-24 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

.  

Figure 4-23. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-22. 

 

 

Figure 4-24. Experimental XZ image for 0.300 mm slit separation and 50 mm 

biprism position. 
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Figure 4-25 and Figure 4-26 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-25. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-22. 

 

 

Figure 4-26. Simulation XZ image for 0.300 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the fourth configuration (.300 mm slit separation, 120 mm 

biprism positon) are presented in Figure 4-27 through Figure 4-31. The adjusted average 

for Z planes 150 through 250 is 14.5912 lp/mm. 

 

 

Figure 4-27. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 4-28 and Figure 4-29 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 4-28. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-27. 

 

 

Figure 4-29. Experimental XZ image for 0.300 mm slit separation and 120 mm 

biprism position. 
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Figure 4-30 and Figure 4-31 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-30. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-27. 

 

 

Figure 4-31. Simulation XZ image for 0.300 mm slit separation and 120 mm biprism 

position. 
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Results acquired using the the fifth configuration (0.500 mm slit separation, 50 

mm biprism position) are presented in Figure 4-32 through Figure 4-36. The adjusted 

average for Z planes 150 through 250 is 5.9449 lp/mm. 

 

 

Figure 4-32 Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 3.19-9.56 lp/mm. 
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Figure 4-33 and Figure 4-34 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 4-33. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-32. 

 

 

Figure 4-34. Experimental XZ image for 0.500 mm slit separation and 50 mm 

biprism position 
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Figure 4-35 and Figure 4-36 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-35. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-32. 

 

 

 

Figure 4-36. Simulation XZ image for 0.500 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the sixth configuration (0.500 mm slit separation, 120 mm 

biprism position) are presented in Figure 4-37 through Figure 4-41. The adjusted average 

for Z planes 150 through 250 is 14.7169 lp/mm. 

 

 

Figure 4-37 Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 4-38 and Figure 4-39 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 4-38. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 4-37. 

 

 

Figure 4-39. Experimental XZ image for 0.500 mm slit separation and 120 mm 

biprism position. 

PSD Intensity at each Z Plane: Experimental

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
x 10

7

z mm

P
S

D
 (

w
a
tt

s
/l
p
/m

m
)

Axial Frequency:0.0233 Theoretical:0.0255 (lp/mm)

x
 (

p
ix

e
ls

)

z (mm)

ISignal Experimental XZ

50 100 150 200 250

200

400

600

800

1000

1200

1400

1600

1800

2000



64 

 

Figure 4-40 and Figure 4-41 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 4-40. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 4-37. 

 

 

Figure 4-41. Simulation XZ image for 0.500 mm slit separation and 120 mm biprism 

position. 
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Table 4-3 summarizes the percent error between the experimental data and the 

simulation data for the measured average lateral frequency for each of the six double slit 

configurations. 

 

Table 4-3 Comparison of measured experimental and simulation lateral frequencies 

for various two slit configurations using the PSD method. 

 

Slit Separation, 

Biprism Position 

(mm) 

Simulation Lateral 

Frequency Average 

(lp/mm) 

Experimental Lateral 

Frequency Adjusted Average 

(lp/mm) 

Percent Error 

0.200, 50  6.32  5.88  6.99 % 

0.200, 120  15.30  14.04  8.21 % 

0.300, 50  6.40  5.92  7.61 % 

0.300, 120 15.28  14.59  4.54 % 

0.500, 50 6.34  5.94  6.16% 

0.500, 120  15.28 14.72  3.70 % 

 

  



66 

 

Table 4-4 summarizes the percent error between the experimental data and the 

theoretical calculations for the measured axial frequency for each of the six double slit 

configurations. First, The PSD method was applied to the Z range of the whole data set 

(40-300 mm) to calculate the measured axial frequency. Second, the PSD method was 

applied to an adjusted Z range of the data set to calculate the measured axial frequency 

with adjusted Z. Note that the first configuration’s axial period (0.200 mm slit separation, 

50 mm biprism position). 

 

Table 4-4 Measured axial frequencies without adjustment and with adjusted Z 

range. 

 

𝑥0, 𝜂 (𝑚𝑚) Measured 

(lp/mm) 

Theoretical 

(lp/mm) 

% Error Measured 
with 
Adjusted Z 
(lp/mm) 

Adjusted 
Z Range 
(mm) 

Adjusted 
% Error 

0.200, 50 0.0100 0.0043 194 % 0.0100 150:299 194 % 

0.200, 120 0.0100 0.0102 1.96 % 0.0100 100:249 1.96 % 

0.300, 50 0.0067 0.0064 4.69 % 0.0067 150:299 4.69 % 

0.300, 120 0.0133 0.0153 13.1 % 0.0150 125:224 1.96 % 

0.500, 50 0.0100 0.0106 5.66 % 0.0100 150:299 5.66 % 

0.500, 120 0.0233 0.0255 8.63 % 0.0250 125:224 1.96 % 
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CHAPTER 5 CONCLUSIONS 

5.A Single Slit Configuration 

The single slit configuration was designed and tested to compare the lateral 

frequency of experimental data with simulation and theoretical values. The AFA and 

PSD methods were used to measure the lateral frequencies at varying positions of the 

biprism between 50 and 150 mm of the illumination pattern at intervals of 5 mm. The 

data collected shows that AFA and PSD methods agree with each other within 0.3% 

difference in simulation and 0.17% difference in experimental data. When using either of 

these methods to calculate the lateral frequency, the simulation matches theoretical 

predictions. In the case of experimental data, the average calculated lateral frequency 

may slightly vary from simulation. This can be explained by variances in the 

experimental optical setup, such as the positions of the slit aperture, the biprism, or the 

converging lens. The experimental setup could be calibrated by measuring the offset of 

the biprism that tunes the lateral frequency of the experimental illumination pattern to the 

simulated data to achieve better precision in lateral frequency. Furthermore, it is shown 

that the experimental irradiance signal maintains a consistent lateral frequency through Z 

as predicted by Equation (3-1). This leads to the conclusion that the experimental data is 

accurate, but with some degree of missing precision due to the exact positions of the 

optics along the Z axis.  

5.B Double Slit Configuration 

The double slit configuration was investigated via the PSD method to compare 

measured lateral and axial frequencies of experimental data to simulated data and 

theoretical values. The AFA method is unsuitable for measuring the axial frequency in 
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experimental data because of issues in image registration and the axial skew of the 

illumination pattern. These are not problems in simulated data where the pattern is 

perfectly symmetrical along the propagation axis. The PSD method shows similar results 

for the measured lateral frequencies that were reported for the single slit data, as 

expected. In the experimental data, the PSD method is able to accurately calculate the 

axial frequency of the pattern with a high degree of precision (<5% error) when 

compared to the theoretical calculations of the axial frequency. The PSD method for 

measuring the axial frequency in simulated data does match theoretical predictions. 

Although some of the experimental data for the double slit configuration is not correctly 

aligned in Z, it has been shown in simulated and experimental data that the PSD method 

is capable of determining the axial frequency despite the axial skew of the data in a 

procedure that is independent of the axial axis of the pattern. In simulated data, the PSD 

method results show an accurate measurement of the theoretical axial frequency of the 

illumination pattern. 

5.C AFA vs PSD Analysis 

The AFA method is capable of accurately measuring the lateral frequency of 

illumination pattern given that the line profile is an accurate sample of the lateral 

sinusoid. This is relatively easy when the camera setup is perpendicular to the lateral 

sinusoid in the pattern. However, using AFA to calculate an axial frequency is difficult 

because the camera is scanning in a direction parallel to the axial sinusoid. In experiment, 

the axial sinusoid may skew in a different direction than the camera’s direction of 

motion, which makes it difficult to select an accurate line profile that represents the axial 

sinusoid without a method for registering the images. Registering the images for perfect 
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alignment of the axial sinusoid is further complicated by the non-resonant planes in the 

illumination pattern because these planes have low contrast. The low contrast makes it 

difficult to reference points in the lateral sinusoid for registration with corresponding 

points in planes of resonance. 

The PSD method is shown to perform similarly to the AFA method in single slit 

configurations when calculating the lateral frequency. This confirms that both methods 

are accurate in measuring the lateral frequency of any structured illumination, given that 

the line profile accurately samples the lateral sinusoid. In contrast to the AFA method, the 

PSD method is capable of identifying planes of resonance by the power spectrum 

strength of the calculated lateral frequency. In this way, the axial sinusoid can be 

identified independent of the axial skew of experimental data. By measuring the power 

spectral intensity of the calculated lateral frequency of the pattern through Z, a sinusoid 

pattern emerges that identifies planes of resonances at its peaks.  

5.D Future Work 

I would like more precise control of the optics for better alignment. I had some 

difficulty in correcting the alignment height of the optical elements. Some of the posts 

were too short or too large to be put in the correct position; I believe this can be fixed by 

reconfiguring the height of the system. A height should be chosen in the middle of the 

smallest post, so that all posts have some degree of freedom. In the z direction, the rail is 

split in three sections because the biprism must be mounted on a separate rail for the 

stepper motor in the x direction. In its current state, the three rails are aligned as best as 

possible, but there may be some error here. As for the x direction, many of the posts are 
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mounted on an extra foot that allows small corrections in x, which is adequate. The main 

concern of the setup should be focused on better positioning in the z and y directions. 

The illumination code that generates the pattern currently works for the I0 signal, 

but does not take into account the width of the slit(s). The width of the slit(s) causes a 

slight fading of the pattern in z. Considering that the data analyzed in this thesis is before 

300mm in z, this function does not significantly affect the visibility of the pattern, nor 

does it affect the lateral or axial frequency of the pattern. The research in this thesis was 

focused on analyzing the lateral and axial frequencies of the pattern, so the function 

related to the slit width has little impact on the conclusions stated above. However, for a 

more comprehensive simulation this function should be reviewed. 

The data collected in Chapter 4 show an envelope of visibility where the 

brightness of the pattern increases at the back focal plane of the converging lens and 

fades after the back focal plane. Preliminary observations suggest that this phenomenon 

may be due to the simulation not accounting for the height of the biprism. 
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CHAPTER 7 APPENDICIES 

7.A Illumination Code (TunableIlluminationPattern_SingleAndDoubleSlits.m) 

%% GRATING - FRESNEL BIPRISM - CONVERGING LENS 
% Optics Model 
% 1. A One and Two Slit grating with slit seperation x0 
% 2. An axially tunable fresnel biprism with position eta (1-f) 
% 3. A converging lens with focal distance f. 
% 4. The irradiance pattern along Z 

  
% script calculates the pattern in an XZ plane 
% Z-slices are independently calculated 
% script autosaves.mat file to current folder 

  
%Dependencies: 
%findfrequency.m 
%fresnelc.m and fresnels.m (included in matlab 2014a) 
%signal_toolbox and symbolic_toolbox 

  
%% SETUP 
clear 
lambda  = 470 * 10^-6;   %mm wavelength of source 
n       = 1.515;         %Refractive Index of biprism 
delta   = 0.5*pi/180;    %radians biprism angle 
x0      = .300;          %mm slit seperation 
DELTA   = 0.005;         %mm slit width 
eta     = 150;           %mm position of biprism 
f       = 150;           %mm focal length of converging lens 

  
u0 = (n-1)*tan(delta)/lambda; 
FresnelComp = @(t) fresnelc(t) + 1i*fresnels(t); 
ML = @(z) z./f; 
xTheoreticalFrequency = (eta/f)*(2*u0) %from equation (2) Doblas. 

x is normalized by (2*pi)/p. theroretical calculation 
%p = (lambda*f) / (2*eta*(n-1)*tan(delta)) % lateral period 
zTheoreticalPeriod = (f/x0)*1/(2*u0)*(f/eta); %theroretical 

calculation 
zTheoreticalFrequency = 1/zTheoreticalPeriod; %theroretical 

calculation 

  
%Irradiance Signal 
I0 = @(z,x) abs(exp(-

1i.*pi./(lambda.*z).*(x+lambda.*z.*u0).^2)... 
    .* ((1+1i)/2 + 

FresnelComp(sqrt(2./(lambda.*z)).*(x+lambda.*z.*u0)))... 
    + exp(-1i.*pi./(lambda.*z).*(-x+lambda.*z.*u0).^2) ... 
    .* ((1+1i)./2 - FresnelComp(sqrt(2./(lambda.*z)).*(x-

lambda.*z.*u0)))).^2; 

  
%X and Z Scaling 
mmPerPixel = .0064; %lateral mm/pixel AxioVisionCamera=0.0064 
xdim = 1388; %discrete lateral size 
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xscale = (eta/f) * (xdim/2) * mmPerPixel; % (scaling ratio for 

biprism position) * (inverse scaling factor for Doblas normalization) * 

(mm/pixel) 

  
zmmperpixel = 1; 
zdim = 300; %discrete axial size 
zscale = (eta/f) * 2 * zmmperpixel; % mm/pixel 

  
% Create XZ Domain Space and U Frequency space 
z = linspace(1,zscale*zdim,zdim); 
x = linspace(-1*xscale,1*xscale,xdim); %x is normalized from -1 

to 1 
% Frequency Space u 
u = linspace(-0.5/mmPerPixel,0.5/mmPerPixel,xdim); 
% [u,~] = freqspace(length(x)); Matlab's freqspace function 

unused 

  
%setup grid 
z = repmat(z,size(x,2),1); 
x = repmat(x(:),1,size(z,2)); 
u = repmat(u(:),1,size(z,2)); 

  
%The slit width transfer function is a rect in space domain (sinc 

in 
%frequency domain) 
T = (DELTA*z/f) ; %  * f/eta *.01 
FTSlitWidthTransferFunction = 1/mmPerPixel*T.* sinc(T.*u ); 

%1/mmPerPixel*T.* %broken 2/8/16, 
% setting a small DELTA (<.005) will make this function = 1, thus 

not 
% affecting the simulation 
% FTSlitWidthTransferFunction = 

(DELTA*ML(z)).*(xdim/2).*sinc(DELTA*ML(z).*u); alternate 

  
%% ONE SLIT 
%CALCULATION 
I0SignalOneSlit = I0(z,x); 

  
ISignalOneSlit = 

real(ifft(fft(I0SignalOneSlit).*FTSlitWidthTransferFunction)); 

  
%% TWO SLITS 
%SETUP 
I0TwoSlits = @(z,x) I0(z,x+x0.*z/(2*f)) + I0(z,x-x0.*z/(2*f)); 

  
%Calculation 
I0SignalTwoSlits = I0TwoSlits(z,x); 

  
ISignalTwoSlits = 

real(ifft(fft(I0SignalTwoSlits).*FTSlitWidthTransferFunction)); 

  
%% Find Frequency (calculate average peak to peak distance) 
% function findfrequency(data,mm/pixel,frequencyCeiling) 
% Axial calculation for axial frequency 
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[axialFrequency, axialWindow] = 

findfrequency(ISignalTwoSlits(xdim/2,:),zmmperpixel,50); 
% Lateral calculation for line pairs per mm 
zslice = axialWindow(2); %look at a z slice in resonant plane 
[lateralFrequency, lateralWindow] = 

findfrequency(ISignalTwoSlits(:,zslice),mmPerPixel,50); 

  
axialToLateralRatio = axialFrequency/lateralFrequency 

  
%% One Slit Figures 
% Lateral calculation for line pairs per mm 
zslice = 130; %look at a z slice in a resonant plane 
[lateralFrequency, lateralWindow] = 

findfrequency(ISignalOneSlit(:,zslice),mmPerPixel,50); 

  
%Intensity Line Plot figures 
figure, 
hold on 
plot(ISignalOneSlit(:,zslice)) 
title(sprintf('Intensity LinePlot for XY plane at %g',zslice)); 
line([lateralWindow(1) 

lateralWindow(1)],get(gca,'YLim'),'Color','k','LineWidth',1); %draw 

window boundaries 
line([lateralWindow(2) 

lateralWindow(2)],get(gca,'YLim'),'Color','k','LineWidth',1); 
hold off 
xlabel(sprintf('Simulation=%g lp/mm Theoretical=%g 

lp/mm',lateralFrequency,xTheoreticalFrequency)); 

  
%Irradiance Signal  
figure, 
imagesc(ISignalOneSlit); 
title('ISignalOneSlit'); 
colorbar; colormap(gray); 
figure, 
imagesc(ISignalOneSlit(:,zslice)'); 
title(sprintf('ISignalOneSlit %g',zslice)); 
colormap(gray); 

  
figure, 
imagesc(real(FTSlitWidthTransferFunction)); 
colorbar; colormap(gray); 
title('FTSlitWidthTransferFunction'); 

  
%% Two Slit Figures 
%Intensity Line Plot figures 
figure, 
hold on 
plot(ISignalTwoSlits(:,zslice)) 
title(sprintf('Intensity LinePlot for XY plane at %g',zslice)); 
line([lateralWindow(1) 

lateralWindow(1)],get(gca,'YLim'),'Color','k','LineWidth',1); %draw 

window boundaries 
line([lateralWindow(2) 

lateralWindow(2)],get(gca,'YLim'),'Color','k','LineWidth',1); 
hold off 
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xlabel(sprintf('Simulation=%g lp/mm Theoretical=%g 

lp/mm',lateralFrequency,xTheoreticalFrequency)); 

  
figure, 
hold on 
plot(ISignalTwoSlits(xdim/2,:)) 
title('Intensity LinePlot for XZ plane at middle horizontal') 
line([axialWindow(1) 

axialWindow(1)],get(gca,'YLim'),'Color','k','LineWidth',1); %draw 

window boundaries 
line([axialWindow(2) 

axialWindow(2)],get(gca,'YLim'),'Color','k','LineWidth',1); 
hold off 
xlabel(sprintf('Simulation=%g lp/mm Theoretical=%g 

lp/mm',axialFrequency,zTheoreticalFrequency)); 

  
%Figures 
figure, 
imagesc(I0SignalTwoSlits); 
title('ISignalTwoSlits'); 
colorbar; colormap(gray); 
figure, 
imagesc(ISignalTwoSlits(:,zslice)'); 
title(sprintf('ISignalTwoSlits %g',zslice)); 
colormap(gray);  

  
%% One and Two Slits Virtual Sources Analysis 
% a = 2*eta*(n-1)*tan(delta); %distance of virtual slits 
% scaledDistanceOfVirtualSlitsOnBackApertureOfObjectiveLens = a * 

160/150; %mm 
%  
% figure 
% hold on 
% plot(0,0,'bo') 
% plot(0,0.5*a,'bx',0,-0.5*a,'bx') 
% hold off 
% ylim([-1,1]) 
% title('One Slit Virtual Sources') 
% xlabel(sprintf('a = %g mm',a)) 
% ylabel('x (mm)') 
% legend('Real Slit', 'Virtual Slits') 
%  
% figure 
% hold on 
% plot(0,0.5*x0,'bo',0,-0.5*x0,'ro') 
% plot(0,0.5*x0 + 0.5*a,'bx',0,-0.5*x0 + -0.5*a,'rx') 
% plot(0,0.5*x0 - 0.5*a,'bx',0,-0.5*x0 - -0.5*a,'rx') 
% hold off 
% ylim([-2,2]) 
% title('Two Slit Virtual Sources') 
% xlabel(sprintf('a = %g mm | Slit Seperation = %g mm',a,x0)); 
% ylabel('x (mm)') 
% legend('Real Slits','', 'Virtual Slits','') 

  
%% Auto save .mat 
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% 

"PRISM_WAVELENGTH_SLITSEPARATION_BIPRISMPOSITION_FOCALLENGTHOFCONVERGIN

GLENS_SLITWIDTH_XZDIMENSIONS_MMPERPIXEL_ZMMPERPIXEL.MAT" 
biprismAngle = 180 - delta*360/pi; 
wavelength =  lambda*10^6; 
slitWidth = DELTA*10^3; 
filename = sprintf('FBP2020G-

%g_%gnm_%.3fmmslits_%gEta_%gFocal_%gumSlitWidth_%gx%g_%gx_%gzmmperpixel

.mat',biprismAngle,wavelength,x0,eta,f,slitWidth,xdim,zdim,mmPerPixel,z

mmperpixel) 
save(filename); 

 

7.B AFA Code (findfrequency.m) 

function [lateralFrequency,window,standardDeviation,peaks] = 

findfrequency(data,mmPerPixel,frequencyCeiling) 
    %Expecting data to be 2D XY Intensity of fringe pattern 

     
    %Tune these two parameters if the frequency is being 

overestimated for 
    %experimenatal 
    %Use peaks that are 40% of the max intensity (create a 

window) 
    minIntensity = max(data)*.4; 
    %minimum peak to peak distance laterally in pixels 
    minPixels = floor(1/(frequencyCeiling*mmPerPixel)); 

         
    [~,lateralPeakLocations] = 

findpeaks(data,'MinPeakHeight',minIntensity,'MinPeakDist',minPixels); 
    %Calculate the pixel difference between each peak in the 

window multiply by 
    %the mm/pixel to obtain the distance form peak to peak. Take 

the 
    %average of the periods. 
    lateralfringePeriod = 

mean(diff(lateralPeakLocations).*mmPerPixel); 
    lateralFrequency = 1/lateralfringePeriod; 

     
    if isnan(lateralFrequency) 
        error( 'Can not compute lateral frequency in the window, 

try PSD method') 
    end 

     
    %Report standard deviation 
    standardDeviation = 

std(1./(diff(lateralPeakLocations).*mmPerPixel)); 
    standardError = 

standardDeviation/sqrt(length(lateralPeakLocations)); 

     
    peaks = length(lateralPeakLocations); 
    %Store the boundaries of the window 
    window(1) = lateralPeakLocations(1); 
    window(2) = lateralPeakLocations(end); 
end 
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7.C Compare Experimental and Simulation with AFA 

(CompareExperimentalandSimulation.m) 

%% Compare Experimental and Simulation Data 
%Dependencies:  
% loadDataDirectories.m 
% findlateralfrequency.m  
% findYAxisLimits.m 
% findMaxMinStandardDeviation.m 

  
%script generates figures and lineplots of the average 

intensities at 
%specific zslices. the experimentalDataDirectory should contain 

XY images 
%that are labeled as "'zslice'.tif". example: "100.tif" for the 

zslice at 
%100mm. the simulationDataDirectory should contain the .mat file 

saved from 
%"SphericalEnvelopeWithConvergingLens.m". Specify which 

Iraddiance Signal 
%you are working with when loading the simulation data 

  
%Refer to loadDataDirectories.m for list of configurations 

  
clear;close all; 
%% Initialize Parameters 
%Choose Configuration index 
index = 17; 
%Choose yslice for experimental data to compare to simulation. 

(there is only 1 yslice for simulation) 
yslice = 250; 
%Parameters to find lateral frequency 
mmPerPixel = 0.0064; %lateral mm/pixel. expecting same value for 

simulation and experiment 

  
%Choose findFrequency.m parameters 
%We calculate an estimated frequency ceiling to throw out the 
%outliers/noise. Set to a very large percent error to collect all 

data 
%points (i.e. 100.0 or 10000%). The 1.0 setting sets the 
%estimated Frequency Ceiling to double of the corresponding 

zslice simulation 
%frequency. Therefore, any peaks within 50% of the estimated 

period are thrown out. 
estimatedpercentError = 1.0; %1=100% %best practice to 

overestimate. applies to percent error of lp/mm 
simulationFrequencyCeiling = 50; %lp/mm %because our simulation 

data is noise free, this can remain relatively high for low frequency 

patterns 
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lateralFrequency.simulation.window = zeros(2,1); %initialize 

window 
lateralFrequency.experimental.window = zeros(2,1); %initialize 

window 
%% Set Directories and Specfic Directory Params 
%set directory for experimental data and simulation data 
directory = loadDataDirectories(); 

  
%% Load, Normalize, and Calculate Frequency fo the Data 
%Load Simulation Data, specify the iraddiance signal variable 
load(directory(index).simulation, 

directory(index).simulationData, 'xTheoreticalFrequency'); 
ISignal.simulation.data = eval(directory(index).simulationData); 

% simulated irradiance signal 
theoreticalLateralFrequency = xTheoreticalFrequency; 
%some of the early simulation data does not contain 

xTheoreticalFrequency 
%and is added in loadDataDirectories() 
if ~exist('xTheoreticalFrequency') 
    theoreticalLateralFrequency = 

directory(index).xTheoreticalFrequency; 
end 

  
%Load Experimental Data. expects X-Y plane with vertical fringes. 
%naming Convention-- zslice should correspond to the zslices 

taken in 
%experimental data. example: 100.tif for the 100mm zslice. 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd; 
    %convert to double precision 
    ISignal.experimental.data(:,:,zslice) = 

double(imread(strcat(directory(index).experimental, 

sprintf('%g.tif',zslice)))); 

     
    experimentalNormalizationfactor = 

sum(mean(ISignal.experimental.data(:,:,zslice)));% take average along y 

dim and sum 

     
    %normalize the simulation data to experimental.  
    simulationNormalizationFactor = 

sum(ISignal.simulation.data(:,zslice)'); %take the transpose to align 

fringes vertically and sum. 
    ISignal.simulation.normalized(:,zslice) = 

ISignal.simulation.data(:,zslice) * 

(experimentalNormalizationfactor/simulationNormalizationFactor); 

     
    %Calculate frequency   
    

[lateralFrequency.simulation.data(zslice),lateralFrequency.simulation.w

indow(:,zslice),standardDeviation.simulation.data(zslice),lateralFreque

ncy.simulation.peaks(zslice)] = 

findfrequency(ISignal.simulation.normalized(:,zslice),mmPerPixel,simula

tionFrequencyCeiling); 
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    experimentalFrequencyCeiling = 

lateralFrequency.simulation.data(zslice) + 

2*estimatedpercentError*lateralFrequency.simulation.data(zslice); 
    

[lateralFrequency.experimental.data(zslice),lateralFrequency.experiment

al.window(:,zslice),standardDeviation.experimental.data(zslice),lateral

Frequency.experimental.peaks(zslice)] = 

findfrequency(ISignal.experimental.data(yslice,:,zslice),mmPerPixel,exp

erimentalFrequencyCeiling); 

  
end 

  
percentError = (lateralFrequency.experimental.data-

lateralFrequency.simulation.data)./lateralFrequency.simulation.data.*10

0; 

  
%% Plot Figures 
for zslice = 

directory(index).zsliceStart:50:directory(index).zsliceEnd; 
    %Irradiance Signal 
    figure, 
    subplot(1,2,1) 
    imagesc(ISignal.simulation.normalized(:,zslice)'); 
    ylabel('y a.u.'); 
    xlabel('x pixels'); 
    title('Simulation'); 
    colormap(gray);  
    subplot(1,2,2) 
    imagesc(ISignal.experimental.data(:,:,zslice)); 
    ylabel('y pixels'); 
    xlabel('x pixels'); 
    title('Experimental'); 
    suptitle(sprintf('Irradiance Signal at z = %gmm',zslice)) 

     
    %Intensity LinePlots 
    figure, 
    subplot(1,2,1) 
    hold on 
    plot(ISignal.simulation.normalized(:,zslice)); %draw 

intensity 
    line([lateralFrequency.simulation.window(1,zslice) 

lateralFrequency.simulation.window(1,zslice)],get(gca,'YLim'),'Color','

k','LineWidth',1); %draw window boundaries 
    line([lateralFrequency.simulation.window(2,zslice) 

lateralFrequency.simulation.window(2,zslice)],get(gca,'YLim'),'Color','

k','LineWidth',1); 
    hold off 
    title(sprintf('Simulation: %g 

lp/mm',lateralFrequency.simulation.data(zslice))); 
    ylabel('Intensity'); 
    xlabel('x pixels'); 
    subplot(1,2,2) 
    hold on 
    plot(ISignal.experimental.data(yslice,:,zslice),'r');%draw 

intensity 
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    line([lateralFrequency.experimental.window(1,zslice) 

lateralFrequency.experimental.window(1,zslice)],get(gca,'YLim'),'Color'

,'k','LineWidth',1);%draw window boundaries 
    line([lateralFrequency.experimental.window(2,zslice) 

lateralFrequency.experimental.window(2,zslice)],get(gca,'YLim'),'Color'

,'k','LineWidth',1); 
    hold off 
    title(sprintf('Experimental: %g 

lp/mm',lateralFrequency.experimental.data(zslice))); 
    ylabel('Intensity'); 
    xlabel('x pixels'); 
    legend(sprintf('y = %g',yslice)); 
    suptitle(sprintf('Intensity Line Plot at z = %gmm. %.2f%% 

Error',zslice,percentError(zslice))) 

  
end 

  
%Stitch experimental data into on XZ image 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd; 
    XZImage.experimental(:,zslice) = 

ISignal.experimental.data(yslice,:,zslice); 
end 
%Experimental XZ image 
figure, 
imagesc(XZImage.experimental) 
ylabel('x pixels') 
xlabel('z mm') 
title('ISignal Experimental XZ'); 
colormap(gray);  

  
%Simulation XZ image 
XZImage.simulation = ISignal.simulation.data(:,1:300); 
figure, 
imagesc(XZImage.simulation) 
ylabel('x pixels') 
xlabel('z mm') 
title('ISignal Simulation XZ'); 
colormap(gray);  

  
%Plot Average Frequencies at each Z plane 
%Calculate limits for y axis 
ylimit = 

findYAxisLimits(lateralFrequency.simulation.data,standardDeviation.simu

lation.data,lateralFrequency.experimental.data,standardDeviation.experi

mental.data); 
%Calculate Overall Averages 
overallAverage.simulation = 

sum(lateralFrequency.simulation.data)./sum(lateralFrequency.simulation.

data~=0); 
overallAverage.experimental = 

sum(lateralFrequency.experimental.data)./sum(lateralFrequency.experimen

tal.data~=0); 
%Calculate Standard Deviation Averages 
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standardDeviation.simulation.average = 

sum(standardDeviation.simulation.data)./sum(standardDeviation.simulatio

n.data~=0); 
standardDeviation.experimental.average = 

sum(standardDeviation.experimental.data)./sum(standardDeviation.experim

ental.data~=0); 
%Calculate Max and Min Standard Deviation variables for use with 

text() 
[standardDeviation.simulation.text] = 

findMaxMinStandardDeviation(standardDeviation.simulation.data,lateralFr

equency.simulation.data); 
[standardDeviation.experimental.text] = 

findMaxMinStandardDeviation(standardDeviation.experimental.data,lateral

Frequency.experimental.data); 

  
%Plot Average Frequencies Figure in two subplots 
figure, 
subplot(2,1,1) %simulation subplot 
hold on 
errorbar(lateralFrequency.simulation.data,standardDeviation.simul

ation.data,'ro') 
line(get(gca,'XLim'),[overallAverage.simulation 

overallAverage.simulation],'Color','r','LineWidth',1); %plot overall 

average 
line(get(gca,'XLim'),[theoreticalLateralFrequency 

theoreticalLateralFrequency],'Color','k','LineWidth',1,'LineStyle','--

'); %plot Theoretical Lateral Frequency 
text(standardDeviation.simulation.text.max.x,standardDeviation.si

mulation.text.max.y,standardDeviation.simulation.text.max.string,'Horiz

ontalAlignment','center'); 
text(standardDeviation.simulation.text.min.x,standardDeviation.si

mulation.text.min.y,standardDeviation.simulation.text.min.string,'Horiz

ontalAlignment','center'); 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd 
    

text(zslice,ylimit(1)+.3,sprintf('%g',lateralFrequency.simulation.peaks

(zslice)),'HorizontalAlignment','center'); 
end 
hold off 
set(gca, 'Ticklength', [0 0]) 
ylim(ylimit) 
xlim([directory(index).zsliceStart-5 

directory(index).zsliceEnd+5]) 
ylabel('lp/mm') 
xlabel('# of Peaks Identified | z mm') 
legend('Z-Plane Average','Overall Average', 'Theoretical 

Frequency') 
title(sprintf('Simulation - Overall Average: %.2f lp/mm - STD 

Average: 

%.2f',overallAverage.simulation,standardDeviation.simulation.average)) 
subplot(2,1,2) %experimental subplot 
hold on 
errorbar(lateralFrequency.experimental.data,standardDeviation.exp

erimental.data,'bx') 
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line(get(gca,'XLim'),[overallAverage.experimental 

overallAverage.experimental],'Color','b','LineWidth',1); %plot overall 

average 
line(get(gca,'XLim'),[theoreticalLateralFrequency 

theoreticalLateralFrequency],'Color','k','LineWidth',1,'LineStyle','--

'); %plot Theoretical Lateral Frequency 
text(standardDeviation.experimental.text.max.x,standardDeviation.

experimental.text.max.y,standardDeviation.experimental.text.max.string,

'HorizontalAlignment','center'); 
text(standardDeviation.experimental.text.min.x,standardDeviation.

experimental.text.min.y,standardDeviation.experimental.text.min.string,

'HorizontalAlignment','center'); 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd 
    

text(zslice,ylimit(1)+.3,sprintf('%g',lateralFrequency.experimental.pea

ks(zslice)),'HorizontalAlignment','center'); 
end 
hold off 
set(gca, 'Ticklength', [0 0]) 
ylim(ylimit) 
xlim([directory(index).zsliceStart-5 

directory(index).zsliceEnd+5]) 
ylabel('lp/mm') 
xlabel('# of Peaks Identified | z mm') 
legend('Z-Plane Average','Overall Average', 'Theoretical 

Frequency') 
title(sprintf('Experimental - Overall Average: %.2f lp/mm - STD 

Average: 

%.2f',overallAverage.experimental,standardDeviation.experimental.averag

e)) 
suptitle(sprintf('Average Frequency and Standard Deviation')) 

  

  
%% Old Figures 
% figure, 
% plot(lateralFrequency.experimental.peaks,'d') 
% 

ylim([min(lateralFrequency.experimental.peaks(lateralFrequency.experime

ntal.peaks~=0))-2 max(lateralFrequency.experimental.peaks)+2]) 
% xlim([45 155]) 
% ylabel('# of Peaks') 
% xlabel('z mm') 

  
% figure 
% subplot(1,2,1) 
% plot(XZExpimage(1388/2,:)) 
% title('Intensity LinePlot for XZ plane at middle horizontal') 
% subplot(1,2,2) 
% plot(XZSimImage(1388/2,:)) 
% title('Intensity LinePlot for XZ plane at middle horizontal') 

  
% xaxis = 1:length(ISignal.simulation.data); 
% figure, 
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% 

plot(xaxis,storeAverage(:,50),'r',xaxis,storeAverage(:,100),'k',xaxis,s

toreAverage(:,150),'b') 
% title(sprintf('Experimental Average Intensity LinePlot')); 
% legend('z=50','z=100','z=150'); 
%  
% figure, 
% 

plot(xaxis,storeLine(:,50),'r',xaxis,storeLine(:,100),'k',xaxis,storeLi

ne(:,150),'b') 
% title(sprintf('Experimental Intensity LinePlot for 

y=%g',yslice)); 
% legend('z=50','z=100','z=150'); 

 

7.D Plot Automation for Comparing Experimental and Simulation data 

(findYAxisLimits.m) 

function ylimit = 

findYAxisLimits(lateralSimulationFrequency,standardDeviationSimulation,

lateralExperimentalFrequency,standardDeviationExperimental ) 
% For Use with Average Frequency and Standard Deviation Plot 
% calculates the y axis limits based on the height of the largest 

standard 
% deviation line from both simulation and experimental, so that 

the axes 
% are the same for comparison. 
ylimit(1) = 

min([min(lateralSimulationFrequency(lateralSimulationFrequency~=0))-

max(standardDeviationSimulation)-.5 

min(lateralExperimentalFrequency(lateralExperimentalFrequency~=0))-

max(standardDeviationExperimental)-.5 ]); 
ylimit(2) = 

max([max(standardDeviationSimulation)+max(lateralSimulationFrequency)+.

5 

max(standardDeviationExperimental)+max(lateralExperimentalFrequency)+.5

]); 
end 

 

(findMaxMinStandardDeviation.m) 

function [ data ] = findMaxMinStandardDeviation( 

standardDeviationExperimental, lateralExperimentalFrequency ) 
%   FINDMAXMINSTANDARDDEVIATION 
%   Created by Chris Taylor 
%   Specified for matlab text() function. Used to highlight the 

max and min 
%   of standard deviation in the Average Frequnecy and Stadard 

Deviation 
%   Plot. Expects the input data to be a vector of standard 

deviations by 
%   zslices 
    standardDeviationMax = max(standardDeviationExperimental); 
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    data.max.x = find(standardDeviationMax == 

standardDeviationExperimental,1); 
    data.max.y = 

lateralExperimentalFrequency(data.max.x)+standardDeviationMax+.2; 
    data.max.string = sprintf('Max: %.2f',standardDeviationMax); 

     
    standardDeviationMin = 

min(standardDeviationExperimental(standardDeviationExperimental~=0)); 
    data.min.x = find(standardDeviationMin == 

standardDeviationExperimental,1); 
    data.min.y = 

lateralExperimentalFrequency(data.min.x)+standardDeviationMin+.2; 
    data.min.string = sprintf('Min: %.2f',standardDeviationMin); 

     
end 

 

 

7.E PSD Code (findFrequencyWithFourier.m) 

function [ frequency, peakPSD ] = findFrequencyWithFourier( data, 

mmPerPixel, frequencyRange ) 
%Created By Chris Taylor Jan 26 2016 
%Expects data to be an even line profile 

  
    nSamples = length(data); 

  
    dataFourier = fft(data,nSamples);   
    Pyy = dataFourier.*conj(dataFourier)/nSamples; %PSD 
    if ~mod(nSamples,2) %check even 
        f = (1/mmPerPixel)/nSamples*(0:(nSamples/2-1)); 
    else %odd 
        error('Expecting data to be even'); 
    end 

  
    [peak locations] = findpeaks(Pyy(1:nSamples/2), 

'SortStr','descend'); 

     
%     figure 
%     plot(f(5:694),Pyy(5:694)) 
%     title('Power Spectral Density') 
%     xlabel('lp/mm') 

  
    %remove peaks that are outside of the frequency range 
    removeIndicies = []; 
    for index = 1:length(locations) 
        if f(locations(index)) < frequencyRange(1) || 

f(locations(index)) > frequencyRange(2) 
            locations(index) = NaN; 
        end 
    end 
    ind = find(isnan(locations)); 
    locations(ind) = []; 
    peak(ind) = []; 
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    %Return the frequency at the max peak within the frequency 

range 
    frequency = f(locations(1)); 
    %Return the PSD Intensity of that peak 
    peakPSD = peak(1); 
end 

  

7.F Compare Experimental and Simulation Data with PSD Method 

(CompareExperimentalandSimulationWithFourier.m) 

%% CompareExperimentalandSimulationWithFourier 
% Dependencies:  
% loadDataDirectories.m 
% findFrequencyWithFourier.m  
% findYAxisLimits.m 

  
%Expecting Two slit data for Axial Frequency Analysis 
%Singal slit data does not have axial frequency 

  
clear;close all; 
%% Initialize Parameters 
%Choose Experiment index; refer to loadDataDirectories() 
index = 14; 
%Choose yslice for experimental data to compare to simulation. 

(there is only 1 yslice for simulation) 
yslice = 250; 
%Parameters to find lateral frequency 
mmPerPixel = 0.0064; %lateral mm/pixel. expecting same value for 

simulation and experiment 

  
estimatedpercentError = .5; %1=100% %best practice to 

overestimate first. applies to percent error of lp/mm. 50% default 
simulationFrequencyCeiling = 50; %lp/mm %because our simulation 

data is noise free, this can remain relatively high for low frequency 

patterns 

  

  
%% Set Directories and Specfic Directory Params 
%set directory for experimental data and simulation data 
directory = loadDataDirectories(); 

  
%% Load, Normalize, and Calculate Frequency fo the Data 
%Load Simulation Data, specify the iraddiance signal variable 
load(directory(index).simulation, 

directory(index).simulationData, 

'xTheoreticalFrequency','zTheoreticalFrequency'); 
ISignal.simulation.data = eval(directory(index).simulationData); 

% simulated irradiance signal 

  
%some of the early simulation data does not contain 

xTheoreticalFrequency 
%and is added in loadDataDirectories() 
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if ~exist('xTheoreticalFrequency') 
    theoreticalLateralFrequency = 

directory(index).xTheoreticalFrequency; 
else 
    theoreticalLateralFrequency = xTheoreticalFrequency; 
end 

  
%Load Experimental Data. expects X-Y plane with vertical fringes. 
%naming Convention-- zslice should correspond to the zslices 

taken in 
%experimental data. example: 100.tif for the 100mm zslice. 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd; 
    %convert to double precision 
    ISignal.experimental.data(:,:,zslice) = 

double(imread(strcat(directory(index).experimental, 

sprintf('%g.tif',zslice)))); 

     
    experimentalNormalizationfactor = 

sum(mean(ISignal.experimental.data(:,:,zslice)));% take average along y 

dim and sum 

     
    %normalize the simulation data to experimental.  
    simulationNormalizationFactor = 

sum(ISignal.simulation.data(:,zslice)'); %take the transpose to align 

fringes vertically and sum. 
    ISignal.simulation.normalized(:,zslice) = 

ISignal.simulation.data(:,zslice) * 

(experimentalNormalizationfactor/simulationNormalizationFactor); 

     

     
    %Calculate frequency   
    [lateralFrequency.simulation.dataWithFourier(zslice), 

lateralFrequency.simulation.peakPSD(zslice)] = 

findFrequencyWithFourier(ISignal.simulation.normalized(:,zslice),mmPerP

ixel,[1, simulationFrequencyCeiling]); 

     
    %experimentalFrequencyCeiling = 

lateralFrequency.simulation.dataWithFourier(zslice) + 

2*estimatedpercentError*lateralFrequency.simulation.dataWithFourier(zsl

ice); 
    experimentalFrequencyCeiling = xTheoreticalFrequency + 

estimatedpercentError*xTheoreticalFrequency; 
    experimentalFrequencyFloor = xTheoreticalFrequency - 

xTheoreticalFrequency*estimatedpercentError; 
    experimentalFrequencyFloor = 

max(experimentalFrequencyFloor,0); 
    experimentalFrequencyRange = [experimentalFrequencyFloor, 

experimentalFrequencyCeiling]; 

  
    [lateralFrequency.experimental.dataWithFourier(zslice), 

lateralFrequency.experimental.peakPSD(zslice)]  = 

findFrequencyWithFourier(ISignal.experimental.data(yslice,:,zslice),mmP

erPixel,experimentalFrequencyRange);  
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end 

  

  
%% Plot frequencies found using Fourier transform technique 

  
%Calculate limits for y axis 
ylimit = 

findYAxisLimits(lateralFrequency.simulation.dataWithFourier,0,lateralFr

equency.experimental.dataWithFourier,0); 
%Calculate Overall Averages 
overallAverageSimulation = 

sum(lateralFrequency.simulation.dataWithFourier)./sum(lateralFrequency.

simulation.dataWithFourier~=0); 
overallAverageExperimental = 

sum(lateralFrequency.experimental.dataWithFourier)./sum(lateralFrequenc

y.experimental.dataWithFourier~=0); 

  
figure, 
hold on 
plot(lateralFrequency.simulation.dataWithFourier,'ro') 
plot(lateralFrequency.experimental.dataWithFourier,'bx') 
line(get(gca,'XLim'),[theoreticalLateralFrequency 

theoreticalLateralFrequency],'Color','k','LineWidth',1,'LineStyle','--

'); %plot Theoretical Lateral Frequency 
line(get(gca,'XLim'),[overallAverageSimulation 

overallAverageSimulation],'Color','r','LineWidth',1); %plot overall 

average 
line(get(gca,'XLim'),[overallAverageExperimental 

overallAverageExperimental],'Color','b','LineWidth',1); 
hold off 
ylim(ylimit) 
xlim([directory(index).zsliceStart-5 

directory(index).zsliceEnd+5]) 
ylabel(sprintf('Exp Range:%g - %g lp/mm 

',experimentalFrequencyRange(1),experimentalFrequencyRange(2))) 
xlabel(' z mm') 
legend('Simulation','Experimental',sprintf('%.2f',theoreticalLate

ralFrequency),sprintf('%g',overallAverageSimulation),sprintf('%g',overa

llAverageExperimental)) 
title('Calculated Frequencies with PSD') 

  
%The PSD Intensity at each Z plane Experimental 
[axialFrequency.experimental, ~] = 

findFrequencyWithFourier(lateralFrequency.experimental.peakPSD(125:250)

, 1, [0,50]); 
axialFrequency.experimental = axialFrequency.experimental/2; %Two 

planes of resonance represent an axial period 

  
figure, 
hold on 
plot(lateralFrequency.experimental.peakPSD,'ro') 
xlim([directory(index).zsliceStart directory(index).zsliceEnd]) 
xlabel(' z mm') 
ylabel('PSD') 
title(sprintf('Axial Frequency:%.3g Theoretical:%.3g 

(lp/mm)',axialFrequency.experimental,zTheoreticalFrequency)) 
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suptitle('PSD Intensity at each Z Plane: Experimental') 

  
%The PSD Intensity at each Z plane Simulation Normalized 
[axialFrequency.simulation, ~] = 

findFrequencyWithFourier(lateralFrequency.simulation.peakPSD, 1, 

[0,50]); 
axialFrequency.simulation = axialFrequency.simulation/2; %Two 

planes of resonance represent an axial period 

  
figure, 
hold on 
plot(lateralFrequency.simulation.peakPSD,'ro') 
xlim([directory(index).zsliceStart directory(index).zsliceEnd]) 
xlabel(' z mm') 
ylabel('PSD') 
title(sprintf('Axial Frequency:%.3g Theoretical:%.3g 

(lp/mm)',axialFrequency.simulation,zTheoreticalFrequency)) 
suptitle('PSD Intensity at each Z Plane: Simulation Normalized') 

  
%% Stitch experimental data into on XZ image 
for zslice = 

directory(index).zsliceStart:directory(index).zsliceInterval:directory(

index).zsliceEnd; 
    XZImage.experimental(:,zslice) = 

ISignal.experimental.data(yslice,:,zslice); 
end 
XZImage.experimental(:,1:directory(index).zsliceStart) = 

[];%remove blank zslices 
%Experimental XZ image 
figure, 
imagesc(XZImage.experimental) 
ylabel('x pixels') 
xlabel('z mm') 
title('ISignal Experimental XZ'); 
colormap(gray);  

  
%Simulation XZ image 
XZImage.simulation = 

ISignal.simulation.normalized(:,1:directory(index).zsliceEnd); 
XZImage.simulation(:,1:directory(index).zsliceStart) = []; 

%remove blank zslices 
figure, 
imagesc(XZImage.simulation) 
ylabel('x pixels') 
xlabel('z mm') 
title('I0Signal Simulation Normalized XZ'); 
colormap(gray);  

  
%Adjusted Percent Error 
% choose the Z planes to compute a new average of the alteral 

frequencies 
% in experimental data 
resonantplanes = 

lateralFrequency.experimental.dataWithFourier(150:270); 
adjustedaverage = sum(resonantplanes)./sum(resonantplanes~=0) 
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adjustedPercentError = abs((overallAverageSimulation - 

adjustedaverage) / overallAverageSimulation *100) 

  
%Calculate lateral frequency at each Z plane Using PSD 
% for zslice = 10:1:300; 
% [lateralFrequency.simulation.dataWithFourier(zslice), 

lateralFrequency.simulation.peakPSD(zslice)] = 

findFrequencyWithFourier(ISignal.simulation.data(:,zslice),mmPerPixel,[

1, 50]); 
% end 
% figure, 
% hold on 
% plot(lateralFrequency.simulation.dataWithFourier,'ro') 
% line(get(gca,'XLim'),[theoreticalLateralFrequency 

theoreticalLateralFrequency],'Color','k','LineWidth',1,'LineStyle','--

'); %plot Theoretical Lateral Frequency 
% line(get(gca,'XLim'),[overallAverageSimulation 

overallAverageSimulation],'Color','r','LineWidth',1); %plot overall 

average 
% hold off 
% ylim(ylimit) 
% xlim([10 300]) 
% ylabel('lp/mm') 
% xlabel(' z mm') 
% 

legend('Simulation','Experimental',sprintf('%.2f',theoreticalLateralFre

quency),sprintf('%g',overallAverageSimulation),sprintf('%g',overallAver

ageExperimental)) 
% title('Calculated Lateral Frequencies at each Z plane with 

PSD') 

 

 

7.G Fresnel Integrals required for Matlab versions before 2014a  

(fresnels.m)  

function FSint = fresnels(X,fresnelType) 
% fresnelS - Fresnel sine integrals, S(X), S1(X), or S2(X) 
% usage: FSint = fresnelS(X,fresnelType) 
% 
% Fresnel sine integrals fall into three classes, simple 
% transformations of each other. All three types described 
% by Abramowitz & Stegun are supported. 
% 
% The maximum error of this code has been shown to be less 
% than (approximately) 1.5e-14 for any value of X. 
% 
% arguments: (input) 
%  X - Any real, numeric value, vector, or array thereof. 
%      X is the upper limit of the Fresnel sine integral. 
% 
%  fresnelType - scalar numeric flag, from the set {0,1,2}. 
%       



91 

 

%      The type 0 Fresnel sine integral (A&S 7.3.1) 
%        S(x) = \int_0^x sin(pi*t^2/2) dt,  
% 
%      Type 1 (A&S  7.3.3a) 
%        S_1(x) = \sqrt(2/pi) \int_0^x sin(t^2) dt 
% 
%      Type 2 (A&S  7.3.3b) 
%        S_2(x) = \sqrt(1/2/pi) \int_0^x sin(t) / \sqrt(t) dt 
% 
% arguments: (output) 
%  FSint - array of the same size and shape as X, containing 
%      the indicated Fresnel sine integral values. 
%  
% 
% Example: 
% % Evaluate the Fresnel sine integral S(x) at x = pi 
% fresnelS(pi,0) 
% 
% % ans = 
% %       0.598249078090266 
% 
% % Verify the correctness of this value using quadgk 
% fresnelSObj = @(t) sin(pi*t.^2/2); 
% quadgk(fresnelSObj,0,pi,'abstol',1e-15') 
% 
% % ans = 
% %       0.598249078090268 
% 
% % Now, how fast is fresnelS? Using Steve Eddins timeit code 
% % to yield an accurate estimate of the time required, we see 
% % that it is reasonably fast for scalar input. 
% timeit(@() fresnelS(pi)) 
% % ans = 
% %       0.0002935014515 
% 
% % More importantly, fresnelS is vectorized.  So 1 million 
% % evaluations are easy to do, and are much faster than 
% % 1 million times the time taken for one evaluation. 
% T = rand(1000000,1); 
% tic 
% FSpred = fresnelS(T); 
% toc  
% % Elapsed time is 0.220848 seconds. 
% 
% 
% REFERENCES 
% [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Error Function 

and Fresnel  
%     Integrals." Ch. 7 in Handbook of Mathematical Functions 

with 
%     Formulas, Graphs, and Mathematical Tables, 9th printing. 

New York: 
%     Dover, pp. 295-329, 1970.   
% 
% [2] Mielenz, K. D.; "Computation of Fresnel Integrals", Journal 

of 



92 

 

%     Research of the National Institute of Standards and 

Technology, 
%     Vol 102, Number 3, May-June 1997 
%        http://nvl.nist.gov/pub/nistpubs/jres/102/3/j23mie.pdf 

  
persistent FSspl 

  
if (nargin < 1) || (nargin > 2) 
  error('FRESNELS:improperarguments','1 or 2 arguemtns are 

required.') 
end 

  
% default for fresnelType 
if (nargin < 2) || isempty(fresnelType) 
  fresnelType = 0; 
else 
  if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || 

(numel(fresnelType) ~= 1) 
    error('FRESNELS:fresnelType', ... 
      'fresnelType must be scalar, one of {0,1,2} if supplied.') 
  end 
end 

  
% X must be real, but of any shape. 
% if any(imag(X) ~= 0) 
%   warning('FRESNELS:complexarguments','X should be real. 

Imaginary part will ignored.') 
%   X = real(X); 
% end 

  
% preallocate FSint to the proper size 
FSint = zeros(size(X)); 

  
% flag any negative X, make it positive. 
S = X < 0; 
X(S) = -X(S); 

  
% transform the type 1 and 2 problems into type 0 
switch fresnelType 
  case 1 
    X = sqrt(2/pi)*X; 
  case 2 
    X = sqrt(2*X/pi); 
end 

  
% The upper limit of the tables is 7.5. 
Xlim = 7.5; 
% klim is a boolean variable that indicates values that exceed 

Xlim. 
klim = (X > Xlim); 
if any(klim(:)) 
  % we found some values that exceed the limit. Use 
  % the rational approximations provided in Mielenz [2] 
  % for the associated functions f(z) (see (4a)) and 
  % g(z) (see (4b)). The approximations are carried to 
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  % additional terms beyond that displayed in Mielenz. 
  % 
  % For abs(X) >= 7.5, these yield results with 
  % roughly 15 significant digits. 
  xk = X(klim); 

   
  FSint(klim) = 0.5 - (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - 

... 
    10395/pi^6 ./xk.^12 + 2027025/pi^8 

./xk.^16).*cos(pi/2*xk.^2)./(pi*xk) - ... 
    (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 

./xk.^12 + ... 
    34459425/pi^8 ./xk.^16).*sin(pi/2*xk.^2)./(pi^2*xk.^3); 

   
end 
klim = ~klim; 

  
% for abs(Xlim) <= Xlim, we will use a spline interpolant of the 
% sine integral itself. 
if any(klim(:)) 
  % have we loaded the appropriate spline? 
  if isempty(FSspl) 
    load _Fresnel_data_ FSspl 
  end 

   
  % do the interpolation itself using ppval. This will be 
  % better than calling interp1 with the 'spline' option, 
  % since it avoids overhead of calling an already created 
  % and stored spline. It will be better than pchip or the 
  % 'cubic' option for interp1 since the spline will be 
  % considerably more accurate. 
  FSint(klim) = ppval(FSspl,X(klim)); 
end 

  
% The Fresnel sine and cosine integrals are odd functions of X, 
% so swap signs for any negative X. 
FSint(S) = - FSint(S); 

  
end % mainline end 

  

(fresnelc.m) 

function FCint = fresnelc(X,fresnelType) 
% fresnelC - Fresnel cosine integrals, C(X), C1(X), or C2(X) 
% usage: FCint = fresnelC(X,fresnelType) 
% 
% Fresnel cosine integrals fall into three classes, simple 
% transformations of each other. All three types described 
% by Abramowitz & Stegun are supported. 
% 
% The maximum error of this code has been shown to be less 
% than 1.5e-14 for any value of X. 
% 
% arguments: (input) 
%  X - Any real, numeric value, vector, or array thereof. 
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%      X is the upper limit of the Fresnel cosine integral. 
% 
%  fresnelType - scalar numeric flag, from the set {0,1,2}. 
%       
%      The type 0 Fresnel cosine integral (A&S 7.3.1) 
%        C(x) = \int_0^x cos(pi*t^2/2) dt,  
% 
%      Type 1 (A&S  7.3.3a) 
%        C_1(x) = \sqrt(2/pi) \int_0^x cos(t^2) dt 
% 
%      Type 2 (A&S  7.3.3b) 
%        C_2(x) = \sqrt(1/2/pi) \int_0^x cos(t) / \sqrt(t) dt 
% 
% arguments: (output) 
%  FCint - array of the same size and shape as X, containing 
%      the indicated Fresnel cosine integral values. 
%  
% 
% Example: 
% % Evaluate the Fresnel cosine integral C(x) at x = 1.38 
% 
% fresnelC(1.38,0) 
% 
% % ans = 
% %       0.562975925772444 
% 
% % Verify the correctness of this value using quadgk 
% FresnelCObj = @(t) cos(pi*t.^2/2); 
% quadgk(FresnelCObj,0,1.38,'abstol',1e-15') 
% 
% % ans = 
% %       0.562975925772444 
% 
% % Now, how fast is fresnelC? Using Steve Eddins timeit code 
% % to yield an accurate estimate of the time required, we see 
% % that it is reasonably fast for scalar input. 
% timeit(@() fresnelC(1.38)) 
% % ans = 
% %       0.000193604455833333 
% 
% % More importantly, fresnelC is vectorized. So 1 million 
% % evaluations are easy to do, and are much faster than 
% % 1 million times the time taken for one evaluation. 
% T = rand(1000000,1); 
% tic 
% FCpred = fresnelC(T); 
% toc  
% % Elapsed time is 0.226884 seconds. 
% 
% 
% REFERENCES 
% [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Error Function 

and Fresnel  
%     Integrals." Ch. 7 in Handbook of Mathematical Functions 

with 
%     Formulas, Graphs, and Mathematical Tables, 9th printing. 

New York: 
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%     Dover, pp. 295-329, 1970.   
% 
% [2] Mielenz, K. D.; "Computation of Fresnel Integrals", Journal 

of 
%     Research of the National Institute of Standards and 

Technology, 
%     Vol 102, Number 3, May-June 1997 
%        http://nvl.nist.gov/pub/nistpubs/jres/102/3/j23mie.pdf 

  
persistent FCspl 

  
if (nargin < 1) || (nargin > 2) 
  error('FRESNELC:improperarguments','1 or 2 arguemtns are 

required.') 
end 

  
% default for fresnelType 
if (nargin < 2) || isempty(fresnelType) 
  fresnelType = 0; 
else 
  if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || 

(numel(fresnelType) ~= 1) 
    error('FRESNELC:fresnelType', ... 
      'fresnelType must be scalar, one of {0,1,2} if supplied.') 
  end 
end 

  
% % X must be real, but of any shape. 
% if any(imag(X) ~= 0) 
%   warning('FRESNELC:complexarguments','X should be real. 

Imaginary part will ignored.') 
%   X = real(X); 
% end 

  
% preallocate FCint to the proper size 
FCint = zeros(size(X)); 

  
% flag any negative X, make it positive. 
S = X < 0; 
X(S) = -X(S); 

  
% transform the type 1 and 2 problems into type 0 
switch fresnelType 
  case 1 
    X = sqrt(2/pi)*X; 
  case 2 
    X = sqrt(2*X/pi); 
end 

  
% The upper limit of the tables is 7.5. 
Xlim = 7.5; 
% klim is a boolean variable that indicates values that exceed 

Xlim. 
klim = (X >= Xlim); 
if any(klim(:)) 
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  % we found some values that exceed the limit. Use 
  % the rational approximations provided in Mielenz [2] 
  % for the associated functions f(z) (see (4a)) and 
  % g(z) (see (4b)). The approximations are carried to 
  % additional terms beyond that displayed in Mielenz. 
  % 
  % For abs(X) >= 7.5, these yield results with 
  % roughly 15 significant digits. 
  xk = X(klim); 

   
  FCint(klim) = 0.5 + (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - 

... 
    10395/pi^6 ./xk.^12 + 2027025/pi^8 

./xk.^16).*sin(pi/2*xk.^2)./(pi*xk) - ... 
    (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 

./xk.^12 + ... 
    34459425/pi^8 ./xk.^16).*cos(pi/2*xk.^2)./(pi^2*xk.^3); 

   
end 
klim = ~klim; 

  
% for abs(Xlim) <= Xlim, we will use a spline interpolant of the 
% cosine integral itself. 
if any(klim(:)) 
  % have we loaded the appropriate spline? 
  if isempty(FCspl) 
    load _Fresnel_data_ FCspl 
  end 

   
  % do the interpolation itself using ppval. This will be 
  % better than calling interp1 with the 'spline' option, 
  % since it avoids overhead of calling an already created 
  % and stored spline. It will be better than pchip or the 
  % 'cubic' option for interp1 since the spline will be 
  % considerably more accurate. 
  FCint(klim) = ppval(FCspl,X(klim)); 
end 

  
% The Fresnel sine and cosine integrals are odd functions of X, 
% so swap signs for any negative X. 
FCint(S) = - FCint(S); 

  
end % mainline end 

  
% =============================================================== 
%     Code used only to generate and save the integral tables 
% =============================================================== 
function generateTables 

  
% Generate the integral tables, more accurate than Abramowitz & 
% Stegun provide, since they give only 7 digits. 
FresnelCObj = @(t) cos(pi*t.^2/2); 
FresnelSObj = @(t) sin(pi*t.^2/2); 

  
p = 1.75; 
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T0 = linspace(1,7.5.^p,501).' .^(1/p); 
dt = T0(2) - T0(1); 
T0 = [linspace(0,1 - dt,ceil(1./dt))';T0]; 
plot(diff(T0)) 

  
n = length(T0); 
FC75 = zeros(n,1); 
FS75 = zeros(n,1); 

  
h = waitbar(0,'Computing Fresnel integrals'); 
for i = 2:n 
  waitbar(i/n,h) 
  FC75(i) = quadgk(FresnelCObj,0,T0(i),'abstol',1.e-

16,'reltol',100*eps('double')); 
  FS75(i) = quadgk(FresnelSObj,0,T0(i),'abstol',1.e-

16,'reltol',100*eps('double')); 
end 
delete(h) 

  
% Turn them into splines, then save the splines. These splines 

are 
% first built in a Hermite form, since I can supply the 1st and 

second 
% derivatives of the function. Then I turn them into a pp form, 

for use 
% in fresnelC and fresnelS. 
FCspl = hermite2slm([T0,FC75,FresnelCObj(T0), -

pi*T0.*sin(pi*T0.^2/2), ... 
  -pi*(sin(pi*T0.^2/2) + pi*T0.^2 .*cos(pi*T0.^2/2))]); 
FCspl = slm2pp(FCspl); 

  
FSspl = 

hermite2slm([T0,FS75,FresnelSObj(T0),pi*T0.*cos(pi*T0.^2/2), ... 
  pi*(cos(pi*T0.^2/2) - pi*T0.^2 .*sin(pi*T0.^2/2))]); 
FSspl = slm2pp(FSspl); 

  
save _Fresnel_data_ FCspl FSspl 

  

  
% test the result 
clear functions 

  
n = 1000; 
T = sort(rand(n,1)*10); 
FCquad = zeros(n,1); 
FSquad = zeros(n,1); 
for i = 1:n 
  FCquad(i) = quadgk(FresnelCObj,0,T(i),'abstol',1.e-16); 
  FSquad(i) = quadgk(FresnelSObj,0,T(i),'abstol',1.e-16); 
end 
FCpred = fresnelc(T,0); 
FSpred = fresnels(T,0); 

  
subplot(1,2,1) 
plot(T,FCquad - FCpred,'.') 
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grid on 
subplot(1,2,2) 
plot(T,FSquad - FSpred,'.') 
grid on 

  
end 

 

7.H Verification of AFA Code (VerificaitonOfFindFrequency.m) 

%Test for Find Frequency Algorithm  
%Parameters 
%Coherent Source 635nm 
%BiprismFBP2020G-179 
%One 2um Slit 
%birpirsm position eta 50mm 
%convergining lens focal length 150mm 

  
clear; 
experimentalDataDir = 

'C:\Users\ctylor10\Documents\ExperimentalDATA\10_7_15\Coherent Source 

Red\BiprismFBP2020G-179\One 5um Slit 100mm FtoBseperation 400us 

exposure\'; 
simulationDataDir = 'C:\Users\ctylor10\Documents\MATLAB\Fresnel 

Biprism\SimulationData\10_7_15\FBP2020G-

179_635nm_0.200mmslits_50Eta_150Focal_1388x600_0.0064x_1zmmperpixel.mat

'; 

  
yslice = 400; 
%Parameters to find lateral frequency 
mmPerPixel = 0.0064; %lateral mm/pixel. expecting same value for 

simulation and experiment 

  
%Load Simulation Data 
load(simulationDataDir,'ISignalOneSlit') 
ISignalSimData = ISignalOneSlit; 
for zslice = 130; 
    %convert to double precision 
    ISignalExpData(:,:,zslice) = 

double(imread(strcat(experimentalDataDir, sprintf('%g.tif',zslice)))); 

     
    average = mean(ISignalExpData(:,:,zslice)); % take average 

along y dim 
    experimentalNormalizationfactor = sum(average); 

     
    %normalize the simulation data to experimental. take the 

transpose to 
    %align fringes vertically. 
    simulationNormalizationFactor = 

sum(ISignalSimData(:,zslice)'); 
    ISignalSimNormalized(:,zslice) = ISignalSimData(:,zslice) * 

(experimentalNormalizationfactor/simulationNormalizationFactor); 
end 

  
%Calculate frequency 
estimatedpercentError = 1.0;  
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simulationFrequencyCeiling = 50;  

  
[lateralSimulationFrequency,~,~,~] = 

findfrequency(ISignalSimNormalized(:,zslice),mmPerPixel,simulationFrequ

encyCeiling); 
experimentalFrequencyCeiling = lateralSimulationFrequency + 

2*estimatedpercentError*lateralSimulationFrequency; 

  

  
data = ISignalExpData(yslice,:,zslice); 
frequencyCeiling = experimentalFrequencyCeiling; 

  
minIntensity = max(data)*.4; 
minPixels = floor(1/(frequencyCeiling*mmPerPixel)); 

  
[~,lateralPeakLocationsWithAlgorithm] = 

findpeaks(data,'MinPeakHeight',minIntensity,'MinPeakDist',minPixels); 
lateralFrequencyWithAlgorithm = 

1/(mean(diff(lateralPeakLocationsWithAlgorithm).*mmPerPixel)); 
%Store the boundaries of the window 
window(1) = lateralPeakLocationsWithAlgorithm(1); 
window(2) = lateralPeakLocationsWithAlgorithm(end); 

  
percentErrorWithAlgorithm = (lateralFrequencyWithAlgorithm-

lateralSimulationFrequency)./lateralSimulationFrequency.*100; 

  
%NO ALGORITHM 
minIntensity = max(data)*.4; 

  
[~,lateralPeakLocationsNoAlgorithm] = 

findpeaks(data,'MinPeakHeight',minIntensity); 
lateralFrequencyNoAlgorithm = 

1/(mean(diff(lateralPeakLocationsNoAlgorithm).*mmPerPixel)); 

  
figure, 
subplot(1,2,1) 
imagesc(ISignalSimNormalized(:,zslice)'); 
ylabel('y a.u.'); 
xlabel('x pixels'); 
title('Simulation'); 
colormap(gray);  
subplot(1,2,2) 
imagesc(ISignalExpData(:,:,zslice)); 
ylabel('y pixels'); 
xlabel('x pixels'); 
title('Experimental'); 
suptitle(sprintf('Irradiance Signal at z = %gmm',zslice)) 

  
%Intensity LinePlots 
figure, 
hold on 
plot(ISignalExpData(yslice,:,zslice),'r');%draw intensity 
plot(lateralPeakLocationsWithAlgorithm,ISignalExpData(yslice,late

ralPeakLocationsWithAlgorithm,zslice),'ro','MarkerSize',10);%draw Peaks 

Identified with Algorithm 
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plot(lateralPeakLocationsNoAlgorithm,ISignalExpData(yslice,latera

lPeakLocationsNoAlgorithm,zslice),'bx');%draw Peaks Identified No 

Algorithm 
line([window(1) 

window(1)],get(gca,'YLim'),'Color','k','LineWidth',1);%draw window 

boundaries 
line([window(2) 

window(2)],get(gca,'YLim'),'Color','k','LineWidth',1); 
hold off 
title(sprintf('Experimental: %g lp/mm | %.2f%% 

Error',lateralFrequencyWithAlgorithm,percentErrorWithAlgorithm)); 
ylabel('Intensity'); 
xlabel('x pixels'); 
legend(sprintf('y = %g',yslice),'Peaks W/Algorithm', 'Peaks No 

Algorithm'); 
suptitle(sprintf('Intensity Line Plot at z = %gmm',zslice)) 

 

7.I Verify PSD method for lateral frequency analysis (powerspectraldensity.m) 

%plot power spectral density at a specified y- and z- slice. 

specify a 
%frequency range to search for a maximum in the power spectral 

density 

  
% Dependencies: 
% loadDataDirectories.m 

  
clear; close all 
index = 9; 
directory = loadDataDirectories(); 
xTheoreticalFrequency = directory(index).xTheoreticalFrequency; 
load(directory(index).simulation, 

directory(index).simulationData, 'xTheoreticalFrequency'); 
ISignal.simulation.data = eval(directory(index).simulationData);  

  
yslice = 500 
zslice = 50 
frequencyRange = [0,40] 
ISignal.experimental.data(:,:,zslice) = 

double(imread(strcat(directory(index).experimental, 

sprintf('%g.tif',zslice)))); 
%set y.sin to experimental or simulation data 
%y.sin = ISignal.simulation.data(:,zslice) 
y.sin = ISignal.experimental.data(yslice,:,zslice) 

  

  
y.fft = fft(y.sin,1388); 
Pyy = y.fft.*conj(y.fft)/1388; 
f = 156.25/1388*(0:693); 

  
[peak locations] = findpeaks(Pyy(1:694), 'SortStr','descend'); 
removeIndicies = []; 
for index = 1:length(locations) 
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    if f(locations(index)) < frequencyRange(1) || 

f(locations(index)) > frequencyRange(2) 
        locations(index) = NaN; 
    end 
end 
ind = find(isnan(locations)); 
locations(ind) = []; 

  
frequency = f(locations(1)); 

  
%plot line intensity profile 
figure 
plot(y.sin) 
title(sprintf('Experimental: %g lp/mm',frequency)); 
ylabel('Intensity'); 
xlabel('x pixels'); 
legend(sprintf('y = %g',yslice)); 

  
%Plot power spectral density 
figure 
plot(f(5:694),Pyy(5:694)) 
title('Power Spectral Density') 
xlabel('lp/mm') 

  
%image experimental irradiance signal 
figure 
imagesc(ISignal.experimental.data(:,:,zslice)) 
ylabel('y pixels'); 
xlabel('x pixels'); 
title('Experimental'); 
suptitle(sprintf('Irradiance Signal at z = %gmm',zslice)) 
colormap(gray);  

 

7.J Verify PSD method for axial frequency analysis 

(powerspectraldensitythroughZ.m) 

%power spectral density through XZ for simulation 
%calculate axial frequency 
%testing debugging script* refer to 
%CompareExperimentalandSimulationWithFourier 
%  
% Dependencies: 
% loadDataDirectories.m 

  
clear; close all 
index = 9; 
directory = loadDataDirectories(); 
xTheoreticalFrequency = directory(index).xTheoreticalFrequency; 
load(directory(index).simulation, 

directory(index).simulationData, 'zTheoreticalFrequency'); 
ISignal.simulation.data = eval(directory(index).simulationData);  
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ISignal.simulation.data(:,1) = []; %Remove first two columns to 

maintain even number of z, First row is NaN 
ISignal.simulation.data(:,2) = []; 

  
xslice = length(ISignal.simulation.data)/2; %Choose middle x to 

evaluate 
frequencyRange = [0,50]; 

  
%set data to y.sin 
y.sin = ISignal.simulation.data(xslice,:) 
nsamples = size(y.sin,2) 

  
y.fft = fft(y.sin,nsamples); 
Pyy = y.fft.*conj(y.fft)/nsamples; 
f = 1/nsamples*(0:nsamples/2-1); 

  
[peak locations] = findpeaks(Pyy(1:nsamples/2), 

'SortStr','descend'); 
removeIndicies = []; 
for i = 1:length(locations) 
    if f(locations(i)) < frequencyRange(1) || f(locations(i)) > 

frequencyRange(2) 
        locations(i) = NaN; 
    end 
end 
ind = find(isnan(locations)); 
locations(ind) = []; 

  
frequency = f(locations(1)); 

  
%% plot line intensity profile 
ind = 1; 
xtickind = 0; 
xticklabels = {} 
xticks = []; 
for i = 50:10:150 
    xticklabels(ind) = cellstr(sprintf('%g',i)); 
    xticks(ind) = xtickind; 
    ind = ind +1; 
    xtickind = xtickind + 10; 
end 

  
figure 
plot(y.sin(50:150)) 
title(sprintf('Simulation: %g lp/mm Theoretical: %g 

lp/mm',frequency,zTheoreticalFrequency)); 
ylabel('Intensity'); 
xlabel('z mm'); 
ax = gca; 
ax.XTickLabel = xticklabels; 
ax.XTick = xticks; 
legend(sprintf('x = %g',xslice)); 
suptitle('Axial Frequency Analysis'); 
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%% Plot power spectral density 
figure 
plot(f(5:nsamples/2),Pyy(5:nsamples/2)) 
title('Power Spectral Density') 
xlabel('lp/mm') 

 

7.K List of Experimental and Simulation Data Configurations 

(loadDataDirectories.m) 

function [directory] = loadDataDirectories() 
%experimental and simulation directories must be in the matlab current 

folder 
%the current matlab folder is concatenated with the data folder at the 

end 
%of this script 

  
%All Experimental data taken at 1388x600 resolution and 0.0064 mm/pixel 

in 
%XY (Axio Vision camera parameters) except for the alst set (Redux) 
%All Simulations use 1 mm/pixel in Z 

  
%List of Configurations 
% 1 - Coherent 635nm Biprism FBP2020G-179 One 0.127um Slit 

50Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 2 - Coherent 635nm Biprism FBP2020G-179 One 0.127um Slit 

130Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 3 - Incoherent 470nm Biprism FBP2020G-179 One 0.1524um Slit 

50Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 4 - Incoherent 470nm Biprism FBP2020G-179 One 0.1524um Slit 

130Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 5 - Incoherent 470nm Biprism FBP2020G-175 One 0.0254um Slit 

40Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 6 - Incoherent 470nm Biprism FBP2020G-179 One 0.0508um Slit 

50Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 
% 7 - Incoherent 470nm Biprism FBP2020G-179 One 0.0508um Slit 

130Eta_150Focal 1388x600 resolution 0.0064xmmperpixel_1zmmperpixel 

  
%Two Slits - 70um Slit Width - 5mm ZSlices 
% 8  - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 9  - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 130Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 10 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 11 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 130Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 12 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
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% 13 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 130Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 

  
%Two Slits - 70um Slit Width - 1mm ZSlices  
% 14 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 15 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 120Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 16 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 17 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 120Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 18 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 50Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 
% 19 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 120Eta_150Focal 1388x600 resolution 

0.0064xmmperpixel_1zmmperpixel 

  
%Two Slits - 70um Slit Width - 1mm ZSlices - Redux - HC Flash 4.0 V2 
% 20 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 50Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 
% 21 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 200um 

Separation 120Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 
% 22 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 50Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 
% 23 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 300um 

Separation 120Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 
% 24 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 50Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 
% 25 - Incoherent 470nm Biprism FBP2020G-179 Two 70um Slits 500um 

Separation 120Eta_150Focal 2048x2048 resolution 

0.0065xmmperpixel_1zmmperpixel 

  

  
%Directories from 10/7/15 
    directory(1).experimental = '\Data\Experimental\10_7_15\Coherent 

Source Red\BiprismFBP2020G-179\One 0.127um Slit 100mm FtoBseperation 

400us exposure\'; 
    directory(1).simulation = '\Data\Simulation\10_7_15\FBP2020G-

179_635nm_0.200mmslits_50Eta_150Focal_1388x600_0.0064x_1zmmperpixel.mat

'; 
    directory(1).zsliceInterval = 10; 
    directory(1).zsliceStart = 50; 
    directory(1).zsliceEnd = 150; 
    directory(1).xTheoreticalFrequency = 4.7185; 
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    directory(1).simulationData = 'I0SignalOneSlit'; 

  
    directory(2).experimental = '\Data\Experimental\10_7_15\Coherent 

Source Red\BiprismFBP2020G-179\One 0.127um Slit 20mm FtoBseperation 

400us exposure\'; 
    directory(2).simulation = '\Data\Simulation\10_7_15\FBP2020G-

179_635nm_0.200mmslits_130Eta_150Focal_1388x600_0.0064x_1zmmperpixel.ma

t'; 
    directory(2).zsliceInterval = 10; 
    directory(2).zsliceStart = 50; 
    directory(2).zsliceEnd = 150; 
    directory(2).xTheoreticalFrequency = 12.2680; 
    directory(2).simulationData = 'I0SignalOneSlit'; 

  
    directory(3).experimental = '\Data\Experimental\10_7_15\Incoherent 

Source 470nm Blue\BiprismFBP2020G-179\0.1524um OneSlit 

100mmFtoBseperation 1.0msExposure 1388x1040\'; 
    directory(3).simulation = '\Data\Simulation\10_7_15\FBP2020G-

179_470nm_0.200mmslits_50Eta_150Focal_1388x600_0.0064x_1zmmperpixel.mat

'; 
    directory(3).zsliceInterval = 10; 
    directory(3).zsliceStart = 50; 
    directory(3).zsliceEnd = 150; 
    directory(3).xTheoreticalFrequency = 6.3749; 
    directory(3).simulationData = 'I0SignalOneSlit'; 

  
    directory(4).experimental = '\Data\Experimental\10_7_15\Incoherent 

Source 470nm Blue\BiprismFBP2020G-179\0.1524um OneSlit 

20mmFtoBseperation 1msExposure 1388x1040\'; 
    directory(4).simulation = '\Data\Simulation\10_7_15\FBP2020G-

179_470nm_0.200mmslits_130Eta_150Focal_1388x600_0.0064x_1zmmperpixel.ma

t'; 
    directory(4).zsliceInterval = 10; 
    directory(4).zsliceStart = 50; 
    directory(4).zsliceEnd = 150; 
    directory(4).xTheoreticalFrequency = 16.5749; 
    directory(4).simulationData = 'I0SignalOneSlit'; 

  
    directory(5).experimental = '\Data\Experimental\10_7_15\Incoherent 

Source 470nm Blue\BiprismFBP2020G-

175\0.0254umOneSlit_1080_110mmFtoBseperation_90msExposure_IncoherentSou

rce\'; 
    directory(5).simulation = '\Data\Simulation\10_7_15\FBP2020G-

175_470nm_0.200mmslits_40Eta_150Focal_1388x600_0.0064x_1zmmperpixel.mat

'; 
    directory(5).zsliceInterval = 10; 
    directory(5).zsliceStart = 50; 
    directory(5).zsliceEnd = 150; 
    directory(5).xTheoreticalFrequency = 25.5153; 
    directory(5).simulationData = 'I0SignalOneSlit'; 

         
%Directories from 10/20/15 
    directory(6).experimental = '\Data\Experimental\10_20_15\Incoherent 

Source 470nm Blue\0.0508umOneSlit 100mmFtoBseperation 4.8ms exposure 

1388x1040\'; 
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    directory(6).simulation = '\Data\Simulation\10_20_15\FBP2020G-

179_470nm_0.200mmslits_50Eta_150Focal_2umSlitWidth_1388x300_0.0064x_1zm

mperpixel.mat'; 
    directory(6).zsliceInterval = 5; 
    directory(6).zsliceStart = 50; 
    directory(6).zsliceEnd = 150; 
    directory(6).xTheoreticalFrequency = 6.37495; 
    directory(6).simulationData = 'I0SignalOneSlit'; 

  
    directory(7).experimental = '\Data\Experimental\10_20_15\Incoherent 

Source 470nm Blue\0.0508umOneSlit 20mmFtoBSeperation 8.4msExposure 

1388x1040\'; 
    directory(7).simulation = '\Data\Simulation\10_20_15\FBP2020G-

179_470nm_0.200mmslits_130Eta_150Focal_2umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(7).zsliceInterval = 5; 
    directory(7).zsliceStart = 50; 
    directory(7).zsliceEnd = 150; 
    directory(7).simulationData = 'I0SignalOneSlit'; 

  
%Directories from 12/15/15 
    directory(8).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 200umSeparation 

50mmSlitToBiprism 1.0msExposure 1388x1040\'; 
    directory(8).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.200mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(8).zsliceInterval = 5; 
    directory(8).zsliceStart = 50; 
    directory(8).zsliceEnd = 150; 
    directory(8).simulationData = 'I0SignalTwoSlits'; 

  
    directory(9).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 200umSeparation 

130mmSlitToBiprism 1.0msExposure 1388x1040\'; 
    directory(9).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.200mmslits_130Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(9).zsliceInterval = 5; 
    directory(9).zsliceStart = 50; 
    directory(9).zsliceEnd = 150; 
    directory(9).simulationData = 'I0SignalTwoSlits'; 

  
    directory(10).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 300umSeparation 

50mmSlitToBiprism 1.6msExposure 1388x1040\'; 
    directory(10).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.300mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(10).zsliceInterval = 5; 
    directory(10).zsliceStart = 50; 
    directory(10).zsliceEnd = 150; 
    directory(10).simulationData = 'I0SignalTwoSlits'; 
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    directory(11).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 300umSeparation 

130mmSlitToBiprism 1.6msExposure 1388x1040\'; 
    directory(11).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.300mmslits_130Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(11).zsliceInterval = 5; 
    directory(11).zsliceStart = 50; 
    directory(11).zsliceEnd = 150; 
    directory(11).simulationData = 'I0SignalTwoSlits'; 

  
    directory(12).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 500umSeparation 

50mmSlitToBiprism 1.0msExposure 1388x1040\'; 
    directory(12).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.500mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(12).zsliceInterval = 5; 
    directory(12).zsliceStart = 50; 
    directory(12).zsliceEnd = 150; 
    directory(12).simulationData = 'I0SignalTwoSlits'; 

  
    directory(13).experimental = 

'\Data\Experimental\12_15_15\70umTwoSlit 500umSeparation 

130mmSlitToBiprism 1.0msExposure 1388x1040\'; 
    directory(13).simulation = '\Data\Simulation\12_15_15\FBP2020G-

179_470nm_0.500mmslits_130Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(13).zsliceInterval = 5; 
    directory(13).zsliceStart = 50; 
    directory(13).zsliceEnd = 150; 
    directory(13).simulationData = 'I0SignalTwoSlits'; 

     
%Directories from 2/23/16 
    directory(14).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 200umSeparation 

50mmSlitToBiprism 1mmZSlices20-300\'; 
    directory(14).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.200mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(14).zsliceInterval = 1; 
    directory(14).zsliceStart = 20; 
    directory(14).zsliceEnd = 300; 
    directory(14).simulationData = 'I0SignalTwoSlits'; 

        
    directory(15).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 200umSeparation 

120mmSlitToBiprism 1mmZSlices20-300\'; 
    directory(15).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.200mmslits_120Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(15).zsliceInterval = 1; 
    directory(15).zsliceStart = 20; 
    directory(15).zsliceEnd = 300; 
    directory(15).simulationData = 'I0SignalTwoSlits'; 
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    directory(16).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 300umSeparation 

50mmSlitToBiprism 1mmZSlices20-300\'; 
    directory(16).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.300mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(16).zsliceInterval = 1; 
    directory(16).zsliceStart = 20; 
    directory(16).zsliceEnd = 300; 
    directory(16).simulationData = 'I0SignalTwoSlits'; 

     
    directory(17).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 300umSeparation 

120mmSlitToBiprism 1mmZSlices20-300\'; 
    directory(17).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.300mmslits_120Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(17).zsliceInterval = 1; 
    directory(17).zsliceStart = 20; 
    directory(17).zsliceEnd = 300; 
    directory(17).simulationData = 'I0SignalTwoSlits'; 

     
    directory(18).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 500umSeparation 

50mmSlitToBiprism 1mmZSlices20-270\'; 
    directory(18).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.500mmslits_50Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1z

mmperpixel.mat'; 
    directory(18).zsliceInterval = 1; 
    directory(18).zsliceStart = 20; 
    directory(18).zsliceEnd = 270; 
    directory(18).simulationData = 'I0SignalTwoSlits'; 

     
    directory(19).experimental = 

'\Data\Experimental\2_23_16\70umTwoSlit 500umSeparation 

120mmSlitToBiprism 1mmZSlices20-300\'; 
    directory(19).simulation = '\Data\Simulation\2_23_16\FBP2020G-

179_470nm_0.500mmslits_120Eta_150Focal_70umSlitWidth_1388x300_0.0064x_1

zmmperpixel.mat'; 
    directory(19).zsliceInterval = 1; 
    directory(19).zsliceStart = 20; 
    directory(19).zsliceEnd = 300; 
    directory(19).simulationData = 'I0SignalTwoSlits'; 

     

     
%Directories from 4/5/16 
    directory(20).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D2mmSlitSeparation50mmBiPrism\Image'; 
    directory(20).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.200mmslits_50Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1z

mmperpixel.mat'; 
    directory(20).zsliceInterval = 1; 
    directory(20).zsliceStart = 40; 
    directory(20).zsliceEnd = 300; 
    directory(20).simulationData = 'I0SignalTwoSlits'; 
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    directory(21).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D2mmSlitSeparation120mmBiPrism\Image'; 
    directory(21).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.200mmslits_120Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1

zmmperpixel.mat'; 
    directory(21).zsliceInterval = 1; 
    directory(21).zsliceStart = 40; 
    directory(21).zsliceEnd = 300; 
    directory(21).simulationData = 'I0SignalTwoSlits'; 

     
    directory(22).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D3mmSlitSeparation50mmBiPrism\Image'; 
    directory(22).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.300mmslits_50Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1z

mmperpixel.mat'; 
    directory(22).zsliceInterval = 1; 
    directory(22).zsliceStart = 40; 
    directory(22).zsliceEnd = 300; 
    directory(22).simulationData = 'I0SignalTwoSlits'; 

     
    directory(23).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D3mmSlitSeparation120mmBiPrism\Image'; 
    directory(23).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.300mmslits_120Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1

zmmperpixel.mat'; 
    directory(23).zsliceInterval = 1; 
    directory(23).zsliceStart = 40; 
    directory(23).zsliceEnd = 300; 
    directory(23).simulationData = 'I0SignalTwoSlits'; 

     
    directory(24).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D5mmSlitSeparation50mmBiPrism\Image'; 
    directory(24).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.500mmslits_50Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1z

mmperpixel.mat'; 
    directory(24).zsliceInterval = 1; 
    directory(24).zsliceStart = 40; 
    directory(24).zsliceEnd = 300; 
    directory(24).simulationData = 'I0SignalTwoSlits'; 

     
    directory(25).experimental = 'Z:\Chris\Experimental 

DATA\4_5_16\D5mmSlitSeparation120mmBiPrism\Image'; 
    directory(25).simulation = 'E:\MATLAB\FBP2020G-

179_470nm_0.500mmslits_120Eta_150Focal_70umSlitWidth_2048x300_0.0065x_1

zmmperpixel.mat'; 
    directory(25).zsliceInterval = 1; 
    directory(25).zsliceStart = 40; 
    directory(25).zsliceEnd = 300; 
    directory(25).simulationData = 'I0SignalTwoSlits'; 

  

     

  
%concatenate directory strings with pwd (present working 

directory/current folder) 
%directories 20 - 25 are stored on CIRL NAS 
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    for index = 1:19 
        directory(index).experimental = [pwd, 

directory(index).experimental]; 
        directory(index).simulation = [pwd, 

directory(index).simulation]; 
    end 
%     for index = 20:25 
%         directory(index).simulation = [pwd, 

directory(index).simulation]; 
%     end 

  
end 
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7.L Double Slit Data Comparison of Simulation and Experimental (Initial Set) 

The following sections (7.L and 7.M) cover the analysis of the initial double slit 

data in which there was significant distortion in the images due to misalignment of the 

camera (camera shake) and optics (axial skew of the pattern) in the experimental setup. 

Also note that the simulation’s axial scale was improperly configured. At the time of 

simulating this data, the axial period was incorrectly defined as the period of the visibility 

of the fringes. This resulted in a mismatch of the axial frequencies in the experimental 

data vs simulated data by a factor of two. The following two sections are a copy of the 

original data and analysis for documentation purposes. The analysis shows that the PSD 

method is capable of determining the axial frequency in a process that is independent of 

the axial skew of the illumination pattern. 
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The PSD method is used to analyze the lateral and axial frequencies of double slit 

configuration data. Six total configurations are analyzed; three configurations with 

varying slit separations (0.200 mm, 0.300 mm, and 0.500 mm) and two biprism positions 

(50 mm and 120 mm) for each slit separation are presented in this section. The 0.200 mm 

separation and 50 mm biprism position is the best example out of the three 50 mm 

biprism configurations. The other two (0.300 mm and 0.500 mm) are highly distorted 

when the XZ image is stitched together (Figure 4-24 and Figure 4-34). When calculating 

the lateral frequency for each Z plane, the PSD method only searches for the most 

dominant frequency within 50% of the theoretical frequency. This filter is appropriate 

because the single slit data comparison reflects that the experimental data is well below 

50% error relative to the theoretical frequency. Refer to Table 7-1 for the list of 

simulation and experimental parameters. 

 

Table 7-1 Simulation and experimental parameters describing the wavelength of the 

source, biprism, slit, and converging lens. 

 

𝜆 470 * 10
-6

 mm wavelength of source 

𝑛 1.515 refractive index of the biprism 

𝛿 0.5 ∗
𝜋

180
 

radians biprism angle 

𝑥0 0.200, 0.300, and 0.500 mm slit separation 

Δ 0.070 mm slit width 

𝜂 50 and 120 mm position of biprism 

𝑓 150 mm focal length of converging lens 
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Results acquired using the first configuration (0.200 mm separation and 50 mm 

biprism position) are presented in Figure 7-1 through Figure 7-5. In Figure 7-1, the low 

frequency outliers in the first 120mm are sample from a non-resonant plane and their 

value lowers the overall calculated average for the lateral frequency. By removing these 

outliers, the adjusted average for Z planes 150 through 300 is 6.2793 lp/mm. 

 

  

Figure 7-1. Calculated lateral frequencies through Z using PSD method. 

Experimental Frequency range filter 3.18-9.56 lp/mm.  
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Figure 7-2 and Figure 7-3 show the correlation between planes of resonance and 

the PSD intensity in the experimental data. 

 

 

Figure 7-2. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-1. 

 

 

Figure 7-3. Experimental XZ image for 0.200 mm slit separation and 50 mm 

biprism position. 
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Figure 7-4 and Figure 7-5 show the correlation between planes of resonance and 

the PSD intensity in the simulation data. 

 

 

Figure 7-4. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-1. 

 

 

Figure 7-5. Simulation XZ image for 0.200 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the second configuration (0.200 mm slit separation, 120 

mm biprism position) are presented in Figure 7-6 through Figure 7-10. The outliers in 

Figure 7-6 correspond to low visibility of the pattern and low PSD intensity indicated by 

Figure 7-7. The adjusted average for Z planes 150 through 250 is 15.3434 lp/mm. 

 

 

Figure 7-6. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 7-7 and Figure 7-8 show the correlation between planes of resonance and 

the PSD intensity in the experimental data. 

 

 

Figure 7-7. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-6. 

 

 

Figure 7-8. Experimental XZ image for 0.200 mm slit separation and 120 mm 

biprism position. 
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Figure 7-9 and Figure 7-10 show the correlation between planes of resonance and 

the PSD intensity in the simulation data. 

 

 

Figure 7-9. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-6. 

 

 

Figure 7-10. Simulation XZ image for 0.200 mm slit separation and 120 mm biprism 

position. 
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Results acquired using the third configuration (.300mm slit separation, 50 mm 

biprism position) are presented in Figure 7-11 through Figure 7-15. The adjusted average 

for Z planes 150 through 300 is 5.8913 lp/mm. 

 

 

Figure 7-11. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 3.19-9.56 lp/mm. 
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Figure 7-12 and Figure 7-13 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

. 

Figure 7-12. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-11. 

 

 

Figure 7-13. Experimental XZ image for 0.300 mm slit separation and 50 mm 

biprism position. 
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Figure 7-14 and Figure 7-15 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 7-14. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-11. 

 

 

Figure 7-15. Simulation XZ image for 0.300 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the fourth configuration (.300 mm slit separation, 120 mm 

biprism positon) are presented in Figure 7-16 through Figure 7-20. The adjusted average 

for Z planes 150 through 300 is 15.5983 lp/mm. 

 

 

Figure 7-16. Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 7-17 and Figure 7-18 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 7-17. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-16. 

 

 

Figure 7-18. Experimental XZ image for 0.300 mm slit separation and 120 mm 

biprism position. 
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Figure 7-19 and Figure 7-20 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 7-19. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-16. 

 

 

Figure 7-20. Simulation XZ image for 0.300 mm slit separation and 120 mm biprism 

position. 
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Results acquired using the the fifth configuration (0.500 mm slit separation, 50 

mm biprism position) are presented in Figure 7-21 through Figure 7-25. The adjusted 

average for Z planes 150 through 270 is 6.1565 lp/mm. 

 

 

Figure 7-21 Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 3.19-9.56 lp/mm. 
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Figure 7-22 and Figure 7-23 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 7-22. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-21. 

 

 

Figure 7-23. Experimental XZ image for 0.500 mm slit separation and 50 mm 

biprism position 
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Figure 7-24 and Figure 7-25 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 7-24. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-21. 

 

 

 

Figure 7-25. Simulation XZ image for 0.500 mm slit separation and 50 mm biprism 

position. 
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Results acquired using the sixth configuration (0.500 mm slit separation, 120 mm 

biprism position) are presented in Figure 7-26 through Figure 7-30. The adjusted average 

for Z planes 150 through 250 is 15.6063 lp/mm. 

 

 

Figure 7-26 Calculated lateral frequencies through Z using PSD method. 

Experimental frequency range filter 7.65-22.95 lp/mm. 
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Figure 7-27 and Figure 7-28 show the correlation between planes of resonance 

and the PSD intensity in the experimental data. 

 

 

Figure 7-27. The PSD intensities for each Z-plane resulting from analysis of the 

experimental lateral frequencies at corresponding Z-planes reported in Figure 7-26. 

 

 

Figure 7-28. Experimental XZ image for 0.500 mm slit separation and 120 mm 

biprism position. 
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Figure 7-29 and Figure 7-30 show the correlation between planes of resonance 

and the PSD intensity in the simulation data. 

 

 

Figure 7-29. The PSD intensities for each Z-plane resulting from analysis of the 

simulation lateral frequencies at corresponding Z-planes reported in Figure 7-26. 

 

 

Figure 7-30. Simulation XZ image for 0.500 mm slit separation and 120 mm biprism 

position. 
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Table 7-2 summarizes the percent error between the experimental data and the 

simulation data for the measured average lateral frequency for each of the six double slit 

configurations. 

 

Table 7-2 Comparison of measured experimental and simulation lateral frequencies 

for various two slit configurations using the PSD method. 

 

Slit Separation, 

Biprism Position 

(mm) 

Simulation Lateral 

Frequency Average 

(lp/mm) 

Experimental Lateral 

Frequency Adjusted Average 

(lp/mm) 

Percent Error 

0.200, 50 6.35291  6.2793  1.1580 % 

0.200, 120 15.2521  15.3434  0.5985 % 

0.300, 50  6.40018  5.8913  7.9509 % 

0.300, 120 15.3038  15.5983  1.9246 % 

0.500, 50 6.36324  6.1565  3.2492 % 

0.500, 120 15.3022  15.6063  1.9872 % 
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7.M Additional Axial PSD Analysis of Double Slit Configuration 

In simulated data, the PSD method always reports the PSD intensity of the 

expected lateral frequency of the illumination pattern due to the absence of low frequency 

noise. In experimental data, the PSD method may report low frequency noise in non-

resonant planes because of low visibility of the pattern. The reported low frequency noise 

reduces the overall average calculated by the PSD method. Two specific conditions were 

applied to the PSD method to remove the low frequency noise from the calculation: 1) 

The PSD method was forced to search lateral frequencies in the Power spectrum within 

+/- 10% of the theoretical lateral frequency, 2) the PSD method was applied to a specific 

Z range that did not report low frequency noise in the initial analysis from Section 4.E. 

Condition 1. The PSD method was forced to +/- 10% of the theoretical lateral 

frequency so the PSD intensity graph through Z would represent the PSD intensity values 

for the theoretical lateral frequency. Also, low frequency noise less than 0.01 lp/mm was 

filtered out while calculating the axial frequency. It is interesting that results of the PSD 

method for analysis of axial frequency converge to approximately one half of the 

theoretical axial frequency. After forcing the PSD method to search for the lateral 

frequency within +/-10% of the theoretical lateral frequency, the PSD intensity graph 

through Z are similar to the graphs reported in the previous section where +/- 50% was 

used. Figure 7-31 through Figure 7-33 show the PSD intensity through Z for three 

configurations with slit separations (0.200 mm, 0.300 mm, 0.500 mm) and a 120 mm 

biprism position. 
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Figure 7-31. PSD Intensity through Z. 0.200mm slit separation. 120 mm biprism 

position. PSD method with Condition 1 was used to calculate the axial frequency. 

 

 

Figure 7-32. PSD Intensity through Z. 0.300mm slit separation. 120 mm biprism 

position. PSD method with Condition 1 was used to calculate the axial frequency. 
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Figure 7-33. PSD Intensity through Z. 0.500mm slit separation. 120 mm biprism 

position. PSD method with Condition 1 was used to calculate the axial frequency. 
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Condition 2. Furthermore, the PSD method was applied to a specified z range of 

125 to 224 mm to calculate the axial frequency (except in the 𝑥0 = 0.300 mm, 𝜂 = 50 

mm case the z range was 125 to 250 mm). After viewing the PSD Intensity through Z (i.e. 

Figure 7-31, Figure 7-32, and Figure 7-33), the sampling of the axial sinusoid is 

qualitatively better in the center of the Z data.  In this case, no noise was filtered out. In 

each of the 𝜂 = 120 mm cases, the percent error is 51%. 

 

Table 7-3. Measured axial frequency for a specified z range of 125:224.  

 

𝑥0, 𝜂 (𝑚𝑚) Measured (lp/mm) Theoretical (lp/mm) % Error 

0.200, 50 0.025 0.0085 194 % 

0.200, 120 0.01 0.0204 51.0 % 

0.300, 50 0.00794 0.0127 37.5 % 

0.300, 120 0.015 0.0306 51.0 % 

0.500, 50 0.01 0.0212 52.8 % 

0.500, 120 0.025 0.051 51.0 % 
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