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ABSTRACT

Tang, Quan. Ph.D. The University of Memphis. December, 2013. Extending
MPT Models to Rasch MPT: A General Framework, Demonstration, and
Applications. Major Professor: Xiangen Hu, Ph.D.

Multinomial processing tree (MPT) models, as a family of hierarchical

multinomial models tailored by cognitive theories, have been proven to be

successful and applied to cognitive psychometrics (Batchelder 1998). Traditional

MPT models measure the probability of success for each cognitive stage given

their hierarchical relationships. However, this measure neither addresses

individual and item difference, nor characterizes the subject’s ability and the

difficulty of the cognitive stage. In this study, I extend the cognitive stage

parameter in MPT models to a Rasch model, and recruit MPT models for a source

monitoring paradigm as an example to demonstrate the extension. To evaluate

the properties of Rasch MPT models, I conduct systematic simulation studies to

test parameter recovery under different conditions including various sample sizes,

boundary values of parameters, and missing data. In addition, I use a simple

lexical decision experiment and a set of force concept inventory (FCI)

multiple-choice questions which are a popular measurement tool in physics

teaching research to demonstrate and validate the practical uses of Rasch MPT

modeling.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Multinomial processing tree (MPT) models are a family of statistical models

that use serial cognitive processes to depict and analyze categorical data.

Formally, MPT models may be regarded as a special family of models in the more

general class of parameterized multinomial or product-multinomial models (Stahl

and Meiser 2009). MPT models are versatile and have been applied in fields such

as cognitive science, medical science, and social science (Hu and Batchelder

1994; Batchelder and Riefer 1999; Schmittmann et al. 2010). MPT models not

only share common features of multinomial models, they (1) are hierarchical and

in a tree structure; (2) describe a set of serial processes; and (3) may be tailored

to different forms according to plausible theories or hypotheses. As a

consequence, the development of MPT models has been closely intertwined with

the development of paradigms and theories in cognitive psychology (Erdfelder et

al. 2009).

A lot of attention has been given to the development of MPT models. For

example, researchers have devised various MPT models for paradigms of

interests, such as source monitoring experiments (Johnson and Raye 1981;

Johnson, Hashtroudi, and Lindsay 1993). These MPT models for source

monitoring include a one-high-threshold (1HTH) model (Batchelder and Riefer

1990), a one-low-threshold (1LTH) model (Bayen, Murnane, and Erdfelder 1996;

Hu and Batchelder 1994), two-high-threshold (2HTH) MPT models (Bayen,

Murnane, and Erdfelder 1996; Yonelinas et al. 1996), and a high-threshold MPT

model for more than two old sources (Meiser and Broder 2002). In addition,

parameter estimation methods have been extended to Bayesian estimation (Lin

and Karabatsos 2006; Klauer 2009; Matzke et al. 2012), from the original EM

algorithms for maximum-likelihood estimation (MLE) (Hu and Batchelder 1994).
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Furthermore, various model selection methods such as Bayesian information

criterion and minimum description length criterion (Myung and Pitt 2004; Wu,

Myung, and Batchelder 2010). Also, empirical approaches, such as Hu (2001)

and Bayen, Murnane, and Erdfelder (1996), have been applied to MPT models.

Although MPT models are flexible and have been well established with

methodologies for data analyses, some insufficiencies exist for the classic setting

of MPT modeling. For example, classic MPT modeling assumes that parameters

are independent from one another. However, this assumption may be violated for

nodes with hierarchical relationship on a branch. An extreme situation is, if the

estimate of a parent node (i.e., an earlier cognitive state) is 0, its offspring nodes

will not be able to vary freely. Another example is when the classic setting of MPT

modeling assumes that subjects in a group have same cognitive abilities for the

tasks, and the stimulus in a same type also has the same psychological effect.

This assumption is literally described as the independent and identically

distributed (i.i.d.) assumption. Only with this assumption, can one aggregate the

data collected across the subjects in a group and stimulus items of a same type.

Fortunately, researchers have noticed these issues and proposed some

solutions. Klauer (2006), Stahl and Klauer (2007) proposed a latent-class

approach to use a higher level discrete distribution to model subject performance

on the cognitive states by different “latent classes”. In addition, Klauer (2009)

extended this approach to a latent-trait approach that uses a continuous higher

level distribution to model subject performance.

Rather than the approaches described above, psychometric models that

are developed to measure individual and stimuli differences provide another

possible solution. For example, item response theory (Lord and Novick 1968;

Rasch 1960) imposes a logistic link function to model the probability of success

on a task as the difference of subject ability and task difficulty. However, this
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approach has not been applied to the MPT model. Moreover, there exist practical

concerns such as whether two models can integrate to perform good estimation

for the potential parameters, and under what conditions (or combinations) this

approach may or may not be suitable. In the next section, I will summarize the

issues of MPT models and existing solutions, which will lead to the theoretical

framework to be proposed in this dissertation.

1.2 Problem Statement

There exist two crucial issues for MPT models. One is that MPT models

usually assume homogeneity in terms of subject cognitive ability and item

difficulty, even though homogeneity between these two often does not exist. The

other is that the construct validity of the measure for the subject’s performance on

a cognitive state is quite arguable. The first issue, is that Classic MPT modeling

only takes group differences into account, while ignoring the differences within a

group. The second issue is that MPT modeling merely measures a joint outcome

of the subject’s ability and task difficulty; hence it is hard to interpret its construct

validity.

Although some approaches (e.g., latent-class, latent-trait) try to address

the individual and item difference issues stated above, they (1) only use a

distribution to approximate these differences, without measuring every single

individual and/or item; and (2) have the same construct validity issue that the

performance on each cognitive state is not explained, and subject ability and item

difficulty are intertwined.

Therefore, this dissertation builds up a general framework to address the

i.i.d. issue and construct validity issue of classic MPT modeling by using the item

response theory (IRT) model approach (Hambleton, Swaminathan, and Rogers

1991; Embretson and Reise 2000; Sijtsma and Junker 2006). This approach

models subject ability and task difficulty as independent variables, and estimates
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ability and difficulty parameters for each single subject and task, respectively.

Furthermore, the performance of this approach under different conditions is

evaluated systematically.

1.3 Looking Ahead

This chapter has presented an overview of MPT models. The history,

development and some insufficiencies of MPT models were briefly summarized.

Also some attempts at solving the efficiencies of MPT models were briefly

described, and the issues of these approaches were pointed out. The purpose of

this dissertation is to apply the advantages of IRT models to MPT models and

examine the performance of the extended model.

Chapter 2 discusses MPT models and IRT models in greater detail.

Chapter 3 presents our general framework to extend MPT models to Rasch MPT

models and demonstrates Rasch MPT models by using signal detection and

source monitoring paradigms. Chapter 4 conducts a systematic evaluation of

Rasch MPT models in various conditions. Chapter 5 applies Rasch models to a

simple lexical decision experiment and force concept inventory (FCI) test

questions. Finally, Chapter 6 discusses the theoretical implications, additional

possible applications of Rasch MPT models, and future research.
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CHAPTER 2

MPT MODELS AND IRT MODELS

In this chapter, I provide some background for MPT models and IRT

models. Section 1 presents the origin of MPT modeling, its advantages compared

with former approaches to categorical data, and some typical applications such as

source monitoring paradigms; and Section 2 discusses two crucial issues of

classic MPT modeling and the necessity of extending to Rasch MPT models.

2.1 Classic Theories of MPT Models

Multinomial processing tree (MPT) models are a family of statistical models

for categorical data. MPT models were originally developed to measure latent

cognitive processes, such as the capacity to store and retrieve items in memory,

or to make inferences and logical deductions, or to discriminate and categorize

similar stimuli (Riefer and Batchelder 1988; Batchelder and Riefer 1990). The

MPT modeling framework is based on the hypotheses of hierarchical and serial

cognitive processes. While such processes are not directly observable,

theoretically they can be assumed to interact in certain ways to determine

observable behaviors. The goal of multinomial modeling is to identify which

underlying factors are important in a cognitive task, explain how those processes

combine to create observable behavior, and then use experimental data to

estimate the relative contributions of the different cognitive factors. In this way,

MPT models can be used as tools to measure unobservable cognitive processes.

MPT modeling, since formally proposed, is always specified with specific

paradigms. A typical application of MPT models in cognitive psychology is the

MPT models for source monitoring. Source monitoring research is derived from

the interest in human source memories. People remember information from two

basic sources: that perceived from external sources (stimuli) and that generated

by internal processes such as reasoning, imagination, and thought. And people

may remember, forget, or mix these memories (Johnson and Raye 1981). There
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is a common phenomenon that most people may have experienced: we heard a

story from a friend and forgot who told this story, then we share the story back to

this friend with interest. Even worse, we may add something to this story by

ourselves unconsciously.

To study different kinds of memories, Johnson and Raye (1981) proposed

the concept of “reality monitoring”. Reality monitoring refers to the process of

distinguishing the memory of a past perception from the memory of past

imagination. As an extension of the reality monitoring, the concept of “source

monitoring” was proposed by Johnson and her colleagues (Johnson, Foley, and

Leach 1988; Johnson, Hashtroudi, and Lindsay 1993; Johnson and Raye 1981).

Compared with reality monitoring that focuses on discriminating memories of

internally generated information from memories of externally perceived

information, source monitoring refers to discriminating different types of internal or

external sources, namely, internal source monitoring or external source monitoring

(Johnson, Foley, and Leach 1988). For instance, external source monitoring may

be interested in discriminating between two externally perceived sources such as

statements made by person A or by person B while internal source monitoring

concentrates on discriminating the memories of what one thought from what one

said. Hence source monitoring is derived and generalized from reality monitoring.

After the concepts of reality monitoring and source monitoring were

introduced, quite a number of source monitoring experiments were conducted to

test different cognitive models or to measure cognitive capacities of different

populations. For example, Harvey (1985) studied how different normal and

mentally disordered subjects are able to discriminate their own thoughts and

information from external sources, Saegert, Hamayan, and Ahmar (1975) tested if

source memory for language is dependent on the nature of the memory task
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itself, and Rose et al. (1975) examined whether the phenomenon of accurate

source memory for language could be found at complex cognitive levels.

In a typical source monitoring experiment, subjects study items from two or

more different sources (Johnson, Hashtroudi, and Lindsay 1993), for example,

pictures of the items as source A, and the names of the items as source B. After

these items have been studied, a memory test is given, in which the subjects are

asked to indicate which source (source A, B or new source) the test items belong

to. Data from a group of subjects can be described by a frequency table as in

Table 1, where fij is the counts of j-type responses to i-type source. The row

marginal frequency fi• = Σfij is the total number of i-type source items on the

memory test, and i, j = A,B,C.

Table 1
Data matrix of a typical source monitoring experiment. Rows represent
presentation during learning, columns denote the response of the participants,
the cells contain raw frequencies

Participants’ response
Actual source during “Source A” “Source B” “New”
learning
Source A fAA fAB fAN
Source B fBA fBB fBN
New fNA fNB fNN

In early studies on source monitoring, some ad hoc statistical approaches

were adapted for separating discriminability of source from overall detectability of

old items, such as the Kruskal-Wallis gamma score, identification-of-origin scores,

and hit and false-alarm rates for source identification (Batchelder and Riefer

1990). “Discriminability” here means the ability to discriminate the specific old

source from other old sources after an item has been detected as an old item in
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the source memory test. And “detectability” means the ability to detect an old

source item in the test.

The most frequently used method for this type of data analysis is to

compute three measures for each subject as shown in equations (1), (2) and (3):

hits (H), indicating the rate at which the subject can detect old items correctly;

false alarms (F), indicating the rate at which the subject incorrectly reports a

distractor item as an old item; and identification-of-origin scores (I), referring to

the rate at which the subject discriminates the exact source from all the

responded old sources. The equations of these three rates are shown as follow in

terms of the frequencies presented in Table 1.

H =
(fAA + fAB) + (fBA + fBB)

fA• + fB•
(1)

F =
fNA + fNB

fN•
(2)

I =
fAA + fBB

(fAA + fAB) + (fBA + fBB)
(3)

However, about ten years after the concept of source monitoring had been

proposed and a multitude of studies had been done, Batchelder and Riefer (1990)

noted that there was not a generally accepted measure of the quantities reported

in the source-monitoring experiments. In other words, there was not any

substantive model to analyze the data of the contingency table obtained from the

source-monitoring experiments (see Table 1). For example, the generally used

model depicted in equation (1), (2), and (3) failed to look into the internal cognitive

processes such that it is impossible to distinguish whether the subject really

discriminates the exact old source or answers correctly by guessing, when the

subject reports an exact old source (e.g., report source A as source A).

Therefore, Batchelder and Riefer proposed Multinomial Processing Tree

(MPT) models for source monitoring experiments as a substantively quantitative
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measurement tool for the memory retrieving processes during source monitoring

experiment tasks.

Because the response frequencies in source monitoring experiments can

be considered as multinomially distributed, it is assumed there are finite numbers

of observable categories, C1, C2, ...., CJ , and there are N total observations. Then

Nj is defined as the number of observations in Cj, and D = (N1, ..., Nj, ..., NJ) is

defined to be the data vector of observations for the model. The joint distribution

of the data D can be represented by the general multinomial model

P (D; p1, ..., pJ) = N !
J∏
j=1

p
Nj

j

Nj!
, (4)

where pj is the probability that an observation falls into Cj if the data observations

are mutually independent and identically distributed (i.i.d.), and

N =
J∑
j=1

Nj. (5)

The general model has the parameter space

Gj =

{
p = (p1, ..., pJ)|0 < pj < 1,

J∑
j=1

pj = 1

}
. (6)

In addition, a substantive MPT model assigns a parameter to each cognitive event

that represents the probability of that event occurring. These events are organized

hierarchically according to psychological assumptions or theories, from the very

first node to the last, in a tree structure.

Every information source has an MPT model that represents the

processing steps (by the parameters), and the categories of the subject’s

responses. For example, for source A, the first parameter (DA) in the model is

assumed to represent the probability of detecting this source as an old source.

Because the detection probabilities for different sources may vary, DB may be

different from DA. The subsequent step after the detection step is the
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discrimination with the parameter di as its probability if the subject successfully

detects old items, or bias (represented by the parameter b) for responding a

non-detected old item as an old item.

Figure 1
The seven-parameter, joint multinomial model for source monitoring. (D1 =
detectability of the Source A items; D2 = detectability of the Source B items; d1 =
source discriminability for the Source A items; d2 = source discriminability for the
Source B items; a = guessing that a detected but nondiscriminated item belongs
to Source A; b = bias for responding “old” to a nondetected item; g = guessing
that a nondetected item belongs to Source A.)

If the subject can detect and discriminate an old item successfully, the

response is absolutely correct and this response falls in the cell fAA for source A

and in the cell fBB for source B in Table 1. If subjects fail in the detecting or the

discriminating step, they guess. And if subjects are “lucky” enough, it is still

possible for them to report correctly (e.g., first correctly guess that the item is an

old item, and secondly correctly guess its type).

This set of MPT models is called the one high threshold (1HTH) model

because in this set of MPT models, only the trees for “old” source items have

detection and discrimination steps and the tree for “new” source items

(distractors) does not. In contrast, the new items (distractors) are assumed either

to be responded to as old items by bias or as new items without bias.

Figure 1 presents the structure of MPT models for source monitoring and

the meaning of their parameters. There are 7 parameters in this set of models,

with 6 degrees of freedom (3× 3 data table with 3 fixed marginal frequencies).
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Hence, this 7-parameter model is over saturated and the parameters cannot be

uniquely estimated, due to the insufficient degree of freedom in the data, unless

we eliminate at least one parameter (e.g., we may equate a parameter with

another). Figure 2 shows 6 sub-models. In 6a, 6b and 6c sub-models, two

parameters are merged into one, based on the hypothesis that the detection

rates, the discrimination rates, or the guessing rates of the two sources are equal,

respectively. Likewise, 5-parameter sub-models combine another pair of

parameters. This paradigm provides 7 sub-models with different corresponding

psychological hypotheses that allow us to test the fit of each sub-model.

Figure 2
Nested hierarchy for the eight versions of the multinomial model depicted in
Figure 1

The MPT models for source monitoring (Batchelder and Riefer 1990) use

graphical representation to illustrate the plausible cognitive procedure in the

source monitoring test, and explicitly separate the frequencies (including those in

the same cell in the data table) to hierarchically organized origins. For example,

as introduced previously, equation (3) mixes real discrimination with guessing of

an exact old source. When considering the difference between real discrimination
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and guessing, fAA in equation (3) can be rewritten as:

fAA((D1d1) +D1(1− d1)a+ (1−D1)bg). Similarly, fBB, fAB and fBA in equation (3)

mixed frequencies from plausibly different origins while MPT models separate

these origins into different branches. The MPT models provide an approach to

measuring the cognitive processes in source monitoring tasks and test

hypotheses of different sub-models under various situations, and they have been

applied to source monitoring analyses more and more.

Figure 3
One-low-threshold MPT Model

After 1HTH MPT models were proposed, researchers came up with other

MPT models for source monitoring, based on different theories or hypotheses. For

example, the 1LTH (one-low-threshold) model assumes that there is only one

memory threshold, but an old item will be recognized if it exceeds the threshold,

or will be considered as a new item otherwise (see Figure 3) (Bayen, Murnane,

and Erdfelder 1996; Hu and Batchelder 1994). Similarly, there are other MPT

models such as the 2HTH (two-high-threshold) MPT models which assume both

an old item and a new item may have some probability to be recognized, as

shown in Figure 4 (Bayen, Murnane, and Erdfelder 1996; Yonelinas et al. 1996).
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As well, high-threshold MPT models for more than two old sources (Meiser and

Broder 2002) have been applied to source monitoring experiments.

Figure 4
Two-high-threshold MPT Model

Before MPT framework was formally established, some researchers tried

to use tree structures to separate subskills involved in multiple-choice questions

(Garcia-Perez 1990; Garcia-Perez and Frary 1991; Garcia-Perez 1993). However,

these approaches only investigate reasons that lead to “correct answer”, “wrong

answer”, and “unanswered” responses, while MPT modeling details the cognitive

states/subskills that result in different types of “wrong answers” (e.g., answer “B”

or “N” for “A” in the source monitoring experiments).

To utilize MPT models in categorical data analysis, one needs to obtain the

probability functions and likelihood from the graphical form of a specified set of

MPT models. In the next section, I will discuss basic statistical theories of MPT
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models, which is also the essence of the extended MPT model framework I

develop in this dissertation.

2.2 Statistical Theories of MPT Models

Since MPT modeling is used to explore the cognitive processes in a

cognitive task, the fundamental statistical analysis for MPT models is to estimate

the parameters that represent the latent cognitive states.

2.2.1 A Simple Example

Let us consider the following case in which two coins are flipped for one

trial each and the final result is recorded. There are 4 observed categories: 2

heads (HH), 2 tails (TT) and 1 head followed by 1 tail (HT), or 1 tail followed by 1

head (TH). The category frequencies are represented by D = (n1, n2, n3, n4), and

the probabilities of these outcomes are represented by b1, b2, b3, and b4

respectively. The parameter vector is denoted by Θ = (Θ1, . . .Θs . . .ΘS) ∈ Ω,

where Ω is the parameter space, and Θs = (θs1, . . . , θsk . . . , θsKs) refers to the Ks

parameters in a group (under a same parent node). This group of parameters

indicates the probability of all possible outcomes under a certain condition (i.e., a

parent node). Hence the summation of a group of parameters always equals to 1

(i.e.,
∑sKs

s1 θsk = 1). In the coin-flipping example, due to the binomial outcomes of

each event, there are two parameters (e.g., p and 1− p) in a group, and only one

is independent. Note that from now on the notations above are for all the

coin-flipping examples, unless explicitly indicated otherwise. Figure 5 illustrates

this procedure. The frequencies of the final results follow a multinomial
distribution with 4 categories and the probabilities of these outcomes are:

b1 = pq, (7)

b2 = p(1− q), (8)
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Figure 5
The coin-flipping trials. p = the probability that coin 1 gets a head, q = the
probability that coin 2 gets a head if coin 1 gets a head, r = the probability that
coin 2 gets a head if coin 1 gets a tail.

b3 = (1− p)r, (9)

b4 = (1− p)(1− r). (10)

To estimate the parameters in the model in Figure 5, we can use the model’s

likelihood function:
L(Θ;D) =

n!

n1!n2!n3!n4!
bn1

1 b
n2
2 b

n3
3 b

n4
4 . (11)

After plugging in Equation 7 - Equation 10, we have

L(Θ;D) =
n!

n1!n2!n3!n4!
(pq)n1 (p(1− q))n2 ((1− p)r)n3 ((1− p)(1− r))n4

=
n!

n1!n2!n3!n4!
p(n1+n2)(1− p)(n3+n4)qn1(1− q)n2rn3(1− r)n4 . (12)

As the simplest scenario of MPT modeling, the coin-flipping example

illustrates how to obtain the probability function and likelihood function for the

parameters of interest. In the next subsection, I will discuss the statistical theories

of classic MPT models with formal notations.
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2.2.2 Mathematical Representation of MPT Models.

In Hu and Batchelder (1994), the following mathematical expressions have

been developed to represent the MPT models. Let C1, ..., Cj, ..., CJ denote the

observable categories, and B1j, ..., Bij, ..., BIjj denote the collection of branches

whose ending nodes belong to category Cj. In the MPT models for source

monitoring (see Figure 1), Cj represents the probability of a categorical response

such as A, B or N; Bij represents the probability of a branch in the model such as

the first branch of answering A. If the outcomes under a same parent node are

binary, Θs = (θs, 1− θs). To be more general, the parameters in a group may be

denoted by (Θs = θs1, . . . , θsk . . . , θsKs) ∈ Ωs =
{

[0, 1]S|
∑Ks

k=1 θsk = 1
}

, if there are

more than two outcomes in this group (binary). There are S groups, namely

Θ = (Θ1, . . .Θs, . . .ΘS) ∈ Ω = {
∏S

s=1 Ωs}, where Ω is the parameter space, Ks is

the number of the parameters nested in the sth group, and 0 < θsk < 1. To

estimate the parameters, the first step is to write the mathematical form for the

MPT models. In the MPT models, the most basic unit is the link probability

Lijl = (Lij1, ..., Lijl, ..., LijLij
), where l = (1, ..., lij..., Lij) is the lth link on the branch

Bij. A link in the MPT models represents the transition probability from one

cognitive step to the next. The links then form the branch probability Bij that is the

probability from the root node to an ending node of the tree. For example, in the

MPT models for source monitoring, the first link in the tree A can be represented

as L111 = D1, and Bij can be written as the product of the links on this branch,

such as B11 = D1d1. To use a generalized form and facilitate computing, we can

present any link probability as the product of all the parameters with their powers:

Lijl =
S∏
s=1

(
Ks∏
k=1

θ
αijlsk

sk

)
, (13)

Ks∑
k=1

θsk = 1, (14)
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where the αijlsk is the summation over links of non-negative integer exponents on

θsk. For instance, in the MPT models for source monitoring, the choices of each

step are binary, and the first link under the root node of the tree A can be written

as

L111 = D1
1(1−D1)0d0

1(1−d1)0a0(1−a)0b0(1−b)0g0(1−g)0D0
2(1−D2)0d0

2(1−d2)0 = D1.

Likewise, we can write a generalized form of the branch probabilities:

pij(Θ) = Pr(Bij; Θ) = cij

S∏
s=1

(
Ks∏
k=1

θ
αijsk

sk

)
, (15)

αijsk =

Lij∑
l=1

αijlsk, (16)

where pij(Θ) is the ith branch probability in the jth category within a tree, and cij is

the product of positive constants on the links in the event that some parameters

are set as constants. The use of αijsk here is to represent the parameters that

repeatedly appear on a branch. For example, in the previous coin-flipping

example, if the parameters p = q, then the power α for p is 2 on B11 because

B11 = p2. Researchers have discussed that the possibility of the constant cij can

arise from the restrictions on some parameters set by the model’s hypothesis (Hu

and Batchelder 1994; Batchelder and Riefer 1986). In the MPT models, for

example, the first branch answering A in the tree A has the probability

B11 = D1
1(1−D1)0d1

1(1−d1)0a0(1−a)0b0(1−b)0g0(1−g)0D0
2(1−D2)0d0

2(1−d2)0 = D1d1.

At last, the category probability is the summation of the probabilities of the

branches going to the same observable response category. For instance, the

probability of answering source A as A is D1d1 +D1(1− d1)a+ (1−D1)bg. Also,

this summation can be written in a generalized form as in equation (15)

pj(Θ) = Pr(Cj; Θ) =

Ij∑
i=1

[
cij

S∏
s=1

(
Ks∏
k=1

θ
αijsk

sk

)]
, (17)
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where
J∑
j=1

pj(Θ) = 1

for all Θ ∈ Ω. The equations above depict the probability mass functions (PMF) of

the MPT models, and the likelihood functions can be obtained from the PMF.

2.2.3 Likelihood Functions of MPT Models.

The likelihood function is the key component in the parameter estimation

for MPT models (Hu and Batchelder 1994; Lin and Karabatsos 2006). The joint

likelihood of a set of MPT models can be derived from corresponding probability

functions and the data provided. Suppose we have a 3× 3 data table in which the

frequencies are n1, n2, n3, n4, n5, n6, n7, n8, n9, and their summation is N. The

likelihood function for this data given the model is:

L = N !
pn1

1 p
n2
2 p

n3
3 p

n4
4 p

n5
5 p

n6
6 p

n7
7 p

n8
8 p

n9
9

n1!n2!n3!n4!n5!n6!n7!n8!n9!
.

Therefore, given the frequency of observations in a category is nj, the likelihood

function for the MPT models is:

L(Θ; < nj >
J
j=1) = N !

J∏
j=1

[pj(Θ)]nj

nj!
, (18)

where pj(Θ) are given by equation 17, and N is the total number of the

observations.

MPT models explore latent cognitive processes in problem-solving by

using a hierarchical tree structure, which facilitates understanding of human

cognition in a relatively straightforward way. However, there are some

insufficiencies in the classic setting of MPT models. Therefore, I will discuss a

very important issue in MPT assumption in the next section.

2.3 Crucial Issues of Classic MPT Models and Necessity of the Extension

In spite of the advantages, there exist salient drawbacks due to the

hallmark assumptions of classic MPT models. One of the most arguable
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assumptions that MPT models stand on is the identical and independently

distributed (i.i.d.) assumption. The i.i.d. assumption states that all the subjects

within a group are assumed to be equivalent in terms of their cognitive abilities,

and all the stimuli in one source are also assumed to be equivalent with respect to

their psychological effects to the subjects. This assumption entitles a big

advantage to make use of (1) aggregated data (i.e., richer information), therefore

yielding more stable estimates for the parameters; and (2) likelihood functions,

because parameter estimation methods based on likelihood functions require the

observations to be independent (such that the likelihood function may be written

as the product of the probability of every single observation), and exchangeable

(such that the order of the observations does not matter). Nevertheless, this

assumption is quite questionable, because there is no guarantee that subjects

within a group have equal cognitive abilities, or stimuli in a set have the same

psychological effects. Instead, it is more reasonable to assume there exist

individual and item differences.

Another important issue of classic MPT modeling is that the performance

on cognitive stages (e.g., D, or g) has not been interpreted in a clear and proper

manner. Although researchers tend to interpret some of these parameters as

“cognitive ability” (Erdfelder et al. 2009; Kupper-Tetzel and Erdfelder 2012), this is

not accurate, because the performance depends on not only the subject’s ability,

but also the task difficulty.

On the other hand, some researchers have come up with hierarchical MPT

models such as latent class MPT or latent trait MPT (Klauer 2006; Stahl and

Klauer 2007; Klauer 2009) to model the distribution of individual ability or item

effect. While these approaches realize the concern of the i.i.d. issue, the progress

is still far from enough, because (1) these approaches do not provide measure of

individual abilities and item difficulties, and (2) these approaches still intertwine
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item difficulty with subject ability, as classic MPT models. Therefore, psychometric

models that are applied to measure individual abilities and item difficulties are

necessary to be introduced into MPT modeling to address these issues. In the

next section, I will briefly introduce some background to the psychometric models

I incorporate into classic MPT models.

2.4 Introduction to IRT Models

In this section, I will introduce some background to classical test theory

and IRT models. This includes classical test theory and its drawbacks, IRT and its

advantages, and recent variants and development of IRT models.

2.4.1 Classical Test Theory

In the 1960s, item response theory (Rasch 1960; Lord and Novick 1968)

was proposed to address the insufficiencies in the classical test theory (CTT)

which assumes
Xi = Ti + εi, (19)

where Xi denotes the observed score of testee i, Ti represents corresponding

true score, and εi stands for the random error (Lord 1952; Traub 1997; Sijtsma

and Junker 2006). In the CTT framework, for a fixed testee i, the expected value

of εi is assumed to be 0, that is, E(εi) = 0. Therefore, the expected value across

the testees in a population also is 0. Since E(εi) = 0, Ti = E(Xi).

In spite of simplicity of CTT model and its assumptions, a crucial drawback

of CTT is that examinee characteristics and test characteristics cannot be

separated. According to the equation of CTT, both the observed score and the

true score depend on the joint effect of the testee’s ability and the test item

difficulty. Hence ability and difficulty can only be interpreted in the context of each

other. Details of the shortcomings of the CTT are discussed in Hambleton,

Swaminathan, and Rogers (1991).
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2.4.2 Item Response Theory

To solve these issues, IRT tries to separate item difficulty from ability (also

known as latent trait) of the examinee. IRT framework entails three basic

assumptions (Sijtsma and Junker 2006): (1) a unidimensional trait (ability)

denoted by θ, (2) local independence of items; (3) the probability of the response

of a testee to an item, which can be modeled by the item characteristic

function/curve (ICF, or ICC).

Figure 6
An Example of The ICC for A Given Item.

The unidimensional trait assumption indicates that only one trait (e.g.,

mathematics) is measured in a set of test items. “Local independence” is related

to the unidimensionality assumption, which means item responses are

independent of one another, given ability. This assumption is a hallmark of IRT,

because only if the response to an item neither relies on the response of any

previous items, nor influences subsequent items, can we simply write the

probability of seeing the overall response (i.e., likelihood, which will be discussed
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in following paragraphs) as the product of the probability of each response. At

last, ICC imposes a logistic link function to model the relationship between

examinee ability and item difficulty, as in equation 20

Pr{Xni} =
eθn−δi

1 + eθn−δi
, (20)

where Pr{Xni} is the probability for examinee n to give correct answer to item i,

θn is the ability of examinee n, and δi is the difficulty of item i. Equation 20 is the

simplest form of IRT model, and it is also known as 1-parameter logistic (1PL)

IRT, or Rasch model. There exist arguments that Rasch modeling uses a different

approach to conceptualize the relationship between data and theory, although this

is out of the scope of this paper. See Andrich (1989) for details. To enable the

linear combination of θ and δ, IRT references these two parameters to the same

scale. Accordingly, ICC is shown in Figure 6.

2.4.3 Variants and Recent Development of IRT Models

In addition to the basic 1-PL IRT model, more parameters have been

introduced to investigate the effect of other factors such as discriminability and

guessing rate. These models are known as 2-PL IRT and 3-PL IRT models,

shown in equation 21:

Pr{Xni} =
eαi(θn−δi)

1 + eαi(θn−δi)
,

P r{Xni} = γi + (1− γi)
eαi(θn−δi)

1 + eαi(θn−δi)
, (21)

where α represents the slope of the ICC curve (i.e., discrimination rate) and γ is

the guessing rate for multiple-choice questions. These two additional parameters

are both item parameters, and describe the discriminability, and the probability to

get the right answer by guessing for an item (Embretson and Reise 2000). For

example, if α is small, the ICC curve is flat, and the probability to get the correct

answer increase smoothly. Also, if an item has 4 choices, then γ = 0.25. The 2-PL
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IRT can also be considered as a special form of the 3-PL IRT, when the item has

no chance to guess (i.e., γi = 0).

There are some other variants of IRT models, such as normal-ogive IRT

which uses a cumulative normal rather than logistic function as the link function

(Sijtsma and Junker 2006), IRT models for polynomial responses (Samejima

1969), and partial credit IRT (Masters 1982). These variants try to address more

generalized test conditions, or give more reasonable explanation for scoring.

2.4.4 Some Concerns with IRT Modeling

There exist some concerns with IRT modeling. One is the model’s

performance given different sample sizes. Researchers have different

suggestions or arguments on sample size issues. For example, Linacre (1990)

suggests 50 subjects for the Rasch model for accurate parameter estimates of

ability. Other researchers, such as Tsutakawa and Johnson (1990), Orlando and

Marshall (2002), Thissen and Steinberg (2002), have different suggestions for

enough sample sizes to obtain adequate estimates for Rasch model and other

versions of IRT models. This indicates that the Rasch model may have a different

performance with different sample sizes. Another concern is the model’s

performance when the parameter values are close to the model’s boundaries.

This is because the ICC curve of the Rasch model is S-shaped, which means its

discriminability around the high and low bounds is weaker than in other areas.

Moreover, the estimates for the individual parameters may be more sensitive to

missing data, because estimating of individual person ability or item difficulty

cannot use mean/median like we do in aggregated data. These concerns, of

course, will be inherited by models derived from IRT models, and I will discuss

and test them in chapter 4.
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In the next section, I will discuss the connections of MPT models and test

theories, and the natural reasons to extend classic MPT models to a new

framework.

2.5 Connections – MPT models and Test Theories

MPT models and test theories (including CTT and IRT) emphasize different

facets of the cognitive performance. MPT models stress on the hierarchical

relationships of the cognitive processes involved in a cognitive task, while test

theories articulate the measuring of the overall ability solving a problem. These

two methodologies, actually, have connections and complementarity to each

other.

Foremost, if we consider every single cognitive state in an MPT model as a

subtask, the concept of “probability to succeed” for classic MPT models is

equivalent to the “true score” classic test theory, in that both of these two models

are based on the same assumption, as shown in Equation 19. Therefore, classic

MPT models only measure the joint effect of subject’s ability and item difficulty as

the classic test theory does, without looking into the essence of this joint effect.

This is a marked issue and has never been articulated and solved by current

methodologies for MPT models. Therefore, the theory of CTT is applied to classic

MPT models to measure subjects’ ability at a group (of subjects) level.

Other than the similarity and connections, classic MPT modeling and test

theories can help enhance each other. On one hand, classic MPT modeling is not

capable of detecting individual differences. This is because the basic assumptions

of classic MPT models assume both stimulus and subjects are homogeneous

within their groups. Classic MPT modeling is much simplified by this model setting

and takes advantage of aggregated data (i.e., stability of the estimates and

cumulative data from similar experiments). However, these assumptions are quite

arguable and some researchers including Klauer (2006, 2009) have attempted to
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address this issue by using methods such as adding hyperparameters to describe

the distributions of the individual performances. On the other hand, test theories

focus on the subject’s overall performance of the whole task. This prevents it from

possible applications to more general and realistic situations that involve multiple

and structural subtasks and/or abilities. For example, in diagnostic tests,

questions often involve various learning contents that are in a hierarchically

structured form. Nevertheless, test theories fail to look into the latent cognitive

processes of the examinees during problem-solving (Chipman, Nichols, and

Brennan 1995), even though this is crucial for assessment purposes. Although all

students may give wrong answers, they very likely experience different cognitive

processes (e.g., different strategies or subskills). Therefore, it is also necessary to

explore more detailed components that lead to final responses for better

understanding of students’ ability and issues. In the next section, I will outline the

integration of MPT models and IRT models.
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CHAPTER 3

EXTENDING CLASSIC MPT MODELS TO RASCH MPT MODELS

In this section, I first use a simple signal detection example to give basic

senses of Rasch MPT modeling, then formalize notations and the theoretical

framework of Rasch MPT models. I further use a source monitoring example to

demonstrate this extension, and finally, I introduce the Bayesian inference I use

for Rasch MPT model parameter estimation and the implementation in WinBUGS

( http:// www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml ).

3.1 A Simple Signal Detection Example

In the signal detection paradigm, subjects are asked to answer if they

perceive a specific signal, which may or may not exist. There are four possible

results when answering the signal. If the signal is positive (i.e., the signal occurs)

and the subject answers correctly, then the answer is considered as a “hit”,

otherwise the answer is a “miss”. If the signal is negative (i.e., the signal does not

occur) and the subject answers correctly, the answer is considered as a “correct

rejection”, otherwise the answer is a “false alarm” (Peterson, Birdsall, and Fox

1954). If we use MPT framework, the signal detection paradigm can be illustrated

in Figure 7.

Figure 7
MPT models for signal detection paradigm.
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Suppose there are (1, ...,m, ...,M) subjects and (1, ..., k, ..., K) signals (or

non-signals). As an example, for the real signals, the correct answer is 1, then for

subject m and signal k, the link probabilities leading to 2 observable outcomes

are:

L111km = Dkm =
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
(22)

L221km = gkm =
exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)
, (23)

where L111km means this parameter is on the first link of the first branch, in the

first response category of the whole cognitive process, for the kth signal and mth

subject. Similarly, L221km means this parameter is on the second link of the

second branch, in the first category, for the kth signal and mth subject.

Further, the branch probabilities are:

B11km = Dkm = L111km =
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
(24)

B21km = (1−Dkm)gkm =

[
1

1 + exp(θ1m − δ1k)

]
×
[

exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)

]
(25)

B31km = (1−Dkm)(1− gkm) =

[
1

1 + exp(θ1m − δ1k)

] [
1

1 + exp(θ2m − δ2k)

]
, (26)

where B11km means branch probability for the first branch in the first response

category for signal k and subject m.

Finally, the category probabilities are:

C1km = B11km +B21km

= Dkm + (1−Dkm)gkm

=
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
+

1

1 + exp(θ1m − δ1k)
× exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)

=
exp(θ1m − δ1k)[1 + exp(θ2m − δ2k)] + exp(θ2m − δ2k)

[1 + exp(θ1m − δ1k)][1 + exp(θ2m − δ2k)]
(27)
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C2km = B31km

= (1−Dkm)(1− gkm)

=
1

1 + exp(θ1m − δ1k)
× 1

1 + exp(θ2m − δ2k)
, (28)

where C1km means the category probability of the first response category for

signal k and subject m.

From this simple example, we can see the advantages and disadvantages

of classic MPT models and Rasch models discussed in the previous chapter. The

classic MPT modeling depicts an interpretable and intuitive explanation for the

cognitive processing structure in the signal detection task. However, it stops at this

level, without exploring the underlying reasons for the really interesting cognitive

factors that may cause the performance differences. On the other hand, the Rasch

modeling cannot even tell what exact ability or difficulty is being measured, even

though it does tell whether one person is overall better/worse than another in the

signal detection task, or one signal is overall harder/easier than another signal.

Once we plug in the Rasch model into MPT models, we are able to benefit from

the advantages of both MPT and Rasch modeling, and clearly state how people

may process the signals and give final responses in the signal detection task.

In the next section, I will formally introduce the notation and framework of

Rasch MPT modeling, followed by the demonstration of Rasch MPT modeling for

the 1HTH MPT for source monitoring paradigm.

3.2 Notations and Theoretical Framework of Rasch MPT Models

Suppose there are (1, ..., s, ..., S) parameter groups for the parameter

vector Ψ = (Ψ1, ...,Ψs...,ΨS). Ψ corresponds to the parameter vector Θ in the

classic MPT modeling, which represents all the cognitive states in a specific task.

Since we will plug the Rasch model into each of the parameters in Ψ, which
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enriches the meaning of these cognitive states, a similar but different parameter

vector Ψ is recruited to take the place of Θ. For Ψs, there are s possible mutually

exclusive outcomes. For simplicity purposes, I start from binomial results (ψs or

1− ψs) for each state, and use the Rasch model to represent the simplest form of

IRT models. Suppose there are {1, ...,m, ...,M} subjects, and {1, ..., k, ..., K} test

items; Suppose there are {1, ...jk, ..., Jk} possible answers (i.e., observable

categories) for item k, {1, ...ijk, ..., Ijk} branches nested in the jkth category, and

{1, ...lijk, ..., Lijk} links (i.e., states) nested in the ijkth branch. Suppose state s in

item k has δsk as its state difficulty parameter. Suppose subject m has θsm as the

ability parameter for state s (θsm is independent from item k). The idea of

integrating classic MPT models with Rasch model is to extend each cognitive

state (e.g., detection step D in Figure 1) to a Rasch model. This is feasible

because the state parameters represent the probability of success on this state,

while the Rasch model uses a logistic link function to model the relationship

between the success probability of a task and the difference of subject ability and

task difficulty.

The first step for Rasch MPT modeling is to plug in Rasch models to a

cognitive state (i.e., a link):

Pr[Llijkm] =
S∏
s=1

ψ
αlijs

skm (1− ψskm)βlijs

=
S∏
s=1

[
exp(θsm − δsk)

1 + exp(θsm − δsk)

]αlijs
[

1

1 + exp(θsm − δsk)

]βlijs
, (29)

where the exponent αlijs is the power of ψskm and βlijs is the corresponding power

of 1− ψskm. These two exponents can either be 1 or 0, and
∑S

s=1 [αlijs + βlijs] = 1.

In Equation 29, a general form that multiplies all the parameters in the parameter

vector is used because this form contains all the possible parameters in such that

we do not need to use specific forms for each of them, but only use this form to
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represent a specific parameter by setting its exponent as 1, while all others as 0.

For instance, in Equation 22, because all other parameters except L111km do not

appear on the first link, their exponents are all 0, which lead to a constant 1 in the

multiplication, making it needless to write out.

The next step is to multiply the links that appear on the same branch to get

branch probability:

Pr[Bijkm] =
S∏
s=1

ψ
αijs

skm(1− ψskm)βijs

=
S∏
s=1

[
exp(θsm − δsk)

1 + exp(θsm − δsk)

]αijs
[

1

1 + exp(θsm − δsk)

]βijs
(30)

Here, αijs and βijs have similar meaning with αlijs and βlijs, while they sum up

over the branch, instead of the link.

Then, we sum up the branches in the same category to get the categorical

probability:

Pr[Cjkm] =

Ijkm∑
i=1

S∏
s=1

[
ψ
αijs

skm(1− ψskm)βijs
]

=

Ijkm∑
i=1

S∏
s=1

[
exp(θsm − δsk)

1 + exp(θsm − δsk)

]αijs
[

1

1 + exp(θsm − δsk)

]βijs
(31)

The final step is to establish the likelihood function. Given the available

data in practice, only category responses can be observed (i.e., the subjects only

report a test item as “A”, “B”, or “N”). Namely, although we have link probability

and branch probability functions, some links are not observable (because they

result in a same observed category as other links do), and hence not applicable

for the likelihood for parameter estimation. This means, only the category

probabilities may be used for the likelihood function for parameter estimation. The

joint likelihood function based on observed categorical frequencies is:
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L(Θ; < njkm >Jk
j=1) =

M∏
m=1

K∏
k=1

[
N !

Jk∏
j=1

[Pr[Cjkm(Θ)]]njkm

njkm!

]
, (32)

where njkm is the observed frequency of a category, N is the total frequency

distributing multinomially, and Pr[Cjkm(Θ)] is the category probability defined in

Equation 31.

Seemingly, this parameter setting doubles the number of parameters.

However, if we consider individual difference and/or item difference, Rasch MPT

models may have fewer parameters. This is because Rasch models assume the

difficulty δ for a given task is invariant across all the subjects, and ability θ for a

given subject is also the same across all the tasks that measure the same latent

trait (e.g., ability for detecting old items). Provided the same condition (that

assumes individual and item differences), any cognitive state success probability

is different from one another, hence the parameter number increases sharply as

the number of subjects and items/cognitive states increase. Usually, researchers

only count S parameters in the parameter vector. However, if the homogeneity

assumption for subject or task does not hold, the total parameters in classic MPT

models should be timed by M and/or K. Table 2 is a comparison of parameter

numbers given the setting of classic MPT and Rasch MPT models.

Table 2
Number of parameters in classic MPT and Rasch MPT Models

Subject Group/Task Pool Classic MPT Rasch MPT
Homo/Homo (M = K = 1) S 2S
Hetero/Homo (M > 1, K = 1) M × S (M + 1)× S
Homo/Hetero (M = 1, K > 1) K × S (1 +K)× S
Hetero/Hetero (M > 1, K > 1) M ×K × S (M +K)× S

31



Table 2 shows the number of parameters in classic MPT and Rasch MPT

models in the conditions of homogeneous subjects and homogeneous tasks,

heterogeneous subjects and homogeneous tasks, homogeneous subjects and

heterogeneous tasks, and heterogeneous subjects and tasks.

In the next section, I will demonstrate Rasch MPT modeling in the source

monitoring paradigm.

3.3 Demonstration of Rasch MPT Models

In a typical source monitoring experiment, the answers can be classified

into three types. The first type is correct answers, second is incorrect but related

answers, and last is incorrect and unrelated answers (refer to Figure 1 for details).

For source A, these three types of answers are A, B, and N, respectively.

Suppose in a 5-parameter class MPT (see Figure 2 sub-model 5a),

ψskm = (ψ1km, ..., ψ5km) = (Dkm, dkm, bkm, akm, gkm). If we assume a unified tree

structure, in which each source tree (including old and new sources) consists of

the same structure with all the possible cognitive states. By using this general

representation, different types of the sources can be written in the same form, and

specified by their own parameter setting (e.g., the tree for a new source can be

considered as Dkm = akm = 0).

The link probabilities of the first and second links on the first branch and

first category for item k and subject m can be written as:

Pr[L111km] = Dkm =
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
, (33)

Pr[L211km] = dkm =
exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)
, (34)

where θ1m and δ1k represent the ability of the mth person, and the difficulty of the

kth source item in the first cognitive task (i.e., D), respectively.
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After the link probability is established, we can obtain branch probabilities.

For example, the branch probability for the first and second branches in the first

category for item k and subject m can be written as:

Pr[B11km] = Dkmdkm =
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
× exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)
(35)

Pr[B21km] = Dkm(1− dkm)akm (36)

=
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
× 1

1 + exp(θ2m − δ2k)
× exp(θ4m − δ4k)

1 + exp(θ4m − δ4k)

And similarly, the category probability of the first category for item k and

subject m can be written as:

Pr[C1km] = Pr[B11km] + Pr[B21km] + Pr[B41km]

= Dkmdkm +Dkm(1− dkm)akm + (1−Dkm)bkmgkm

=
exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
× exp(θ2m − δ2k)

1 + exp(θ2m − δ2k)
+

exp(θ1m − δ1k)

1 + exp(θ1m − δ1k)
× 1

1 + exp(θ2m − δ2k)
× exp(θ4m − δ4k)

1 + exp(θ4m − δ4k)
+

1

1 + exp(θ1m − δ1k)
× exp(θ3m − δ3k)

1 + exp(θ3m − δ3k)
× exp(θ5m − δ5k)

1 + exp(θ5m − δ5k)
(37)

For the likelihood function, we have:

L =
M∏
m=1

K∏
k=1

N !

Jk∏
j=1

[∑Ijkm
i=1

∏S
s=1

(
exp(θsm−δsk)

1+exp(θsm−δsk)

)αijs
(

1
1+exp(θsm−δsk)

)βijs]njkm

njkm!
. (38)

Rasch MPT models introduce two advantages over the classic MPT

models. One is that Rasch MPT models measure ability and difficulty of each

subject on each cognitive state (subtask) in a precise manner. The other is that

Rasch MPT models model every single performance by independent subject

ability and subtask difficulty, while classic MPT models are not able to. The
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relationship between Rasch MPT models and classic MPT models can be viewed

as a counterpart of the classic test theory and IRT model pair, because as

introduced previously, the classic test theory model mixes the subject ability and

item difficulty, therefore can only estimate their interactive performances.

In the next section, I will discuss the likelihood function and parameter

estimation of Rasch MPT models. Specifically, I will use the Bayesian inference to

estimate the parameters in the Rasch MPT models. In addition, I will

systematically evaluate the performance of Rasch MPT models in various

conditions.

3.4 Estimation Using Bayesian Inference

In this section, I discuss the background of Bayesian inference, including

its origin, rationale, some advantages and potential issues. Then, I recruit

Bayesian inference to recover the parameter values generated by various

simulation conditions. This is to systematically evaluate the performance of Rasch

MPT models and conclude the situations in which Rasch MPT models may or

may not be an appropriate measurement tool.

3.4.1 Theories of Bayesian Inference

The Bayesian inference is derived from the concept of Bayesian probability,

the basic idea of which is that any given probability should be a conditional

probability (posterior probability), impacted by the prior probability. Therefore

information obtained is connected with prior information, and will influence the

prediction. The Bayesian parameter estimation method can be considered as an

alternative of the maximum likelihood estimation (MLE) . The two most important

differences between Bayesian and traditional Frequentists’ perspective are 1)

whether prior knowledge about the studied objects is involved and, 2) whether the

estimate of a parameter is a fixed value or a distribution (Carlin and Louis 2009).

In Bayesian probability theory, given observed data and a hypothesis, the
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posterior probability is proportional to the product of the likelihood function and

the prior probability. The likelihood function represents the information from the

data and the model, while the prior specifies the hypothesis before the data was

observed:

Pr(Θ|D) =
Pr(D|Θ) Pr(Θ)

Pr(D)
, (39)

where Θ is a parameter vector and D is the data. Pr(Θ) is the prior probability of

Θ, Pr(D|Θ) is the conditional probability of observing the data given Θ, namely,

Pr(D|Θ) is the likelihood. Pr(D) is the marginal probability of D, and finally

Pr(Θ|D) is the posterior probability of Θ. The meaning of Pr(Θ|D) is the

probability that the hypothesis is true, given the data and the previous belief about

Θ (the prior). So equation (39) can be rewritten as:

Pr(Θ|D) =
Pr(D|Θ) Pr(Θ)∑
Pr(D|θi)Pr(θi)

, (40)

where θi is every single possible value of Θ if the distribution of Θ is discrete, or

Pr(Θ|D) =
Pr(D|Θ) Pr(Θ)∫

Ω
Pr(D|Θ̃)Pr(Θ̃)dΘ̃

, (41)

where Ω is the parameter space, if the distribution of Θ is continuous (Hoff 2009).

Therefore, the most important components of Bayesian formula are the prior

distribution and the likelihood function.

Let us again consider the coin-flipping example introduced in section 2.2.1.

The Bayesian inference for the posterior of the parameter vector is: Pr(Θ|D), and

Pr(D|Θ) here is the likelihood function L(Θ;D) as given in equation (11), and

Pr(Θ) is a prior distribution of the independent parameter vector Θ = (p, q, r)

assigned by the researcher (say, a beta distribution BΘ(αΘ, βΘ)), and∫
Ω
Pr(D|Θ̃)Pr(Θ̃)dΘ̃ is the integration of the probabilities of the observed data

given the range of the parameter vector (here is from 0 to 1). Therefore, the

Bayesian inference equation for the coin-flipping example is:
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Pr(Θ|D) =
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ)∫

Ω
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ) dΘ

. (42)

If we plug in equations (7)–(10), we have:

Pr(Θ|D) = p(n1+n2)(1−p)(n3+n4)qn1 (1−q)n2rn3 (1−r)n4Bp(αp,βp)Bq(αq ,βq)Br(αr,βr)∫ 1
0

∫ 1
0

∫ 1
0 p

(n1+n2)(1−p)(n3+n4)qn1 (1−q)n2rn3 (1−r)n4Bp(αp,βp)Bq(αq ,βq)Br(αr,βr)dpdqdr
.

After simplifying the equation above, we have:

Pr(Θ|D) =
1

B(αp, βp)

pn1+n2+αp−1(1− p)n3+n4+βp−1

Bp(n1 + n2 + αp, n3 + n4 + βp)

1

B(αq, βq)

qn1+αq−1(1− q)n2+βq−1

Bq(n1 + αq, n2 + βq)

1

B(αr, βr)

rn3+αr−1(1− r)n4+βr−1

Br(n3 + αr, n4 + βr)

=
B(α1 − 1, β1 − 1)Bp(α1 − 1, β1 − 1)

B(αp, βp)Bp(α1, β1)
(43)

B(α2 − 1, β2 − 1)Bq(α2 − 1, β2 − 1)

B(αq, βq)Bq(α2, β2)

B(α3 − 1, β3 − 1)Br(α3 − 1, β3 − 1)

B(αr, βr)Br(α3, β3)
,

where α1 = n1 + n2 + αp, β1 = n3 + n4 + βp, α2 = n1 + αq, β2 = n2 + βq,

α3 = n3 + αr, β3 = n4 + βr. These equations indicate that the posterior distribution

of the parameters is still in the beta distribution family when the prior distribution is

conjugate with the likelihood function, and how prior information impacts the

posterior distribution.

Although the equation of Bayesian inference is simple, the real

computation may be quite difficult because of the integration in the equation,

especially when there are many parameters or there are latent variables and

incomplete data. Therefore an approximation method named Markov chain Monte

Carlo (MCMC) may be used to obtain the approximation of the posterior

distribution through iterative algorithms such as the Gibbs sampler and the

Metropolis algorithm (Hoff 2009).
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3.4.2 Implementation in WinBUGS

In this study, I use WinBUGS to implement the Gibbs sampler algorithm to

achieve MCMC estimation for Rasch MPT models. The Gibbs sampler is a

technique for generating random variables from the marginal distribution directly,

in situations where the conditional distributions of each parameter can be

acquired when all the others are fixed. This algorithm does not have to calculate

the density, which is difficult to compute in complex cases. Rather than compute

or approximate a (marginal) distribution directly, the Gibbs sampler allows us to

effectively generate a sample sequence from this distribution without requiring its

density.

In the next chapter, I systematically test the performance of Rasch MPT

models in different conditions (e.g., different combinations of ability and difficulty

values and ranges) for better understanding of the properties of Rasch MPT

models.
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CHAPTER 4

SIMULATION EVALUATION FOR RASCH MPT MODELS

To understand more properties of Rasch MPT models, I conduct a

systematic simulation study that evaluates the performance of Rasch MPT model

in different conditions.

Although Rasch MPT modeling addresses the key issues of classic MPT

modeling (i.e., violation of subjects/stimulus homogeneity and mixing of subject

ability with item difficulty), some issues of Rasch modeling (as discussed in

section 2.4.4) may be inherited. Hence there are two main goals of this simulation

study. One goal is to examine the performance of Rasch MPT models in different

conditions that may take place in reality, including different subject sample sizes

and number of items, missing data, and parameter boundary conditions. The

other goal is to detect if basic theoretical assumptions may be violated by the

setting of the model. Because the Rasch MPT model does not assume

homogeneity of items or subjects as classic MPT models do, only parameter

independence will be examined. In addition, given that 1HTH classic MPT models

have been successful in various source monitoring scenarios (Harvey 1985;

Saegert, Hamayan, and Ahmar 1975; Rose et al. 1975), I will use the structure

proposed in the 1HTH MPT model to simulate the data.

4.1 Model Performance in Different Conditions

I first tested the parameter recovery given different subject sample sizes,

including small, medium, and large sample sizes. The reason for this test is, as

discussed in the previous section, the Rasch model may perform differently with

different sample sizes. Therefore, there is a need to investigate the parameter

estimation accuracy of Rasch MPT models given different sample sizes. For this

test, I chose 10 questions with 10 subjects, 20 questions with 20 subjects, and 40

questions with 40 subjects as small, medium, and large sample sizes. Note that

the number of subjects could be any arbitrary positive integer and do not
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necessarily have to be the same as the number of questions. I used this setting

because the probability for getting a correct answer is the function of the

difference of θ and δ. Hence both the number of subjects and questions had the

same effect on the sample size. Choosing small, medium and large sample sizes

for both task items and subjects made their combinations (e.g., 10 items and 10

subjects) to be typical small, medium and large samples. In this study, no mixed

combinations (e.g., 10 items with 40 tasks) were tested, and these situations will

be discussed in the final discussion.

To illustrate the parameter recovery results, I will use the estimates for the

medium sample size as an example. In the medium sample size setting, I chose

20 subjects (M = 20), with ability θ mean as 0.5, and standard deviation as 0.5.

The MPT model I imposed to simulate data is 5a 1HTH Model in which 5 cognitive

states (parameters) are (D, d, a, g, b) (see Figure 2, for details). In addition I

recruited a uniform distribution with a range from −0.5 through 1.5 as an

approximate non-informative prior, because this prior gives approximately the

whole range (95.5%) of possible true values a flat distribution. Table 3 shows the

estimates for ability of the first 5 subjects on 5 cognitive states.
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Table 3
Rasch MPT Model Recovery for Ability Parameters

Parameter True value Mean SD MC error Val2.5pc Val97.5pc
θ[1,1] 0.59 0.5071 1.067 0.01892 -1.588 2.574
θ[1,2] -0.60 -0.6769 0.8115 0.01357 -2.226 0.9646
θ[1,3] 1.40 1.362 0.8854 0.01446 -0.4418 3.053
θ[1,4] 0.54 0.5087 0.9949 0.007028 -1.417 2.477
θ[1,5] -0.93 -0.9619 0.6419 0.0108 -2.311 0.2025
θ[2,1] 0.79 0.7738 0.9795 0.01921 -1.151 2.735
θ[2,2] -0.08 -0.1146 0.8284 0.01526 -1.755 1.553
θ[2,3] 1.32 1.286 0.886 0.01629 -0.4823 2.994
θ[2,4] 0.58 0.4966 0.9971 0.007212 -1.474 2.448
θ[2,5] -0.32 -0.3723 0.6809 0.01285 -1.85 0.8113
θ[3,1] 0.80 0.7211 0.9981 0.01994 -1.218 2.667
θ[3,2] -0.02 -0.05546 0.855 0.01822 -1.715 1.629
θ[3,3] 1.39 1.323 0.8675 0.01439 -0.4675 2.991
θ[3,4] 0.58 0.5044 0.9944 0.00714 -1.448 2.441
θ[3,5] -0.40 -0.4159 0.7042 0.01457 -1.949 0.8279
θ[4,1] 0.91 0.8932 0.9717 0.01908 -0.9828 2.807
θ[4,2] 0.19 0.1353 0.8494 0.01731 -1.569 1.816
θ[4,3] 1.31 1.225 0.8818 0.01329 -0.5344 2.964
θ[4,4] 0.56 0.4964 0.9926 0.006471 -1.457 2.442
θ[4,5] -0.07 -0.07727 0.6941 0.01454 -1.583 1.16
θ[5,1] 0.88 0.7883 0.9744 0.0193 -1.079 2.717
θ[5,2] 0.04 0.0352 0.8619 0.01743 -1.708 1.76
θ[5,3] 1.27 1.254 0.8661 0.01355 -0.4637 2.904
θ[5,4] 0.58 0.4971 1.003 0.007482 -1.489 2.473
θ[5,5] -0.33 -0.2395 0.7063 0.01398 -1.769 1.004
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On the other hand, I chose 20 source items (K = 20) and set the cognitive

state difficulty parameter δ with a mean of 0, and standard deviation as 0.5. I

recruited a uniform distribution ranging from -1 to 1, which is also an

approximately non-informative prior because it covers nearly the whole range

(95.5%) of the possible true values with an equal probability. Table 4 shows the

estimates for ability of the first 5 subjects on 5 cognitive states.
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Table 4
Rasch MPT Model Recovery for Difficulty Parameters

Param True value Mean SD MC error Val2.5pc Val97.5pc
δ[1,1] 0.02 -0.05086 1.046 0.02045 -0.07252 2.02
δ[1,2] 1.08 0.9993 0.8421 0.01807 1.028 2.599
δ[1,3] -0.7 -0.8723 0.8612 0.01464 -0.8743 0.8367
δ[1,4] 0.14 -0.004513 0.9964 0.006168 -0.008115 1.966
δ[1,5] 1.42 1.358 0.6527 0.01159 1.32 2.747
δ[2,1] -0.13 -0.1724 1.014 0.01892 -0.1823 1.778
δ[2,2] 1.04 0.9449 0.8046 0.01473 0.9558 2.548
δ[2,3] -0.75 -0.7874 0.8851 0.01396 -0.8016 0.9939
δ[2,4] 0.10 -0.003527 0.9968 0.00693 -7.34E-05 1.969
δ[2,5] 1.34 1.174 0.6536 0.01162 1.141 2.575
δ[3,1] -0.06 -0.2373 1.035 0.021 -0.251 1.798
δ[3,2] 1.14 0.9427 0.7944 0.01469 0.9329 2.547
δ[3,3] -0.62 -0.7738 0.9072 0.0153 -0.8051 1.102
δ[3,4] 0.11 0.005661 0.9925 0.007226 0.003701 1.938
δ[3,5] 1.33 1.166 0.6524 0.01242 1.122 2.527
δ[4,1] -0.18 -0.2426 0.9767 0.0196 -0.2283 1.691
δ[4,2] 0.47 0.4137 0.8695 0.01792 0.414 2.168
δ[4,3] -0.67 -0.8113 0.8813 0.01422 -0.8118 0.9799
δ[4,4] 0.19 -2.67E-04 1 0.007394 0.002247 1.953
δ[4,5] 0.81 0.7748 0.7068 0.01437 0.7046 2.286
δ[5,1] 0.04 -0.05502 1.037 0.02054 -0.05506 2.003
δ[5,2] 0.94 0.8182 0.869 0.01917 0.837 2.416
δ[5,3] -0.73 -0.8572 0.8762 0.0152 -0.8833 0.9068
δ[5,4] 0.03 -0.002215 1.005 0.007596 -0.01152 1.964
δ[5,5] 1.24 1.187 0.6475 0.01282 0.01908 2.548
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The “True value” column in Table 3 and 4 represents the real parameter

values generated by the normal distributions I chose for θ and δ. The following

columns from “Mean” through “Val97.5pc” are the MCMC sample descriptions of

these statistics for the posterior, such as the mean of the posterior, or the value at

97.5 percentile. These descriptions help us understand the distribution of the

posteriors. When evaluating the performance of the parameter recovery, we

should first check whether the ”Mean” (i.e., the point estimate of the parameter

true value) is close to the true value. This is because the basic goal of checking

parameter recovery is to test if the estimate of a true parameter value may be

close to it. Also, we check if the true value is in the range between “Val2.5pc” and

“Val97.5pc”. This can be considered as a minimum requirement of an acceptable

recovery. This is because, if the true value falls out of this range, it is either in the

upper 2.5% or the lower 2.5% area, namely out of the middle 95% area of the

estimated distribution. This means we cannot accept that the true value as a data

point belongs to the estimated distribution, at .05 significance level. From Table 3

and 4, we may see that most of the true parameter values were recovered well by

posterior means, and all of them are recovered in the range between “Val2.5pc”

and “Val97.5pc”, which is consistent with our expectation.

Similarly, I tested the small and large sample size, and a summarization

table is given in Table 5. In this table, I used three measures to evaluate the

performance of Rasch MPT modeling under different sample sizes. The basic one

is whether the true parameter value is in the estimated range. The second

measurement is the mean of the absolute difference between the true values and

their point estimates. The last measurement is the mean of the standard deviation

of each estimate.
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Table 5
Summarization of Rasch MPT Model Parameter Recovery

Sample Size True value in range Mean of difference Mean of SD
Small Yes 0.1413 1.315
Medium Yes 0.0984 0.8779
Large Yes -0.0517 0.6325

As expected, all the true parameter values are recovered in the estimated

range, and as the sample size increases, the precision of the estimates is

improved significantly.

The second step is to test Rasch MPT models to see if they have poor

validity in extreme conditions for θ and δ, usually ranging [−4, 4] if standard normal

distributions are assumed (because this range covers over 99.99% area of the

possible values of a standard normal distribution). In theory, the discrepancy

between δ and θ may be 8 (i.e., 4− (−4)). However, in practice, it is very unlikely

to test extremely high ability testees with extremly low difficulty tasks. Therefore,

the extreme condition I tested here is the absolute difference between θ and δ

(i.e., |θ − δ|) ranges from 3 through 4 (as shown in Figure 6). I generated 250

combinations (S = K = 5, M = 10) that satisfied this boundary condition, and

Table 6 shows the corresponding performance of the Rasch MPT model. From the

table we can see that the true value is still in the estimated range, however with

much worse precision (i.e., larger difference from the true value and SD),

compared with the parameter recovery results in Table 5. This may partly be

caused by the low discriminability of the IRT models under boundary conditions,

as well as small sample sizes (which is realistic for boundary values).

The third step is to test the Rasch MPT model parameter for recovery

performance given partially missing values. This tests the reliability of Rasch MPT

estimation in case of partly missing data. Some simple ways used for missing
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Table 6
Summarization of Rasch MPT Model Parameter Recovery

|θ − δ| True value in range Mean of difference Mean of SD
[3, 4] Yes 0.2432 1.821

values in Rasch/IRT model estimation include ignoring them or marking them as

incorrect answers (Holman and Glas 2005). However, this is quite problematic

because these methods may introduce severe bias to the estimates, especially

marking them as incorrect (Rose, von Davier, and Xu 2011). On the other hand,

some complex methods such as treating missing values based on additional

assumptions (DeMars 2002) are out of the scope of this study. Hence I recruited a

relatively straightforward way that used the observed response probability of each

category to generate random responses to impute missing values. That is, for

example, if a testee responded to 90 out of 100 stimuli, I used the observed

probability of the responses to 90 stimuli (e.g., 0.5 for correct answer, 0.4 for

incorrect but related answer, and 0.1 for incorrect and unrelated answer) to

generate random responses to the last 10 stimuli. So first I use the large sample

generated for the previous sample size test and remove 10% responses from

10% of testees, then 20% responses from 20%, and finally 30% responses from

30% testees.

Table 7 shows a summarization of the parameter recovery in these three

conditions. This table shows that some of the parameters involving missing values

were not recovered in the estimated range, so the percentage of true values in the

estimated range is presented. In addition, the percentage for the true values

recovered in the estimated range is in terms of the whole parameter vector. We

can see that the performance (true values in range and mean difference from true

value) worsened significantly as the proportion of missing values increased.
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Although the mean of SD did not change much, this is because the sample size

was the same after the missing values were imputed. One should note that, the

way used to impute the missing values in this study may need to be improved. For

example, in reality, the unanswered questions are usually too hard for the

students, hence these questions should have lower (even much lower) probability

to be “correct”, or “incorrect but relevant”. The main reason for the missing value

setting here is to test the robustness of the Rasch MPT’s parameter recovery,

hence we stay away from the arguments of the reasons for the missing values.

Table 7
Rasch MPT Parameter Recovery for Missing Data

Missing Data True value in range Mean of difference Mean of SD
10% 99.25% 0.0652 0.5513
20% 95.5% 0.0884 0.5486
30% 88.5% 0.1325 0.5602

4.2 Parameter Correlation Check

The way I tested the parameter independence was to generate 100 random

non-aggregate data samples, to estimate the parameters using the 5a sub-model

structure in (Batchelder and Riefer 1990), to use correlation tests to check if there

exist parameter correlations, and to exhibit in a correlation table. These samples

were not used to test the parameter recovery, hence the data in each data table

cell will be random numbers ranging from 1 to 200 (with a restriction that the

diagonal frequency in the aggregate frequency table is dominant), which is usual

for empirical studies. Also, I used small samples with M = K = 10 to control the

computing load.

Table 8 shows the mean of correlation coefficients between ability

parameters, and Table 9 shows the mean correlation between difficulty
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parameters. The critical value at α = .05 level given sample size ≈ 100 is .195.

Hence in these simulated samples, no significant correlation was detected.

However, this test only examined linear correlation, and potential complex

correlation was not examined.

Table 8
Summarization of Rasch MPT Model Ability Parameter Correlation

Ability Parameters θ[, 1] θ[, 2] θ[, 3] θ[, 4] θ[, 5]

θ[, 1] 1 0.14 0.09 0.09 0.06
θ[, 2] 1 0.09 0.06 0.05
θ[, 3] 1 0.1 0.09
θ[, 4] 1 0.05
θ[, 5] 1

Table 9
Summarization of Rasch MPT Model Difficulty Parameter Correlation

Difficulty Parameters θ[, 1] θ[, 2] θ[, 3] θ[, 4] θ[, 5]

θ[, 1] 1 0.16 0.11 0.1 0.08
θ[, 2] 1 0.1 0.08 0.07
θ[, 3] 1 0.11 0.09
θ[, 4] 1 0.07
θ[, 5] 1

Overall, these simulations tested the performance of MPT models under

different conditions, including different sample sizes, different portions of missing

values, and parameter correlations. These tests showed us which conditions are

best for using Rasch MPT models. For example, in our case, we should avoid

using small sample sizes such as 10 items and 10 subjects, and we should be

cautious if the missing values reach the portion of 30% in total. Also, the

47



parameter independence assumption should be held. The simulation tests of the

Rasch MPT models may help us better understand the properties of the Rasch

MPT models, and assist researchers in applying Rasch MPT models to the

empirical research. For an instance, in Harvey (1985), 20 manic patients, 20

schizophrenic patients, and 10 normal subjects were recruited for the source

monitoring experiments. Our simulation study indicates that 10 normal subject

may be insufficient to get reliable and accurate estimates of their cognitive abilities

if the research plans to apply Rasch MPT model to measure these subjects. Can

we pull all these subjects together to get a larger sample size? Obviously we

cannot, because the other two groups are not reasonable references for normal

subjects. In other words, the measure of abilities and difficulties are based on the

comparison of each subject/task to other subjects/tasks, and hence the measure

is a relative measure. However, we should be aware that these tests were based

on the specific MPT structure (i.e., sub-model 5a in 1HTH), and more

combinations of the conditions exist (e.g., 10 items with 20 subjects). Therefore,

fully understanding the performance of a model needs more exploration.

More detailed information about the simulation will be attached in the

appendix, including the code used for data simulation and parameter estimation,

the data simulated, and the estimates for different conditions tested in this section.

Next, I will use a simple lexical decision experiment and a set of physics

test data as applications to discuss the uses of Rasch MPT modeling.
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CHAPTER 5

APPLICATIONS OF RASCH MPT MODELS

In this chapter, I will use Rasch MPT models to analyze the empirical data

sets obtained from two experiments. The purposes of these analyses are not to

explore or discuss the nature of the psychological phenomena involved in these

experiments, but to validate the Rasch MPT modeling, and demonstrate its

applications in real cognitive studies.

5.1 A Lexical Decision Making Experiment

Traditional memory experiments usually only report aggregated or

averaged response data for subjects in one group and stimulus of one source.

Therefore, a source monitoring experiment is needed to obtain non-aggregated

empirical data to apply Rasch-MPT models. Here I conducted a simple lexical

decision making experiment conceived in Link (1982) to test the examinee’s

response to detect words and non-words (pseudo words). This experiment has

been waived by the IRB at the University of Memphis. Please see Appendix for

details.

5.1.1 Method

Participants. Twenty workers (anonymous participants who work on

experiments/surveys to earn money) on Amazon mechanical turk (AMT) were

recruited to finish the lexical decision task. This was an online experiment and

only anonymous responses were needed. Hence no personal information was

collected.

Design and Materials. In this experiment, subjects were given a list of words.

Some of these words were real words, while some were pseudo words. The task

was to report whether a stimulus word was a real word or not. Because different

subjects may have had different lexicons, they were hypothesized to possess

different ability, hence different performance in the test. Also, different words may

have had different difficulties (e.g., a commonly used word vs. a rarely used word,
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or a random-combination of letters vs. “sanny”). I sampled pseudo words from

online sources http://ibbly.com/Pseudo-words.html, as well as added some

randomly-combined pseudo words. The sampled words are listed in Table 10.

There were 40 words in total, with 20 real words and 20 non-words. The real

words were selected from the vocabularies of the Test of English as a Foreign

Language (TOEFL) and the Graduate Record Examinations (GRE).

Table 10
Word List for Lexical Decision Experiment

unshott wave* chine* celants obvious*
sanny thriste gement* hambo* alies

binated borato* unded estival* latent*
indigo* melopepon* nary* pennag ambiguous*
zigant abandon* inworm priole implicit*

abasement* enship heters refute* multive
simos anoes paradox* fane* thwards
lavish* nauses wittes helm* selfies

Note.Words with an asterisk are real words.

The subjects were assumed to experience the following cognitive

processes to output the observed responses: firstly they were to attempt to detect

(θ1) if a word was a real word. If they failed to detect, an additional guessing step

(θ2) was attempted. I modeled θ1 and θ2 by Rasch model, and measured the

detection and guessing ability of the subjects, and corresponding subtask

difficulties.

To make sure the cognitive processes depicted in Figure 8 were valid, I first

asked the subject “Do you think this a real word?”; then ”If you think this is a real

word, do you know its meaning?”. These two questions guaranteed that the

subject would undergo the cognitive processes as illustrated in Figure 8 by first

trying to detect (ψ1) if the word existed in his/her lexicon, and only to guess (ψ2)
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after detection had failed. For simplicity, only the responses to real words were

counted (but blinded to the subjects).

Figure 8
A word recognition experiment

5.1.2 Analysis

There were 3 observed categories for each item (because the subjects

were asked if they knew the meaning, correct answers by guessing can be split

from those from real recognition) and they are represented by 3 branches in

Figure 8. Every participant responded to 40 items, while only responses to 20 real

words were used to estimate the ability and difficulty parameters. The ability

parameter estimation results for the first 10 participants are shown in Table 11.

Similarly, the difficulty parameter estimation results for the first 10 real words are

shown in Table 12.

In Table 11, parameter θ is the ability parameter. For example, θ[1, 1]

means the first subject’s first cognitive stage ability (i.e., real knowledge about a

word), and θ[1, 2] refers to this person’s second cognitive stage ability (i.e.,

guessing of a word). The most important value is the (posterior) mean estimate of
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θ, which is the point estimate of the ability of a person. The following estimates

include the standard deviation of the posterior distribution (SD), the computational

accuracy of the mean (MC error), the 2.5th percentile of the simulations as an

approximation of the lower endpoint of the 95% credible interval (Val2.5pc), and

he 97.5th percentile of the simulations, an approximation of the upper endpoint of

the 95% credible interval (Val97.5pc). Accordingly, Table 12 shows these

statistical descriptions for the difficulty parameter δ. In addition, Table 12

associates the parameter names with they corresponding words to help

understand the difficulty of the words measured in the experiment.

Although we have no information about the participant’s lexical ability, we

can see from Table 12 that common words (e.g., “wave”, “obvious”, and “latent”)

Table 11
Rasch MPT Model Recovery for Ability Parameters

Parameter Mean SD MC error Val2.5pc Val97.5pc
θ[1, 1] 0.49201 0.95813 0.02390 -0.17069 0.86641
θ[1, 2] 0.15670 1.18689 0.01420 0.08443 0.86640
θ[2, 1] 1.16490 0.63082 0.01625 0.63286 1.81296
θ[2, 2] 1.18808 1.23789 0.01759 1.00928 1.50685
θ[3, 1] 1.09908 1.32295 0.01816 0.37649 1.93414
θ[3, 2] 0.99776 1.40054 0.01008 0.54149 1.43419
θ[4, 1] 1.02336 1.11547 0.01487 0.99540 1.28203
θ[4, 2] 0.37684 0.69983 0.01374 -0.05147 0.64254
θ[5, 1] 0.84587 0.72042 0.02732 0.80122 1.77050
θ[5, 2] 0.67778 1.16518 0.01554 0.02191 0.94548
θ[6, 1] 0.74671 0.87175 0.01314 0.31356 1.74387
θ[6, 2] 1.01237 0.98078 0.01254 0.67080 1.60876
θ[7, 1] 0.52394 1.09473 0.01383 -0.20272 1.41116
θ[7, 2] 1.36517 1.33957 0.01604 0.94077 2.08771
θ[8, 1] 0.31276 1.14293 0.01732 -0.25270 0.73638
θ[8, 2] 0.80073 0.76611 0.01877 0.28228 1.09531
θ[9, 1] 0.89355 1.01755 0.01720 0.04166 1.72363
θ[9, 2] 1.69200 0.92437 0.01477 1.03077 1.78606
θ[10, 1] 0.95778 1.13888 0.01939 0.95030 1.38445
θ[10, 2] 0.34948 0.80708 0.02208 -0.60395 0.95713
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had low difficulty estimates, while some rare words had much higher difficulty

estimates. This observation may be more clearly indicated by the correlation

between the average difficulty score of a word and its corresponding “Ngram” at

the Google Book (https://books.google.com/ngrams/info). The ”Ngram” value

simply means the percentage of a word or phrase used in all the books collected

in Google Books. I use the “Ngram” value for the latest available year (i.e., year

2000) for each of the 20 real words (except “melopepon”, which means “any of

various kinds of squash” but cannot be found in Google Books). The “Ngram”

values of each word, the average difficulty score, and their correlation are

presented in Table 13. The table shows high (negative) correlation between the

difficulty to know a word and its “Ngram” value in Google Book, which is

Table 12
Rasch MPT Model Recovery for Difficulty Parameters

Word Param Mean SD MC err Val2.5pc Val97.5pc
wave δ[1, 1] -1.55719 0.78968 0.01354 -2.02530 -1.23242
wave δ[1, 2] -0.92573 0.93447 0.02102 -1.87454 -0.22884
chine δ[2, 1] 0.81509 1.16977 0.01327 0.44451 1.05017
chine δ[2, 2] 1.17862 0.91599 0.02101 0.85042 1.36517
obvious δ[3, 1] -0.86424 0.99383 0.01806 -1.32587 0.00747
obvious δ[3, 2] -2.54810 1.07362 0.00787 -3.49773 -2.03007
gement δ[4, 1] 1.99292 1.27647 0.00765 1.76236 2.69579
gement δ[4, 2] 0.56398 0.87124 0.00549 -0.19942 0.82711
hambo δ[5, 1] 1.45682 1.07175 0.01533 0.67641 1.78512
hambo δ[5, 2] 1.35032 1.16816 0.01513 1.26869 1.85221
borato δ[6, 1] 2.54566 0.95470 0.02135 2.13929 3.48895
borato δ[6, 2] 1.87423 1.23579 0.02301 1.50933 2.37889
estival δ[7, 1] 1.43356 0.94554 0.01850 1.31266 1.71697
estival δ[7, 2] 1.31051 1.10770 0.01230 0.96333 1.87400
latent δ[8, 1] -0.77044 1.31110 0.02066 -1.51363 -0.15253
latent δ[8, 2] -1.06988 1.14773 0.01744 -1.87383 -0.89729
indigo δ[9, 1] 0.58483 1.05817 0.01988 0.51106 1.15928
indigo δ[9, 2] 1.13528 1.09728 0.00576 0.44713 1.23418
melopepon δ[10, 1] 1.00707 0.91630 0.02245 0.35439 1.22783
melopepon δ[10, 2] 1.09501 1.11506 0.02486 1.00711 1.82342
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significant at .999 level. The correlation between the difficulty to guess a real word

as a word shows a lower, yet still significant (negative) correlation with the

“Ngram” value. This implies that Rasch MPT models may be used to measure

potential sub ability and difficulty. Moreover, because δ1 reflects the familiarity of a

word in a person’s mind, it is reasonable to have higher correlation with the Ngram

value. Rather, δ2 may be impacted by other factors (e.g., a person’s understanding

of morphology), hence has lower correlation with the Ngram value.

Table 13
Correlation Between Ability Scores and “Ngram” Values

Word δ1 δ2 Ngram
wave -3.26661 -1.02192 0.0045000%
chine 3.331255 1.729232 0.0000143%

obvious -3.80933 -0.29908 0.0054600%
gement 3.299576 0.088019 0.0000009%
hambo 3.020747 0.020135 0.0000001%
borato 2.396213 0.73968 0.0000001%
estival 2.834477 0.998978 0.0000008%
latent -2.02712 -0.35634 0.0006555%
indigo 1.48704 0.132873 0.0001304%

melopepon 3.977155 2.435091 0.0000000%
nary 0.593494 0.073102 0.0000320%

ambiguous -1.0904 -0.419 0.0010270%
abandon -1.33509 -0.67572 0.0010890%
implicit -1.55917 -0.20332 0.0015010%

abasement 1.965743 0.067682 0.0000208%
refute 1.060002 0.516078 0.0002224%

paradox -1.92311 -1.29572 0.0008282%
fane 2.9825 0.289294 0.0000073%

lavish -0.19934 -0.01597 0.0002657%
helm 1.70584 0.656816 0.0001391%

Note. Correlation between δ1 and Ngram is r(19) =
−0.77, p < .001 (i.e., significant at .999 level). Cor-
relation between δ2 and Ngram is r(19) = −0.46,
p < .05 (i.e., significant at .95 level).
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In this experiment, the experiment questions were straightforward and the

cognitive processes were explicitly regulated. However, in more real and complex

situations, cognitive processes are usually unobservable. Therefore, I used a

more generalized application to a physics concept test to demonstrate the uses of

Rasch MPT models.

5.2 A Generalized Application to Multiple-Choice Questions

In this section, I used the multiple choice questions for Force Concept

Inventory (FCI) (Hestenes, Wells, and Swackhamer 1992) from the DeepTutor

project (provided by Dr. Vasile Rus). This resource included (1) A 30-question FCI

test paper; (2) Documentation that maps the answers of each question to the

force concepts; (3) 217 college students’ answers to each question.

Because different questions may involve different cognitive processes (i.e.,

different MPT structures). I first sampled one question and came up with a

hypothetical MPT structure to depict the cognitive process for solving this

question. Then I used the classic MPT modeling approach to validate the

structure(s) by aggregate subject and question data (i.e., test the model’s

goodness-of-fit to the aggregate data). After the structure was validated, I plugged

in Rasch models to measure abilities and subtask (i.e., conceptions) difficulties.

Below is a sample question (Table 14), the answer-to-conception mapping (Figure

15), and a hypothetical MPT tree corresponding to this question (Figure 9).

Figure 15 shows the mapping of each answer to the underlying Newtonian

force concept(s). Each concept or misconception is represented by a code

defined in the FCI. For example, G3 means the belief that “heavier objects fall

faster”, which is a misconception. In contrast, 5G means the correct concept that

“objects fall with the same acceleration regardless of mass”. The LP level means

the learning progress level on each concept, while FF L1 refers to the lowest level

on the “free fall” (FF) concept, and FF L6 means the highest level on this concept.
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Table 14
Sample Question 1 of FCI

1. Two metal balls are the same size but one weighs twice as much as the
other. The balls are dropped from the roof of a single story building at
the same instant of time. The time it takes the balls to reach the
ground below will be:
(a) about half as long for the heavier ball as for the lighter one.
(b) about half as long for the lighter ball as for the heavier one.
(c) about the same for both balls.
(d) considerably less for the heavier ball, but not necessarily half as long.
(e) considerably less for the lighter ball, but not necessarily half as long.

Table 15
Mapping from Answers to Concepts for Sample Question 1

Answer FCI Coding LP Level
G3: FF L1: When air resistance is not

a Heavier objects fall faster important, objects of different masses
fall at different rates.
FF L1: When air resistance is not

b important, objects of different masses
fall at different rates.
FF L1: Objects fall with the same

c 5G acceleration regardless of mass.
G3: FF L6: When air resistance is not

d Heavier objects fall faster important, objects of different masses
fall at different rates.
FF L1: When air resistance is not

e important, objects of different masses
fall at different rates.

Figure 9 shows a hypothetical tree structure for the cognitive process that

the students could use to get their final observed responses. Other than the two

parameters (“5G” and “G3”) introduced in the concept-question mapping table,

there are three additional parameters specified in this tree to help depict the

whole cognitive processes. In Figure 9, 5G means the student had the correct
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Figure 9
A hypothetical tree structure for sample question 1

concept “5G”, 5GM means the student had misconception(s) about “5G”, and G3

represents the misconception “G3”. We hypothesized that from the root of the

tree, if the student had “5G”, the student will obviously get the correct answer

(answer c). If the student did not possess “5G”, 5GM may or may not be in mind. If

the student had “G3”, this misconception will lead to the answers a or d,

depending on the response bias parameter “B1”. However, if “G3” was not the

student’s misconception, answer b or e would be observed, depending on the bias

parameter “B2”. Finally, if the student had no idea about the concepts involved in

the question, a random choice would be made, which means each answer had a

probability of 0.2 to be observed.

5.2.1 Model Structure Validation

Given a hypothetical MPT structure, the first step was to use aggregate

data to validate the tree structure. This step was crucial because only a tree

structure that can be used to represent most subjects’ cognitive process has the

potential to further measure ability and difficulty. Therefore, this first step was

exactly the same as the procedure in the classic MPT model parameter

estimation and model goodness-of-fit test.

The model structure may be validated based on different amounts of

information. For example, in the sample question, the
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concept(s)/misconception(s) we were interested in were 5G, 5GM, and G3. To

test the model fit, we needed at least 5 ( = 3 + 1 + 1) observed categories (i.e., if

we only had 4 observed categories, the parameters may have been estimated,

but the goodness-of-fit could not be tested because the model would be

saturated). Although we had 5 alternative options in each question, we still had to

fix the probabilities for parameter B to make the model testable. It was quite

subjective to set a constant to B and this setting may possibly have led to a bad

goodness-of-fit value. In my trial, that set B as 0.5, χ2(1) = 9.77, which was

unacceptable. The observed frequencies (a = 27, b = 32, c = 104, d = 40, e = 14)

also implied that B1 was probably less than 0.5 (a = 27 vs. d = 40), while B2 was

greater than 0.5 (b = 32 vs. d = 14). This implied that the bias to a versus d ( and

b versus e) should not be 0.5. So an ideal way was to set B1 and B2 as free,

which demanded more degrees of freedom. To acquire additional information, one

could use other questions that involve the same concepts/misconceptions (or say

parameters) as in Figure 9. Therefore, I used another question as shown in Table

16, and the mapping from answers to FCI concepts as shown in Table 17.

Table 16
Sample Question 2 of FCI

2. The two metal balls of the previous problem roll off a horizontal table with
the same speed. In this situation:
(a) both balls hit the floor at approximately the same horizontal distance

from the base of the table.
(b) the heavier ball hits the floor at about half the horizontal distance

from the base of the table than does the lighter ball.
(c) the lighter ball hits the floor at about half the horizontal distance

from the base of the table than does the heavier ball.
(d) the heavier ball hits the floor considerably closer to the base of the table

than the lighter ball, but not necessarily at half the horizontal distance.
(e) the lighter ball hits the floor considerably closer to the base of the table

than the heavier ball, but not necessarily at half the horizontal distance.
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Table 17
Mapping from Answers to Concepts for Sample Question 2

Answer FCI Coding LP Level
FF L6: Objects fall with the same

a 5G acceleration regardless of mass.
G3: FF L1: When air resistance is not

b Heavier objects fall faster important, objects of different masses
fall at different rates.
FF L1: When air resistance is not

c important, objects of different masses
fall at different rates.

G3: FF L1: When air resistance is not
d Heavier objects fall faster important, objects of different masses

fall at different rates.
FF L1: When air resistance is not

e important, objects of different masses
fall at different rates.

Apparently, sample question 2 has the same tree structure because it

involves the same concepts/misconceptions and uses a different scenario to

describe the question and adjusts the order of the answers. Therefore, I use these

two trees jointly to acquire more degrees of freedom to estimate the parameters

(5G, 5GM,G3, B1, B2). The observed frequencies for question 2 were a = 74

(key), b = 54, c = 32, d = 49, e = 8. The estimated parameters were 5G = 0.41,

5GM = 0.65, G3 = 0.65, B1 = 0.58, B2 = 0.82, and χ2(3) = 4.95, which was

smaller than the critical value 7.81 at α = .05 level.

5.2.2 Measure of Ability and Item difficulty

After the tree structure was validated, the next step was to plug Rasch

models into the classic MPT model to measure θ for the subjects, and δ for the

concepts. This step has been illustrated a few times in the previous simulation

evaluation chapter, so I will present the estimates of parameters for interesting
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concepts (5G and G3, as provided in the concept-question mapping in Tables 15

and 17) in Table 18 and Table 19.

Table 18
Rasch MPT Model Estimates for Ability Parameters in FCI

Parameter Mean SD MC error Val2.5pc Val97.5pc
θ[1, 1] 1.8825 1.2368 0.0138 1.2991 2.8308
θ[1, 2] 0.1157 1.2370 0.0211 -0.8006 0.8739
θ[2, 1] 0.8361 1.2371 0.0311 -0.0629 1.7897
θ[2, 2] 0.6798 1.2452 0.0329 -0.0086 0.8843
θ[3, 1] -0.8924 1.2417 0.0237 -0.9702 0.0264
θ[3, 2] 1.3265 1.2408 0.0270 0.3269 2.0314
θ[4, 1] -0.9013 1.2465 0.0288 -1.0771 -0.1644
θ[4, 2] 0.5135 1.2420 0.0189 -0.2045 1.3844
θ[5, 1] 0.8362 1.2381 0.0332 0.7930 1.6188
θ[5, 2] 0.6796 1.2369 0.0221 -0.2842 1.4139

Table 19
Rasch MPT Model Estimates for Difficulty Parameters in FCI

Concept Parameter Mean SD MC error Val2.5pc Val97.5pc
5G in Q1 δ[1, 1] 0.4369 1.2413 0.0159 0.1457 1.2312
G3 in Q1 δ[1, 2] -0.2165 1.2433 0.0330 -1.1889 0.0707
5G in Q2 δ[2, 1] 1.4361 1.2418 0.0305 0.5829 1.8539
G3 in Q2 δ[2, 2] -1.1231 1.2441 0.0248 -1.6347 -0.6199

Table 18 shows the first 5 students’ standardized ability scores in the

population (217 observations). The parameter θ[, 1] refers to the ability score on

5G, which is the correct concept, and θ[, 2] represents the “ability” on G3, which is

the misconception that heavier objects fall faster. These scores can be roughly

considered as the likelihood of a student to possess this concept/misconception.
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In other words, if a student got a higher score on a concept or misconception, she

or he is more likely to possess this concept/misconception. So we can find some

interesting information from the estimates. For example, the third student and the

forth student had similarly low scores on 5G, but differ on G3. This implies that the

two students may have had different level on the misconception G3, and the third

student may have deeper belief on G3. Therefore, we can discover the

information of the students’ ability from several aspects: (1) How well a student

masters a concept (or how deep a student believes a misconception); (2) How

well a student compares to another student or the average of the class, with

respect to the mastery of a concept; (3) How well a class master a concept (upper

5%, lower 5%, SD, skewness, etc). Certainly, we may also do the same descriptive

and inferential statistical analyses for the aggregated data (e.g., evaluating and

comparing subgroups, classes, or schools etc).

In Table 19, although question 1 and question 2 involved the same

concept/misconception in the FCI, they showed different difficulties for the

students to succeed on 5G (δ[1, 1] < δ[2, 1]), however more students’ were more

likely to possess G3 in question 2. Therefore, this analysis shows that question 1

and question 2 were not equally difficult to the students, not only with respect to

the correct answer, but with respect to different misconceptions. Actually, if we

look into these two questions, we can find that the first question was more

straightforward than the second, because only vertical motion (1 dimension) was

involved in question 1, and both vertical and horizontal motions (2 dimensional)

were involved in question 2. Likewise, we may conduct evaluation and

comparisons for a specific concept, between individual concepts, and groups of

concepts (given some concepts can be grouped based on some relationships).

This application in FCI data analysis shows that Rasch MPT modeling has

the potential to depict the students’ ability, the concepts’ difficulty, and various
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comparisons. Hence this measure may potentially help understand both the

students and the learning tasks in a much deeper and broader way, compared to

what a general learning diagnosis does. In the final chapter, I will overall discuss

the advantages and disadvantages of Rasch MPT models, as well as some future

work.
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CHAPTER 6

DISSCUSIONS AND FUTURE WORK

6.1 Advantages and Disadvantages of Rasch MPT Models

As a combination of the cognitive modeling and the psychometric

modeling, Rasch MPT modeling possesses obvious advantages. First, it looks

deeper into hypothesized cognitive states (e.g., detection, and discrimination),

compared with classic MPT models that only depict these states. Namely, Rasch

MPT models measure not only different subjects’ performance on a cognitive

state, but the underlying reasons for these differences ( i.e., due to their abilities

and task difficulties). Second, Rasch MPT models stand on a more reliable

foundation in that neither subjects nor stimuli are assumed identical. This is more

reasonable to real situations, especially when we lack accurate information about

the subjects and the stimuli. Last, Rasch MPT models integrate two successful

models in psychology to their advantages, while offsetting their respective

drawbacks.

The integration of classic cognitive models and classic psychometric

models can be very helpful in psychometrics. For example, MPT models point out

that people may have different processing paths on latent cognitive processes,

even though they report the same answer. A subject who gives the same number

of correct answers but has a different number of related or unrelated wrong

answers actually has different performance in their cognitive processes on the

tasks. For example, suppose subject 1 gave the same correct answer of “A”s as

subject 2 did. However, subject 1 also gave 10 “B”s with 10 “N”s, while subject 2

gave 1 “B” with 19 “N”s. This may imply that subject 1 actually is more likely to

have partial knowledge about the correct answer, compared with subject 2. This

argument challenges current evaluation systems that only count the correct

answers given by the examinees, and implies that we should consider both

correct answers and wrong answers, even in multiple-choice problems. In
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addition, Rasch MPT models also help in other related fields. For example, in the

student model in intelligent tutoring systems, cognitive diagnostic tests help

understand students abilities and problem-solving strategies. For better

understanding, more detailed information is needed. Rasch MPT models provide

the possibility of microscopic diagnosis for students’ cognitive abilities (however, it

is also obvious that this kind of diagnosis relies on specific tasks, therefore

different cognitive models may be applied to corresponding tasks).

Although Rasch MPT models confer various advantages, we should take

note that as we try to improve the precision of measurement, less information is

assigned to each single data point and parameter (because we now have many

more data points than aggregated data!). Therefore, even though we have enough

degrees of freedom to estimate the parameters, less information implies less

stable estimates. This can be a reason for large differences between some of the

estimates and true values in Table 3 and 4. However, if heterogeneity of the

subjects and/or stimuli is the case, it is inappropriate to aggregate data even if

more information goes to every data point and parameter.

6.2 Future Study

This study proposes a general framework for Rasch MPT modeling,

evaluates its performance, and applies it to empirical studies. This general

framework includes a simple example of signal detection tasks, the formal

mathematical definition of Rasch MPT modeling, and the demonstration in a real

MPT model. The evaluation consists of tests of the performance of a Rasch MPT

model under different sample size conditions, different missing data conditions,

and whether its parameter independence assumption holds. At last, the empirical

application uses two real experiments (a lexical experiment and an FCI

experiment) to validate and demonstrate the use of Rasch MPT models in real

cognitive studies. The work done in this study provides a formal introduction to
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Rasch MPT modeling, how it performs under different conditions, and how it may

be applied to psychological studies. However, to understand and apply Rasch

MPT models to more practical uses, futher detailed research work needs to be

conducted. Future research may be conducted from several aspects: (1) More

parameters such as the discriminability parameter in IRT modeling may be added

to get more information about the item difficulty. Also some other interesting

parameters, such as demographic factors and motivation factors, may possibly be

used to model the ability parameter in a linear or generalized linear form. Of

course, if we put more parameters into the model, we may have less information

for each parameter, hence worse precision for the estimates. (2) Rasch MPT

modeling usually uses estimated probability, rather than observed probability, for

each cognitive state. A comparison between these two estimations is needed to

make researchers aware of the precision of Rasch MPT modeling. (3) More

sample conditions, such as a small number of items with a large number of

subjects, or vice versa, maybe tested to get more knowledge about the

performance of Rasch MPT modeling in these sample size conditions. (4) There

are several reasons I did not use random missing values in this study. First, in real

situations, most students answer all multiple-choice questions because they can

always give an answer. Second, huge computational burden occurs if missing

values are fully random, because if missing values exist for every student and

each item, a separate imputation needs to be done for each student and item.

Besides, discussion about different reasons for missing values is beyond the

scope of this study. Missing data used in this study accounts for 10% of the

responses from 10% of the subjects. In other words, it appears that about 10% of

the subjects with lower ability gave up 10% of the questions. However, another

possibility is that missing values are totally random. Some discussion and

comparison of these issues regarding Rasch models can be found in Holman and
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Glas (2005), DeMars (2002), Rose, von Davier, and Xu (2011). However, similar

studies are also needed for further Rasch MPT modeling research.

66



REFERENCE

Andrich, David. 1989. Distinctions between assumptions and requirements in
measurement in the social sciences. In J.A Keats, R. Taft, R.A Heath, and
S. Lovibond, editors, Mathematical and Theoretical Systems. Elsevier Science
Publishers.

Batchelder, W. H., and D. M. Riefer. 1999. Theoretical and empirical review of
multinomial process tree modeling. Psychonomic Bulletin and Review, 6:57–86.

Batchelder, William. 1998. Multinomial processing tree models and psychological
assessment. Psychological Assessment, 10(4):331–344.

Batchelder, William, and David Riefer. 1990. Multinomial processing models of
source monitoring. Psychological Review, 97(4):548–564.

Batchelder, William. H., and D. M. Riefer. 1986. The statistical analysis of a model
for storage and retrieval processes in human memory. British Journal of
Mathematical and Statistical Psychology, 39:129–149.

Bayen, Ute, Kevin Murnane, and Edgar Erdfelder. 1996. Source discrimination,
item detection, and multinomial models of source monitoring. Journal of
Experimental Psychology: Learning, Memory and Cognition, 22:197–215.

Carlin, Bradley P., and Thomas A. Louis. 2009. Bayesian Methods for Data
Analysis. CRC Press, Boca Raton, FL, 3rd edition.

Chipman, Susan, Paul Nichols, and Robert Brennan. 1995. Introduction. In P. D.
Nichols, S. F. Chipman, and R. L. Brennan, editors, Cognitively diagnostic
assessment. Erlbaum.

DeMars, Christine. 2002. Missing data and IRT item parameter estimation.
Presented as the Annual meeting of the American Educational Research
Association, Chicago, IL.

Embretson, Susan, and Steven. Reise. 2000. Item Response Theory for
Psychologists. Psychology Press, New York, NY.

Erdfelder, Edgar, Tina-Sarah Auer, Benjamin Hilbig, Andre Abfalg, Morten
Moshagen, and Lena Nadarevic. 2009. Multinomial processing tree models: A
review of the literature. Zeitschrift fur Psychology / Journal of Psychology,
217:108–124.

Garcia-Perez, Miguel. 1990. A comparison of two models of performance in
objective tests: Finite states versus continuous distributions. British Journal of
Mathematical and Statistical Psychology, 43:73–91.

Garcia-Perez, Miguel. 1993. In defence of “none of the above”. British Journal of
Mathematical and Statistical Psychology, 46:213–229.

Garcia-Perez, Miguel, and R. B. Frary. 1991. Finite state polynomic item
characteristic curves. British Journal of Mathematical and Statistical Psychology,
44:45–73.

67



Hambleton, Ronard., H. Swaminathan, and Jane Rogers. 1991. Fundamentals of
Item Response Theory. Sage Publications, Inc, Newbury Park, CA.

Harvey, Philip. 1985. Reality monitoring in mania and schizophrenia. The Journal
of Nervous and Mental Disease, 173:67–72.

Hestenes, David, Malcolm Wells, and Gregg Swackhamer. 1992. Force concept
inventory. The Physics Teacher, 30:141–158.

Hoff, Peter. 2009. A First Course in Bayesian Statistical Methods. Springer, New
York, NY.

Holman, Rebecca, and Cees A. W. Glas. 2005. Modeling nonignorable missing
data mechanism with item response theory models. British Journal of
Mathematical and Statistical Psychology, 58:1–17.

Hu, Xiangen. 2001. Extending general processing tree models to analyze
reaction time experiments. Journal of Mathematical Psychology, 45:603–634.

Hu, Xiangen, and William H. Batchelder. 1994. The statistical analysis of general
processing tree models with the EM algorithm. Psychometrika, 59(1):21–47.

Johnson, Marcia, Mary Ann Foley, and Kevin Leach. 1988. The consequences for
memory of imagining in another person’s voice. Memory and Cognition,
16(4):337–342.

Johnson, Marcia, Shahin Hashtroudi, and Stephen Lindsay. 1993. Source
monitoring. Psychological Bulletin, 144(1):3–28.

Johnson, Marcia, and Carol Raye. 1981. Reality monitoring. Psychological
Review, 88:67–85.

Klauer, Carl. 2006. Hierarchical multinomial processing tree models: A
latent-class approach. Psychometrika, 71(1):7–31.

Klauer, Carl. 2009. Hierarchical multinomial processing tree models: A latent-trait
approach. Psychometrika, 75(1):70–98.

Kupper-Tetzel, Carolina III, and Edgar Erdfelder. 2012. Encoding, maintenance,
and retrieval processes in the lag effect: A multinomial processing tree analysis.
Memory, 20(1):37–47.

Lin, Hua, and George Karabatsos. 2006. A bayesian approach to the multinomial
processing tree model for the analysis of a multiple-choice examination of
pharmacy knowledge. Midwest Social And Administrative Pharmacy Conference,
University of Minnesota, MN.

Linacre, John Michael. 1990. Sample size and item calibrations stability. Rasch
Measurement Transactions, 7(4):328.

Link, William. 1982. Correcting response measures for guessing and partial
information. Psychological Bulletin, 92(2):469–486.

Lord, Frederic. 1952. A Theory of Test Scores. Psychometrika, Richmond, VA.

Lord, Frederic, and Melvin Novick. 1968. Statistical theories of mental test scores.
Addison-Wesley Pub. Co., Reading, MA.

68



Masters, Geoff. 1982. A rasch model for partial credit scoring. Psychometrika,
47:149–174.

Matzke, D., C. V. Dolan, W. H. Batchelder, and E.-J. Wagenmakers. 2012.
Hierarchical multinomial processing tree models for the pair-clustering paradigm
with heterogeneity in participants and items. The 45th annual meeting of the
Society for Mathematical Psychology, Columbus, OH.

Meiser, T., and A. Broder. 2002. Memory for multidimensional source information.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
28(1):116–137.

Myung, I. J., and M. A. Pitt. 2004. Model comparison methods. Methods in
Enzymology, 383:351–366.

Orlando, M., and G. N. Marshall. 2002. Differential item functioning in a spanish
translation of the ptsd checklist: detection and evaluation of impact. Psychological
Assessment, 14(1):50–59.

Peterson, W. W., T. G. Birdsall, and W. C. Fox. 1954. The theory of signal
detectability. pages 171–212. Proceedings of the IRE Professional Group on
Information Theory.

Rasch, G. 1960. Probabilistic models for some intelligence and attainment tests.
University of Chicago Press, Chicago, IL.

Riefer, David, and William Batchelder. 1988. Multinomial modeling and the
measurement of cognitive processes. Psychological Review, 95:318–339.

Rose, Norman, Matthias von Davier, and Xueli Xu. 2011. Modeling nonignorable
missing data with item response theory (IRT). Technical report, Educational
Testing Service, Princeton, NJ.

Rose, Robert, Patricia Rose, Nelson King, and Alicia Perez. 1975. Bilingual
memory for related and unrelated sentences. Journal of Experimental
Psychology: Human learning and Memory, 1:599–606.

Saegert, oel, Else Hamayan, and Hana Ahmar. 1975. Memory for language of
input in polyglots. Journal of Experimental Psychology: Human Learning and
Memory, 5:607–613.

Samejima, Fumiko. 1969. Estimation of latent ability using a response pattern of
graded scores. In Psychometric Monograph No. 17, Richmond, VA.

Schmittmann, Verena, Conor Dolan, Maartje Raijmakers, and William Batchelder.
2010. Parameter identification in multinomial processing tree models. Behavior
Research Methods, 42(3):836–846.

Sijtsma, Klaas, and Brian Junker. 2006. Item response theory: Past performance,
present developments, and future expectations. Behaviormetrika, 33:75–102.

Stahl, Christoph, and Carl Klauer. 2007. HMMTree: A computer program for
latent-class hierarchical multinomial processing tree models. Behavior research
methods, 39(2):267–273.

69



Stahl, Christoph, and Thorsten Meiser. 2009. New directions in multinomial
modeling. Zeitschrift fur Psychology / Journal of Psychology, 217.

Thissen, David, and Lynne Steinberg. 2002. A taxonomy of item response
models. Psychometrika, 51(4):567–577.

Traub, Traub. 1997. Classical test theory in historical perspective. Educational
Measurement: Issues and Practice, 16(4):8–14.

Tsutakawa, Robert, and Jane Johnson. 1990. The effect of uncertainty of item
parameter estimation on ability estimates. Psychometrika, 55:371–390.

Wu, Hao, Jay Myung, and William Batchelder. 2010. On the minimum description
length complexity of multinomial processing tree models. Journal of Mathematical
Psychology, 54:291–303.

Yonelinas, Andrew, Ian Dobbins, Michael Szymanski, Harpreet Dhaliwal, and Ling
King. 1996. Signal-detection, threshold, and dual-process models of recognition
memory: Rocs and conscious recollection. Consciousness and Cognition,
5(4):418–441.

70



APPENDIX A
Mathematical Details

A.1 Bayesian Inference for The Coin-flipping Example

The Bayesian inference equation for the coin-flipping example is:

Pr(Θ|D) =
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ)∫

Ω
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ) dΘ

. (44)

If we plug in equations (7)–(10), we have:

p(n1+n2)(1−p)(n3+n4)qn1 (1−q)n2rn3 (1−r)n4Bp(αp,βp)Bq(αq ,βq)Br(αr,βr)∫ 1
0

∫ 1
0

∫ 1
0 p

(n1+n2)(1−p)(n3+n4)qn1 (1−q)n2rn3 (1−r)n4Bp(αp,βp)Bq(αq ,βq)Br(αr,βr)dpdqdr
. According to

the definition of the Beta distribution:

Bp(αp, βp) =
p(αp−1)(1− p)(βp−1)

B(αp, βp)
, (45)

where B(αp, βp) is the beta function and B(αp, βp) =
∫ 1

0
pα−1(1− p)β−1dp. In

addition, Bp(αp, βp), Bq(αq, βq), or Br(αr, βr) are Beta functions for p, q, or r
exclusively (e.g., Bp(αp, βp) is a function for p only, not containing p and r). So
these Beta functions may be considered as constants when integrating on other
parameters (e.g., when integrating on p, we only consider

∫ 1

0
p(n1+n2)(1− p)(n3+n4)

as a function of p to be integrated). Therefore, we can further obtain

Pr(Θ|D) =
1

B(αp, βp)

pn1+n2+αp−1(1− p)n3+n4+βp−1

Bp(n1 + n2 + αp, n3 + n4 + βp)

1

B(αq, βq)

qn1+αq−1(1− q)n2+βq−1

Bq(n1 + αq, n2 + βq)

1

B(αr, βr)

rn3+αr−1(1− r)n4+βr−1

Br(n3 + αr, n4 + βr)

=
B(α1 − 1, β1 − 1)Bp(α1 − 1, β1 − 1)

B(αp, βp)Bp(α1, β1)
(46)

B(α2 − 1, β2 − 1)Bq(α2 − 1, β2 − 1)

B(αq, βq)Bq(α2, β2)

B(α3 − 1, β3 − 1)Br(α3 − 1, β3 − 1)

B(αr, βr)Br(α3, β3)
,

where α1 = n1 + n2 + αp, β1 = n3 + n4 + βp, α2 = n1 + αq, β2 = n2 + βq,
α3 = n3 + αr, β3 = n4 + βr.
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APPENDIX B
Computational Environment and Code

B.1 Configuration of The Computer Used for The Simulation Study

Figure 10
Configuration of The Computer for Simulation and Parameter Estimation Studies
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B.2 R Code Used to Simulate Rasch MPT Model Data

install.packages("knitr")
library("MASS")
set.seed(100)

N<-50
K<-50
S<-5

theta <- array(0,dim=c(N,S))
delta <- array(0,dim=c(K,S))
psi<-array(0,dim=c(N, K, S))
#response<-array(0,dim=c(N,K, 3))

D<-d<-b<-a<-g<-array(0,dim=c(N,K))
p<-array(0,dim=c(N,K,3))

for (n in 1:N) 
  {for (s in 1: S)
    {
    theta[n, s]<- rnorm(1, mean=0.5, sd=0.5)
     }
   }  # prior distribution for student abilities

for (k in 1:K) 
  {for (s in 1: S)
    {
    delta[k, s]<- rnorm(1, mean=0, sd=0.5)
     }
   } # prior distribution for item difficulties

#for (n in 1:N) {for (s in 1: S){theta[n, s]<- 0.5}}  # prior distribution for student abilities
#for (k in 1:K) {for (s in 1: S){delta[k, s]<- 0.3}}  # prior distribution for item difficulties
for (n in 1 : N ) 
  {  # Total number of students: N
  
    for (k in 1 : K) 
      { # Total number of items: K
    
        for (s in 1 : S) 
          {
            x<-theta[n, s] - delta[k, s]
            psi[n, k, s] <- exp(x)/(1+exp(x))  # logit transform
          } 
    D[n,k]<-temp<-psi[n, k, 1]
    d[n,k]<-temp<-psi[n, k, 2]
    b[n,k]<-temp<-psi[n, k, 3]
    a[n,k]<-temp<-psi[n, k, 4]
    g[n,k]<-temp<-psi[n, k, 5]
    
    #tree structure
    p[n, k, 1] <- (D[n,k]*d[n,k]) + (D[n,k]*(1-d[n,k])*g[n,k]) + ((1-D[n,k])*b[n,k]*g[n,k])
    p[n, k, 2] <- (D[n,k]*(1-d[n,k])*(1-g[n,k])) + ((1-D[n,k])*b[n,k]*(1-g[n,k]))
    p[n, k, 3] <- (1-D[n,k])*(1-b[n,k])
    
    #Simulated Observations (Suppose 1 is correct answer, 2 is related wrong answer, 
        #3 is #unrelated wrong answer)
    
    response<-rmultinom(N*K, size=1, prob=c(p[n,k, 1],p[n,k, 2],p[n,k, 3]))
    
  }
}
adjresponse<-t(response)
write.table(adjresponse, "C:/response5050.txt", sep=",",col.names = F, row.names = F)
write.table(delta, "C:/delta5050.txt", sep=",",col.names = F, row.names = F)
write.table(theta, "C:/theta5050.txt", sep=",",col.names = F, row.names = F)
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B.3 R Code Used to Implement Bayesian Analyses for MPT Models

#Simulate data
n<-6 #number of parameters
sn<-10 #number of simulated data sets
rslt<-array(1:(sn*n),c(sn,n))
for (q in 1:sn){
  #x<-c(rbeta(n,1,1)) #generate random values for parameters x[1]~x[5] are D1,D2,d,g,b
  x<-rep(0.5,n)
  p<-array(1:9, dim=c(3,3))
  p[1,1] <- (x[1]*x[3]) + (x[1]*(1-x[3])*x[5]) + ((1-x[1])*x[6]*x[5])
  p[1,2] <- (x[1]*(1-x[3])*(1-x[5])) + ((1-x[1])*x[6]*(1-x[5]))
  p[1,3] <- (1-x[1])*(1-x[6])
  p[2,1] <- (x[2]*(1-x[4])*x[5]) + ((1-x[2])*x[6]*x[5])
  p[2,2] <- (x[2]*x[4]) + (x[2]*(1-x[4])*(1-x[5])) + ((1-x[2])*x[6]*(1-x[5]))
  p[2,3] <- (1-x[2])*(1-x[6])
  p[3,1] <-  x[6]*x[5]
  p[3,2] <-  x[6]*(1-x[5])
  p[3,3] <- (1-x[6])
  
  A<-100
  B<-100
  N<-200
  simdata<-c(A*p[1,1:3],B*p[2,1:3],N*p[3,1:3])
  mean<-sd<-rep(NA,n)
  
  ############################################################
  TEMP2 <<- array(0)
  
  initiate<-function() {
    #
    OUTPUT <<- "MPT7.out"    # Name of analysis output file
    Tdraws <<- "MPT7.sam"    # Output files of parameter draws
    #
    #N   <<-  c(23,22,35, 9, 45,26, 7, 10,63)     # Category observations (N11,N12,N13,N14,N21,N22)
    N   <<-  simdata 
    Ntot  <<-  c(80,80,80,80,80,80,80,80,80) #Total N per category system
    K.Group <<- c(  1,  1,  1,  2,  2,  2,  3,  3,  3)  # Use this to label the K groups of 
    #multinomial distributions
    #
    S   <<- 6       # Number of GPT parameters
    prior.a  <<-  c(1,1,1,1,1,1)  # Beta priors for GPT parameters, shape a 
    prior.b  <<-  c(1,1,1,1,1,1)  #     "       "            "            b        , shape b 
    #
    T.lbl  <<- c("D1","D2","d","g","b") # sub model 5c 
    C.lbl  <<- c("R=S | I=S","R=T | I=S","R=N | I=S",  "R=S | I=T","R=T | I=T","R=N | I=T",  
                 "R=S | I=N","R=T | I=N","R=N | I=N") #Input and Response pairs
    Notes1  <<- "Source monitoring analysis"        
    Notes2  <<- "Batchelder & Riefer (1990; Psych rev) p. 557 Schizo-TD 3x3 data"
    #
    itstart <<- 500    # Treat iterations 1 to 500 as burn-in
    itend  <<-20000      
    #
    ########################################
    Tstart  <<- T0 <<- rep(.5,S) # Starting parameter values
    ## Pbin  <<- rep(0,count.rows(N)) ##
    Pbin  <<- rep(0,length(N))
    iter <<- 0
    s <<- 0
    K  <<-  max(K.Group)
    return()}
  
  GPT <- function(Ts,S,P,N){        
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D1   <-  Ts[1] 
D2 <- Ts[2]
d1 <- Ts[3] 
d2    <-    Ts[4]
b.  <- Ts[5]
g. <- Ts[6]
#
p11 <- (D1*d1) + (D1*(1-d1)*g.) + ((1-D1)*b.*g.)
p12 <- (D1*(1-d1)*(1-g.)) + ((1-D1)*b.*(1-g.))
p13 <- (1-D1)*(1-b.)
p21 <- (D2*(1-d2)*g.) + ((1-D2)*b.*g.)
p22 <- (D2*d2) + (D2*(1-d2)*(1-g.)) + ((1-D2)*b.*(1-g.))
p23 <- (1-D2)*(1-b.)
p31 <-  b.*g.
p32 <-  b.*(1-g.)
p33 <- (1-b.)
P <- c(p11,p12,p13,p21,p22,p23,p31,p32,p33)   #category probabilities
return(P)}

draw.GPT <- function(T0s,N,Prior.a,Prior.b,S) { 
#
s <<- ifelse((s+1)>S,1,s+1) #from the 1st parameter to the next, if finished a round, 
#then from the 1st again
draw <- runif(1) #generates random deviates for Uniform distri~, n is number of observations
#
L0 <- GPT(T0,S,P,N)  #give the P vector/category probabilities to L0
L0 <- prod(L0^N)     #likelihood function, p11^N1*p12^N2****p33^N9
GPT0 <- log(prod(L0,T0^(prior.a-1),(1-T0)^(prior.b-1))) #log-posterior function with default base e
#
T1 <- replace(T0,s,draw) #replace value of T0 with No. s value of draw, here use 
#a random value generated by runif(1) to replace the former T0 value
L1 <- GPT(T1,S,P,N)
L1 <- prod(L1^N)
GPT1 <- log(prod(L1,T1^(prior.a-1),(1-T1)^(prior.b-1)))
#
accept <- GPT1-GPT0 
accept <- ifelse(accept>0,0,accept)  # if GPT1>GPT0, then assign 0 to "accept", else assign GPT1-GPT0
accept <- ifelse(runif(1)<exp(accept),1,0)
T0 <- if(accept==1) T1 else T0
decision <- ifelse(accept,"Accept theta","Reject theta")
#
cat(decision,s,fill=T)
#
return(T0)

}
#
iterate<-function() { 
iter <<- iter+1
cat("======== ITERATION     ", iter, " ==========",fill=T)
for (i in 1:S) {
T0 <<- draw.GPT(T0,N,Prior.a,Prior.b,S)

TEMP2<<-T0
}
P0 <- GPT(T0,S,P,N)
TEMP2<<-P0 
if(iter>=itstart) Pbin  <<- Pbin + (P0/(itend-itstart+1))
outinfo <- round(c(T0),15) 
#write(outinfo,file=Tdraws,ncol=S,append=T)
return(Pbin)
}
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clean <<- function(){
  C.lbl <<- col <<- group <<- itend <<- iter <<- itstart <<- K <<- K.group <<- N <<- Notes1 
  <<- Notes2 <<- Ntot <<- c()
  OUTPUT <<- Pbin <<- prior.a <<- prior.b <<- ptile <<- ptile1 <<- Ref.Prior <<- S <<- s 
  <<- T.lbl <<- T0 <<- Tdraws <<- c()
  ThetaDraws <<- ThetaDraws.burnin <<- Tstart <<- K.Group <<- c()
  return()}

Bayesian2go<-function() {
  Result<<-array(0)
  initiate()
  for (i in 1:itend) 
  {
    Result <<- iterate()
    
    #print("======== ITERATION   RESULT  FOR N ARRAY ========== ")
    #print(Result)
    
    print("======== ITERATION   RESULT  FOR PARAMETERS ========== ")
    
    if (i==1) TE<<-T0 else TE<<-TE+T0
    TF<<-TE/i
    print(TF)
    
  }
}

Bayesian2go()
rslt[q,]<-TF

}
mean<-apply(rslt,2,mean) #column mean
sd<-apply(rslt,2,sd) #column sd
#
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B.4 WinBUGS Code Used to Implement Bayesian Analyses for Rasch MPT
Models

     
model {  # Simple Rasch MPT in BUGS
  
  for (n in 1 : N) { # Total number of students: N
    
    for (k in 1 : K) { # Total number of items: K
      
      for (s in 1 : S) {
        logit(psi[n, k, s]) <- theta[n, s] - delta[k, s]  # logit transform
      } 
      D[n,k]<-psi[n, k, 1]
      d[n,k]<-psi[n, k, 2]
      b[n,k]<-psi[n, k, 3]
      a[n,k]<-psi[n, k, 4]
      g[n,k]<-psi[n, k, 5]
      
      #tree structure
      p[n, k, 1] <- (D[n,k]*d[n,k]) + (D[n,k]*(1-d[n,k])*g[n,k]) + ((1-D[n,k])*b[n,k]*g[n,k])
      p[n, k, 2] <- (D[n,k]*(1-d[n,k])*(1-g[n,k])) + ((1-D[n,k])*b[n,k]*(1-g[n,k]))
      p[n, k, 3] <- (1-D[n,k])*(1-b[n,k])
      
      #Simulated Observations (Suppose 1 is correct answer, 
      #2 is related wrong answer, 3 is #unrelated wrong answer)
      
      response[n,k,1:3]~dmulti(p[n,k,1:3], 1)
      
    }
  }
  # Prior distributions for unknown parameters
for (n in 1:N) { for (s in 1: S){theta[n, s] ~ dunif(0,3)}}#prior distribution for student abilities
for (k in 1:K) {for (s in 1: S){delta[k, s] ~ dnorm(0,1)}}#prior distribution for item difficulties
  
}
#################Import Simulated Data##################
list(
  N=10,
  K=10,
  S=5,
  response =structure( .Data=c(
    51,34,15,45,38,17,52,34,14,59,32,9,
    59,31,10,55,31,14,49,41,10,56,33,11,
    48,40,12,56,34,10,55,32,13,58,33,9,
    53,38,9,52,32,16,54,33,13,56,32,12,
    54,31,15,45,37,18,56,32,12,47,38,15,
    41,41,18,57,29,14,55,33,12,46,39,15,
    50,37,13,59,29,12,50,26,24,54,37,9,
    50,42,8,50,37,13,44,41,15,51,33,16,
    47,45,8,61,26,13,58,31,11,52,34,14,
    60,29,11,59,29,12,56,30,14,48,38,14,
    58,34,8,62,26,12,47,36,17,51,40,9,
    55,32,13,65,29,6,55,33,12,54,36,10,
    57,33,10,63,30,7,45,37,18,47,41,12,
    57,30,13,48,35,17,48,35,17,53,35,12,
    55,35,10,56,30,14,58,29,13,53,35,12,
    56,31,13,61,31,8,53,35,12,47,34,19,
    63,29,8,53,38,9,49,40,11,60,25,15,
    59,30,11,51,34,15,58,35,7,55,32,13,
    62,24,14,52,34,14,44,40,16,52,32,16,
    55,32,13,57,31,12,56,30,14,53,35,12,
    58,29,13,54,34,12,49,39,12,63,27,10,
    53,35,12,44,45,11,50,37,13,61,33,6,
    48,44,8,48,39,13   
  ), .Dim=c(10,10,3),)
)
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APPENDIX C
Empirical Studies

C.1 Responses Data from The Lexical Experiment

Table 20: Responses Data from The Lexical Experiment for A Sample Subject

WORDS Worker Answer Correct/Incorrect
borato A2QLSHXNCHBRN4 Non-word In
celants A2QLSHXNCHBRN4 Non-word
anoes A2QLSHXNCHBRN4 Non-word
gement A2QLSHXNCHBRN4 Non-word In
enship A2QLSHXNCHBRN4 Non-word
pennag A2QLSHXNCHBRN4 Non-word
estival A2QLSHXNCHBRN4 Non-word
fane A2QLSHXNCHBRN4 Non-word In
unshott A2QLSHXNCHBRN4 Non-word
zigant A2QLSHXNCHBRN4 Non-word
wittes A2QLSHXNCHBRN4 Non-word
unded A2QLSHXNCHBRN4 Non-word
inworm A2QLSHXNCHBRN4 Non-word
heters A2QLSHXNCHBRN4 Non-word
thwards A2QLSHXNCHBRN4 Non-word
simos A2QLSHXNCHBRN4 Non-word
abasement A2QLSHXNCHBRN4 Non-word In
chine A2QLSHXNCHBRN4 Non-word In
hambo A2QLSHXNCHBRN4 Non-word In
thriste A2QLSHXNCHBRN4 Non-word
nauses A2QLSHXNCHBRN4 Non-word
multive A2QLSHXNCHBRN4 Non-word
helm A2QLSHXNCHBRN4 Word
indigo A2QLSHXNCHBRN4 Word
obvious A2QLSHXNCHBRN4 Word
refute A2QLSHXNCHBRN4 Word
sanny A2QLSHXNCHBRN4 Word
alies A2QLSHXNCHBRN4 Word
priole A2QLSHXNCHBRN4 Word
ambiguous A2QLSHXNCHBRN4 Word
abandon A2QLSHXNCHBRN4 Word
paradox A2QLSHXNCHBRN4 Word
wave A2QLSHXNCHBRN4 Word
implicit A2QLSHXNCHBRN4 Word
lavish A2QLSHXNCHBRN4 Word
binated A2QLSHXNCHBRN4 Word
selfies A2QLSHXNCHBRN4 Word
latent A2QLSHXNCHBRN4 Word
melopepon A2QLSHXNCHBRN4 Word
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C.2 Empirical Data from the FCI Experiment

Table 21
Sample Data of the FCI Experiment

Teacher School StudentID Classroom Course Q1 pre Q2 pre
1 1 3 11 3 0 0
1 1 5 11 3 0 0
1 1 6 11 3 0 0
1 1 7 11 3 1 0
1 1 8 11 3 0 0
1 1 9 11 3 0 0
1 1 10 11 3 1 0
1 1 11 11 3 0 1
1 1 14 11 3 0 0
1 1 17 11 3 0 1
1 1 18 11 3 0 0
1 1 19 11 3 0 0
1 1 20 11 3 0 0
1 1 22 11 3 1 0
1 1 23 11 3 0 0
1 1 24 11 3 1 1
1 1 26 11 3 1 1
1 1 3 12 2 1 1
1 1 5 12 2 0 0
1 1 6 12 2 1 1
1 1 7 12 2 0 0
1 1 9 12 2 1 1
1 1 10 12 2 1 1
1 1 12 12 2 0 0
1 1 13 12 2 0 0
1 1 19 12 2 0 1
1 1 20 12 2 0 0
1 1 21 12 2 0 0
1 1 22 12 2 1 0
1 1 23 12 2 0 0
1 1 25 12 2 1 1
1 1 27 12 2 0 0
1 1 28 12 2 1 1
1 1 29 12 2 1 1
1 1 31 12 2 0 1
1 1 32 12 2 0 0
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