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and Paul Werbos for their comments and suggestions. I am especially thankful to

Professor Paul Werbos for his support, guidance, and introducing me to ADP.

I am extremely grateful to Professors Mikhail Rabinovich and Miklós Ruszinkó
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ABSTRACT

Sokolov, Yury. Ph.D. The University of Memphis. May 2016. Dynamics of
discrete and continuous spatially distributed systems. Major Professor: Robert
Kozma, Ph.D.

In this dissertation we consider some dynamical systems and their properties.

We study the stability of a discrete system, which corresponds to an approximate

dynamic programming problem. We investigate phase transitions of a process on

random graphs and find critical parameters. We analyze the bifurcation and

attractor of a system given by generalized Lotka-Volterra equations. In particular:

• we study the stability of a discrete dynamical system of estimation error,

which corresponds to an approximate dynamic programming (ADP) problem

via Lyapunov’s second method. We prove that the system is uniformly

ultimately bounded;

• we show the necessary conditions for a phase transition in two randomly

coupled probabilistic cellular automata in mean-field approximation and prove

the existence of limit cycle behavior;

• we introduce a new random graph model GZ2
N ,pd

, a discrete torus with random

edges defined with respect to graph distances between vertices on the torus.

We prove that the degree probability distribution is approximately Poisson

and the diameter of the graph is D(GZ2
N ,pd

) = Θ(logN), whp;

• we study bootstrap percolation on GZ2
N ,pd

. Sharp conditions are derived for

phase transition at different values of k with a k-threshold rule in mean-field

approximation. We generalize the bootstrap percolation on GZ2
N ,pd

to the case

of two types of vertices with a modified k-threshold rule. We derive some

bounds for critical probabilities in the generalized model in mean-field

approximation;

• we study the bifurcation of two coupled systems each described by generalized

Lotka-Volterra equations with respect to coupling. Also, we study

v



a dissipative system with an inhomogeneous heteroclinic cycle, that is, each

equilibrium in the cycle is either with one or two unstable directions. We

prove that there exists an asymptotically stable set consisting of unstable

manifolds of the saddles.

Most of the results in the dissertation has been published, which represent joint

work with Svante Janson, Robert Kozma, Mikhail I. Rabinovich, Miklós Ruszinkó,

Ludmilla D. Werbos, and Paul J. Werbos.
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INTRODUCTION

We begin this dissertation with a discussion of the stability result of a control

approach which is based on approximate dynamic programming. Dynamic

programming was introduced by Bellman [16] as a method for solving optimization

problems by dividing them into subproblems that are easier to solve. One may be

concerned that if we optimize each subproblem separately, then that would not

necessarily be the optimal solution to the original problem according to some

criterion. Therefore, we need to be careful at this stage. However, if one performs

the division ”accurately”, then according to Bellman’s optimality principle, [16], we

will reach an optimal solution to the original problem by combining the solutions

obtained for each subproblem. More precisely, a problem is reformulated as a

sequence of interrelated problems, i.e., the final state of a problem is the initial state

for the next one. This approach has been widely used in optimization, control

theory and game theory among others.

In general, dynamic programming allows an optimal solution of an optimization

problem and, moreover, it is constructive. However, in the case of a discrete

optimization problem, for example, as the number of subproblems grows with a

relatively small set of actions at each step, the method becomes useless due to

exponential growth of the set of feasible solutions. Bellman coined this phenomenon

the curse of dimensionality.

Bellman’s optimality principle is associated with the Bellman (Hamilton -

Jacobi - Bellman) equation with respect to value function, as defined by von

Neumann’s utility function [74]. The optimal policy (a collection of optimal actions

from all steps) which we are looking for has to satisfy the solution of this equation.

According to the method, we need to divide the problem into a sequence of

subproblems and solve them iteratively. However, the solution of the original

problem itself is a function. Instead of solving the problem iteratively, Werbos
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considered an approximation of the solution [82], an idea which gave birth to

approximate dynamic programming.

Compared with other approximation methods, for approximate dynamic

programming (ADP), approximators in the form of superpositions of sigmoidal

functions are of high importance. Let us call them universal function

approximators, which are also known as artificial neural networks. The construction

of this type of approximators relies on the ideas of Arnold and Kolmogorov.

Kolmogorov first showed that a multi-variable function can be expressed as a

superposition of functions of three variables. Later Arnold showed that this can be

done by superposition of functions of two variables answering the 13th Hilbert

problem. Finally, Kolmogorov managed to prove that a multi-variable function can

be expressed as a superposition of functions of just one variable.

Mathematical justification for universal approximators was given in 1974 by

Werbos who introduced the method for adjusting the parameters of the

approximator [79]. Later in 1993, Barron proved fairly sharp threshold on the

integrated squared error of approximation [12]. He obtained this result under the

assumption for approximated functions on boundness on the first moment of the

magnitude distribution of the Fourier transform.

Approximate dynamic programming has received high recognition as a very

powerful method for different applications, however, without rigorous mathematical

results. During the last decade some important cases were considered and the

existence of a stable solution for ADP control has been shown [2, 49, 72]. Liu et al.

proved the stability result for the case of the restricted function approximator [51].

This dissertation provides a proof that stability is achieved for a universal function

approximator. We show that the estimation error of an ADP design is uniformly

ultimately bounded under some conditions on the approximator parameters.

Next, in this dissertation we study the dynamics of discrete systems with many
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interacting agents. We use probabilistic cellular automata, and bootstrap

percolation with a k-threshold rule on a random graph coupled with a lattice. Let

us first introduce the random graph model.

One of the most important random graph models Gn,m was introduced by Erdős

and Rényi in 1959 [32, 31]. They considered a random graph which consists of n

vertices and precisely m randomly and independently chosen edges. It was shown

that this model is equivalent to the random graph model introduced by Gilbert

[36, 35], where each edge is presented with probability p independently of others.

Later, a different kind of random graph was considered where the distance

between vertices is taken into account. In particular, in [63] a long-range percolation

graph (LRPG) was introduced where an edge between a pair of points from a finite

or countable metric space exists with probability inversely proportional to the

distance between the points. This model is an extension of the usual percolation

model where connections other than only local are also possible.

Aizenman, Kesten, and Newman [7] considered LRPG on a d-dimensional

lattice. In their model a pair of sites of d-dimensional lattice Zd is connected (or a

bond is occupied) with a probability that depends on the graph distance. It was

shown that this type of graph has small diameter in the graph size [17, 29].

Let us mention a few models of random graphs, which also have small diameter.

Watts and Strogatz [75] introduced the “small world” model on the vertex set of the

n-cycle, where the edges are rewired at random with probability p, starting from a

circle lattice with n vertices and k edges per vertex. A different version of the

“small world” model has been described by Newman and Watts [54]. Again, an

n-cycle was considered and the edges of the cycle were fixed. In contrast to [75],

random edges were added with some probability instead of rewiring the edges of the

cycle as in [54].

We introduce a random graph model GZ2
N ,pd

which is a combination of a lattice
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and a random graph where the probability of an edge between a pair of vertices

depends on graph distance between the pair. First, we consider properties of the

graph. We proved that the graph diameter is of logarithmic order on the graph size

and the Poisson approximation of degree distribution is shown.

Cellular automata (CA) were introduced by von Neuman [73]. A cellular

automaton is a dynamical system defined on a graph with a local deterministic

update rule. Every vertex is in one of two possible states described by a binary

potential function. At each time step the system is updated with respect to the

rule, which depends only on the states of vertices in the neighborhood of every

vertex in the system.

Probabilistic cellular automata (PCA) is the generalization of CA for the case of

the probabilistic update rule. For example, let us consider a usual CA with an

arbitrary update rule, then we can define PCA assuming that every vertex will not

follow the rule with probability p and will be updated according to the rule with

probability 1− p. Due to the complexity of the process a few results are known. In

particular, a mean-field approximation of PCA on a torus was considered in [10].

The estimate for the critical probability was derived and later the model was

studied on a torus [9]. It was shown that for small p the system stays mostly in one

of two configurations, moreover, the transition time from one configuration to the

other is Θ(1/pn+1).

We consider two randomly coupled probabilistic cellular automata. The

dynamics of the coupled system is analyzed in mean-field approximation. In

particular, the existence of limit cycle dynamics is proven. This result provides

conditions for phase transitions in the coupled system of two PCA which generalizes

the study of [10].

Bootstrap percolation is a cellular automaton which describes the spread of

activity (infection). Every vertex is active (infected) initially with some probability
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independent on other vertices. The state of a vertex (active/inactive) is defined at

each step based on the states of her neighbors. The original model was defined on a

Bethe lattice by Chalupa, Leath, and Reich [27]. Since then bootstrap percolation

has been extensively studied on different graphs. In 2-neighbor bootstrap

percolation on a 2-dimensional lattice the first result is due to van Enter who proved

pc(Z2) = 0, [70]. Later, this result was generalized to all dimensions by Schonmann

[62]. It was shown that for the r-neighbor rule in d dimensions the critical

probability is 0 if r ≤ d and 1 otherwise.

Different behaviors were observed for grids [6]. In 1988, Aizenman and Lebowitz

showed the existence of metastability phenomenon for a d-dimensional cube [n]d.

They found the order of critical probability in all dimensions. Beautiful and exciting

results came later in 2003 for a 2-dimensional grid [40]. Holroyd managed to prove a

sharp threshold defining precisely the constant term in asymptotic value of critical

probability. Interestingly, this result contradicted numerical predictions and the

reason was due to slow convergence, i.e., o(1/ log n). It took another ten years to

generalize this result. Balogh, Bollobás, Duminil-Copin, and Morris derived sharp

thresholds for critical probabilities in bootstrap percolation on a d-dimensional cube

in all dimension [11].

Recently, Janson,  Luczak, Turova, and Vallier considered bootstrap percolation

model on the Erdős-Rényi random graph Gn,p [42]. In particular, these authors

obtained sharp thresholds for (almost) percolation with respect to size a of the set

of initially active sites and graph parameter p. Also, time t required the termination

of the bootstrap percolation process was derived.

In Lengler et al. [30] bootstrap percolation theory was generalized to the case of

two types of vertices on Gn,p. However, percolation was defined according to one

type. Threshold for percolation was derived with respect to size a of the set of

initially active sites and graph parameter p as well as time until termination. This
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model resembles bootstrap percolation on a square grid with 3-threshold rule. In

the later case, the whole grid cannot be infected since there exists positive fractions

of sites, which stay healthy forever, with high probability.

We consider a bootstrap percolation process with a k-threshold rule on the

random graph GZ2
N ,pd

. Since there are vertices with degree four with positive

probability, it is assumed that k is small. For cases where 0 ≤ k ≤ 3, sharp

thresholds for phase transitions are derived through a mean-field approximation of

the process.

We conclude this dissertation by studying questions related to homoclinic loops

and heteroclinic cycles in a dissipative system without symmetry, for the class of

generalized Lotka-Volterra differential equations. A heteroclinic sequence is a

collection of hyperbolic equilibria and separatrices which join them. A sequence can

be either open or closed, and in the last case it is called a cycle. If the sequence

consists of only one equilibrium then it is called a homoclinic loop.

For a long time it was assumed that all orbits of dissipative systems eventually

go to fixed points or to periodic orbits. The first change to this idea happened when

Cartwright and Littlewood proved the existence of periodic orbits with different

periods for the van der Pol oscillator. Later, it was shown that dissipative systems

exhibit even a more complicated type of dynamics, including chaotic dynamics.

Afraimovich et al. proved the existence of heteroclinic cycles/homoclinic loops

[4], and they considered a system defined by generalized Lotka-Volterra equations.

The conditions for this type of behavior were derived for the case of equilibria with

a one-dimensional unstable manifold.

Mohapatra and Ott showed that nonuniformly hyperbolic dynamics emerge

when flows in Rn with homoclinic loops or heteroclinic cycles are subjected to

certain time-periodic forces [53]. In particular, the emergence of strange attractors

and SRB measures with strong statistical properties were derived.
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Afraimovich et al. considered a homogeneous case of mixed types of hyperbolic

equilibria [3]. It was assumed that there is a subset among equilibria (that consists

of 1 ≤ p ≤ n equilibria) which are on the axes of Rn, such that each equilibrium

(saddle) has two unstable directions. For this case, the topological type of the

attractor depends on the size of the sequence of saddles. In particular, when p is

even, it was shown that the attractor is homeomorphic to a cylinder.

We consider bifurcation of two coupled systems each described by a set of

generalized Lotka-Volterra equations with respect to coupling. The systems are

cyclically coupled with a fixed direction and we assume that every uncoupled

system exhibits heteroclinic cycle dynamics. As coupling parameter grows complex

dynamics appear. However, for a large coupling parameter we have that one system

starts to dominate the other, which forces the second system eventually to die out.

Additionally, we study the case of inhomogeneous connections for the phase

space in the class of generalized Lotka-Volterra equations with different dimensions

of unstable manifolds of hyperbolic equilibria. That is, the sequence contains

equilibria with one and two dimensional manifolds. We consider two cases, the

“attractor” in each case is homeomorphic to a cylinder, however, they are of

different dimensions.

The results in this dissertation may have interest by their own but also they can

particularly be applied to the field of neurobiology, for example. In particular,

randomly coupled probabilistic cellular automata and bootstrap percolation on the

random graph GZ2
N ,pd

are suitable for the description of dynamics on the lower

hierarchical level of the brain, i.e., activity propagation among neurons and neural

populations.

Rabinovich et al. introduced representation of cognition as transient dynamics

with dynamical image - a heteroclinic sequence [59]. Our results for two coupled

systems defined by generalized Lotka-Volterra equations may partially describe the
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case of pathological dynamics in higher-level cognitive activity. The possible

interpretation of different dimensions of attractors can justify dynamical origin in

decision making.
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CHAPTER 1

STABILITY OF APPROXIMATE DYNAMIC PROGRAMMING

CONTROL DESIGN

Approximate Dynamic Programming (ADP) addresses the general challenge of

optimal decision and control for sequential decision making problems with complex

and often uncertain, stochastic conditions without the presumption of linearity.

ADP is a relatively young branch of mathematics; in his pioneering work Werbos

[79] provided powerful motivation for extensive investigations of ADP in recent

decades [15, 18, 64, 82].

ADP has not only shown solid theoretical results to optimal control but also

successful applications [71]. Various ADP designs demonstrated powerful results in

solving complicated real-life problems, involving multi-agent systems and games

[8, 83].

The stability of ADP in the general case is an open and yet unsolved problem.

Significant efforts are required to develop conditions for stability in various ADP

designs. We solved the stability problem for the specific ADP control case using

Lyapunov’s second method. Here we are addressing a discrete time dynamical

system, where the dynamics is described by a second-order difference equation. We

introduce a discrete time Lyapunov function and prove the uniformly ultimately

bounded (UUB) property under certain conditions. We generalize the results

obtained by Liu et al. [51] in deriving stability conditions for ADP with traditional

three layer Multi-Layer Perceptron (MLP). A stability condition for the system with

weights adapted between the hidden and output layers only is derived in [51], under

the assumption that networks have a large enough number of nodes in the hidden

layers.

The approach presented in [51], in effect, is equivalent to a linear basis function

approach: it is easy but it leads to scalability problems. The complexity of the
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system is growing exponentially for the required degree of approximation of a

function of given smoothness [13]. Additional problems arise regarding the accuracy

of parameter estimation, which tends to grow with the number of parameters while

all other factors remain constant. If we have too many parameters for a limited set

of data then it may lead to overtraining, i.e., the approximation of the data is high

while there will be a large error of approximation of a different data set. We need

more parsimonious models, capable of generalization, hence our intention is to use

fewer parameters in truly nonlinear networks, which is made possible by

implementing a more advanced learning algorithm. In this chapter we focus on

studying the stability properties of the ADP system with MLP-based critic, when

the weights are adapted between all layers. By using the Lyapunov approach, we

study the uniformly ultimately bounded property of the ADP design.

This chapter is a joint work with Robert Kozma, Ludmila Werbos, and Paul

Werbos, and results from this chapter appear in previously published papers [46, 66].

1.1 Formalization of Approximate Dynamic Programming

First, we describe the general idea of ADP in order for the reader to get an initial

flavor for the subject before moving to ADP control. For this purpose let us define

the discrete dynamic programming operator L

(LJ)(x) = min
u∈U(x)

∑
y∈S

(r(x, u) + αJ(y)). (1.1)

According to the standard approach, we can find an optimal policy by backward

induction starting at terminal period, T. However, we need to have additional

conditions on the utility function and discount factor to guarantee a solution for the

infinite horizon case. For this reason, it is enough to assume that utility function r

is uniformly bounded and the discount factor α ∈ [0, 1).
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Using this operator we can write the Bellman equation in the form

J = L(J).

Consider value function J from a Banach space of measurable (continuous)

functions under supremum norm. One can notice that L is a contraction mapping

on the Banach space. According to the Banach fixed point theorem, there exists a

unique fixed point J of the operator L.

1.2 Foundations of ADP control

Let us consider a dynamical system with discrete dynamics, which is described

by the following nonlinear difference equation:

x(t+ 1) = f (x(t), u(t)) , (1.2)

where x is the m-dimensional plant state vector and u is the n-dimensional control

(or action) vector.

We focus on the deterministic case, as described in equation (1.2) and introduce

approximate dynamic programming (ADP) to control this system. ADP is a

learning algorithm for adapting a system made up of two components, the critic and

the action, as shown in Figure 1. These two major components can be implemented

using any kind of differentiable function approximator. Probably the most widely

used value function approximators in practical applications are neural networks,

linear basis function approximators, and piecewise linear value functions such as

those used by [49, 56]. In this dissertation we use MLP as the universal function

approximator.

The optimal value function, J∗ is the solution of the Bellman equation [82],

which is a function of the state variables but not of the action variables. Here we

use function J , which is closely related to J∗, where J is a function of both the state

and the action variables. Function J is often denoted by J ′ in the literature,

11
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Figure 1: Representation of the ADP control design, including system, action and
critic networks.

following the definition in [82]. The critic provides the estimate of function J , which

is denoted as Ĵ . Function Q, used in traditional Q-learning [64] is the

discrete-variable equivalent of J .

The action network represents a control policy. Each combination of weights

defines a different controller, hence by exploring the space of possible weights we

approximate the dynamic programming solution for the optimal controller.

In ADP, the cost function is expressed as follows; see, for example, [49]:

J(x(t), u(t)) =
∞∑
i=t

αi−tr(x(i+ 1), u(i+ 1)), (1.3)

where 0 < α ≤ 1 is a discount factor for the infinite horizon problem, and

r(x(t), u(t)) is the reward, reinforcement or utility function. We require

r(t) = r(x(t), u(t)) to be a bounded semidefinite function of the state x(t) and

control u(t), so the cost function is well-defined. Using standard algebra one can

derive from (1.3) that 0 = αJ(t) + r(t)− J(t− 1), where J(t) = J(x(t), u(t)).

1.2.1 Action network

Next we introduce each component, starting with the action component. The

action component is represented by a neural network (NN), and its main goal is to

generate control policy. For our purpose, MLP with one hidden layer is used. At
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Figure 2: Illustration of the action network as a MLP with one hidden layer.

each time step this component needs to provide an action based on the state vector

x(t) = (x1(t), . . . , xm(t))T , so x(t) is used as an input for the action network. If the

hidden layer of the action MLP consists of Nha nodes; the weight between the input

node j and the hidden node i is denoted by ŵ
(1)
aij (t), for i = 1, . . . , Nha and

j = 1, . . . ,m. ŵ
(2)
aij (t), where i = 1, . . . , n, j = 1, . . . , Nha is the weight from j′s

hidden node to i′s output. The weighted sum of all inputs, i.e., the input to a

hidden node k is given as σak(t) =
∑m

j=1 ŵ
(1)
akj(t)xj(t). The output of hidden node k

of the action network is denoted by φak(t).

A variety of transfer functions are in use, see, for example, [85]. Hyperbolic

tangent is one of the most studied transfer function, which is used here:

φak(t) = 1−e−σak (t)

1+e−σak (t) . A major advantage of the standard MLP neural network

described here is the ability to approximate smooth nonlinear functions more

accurately than linear basis function approximators, as the number of inputs grows

[12, 13]. Finally, the output of the action MLP is a n-dimensional vector of control

variables ui(t) = ŵ
(2)
ai (t)φa(t) =

∑Nha
j=1 ŵ

(2)
aij (t)φaj(t). The diagram of the action

network is shown in Figure 2.

1.2.2 Critic network

The critic neural network, with output Ĵ , learns to approximate J function and

it uses the output of the action network as one of its inputs. This is shown in

Figure 3. The input to the critic network is
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Figure 3: Illustration of the critic network as a MLP with one hidden layer.

y(t) = (x1(t), . . . , xm(t), u1(t), . . . , un(t))T , where u(t) = (u1(t), . . . , un(t))T is output

of the action network. Just as for the action NN, here we use an MLP with one

hidden layer, which contains Nhc nodes. ŵ
(1)
cij (t), for i = 1, . . . , Nhc and

j = 1, . . . ,m+ n is the weight from j′s input to i′s hidden node of the critic

network. Here hyperbolic tangent transfer function is used. For convenience, the

input to a hidden node k is split in two parts with respect to inputs

σck(t) =
∑m

j=1 ŵ
(1)
ckj(t)xj(t) +

∑n
j=1 ŵ

(1)
ci(m+j)(t)uj(t). The output of hidden node k of

the critic network is given as φck(t) = 1−e−σck (t)

1+e−σck (t) . Since the critic network has only

one output, we have Nhc weights between hidden and output layers of the form

ŵ
(2)
ci (t). Finally, the output of the critic neural network can be described in the form

Ĵ(t) = ŵ
(2)
c (t) ∗ φc(t) =

∑Nhc
i=1 ŵ

(2)
ci (t)φci(t), where ∗ denotes the inner product.

1.3 Gradient-descent Learning Algorithm

1.3.1 Adaptation of the critic network

Let ec(t) = αĴ(t) + r(t)− Ĵ(t− 1) be the prediction error of the critic network

and Ec(t) = 1
2
e2
c(t) be the objective function, which must be minimized. Let us

consider the gradient descent algorithm as the weight update rule, that is,

ŵc(t+ 1) = ŵc(t) + ∆ŵc(t). Here the last term is ∆ŵc(t) = lc

[
−∂Ec(t)
∂ŵc(t)

]
and lc > 0 is

the learning rate.

The adaptation of the critic network’s weights between input layer and hidden

14



layer is given as follows: ∆ŵ
(1)
cij (t) = lc

[
− ∂Ec(t)

∂ŵ
(1)
cij

(t)

]
, which yields

∂Ec(t)

∂ŵ
(1)
cij (t)

=
∂Ec(t)

∂Ĵ(t)

∂Ĵ(t)

∂φci(t)

∂φci(t)

∂σci(t)

∂σci(t)

∂ŵ
(1)
cij (t)

=

αec(t)ŵ
(2)
ci

(t)

[
1

2
(1− φ2

ci
(t))

]
yj(t). (1.4)

Note that the last calculation is obtained considering Ĵ(·) at different time steps as

different functions; see, for example, [49]. The adaptation of the critic network’s

weights between hidden layer and output layer is given by ∆ŵ
(2)
ci (t) = lc

[
− ∂Ec(t)

∂ŵ
(2)
ci

(t)

]
,

which leads to

∂Ec(t)

∂ŵ
(2)
ci (t)

=
∂Ec(t)

∂Ĵ(t)

∂Ĵ(t)

∂ŵ
(2)
ci (t)

= αec(t)φci(t). (1.5)

1.3.2 Adaptation of the action network

The training of the action network can be done by using the backpropagation

adaptive critic method [82], which entails adapting the weights so as to minimize

Ĵ(t). Here we used an importance-weighted training approach. We denote by Uc the

desired ultimate objective function. Then the minimized error measure is given in

the form Ea(t) = 1
2
e2
a(t), where ea(t) = Ĵ(t)− Uc is the prediction error of the action

NN.

In the framework of the reinforcement learning paradigm, the success

corresponds to an objective function, which is zero at each time step [15]. Based on

this consideration and for the sake of simplicity of the further derivations, we

assume Uc = 0, that is, the objective function is zero at each time step, which means

there is success.

Let us consider the gradient descent algorithm as the weight update rule

similarly as we did for the critic network above. That is, ŵa(t+ 1) = ŵa(t) + ∆ŵa(t),

where ∆ŵa(t) = la

[
−∂Ea(t)
∂ŵa(t)

]
and la > 0 is the learning rate.
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The adaptation of the action network’s weights between input layer and hidden

layer is given as ∆ŵ
(1)
aij (t) = la

[
− ∂Ea(t)

∂ŵ
(1)
aij

(t)

]
,

∂Ea(t)

∂ŵ
(1)
aij (t)

=
∂Ea(t)

Ĵ(t)

[
∂Ĵ(t)

∂u(t)

]T
∂u(t)

∂φai(t)

∂φai(t)

∂σai(t)

∂σai(t)

∂ŵ
(1)
aij (t)

=
∂Ea(t)

Ĵ(t)

n∑
k=1

∂Ĵ(t)

∂uk(t)

∂uk(t)

∂φai(t)

∂φai(t)

∂σai(t)

∂σai(t)

∂ŵ
(1)
aij (t)

=

Ĵ(t)
n∑
k=1

Nhc∑
r=1

[
ŵ(2)
cr (t)

1

2
(1− φ2

cr(t))ŵ
(1)
cr,m+k

(t)

]
×

ŵ(2)
aki

(t)
1

2
(1− φ2

ai
(t))xj(t), (1.6)

where

∂Ĵ(t)

∂uk(t)
=

Nhc∑
i=1

∂Ĵ(t)

∂φci(t)

∂φci(t)

∂σci(t)

∂σci(t)

∂uk(t)
. (1.7)

Using a similar approach for the action network’s weights between hidden layer and

output layer, finally we get the following ∆ŵ
(2)
aij (t) = la

[
− ∂Ea(t)

∂ŵ
(2)
aij

(t)

]
,

∂Ea(t)

∂ŵ
(2)
akj(t)

=
∂Ea(t)

Ĵ(t)

∂Ĵ(t)

∂uk(t)

∂uk(t)

∂ŵ
(2)
akj(t)

=

ea(t)

Nhc∑
r=1

[
ŵ(2)
cr (t)

1

2
(1− φ2

cr(t))ŵ
(1)
cr,m+k

(t)

]
φaj(t). (1.8)

1.4 Lyapunov stability analysis of ADP

In this section we employ the Lyapunov function approach to evaluate the

stability of dynamical systems. The applied Lyapunov analysis allows us to establish

the UUB property without deriving the explicit solution of the state equations.

1.4.1 Basics of the Lyapunov approach

Let w∗c , w
∗
a denote the optimal weights, that is, the following holds:

w∗c = arg minŵc

∥∥∥αĴ(t) + r(t)− Ĵ(t− 1)
∥∥∥; we assume that the desired ultimate

objective Uc = 0 corresponds to success then w∗a = arg minŵa

∥∥∥Ĵ(t)
∥∥∥.
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Consider the weight estimation error over the full ADP control, that is, over

both the critic and action networks of the following form: w̃(t) := ŵ(t)− w∗. Then

equations (1.4), (1.5), (1.6) and (1.8) define a dynamical system of estimation errors

for some nonlinear function F in the following form

w̃(t+ 1) = w̃(t)− F (ŵ(t− 1), ŵ(t), φ(t− 1), φ(t)) . (1.9)

Definition 1. A dynamical system is said to be uniformly ultimately bounded with

ultimate bound b > 0, if for any a > 0 and t0 > 0, there exists a positive number

N = N(a, b) independent of t0, such that ‖w̃(t)‖ ≤ b for all t ≥ N + t0 whenever

‖w̃(t0)‖ ≤ a.

In the present study, we make use of a theorem concerning the UUB property of

a discrete dynamical system [61]. Detailed proof of this theorem appears in [52]. We

adapt the notation for our situation and address the special case of discrete

dynamical systems as given in (1.9).

Theorem 2. If, for system (1.9), there exists a function L(w̃(t), t) such that for all

w̃(t0) in a compact set K, L(w̃(t), t) is positive definite and the first difference,

∆L(w̃(t), t) < 0 for ‖w̃(t0)‖ > b, for some b > 0, such that b-neighborhood of w̃(t) is

contained in K, then the system is UUB and the norm of the state is bounded to

within a neighborhood of b.

Based on this theorem, which gives a sufficient condition, we can determine the

UUB property of the dynamical system selecting an appropriate function L. For

this reason, we first consider all components of our function candidate separately

and investigate their properties, and thereafter we study the behavior of L function

to match the condition from Theorem 2.

1.4.2 Preliminaries

In this subsection we introduce four lemmas which will be used in the proof of

the main theorem.
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Assumption 3. Let w∗a and w∗c be the optimal weights for action and critic

networks. Assume they are bounded, i.e., ‖w∗a‖ ≤ wmaxa and ‖w∗c‖ ≤ wmaxc .

Lemma 4. Under Assumption 3, the first difference of

L1(t) = 1
lc

tr

[(
w̃

(2)
c (t)

)T
w̃

(2)
c (t)

]
is expressed by

∆L1(t) = −α2 ‖ζc(t)‖2 −
(
1− α2lc ‖φc(t)‖2)×∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
+∥∥αw∗(2)

c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
, (1.10)

where ζc(t) = w̃
(2)
c (t)φc(t) is the approximation error of the output of the critic

network.

Proof. Using (1.5) and taking into account that w
∗(2)
c does not depend on t, and, for

example, when it is optimal for each time moment t, we get the following

w̃(2)
c (t+ 1) = ŵ(2)

c (t+ 1)− w(2)
c

∗
=

w̃(2)
c (t)− αlcφc

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]T
. (1.11)

Based on the last expression, we can find the trace of multiplication of w̃
(2)
c (t+ 1) by

itself in the following way:

tr
[(
w̃(2)
c (t+ 1)

)T
w̃(2)
c (t+ 1)

]
=
(
w̃(2)
c (t)

)T
w̃(2)
c (t)−

2αlcw̃
(2)
c (t)φc(t)

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]T
+

α2l2c ‖φc(t)‖
2
∥∥αŵ(2)

c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
. (1.12)

Since w̃
(2)
c (t)φc(t) is a scalar, we can rewrite the middle term in the above formula
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as follows:

−2αlcw̃
(2)
c (t)φc(t)

[
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

]
=

lc

(∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)− αw̃(2)
c (t)φc(t)

∥∥2−∥∥αw̃(2)
c (t)φc(t)

∥∥2 −
∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
)

=

lc

(∥∥αw∗(2)
c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥2 − α2 ‖ζc(t)‖2−∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
)
. (1.13)

Here the definition of w̃
(2)
c (t) = ŵ

(2)
c (t)− w∗(2)

c is applied to obtain the above

expression.

Now let us consider the first difference of L1(t) in the form

∆L1(t) =
1

lc

[(
w̃(2)
c (t+ 1)

)T
w̃(2)
c (t+ 1)−

(
w̃(2)
c (t)

)T
w̃(2)
c (t)

]
. (1.14)

Substituting the results for
(
w̃

(2)
c (t+ 1)

)T
w̃

(2)
c (t+ 1), finally we get the statement

of the lemma, as required.

Lemma 5. Under Assumption 3, the first difference of

L2(t) = 1
laγ1

tr

[(
w̃

(2)
a (t)

)T
w̃

(2)
a (t)

]
is bounded by

∆L2(t) ≤ 1

γ1

(
−
(

1− la ‖φa(t)‖2
∥∥ŵ(2)

c (t)C(t)
∥∥2
)∥∥ŵ(2)

c (t)φc(t)
∥∥2

+

4 ‖ζc(t)‖2 + 4
∥∥w∗(2)

c φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2
)
, (1.15)

where ζa(t) = w̃
(2)
a (t)φa(t) is the approximation error of the action network output

and γ1 > 0 is a weighting factor; C(t) is the Nhc × n matrix with coefficients

Cij(t) = 1
2

(
1− φ2

ci
(t)
)
ŵ

(1)
ci,m+j(t), where i = 1 . . . Nhc , and j = 1 . . . n.

Proof. Let us consider the weights from the hidden layer to output layer of the
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action network which are updated according to (1.8)

w̃(2)
a (t+ 1) = ŵ(2)

a (t+ 1)− w∗(2)
a = ŵ(2)

a (t)−

laφa(t)ŵ
(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T − w∗(2)
a =

w̃(2)
a (t)− laφa(t)ŵ(2)

c (t)C(t)
[
ŵ(2)
c (t)φc(t)

]T
. (1.16)

Based on this expression, it is easy to see that

tr
[
(w̃(2)

a (t+ 1))T w̃(2)
a (t+ 1)

]
= (w̃(2)

a (t))T w̃(2)
a (t) + (1.17)

l2a ‖φa(t)‖
2
∥∥ŵ(2)

c (t)C(t)
∥∥2 ∥∥ŵ(2)

c (t)φc(t)
∥∥2 − 2laŵ

(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
ζa(t).

Here the last formula is based on the assumption that all vector multiplications

are under trace function.

Now let us consider the first difference of function L2(t), that is, the following

expression

∆L2(t) =
1

laγ1

tr
[
(w̃(2)

a (t+ 1))T w̃(2)
a (t+ 1)− (w̃(2)

a (t))T w̃(2)
a (t)

]
. (1.18)

After substituting the appropriate terms in the last formula, we get

∆L2(t) =
1

γ1

(
la ‖φa(t)‖2

∥∥ŵ(2)
c (t)C(t)

∥∥2∥∥ŵ(2)
c (t)φc(t)

∥∥2

− 2ŵ(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
ζa(t)

)
. (1.19)

Consider the last term of (1.19)

− 2ŵ(2)
c (t)C(t)

[
ŵ(2)
c (t)φc(t)

]T
ζa(t) =

∥∥ŵ(2)
c (t)φc(t)− ŵ(2)

c (t)C(t)ζa(t)
∥∥2−∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2 −

∥∥ŵ(2)
c (t)φc(t)

∥∥2
.

20



After substituting this formula into ∆L2, we get

∆L2(t) =
1

γ1

(
la ‖φa(t)‖2

∥∥ŵ(2)
c (t)C(t)

∥∥2 ∥∥ŵ(2)
c (t)φc(t)

∥∥2
+∥∥ŵ(2)

c (t)φc(t)− ŵ(2)
c (t)C(t)ζa(t)

∥∥2 −
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2 −

∥∥ŵ(2)
c (t)φc(t)

∥∥2
)
. (1.20)

Notice that

∥∥ŵ(2)
c (t)φc(t)− ŵ(2)

c (t)C(t)ζa(t)
∥∥2 −

∥∥ŵ(2)
c (t)C(t)ζa(t)

∥∥2 ≤

2
∥∥ŵ(2)

c (t)φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2 ≤

2
∥∥(w̃(2)

c (t) + w∗(2)
c

)
φc(t)

∥∥2
+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2 ≤

2
(∥∥w̃(2)

c (t)φc(t)
∥∥+

∥∥w∗(2)
c φc(t)

∥∥)2
+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2 ≤

4 ‖ζc(t)‖2 + 4
∥∥w∗(2)

c φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2
. (1.21)

Finally we get the following bound for ∆L2(t),

∆L2(t) ≤ 1

γ1

(
−
(

1− la ‖φa(t)‖2
∥∥ŵ(2)

c (t)C(t)
∥∥2
)
×∥∥ŵ(2)

c (t)φc(t)
∥∥2

+ 4 ‖ζc(t)‖2 + 4
∥∥w∗(2)

c φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2
)
, (1.22)

which completes the proof.

Remark 6. If we introduce the following normalization for the network’s weights∥∥∥(ŵ
(2)
c (t))TC(t)

∥∥∥2

= 1 and fix the weights of the input layer, then applying Lemmas

4 and 5, we can readily obtain the results in [51].

Lemma 7. Under Assumption 3, the first difference of

L3(t) = 1
lcγ2

tr

[(
w̃

(1)
c (t)

)T
w̃

(1)
c (t)

]
is bounded by

∆L3(t) ≤ 1

γ2

(
α2lc

∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥2 ‖a(t)‖2 ‖y(t)‖2 +

α
∥∥w̃(1)

c (t)y(t)aT (t)
∥∥2

+ α
∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
)
, (1.23)

where γ2 > 0 is a weighting factor and a(t) is a vector, with
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ai(t) = 1
2

(
1− φ2

ci
(t)
)
ŵ

(2)
ci (t) for i = 1 . . . Nhc .

Proof. Let us consider the weight update rule of the critic network between input

layer and hidden layer in the form

ŵ(1)
c (t+ 1) = ŵ(1)

c (t)− αlc
(
αŵ(2)

c (t)φc(t)+

r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)T
B(t), (1.24)

where Bij(t) = 1
2
(1− φ2

ci
(t))ŵ

(2)
ci (t)yj(t), for i = 1, . . . , Nhc , j = 1, . . . ,m+ n.

Following the same approach as earlier, we can express w̃
(1)
c (t+ 1) by

w̃(1)
c (t+ 1) = ŵ(1)

c (t+ 1)− w∗(1)
c =

w̃(1)
c (t)− αlc

(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)T
B(t). (1.25)

For convenience, we introduce the following notation

BT (t)B(t) = yT (t)aT (t)a(t)y(t) = ‖a(t)‖2 ‖y(t)‖2. Then the trace of multiplication

can be written as

tr
[(
w̃(1)
c (t+ 1)

)T
w̃(1)
c (t+ 1)

]
=
(
w̃(1)
c (t)

)T
w̃(1)
c (t) + α2l2c

∥∥αŵ(2)
c (t)φc(t)+

r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
BT (t)B(t)−

2αlc
(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)
BT (t)w̃(1)

c (t). (1.26)

Using the property of trace function, that is, the following

tr
(
y(t)aT (t)w̃

(1)
c (t)

)
= tr

(
w̃

(1)
c (t)y(t)aT (t)

)
, we can express the last term of (1.26)

as follows:

−2αlc
(
αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

)
y(t)aT (t)w̃(1)

c (t) =

αlc
(∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)−

w̃(1)
c (t)y(t)aT (t)

∥∥2 −
∥∥w̃(1)

c (t)y(t)aT (t)
∥∥2−∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
)
. (1.27)
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Therefore, using (1.26), (1.27), the first difference of L3(t) can be bounded by

∆L3(t) ≤ 1

γ2

(
α2lc

∥∥αŵ(2)
c (t)φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥2 ‖a(t)‖2 ‖y(t)‖2 +

α
∥∥w̃(1)

c (t)y(t)aT (t)
∥∥2

+ α
∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
)
. (1.28)

Lemma 8. Under Assumption 3, the first difference of

L4(t) = 1
laγ3

tr

[(
w̃

(1)
a (t)

)T
w̃

(1)
a (t)

]
is bounded by

∆L4(t) ≤ 1

γ3

(
la
∥∥ŵ(2)

c (t)φc(t)
∥∥2∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2×

‖x(t)‖2 +
∥∥ŵ(2)

c (t)φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ∥∥w̃(1)

a (t)x(t)
∥∥2
)
, (1.29)

where γ3 > 0 is a weighting factor; and Dij(t) = 1
2

(
1− φ2

ai
(t)
)
ŵ

(2)
aji(t) for

i = 1 . . . Nha and j = 1 . . . n.

Proof. Let us consider the weights from the input layer to the hidden layer of the

action network

w̃(1)
a (t+ 1) = ŵ(1)

a (t+ 1)− w∗(1)
a = w̃(1)

a (t)−

laŵ
(2)
c (t)φc(t)D(t)CT (t)

(
ŵ(2)
c (t)

)T
xT (t). (1.30)

Let us consider also that

tr
[
(w̃(1)

a (t+ 1))T w̃(1)
a (t+ 1)

]
= (w̃(1)

a (t))T w̃(1)
a (t) +

l2a
∥∥ŵ(2)

c (t)φc(t)
∥∥2 ∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ‖x(t)‖2 −

2laŵ
(2)
c (t)C(t)DT (t)φTc (t)

(
ŵ(2)
c (t)

)T
w̃(1)
a (t)x(t). (1.31)

We obtained the last term since

tr(ATB +BTA) = tr(ATB) + tr([ATB]T ) = 2 tr(ATB) and tr(AB) = tr(BA)
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The last term in (1.30) can be transformed into the form:

−2laŵ
(2)
c (t)C(t)DT (t)φTc (t)

(
ŵ(2)
c (t)

)T
w̃(1)
a (t)x(t) ≤

la

(∥∥ŵ(2)
c (t)φc(t)

∥∥2
+
∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ∥∥w̃(1)

a (t)x(t)
∥∥2
)
. (1.32)

Based on the last result, we can obtain the upper bound for ∆L4(t), which is

given in the statement of the lemma:

∆L4(t)≤ 1

γ3

(
la
∥∥ŵ(2)

c (t)φc(t)
∥∥2 ∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2×

‖x(t)‖2 +
∥∥ŵ(2)

c (t)φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ∥∥w̃(1)

a (t)x(t)
∥∥2
)
. (1.33)

1.4.3 Stability analysis of the dynamical system

In this section we introduce a candidate of the Lyapunov function for analyzing the

dynamical system of estimation error. To this aim, we utilize the following auxiliary

function L = L1 + L2 + L3 + L4.

Theorem 9. Let the weights of the critic network and the action network be

updated according to the gradient descent algorithm, and assume that the utility

function is a bounded semidefinite function. Then under Assumption 3, the errors

between the optimal weights w∗a, w
∗
c and their estimates ŵa(t), ŵc(t) are uniformly

ultimately bounded (UUB), if the following conditions are fulfilled:

lc < min
t

γ2 − α

α2γ2

(
‖φc(t)‖2 + 1

γ2
‖a(t)‖2 ‖y(t)‖2

) , (1.34)

la < min
t

γ3 − γ1

γ3 ‖(ŵ2
c (t))

TC(t)‖2 ‖φa(t)‖2 + γ1

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2

‖x(t)‖2
. (1.35)

Proof. At first, let us collect all terms of ∆L(t) based on the results of lemmas 4 - 8.
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Hence ∆L(t) is bounded by

∆L(t) ≤
{
−α2 ‖ζc(t)‖2 −

(
1− α2lc ‖φc(t)‖2) ∥∥αŵ(2)

c (t)φc(t) + r(t)− (1.36)

ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
+
∥∥αw∗(2)

c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
}

+

1

γ1

{
−
(

1− la ‖φa(t)‖2
∥∥ŵ(2)

c (t)C(t)
∥∥2
)∥∥ŵ(2)

c (t)φc(t)
∥∥2

+ 4 ‖ζc(t)‖2 +

4
∥∥w∗(2)

c φc(t)
∥∥2

+
∥∥ŵ(2)

c (t)C(t)ζa(t)
∥∥2
}

+
1

γ2

{
α2lc

∥∥αŵ(2)
c (t)φc(t)+

r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2 ‖a(t)‖2 ‖y(t)‖2 + α
∥∥w̃(1)

c (t)y(t)aT (t)
∥∥2

+

α
∥∥αŵ(2)

c (t)φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
}

+
1

γ3

{
la
∥∥ŵ(2)

c (t)φc(t)
∥∥2×∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ‖x(t)‖2 +

∥∥ŵ(2)
c (t)φc(t)

∥∥2
+∥∥ŵ(2)

c (t)C(t)DT (t)
∥∥2 ∥∥w̃(1)

a (t)x(t)
∥∥2
}
. (1.37)

The first difference of L(t) can be rewritten as

∆L(t) ≤ −(α2 − 4

γ1

) ‖ζc(t)‖2 −
(
1− α2lc ‖φc(t)‖2−

α2lc
γ2

‖a(t)‖2 ‖y(t)‖2 − α

γ2

)∥∥αŵ(2)
c (t)φc(t) + r(t)−

ŵ(2)
c (t− 1)φc(t− 1)

∥∥2 −
∥∥ŵ(2)

c (t)φc(t)
∥∥2
(

1

γ1

− la
γ1

∥∥ŵ(2)
c (t)C(t)

∥∥2 ‖φa(t)‖2−

la
γ3

∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥2 ‖x(t)‖2 − 1

γ3

)
+

4

γ1

∥∥w∗(2)
c φc(t)

∥∥2
+

1

γ1

∥∥ŵ(2)
c (t)C(t)

∥∥2 ‖ζa(t)‖2 +
∥∥αw∗(2)

c φc(t) + r(t)− ŵ(2)
c (t− 1)φc(t− 1)

∥∥2
+

α

γ2

∥∥w̃(1)
c (t)y(t)

∥∥2 ‖a(t)‖2 +
1

γ3

∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥2 ∥∥w̃(1)
a (t)x(t)

∥∥2
. (1.38)

To guarantee that the second and third terms in the last expression are

negative, we need to choose learning rates in the following manner

1− α2lc ‖φc(t)‖2 − α2lc
γ2

‖a(t)‖2 ‖y(t)‖2 − α

γ2

> 0. (1.39)

Therefore,

lc < min
t

γ2 − α

α2γ2

(
‖φc(t)‖2 + 1

γ2
‖a(t)‖2 ‖y(t)‖2

) . (1.40)
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In particular, when γ2 > α, similarly, for the action network we obtain:

1

γ1

− 1

γ1

la
∥∥(ŵ(2)

c (t))TC(t)
∥∥2 ‖φa(t)‖2 − la

γ3

∥∥D(t)CT (t)ŵ(2)
c (t)

∥∥2 ‖x(t)‖2 − 1

γ3

> 0,

la < min
t

γ3 − γ1

γ3

∥∥∥(ŵ
(2)
c (t))TC(t)

∥∥∥2

‖φa(t)‖2 + γ1

∥∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥∥2

‖x(t)‖2
. (1.41)

In particular, when γ3 > γ1, notice that the norm of the sum can be bounded by the

sum of the norms, thus we have the following

∥∥αw∗(2)
c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥2 ≤

4α2
∥∥w∗(2)

c φc(t)
∥∥2

+ 4r2(t) + 2
∥∥ŵ(2)

c (t− 1)φc(t− 1)
∥∥2
. (1.42)

Let C, wa1, wa2, wc1, φa, y, x, a, D be upper bounds of C(t), w̃
(1)
a (t), w̃

(2)
a (t),

w̃
(1)
c (t), φa(t), y(t), x(t), a(t), D(t), respectively; while wc2=max {w∗(2)

c , w
(M)
c2 },

where w
(M)
c2 is the upper bound of ŵ

(2)
c (t). Finally, we obtain the following bound:

4

γ1

∥∥w∗(2)
c φc(t)

∥∥2
+

1

γ1

∥∥ŵ(2)
c (t)C(t)

∥∥2 ‖ζa(t)‖2 +∥∥αw∗(2)
c φc(t) + r(t)− ŵ(2)

c (t− 1)φc(t− 1)
∥∥2

+

α

γ2

∥∥w̃(1)
c (t)y(t)

∥∥2 ‖a(t)‖2 +
1

γ3

∥∥ŵ(2)
c (t)C(t)DT (t)

∥∥2 ∥∥w̃(1)
a (t)x(t)

∥∥2 ≤(
4

γ1

+ 4α2 + 2

)
(wc2φc)

2 + 4r2 +
1

γ1

(wc2C wa2φa)
2 +

α

γ2

(wc1y a)2 +

1

γ3

(wc2C Dwa1x)2 = M. (1.43)

Therefore, if α2 − 4
γ1
> 0, that is, γ1 >

4
α2 and α ∈ (0, 1), then for la and lc with

constraints from (1.40), (1.41) and ‖ζc(t)‖2 > M
α2− 4

γ1

, we get ∆L(t) < 0. Based on

Theorem 1, we deerive that the system of estimation errors is ultimately uniformly

bounded.

Remark 10. It is to be emphasized that the present results do not pose any
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restrictions on the discount factor α, as opposed to the results found in [51]. The

choice of the discount factor depends on the given problem. A constraint on the

discount factor can reduce the performance of the ADP control. Also it should be

mentioned that parameters γ1, γ2, and γ3 allow fine-tuning of the learning in

different layers of the networks, thus leading to further improved performance.

As the above remark says it is possible to expect a difference between the control

design considered in this chapter and one studied in [51]. A comparison of these two

methods was performed in [66]. Our study showed that two control algorithms have

nearly the same performance in controlling a linear system. However, our algorithm,

which uses universal function approximators, significantly outperforms the one

considered by Liu et al. in the case of a nonlinear system.
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CHAPTER 2

RANDOM GRAPH MODEL GZ2
N ,PD

AND ITS MAIN PROPERTIES

In this chapter we introduce a model of random graph coupled with a lattice.

The probabilities of random edges are defined to get a sparser graph with respect to

additional random edges. We study several properties, including diameter and

degree distribution.

This chapter is a joint work with Svante Janson, Robert Kozma, and Miklós

Ruszinkó; and is partly based on our submitted paper, [43].

2.1 Background on random graphs with distant-dependent probabilities

In general, there are not many models with the property that the probability of

an edge depends on the distance between a pair of vertices. Schulman [63]

introduced a long-range percolation graph (LRPG) where vertices are defined on at

most a countable metric space. In his model, the probability of an edge between a

pair of vertices is inversely proportional to the distance between the pair.

Benjamini and Berger considered LRPG on a finite discrete n-circle [17]. In

their settings vertices of distance one are connected with probability one and with

probability 1− exp(−β/|vi − vj|s) otherwise, where vi, vj ∈ 1, . . . , n. From the

definition of the random graph it follows that the graph is connected and the

appropriate question to ask is; what is the diameter of the graph? This question was

studied by Benjamini and Berger, and Coppersmith, Gamarnik and Sviridenko in

[17, 29] and sharp results were derived for different regimes with respect to s.

2.2 Random graph model

We consider a random graph G that is built as follows. We start with the Z2

lattice over a (N + 1)× (N + 1) grid; for the sake of simplicity we assume periodic

boundary conditions. Thus, we have a torus T2 = (Z/NZ)2, with the short notation

Z2
N . The set of vertices of G consists of all vertices of Z2

N , in total N2 vertices. All
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the edges from the torus Z2
N are included in the graph G. In addition, we introduce

random edges as follows; for every pair of vertices we assign an edge with

probability that depends on the graph distance d between the two vertices, i.e., d is

the length of the shortest path between the given pair of vertices in the torus grid.

Accordingly, the probability of a long edge is described as follows:

pd = P
(
(u, v) ∈ E(G)

∣∣ dist(u, v) = d
)

=
c

N
× d−α, (2.1)

where c and α are positive constants, d > 1 (no multiple edges are allowed between

any pair of vertices) and N is large enough so that each pd < 1. We assume α = 1

throughout this study. We will denote this model the GZ2
N ,pd

graph. The edges of

the torus are called short edges, while the randomly added ones are called long edges.

We will use the following standard notation; for non-negative sequences am and

bm, am = O(bm) if am ≤ cbm holds for some constant c > 0 and every m;

am = Θ(bm) if both am = O(bm) and bm = O(am) hold; am ∼ bm if

limm→∞ am/bm = 1; am = o(bm) if limm→∞ am/bm = 0. A sequence of events An

occurs with high probability, whp, if the probability P(An) = 1− o(1).

2.3 Properties of GZ2
N ,pd

First notice that the expected number of long edges E` ⊆ E(GZ2
N ,pd

) is

proportional to N2.

Claim 11. E(|E`|) ∼ (2c ln 2)N2, i.e., lim
N→∞

E(|E`|)
2cN2 ln 2

= 1.

Proof. Indeed, the number of vertices |Λd| in Z2
N which are exactly at distance d

from a fixed vertex is

|Λd| =


4d, 1 ≤ d ≤ bN/2c

4(N − d), bN/2c < d ≤ N

for N odd, and
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|Λd| =



4d, 1 ≤ d < N/2

4d− 2, d = N/2

4(N − d), N/2 < d < N

1, d = N

for N even. The number of pairs of vertices in Z2
N having distance d is N2|Λd|

2
.

Therefore, for N odd

E(|E`|) =
N∑
d=2

N2|Λd|
2

c

Nd
=

N/2∑
d=2

4N2d

2

c

Nd
+

N∑
d=N/2+1

4N2(N − d)

2

c

Nd

= (2c ln 2)N2 +O(N) ∼ (2c ln 2)N2. (2.2)

For N even a similar computation gives the same result.

2.3.1 Degree distribution

The degree distribution of a vertex v ∈ GZ2
N ,pd

with respect to long edges can be

approximated by a Poisson distribution. Let W be the random variable describing

the degree of a particular vertex v considering long edges only. Then clearly, the

degree of a vertex v ∈ GZ2
N ,pd

considering the short edges too, is W + 4.

Lemma 12. The probability that a vertex has degree k considering only the long

edges is given by

P (W = k) =
∑

k2+...+kN=k

N∏
i=2

(
|Λi|
ki

)( c

Ni

)ki (
1− c

Ni

)|Λi|−ki
. (2.3)

The total variation distance

dTV (L(W ),Po(λ)) =
1

2

∑
j≥0

|P(W = j)− P(Y = j)| = O(1/N), (2.4)

where the random variable Y has a Poisson distribution Po(λ), with λ = 4c ln 2.

30



Proof. The probability of the event Ai that a vertex has ki edges of length i is clearly

P (Ai) =

(
|Λi|
ki

)( c

Ni

)ki (
1− c

Ni

)|Λi|−ki
(2.5)

Therefore, the probability that a vertex has degree exactly to the value of k is

P (W = k) = P

( ⋃
k2+...+kN=k

N⋂
i=2

Ai

)
=

∑
k2+...+kN=k

N∏
i=2

P (Ai)

=
∑

k2+...+kN=k

N∏
i=2

(
|Λi|
ki

)( c

Ni

)ki (
1− c

Ni

)|Λi|−ki
. (2.6)

The last expression is not very convenient to use, however, a standard Poisson

approximation can be given using Le Cam’s argument [47], see also for example [14].

Let us choose an arbitrary vertex v and enumerate the other N2 − 5 vertices by ui,

i = 1, . . . , N2 − 5, excluding the nearest neighbors, i.e., vertices at distance one.

Note that the long edges that connect the vertex v to other vertices of the graph are

independent 0–1 random variables with a Bernoulli distribution, Be(pi). In other

words, let Ii = 1 be the event that there is an edge between vertices v and ui, so

that P(Ii = 1) = pi and P(Ii = 0) = 1− pi, where pi may in general vary for a

different i. Consider now the degree W =
∑N2−5

i=1 Ii of the vertex v. Let

λ1 =
N2−5∑
i=1

pi = 4c ln 2 +O(1/N),

where the last equality follows from (2.2). By triangle inequality,

dTV (L(W ),Po(λ)) ≤ dTV (L(W ),Po(λ1)) + dTV (Po(λ1),Po(λ)) (2.7)

The first term, by Le Cam [47], see also [14, Theorem 2.M], is at most

N2−5∑
i=1

p2
i =

N∑
d=2

|Λd|p2
d ≤

N∑
d=1

|Λd|p2
d =

N/2∑
d=1

4d
( c

Nd

)2

+
N∑

d=N/2+1

4(N − d)
( c

Nd

)2

≤
N∑
d=1

4d
( c

Nd

)2

= O

(
lnN

N2

)
. (2.8)
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and by Theorem 1.C (i) in [14]

dTV (Po(λ1),Po(λ)) = O (|λ1 − λ|) = O

(
1

N

)
. (2.9)

Clearly, Lemma 12 also implies that in (2.4) each term satisfies

|P(W = j)− P(Y = j)| = O(1/N).

2.3.2 The diameter of GZ2
N ,pd

Next we show that the addition of long edges to the torus grid significantly

reduces its diameter in the number of vertices from linear to logarithmic.

Theorem 13. There exist constants C1, C2, which depend on c only, such that for

the diameter D(GZ2
N ,pd

) the following hold:

lim
N→∞

P
(
C1 logN ≤ D(GZ2

N ,pd
) ≤ C2 logN)

)
= 1,

that is, D(GZ2
N ,pd

) = Θ(logN), whp.

Proof. The lower bound is trivial. The expected degree E(d(v)) of a vertex v is a

constant k = k(c) by Claim 11. Thus, the expected number of vertices Am we can

reach in at most m ≥ 0 steps from a given vertex v is less than or equal to

1 +
∑m

i=1 k(k − 1)i−1. For m ≥ 3, this is less than km, and thus, by Markov’s

inequality,

P(Am ≥ N2) ≤ E(Am)

N2
≤ km

N2
. (2.10)

If we choose m ≤ C1 logN with C1 sufficiently small, the probability in (2.10) tends

to zero, i.e., even from a given vertex v we cannot reach all vertices within distance

C1 logN . Hence, C1 logN bounds the diameter from below.
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To prove the upper bound, let us partition the vertices of GZ2
N ,pd

into

consecutive k × k blocks Bij, i, j = 1, . . . , N
k

, where k is a constant k(c) to be chosen

later. (For simplicity, we will assume that everywhere divisibility holds during the

proof; otherwise we let some blocks be (k + 1)× (k + 1).) Define the graph G′ as

follows; the vertices are the blocks, and two blocks Bi,j and Bk,`,

(1,≤ i, j, k, ` ≤ N/k) are connected iff there is a long edge from a vertex of Bi,j to a

vertex of Bk,` in GZ2
N ,pd

. We obtain a random graph on N2/k2 vertices where the

edge probabilities can be obtained from the ones of GZ2
N ,pd

. For an arbitrary pair of

vertices Bi,j and Bk,`, the probability of the event Ai,j;k,l that they are connected is

bounded from below by the probability, that two blocks which are most distant

from each other in Z2
N are connected. Therefore, for large N ,

P(Ai,j;k,l) ≥ P(A1,1;N/(2k),N/(2k)) = 1− P(A1,1, N
2k
, N
2k

)

≥ 1− (1− pN)k
4

= 1−
(

1− c

N2

)k4
≥ 1− e−ck4/N2 ≥ ck4/2N2.

For the second inequality we chose the two most distant vertices from each block,

and the last one follows from ex ≤ 1 + x/2 for x < 0 sufficiently close to 0.

By, for example, Theorem 9.b, in the seminal paper of Erdős and Rényi [32]

there is a constant c1 such that in the Erdős-Rényi random graph Gn,p with

p = c1/n there is a giant component on at least, say, n/2 vertices, whp. Choosing

k ≥ (2c1/c)
1/2

we get that the probability that G′ has an edge for an arbitrary pair of vertices is at

least

ck4/2N2 ≥ c1k
2/N2.

Since the edges of G′ are chosen independently, it will contain a giant component on
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at least N2/2k2 vertices, whp. The diameter of the giant component of Gn,p with

p = c1/n is known to be of the order of O(log n), whp. (See, e.g. Table 1 in [28].)

First, assume that vertices u, v ∈ GZ2
N ,pd

are contained in blocks B(u) and B(v)

which are vertices of the giant component in G′. Find the shortest path, say,

B(u) = B(x0), B(x1), B(x2), . . . , B(xm) = B(v), between B(u) and B(v) in G′. Let

(x0, x1), (x′1, x2), (x′2, x3), . . . , (x′m−1, xm), xi, x
′
i ∈ B(xi) be the edges in GZ2

N ,pd

inducing this path in G′.

Now go from u to x0 in B(u) along short (Z2) edges. Jump from x0 to x1, then

go from x1 to x′1 in B(x1) along short edges. After that, jump from x1 to x′2, and so

on. The total length of the path from u to v, will be at most

m+ 2k(m+ 1) ≤ (2k + 1)(m+ 1).

Indeed, we make m jumps, and within each block we make at most 2k steps along

short edges. Since m = O(logN), whp, the proof of this case is completed.

Next we show that, whp, every vertex v ∈ GZ2
N ,pd

is close to some block B of the

giant component in G′. Indeed, by symmetry, the set A of vertices in the giant

component can be any set of vertices of the same size, with the same probability.

Therefore, one can regard A as a uniformly random subset on at least half of the

vertices in G′.

For some large constant D, the number of vertices with distance at most

D
√

log2N from a fixed vertex v in Z2 is

D
√

log2N∑
d=1

4d ≥ 4D2 log2N,

i.e., this neighborhood contains a vertex from at least

4D2 log2N

k2

blocks. Since A contains at least half of the vertices in G′, the probability that none
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of those blocks is in A is

≤ 2−
4D2 log2 N

k2 = N−4D2/k2 .

Therefore, the probability that there is a vertex v ∈ GZ2
N ,pd

for which there is no

vertex u within distance D
√

log2N such that B(u) ∈ A is

≤ N2 ·N−4D2/k2 < N−2,

assuming that D is large enough.

Now, consider two arbitrary vertices u, v ∈ GZ2
N ,pd

. If one, or neither of them is

in block from A, then, whp, each of them can reach a block from A within

D
√

log2N steps in Z2, and then proceed as in case B(u), B(v) ∈ A. Since the

number of additional steps whp is O(
√

logN), the proof is finished.
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CHAPTER 3

BOOTSTRAP PERCOLATION ON GZ2
N ,PD

WITH ONE TYPE OF

VERTICES

In this chapter we consider bootstrap percolation with one type of vertices on

random graph GZ2
N ,pd

defined in Chapter 2. We prove sharp thresholds on critical

probabilities for different values of k with a k-threshold rule.

This chapter is partly based on joint work with Svante Janson, Robert Kozma,

and Miklós Ruszinkó, [43].

3.1 Recent developments in the theory of bootstrap percolation

During the last decade, several important results on bootstrap percolation

defined on random graphs were derived. In particular, bootstrap percolation has

been studied on Erdős-Rényi random graph Gn,p in [42], where percolation is

defined with respect to the size a of the set of initially active vertices. Results

include sharp threshold for phase transition for parameters p and a, and results for

the time t required to the termination of the bootstrap percolation process.

Turova and Vallier[69] considered bootstrap percolation over the combination of

the lattice Zd and the random graph Gn,p, where the edges of Zd and Gn,p are

selected with probability q and p, respectively. Sharp threshold for phase transition

was derived. These authors got asymptotic results for the time when the bootstrap

percolation process stops.

3.2 Non-monotonous bootstrap percolation

Let us begin with the definition of a stochastic process on the random graph we

built in Chapter 2. Each vertex is described by its state. The state of a vertex can

be either active or inactive. At the beginning the state of a vertex is chosen

independently at random, so that a vertex is active with probability p.
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Let A(t) denote the set of all active vertices at time t. We also define a potential

function χv(t) for each vertex v such that χv(t) = 1 if vertex v is active at time t,

and χv(t) = 0 if v is inactive. Therefore, A(t) = {v ∈ V (GZ2
N ,pd

)
∣∣ χv(t) = 1}. Let

A(0) be a random subset of active vertices, each is activated at the beginning with

probability p, independently of others. Each vertex may change its activity based on

the states of its neighbors based on the following non-monotone k-threshold rule

χv(t+ 1) = 1

 ∑
u∈N(v)

χu(t) ≥ k

 , (3.1)

where N(v) denotes the closed neighborhood of the vertex v; and 1 is the indicator

function. Here k is a nonnegative integer that specifies a threshold required for the

vertex to be active at the next time step.

It is important to note that the set of active vertices does not necessarily grow

monotonically during the process, whereas monotonicity is usually assumed in

bootstrap percolation. The above rule says that a vertex will be active at the next

time step if it has at least k active neighbors including itself. We assume for

simplicity that k is not greater than 3. Notice that if there are only local edges, the

case k = 3 yields bootstrap percolation with majority rule. The choice of small k is

motivated by the fact that there are vertices with degree 4 with positive probability.

Therefore, if k could be 5 or more, then there would be vertices that cannot become

active unless they were activated at the beginning.

3.3 Mean-field approximation of the process

For simplicity we consider here the mean-field (MF) approximation of the

model. The mean-field approximation assumes that the activation and degrees of

the various nodes are well-mixed; hence we ignore any dependencies between

activation and vertex degrees, as well as any dependencies between the state of a

vertex and the state of its neighbors [10]. Effectively, we sample a new set of

neighbors at each step. This, in particular, implies that the MF approximation does
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not depend on the structure of the graph but only on the degree distribution and on

the cardinality of A(t). Thus, the transition probabilities from one state to another

depend only on the number of active nodes. Furthermore, we assume that the

vertices are activated independently of each other, ignoring the small dependencies

between degrees and activities for different vertices.

3.3.1 Phase transition in mean-field model

Let ρt = A(t)/N2, where N2 is the size of the graph. Clearly, ρt ∈ [0, 1] and it

defines the density of active nodes at time t.

The mean-field analysis is an analytical approach of finding phase transitions in

a stochastic process by averaging the system over space. Thus, the mean-field model

reduces the analysis of a system with distributed components to a system with a

single component. Let f(ρt) denote the conditional mean of ρt+1 given ρt, for the

mean-field approximation. The main task of the mean-field approximation is to find

solutions to the x = f(x), where the solutions of this equation are called fixed

points. This approach is based on the observation that the critical behavior of the

original system often occurs near the unstable fixed points of mean-field model

[19, 68]. A fixed point is called stable if it attracts all the trajectories that start

from some neighborhood of the fixed point. Otherwise, a fixed point is unstable.

For a discrete time one-dimensional dynamical system, if f(x) is continuously

differentiable in an open neighborhood of a fixed point x0, a sufficient condition for

x0 to be stable or unstable is |f ′(x0)| < 1 or |f ′(x0)| > 1, respectively; see, e.g., [39].

Let Bin(n, p) be a binomial random variable. Then the density ρt in the

mean-field model satisfies the stochastic recursion defined in Lemma 14. Recall from

Chapter 2 that deg(v) denotes the degree with respect to the long edges only in

GZ2
N ,pd

, so the total degree of a vertex v is deg(v) + 4.

Lemma 14. For the mean-field approximation of the process on GZ2
N ,pd

with N2
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vertices, ρt is a Markov process given by

N2ρt+1 = Bin(N2ρt, f
+(ρt)) + Bin(N2(1− ρt), f−(ρt)), (3.2)

where

f+(x) =
N2−1∑
n=4

P (deg(v) = n− 4)
n+1∑
i=k

(
n

i− 1

)
xi−1(1− x)n−i+1, (3.3)

f−(x) =
N2−1∑
n=4

P (deg(v) = n− 4)
n∑
i=k

(
n

i

)
xi(1− x)n−i. (3.4)

Moreover, given ρt, ρt+1 has mean f(ρt) and variance g(ρt)/N
2 where

f(x) = xf+(x) + (1− x)f−(x), (3.5)

g(x) = xf+(x)(1− f+(x)) + (1− x)f−(x)(1− f−(x)). (3.6)

Proof. Clear, since in the MF approximation, each vertex is assumed to have

deg(v) + 4 neighbors, each is active with probability ρt, independently of each other

and of deg(v); furthermore, different vertices are regarded as independent.

Remark 15. In our model, the state of a vertex at the next time step is

deterministic given the number of active vertices in the closed neighborhood. More

generally, one can consider a model where an active (inactive) vertex with i active

neighbors is activated with some probability p+
i (p−i ), where p±i are some given

probabilities. In this more general case, (3.3)–(3.4) become

f+(x) =
N2−1∑
n=4

P (deg(v) = n− 4)
n+1∑
i=1

p+
i

(
n

i− 1

)
xi−1(1− x)n−i+1, (3.7)

f−(x) =
N2−1∑
n=4

P (deg(v) = n− 4)
n∑
i=0

p−i

(
n

i

)
xi(1− x)n−i. (3.8)

Lemma 14 shows that the conditional variance of ρt+1 is g(ρt)/N
2 = O(N−2);

thus ρt+1 is well concentrated for large N , and we can approximate ρt+1 by the

mean f(ρt).
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The function f(·) given by (3.5) can be simplified to

f(x) = xf+(x) + (1− x)f−(x)

=
N2−1∑
n=4

P (deg(v) = n− 4)
n+1∑
i=k

(
n

i− 1

)
xi(1− x)n−i+1

+
N2−1∑
n=4

P (deg(v) = n− 4)
n∑
i=k

(
n

i

)
xi(1− x)n−i+1

=
N2−1∑
n=4

P (deg(v) = n− 4)

(
n+1∑
i=k

(
n+ 1

i

)
xi(1− x)n−i+1

)
.

(3.9)

This can also be seen directly, since if deg(v) = n− 4 with respect to the long edges,

then the closed neigborhood of v contains n+ 1 vertices, of which k have to be

active for activation of v, and in the MF approximation, these n+ 1 vertices are

active independently of each other.

In Section 2.3.1 we showed that the degree distribution can be approximated by

Poisson Po(λ) distribution. We use the last fact to approximate f(x). Consider the

function

f̄(x) = f̄k(x) =
∞∑
n=4

e−λλn−4

(n− 4)!

n+1∑
i=k

(
n+ 1

i

)
xi(1− x)n−i+1. (3.10)

The difference between f(x) and f̄(x) can be bounded by

|f(x)− f̄(x)| ≤
∞∑
n=4

∣∣∣∣P (deg(v) = n− 4)− e−λλn−4

(n− 4)!

∣∣∣∣ n+1∑
i=k

(
n+ 1

i

)
xi(1− x)n−i+1

≤
∞∑
n=4

∣∣∣∣P (deg(v) = n− 4)− e−λλn−4

(n− 4)!

∣∣∣∣ = O

(
1

N

)
(3.11)

where the last equality follows from Lemma 12.

3.3.2 Critical initialization probability for various k values

We rewrite f̄ = f̄k defined in (3.10) as

f̄k(x) =
∞∑
n=0

e−λλn

n!

(
n+5∑
i=k

(
n+ 5

i

)
xi(1− x)n+5−i

)
. (3.12)
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For k = 0, 1, 2 and 3, respectively, the internal sums in (3.12) are

n+5∑
i=0

(
n+ 5

i

)
xi(1− x)n+5−i = 1, (3.13)

n+5∑
i=1

(
n+ 5

i

)
xi(1− x)n+5−i = 1− (1− x)n+5, (3.14)

n+5∑
i=2

(
n+ 5

i

)
xi(1− x)n+5−i = 1− (1− x)n+5 − (n+ 5)(1− x)n+4x, (3.15)

n+5∑
i=3

(
n+ 5

i

)
xi(1− x)n+5−i = 1− (1− x)n+5 − (n+ 5)(1− x)n+4x (3.16)

− (n+ 5)(n+ 4)

2
(1− x)n+3x2.

Hence, (3.12) yields, by simple calculations,

f̄0(x) =
∞∑
n=0

e−λλn

n!
= 1, (3.17)

f̄1(x) =
∞∑
n=0

e−λλn

n!

(
1− (1− x)n+5

)
= 1− e−λx(1− x)5, (3.18)

f̄2(x) =
∞∑
n=0

e−λλn

n!

(
1− (1− x)n+5 − (n+ 5)(1− x)n+4x

)
(3.19)

= 1− e−λx
(
(1− x)5 + 5x(1− x)4 + λx(1− x)5

)
,

f̄3(x) =
∞∑
n=0

e−λλn

n!

(
1− (1− x)n+5 − (n+ 5)(1− x)n+4x (3.20)

− (n+ 5)(n+ 4)

2
(1− x)n+3x2

)
= 1− e−λx

(
(1− x)5 + 5x(1− x)4 + λx(1− x)5 +

λ2

2
x2(1− x)5

+ 5λx2(1− x)4 + 10x2(1− x)3

)
.

Proposition 16. Let f̄k(x) : [0, 1]→ [0, 1] be a family of maps for k = 0, 1, 2, 3

defined by (3.17) - (3.20). These maps have the following fixed points:

(i) for k = 0 the only fixed point is 1 and it is stable.

(ii) for k = 1 there are two fixed points: 1 is stable and 0 is unstable.
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(iii) for k = 2 there are three fixed points: 0 and 1 are stable and x2(λ) ∈ (0, 1) is

unstable;

(iv) for k = 3 there are three fixed points: 0 and 1 are stable and x3(λ) ∈ (0, 1) is

unstable.

Proof. For k = 0, the equation f̄0(x) = x reduces just to

x = 1. (3.21)

In this case the fixed point x = 1 is stable since f̄ ′0(x) = 0.

For k = 1, f̄1(x) = x can be written

(1− x)eλx = (1− x)5. (3.22)

This equation has only two solutions 0 and 1 in [0, 1], where 0 is an unstable fixed

point since f̄ ′1(0) = 5 + λ > 1, while 1 is a stable fixed point because f̄ ′1(1) = 0.

For k = 2, f̄2(x) = x we obtain

(1− x)eλx = (1− x)4(1 + 4x+ λx− λx2). (3.23)

Clearly, 0 and 1 are solutions of (3.23). Divide both sides of (3.23) by 1− x and let

denote the LHS of the resulting equation by g(x) = eλx and the RHS by h(x).

Since g(0) = h(0) = 1, g(1) = eλ > 0 = h(1) and h′(0) = 1 + λ > λ = g′(0),

h(x) = g(x) has a solution in (0, 1).

This solutions is unique. To see this, first observe that h′′(x) = 0 has a unique

solution xinfl ∈ (0, 0.5). Indeed, h′′(x) is a polynomial of degree three, i.e., it has at

most three real roots. Clearly, h′′(1) = 0, and since h′′(0) = −8λ− 18 < 0 and

h′′(0.5) = 0.5λ+ 3 > 0, by the intermediate value theorem h′′(x) = 0 has a solution

in (0, 0.5). Moreover, h′′′(1) = −30 < 0 and the leading coefficient of h′′(x) is

positive; therefore, the third solution has to be greater than one.
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Also, observe, that h′(x) = 0 has a unique solution xmax ∈ (0, 1). Indeed, h′(x)

is a polynomial of degree four, i.e., it has at most four real roots. Since

h′(1) = h′′(1) = 0 and h′′′(1) < 0, 1 is a root of multiplicity two of h′(x) = 0 and

h′(1± ε(λ)) < 0 for ε(λ) sufficiently small. Since the leading coefficient of h′(x) is

positive, h′(x) must have two additional real roots, such that one is bigger and the

other is smaller than 1. Moreover, h′(0) > 0, therefore, there is a unique root xmax

in (0, 1) and h(x) has a unique maximum in xmax on (0, 1).

Since h(x) is concave on [0, xinfl) but g(x) is convex, by Rolle’s theorem they

may have at most two intersections over that interval and one of those is at x = 0;

furthermore, if there is an intersection in (0, xinfl), then h(xinfl) < g(xinfl).

On (xinfl, 1), h′′(x) > 0 and since also h′(1) = 0, it follows that h′(x) < 0 and

h(x) is decreasing on (xinfl, 1). Furthermore, g(x) is increasing, and thus the

functions h(x) and g(x) may intersect at most once in (xinfl, 1); moreover, if there is

such an intersection, then h(xinfl) > g(xinfl).

Consequently, h(x) = g(x) has a unique root x2(λ) in (0, 1), and thus x2(λ) is

the unique fixed point of f̄2(x) in (0, 1). In this case 0 and 1 are stable fixed points

since f̄ ′2(x) is zero at those points. The function f̄2(x) is increasing on [0, 1] and since

the fixed points 0 and 1 are stable, one can see that x2(λ) is an unstable fixed point.

Finally, in the case k = 3, f̄3(x) = x reduces to

(1−x)eλx =
1

2
(1−x)3(2+6x+2λx+x2(12+6λ+λ2)−x3(8λ+2λ2)+λ2x4). (3.24)

Equation (3.24) has solutions 0 and 1 for any λ.

There is also a solution x3(λ) ∈ (0, 1) for any λ > 0. Indeed, divide each side of

(3.24) by (1− x) and denote the RHS and the LHS of the resulting expression by

h(x) and g(x), correspondingly. The fact that g(0) = h(0) = 1,

g(1) = eλ > 0 = h(1), and h′(0) = 1 + λ > λ = g′(0) verifies the statement.

Thus, g(x) = h(x) has at least two solutions on [0, 1), including x = 0, so by
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Rolle’s theorem g′(x) = h′(x) has at least one solution on (0, 1). It is enough to

show that g′(x) = h′(x) has a unique solution on [0, 1] to guarantee that that x3(λ)

is a unique solution of g(x) = h(x) on (0, 1).

The first two derivatives of h(x) are

h′(x) = 3λ2x5 − (10λ2 + 20λ)x4 + (12λ2 + 44λ+ 24)x3

− (6λ2 + 27λ+ 27)x2 + (λ2 + 2λ+ 2)x+ λ+ 1

(3.25)

and

h′′(x) = 15λ2x4 − (40λ2 + 80λ)x3 + (36λ2 + 132λ+ 72)x2 (3.26)

− (12λ2 + 54λ+ 54)x+ λ2 + 2λ+ 2.

First, we show that h′′(x) = 0 has two solutions on [0, 1]. Note that 0 and 1 are

not solutions since h′′(0) = λ2 + 2λ+ 2 > 0 and h′′(1) = 20. If p(x) is a univariate

polynomial of degree n then the variation of signs Vc(p) of p(x) at x = c is the

number of sign changes of consecutive elements in the sequence

{p(j)(x)}nj=0

∣∣
x=c

= {p(c), p′(c), . . . , p(n)(c)} (ignoring any terms that are 0). By

Budan-Fourier theorem, the number of roots on [0, 1] of h′′(x) = 0 is

V0(h′′)− V1(h′′)− 2k where k ∈ N ∪ 0. We have at x = 0

h′′(0) = λ2 + 2λ+ 2 (3.27)

h′′′(0) = −12λ2 − 54λ− 54

h(4)(0) = 72λ2 + 264λ+ 144

h(5)(0) = −240λ2 − 480λ

h(6)(0) = 360λ2
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and at x = 1

h′′(1) = 20 (3.28)

h′′′(1) = −30λ+ 90

h(4)(1) = 12λ2 − 216λ+ 144

h(5)(1) = 120λ2 − 480λ

h(6)(1) = 360λ2

Clearly, V0(h′′) = 4 for any λ > 0. However, there are different sequences

{h(2+j)(x)}4
j=0

∣∣
x=1

for λ > 0. Nevertheless, V1(h′′) = 2 for any λ > 0. To see this,

one has to consider sequences, which correspond to different λ. It is easily verified

by inspection, considering the intervals (0, 9−
√

69], (9−
√

69, 3], (3, 4], (4, 9 +
√

69]

and (9 +
√

69,∞) separately, that V1(h′′) = 2 for every λ > 0.

Therefore, the number of solutions on [0, 1] to h′′(x) = 0 is at most

V0(h′′)− V1(h′′) = 2, counted with multiplicity. Furthermore, by (3.27) and (3.28)

h′′(0) > 0 and h′′(1) > 0 for any λ > 0. However, h′′(0.5) = −0.0625λ2 − 2λ− 7 < 0

for any λ > 0. Thus, h′′(x) = 0 has exactly two roots on [0, 1] and let us denote

them by x1 and x2, so that we have 0 < x1 < 0.2 < x2 < 1.

Moreover, h′′(x) > 0 for x ≤ 0 and any λ > 0. Indeed, h′′(0) > 0 by (3.27),

limx→−∞ h
′′(x) =∞ and by Descartes rule of signs h′′(x) = 0 does not have a

negative solution.

Consider the third derivative of function h(x),

h′′′(x) = 60λ2x3 − 120λ(λ+ 2)x2 + (72λ2 + 264λ+ 144)x− 12λ2 − 54λ− 54. (3.29)

By Descartes’ rule of signs the equation h′′′(x) = 0 does not have a negative root

and h′′′(0) = −12λ2 − 54λ− 54 < 0 for any λ > 0, that is, h′′′(x) < 0 for x ≤ 0.

Thus, function h′(x) has two critical points on (−∞, 1], i.e., at x1 and x2. Since

h′′(x) > 0 and h′′′(x) < 0 for x ≤ 0 then x1 corresponds to a maximum point while
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x2 to a minimum point of h′(x). Also, note that h′(1) = 0 since x = 1 is a root of

multiplicity 2 of h(x) = 0. Hence, min[0,1] h
′(x) < 0. From this, it also follows that

h′(x) = 0 has a unique root on (0, 1), denote the root by x̂.

Equation g′(x) = h′(x) has a unique negative solution. To see this note that

h′(0) = 1 + λ > λ = g′(0) and the limits of g′(x) and h′(x) as x→ −∞ are 0 and

−∞, respectively. The solution is unique since otherwise by Rolle’s theorem

g′′(x) = h′′(x) would have a negative solution which contradicts to the above

consideration. Denote the solution by x̄.

Let x∗ be the smallest inflection point of h′(x) on (−∞, x2), i.e., the smallest

solution of h′′′(x) = 0 on (−∞, x2) where existence follows by Rolle’s theorem from

the above consideration of h′′(x), that is, h′′(x) = 0 has exactly two roots on

(−∞, 1]. Moreover, x∗ ∈ (x1, x2). To see this it is enough to show that h′′′(x) does

not have a solution on [0, x1 + ε] for some small ε > 0. Consider interval [0, 0.2] and

show that h′′(x) = 0 has a unique root on the interval while h′′′(x) = 0 does not

have a solution on the interval. Again, by Budan-Fourier theorem the number of

roots on [0, 0.2] of h′′(x) = 0 is V0(h′′)− V0.2(h′′)− 2k where k ∈ N ∪ 0 and

h′′′(x) = 0 has V0(h′′′)− V0.2(h′′′)− 2j roots on [0, 0.2], where j ∈ N ∪ 0. We have

already found the values of h′′(x) with her derivatives at x = 0 in Eqns. (3.27). Now

we consider functions at x = 0.2

h′′(0.2) = −0.256λ2 − 4.16λ− 5.92 (3.30)

h′′′(0.2) = −1.92λ2 − 10.8λ− 25.2

h(4)(0.2) = 31.2λ2 + 168λ+ 144

h(5)(0.2) = −168λ2 − 480λ

h(6)(0.2) = 360λ2

From (3.27) and (3.30), it is easy to see that V0(h′′)− V0.2(h′′) = 1 and

V0(h′′′)− V0.2(h′′′) = 0 for any λ > 0. That is, h′′(x) = 0 has a unique solution on
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[0, 0.2] and h′′′(x) = 0 does not have solutions on that interval. Since h′′′(x) < 0 for

x ≤ 0 there is no solution of h′′′(x) = 0 on (−∞, x∗), i.e., x∗ is the overall smallest

solution of h′′′(x) = 0. Thus, h′′′(x) < 0 for x ∈ (0, x∗), in particular, for

x ∈ (0, x1) ⊂ (0, x∗). Indeed, h′′′(x) = 0 does not have solutions on (−∞, x∗) and

h′′′(0) < 0.

At the beginning, we showed that there is a solution on (0, 1) of g′(x) = h′(x).

Now, we show that it is unique.

Clearly, there is no solution to g′(x) = h′(x) on (x̂, 1) since h′(x) < 0 < g′(x).

Consider two cases with respect to x∗. First, if x̂ < x∗ then there exists a unique

solution to g′(x) = h′(x) on (0, x̂) ⊂ (0, 1). Indeed, g′(x) is convex and h′(x) is

concave on (−∞, x̂) so there are at most two solutions. One solution is x̄ and the

other one is in (0, x̂) since h′(0) > g′(0) while h′(x̂) = 0 < g′(x̂) for any λ > 0.

Now, consider x̂ > x∗ then g′(x) and h′(x) have qualitatively similar behavior on

[x̄, x̂] as g(x) and h(x) on [0, 1] in the case k = 2. Since h′(0) > g′(0) and

h′(x̂) < g′(x̂) there is a solution to g′(x) = h′(x) on (0, x̂) ⊂ (0, 1). Assume first that

there is a solution on (0, x∗) ⊂ [x̄, x∗) then it is unique since g′(x) is convex and

h′(x) is concave on the last interval and x̄ < 0 is a solution, moreover, in this case

h′(x∗) < g′(x∗).

If there is a solution on (x∗, x̂) then it is unique since g′(x) is strictly increasing

and h′(x) is strictly decreasing on this interval. In particular, one must have in this

case that h′(x∗) > g′(x∗).

Moreover, the last two sub-cases for x̂ > x∗ are mutually exclusive due to the

values of functions at x = x∗. Hence, combining the above results we get that

g′(x) = h′(x) has a unique solution on [0, 1] for any λ > 0. As said above, this

implies that for any λ > 0 there is a unique root x3(λ) in (0, 1) of g(x) = h(x), and

thus a unique fixed point x3(λ) in (0, 1) of f̄3.

One can check that f̄ ′3(x) = 0 at 0 and 1, and thus these two fixed points are
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stable. Furthermore, f̄3(x) is increasing on [0, 1] and using the stability of the fixed

points 0 and 1, and the uniqueness of the fixed point x3(λ), it follows that x3(λ) is

an unstable fixed point.

For all cases considered above 0 is a fixed point of f̄ . As we noted before, the

error f(x)− f̄(x) is 0 at 0, so this fixed point is also a fixed point of f(x) for any N .

If x is an unstable fixed point of f̄ with f̄ ′(x) > 1, then (3.11) implies that f(x) has

a fixed point shifted from x at most by O(1/N). These arguments are valid in case

λ is a fixed constant independent of N .

Let p denote the probability that a node is initially activated and pc be the

nontrivial solution(s) derived above. Since ρt is a Markov process, for the mean-field

approximation we obtain the following theorem.

Theorem 17. In the mean-field approximation of the bootstrap percolation on

random graph GZ2
N ,pd

there exists a critical probability pc such that for a fixed p,

with high probability for large N , all vertices will eventually be active if p > pc,

while all vertices will eventually be inactive for p < pc. The value of pc is given as

the function of k and λ as follows:

(i) For k = 0 and any λ, pc = 0 and all vertices will become active in one step for

any p.

(ii) For k = 1 and any λ, pc = 0, i.e., for any fixed p > 0, all vertices will

eventually become active with high probability.

(iii) For k = 2 and any λ, pc = x2(λ), where x2(λ) ∈ (0, 1) is a nontrivial solution

to x = f̄2(x).

(iv) For k = 3 and any λ, pc = x3(λ), where x3(λ) ∈ (0, 1) is a nontrivial solution

to x = f̄3(x).

Proof. Consider the case 0 ≤ p < pc (and thus (iii) or (iv)); the case pc < p ≤ 1 is

similar and (i) and (ii) are trivial. In the limit as N →∞, ρ0 = p and ρt is
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deterministic with ρt+1 = f̄(ρt). Since p < pc, the sequence ρt = f̄ t(p) converges, as

t→∞, to the fixpoint 0. Furthermore, because f̄ ′(0) = 0, the convergence is (at

least) quadratic, and in particular geometric.

Now consider a fixed positive integer N . The deterministic sequence f̄ t(p) just

considered reaches below 1/N for t ≥ tN , where tN = O(logN). The sequence ρt is a

random perturbation of f̄ t(p). In each step, we have two sources of error: the

difference in mean f(ρt)− f̄(ρt) = O(1/N), by (3.11), and the random error coming

from the binomial distributions in (3.2), which by a standard Chernoff bound is

O(N−0.9) with probability 1−O(N−1), say. Since further |f ′(x)| ≤ 1 for small x,

the combined error from the first tN steps is tN(O(N−1) +O(N−0.9)) = O(N−0.8)

with probability 1−O(tNN
−1) = 1− o(1). Hence, with high probability, we reach a

state with ρt = O(N−0.8). Then f(ρt) = O(ρ2
t ) = O(N−1.6), and by another Chernoff

bound (or Chebyshev’s inequality), ρt+1 = O(N−1.6) with high probability. But then

f(ρt+1) = O(ρ2
t+1) = O(N−3.2), and thus (conditionally given ρt+1), the expected

number of active vertices at time t+ 2 is N2f(ρt+1) = O(N−1.2) = o(1), and thus

with high probability there are no active vertices at all at time t+ 2.

Lemma 18. For k = 2, 3, pc = xk(λ), is a non-increasing function of λ.

We provide two proofs of Lemma 18. The first proof is based on the definition

of random graph GZ2
N ,pd

. The second one utilizes the properties of functions g(x)

and h(x) defined in the proof of Proposition 16.

Proof. 1. If we increase λ, then the average number of edges is increased. Moreover,

if GN(λ) denotes the random graph GZ2
N ,pd

with parameter λ, and λ1 < λ2, then we

can couple the random graphs GN(λ1) and GN(λ2) such that GN(λ1) ⊆ GN(λ2); it

is then evident that if all vertices eventually are activated in GN(λ1) (for a given

initially active set), then so are all vertices in GN(λ2). The same holds for the

mean-field approximation, where again we can couple two models with parameters
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λ1 and λ2, with λ1 < λ2, such that the set of activated vertices for λ1 is a subset of

the set of activated vertices for λ2. It follows that in Theorem 17, pc(λ1) ≥ pc(λ2),

i.e., pc is a non-increasing function of λ.

Proof. 2. For k = 2 or 3, denote the functions g(x) and h(x) from corresponding

cases of the proof of Proposition 16 by gk(x) and hk(x), and let

Fk(λ, x) = gk(x)− hk(x). Then xk(λ) is a root of Fk(λ, x) = 0. We have shown that

gk(x) = hk(x) has a unique root in (0, 1) and the proofs also show that the root is

simple, so ∂Fk/∂x = g′k(x)− h′k(x) 6= 0 at x = xk(λ). It follows from the implicit

function theorem that xk(λ) is an infinitely differentiable function of λ ∈ (0,∞),

and that

dxk(λ)

dλ
= −∂Fk/∂λ

∂Fk/∂x
(λ, xk(λ)). (3.31)

Now, Fk(λ, 1) = gk(1)− hk(1) > 0, and thus Fk(λ, x) > 0 for x > xk(λ).

Consequently, ∂Fk/∂x > 0 at x = xk(λ).

The denominator of (3.31), ∂Fk/∂x, is always positive for k = 2, 3. To see this,

first, recall that xk(λ) is the unique root of Fk(λ, x) = 0 on (0, 1) and x = 0 is also a

root. It was shown that g′3(x) = h′3(x) has a unique root x̂ on (0, 1) for k = 3, that

is, x̂ is the unique solution on (0, 1) of ∂F3/∂x = 0.

In the case k = 2 there is also a unique solution on (0, 1) of g′2(x) = h′2(x).

Indeed, as it was shown in the uniqueness part, both equations h′2(x) = 0 and

h′′2(x) = 0 have unique solution on (0, 1) which are unique on (−∞, 1), denote the

solutions by x̂ and x1, correspondingly. Moreover, x = 1 is the solution of

multiplicity two of h′2(x) = 0. This implies that x1 ∈ (x̂, 1). Since h′2(0) > g′2(0) and

h′2(1) < g′2(1) for any λ > 0 the equation g′2(x) = h′2(x) has a solution on (0, 1).

Furthermore, h′′2(0) = −8λ− 18 < 0 for any λ > 0. Therefore, h′2(x) is decreasing on

(−∞, x̂) and the function is negative on (x̂, 1), see proof of Proposition 16.

However, g′2(x) is a strictly increasing, positive function for any x and λ > 0. Hence,
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there is no negative solutions and the solution on (0, x̂) is unique.

Thus, in both cases k = 2, 3 by Rolle’s theorem 0 < x̂ < xk(λ). At x = 0,

∂Fk(λ, x)/∂x
∣∣
x=0

= g′k(0)− h′k(0) = −1 < 0 for any λ > 0. Therefore, at the solution

xk(λ), 0 < x̂ < xk(λ), we have ∂Fk(λ, x)/∂x
∣∣
x=xk(λ)

> 0, that is, the the

denominator of (3.31) is positive for any λ > 0.

In the case k = 2 the numerator of (3.31) is

∂F2/∂λ
∣∣
x=x2(λ)

= x
(
eλx − (1− x)4

) ∣∣
x=x2(λ)

= x2(λ)
(
eλx2(λ) − (1− x2(λ))4

)
> 0,

because (1− x2(λ))4 < 1 ≤ eλx2(λ). Hence, dx2(λ)/dλ < 0 for any λ > 0.

For k = 3 the numerator of (3.31) is given by

∂F3/∂λ
∣∣
x=x3(λ)

= x
(
eλx − (1− x)3(1 + 4x+ λx− λx2)

) ∣∣
x=x3(λ)

= x3(λ)
(
eλx3(λ) − (1− x3(λ))3(1 + 4x3(λ) + λx3(λ)− λx2

3(λ))
)
.

Note that in this case the numerator of (3.31) is ∂F3/∂λ(λ, x) = xF2(x). Therefore,

∂F3/∂λ > 0 if F2(x3(λ)) > 0 (the first factor of ∂F3/∂λ is positive because

x3(λ) ∈ (0, 1)). Since x2(λ) is the unique solution of F2(x) = 0 on (0, 1) and

F2(1) > 0 it is enough to show that x2(λ) < x3(λ) for any λ > 0.

In both cases, k = 2, 3, the left hand sides of gk(x) = hk(x) are the same, i.e.,

gk = eλx and this is a strictly increasing function. We also know that x = 0 is the

solution of gk(x) = hk(x) for k = 2, 3. Thus, if h3(x) > h2(x) then F2(x3(λ)) > 0.

First, we need to solve h3(x) = h2(x) which reduces to

1
2
x2(1− x)2(λ2x2 − (2λ2 + 10λ)x+ λ2 + 10λ+ 20) = 0. Clearly, 0 and 1 are solutions

of multiplicity 2 and the other two solutions are 1 + (5±
√

5)/λ. Since

1 + (5±
√

5)/λ > 1 for any λ > 0 the sign of h3(x)− h2(x) is not changed on (0, 1)

for any λ > 0. We have that h3(x)− h2(x) > 0 on (0, 1) because the difference of

two functions is positive at −∞, x = 0 is a root of multiplicity 2 and there is no
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Figure 4: Critical probability pc as a function of λ for k = 2, 3. The curves are
calculated as the unique solutions in (0, 1) of equations (3.23) and (3.24), respectively.

negative solutions of h3(x) = h2(x).

Thus, h3(x) > h2(x) on (0, 1) for any λ > 0 which implies that F2(x3(λ)) > 0.

Consequently, in case k = 3 the numerator of (3.31) is positive at x3(λ) for any

λ > 0.

Corollary 19. Cases (iii) and (iv) of Theorem 17 can be sharpened as follows.

(iii) For k = 2 and any λ, pc = x2(λ), where x2(λ) ∈ (0, x2(0)] is a unique solution

to x = f̄2(x) and x2(0) ≈ 0.132.

(iv) For k = 3 and any λ, pc = x3(λ), where x3(λ) ∈ (0, x3(0)] is a unique solution

to x = f̄3(x) and x3(0) = 0.5.

Proof. The values

x2(0) = 11
12
− 1

12
(235 + 6

√
1473)1/3 − 13

12
(235 + 6

√
1473)−1/3 ≈ 0.131123, and

x3(0) = 1
2

can be easily obtained from (3.23) and (3.24), respectively. Assuming

Lemma 18, for k = 2, 3 we have that xk(λ) ≤ xk(0), i.e., Corollary 19 holds.

It is also easy to see that for any fixed p > 0, if λ is large enough, then the

proportion of vertices active after the first step is more than, say, 0.6 > pc, and thus

eventually all vertices will be active. Consequently, pc = xk(λ)→ 0 as λ→∞. The

dependence of pc on λ (for k = 2, 3) is shown in Figure 4.
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Remark 20. Note that for k ≥ 5, an inactive vertex will remain inactive for ever.

Hence, unless all vertices are activated at the beginning, there is at each step a set

of inactive vertices. Furthermore, every neighbor of an inactive vertex becomes

inactive; hence, for the graph GZ2
N ,pd

, every vertex will become inactive after at most

N steps. For the mean-field approximation, every vertex has at least a fixed positive

probability of becoming inactive at every step; hence (almost surely) every vertex

will eventually become inactive in the mean-field approximation, too.
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CHAPTER 4

BOOTSTRAP PERCOLATION ON GZ2
N ,PD

WITH TWO TYPES OF

VERTICES

In this chapter we generalize a non-monotone bootstrap percolation with one

type of vertex on random graph GZ2
N ,pd

considered in Chapter 3 for the case of two

types of vertices. In order to study the process, we will utilize the properties of the

graph, which we studied in Chapter 2.

This chapter is a joint work with Robert Kozma, and Miklós Ruszinkó; and is

partly based on our forthcoming paper.

4.1 The present state of bootstrap percolation with two types of vertices

In the last decades, interest in bootstrap percolation has increased significantly.

The direct connection between bootstrap percolation models on Z2 and cellular

automata has plaeds an important role in the development of both fields [23, 22].

In all the models mentioned a unique type of vertices was considered. In [30]

bootstrap percolation theory was generalized to the case of two types of vertices.

Authors considered the bootstrap percolation process on Gn,p where vertices are of

two types. Percolation was defined according to one type. Thresholds for

percolation with respect to the size of the set of initially active sites, a, and graph

parameter p as well as the time until termination were derived.

4.2 Definition of the process

We define the bootstrap percolation with two types of vertices on GZ2
N ,pd

as

follows. Each vertex of the graph is defined by two variables: type and state. The

vertex is either of the first (excitatory E) or second (inhibitory I) type. The state of

the vertex is either active or inactive. We assume that the type of vertex is selected

randomly at the beginning and it remains unchanged through the process, during

which a vertex is of the first type with probability ω. However, the state of the
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vertex changes over time according to a non-monotone bootstrap percolation with

two types of vertices (for a short - activation process) which will be defined next.

Let A(t) be the set of all active vertices at time t, while A1(t) and A2(t) are the

sets of active vertices of the first and second types at time t, respectively;

A(t) = A1(t) ∪ A2(t). The state of a vertex v is defined by the potential function

χv(t) such that χv(t) = 1 if vertex v is active at time t, otherwise χv(t) = 0.

Therefore,

Ai(t) = {v ∈ V (GZ2
N ,pd

)
∣∣ χv(t) = 1 & v is of type i},

where i = 1, 2. At the beginning, we activate each vertex with probability p,

independently of its type and of all other vertices. Let A(0) be the random subset of

initially active vertices.

Non-monotone bootstrap percolation with two types of vertices is defined for

each type separately. For a vertex v of the first type,

χv(t+ 1) = 1

 ∑
u∈N1(v)

χu(t)−
∑

u∈N2(v)

χu(t) ≥ k

 , (4.1)

where N1(v) and N2(v) denote the subsets of vertices in the closed neighborhood of

the vertex v, of the first and second types, respectively; and 1 is the indicator

function. Here k ∈ Z+ is a threshold required for the vertex to be in the active

state. The rule for a vertex v of the second type is defined as

χv(t+ 1) = 1

 ∑
u∈N1(v)

χu(t) +
∑

u∈N2(v)

χu(t) ≥ k

 = 1

 ∑
u∈N(v)

χu(t) ≥ k

 , (4.2)

where N(v) = N1(v) ∪N2(v) is the closed neighborhood of vertex v.

It can be observed that A(t) does not necessarily grow monotonically during the

activation process even in the absence of vertices of the second type, as discussed in

Chapter 3, whereas monotonicity is a typical assumption in most bootstrap
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percolation models considered previously.

4.2.1 Mean-field approximation

In the case where there are two types of vertices we need to take into account

the evolution of two density functions that correspond to active vertices of each

type. Let

ρ
(1)
t =

|A1(t)|
ωN2

(4.3)

and

ρ
(2)
t =

|A2(t)|
(1− ω)N2

(4.4)

be the densities of active vertices of the first and second types relative to the total

number of vertices of these types, correspondingly. Then, in particular, the density

of all active vertices is given by

ρt = ωρ
(1)
t + (1− ω)ρ

(2)
t =

|A1(t)|+ |A2(t)|
N2

.

Based on definitions (4.3) and (4.4), we can also find the probability of the

event Bi(t) = {an active vertex at time t is of the type i}

P(B1(t)) =
A1(t)

A1(t) + A2(t)
= 1− (1− ω)ρ

(2)
t

ωρ
(1)
t + (1− ω)ρ

(2)
t

(4.5)

and

P(B2(t)) =
A2(t)

A1(t) + A2(t)
=

(1− ω)ρ
(2)
t

ωρ
(1)
t + (1− ω)ρ

(2)
t

. (4.6)

The function from the last expression can be denoted by h(x, y, ω) = (1−ω)y
ωx+(1−ω)y

,

where it is assumed that ωx+ (1− ω)y > 0.

Next, some functions and their meaning will be introduced, which we will use in

the following lemmas. As in Chapter 3, we are interested in the dynamics of the
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density function; here we consider ρ
(1)
t and ρ

(2)
t . In this section we need to study the

dynamics of a coupled system (4.3) and (4.4) since A1(t) and A2(t) are dependent.

However, we can still consider the expectations of ρ
(1)
t and ρ

(2)
t to study their

dynamics. In order to do this, we introduce functions f±i (x, y), i = 1, 2, which

describe the probabilities for vertices of i-th type to stay active (+) or to become

active (−) at the next time step.

Let us first consider events which describe functions f±i (x, y, ω). For simplicity,

we show the derivation of only function f+
1 (x, y, ω); the other functions can be

derived in a similar way. Let C = {v will be active
∣∣ v is active excitatory}. Let

Dn−4 = {v will be active
∣∣ v is active excitatory and deg(v) = n− 4}. Let Fi−1 = {v

will be active
∣∣ v is active excitatory and deg(v) = n− 4 and out of n neighbors

exactly i− 1 are active}. Finally, Hi−1 = {out of n neighbors exactly i− 1 are

active}. Then we have

f+
1 (x, y, ω) = P(C) =

N2−1∑
n=4

P(Dn−4)P(deg(v) = n− 4) =

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

P(Fi−1)P(Hi−1) (4.7)

Thus,

f+
1 (x, y, ω) =

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

p1+
i (x, y, ω) ·(

n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1 (4.8)

f−1 (x, y, ω) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

p1−
i (x, y, ω) ·(

n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i (4.9)
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f+
2 (x, y, ω) =

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

p2+
i ·(

n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1 (4.10)

f−2 (x, y, ω) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

p2−
i ·(

n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i (4.11)

where pj−i = P(a vertex will be active
∣∣ the vertex is non-active, of type j and it has

i active neighbors in the closed neighborhood) and pj+i = P(a vertex will be active
∣∣

the vertex is active, of type j and it has i active neighbors in the closed

neighborhood), for j = 1, 2, and are defined as follows

p1+
i (x, y, ω) =

b i−k2 c∑
t=0

(
i− 1

t

)
ht(x, y, ω)(1− h(x, y, ω))i−t−1, (4.12)

p1−
i (x, y, ω) =

b i−k2 c∑
t=0

(
i

t

)
ht(x, y, ω)(1− h(x, y, ω))i−t, (4.13)

p2±
i =


1 , i ≥ k,

0 i ≤ k − 1

(4.14)

where ω is the probability that a vertex is of the first type (defined at the beginning

of the process).

Remark 21. For simplicity we mostly omit the argument ω from the functions

f1(x, y, ω), f2(x, y, ω), and f±1 (x, y, ω), f±2 (x, y, ω). In particular, all statement are

for an arbitrary ω ∈ (0, 1) unless additionally stated.

Lemma 22. For the mean-field approximation on the graph GZ2
N ,pd

with N2

vertices of two types, and a vertex is of the first type with probability w, ρ
(i)
t is a
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Markov process for i = 1, 2 given by

ωN2ρ
(1)
t+1 = Bin(ωN2ρ

(1)
t , f+

1 (ρ
(1)
t , ρ

(2)
t ))

+ Bin(ωN2(1− ρ(1)
t ), f−1 (ρ

(1)
t , ρ

(2)
t )), (4.15)

(1− ω)N2ρ
(2)
t+1 = Bin((1− ω)N2ρ

(2)
t , f+

2 (ρ
(1)
t , ρ

(2)
t ))

+ Bin((1− ω)N2(1− ρ(2)
t ), f−2 (ρ

(1)
t , ρ

(2)
t )), (4.16)

respectively, where f±i (x, y) are defined in (4.8)-(4.11).

Moreover, given ρ
(i)
t , ρ

(i)
t+1 has mean fi(ρ

(1)
t , ρ

(2)
t ), for i = 1, 2, and variance

g1(ρ
(1)
t , ρ

(2)
t )/ωN2 and g2(ρ

(1)
t , ρ

(2)
t )/((1− ω)N2), respectively, where

f1(x, y) = xf+
1 (x, y) + (1− x)f−1 (x, y), (4.17)

f2(x, y) = yf+
2 (x, y) + (1− y)f−2 (x, y), (4.18)

and

g1(x, y) = xf+
1 (x, y)(1− f+

1 (x, y)) + (1− x)f−1 (x, y)(1− f−1 (x, y)), (4.19)

g2(x, y) = yf+
2 (x, y)(1− f+

2 (x, y)) + (1− y)f−2 (x, y)(1− f−2 (x, y)). (4.20)

Proof. This is clear, since it is assumed in the MF approximation that a vertex has

deg(v) + 4 neighbors, each is active with probability ρ
(i)
t , for i = 1, 2, and of the first

type with probability ω, independent of one another and of deg(v); and different

vertices are considered as independent.

The explicit study of the dynamics of ρ
(1)
t and ρ

(2)
t requires solutions for the

following system of fixed-point equations f1(x, y) = x,

f2(x, y) = y.
(4.21)

However, due to the complex form of function fi(x, y), i = 1, 2, it is hard to find a
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solution for the system. Instead, in the next section we approximate the behavior of

ρ
(1)
t and ρ

(2)
t for some values of the initialization probability, i.e., the probability that

a vertex is active at t = 0, using results from Chapter 3.

4.2.2 Special cases of f2(x, y) = y

In Section 3 it was pointed out that for k ≥ 5 there will be vertices which will

stay inactive for ever as long as they were not activated at the beginning. This is

because there are vertices with degree 4 with positive probability.

In the case of two types of vertices, the closed neighborhood of a vertex contains

a vertex of each type with positive probabilities. Combining this with the fact that

there are vertices of degree 4 with positive probability, one can consider k ≤ 4 since

otherwise there will be vertices which are inactive unless they were activated at the

beginning. Here we consider for simplicity k = 0, 1, 2.

The analysis of the second equation of (4.21) is much easier than that of the

first one due to the definition of p2±
i . For this reason, we begin with (4.18). For

k = 0 one gets

f2(x, y) = yf+
2 (x, y)− (1− y)f−2 (x, y) =

y
N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

(
n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1+

(1− y)
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

(
n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i,

(4.22)

and for k > 0

f2(x, y) = y

N2−1∑
n=4

P(deg(v) = n−4)
n+1∑
i=k

(
n

i− 1

)
(ωx+(1−ω)y)i−1(1−ωx−(1−ω)y)n−i+1

+ (1− y)
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=k

(
n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i.

(4.23)
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The simplified versions of the above equations for k = 0, 1, 2 are

f 0
2 (x, y) = 1, (4.24)

f 1
2 (x, y) = 1 + (y − 1)

N2−1∑
n=4

P(deg(v) = n− 4)(1− ωx− (1− ω)y)n, (4.25)

f 2
2 (x, y) = 1−

N2−1∑
n=4

P(deg(v) = n− 4)(1− ωx− (1− ω)y)n + (4.26)

(y − 1)
N2−1∑
n=4

P(deg(v) = n− 4)n(ωx+ (1− ω)y)(1− ωx− (1− ω)y)n−1,

where we denoted f2(x, y) for a particular k by fk2 (x, y).

The feasible solutions of (4.21) are the solutions of f2(x, y) = y. For k = 0 one

has pair(s) of the form (x∗, 1) where x∗ is the solution of x = f 0
1 (x, 1) since y = 1 is

the unique solution of f 0
2 (x, y) = y for any x.

Using an approximation of the degree distribution by the Poisson distribution,

Lemma 12, for k = 1 the equation f 1
2 (x, y) = y becomes

(1− y)eλ(ωx+(1−ω)y) = (1− y)(1− ωx− (1− ω)y)4. (4.27)

Clearly, y = 1 is a solution. Let z = ωx+ (1− ω)y then after dividing each side of

the above equation by (y − 1) it can be written as

eλz = (1− z)4 (4.28)

which has a unique solution z = 0 on [0, 1]. Since ω 6= 0, 1, we have that z = 0 is, if

and only if, x = 0, y = 0. Thus, for k = 1 there are two feasible solutions (0, 0) and

(x∗, 1) where x∗ is a solution of f 1
1 (x, 1) = x.

Finally, for k = 2 the equation f 2
2 (x, y) = y can be rewritten using the
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approximation of degree distribution, Lemma (12), as

(1− y)eλ(ωx+(1−ω)y) = (1− y)(1− ωx− (1− ω)y)3 (4 + λ− λ(ωx+ (1− ω)y))

(ωx+ (1− ω)y) + (1− ωx− (1− ω)y)4.(4.29)

In the last equation there are no obvious solutions. Even solution y = 1 exists only

if x = 1 in contrast to the cases k = 0, 1, i.e., (1, 1) is a feasible solution.

Another special case is found when y = 0, and in this case we have

eλωx = (1− ωx)3
(
1 + λωx+ 3ωx− ω2x2

)
(4.30)

which is closely related to the case k = 2 as considered in Chapter 3. However, the

above equation has the (only unique) solution ωx = 0, that is, x = 0, since the

derivatives of the LHS and the RHS of (4.30) have the same derivative at x = 0 and

the other properties of the functions are the same as in the corresponding case

considered in Chapter 3.

Thus, there are at least two feasible solutions of (4.21), namely, (0, 0) and (1, 1).

4.2.3 Estimation of function f1(x, y)

Consider now function f1(x, y) and that by using the definition of f±1 and p1±
i

we get

f1(x, y) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

(
n

i

)
(ωx+ (1− ω)y)i

(1− ωx− (1− ω)y)n−i
(
xp1+

i+1 + (1− x)p1−
i

)
(4.31)

By the definition f1(x, y) ≤ 1. In fact, f1(x, y) = 1 iff y = 0 and x > 0. To see this,

note that (4.31) without the last factor adds up to 1. Let us estimate this factor

62



xp1+
i+1 + (1− x)p1−

i = x

b i−k+1
2 c∑
t=0

(
i

t

)
ht(x, y, ω)(1− h(x, y, ω))i−t +

(1− x)

b i−k2 c∑
t=0

(
i

t

)
ht(x, y, ω)(1− h(x, y, ω))i−t, (4.32)

which is at most 1 since each sum is so. Moreover, (4.32) is 1 iff y = 0 (as before we

assume ω 6= 0, 1).

Therefore, f1(x, y) < 1 for any x and y > 0. This observation is intuitively clear

since if there is some portion of active veritces of the second type then they will

reduce the total activation of vertices of the first type. Hence, the density of active

vertices of the first type ρ
(1)
t is never 1.

By simple substitution, it can be seen that x = 0, y = 0 satisfies f1(x, y) = x for

any ω and k. Combining this with consideration of f2(x, y) = y we have that (0, 0)

is a solution of (4.21) for k = 1, 2.

4.3 Properties of transition probabilities

In this section we consider the properties of f1(x, y) and f2(x, y), and build some

bounds of these functions, which are useful in the description of certain types of

dynamics of the model. As discussed in Chapter 3, we will focus on the case of

k ≤ 3. Nevertheless, the following statement may be obtained.

Claim 23. Functions f1(x, y) and f2(x, y) are non-increasing in k for fixed x, y, ω.

Proof. The statement follows from the definitions of the functions.

For the purpose of this work, an auxiliary result for stochastic ordering will be

stated next. Let a measurable space (R,B(R)) be equipped with two probability

measures P1 and P2, thus the stochastic ordering is the partial ordering

P1 ≤st P2 iff P1([x,∞)) ≤ P2([x,∞)) for all x ∈ R. (4.33)
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The last condition is equivalent to the existence of a real-valued random variable Xi

with distribution Pi, i = 1, 2, such that X1 ≤ X2 almost surely. In the case of

binomial distributions, the following criterion can be used

Lemma 24. Let Xi be a binomial random variable Bin(n, pi), i=1,2. Then for any

k ∈ N0, P(X1 ≥ k) ≤ P(X2 ≥ k), if and only if, p1 ≤ p2.

The statement can be proved, for example, by a coupling technique; for a proof see,

e.g., [44].

Lemma 25. Function f2(x, y) is nondecreasing with respect to x for any fixed y,

and with respect to y for any fixed x. In particular, f2(0, y) ≤ f2(x, y), and

0 ≤ f2(0, y) < 1 for any k > 0.

Proof. Let us consider the following difference

f2(x+δ, y)−f2(x, y) = y
(
f+

2 (x+ δ, y)− f+
2 (x, y)

)
+(1−y)

(
f−2 (x+ δ, y)− f−2 (x, y)

)
,

(4.34)

for an arbitrary δ > 0. According to the definition of functions f±2 (x, y), and

Lemma 24, it follows that f±2 (x, y) is a nondecreasing function in x for any fixed y,

that is, f±2 (x+ δ, y)− f±2 (x, y) ≥ 0, which implies that so is f2(x, y). Hence,

f2(0, y) ≤ f2(x, y).

Let δ be an arbitrary positive number, and consider the statement with respect

to y,

f2(x, y + δ)− f2(x, y) =

(y + δ)f+
2 (x, y + δ) + (1− y − δ)f−2 (x, y + δ)yf+

2 (x, y)− (1− y)f−2 (x, y) =

y
(
f+

2 (x, y + δ)− f+
2 (x, y)

)
+ (1− y)

(
f−2 (x, y + δ)− f−2 (x, y)

)
+

δ
(
f+

2 (x, y + δ)− f−2 (x, y + δ)
)
. (4.35)

The first two terms are nonnegative since f±2 (x, y + δ)− f±2 (x, y) ≥ 0, which follow

on from Lemma 24. The last term is also nonnegative because after a change of
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variables f+
2 (x, y + δ) can be expressed as f−2 (x, y + δ) + δ̃, for some δ̃ ≥ 0.

Now we can consider the bounds of f2(0, y). The lower bound of f2(0, y) can be

easily seen from the above consideration. Indeed, 0 = f2(0, 0) ≤ f2(0, y). For the

upper bound f2(0, y) ≤ f2(0, 1) ≤ f2(1, 1), where the last inequality is an equality

only if k = 0.

Lemma 26. Function f1(x, y) is nondecreasing with respect to x for any fixed y,

and non-increasing with respect to y for any fixed x.

Proof. The monotonicity can be proved in a similar way as it was done in

Lemma 25. However, it is hard to show it directly using (4.8)- (4.9). Here, we first

introduce equivalent functions of f±1 and then apply the argument.

Let us recall that f+
1 (x, y, ω) = P(C) = P({v will be active

∣∣ v is active

excitatory}). However, instead of conditioning first by the number of active

neighbors, and then choosing only those events, which constitute the rule (4.1), here

we first condition on the types and choose events so that (4.1) holds.

If we consider first the number of neighbors of the second type then

f+
1 (x, y) =

N2−1∑
n=4

P(deg(v) = n− 4)
n∑
j=0

(
n

j

)
ωn−j(1− ω)j ·

j∑
l=0

(
j

l

)
yl(1− y)j−l

n+1−j∑
i=k+l

(
n− j
i− 1

)
xi−1(1− x)n+1−j−i, (4.36)

f−1 (x, y) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
j=0

(
n

j

)
ωn−j(1− ω)j ·

j∑
l=0

(
j

l

)
yl(1− y)j−l

n−j∑
i=k+l

(
n− j
i

)
xi(1− x)n−j−i. (4.37)
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While, if we first condition on the number of neighbors of the first type then

f+
1 (x, y) =

N2−1∑
n=4

P(deg(v) = n− 4)
n∑

j=k−1

(
n

j

)
ωj(1− ω)n−j ·

j∑
l=k−1

(
j

l

)
xl(1− x)j−l

l−k+1∑
i=0

(
n− j
i

)
yi(1− y)n−j−i, (4.38)

f−1 (x, y) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
j=k

(
n

j

)
ωj(1− ω)n−j ·

j∑
l=k

(
j

l

)
xl(1− x)j−l

l−k∑
i=0

(
n− j
i

)
yi(1− y)n−j−i. (4.39)

Let us consider (4.36)-(4.37). It follows from Lemma 24 that f±1 (x, y) are

nondecreasing in x for any fixed y. Since f+
1 (x, y) ≥ f−1 (x, y) a similar estimation as

in the proof of Lemma 25 shows that f1(x, y) is a nondecreasing function in x for

fixed y.

Since the last sums in (4.38)-(4.39) are the left tails of binomial distribution,

f±1 (x, y) decreases in y for any fixed x as indicated by Lemma 24. Hence, so is

f1(x, y) as this is a convex combination of decreasing functions.

Lemma 27. For any x ≤ y the following holds f2(x, y) ≥ f1(x, y) a.s.

Proof. At the initial time moment the type and state of a vertex are chosen

independently of each other. Thus, by the definition of ρ
(i)
t , i = 1, 2, we have

P(ρ
(1)
0 = ρ

(2)
0 ) = 1, i.e., x = y. The difference of the two functions is given by

f2(x, y)− f1(x, y) = (4.40)

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

(
n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1×

[
yp2+

i (x, y, ω)− xp1+
i (x, y, ω)

]
+
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+
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

(
n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i×

[
(1− y)p2−

i (x, y, ω)− (1− x)p1−
i (x, y, ω)

]
,

where the expressions in square brackets are zero for i ≤ k − 1. Let us consider the

expressions at the initial time moment, i.e., when x = y = p. By the definitions of

p1±
i (x, y, ω) and p2±

i (x, y, ω), for any x, y, ω we have

p1±
i (x, y, ω) ≤ p2±

i (x, y, ω). (4.41)

Therefore, f2(p, p) ≥ f1(p, p) a.s., i.e., x ≤ y, since after the initial time moment we

apply the deterministic functions. Now, we shall show that f2(x, y) ≥ f1(x, y) will

remain so. Let us rewrite (4.40) as

f2(x, y)− f1(x, y) =

N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

(
n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i

[
yp2+

i+1(x, y, ω)− xp1+
i+1(x, y, ω) + (1− y)p2−

i (x, y, ω)− (1− x)p1−
i (x, y, ω)

]
. (4.42)

Assume that x ≤ y then using (4.41) we get

yp2+
i+1(x, y, ω)− xp1+

i+1(x, y, ω) + (1− y)p2−
i (x, y, ω)− (1− x)p1−

i (x, y, ω) ≥

yp2+
i+1(x, y, ω)− xp2+

i+1(x, y, ω) + (1− y)p2−
i (x, y, ω)− (1− x)p2−

i (x, y, ω) = 0, (4.43)

since p2−
i (x, y, ω) = p2+

i (x, y, ω) = 1 for i ≥ k.

Let pexc be the critical initialization probability for the mean-field

approximation of the bootstrap percolation model with one type, which was derived

in Chapter 3. Also, we will use function f(·) defined in Lemma 14 for the model

with one type of vertex. Then we have the following

Lemma 28. In the mean-field approximation of bootstrap percolation with two
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types of vertices over GZ2
N ,pd

, all vertices of both types will eventually be inactive if

the initialization probability p < pexc.

Proof. Assume p < pexc. According to Lemma 22 ρ
(i)
t+1 = fi(ρ

(1)
t , ρ

(2)
t ) for i = 1, 2. As

it was stated in the proof of Lemma 27 ρ
(1)
0 = ρ

(2)
0 a.s., which is equal to p. By

simple substitution one can check that f2(p, p) = f(p). In Chapter 3 it was shown

that f(p) < p for p < pexc, see Theorem 17. Therefore, f2(p, p) < p, and

f1(p, p) ≤ f2(p, p) < p as stated in Lemma 27. That is, ρ
(1)
1 ≤ ρ

(2)
1 < p.

For any fixed ρ
(2)
1 < p by Lemma 25 we have

f2(ρ
(1)
1 , ρ

(2)
1 ) ≤ f2(ρ

(2)
1 , ρ

(2)
1 ) < ρ

(2)
1 . (4.44)

On the other hand, f1(ρ
(1)
1 , ρ

(2)
1 ) ≤ f2(ρ

(1)
1 , ρ

(2)
1 ) since ρ

(1)
1 ≤ ρ

(2)
1 as stated in

Lemma 27.

Therefore, for an arbitrary t

ρ
(1)
t+1 = f1(ρ

(1)
t , ρ

(2)
t ) < ρ

(2)
t (4.45)

ρ
(2)
t+1 = f2(ρ

(1)
t , ρ

(2)
t ) < ρ

(2)
t (4.46)

Functions f1(x, y) and f2(x, y) are nonnegative, and ρ
(i)
t are non-increasing for

p < pexc following the above consideration of i = 1, 2. Since ρ
(2)
t is, in fact,

decreasing by (4.46), it can be proven by contradiction that limt→∞ ρ
(2)
t = 0.

However, ρ
(2)
t is a majorant of ρ

(1)
t , i.e., 0 ≤ ρ

(1)
t ≤ ρ

(2)
t , therefore limt→∞ ρ

(1)
t = 0.

According to the above results we can derive the relation between function f(x)

defined in Chapter 3, and functions f1(x, y) and f2(x, y)

f1(x, y) ≤ f(ωx+ (1− ω)y) ≤ f2(x, y). (4.47)
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CHAPTER 5

RANDOMLY CONNECTED PROBABILISTIC CELLULAR

AUTOMATA

In this chapter we consider two coupled probabilistic cellular automata (PCA).

The process is defined on a random graph obtained by random coupling of two grids

such that a node (vertex) of one grid may have at most one edge to a node from the

other grid. This graph can be obtained, for example, by considering a random

injection.

Let us assume that a node in one grid can have an edge to a node in the other

grid. For simplicity, we eliminate one edge to a neighbor of the node in the same

grid, if the specific node has an edge to the other grid as shown in Figure 5.

Each automaton has a majority update rule. In contrast to bootstrap

percolation considered in the previous chapters nodes may have the opposite state

due to the rule with probability ε.

This chapter is partly based on a joint work with Robert Kozma, [65].

5.1 Model

Let us first outline a PCA on a two-dimensional torus T2 = (Z/nZ)2, that is, a

finite grid with periodic boundary conditions. A neighborhood of a node z, Λ, is a

finite subset of T2. For simplicity, it can be assumed that Λ contains only the

nearest neighbors of a node. At each time step, node z becomes either active or

inactive according to an update rule. Instead of considering a deterministic rule, the

following generalization is made in PCA, a node, which is inactive according to the

update rule, can randomly become active with probability ε at the next time step.

Let us call ε the transition probability. In this chapter, two PCA’s are coupled, so

that the processes are defined on two coupled tori. Modified rules for each of the

coupled PCA’s will be described next.
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The first grid

The second grid

Figure 5: The underlying graph structure of the coupled PCA. The shaded nodes
constitute the closed neighborhood of the node shown in the center position in the
first grid.

We distinguish nodes from the grids of the coupled PCA so that they have

different influences on each other. If a node in the first grid has an edge to a node

from the second grid, then there are two possible scenarios:

1. If the node from the second grid is inactive at a certain time step, then it does

not have any influence on the node from the first grid.

2. However, if the node from the second grid is active then the cumulative

activation of the node from the first grid calculated by the summation over

neighbors from the first grid of the given node is reduced by one.

The influence of a node from the first grid connected to a node from the second

grid is defined as

1. If the node from the first grid is inactive then it does not affect the node in

the other grid which has an edge to the given node.

2. On the other hand, if the node from the first grid is active then the cumulative

activation of the node from the second grid calculated by the summation over

neighbors from the second grid of the given node is increased by one.

Let us define a process on the randomly coupled square grids as follows. Every

node is described by its state. The state of a node can be either active or inactive.

At the beginning every node is active with probability p. Note, however, that one
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can consider the case, where the initialization probabilities are different for each of

the coupled grids.

As we did in the previous chapter, let us define the set of all active nodes from

the first grid by A1(t) and from the second one by A2(t). For an arbitrary node v let

χv(t) be its potential function, so that χv(t) = 1 if the node is active, and otherwise

χv(t) = 0. The state of a node can be changed according to a probabilistic

grid-majority rule. For a node v from the first grid we have

χv(t+ 1) = (1− ε) 1

 ∑
u∈N1(v)

χu(t)−
∑

u∈N(v)\N1(v)

χu(t) ≥
⌈
|N1(v)|

2

⌉
+ ε 1

 ∑
u∈N1(v)

χu(t)−
∑

u∈N(v)\N1(v)

χu(t) <

⌈
|N1(v)|

2

⌉ , (5.1)

where 1 is the indicator function, N1(v) is the closed neighborhood of the node v

within the first grid, and N(v) is the closed neighborhood of the node v including

nodes from both grids. The probability that a node will follow the minority of its

neighbors is ε. Due to the definition of the graph on which the process is defined

|N(v) \N1(v)| may be at most 1. The rule for a node v from the second grid is

given by

χv(t+ 1) = (1− ε) 1

 ∑
u∈N2(v)

χu(t) +
∑

u∈N(v)\N2(v)

χu(t) ≥
⌈
|N2(v)|

2

⌉
+ ε 1

 ∑
u∈N2(v)

χu(t) +
∑

u∈N(v)\N2(v)

χu(t) <

⌈
|N2(v)|

2

⌉ , (5.2)

where N2(v) is the closed neighborhood of the node v within the second grid, and

|N(v) \N2(v)| may be at most 1.

The meaning of the rule is the following. Each node follows the majority of its

neighbors with probability 1− ε and the minority with probability ε. The size of

Nj(v), where j = 1, 2, for different nodes from the same grid depends on the edges
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between the grids, and can differ by 1.

Let β be the probability that a node has an edge to a node from the other grid

independently on other nodes.

5.2 Mean-field approximation

For simplicity we consider the mean-field (MF) approximation of the process.

The usual assumptions of the MF approximations were discussed in Chapter 3. In

this section we consider the evolution of two density functions that correspond to

active nodes of the first and second grids. Let

ρ
(1)
t =

|A1(t)|
n2

(5.3)

and

ρ
(2)
t =

|A2(t)|
n2

(5.4)

be the densities of active nodes from the first and second grids, relative to the total

number of nodes in a grid, respectively.

Lemma 29. For the mean-field approximation of the bootstrap percolation process

with grid-majority update rule on randomly coupled grids with n2 nodes on a grid,

and each node has degree N , ρ
(i)
t is a Markov process, for i = 1, 2, given by

n2ρ
(1)
t+1 = (1− ε)

(
Bin

(
n2ρ

(1)
t , f+

1 (ρ
(1)
t , ρ

(2)
t )
)

+Bin
(
n2(1− ρ(1)

t ), f−1 (ρ
(1)
t , ρ

(2)
t )
))

+ ε
(
Bin

(
n2ρ

(1)
t , 1− f+

1 (ρ
(1)
t , ρ

(2)
t )
)

+Bin
(
n2(1− ρ(1)

t ), 1− f−1 (ρ
(1)
t , ρ

(2)
t )
))

, (5.5)

n2ρ
(2)
t+1 = (1− ε)

(
Bin

(
n2ρ

(2)
t , f+

2 (ρ
(1)
t , ρ

(2)
t )
)

+Bin
(
n2(1− ρ(2)

t ), f−2 (ρ
(1)
t , ρ

(2)
t )
))

+ ε
(
Bin

(
n2ρ

(2)
t , 1− f+

2 (ρ
(1)
t , ρ

(2)
t )
)

+Bin
(
n2(1− ρ(2)

t ), 1− f−2 (ρ
(1)
t , ρ

(2)
t )
))

, (5.6)
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respectevily, where f±i (x, y) are defined as follows

f+
1 (x, y) = (1− β)

N∑
i=dN2 e

(
N − 1

i− 1

)
xi−1 (1− x)N−i + β

y N−1∑
i=dN−1

2 e+1(
N − 2

i− 1

)
xi−1 (1− x)N−i−1 + (1− y)

N−1∑
i=dN−1

2 e

(
N − 2

i− 1

)
xi−1 (1− x)N−i−1

 (5.7)

f−1 (x, y) = (1− β)
N−1∑
i=dN2 e

(
N − 1

i

)
xi (1− x)N−i−1 + β

y N−2∑
i=dN−1

2 e+1(
N − 2

i− 1

)
xi (1− x)N−i−2 + (1− y)

N−2∑
i=dN−1

2 e

(
N − 2

i

)
xi (1− x)N−i−2

 (5.8)

and

f+
2 (x, y) = f+

1 (y, 1− x) (5.9)

f−2 (x, y) = f−1 (y, 1− x) (5.10)

Moreover, given ρ
(i)
t , ρ

(i)
t+1 has mean fi(ρ

(1)
t , ρ

(2)
t ) and variance gi(ρ

(1)
t , ρ

(2)
t )/n2, for

i = 1, 2, where

f1(x, y) = xf+
1 (x, y) + (1− x)f−1 (x, y), (5.11)

f2(x, y) = yf+
2 (x, y) + (1− y)f−2 (x, y), (5.12)

and

g1(x, y) = xf+
1 (x, y)(1− f+

1 (x, y)) + (1− x)f−1 (x, y)(1− f−1 (x, y)), (5.13)

g2(x, y) = yf+
2 (x, y)(1− f+

2 (x, y)) + (1− y)f−2 (x, y)(1− f−2 (x, y)). (5.14)

Proof. The statement follows from the fact that in the MF approximation it is

assumed that a node has degree N − 1, each node is active with probability ρ
(j)
t , for
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j = 1, 2, and has an edge to the other grid with probability β, independently of

other nodes; and any pair of nodes is considered as independent.

Based on the above Lemma, the processes can be well approximated by the

means f1(x, y) and f2(x, y) since the variances, gi(ρ
(1)
t , ρ

(2)
t )/n2, for i = 1, 2, are

negligible for large n. It also follows from Lemma 29 that

f2(x, y) = f1(y, 1− x). (5.15)

In order to simplify the following consideration we denote f1(x, y) by

f (x, y | ε, β,N), so that this function is given by

f (x, y | ε, β,N) =

β

(
ε

(bN−3
2 c∑
i=0

(
N − 1

i

)
xi (1− x)N−i−1 + y

(
N − 1⌊
N−1

2

⌋)xbN−1
2 c (1− x)d

N−1
2 e
)

+

(1− ε)

(
N−1∑

i=bN+1
2 c

(
N − 1

i

)
xi (1− x)N−i−1 + (1− y)

(
N − 1⌊
N−1

2

⌋)xbN−1
2 c (1− x)d

N−1
2 e
))

+ (1− β)

ε bN2 c∑
i=0

(
N

i

)
xi (1− x)N−i + (1− ε)

N∑
i=bN2 c+1

(
N

i

)
xi (1− x)N−i

 (5.16)

Thus, the density functions of active nodes from the first and second grids evolve

according to

xn+1 = f (xn, yn|ε, β,N)

yn+1 = f (yn, 1− xn|ε, β,N) (5.17)

For the sake of simplicity of the stability analysis, let us assume that the closed

neighborhood size of a node is N = 5, that is, square grids are considered. For

N = 5, the model takes the following form
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xn+1 = f1 (xn, yn|ε, β) = f (xn, yn|ε, β, 5) =

β ((1− ε) (x4
n + 4x3

n(1− xn) + 6x2
n(1− xn)2(1− yn))

+ ε (6x2
n(1− xn)2yn + 4xn(1− xn)3 + (1− xn)4))

+ (1− β) ((1− ε) (x5
n + 5x4

n(1− xn) + 10x3
n(1− xn)2)

+ ε (10x2
n(1− xn)3 + 5xn(1− xn)4 + (1− xn)5)) ,

yn+1 = f2 (xn, yn|ε, β) = f (yn, 1− xn|ε, β, 5) =

β ((1− ε) (y4
n + 4y3

n(1− yn) + 6y2
n(1− yn)2xn)

+ ε (6y2
n(1− yn)2(1− xn) + 4yn(1− yn)3 + (1− yn)4))

+ (1− β) ((1− ε) (y5
n + 5y4

n(1− yn) + 10y3
n(1− yn)2)

+ ε (10y2
n(1− yn)3 + 5yn(1− yn)4 + (1− yn)5)) .

(5.18)

Let us denote the right hand side (RHS) of (5.18) by F(ε,β) (x, y), that is,

F(ε,β) (x, y) =

f1 (x, y|ε, β)

f2 (x, y|ε, β)

 . (5.19)

In order to study the dynamics of our model, first of all, we have to find the

fixed points of the system defined by (5.18). For this purpose, we need to find the

solutions of

 x = f1 (x, y|ε, β) ,

y = f2 (x, y|ε, β) .
(5.20)

In general, it is hard to find all solutions of system (5.20) analytically. Notice,

however, that (1
2
, 1

2
) is the solution for any β ∈ [0, 1] and ε ∈ [0, 1].

It is obvious that for β = 0 we have two uncoupled grids. In this case, it is

enough to study the process only on one torus. Model defined on one torus was

considered by Balister, Bollobás, and Kozma [10]. Let us summarize the results
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Figure 6: Stability regions of the fixed point (0.5, 0.5) for ε ∈ [0, 1] and β ∈ (0, 1].
The region of instability is marked in gray.

obtained in [10], which also may follow from the general model with β = 0. There

exists a critical value ε = 7/30, such that there are two stable and one unstable fixed

points for ε ∈ [0, 7/30), and one unstable fixed point, 1/2, for ε ∈ (7/30, 0.5].

In the case of two randomly coupled grids, instability of (1
2
, 1

2
) may lead to the

appearance of a limit cycle. The Jacobian matrix of F(ε,β) (x, y) at the fixed point

(1/2, 1/2) is given by

DF(ε,β)

(
1

2
,
1

2

)
=

3

8
(2ε− 1)

β − 5 β

−β β − 5

 . (5.21)

For any β > 0 and ε ∈ [0, 1] the Jacobian DF(ε,β)

(
1
2
, 1

2

)
has a pair of complex

conjugate eigenvalues λ, λ:

λ1,2(ε, β) = 3/8(2ε− 1)(β − 5± iβ), (5.22)

with the corresponding eigenvectors

e1,2 =

∓i
1

 . (5.23)

The fixed point (1/2, 1/2) is stable if |λ| < 1, that is, when the condition

3
8
|2ε− 1|

√
25− 10β + 2β2 < 1 holds, and unstable if |λ| > 1; the corresponding

regions are shown on Figure 6. Additional analysis is required when |λ| = 1. Under
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this condition an invariant set around the fixed point may appear as a result of

Neimark-Sacker bifurcation. More precisely we have the following

Theorem 30. For an arbitrary β ∈ (0, 1] and sufficiently small in absolute value δ,

there exist two values of ε defined by

ε =
1

2
± 8

√
1 + δ

6
√

2β2 − 10β + 25
, (5.24)

so that the fixed point (1/2, 1/2) is asymptotically stable for δ < 0, and it is an

unstable fixed point for δ > 0. Moreover, the the mean-field approximation (5.18)

has an asymptotically stable invariant closed curve encircling the fixed point

(1/2, 1/2) for δ > 0.

In the next section we prove the above theorem and describe the relation to the

process.

Remark 31. The fixed point (1/2, 1/2) is nonlinearly stable at the critical

parameter δ = 0.

5.3 Neimark-Sacker bifurcation and phase transition

The Neimark-Sacker bifurcation occurs in a discrete-time dynamical system

when a pair of complex conjugate eigenvalues has modulus 1. Thus, for any

β ∈ [0, 1] there exists ε given by

ε∗(β) =
±8 + 3

√
2β2 − 10β + 25

6
√

2β2 − 10β + 25
(5.25)

so that the eigenvalues of the system satisfy |λ| = |λ| = 1.

To study the Neimark-Sacker bifurcation it is necessary to derive the

corresponding normal form. The normal form for Neimark-Sacker bifurcation for a

map with a pair of complex conjugate eigenvalues is given by

z 7→ λz + bz2z +O(|z|5) (5.26)

where O(|z|5) are higher-order terms starting with at least fifth-order terms, which
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can depend smoothly on δ. This bifurcation is also known as Hopf bifurcation for

maps.

In order to simplify our analysis we first apply coordinate transformations to get

the fixed point at (0, 0), and then another transformation to bring the linear part to

the simplest form. Hence, we first apply

(Xn, Yn) =

(
xn −

1

2
, yn −

1

2

)
, (5.27)

and the second transformation can be defined using the eigenbasis of (5.21). Let

P =

−i i

1 1

 , (5.28)

then the transformation is given by

P−1 =
1

2

 i 1

−i 1

 . (5.29)

Thus, the new complex coordinates (zn, zn) are obtained byzn
zn

 = P−1

Xn

Yn

 , (5.30)

and the inverse of the change of variables is given byXn

Yn

 = P

zn
zn

 . (5.31)

After this transformations system (5.18) can be written aszn+1

zn+1

 = J

zn
zn

+

H1(zn, zn)

H2(zn, zn)

 , (5.32)

where Hj(zn, zn) contains nonlinear terms of degree two and higher, for j = 1, 2,

and matrix J is defined by
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J =

λ 0

0 λ

 , (5.33)

where λ, λ is a pair of complex conjugate eigenvalues of the Jacobian DF(ε,β)

(
1
2
, 1

2

)
.

Clearly, matrix J has the same eigenvalues as the Jacobian.

It is convenient to introduce a new parameter, such that |λ| = 1 when the new

parameter is zero. Let δ be a parameter such that |λ|2 = 1 + δ. Then

|λ| =
√

1 + δ

and |λ|
∣∣
δ=0

= 1. The original parameters β and ε are fixed, and moreover ε = ε∗(β),

which is given by (5.25). For the following consideration denote λ = λ(δ) to

emphasize explicit dependence of the eigenvalues on the new parameter.. After this

smooth change of parameters the problem reduces to the consideration of

bifurcation with respect to δ.

The eigenvalues can be rewritten with respect to the new parameter δ. Clearly,

λ+ λ = 2|λ| cos θ = tr(J), where θ = arg(λ). Therefore, cos θ = 3(2ε−1)(β−5)

8
√

1+δ
, and for

ε = ε∗(β) we have

cos θ
∣∣
ε=ε∗(β)

=
β − 5

√
1 + δ

√
2β2 − 10β + 25

. (5.34)

Thus, the eigenvalues λ, λ, which can be written as |λ|(cos θ ± i sin θ), are

expressed as

√
1 + δe±iθ =

β − 5√
2β2 − 10β + 25

± i
√
β2 + δ(2β2 − 10β + 25)√

2β2 − 10β + 25
. (5.35)

It is necessary to note that one equation of (5.32) is the complex conjugate of

the other. For this reason, it is enough to consider only the first equation in the

bifurcation analysis of the system. Let the first equation of (5.32) define a map Q,
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that is

Q : z 7→ λz +H1(z, z), (5.36)

we would like to put this map in the normal form for the Neimark-Sacker

bifurcation,

NS : z 7→ λz +Bz2z +O(|z|4). (5.37)

Lemma 32. For a sufficiently small δ, if λk(0) 6= 1, for k = 1, . . . , 5, that is, β 6= 0

and ε 6= {7/30; 23/30}, then the map Q defined in (5.36) can be transformed by an

invertible parameter-dependent change of complex coordinate

z = u+ h2(u, u) + c1u
3 + c2u u

2 + c3u
3 + h4(u, u), (5.38)

where hj(u, u) is a j-th order homogeneous polynomial in u and u with coefficients

depending on δ, into a map

u 7→ λu+B(δ) u2 u+O(|u|5) (5.39)

and B(0) = 30ε− 18βε− 15 + 9β + i(3β − 6βε).

Proof. The desired normal form can be obtained in three steps. If λk(0) 6= 1 for

k = 1, 3 then by conjugating Q with a suitable diffeomorphism we can annihilate the

quadratic terms. After that, conjugating once more with an appropriate

diffeomorphism we can remove all cubic terms but u2 u-term, which is called a

resonant term, when λ is not a k-th root of unity for k = 2, 4. Finally, if λ5(0) 6= 1

we can find a diffeomorphism so that the map reduces to the form (5.39).

Combining all these steps we obtain (5.38).

Remark 33. Lemma 32 stated under a stronger condition, i.e., it includes

λ5(0) 6= 1. This is not necessary for the conclusion, however it holds in this case

when the other four conditions are satisfied.

Now we can investigate the type of the Neimark-Sacker bifurcation with respect
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to the parameter δ, where β is fixed and ε is defined by (5.25).

Lemma 34. The origin is asymptotically stable fixed point for δ < 0. For δ > 0

there exists an asymptotically stable invariant circular set around the origin.

Proof. The normal form with respect to complex coordinates can be written as a

system of two equations, where one equation describes the dynamics of the arg(u),

and the other the dynamics of the modulus, |u|. Moreover, the equation describing

the dynamics of the modulus does not depend on arg(u), therefore it is possible to

describe stability considering only this equation. Hence, we derive the following two

conditions

d

dδ
|δ|
∣∣
δ=0

=
1

2
, (5.40)

and

a = Re

(
B

λ

∣∣
δ=0

)
=
−8(4β2 − 20β + 25)

(β − 5)2 + β2
< 0, (5.41)

for β ∈ [0, 1]. These conditions proves the statement.

Proof of Theorem 30. Combining results from Lemma 34 and Lemma 32 the

statement follows.

Remark 35. The maps f (xn, yn|ε, β,N) and f (yn, 1− xn|ε, β,N) are defined as

[0, 1]→ [0, 1], that is they are bounded by 1. From this it follows that if ε and β are

such that (0.5, 0.5) is unstable then the system has either oscillating dynamics or

converges to a different fixed point. The region where (0.5, 0.5) is unstable is shown

in Figure 6.
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CHAPTER 6

HOMOGENEOUS COUPLING OF TWO IDENTICAL SYSTEMS AND

INHOMOGENEOUS ATTRACTING SET

The study of oscillatory systems gained a lot of attention during the twentieth

century. In particular, questions regarding the dynamics of coupled oscillators and

forced systems received great interest. One of the motivations came from

applications originating in the consideration of van der Pol oscillators. However, the

importance of the problem from a theoretical point of view should never be

underestimated since this mechanism can produce chaos.

The coupled limit cycle oscillators are natural examples with flows defined on

n-tori. The analysis of coupled systems relies on averaging and perturbation

techniques. For example, in the case of two coupled van der Pol oscillators, the

orbits lie on S1 × S1 = T2 ⊂ R4. It was shown that two-tori is an attractor and it

persists under small perturbation.

Recently, the effects of periodic forcing on flows that perdmit periodic cycles

and homoclinic loops/heteroclinic cycles have been extensively studied

[53, 55, 77, 76, 50]. It has been shown that this mechanism, which relies on shear,

can produce an observable chaos. In particular, the existence of a strange attractor

and Sinai-Ruelle-Bowen (SRB) measure with strong statistical properties (e.g.,

central limit theorem, and exponential decay of correlation) have been proven.

One important detail in the problems mentioned above is the finiteness of

interactions. This means that limit cycle oscillators as well as periodic forcing have

a periodic influence. This assumption is needed for the application of perturbation

theory. One cannot generalize the same idea for coupled heteroclinic cycle

oscillators as the time that trajectories spend near saddles goes to infinity. This is

nontrivial since orbits spend infinite time near saddles, and thus perturbations can

be significant.
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In order to describe coupled heteroclinic cycle oscillators we need to understand

the geometry of the attracting set. Unfortunately, the existing techniques do not

allow for this. In this chapter, we provide some motivation for studying this

question by considering numerically bifurcation of coupled heteroclinc cycle

oscillators given by Lotka-Volterra equations. The main message is that this

mechanism creates a new phenomenon. Also, some description of bifurcation is

provided. Then, a simplified problem is considered. A system that has an attracting

two-dimensional surface with a boundary that is homeomorphic to a cylinder, and it

is formed by the union of equilibria and their unstable manifolds is built.

This chapter is partly based on a joint work with Robert Kozma, and Mikhail

Rabinovich, [60].

6.1 Model

In our study, we consider Generalized Lotka-Volterra (GLV) equations. It is

known that a system of nonlinear equations can be rewritten as a system of GLV

equations after some suitable transformations [38]. The model in the simplest

canonical form of Generalized Lotka-Volterra equations is given by

τi
dxi
dt

= xi

(
γi −

N∑
k=1

aijxj

)
, (6.1)

where xi ≥ 0, τi > 0, γi > 0, and ai,j > 0 for i, j = 1, . . . , n, with ai,i = 1 for all i.

System (6.1) has (nontrivial) saddle equilibria that lie on the boundary of the

phase space of the form (0, . . . , 0, γi, 0, . . . , 0), where γi is the i-th entry, i = 1, . . . , n.

Let us denote these equilibria by Ai. If λ
(i)
1 , ..., λ

(i)
N are eigenvalues of the matrix of

the system linearized at Ai, that are ordered as follows

Reλ
(i)
1 > ... ≥ Reλ

(i)
ki
> 0 > Reλ

(i)
ki+1 ≥ ... ≥ Reλ

(i)
N then Ai is a saddle with

ki-dimensional unstable manifold.

Denote 1, . . . , n by [n]. Consider S ⊂ [n] given by S = (i1, . . . , im) where m ≤ n.
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Set S is called a sequence of equilibria of the system (6.1). Let

I = {ik = πk(S)|πk is the projection on the k-th coordinate}.

Definition 36. Let S be a sequence of equilibria and assume that all Ai are saddles

with a one-dimensional unstable manifold for all i ∈ I and that there are

heteroclinic orbits Γik−1ik connecting Aik−1
and Aik such that

Γik−1ik ∈ W u(Aik−1
) ∩W s(Aik), for all k = 2, . . . , |I|. Define

Γ(S) =
⋃
i∈I

Ai ∪
⋃

2≤k≤|I|

Γik−1ik

. Then

1. if i1 = i|I| then Γ(S) is called a heteroclinic cycle and otherwise

2. a heteroclinic sequence

When the unstable manifolds of the saddles are one-dimensional, i.e. ki = 1 for

all i, the stability of a heteroclinic cycle depends on the ratios of the compression of

the phase volume to the stretching of it in the vicinity of the cycle. These ratios are

called saddle values and they can be defined as νi = −Reλ
(i)
2 /Reλ

(i)
1 . Saddle

equilibria Ai is called dissipative if νi > 1, and the heteroclinic sequence/cycle is

stable if νi > 1 for all i ∈ I.

The conditions of the existence and stability of the heteroclinic sequence/cycle

with constant uniform stimulation strength γi = 1 for any i are given in [4]. The

conditions of existence and stability of the heteroclinic sequence/cycle with

arbitrary γi were obtained in [5].

6.2 Coupled systems with heteroclinic cycle

We study dynamics of two coupled systems defined by GLV with the heteroclinic

cycle. For zero coupling, the parameters of the systems of GLV are chosen in order

to obtain heteroclinic cycle dynamics, which exist for a certain parameter range [5].
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Figure 7: Illustration of the attracting set in the mutually coupled system of Gener-
alized Lotka-Volterra equations.

Let us introduce the notation for sub-systems S1 and S2. For simplicity, we

consider two systems each of which is defined by three GLV equations (6.1). We

reenumerate the variables so that S1 contains x1, x3, and x5, while S2 includes x2, x4,

and x6. The coupling parameter κ denotes the connection strength from S1 to S2.

6.2.1 Numerical study

To analyze in detail the case of reduced/intermediate strength of coupling when

quasi-periodic heteroclinic dynamics and chaos co-exist in a mutually coupled

system, we performed extensive simulations with various sets of parameters. Let

aij = γi/γj the the parameters of the uncoupled systems are τ1 = 1, τ2 = 1.7,

γ1 = 1.5, γ2 = 1.2, γ3 = 1.426, γ4 = 1.6, γ5 = 0.956, γ6 = 0.8.

Takens’ theorem [67] can be used to reconstruct high-dimensional attractors

from the time series of a variable using time-delayed coordinate embedding. Note

that time delay τ can be selected according to the given problem to produce a

suitable display of the phase portrait. For example, x1(t) and its time-lagged copies

x1(t− τ) and x1(t− 2τ) are used in Figure 7 to show the three-dimensional phase

portrait with time-lagged reconstruction. The case of τ = 150 is used in this

display; the direction of the trajectory is illustrated by arrows.

Quantitative evaluation of the Lyapunov exponents shows the coexistence of
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heteroclinic cycles and chaos. Namely, we have two positive Lyapunov exponents,

where one small negative value is close to zero, another is a small negative

exponent, and two others which are large negative exponents. The exact Lyapunov

exponent values corresponding to parameters are as follows:

λ1 = 0.0061± 0.0005, λ2 = 0.0008± 0.0001,

λ3 = −0.0019± 0.0015, λ4 = −0.0127± 0.0019, λ5 = −0.6654± 0.0004,

λ6 = −1.4409± 0.0002. We explored a variety of systems close and further away

from the heteroclinic cycles. The above conclusions have been confirmed, i.e., we

have two positive Lyapunov exponents, one is close to zero, and the rest are

negative. Our numerical results show that two different dynamic regimes coexist in

a single system with non-oscillatory intrinsic dynamics, similarly to the chimera

states described recently in the literature [1].

6.2.2 Analysis

Based on the definition of subsystems S1 and S2, clearly two independent stable

heteroclinic cycles exist for κ1 = 0. Further, it is expected that the two heteroclinic

cycles are maintained for very weak coupling 0 < κ << ε << 1.

Theorem 37. There exist values of coupling parameter 0 < k0 << 1, k∗, k′, k” such

that

1. the coupled system exhibits two heteroclinic cycles for κ ∈ [0, k0);

2. the coupled system converges to a fixed point for κ ∈ (k∗, k′);

3. heteroclinic cycle in one system coexists with zero fixed points of the other

system for κ ∈ (k′, k”).

Proof. The equilibrium point attracts trajectories in its neighborhood if it is a

dissipative point. However, if the dissipative property of the saddle point changes,

i.e. the saddle value is no greater than one due to the increase of κ, then the orbits

move in directions away from equilibria. For this reason, when the coupling
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parameter is large (κ > k′), the origin will attract the trajectories of one of the

subsystems. Under this scenario, we have one subsystem (i.e. S1 or S2) embedded

in six-dimensions, and this subsystem behaves as in the case of κ = 0. In other

words, considering the phase space R6 = R3 ⊗ R3, if one subsystem vanishes we deal

with the subspace where all coordinates of this subsystem are zero, so that the other

subsystem behaves like in the case of κ = 0.

In the case of κ ∈ (κ∗, k′), the central eigenspace of each equilibria stays the

same. However, the number of stable non-leading eigenvalues is increased to the

maximum possible value, thus fixed points appear.

Due to continuity, there exists a 0 < k0 << 1, so that the coupled system has

two heteroclinic cycles created its subsystems in a corresponding subspace of R6 for

κ < k0.

Using dissipativity let us define several quantities, which allow us to separate

the whole domain of coupling parameter κ into regions with different types of

behavior. The threshold values are expressed as follows:

κ∗ = maxi{γi+1/γi}, i = 1, . . . , 6, where γi is the strength of the stimulation of

mode i, see (6.1). Further, let us characterize each equilibria. In the following

considerations, all indices are written with respect to (mod 6) and we make use of

the following convention {i ∈ {0, . . . , n}| i = n (mod n)} = n. Let us define for each

i = 1, . . . , 6 the corresponding set of two numbers i = {(i± 2) mod 6}.

Further notations are: k∗odd = max{k1, k3, k5} and k∗even = max{k2, k4, k6}, and

indexes defined as i∗odd = arg max{k∗odd} and i∗even = arg max{k∗even}, where ki is

defined by

ki =
γ(i+1)(−

∑
k∈i γkaki + γi

∏
k∈i aki)∏

k∈i (γk − γiaki)
(6.2)

In the following considerations, we use quantities k′ = max{ki∗odd−2, ki∗odd+2} and

k” = max{ki∗even−2, ki∗even+2}. It is easy to see that k′ and k” are larger than the
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other thresholds. In the following description, we assume that k′ < k” unless it is

otherwise specified.

The statement follows from the cases considered above with the corresponding

values of κ.

Remark 38. If k′ = k” then the conclusion still holds with the difference that the

behavior corresponding to values between k′ and k” does not occur.

6.3 Inhomogeneous graph as an attractor of the GLV system

In [3], a model which is described by n Generalized Lotka-Volterra equations was

considered. It was assumed that there is a subset among equilibria (that consists of

1 ≤ p ≤ n equilibria) which are on the axes, such that each equilibrium (saddle) has

two unstable directions, see Figure 8. In other words, saddles are sequentially

connected by a set of two-dimensional unstable manifold, such that there are

heteroclinic orbits connecting Ok to Ok+1 and Ok to Ok+2, for all k = 1, . . . , p.

Here it is assumed that saddles in the sequence are of different types, that is

with one and two unstable directions, see Figure 9. For simplicity, let us say that

there are heteroclinic orbits connecting O1 to O2 and O1 to O3, however there is

only one heteroclinic orbit connecting O2 to O3. In the same way we define the

structure of k-th saddle depending whether k is odd or even (up to the change of

enumeration of saddles in the sequence).

This case, however, depends on the “strong/weak”, “local/non-local” types of

heteroclinic orbits for saddles with two-dimensional unstable manifold. Let us

consider two cases whereby, the leading unstable eigenvalue of O2m+1 corresponds

to: the heteroclinic orbit to O2m+2; the heteroclinic orbit to O2m+3. The first case is

called “weak”, the second is “strong”. In both cases, the “attractor” is

homeomorphic to a cylinder, however, they are of different dimensions. In the

“strong” case the “dimension” is equal to the number of saddles in the sequence, p.
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Figure 8: The structure of an attracting set in the phase space considered in [3].

In the “weak” case, the “dimension” is p/2. Note, that due to our construction p is

divisible by two, i.e. p is even.

In [3], the topological type of the attractor depends on the size of the sequence

of saddles. In particular, when p is even, it was shown that the attractor is

homeomorphic to a cylinder. Therefore, we can assume that the model with two

and one unstable directions is a particular case of the model with two unstable

directions only.

In the next argument we consider an arbitrary sequence of three saddles Ok,

Ok+1, and Ok+2, which are joined by heteroclinic orbits as it was described above.

Since the consideration is the same for any triple of equilibria, let us take O1, O2

and O3. For simplicity, we assume that τi = 1 in (6.1). Then equations (6.1)

restricted to three dimensions are given by

dx1

dt
= x1 (γ1 − a1,2x2 − a1,3x3 − x1)

dx2

dt
= x2 (γ2 − a2,1x1 − a2,3x3 − x2) (6.3)

dx3

dt
= x3 (γ3 − a3,1x1 − a3,2x2 − x3)
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Figure 9: The structure of an attracting set in the phase space of Proposition 40.

For our purposes we define the following planes

P1 := {γ1 − a1,2x2 − a1,3x3 − x1 = 0} (6.4)

P2 := {γ2 − a2,1x1 − a2,3x3 − x2 = 0} (6.5)

P3 := {γ3 − a3,1x1 − a3,2x2 − x3 = 0} (6.6)

and

P12 := {x3 = 0} (6.7)

P23 := {x1 = 0} (6.8)

P13 := {x2 = 0} (6.9)

One may consider two possibilities of local dynamics near equilibrium with two

and one unstable directions. It was shown in [3] that planes P3, P23, P13, and P12

enclose a positively invariant region, that is, there are no trajectories which leave

the region in positive time. Proofs of the following propositions are similar to the

case when each saddle in the sequence has two-dimensional unstable manifold

considered in [3].

Proposition 39. If P3, P23, P13, and P12 enclose a positively invariant region then

any trajectory in the region which is not in P12 goes to O3.
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Proof. In the restricted region system (6.3) has three equilibria O1, O2 and O3 so

that O1 is a saddle with a two-dimensional unstable manifold, O2 is a saddle with a

one-dimensional unstable manifold, and O3 is a sink.

Any trajectory in a compact positively invariant region has a non-empty ω-limit

set. Let us consider an arbitrary trajectory from the region, and let W be a point

from the ω-limit set.

Let Oε(W ) be a spherical neighborhood of W with radius ε. Also consider

another spherical neighborhood of W with radius ε/2, Oε/2(W ). If a trajectory

enters Oε/2(W ) then it goes in x3 direction and spends at least δ in the

neighborhood, where δ is the minimum time it takes a representative point from

Oε/2(W ) to reach a boundary of Oε(W ). Moreover, the growth in the x3 direction is

increased by no less then δS where dx3/dt > S > 0 on Oε/2(W ), thus it can never

decrease and this happens only a finite number of times, which contradicts that W

is in ω-limit set.

Similarly, we can study the other saddles in the restricted region. This

construction shows that mapping contracts in the positively invariant region. If we

study the saddle with one-dimensional unstable manifold of the original system then

we are also able to build a locally contracting map similar to the construction of the

Poincaré map.

Proposition 40. If each unstable manifold W u(Ok) of saddles in the sequence is

contained in the compact forward invariant region defined by P3, P23, P13, and P12,

then Γ = ∪nk=1(W u(Ok) ∪Ok) is asymptotically stable.

Proof. In the previous Proposition we showed that there exists a contracting map in

a compact positively invariant regionregion. If we assume that each unstable

manifold W u(Ok) is in the region then we can find a small enough neighborhood of

the saddles so that it is in the interior of the region. Using the classical variables in

normal form techniques we can find two transversal sections S0 and S1 so that

91



forward solutions starting at S0 will intersect S1 before leaving an arbitrary

δ-neighborhood of Γ. This together with the previous Proposition shows an

existence of a global contraction in δ-neighborhood of Γ, which insures that Γ is

asymptotically stable.
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CHAPTER 7

CONCLUDING REMARKS AND FURTHER DIRECTIONS

In this dissertation, I deeply engaged, in collaboration with others, in the study of

the dynamics of spatially distributed systems with continuous and discrete time.

Discrete time systems considered in this dissertation are defined on random graphs.

In particular, I introduced a random graph model GZ2
N ,pd

, where the probability of

an edge between a pair of vertices depends on the graph distance between the pair.

Several properties of the introduced graph were analyzed. It was shown that the

degree distribution of the random graph is approximately Poisson and the diameter

is of logarithmic order on the size of the graph.

Many questions about GZ2
N ,pd

are still open for a deeper exploration. A natural

question is what is the graph diameter when α > 1? We can generalize this model.

One can consider instead of a two-dimensional torus, a higher dimensional one, say,

n−dimensional. In this case, it is possible to include another parameter β so that

the probability of an edge is defined by pd = c/(Nβdα). It would be interesting to

know the properties of the generalized model, in particular the graph diameter in

different regimes with respect to α, β, n. It is interesting to determine whether a set

of parameters exists where the the diameter is of a smaller order than logN .

Schulman considered an extension of the percolation model where non-local

connections are possible [63]. He introduced a long-range percolation graph

(LRPG). The diameter of LRPG defined on a finite discrete n-circle was studied by

Benjamini and Berger [17], and Coppersmith et al. [29]. However, it is still

unknown what is the diameter in several regimes. Since LRPG closely relates to

GZ2
N ,pd

it is possible to apply the technique used for GZ2
N ,pd

in the study of LRPG.

Probabilistic cellular automaton defined on two randomly coupled square grids

was considered. Using mean-field approximation, the existence of limit cycle

behavior in the case where vertices of two square grids are of different types was
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shown. Also, a similar process was studied yet on a more complicated graph, the

introduced random graph GZ2
N ,pd

. First, sharp thresholds on the critical probability

of initialization in the case of one type of vertices were derived. Then some bounds

for critical probability in the case of two types of vertices were provided.

Janson et al. [42] developed a theory of bootstrap percolation on the

Erdős-Rényi random graph Gn,p. What about the non-monotone version of

bootstrap percolation on this graph, i.e., where an active vertex can become

inactive? This question is currently open. Another interesting question is related to

bootstrap percolation with two types of vertices defined on a square grid, Gn,p, and

GZ2
N ,pd

. What are the critical probabilities in these cases? How far are they from the

mean-field approximation?

Systems with continuous time considered in this dissertation are described by

generalized Lotka-Volterra (GLV) differential equations. I studied network dynamics

of coupled systems each of which has been described by three GLV equations that

show my collaborators and I the different potentialities and complexities of these

types of systems. Bifurcation with respect to coupling parameters was investigated

and a new phenomenon was shown - heteroclinic chimera, i.e., the coexistence of

heteroclinic and chaotic dynamics.

Coupled oscillators and forced systems are important subjects. In particular, it

is necessary to know the effect of heteroclinic cycle forcing and this will generalize

the theory of periodic forcing on flows that admit periodic cycles and homoclinic

loops/heteroclininc cycles developed in [53, 55, 77, 76, 50]. However, due to some

peculiar properties of the heteroclinic cycle, the techniques used in the study of

periodic forcing on flows that permit periodic cycles and homoclinic

loops/heteroclinic cycles do not work for this case. A new approach has to be

developed. As a first step, one can address this question for a particular case where

the system is defined by GLV equations.
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In this dissertation, the stability of a discrete dynamical system of estimation

error in approximate dynamic programming was also studied based on a universal

function approximator. It was shown that the system is uniformly ultimately

bounded. This provides a qualitative description of the algorithm.

In the theory of ADP control an important question is still open: what is the

rate of convergence? Since many sequential decision problems can be formulated as

Markov Decision Processes it is possible to use ADP when traditional techniques

may no longer be effective. However, additional deeper analysis of ADP algorithms

might improve the performance. This issue together with the stochastic version of

ADP are the most important questions in the field both theoretically and for

practical applications.

Finally, I would like to note that some of the considered questions may have

potential applications in neurobiology, social dynamics, and decision making.

Recent developments in neuroimaging, including functional magnetic resonance

imaging (fMRI) and electroencephalography (EEG), have provided the possibility to

study brain dynamics in high spatio-temporal resolution. Also, significant efforts

have been made in analyzing connectivity in the brain. It is supposed that problems

and models, which have been considered here, can be used in theoretical studies

based on experimental data.

The graph model introduced in this dissertation is also motivated by the

structure and operation of the neuropil, the densely connected neural tissue of the

cortex [34]. The human brain contains about 1011 neurons. Typically, a neuron has

several thousands of connections to other neurons through synapses, thus the

human brain has ∼ 1015 synaptic connections. Most of the connections are short

and limited to the neuron’s direct neighborhood (in some metric), forming the

so-called dendritic arbor. In addition, the neurons have a few long connections

(axons), which extend further away from their cell body. In general, there are
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several thousands of short connections in the dendritic arbor for one distant

connection represented by a long axon. We use GZ2
N ,pd

to model the combined effect

of mostly short connections and a few long connections. Brains are more likely to

contain more shorter connections than longer ones, a fact captured in the definition

of pd, as pd is decreasing in the graph distance d.

There are two types of neurons in the brain, namely excitatory and inhibitory

ones. The type of neuron describes its function in the brain, e.g., excitatory

(inhibitory) neurons excite (inhibit) the neurons to which they are connected. It is

known that there are many more excitatory neurons than inhibitory neurons in the

cortex; the ratio of inhibitory to excitatory neurons is typically 1/4 [33]. Based on

neurobiological studies, it is expected that pure excitatory populations can maintain

a non-zero background activation level, while interacting excitatory and inhibitory

populations are able to produce limit cycle oscillations [34]. In this dissertation, the

focused was on conditions required to sustain a non-zero activity level in pure

excitatory networks.

Some of our rigorous mathematical results may provide useful insights in the

neural processes described above. It is expected that future studies can provide an

evidence on the benefits of the theoretical results to neurobiology.
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