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Abstract

Advances in technologies currently produce more and more cost-effective,

high-throughput, and large-scale biological data. As a result, there is an urgent need for

developing efficient computational methods for analyzing these massive data. In this

dissertation, we introduce methods to address several important issues in gene expression

and genomic sequence analysis, two of the most important areas in bioinformatics.

Firstly, we introduce a novel approach to predicting patterns of gene response to

multiple treatments in case of small sample size. Researchers are increasingly interested

in experiments with many treatments such as chemicals compounds or drug doses.

However, due to cost, many experiments do not have large enough samples, making it

difficult for conventional methods to predict patterns of gene response. Here we introduce

an approach which exploited dependencies of pairwise comparisons outcomes and

resampling techniques to predict true patterns of gene response in case of insufficient

samples. This approach deduced more and better functionally enriched gene clusters than

conventional methods. Our approach is therefore useful for multiple-treatment studies

which have small sample size or contain highly variantly expressed genes.

Secondly, we introduce a novel method for aligning short reads, which are DNA

fragments extracted across genomes of individuals, to reference genomes. Results from

short read alignment can be used for many studies such as measuring gene expression or

detecting genetic variants. Here we introduce a method which employed an iterated

randomized algorithm based on FM-index, an efficient data structure for full-text

indexing, to align reads to the reference. This method improved alignment performance

across a wide range of read lengths and error rates compared to several popular methods,

making it a good choice for community to perform short read alignment.

Finally, we introduce a novel approach to detecting genetic variants such as SNPs

(single nucleotide polymorphisms) or INDELs (insertions/deletions). This study has great

significance in a wide range of areas, from bioinformatics and genetic research to medical
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field. For example, one can predict how genomic changes are related to phenotype in their

organism of interest, or associate genetic changes to disease risk or medical treatment

efficacy. Here we introduce a method which leveraged known genetic variants existing in

well-established databases to improve accuracy of detecting variants. This method had

higher accuracy than several state-of-the-art methods in many cases, especially for

detecting INDELs. Our method therefore has potential to be useful in research and

clinical applications which rely on identifying genetic variants accurately.

vi



Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Background 2

1.1.1 Gene Expression Analysis 2
1.1.2 Genomic Sequence Analysis 3

1.2 Research Problems 5
1.3 Main Contributions 8
1.4 Outline of the Dissertation 11

2 Gene Expression Analysis 12
2.1 Analysis of Gene Expression Data with Multiple Treatments 13

2.1.1 Using Pairwise Comparisons to Determine Gene Response Patterns 15
2.2 Analyzing Gene Response Patterns with Directed Graphs 16

2.2.1 Introduction 16
2.2.2 Method 17

Using Directed Graphs to Represent Patterns of Gene Response 17
Predicting True Patterns of Gene Responses 18

2.2.3 Results 21
Accuracy of Predicting A versus B 21
Analysis of Gene Expression Data from Rats 23
Functional Validation of the Predicted Patterns 26

2.2.4 Summary 28
2.3 mDAG: a Web Tool for Analyzing and Visualizing Gene Expression Data 29

2.3.1 Introduction 29
2.3.2 Method 30

Response Graphs 30
Assessing Confidence of Observed Patterns 30

2.3.3 Results 31
Implementation 31
Recognizing Contractible Patterns 31
Filtering to Identify Secondary Responses 33
Functional Analyses of Patterns 34

2.3.4 Summary 34
2.4 Exploiting Orderable sets to Predict True Patterns of Gene Response 35

2.4.1 Introduction 35
2.4.2 Method 37

Representing Gene Response Patterns with Orderable Sets 37
Vary α to Predict True Patterns 38
Predict Multiple Patterns for Each Gene 40

2.4.3 Results 41

vii



Design of Experiments and Evaluation 41
Varying α Results in More Orderable Patterns 42
Varying α Results in Better Enrichment 43
Assigning Multiple Patterns further Increases Enrichment 44
Clusters based on Orderable Patterns are Better Enriched 47
Biological Associations of Genes in Discovered Patterns 49

2.4.4 Summary 51
2.5 Conclusion 53

3 Short Read Alignment 54
3.1 Introduction 55
3.2 RandAL: A Randomized Approach to Aligning Reads to Reference Genomes 57

3.2.1 Introduction 57
3.2.2 Method 58

Indexing the Reference Genome 59
Finding Common Substrings between Reads and Genomes 59
Extending Common Substrings to Align Reads to the Reference

Genomes 62
Fast Heuristic for Computing Edit Distances 64

3.2.3 Results 65
Alignment Quality of 6 Aligners 68
Rates of Misalignment of Top 4 Aligners 69
Alignment Quality at Different Base Error Rates 70
Raw Running Times of Top 4 Aligners 70

3.2.4 Summary 71
3.3 Correlation between Sequence Complexity and Alignment Performance 72

3.3.1 Introduction 72
3.3.2 Method 72

Measures of Complexity 72
3.3.3 Results 73
3.3.4 Summary 75

3.4 Conclusion 76

4 Genomic Variant Detection 79
4.1 Introduction 80
4.2 IVC: An Integrated Approach to Detection of Genomic Variants 83

4.2.1 Representing and Indexing Reference Genomes with Incorporated
Known Genomic Variants 84

4.2.2 Overview of Our Variant Calling Algorithm 86
4.2.3 Aligning Reads to the Reference Meta-genome 87

Seeding Phase 88
Extension Phase 91

4.2.4 Updating Variant Profiles and Calling Variants 95
INDEL Calling 97

4.3 Results 98

viii



4.3.1 Experimental Setup 98
Data 98
Evaluation of Accuracy 100
Variant Callers 100

4.3.2 Overview of the Results 101
4.3.3 Accuracy Comparison on Simulated Data 102

IVC has Superior Accuracy in Known Locations 102
IVC has Higher Accuracy in Unknown Locations 103
IVC’s Accuracy at Varied Percent of Known Locations 104
IVC has Higher Accuracy in Calling close-by INDELs 105

4.3.4 Accuracy Comparison on Real Data 108
IVC’ Performance on Platinum Genomes Data 108
IVC’ Performance with ExAC Database as Known Variants 109

4.3.5 Comparison of Running Time and Memory Usage 111
4.4 Conclusion 112

5 Conclusions 116
5.1 Key Contributions 116
5.2 Future Directions 118

Appendices 127

A mDAG - A Web Tool for Analyzing and Visualizing Gene Expression Data 127
A.1 Introduction 127
A.2 Using mDAG 127

A.2.1 Online Registration 128
A.2.2 Personal Version 128
A.2.3 Data Format 129

B RandAL - A Randomized Short Read Aligner 131
B.1 Introduction 131
B.2 Using RandAL 131

B.2.1 Directory Organization 131
B.2.2 Usage 132
B.2.3 Default Parameters 134

C IVC - An Integrated Variant Caller 135
C.1 Introduction 135
C.2 Using IVC 135

C.2.1 Installation 135
C.2.2 Usage 136
C.2.3 Preparing Data and Performing Experiments 138

ix



List of Tables

1 Functional enrichment of clusters produced by hierarchical clustering (hc)
and our method when α is varied up to 0.05 for each gene. 48

2 Average precision and recall at 1% and 4% base error rates 70

3 Average running times of top 4 aligners at different read lengths 71

4 Repeat density of genomes, Rk, at various length k 74

5 Pearson correlation coefficients of Rk and performance 75

6 Correlation between Rk and performance at different error rates. 75

7 Percent of increase in precision (PIP) and recall (PIR) of all methods (ex-
cluding IVC) after using IndelRealigner 101

8 Percent of increase in precision (PIP) and recall (PIR) of IVC relative to
the other methods (UG: GATK UnifiedGenotyper, HC: GATK Haplotype-
Caller, ST: SAMtools) for coverage from 1x to 50x, in terms of SNP and
INDEL calling. 103

9 Percentage of increase in precision (PIP) and recall (PIR) of IVC relative to
HC at coverage 50x as IVC’s knowledge of known variants increases from
50% to 90%. 106

10 Number of exonic variants called by IVC from dataset ERR194147 for
sample NA12878 with ExAC and GP as input. 110

11 Number of exonic INDELs called by each method from dataset ERR194147
for sample NA12878. 111

x



List of Figures

1 Left: two Affymetrix GeneChips microarrays. Right: a heat map, which
represents gene expression values obtained from DNA microarray experi-
ments. (taken from https://en.wikipedia.org/wiki/DNA microarray, accessed
on June 6th, 2016) 2

2 Left: an Illumina HiSeq 2500 sequencer. Right: read mapping, which
represents alignment to a reference genome of multiple fragmented and
(maybe) overlapping short sequences obtained from DNA sequencing ex-
periments. (taken from https://en.wikipedia.org/wiki/DNA sequencing, ac-
cessed on June 14th, 2016) 4

3 An example of gene expression data with 2 treatment groups. 15

4 Examples of graph patterns based on control and 3 treatments. (A) a non-
contractible graph; (B) a contractible graph, which represent genes unaf-
fected by treatment 3 and down-regulated by treatments 2 and 1. 18

5 (a) Non-contractible pattern of a gene response to 3 treatments A, B, and
C. (b-f) five contractible patterns that can come from pattern (a). 19

6 E vs. Pn, n = 5, 10, 20 for 4 different distributions. 22

7 Overall prediction performance for distributions at distance ≈ 0.5. 24

8 Pattern observed with 5 experimental replicates; 4 patterns predicted with
20 extra synthetic replicates; probability and entropy of predictions as func-
tions of extra synthetic replicates. 25

9 Functional analysis of gene clusters obtained from patterns defined by ex-
perimental replicates versus patterns defined by experimental and addi-
tional synthetic replicates. Left: number of enriched clusters. Right: av-
eraged enrichment score per enriched cluster. Blue: clusters originally ob-
served with experimental replicates. Red: clusters discovered when syn-
thetic replicates were introduced. 28

10 Examples of response graphs: [A] a non-contractible pattern with control
and 7 treatments; [B, C, D] contractible patterns with control and 7, 9, and
11 treatments, respectively. 32

11 Filtering to identify secondary responses: Left: filtering based on treatment
effect: up-regulated, down-regulated, affected, not affected, or any; Right:
filtering based on Probset IDs. 33

xi



12 Functional analyses of genes with same patterns: Upper: analyzing biolog-
ical functions of patterns by transferring their gene lists to proper external
tools with several options; Lower: checking information of genes in pat-
terns by linking genes to NCBI resources using their identifiers. 35

13 (A) ∆ = {x ≺ z, x ∼ y, y ∼ z}. (B) A pattern that is not true as it contains
∆ (on elements a, e, and b). (C) an orderable pattern. (D) another orderable
pattern. Both patterns C and D are orderable extensions of the pattern B. 38

14 Based on the same hypothetical expression data, (Left) observed pattern is
not orderable with α = 0.05. (Right) observed pattern is orderable with
α = 0.06. 39

15 (a) fraction of orderable patterns at increasing values of α. (b) structural
difference between patterns acquired at α = 0.05 and at higher values. 42

16 Comparison of gene-set enrichment of clusters produced by fixing α at 0.05
and varying α up to 0.5. The x-axis shows the maximum values of α that
can be varied to obtain patterns. The y-axis shows the number of enriched
clusters (E.cluster), the number of genes in enriched clusters (E.gene), and
the enrichment score (E.score). Each color represents a different pattern,
codified by a 6-digit string. 45

17 Comparison of gene-set enrichment of clusters produced by one-pattern
assignment (1-1) versus multiple-pattern assignment (m-1), with α ≤ 0.15.
The x-axis lines up patterns with enriched clusters found by DAVID. The
y-axis shows the values of enrichment in terms of the number of enriched
clusters (E.cluster), the number of genes in enriched clusters (E.gene), and
the enrichment score (E.score). 46

18 Pattern contains 4 transcription factors Nfe2l2, Klf2, Egr1, and Irf8 in an
enriched cluster found by DAVID. These genes participate in multiple bio-
logical networks. 50

19 Biological networks that include Nfe2l2, Klf2, Egr1, and Irf8. Edge colors
encode different types of networks. Related genes in the networks are in
grey circles. 51

20 Finding longest common substrings (seeds): ri···p−1 and rp···j may match
several substrings of the genome S , but fews of these (e.g. b2 and f2) form
contiguous substrings, which is considered as seeds. 60

xii



21 Extending common substring to alignment. Alignment of a read r to the
reference genome S by extending a common substring of r and S (found
in Algorithm 6). There are generally many substrings of S that match
identically to the substring ri···j of r. 63

22 Alignment performance across 6 different read lengths. Recall (x-axis)
versus Precision (y-axis) averaged across bacterial genomes and eukaryotic
genomes, respectively, at read lengths of 35, 51, 76, 100, 200, and 400bp. 66

23 Alignment performance across 6 different read lengths. Recall (x-axis) ver-
sus Precision (y-axis) averaged across bacterial and eukaryotic genomes,
respectively, at read lengths of 35, 51, 76, 100, 200, and 400bp. 68

24 Recall versus Precision of Top 4 Aligners. Performance of top aligners
on bacterial genomes (top 6 figures) and eukaryotic genomes (bottom 6
figures). X-axis is recall; Y-axis is precision. 77

25 Rate of misalignment averaged across bacterial and eukaryotic genomes. 78

26 Correlation coefficients between different measures of complexity and align-
ers’ performance (precision) at read length 100. 78

27 Precision versus Recall for INDEL calling at Unknown variant locations as
coverage varies from 5x to 50x. 105

28 TP and FN at different fractions (left: 0.50, center: 0.67, right: 1.00) of
known INDELs that are close to an INDEL. 107

29 Venn diagram of SNPs and INDELs called by each method from dataset
ERR194147 on sample NA12878. GIAB-Call: called variants that are in
the GIAB dataset. GP-Call: called variants that are not in the GIAB dataset
but are in the 1000 Genomes Phase 1 data. 114

30 Workflow of IVC and GATK. 115

31 Runtime and memory usage of all tools as coverage varies from 5x to 50x. 115

32 A snapshot of an analysis result from mDAG. 128

33 A snapshot of a sample dataset for mDAG. 130

xiii



Chapter 1

Introduction

This dissertation studies several problems in bioinformatics, an interdisciplinary

field devoted to the analysis and interpretation of biological data using computational

methods. Biological data are data collected from biological sources such as DNA, RNA or

proteins. The primary goal of bioinformatics is to increase the understanding of biological

processes. This field has evolved extremely rapidly in recent years due to the explosive

growth of biological data generated by the scientific community.

Advances in technologies such as microarrays and more recent next-generation

sequencing make it possible to provide cost-effective, high-throughput, and large-scale

biological data of interests. This huger and huger amount of data facilitates a wide range

of bioinformatics research such as gene expression analysis, sequence analysis, structural

bioinformatics, systems biology, biological databases and data mining, and many other

fields of interests [1, 2, 3, 4]. As a result, there is an urgent need for developing efficient

computational methods to tackle the challenges of analyzing these massive data.

In this dissertation, we develop methods and tools to address several important

issues in gene expression and genomic sequence analysis, two of the most important areas

of bioinformatics. A brief introduction of these areas will be described in Section 1.1.

Among many problems in these areas, we focus on the following: (1) representing and

analyzing patterns of gene response to multiple treatments, (2) aligning short DNA

sequences to reference genomes, and (3) detecting genomic variants. A brief introduction

of these problems will be described in Section 1.2. To address these problems, we

introduce novel methods and tools which employed techniques from a variety of fields -

information retrieval, data mining, and statistics. Main contributions of these methods and

their experimental results on both simulated and real data will be described in Section 1.3.

Finally, Section 1.4 will give a brief outline of the dissertation.
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1.1 Background

1.1.1 Gene Expression Analysis

Gene expression analysis is the study of functional gene products such as

functional RNA species or protein products1. This includes obtaining, analyzing, and

understanding gene expression data. Gene expression data are obtained from

measurements of gene expression levels, i.e., relative abundances of RNAs within cells in

living organisms, which show the activities of genes and therefore of living organisms.

Gene expression levels can be measured by many techniques such as DNA microarrays

[5, 6, 7] or more recent RNA-Seq technology [8, 9, 10]. As an illustration, Figure 1 (left)

shows two DNA microarrays, from which gene expression values can be obtained. These

values then can be represented in some ways, such as heatmaps (Figure 1, right). Gene

expression data are then analyzed and interpreted using computational or statistical

methods to detect differential expression, to generate gene clusters, to predict sample

characteristics, or many other fields of interests [11, 12].

Figure 1: Left: two Affymetrix GeneChips microarrays. Right: a heat map, which
represents gene expression values obtained from DNA microarray experiments. (taken
from https://en.wikipedia.org/wiki/DNA microarray, accessed on June 6th, 2016)

1 http://www.nature.com/subjects/gene-expression-analysis
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Gene expression studies typically aim at understanding genetic mechanisms that

affect cells at different time points, drug doses, types of drugs, etc., or any combination of

these treatments. The analysis of gene expression therefore plays an important role in

bioinformatics, biological and medical research. Typically, people apply traditional

techniques such as clustering or classification to analyze gene expression data. As

showing in Figure 1 (right), we can use Hierarchical Clustering to obtain a number of

clusters from microarray data. The hypothesis is, genes sharing the same clusters are also

sharing related biological functions. Then the next step is interpreting such clusters to

understand their biological meanings. Although advances of technologies (e.g., RNA-Seq)

facilitate gene expression studies significantly, there are still many fundamental challenges

encountered in analyzing and understanding gene expression data. This dissertation aims

to address several challenging problems in this area.

1.1.2 Genomic Sequence Analysis

Genomic sequence analysis is the study of analyzing genomic sequences such as

DNA, RNA of individuals of species2. This study includes obtaining, analyzing, and

understanding genomic sequence data. Genomic sequence data can be obtained from

sequencing of DNA using many techniques such as shotgun sequencing [13] or more

recent next-generation sequencing [14]. As an illustration, Figure 2 (left) shows a

sequencing system, from which extracted fragments of DNA or RNA, so-called

short-reads, can be obtained. These short-reads then can be analyzed in several ways,

such as mapping them to a reference genome from the same species to determine their

locations on the reference (Figure 2, right). The short-reads can be analyzed using

computational or statistical methods to get the original genomes, to detect genomic

variations, to obtain gene expression data, and many other fields of interests [15].

Genomic sequence analysis typically aims at understanding features, function,

structure, or evolution of genomes of individuals. The analysis of genomic sequences

2 http://www.nature.com/subjects/genomic-analysis

3



Figure 2: Left: an Illumina HiSeq 2500 sequencer. Right: read mapping, which represents
alignment to a reference genome of multiple fragmented and (maybe) overlapping short
sequences obtained from DNA sequencing experiments. (taken from
https://en.wikipedia.org/wiki/DNA sequencing, accessed on June 14th, 2016)

therefore plays an important role in bioinformatics, biological, and medical research.

Typically, people exploit several methods such as sequence alignment, sequence assembly,

searches against biological databases to analyze such data. As showing in Figure 2 (right),

we can use sequence alignment techniques to map short-reads to a reference genome

sequence. This task is known as short-read alignment, one of the most important tasks for

downstream analyses such as detecting genomic variants or measuring gene expression

levels. For example, the aligned reads then can be used to determine the genomic

variations, i.e., the differences between genomes of individuals in population. This task is

known as genomic variant detection, so-called variant calling, which has great

significance in genomic research as well as in medical field. For example, one can predict

how genomic changes are related to phenotype in their organism of interest, or associate

genetic changes to disease risk, medical treatment efficacy or other traits of interest.

Although advances of technologies (e.g., next-generation sequencing, or NGS) facilitate

genomic sequence analysis significantly, there are still many fundamental challenges

remain in analyzing and understanding genomic sequences. This dissertation aims to

address several challenging problems in this area.
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1.2 Research Problems

Firstly, we focus on the study of representing, analyzing and interpreting patterns

of gene response to multiple treatments. While a majority of gene expression studies

involve a small number of different types drugs, researchers have designed experiments

with hundreds of chemicals at various doses and durations [16, 17]. In such studies,

researchers are interested in understanding not only the effects of certain drugs (compared

to untreated) but also the differences and similarities among the drugs themselves.

Researchers have introduced a number of post hoc approaches to analyze gene

expression data with multiple treatments. In this way, only k groups of gene expression

values are measured and k(k−1)
2

tests are made to compare how a gene responds to all pairs

of treatments. Several studies have employed ternary-digits to represent patterns of gene

response [18, 19]. An example of ternary-digit pattern is 011022 that represents

comparisons of 6 pairs of treatments in which ”1” means two treatment are not different,

and ”2” (”0”) means that the first treatment is statistically less than (greater than) the other

treatment. Although ternary-digit patterns are concise and have been found useful in

calculating the statistical significance of observed response patterns, they are harder to

interpret and visualize. Instead of ternary digits, recent studies have employed directed

graphs to represent patterns of gene response to all treatment pairs, such as [20, 21]. In

this approach, vertices represent treatments and edges represent how a gene responds to

all pairs of treatments. The authors showed that this representation made it possible to

reason about the accuracy of response as a function of sample size. Moreover,

representing patterns of gene response as directed graphs makes it possible to visualize

how genes respond to all treatment pairs and to identify effectively primary responses and

secondary responses of any particular subset of treatments of interest.

One of the most challenging problems in analyzing gene expression data is that the

experiment contains only few samples (or replicates). If the sample size is too small, the

true pattern of highly variantly expressed genes cannot be captured accurately and

5



consequently it is very hard for downstream analyses to predict true patterns of gene

response. Researchers have recognized that sufficient large numbers of samples are

needed to account for biological variation regardless of the underlying technologies (DNA

microarrays or RNA-Seq) [22, 23, 24, 25, 26, 27] and even concluded that sample size

should be calculated to meet the objectives of the specific aims of each study [28].

Nevertheless, due to cost, practical experimental designs tend to have small sample sizes

that make it hard for conventional methods to predict true patterns of gene response.

This dissertation aims to address the problem of accurately predicting patterns of

gene response to multiple treatments in case of small sample size.

Secondly, we focus on the study of determining alignment of short-reads to the

reference genome. The basic motivation of this work is that genomes within the same

species are very similar, therefore a reference genome can facilitate analysis of genomes

of individuals using their short-reads. Alignment of short-reads to reference genomes is a

critical step in many applications which rely on the data obtained by NGS technologies.

Result from this process can be used for many areas in bioinformatics such as determining

gene expression or detecting genomic variants. Mapping DNA or RNA short-reads to a

reference genome or transcriptome is the first step of the standard approach to measuring

gene expression or identifying genetic variants using NGS data.

Researchers have introduced many approaches and methods along with software

packages for the short read alignment. Most of them use seed-and-extend strategy to

efficiently align reads to the reference. Several data structures such as hash tables,

q-grams, suffix trees/suffix arrays, or FM-index [29], a compressed full-text substring

index based on the Burrows-Wheeler Transform (BWT) [30], are used to speed up the

process of searching for seeds [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. For

example, SOAP [32] and BFAST [33] use the hash tables while Bowtie [35] and BWA

[36] use the FM-index to build a permanent index of the reference. Additional heuristics

are also used to enhance efficiency. For example, GASSST [39] uses a filtering technique
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to reduce noisy seeds while CUSHAW2 [41] uses several filtering steps to quickly identify

true seeds. Alignment algorithms such as the Needleman-Wunsch or the Smith-Waterman

(SW) are employed in the extend phase to obtain the final alignments.

Nevertheless, there are still many challenges with current methods and tools for

accurately aligning short reads to the reference. Current algorithms still struggle to

identify correct alignment due to divergence sequencing error, complicated genetic

variants such as insertions or deletions or other types of structural variations, repetitive

regions of reference genomes, or even misassemblies and incompleteness of the reference.

Although advances in technologies produce longer and more accurate reads, it is still

difficult to improve accuracy of aligning reads to the reference. For example, the complex

genomic variants and the repetitive regions of the reference genomes are still sources of

erroneous alignment despite a lot of effort in developing advanced read aligners.

This dissertation aims to address the problem of accurately aligning short reads to

the reference genome across a wide range of read lengths and base error rates.

Thirdly, we focus on the study of genomic variant detection, so-called variant

calling. Detection of genomic variants has great significance in genomic research as well

as in medical field. For example, one can predict how genomic changes are related to

phenotype in their organism of interest, or associate genetic changes to disease risk,

medical treatment efficacy or other traits of interest. With the development of

next-generation sequencing technologies, more and more studies now focus on detecting

genomic variants using NGS data.

Currently, the typical approach for most methods to detect genomic variants using

NGS data is based on analyzing initial aligned reads of unknown genomes to the reference

genome, which are produced by an external read aligner. Researchers have developed

many variant callers based on statistical methods such as Bayesian method or logistic

regression models [44, 45, 46, 47, 48, 49, 50, 51, 52]. Most of variant callers use

post-alignment processing strategies to correct erroneous alignment due to
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insertions/deletions. Some of recent variant callers employed local-assembly or

global-assembly to improve accuracy of variant detection [53, 54, 55].

There are several disadvantages of this conventional approach. First, current

aligners typically do not fully take into account the correlation between reads, which does

not allow variant callers to take full advantage of input data to support detecting accurate

and inaccurate variants. More generally, the alignment step was done separately and

independently from variant calling step, which limits incorporating information from one

step to another or vice versa. Second, current variant callers typically do not fully take into

account knowledge of existing variants, which can help identify common variants more

accurately. Consequently, current methods for variant calling are expensive as they require

a high sequencing coverage, i.e. large numbers of reads, to be able to detect variants

accurately as well as identify many variants as possible. Additionally, the determination of

variants, which is performed through many separate steps, requires a careful selection of a

diverse set of tools and needs more human intervention, which can be error-prone.

This dissertation aims to address the problem of accurately detecting genomic

variants, especially insertions/deletions.

1.3 Main Contributions

Firstly, we have introduced two novel methods to predict true patterns of gene

response to multiple treatments in case of small sample size. These methods employed

directed graphs and orderable sets, respectively, to represent gene patterns and exploit

their certain properties using dependencies of pairwise comparison outcomes to deduce

more and better functionally enriched gene clusters in case of small sample size. This

work has been introduced in our publications from 2011 to 2014 [56, 57, 58, 59, 60] (the

first method), [61, 62] (the second method). Two web tools mDAG3 and PA4 were also

implemented for analyzing patterns of gene expression with multiple treatments.

3 cetus.cs.memphis.edu/mdag
4 cetus.cs.memphis.edu/pa
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In the first method, we employed directed graphs as representation of gene

expression patterns. We then showed that true patterns of gene expression can be

predicted by a pre-cautious use of synthetic data. We exploited the relationship between

sample size and a graph property known as contractibility together with synthetic

replicates to predict true patterns of gene response to treatments. Further, we showed how

to use entropy to measure the certainty of such predictions. Using gene expression data

from rats’ liver cells, we showed that this approach uncovered subtle interactions in

response patterns and resulted in more and better functionally enriched gene clusters.

Directed graphs can benefit subsequent functional analysis as well.

In the second method, we showed that true patterns of response must be orderable

sets. This property enables the exploitation of dependencies among outcomes of statistical

tests that constitute patterns of gene response. Specifically, instead of obeying the

convention of fixing the level of significance α at 0.05, we showed that α might be varied

intelligently gene-by-gene to predict true patterns more accurately. This strategy produced

clusters that had more than twice the amount of functional enrichment. A comparison to

hierarchical clustering showed that our method produced clusters that were much more

functionally enriched. Our method also revealed transcription factors grouped together,

which were misgrouped by hierarchical clustering, that play an important role in many

pharmacological activities. Furthermore, motivated by the fact that a gene might

participate in multiple biological functions or be involved in multiple molecular processes,

we showed how to resample experimental replicates to predict and assign multiple

patterns to each gene. We showed that this approach of assigning multiple patterns to

genes further increased functional enrichment many folds.

The above methods are especially useful for gene-expression studies designed to

explore functional similarities and differences of similar chemicals. e.g, drug designs.

They have been found useful in identifying structure-activity relationships among drugs

and differentiating genes sharing similar functional pathways.
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Secondly, we have introduced a novel method to improve accuracy of short-read

alignment across a wide range of read lengths and base error rates. This method exploited

an iterated randomized searching algorithm together with two FM indexes for

bidirectional searching to improve alignment performance. The method has been

implemented in the tool RandAL5. We also have investigated several measures of

sequence complexity which can be used to predict performance of short read aligners.

This work has been introduced in our publications from 2013 to 2015 [63, 64, 65, 66].

In this method, we employed two FM indices for efficient bidirectional (exact)

substring matching between reads and reference genomes. To deal with inexact matching

(i.e. allowing gaps), first, we find common substrings, so-called seeds between reads and

the reference genome. Then, these seeds are extended to complete alignments based on a

bounded threshold on the edit distance. We use a special pruning mechanism to shorten

vastly the running time of computing edit distances in a vast majority of cases. We also

use an iterated randomized algorithm for aligning reads to the reference. This increases

the probability of finding seeds quickly and enables us determine methodologically

important parameters to speed up the entire alignment process. Our results showed that

our algorithm performed consistently well on a wide range of read lengths across several

bacterial and eukaryotic genomes. The alignment quality of our method was better or

generally as good as that of all compared methods.

Thirdly, we have introduced a novel method to improve accuracy of calling

genomic variants, especially insertions/deletions. This method leverages existing genomic

variants, such as those provided by the 1000 Genomes Project, during read alignment and

variant calling process to improve variant calling performance. We have further improved

our previous method of read alignment and integrated it as part of the whole variant

5 https://github.com/namsyvo/RandAL
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calling process. Part of this work has been introduced in our recent publication [67]. The

method is implementing in the tool IVC6.

In this method, we designed a special reference genome called multi-genome,

which combines a given variant profile and a reference genome into a unified

representation, to facilitate using existing variants. We then design a mixture technique,

which combines hashing, modified FM index, and an asymmetric local alignment, to align

reads to the reference multi-genome and to call variants simultaneously. We utilize

Bayesian method to identify the called variants and calculate their qualities, which

indicate the probability of called variants to be correct. Our evaluation on both simulated

and real data showed that this approach was able to detect variants, especially

insertions/deletions, with low coverage data more accurately than several state-of-the-art

methods such as GATK and SAMtools. High accuracy at low coverage can help reduce

cost of calling variants significantly. The integration also run the whole variant calling

process in a faster manner while still using moderate memory. Finally, this approach helps

to reduce errors caused by human intervention.

1.4 Outline of the Dissertation

In the rest of this dissertation, we describe our work in detail. Chapter 2 introduces

our work on gene expression pattern analysis. Chapter 3 describes our work on read

alignment. Chapter 4 introduces our work on variant calling. Finally, Chapter 5

summaries our contributions as well as describes future directions of the work.

Appendices are also included to describe related software packages in more detail.

Although the research problems are related to each other, the chapters of the

dissertation are structured in a self-contained way. One can read each Chapter 2, 3, and 4

independently after getting the general description of the research problems from this

chapter. Key contributions and future directions of our work can be found in Chapter 5.

More details of the tools we have developed can be found in the Appendices.

6 https://github.com/namsyvo/IVC
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Chapter 2

Gene Expression Analysis

Gene expression analysis is the study of functional gene products such as

functional RNA species or protein products. Gene expression studies typically aim at

understanding genetic mechanisms that affect cells at different time points, diseases, drug

doses, types of drugs, etc., or any combination of these treatments. These are done by

analyzing gene expression data, which are obtained from measurements of gene

expression levels. The analysis of gene expression therefore plays an important role in

bioinformatics and biomedical research.

Advances of high-throughput technologies such as DNA microarrays and more

recent RNA-Seq enable the measurement of gene expressions for a large numbers of

genes simultaneously. DNA microarray is a well-established technology which has been

widely used for a long time [68, 69, 70]. A DNA microarray is a collection of microscopic

DNA spots attached to a solid surface. Each DNA spot contains certain moles (around

1012 moles) of a specific DNA sequence, known as probes, which can be a short section of

a gene. Nucleic acid sequences in the target (of which we need to measure gene

expression levels) are put into microarrays for probe-target hybridization. Gene

expression data are calculated based on detecting and quantifying relative abundance of

such nucleic acid sequences. Recently, RNA-Seq technology has emerged as a promising

alternative technology. This technology allows us to extract fragments of RNAs from

samples. Then the standard approach of measuring gene expression levels using RNA-Seq

is mapping these fragments to a reference genome or transcriptome come from the same

species. Then gene expression data are calculated based on anayzing reads that are

mapped to particular genes in the genome or transcriptome. The RNA-Seq now has

become a standard part of many studies in the life sciences research [71, 72].

With the increasing amount of high-throughput gene expression data, there have

been a great amount of work dedicated to the generation, understanding and analysis of

12



such data. This work includes statistical methods that help practitioners calculating

sample size, selecting differentially expressed genes, and interpreting results

meaningfully; and computational methods that help clustering and classifying gene

expression data. Although advances of technologies facilitate gene expression studies

significantly, there are still many fundamental challenges encountered in analyzing and

understanding gene expression data. Therefore it is still desirable to develop efficient and

effective methods for gene expression analysis.

In this chapter, we describe our work in gene expression analysis which focuses on

analyzing patterns of gene response to multiple treatments. This work has been published

in [56, 57, 58, 59, 60, 61, 62]. In Section 2.1 we describe an overview of the problem,

including a formal definition of gene patterns. In Sections 2.2, 2.3, and 2.4, we introduce

our methods and tools for representing, analyzing and interpreting such patterns, with the

emphasis on predicting true patterns of gene response to treatments in case of insufficient

sample size. Finally, Section 2.5 provides conclusion and future directions of our work.

2.1 Analysis of Gene Expression Data with Multiple Treatments

The analysis of gene expression data with multiple treatments is increasingly

studied in gene expression analysis. The basic motivation of this problem is that

researchers are increasingly interested in experimental designs with varying dose levels

and/or multiple pharmacologically related chemicals, especially those that deal with

hundreds of chemicals compounds at various doses and durations [16, 17]. In such

studies, people are interested in understanding not only the effects of certain drugs

(compared to untreated) but also the differences (similarities) among the drugs

themselves. Many approaches have been introduced for analyzing, interpreting, and

visualizing how genes respond to multiple treatments.

In analyzing gene expression data that contain multiple treatments, one approach

is to employ pairwise comparisons to determine the relative orders of genes responding to

treatment pairs [18, 73, 19, 20, 21]. Pairwise comparison of gene expression among
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selected pairs of genes can be used to create two-gene predictors with simple decision

rules for classification of expression profiles [74]. In the simplest case of having two

treatment groups (e.g. treatment t versus untreated (control)), pairwise comparisons

would identify genes that are up-regulated, down-regulated, or not responded by t. But as

the number of different treatments increases, it becomes harder to interpret patterns

observed from pairwise comparisons. To represent complex patterns of outcomes

produced by pairwise comparisons, researchers have used several representations such as

ternary digits [18, 19, 21] or directed graphs [20]. Furthermore, instead of making
(
n
2

)
measurements (n is the number of treatments), researchers have proposed to make only

Θ(n) measurements and use post hoc pairwise comparisons to derive gene response to all

treatment pairs [18, 75].

Although many techniques and tools have been developed, obtaining reliable

results from experiments that contain only few samples is still challenging. Researchers

have recognized that sufficient large numbers of samples are needed to account for

biological variation regardless of the underlying technologies [23, 25, 22, 24, 26, 6, 27].

One even concluded that sample size should be calculated to meet the objectives of the

specific aims of each study [28]. However, due to cost, many practical experimental

designs do not have large enough sample sizes, making it difficult for conventional

methods to capture accurately gene response of highly variantly expressed genes.

Consequently it is very hard for downstream analyses. Therefore it is desirable to develop

methods to predict true patterns of gene response for this kind of experiments.

In our work, we focused on the problem of analyzing and predicting true patterns

of gene response to multiple treatments. We introduced methods to represent, analyze and

interpret such patterns, and most importantly, predict true patterns of gene response in

case of having only few samples [57, 58, 59, 61, 62]. We exploited two types of

representations, directed graphs and orderable sets, to deal with the challenge of
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predicting true patterns of gene response to treatments. Several tools have been developed

to facilitate this work and have been introduced as application papers [56, 58, 60].

2.1.1 Using Pairwise Comparisons to Determine Gene Response Patterns

In this study, patterns of genes are defined in terms of how the genes responds to

all treatment pairs. In our approach, such patterns are obtained based on determining

relative orders of gene response to treatments using pairwise comparisons.

Consider a gene g in an experiment with two treatment groups A and B, such as

genes in Figure 3. Denote {A1, ..., Ar} and {B1, ..., Bs} be the expression measurements

(replicates) of g under A and B, respectively. Then the relative order of g responding to A

and B is determined based on comparing these two groups using a pairwise comparison

test such as a two-sided Wilcoxon rank-sum test. The outcome of this test can be one of

three possibilities:

1. A ≺ B, when H0: µA = µB is rejected in favor of H1: µA < µB, with p-value less

than α (e.g. 0.05). This means g responds more to B than to A.

2. B ≺ A, when H0: µA = µB is rejected in favor of H1: µA > µB, with p-value less

than α (e.g. 0.05). This means g responds more to A than to B.

Figure 3: An example of gene expression data with 2 treatment groups.
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3. A ∼ B, when H0: µA = µB is accepted. This means either there is no difference

between A and B, or sample size is not sufficient to determine the relative order.

If the experiment has k treatment groups (including control group) and each group

has multiple samples (replicates), we have k(k−1)
2

comparison outcomes, each of which is

one of the three possibilities described above. These outcomes determine the pattern of

the gene g. Note that the determination of such relative orders of treatment pairs with

respect to g is independent of expression of other genes. Thus, the pattern of g is

determined independently of patterns of other genes.

Note that in this approach, the patterns are determined using post hoc comparisons

to save cost of analysis. First, significant differentially expressed genes are selected using

statistical methods such as ANOVA or Kruskal-Wallis test. Additionally, the gene

selection can be adjusted for false discovery rate using methods such as [76]. Then for

each of the selected genes, relative orders of gene responses to treatment groups are

determined based on pairwise comparisons.

2.2 Analyzing Gene Response Patterns with Directed Graphs

2.2.1 Introduction

The analysis of patterns of gene expression to multiple treatments can be

challenging with small sample sizes, because certain responses cannot be statistically

ascertained. In this section, we show that when response patterns are represented as

directed graphs, additional information about true response patterns might be inferred. We

will show that such representation is descriptive, visually expressive, and more

importantly, can be used to infer about true patterns of gene responses using synthetic

replicates. When sample size of gene expression experiments is too small, this method

will help researchers to ascertain certain responses. Most of content of this section has

been published in [57, 59].

In this approach, we exploit the relationship between sample size and a graph

property known as contractibility together with synthetic replicates to predict true patterns
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of gene response to treatments. Further, we will show how to use entropy to measure the

certainty of such predictions. With microarray data from rats’ liver cells, we showed that

this approach uncovered subtle interactions in response patterns and resulted in more and

better functionally enriched gene clusters. This method is especially useful for

gene-expression studies designed to explore functional similarities (and differences) of

similar chemicals. It has been found useful in identifying structure-activity relationships

among drugs and differentiating genes sharing similar functional pathways. Directed

graphs can benefit subsequent functional analysis as well.

We also introduce PA, a web-based tool to support this kind of analysis, including

linking all genes in such patterns to several external well-known functional analysis tools.

This tool has been introduced in our application paper ([58]). It was written in Python,

developed based on web framework web2py1. It is publicly available for use at

http://cetus.cs.memphis.edu/pa.

2.2.2 Method

Using Directed Graphs to Represent Patterns of Gene Response

Given gene expression data of k treatment groups, each having multiple samples,

relative orders of gene response to treatments can be determined based on the procedure

in section 2.1.1. Then, each gene is assigned a directed-graph pattern or response graph,

in which each vertex represents a treatment group and edges represent the gene response

to treatment pairs. These edges correspond to k(k−1)
2

comparison outcomes, which were

defined in section 2.1.1. Given a pair of vertices A and B, if the gene responds more to A

than to B, then the edge A→ B is established. Conversely, if the gene responds more to

B than to A, then the edge B → A is established. If there is no difference between A and

B, then there is no edge between A and B in the graph.

Figure 4 shows an example of contractible and a non-contractible graph. As shown

in [20], contractible patterns are more likely to be accurate, whereas non-contractible

1 http://www.web2py.com/
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patterns are inaccurate due to having too few samples. It turns out this characteristic can

be used to infer true patterns of gene response to treatments. Additionally, contractible

patterns can be interpreted more easily and more accurately. As an example, genes

bearing the pattern shown in Figure 4B are unaffected by treatment 3 (therefore, we can

put control and treatment 3 into one group) and down-regulated by treatments 1 and 2;

these genes also respond more to treatment 2 than to treatment 1. Whereas with the

pattern Figure 4A, we cannot say exactly how genes respond to treatment 2 and 3

compared to control.

(B)(A)

C

1

3

2

C

1

2

3

Figure 4: Examples of graph patterns based on control and 3 treatments. (A) a
non-contractible graph; (B) a contractible graph, which represent genes unaffected by
treatment 3 and down-regulated by treatments 2 and 1.

Predicting True Patterns of Gene Responses

A quick analysis of the non-contractible graph in Figure 5a shows that B being

non-distinguishable from both A and C and the fact that A > C are probably due to the

lack of samples; as was concluded in a previous work [20]. Further, we see that response
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graphs (b), (c), (d), (e) and (f) are all possible contractible graphs that contain (a) as

subgraph. Thus, one might conclude that the true response can be one of these.

Figure 5: (a) Non-contractible pattern of a gene response to 3 treatments A, B, and C.
(b-f) five contractible patterns that can come from pattern (a).

Our method for predicting true patterns of gene response works as follow. Given a

non-contractible graph G, we generate “synthetic” data for non-adjacent vertices

(corresponding to A ∼ B outcomes) until a contractible super-graph of G emerges.

Synthetic data generation is a probabilistic process, so this step is done multiple times.

Consequently, several super-graphs of G can be realized. The most dominant (i.e. most

frequent) super-graphs are declared most likely candidates of true responses of the gene.

One notice is, the answer might be a matter of resolution. For example, an additional 10

replicates, pattern (c) can be observed, and for an additional 100 replicates, pattern (d) can

be observed. This would mean that for practical purposes pattern (c) is the gene’s true

response, and different between (c) and (d) might be practically insignificant.

To generate synthetic data, we rely on recent literatures that shed light on possible

underlying distributions of gene expression. [77] showed that certain mouse genes were

log normally distributed. [78] studied RNA-seq data and found that the expression levels

of a majority of genes in metazoan cells followed a normal distribution or a combination

of normal distributions.

Based on these works, we used normal distributions as the underlying distributions

of gene expressions. Additionally, we used a goodness-of-fit test (2-sample
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Kolmogorov-Smirnov test) to maintain that synthetic and experimental data likely come

from the same distributions. We will show that this simple model can produce accurate

predictions. This probabilistic strategy of inferring true responses of genes to multiple

treatments is described in Algorithm 1.

Algorithm 1: generate-pattern(gene g, int s)
1: for i = 1 to T , the number of treatment groups of g do
2: Let X1, · · · , Xn be experimental replicates.
3: Compute sample mean and standard deviation, µ̄ and σ̄, from X1, · · · , Xn.
4: Draw Y1, · · · , Ys from the normal distribution (µ̄, σ̄).
5: if {X1, · · · , Xn, Y1, · · · , Ys} and {X1, · · · , Xn} are similarly distributed then
6: Rt = {X1, · · · , Xn, Y1, · · · , Ys}
7: else
8: Rt = {X1, · · · , Xn}
9: Compute the directed graph G as the result of pairwise comparisons of R1, · · · , RT .

10: return G

If a response graph is already contractible, no inference is made. For a

non-contractible response pattern, let P be the multi-set of all contractible graphs

generated by Algorithm 2 as predictions of true responses of a gene g. These graphs

contain the original non-contractible response graph (without synthetic replicates) of gene

g as subgraph.

Algorithm 2: predict-pattern(gene g, int s)
1: if G, the response graph of g, is contractible then
2: return {G}
3: P = {} {Note: P is a multi-set}
4: for i = 1 to M do
5: G′ = generate-pattern(g, s)
6: Add G′ to the multi-set P
7: return P

Let fi be the frequency of each Pi ∈ P , and pi = fi
|P | be the probability of

observing Pi. The entropy of P , H(P ) given as
∑

Pi∈P −pi log2 pi. H(P ) varies between

0 and log2 |P |. When H(P ) = 0, P is most certain, consisting of one unique pattern.
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When H(P ) = log2 |P |, P are uniformly random. Higher entropy implies less certainty in

prediction, and vice versa.

Synthetic replicates are gradually added to real replicates until a dominant

contractible pattern has emerged or the number of replicates exceeds a given threshold.

This event is quantified as follows.

Lemma 2.2.1. If the entropy of a prediction is less than 1, a dominant pattern has

emerged.

Proof. Suppose that H(P ) =
∑n

i=1−pi log2 pi < 1. We claim that for some j,

maxi pi = pj > 0.5. If not, then ∀i, pi ≤ 0.5, or − log2 pi ≥ 1. Therefore,∑
pi(− log2 pi) ≥

∑
pi = 1, which is a contradiction.

2.2.3 Results

When non-contractible patterns are augmented with synthetic replicates to yield

contractible patterns, we must ensure that these “predicted” contractible patterns are

accurate. It is important to note that predicted patterns are likely super-graphs of

originally observed patterns. Thus, our predictions only reveal more refined interactions

and do not alter originally observed interactions. First, we will show that our model of

generating synthetic replicates can be quite accurate for the purpose of pairwise

comparison, under 4 different underlying distributions of gene expression. Further, using a

rat microarray data set, we will show that annotating genes with predicted patterns yields

more functional information than annotating genes with originally observed patterns.

Accuracy of Predicting A versus B

We tested our method against 4 different models of gene expression distributions:

Gaussian, an equal mixture of two Gaussians (to simulate a bimodal distribution),

Weibull, and lognormal. These models have been used or recognized as possible

distributions of gene expressions [78, 77, 79, 80]. At the core of our method, we make

inference about the true outcome of how a gene responds to A versus B, given the
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observed outcome A ∼ B based on experimental (real) replicates. We wish to assess the

accuracy of predicting the outcome of A versus B using synthetic replicates as described

in Algorithm 5. The true outcome can be either (i) A < B, (ii) A > B, or (iii) A ∼ B.

First, we would like to demonstrate the feasibility of our method making correct

predictions under the 4 aforementioned distributions. To do this, we designed distributions

A’s and B’s at varying distances; we used the Hellinger metric defined as

H(A,B)2 = 1−
∫∞
−∞

√
FA(x)FB(x)dx and 0 ≤ H(A,B) ≤ 1. For each pair of

distributions A and B, define:

• E, the minimum number of samples required to determine A < B with probability

of at least 0.95;

• Pn, the total number of real and synthetic replicates needed to predict A < B, given

n real samples; we estimated Pn for n = 5, 10, and 20.

The result is shown in the top figure of Figure 6. Although the results were slightly

different for different distributions, generally, as A and B became closer, E and Pn

Figure 6: E vs. Pn, n = 5, 10, 20 for 4 different distributions.
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increase, meaning it takes more samples to determine and predict the correct outcome.

Further, E ≤ Pn for all n’s. The crucial point to observe here is that it was possible make

the correct prediction of A < B given 20, 10, or even 5 real samples. Even at very close

distance of around 0.15 and E > n (i.e. we had fewer real samples than necessary to

determine with probability 0.95 that A < B), synthetic replicates helped make correct

predictions. Although the smaller n was, the more synthetic replicates were needed.

Next, we would like to test for the ability of the method not making the mistake of

predicting A < B (or A > B), when the two distributions were in fact identical. We saw

that in this case the method did not do as well as the other case. To put this into

perspective, given A ∼ B, we must measure both the probabilities of making the correct

outcomes of A < B and A > B (sensitivity), and of not making the wrong prediction

when A and B are identical (specificity). Figure 7 shows the trade-off between sensitivity

and specificity, averaged across all 4 models of gene-expression distributions at distance

0.5 with n = 5 (results are similar at other distances and n = 10 or 20). The main point is

that as the number of synthetic replicates increased, the probability of correctly predicting

A < B (or A > B) increased; but the probability of correct predicting A = B decreased.

Overall, however, the accuracy remained high, generally above 0.85.

In summary, given 4 quite different underlying distributions of gene expression,

the method performed relatively highly accurate of correctly predicting the true outcome

of A versus B, given A ∼ B.

Analysis of Gene Expression Data from Rats

To test the performance of this method on an unknown gene expression

distribution (to the best of our knowledge), we used a microarray dataset, in which liver

samples of Spague-Dawley rats were treated with either control diet or one of 3

chemopreventive compounds with well understood pharmacological activities:

5,6-benzoflavone (BNF), 3H-1,2-dithiole-3-thione (D3T) and

4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (OLT). This dataset consists of 5 real
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Figure 7: Overall prediction performance for distributions at distance ≈ 0.5.

replicates, based on which 1737 significant genes were selected. From these, 1252 (72%)

and 485 (28%) genes were found to have contractible and non-contractible patterns,

respectively. In total, 45 contractible and 69 non-contractible patterns were observed. Full

description of this data set and the compounds can be found in [20].

BNF is a bifunctional inducer and a ligand to AhR. Upon ligand binding, the AhR

is activated and translocates to the nucleus where it forms a heterodimer complex. This

complex binds to xenobiotic or dioxin response elements found upstream of several

known target genes and acts to enhance the rates of gene transcription in the first pathway.

Also, BNF can be metabolized to electrophilic intermediates capable of activating the

second pathway. Dithiolethiones such as D3T and OLT are monofunctional inducers,

which affect the dissociation of a Cap-N-Collar type leucine zipper transcription factor,

Nrf2, from its cytosolic protein partner Keap1. Upon dissociation, Nrf2 translocates to the

nucleus where it complexes with small Maf transcription factors affecting gene

transcription of the second pathway.

Because the distribution of gene expression is unknown, the only way, and perhaps
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ultimately meaningful way of assessing the performance of the method is by functional

validation of the observed and predicted patterns, respectively.

Figure 8: Pattern observed with 5 experimental replicates; 4 patterns predicted with 20
extra synthetic replicates; probability and entropy of predictions as functions of extra
synthetic replicates.

First, we would like to demonstrate the utility of this method in analyzing

non-contractible patterns. Take for example a non-contractible pattern observed from this

data set, and shown in Figure 8. This graph has 3 edges: CON → BNF , OLT → BNF ,

and OLT → D3T . As more synthetic replicates were added to augment the original

pattern, entropy was reduced and predictions became more certain. This is generally

expected for any gene. When the entropy gets below 1 (at 42 synthetic replicates), a
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dominant pattern is guaranteed to exist. In this case, the pattern, however, began to be

dominant at 20 synthetic replicates, with probability 0.47. Since adding synthetic

replicates decreases specificity, how do we choose the optimal number of synthetic

replicates? Observe that after 20 synthetic replicates, the 4 most probable patterns were

already identified and remained unchanged structurally. This suggests 20 synthetic

replicates might be a good choice.

The 4 most probable patterns predicted with 20 synthetic replicates are all

contractible and contain the observed pattern as subgraph. This means adding synthetic

replicates removes ambiguity in non-contractible patterns, but does not alter the original

response observed with real data. To distinguish original response and predict response,

predicted edges can be annotated with error probabilities. The error probability of

predicting A > B is defined to be p+ q, where p and q are the probabilities of predicting

A > B given the true outcomes are A ∼ B and A < B, respectively. P and q were

estimated by averaging over same error probabilities under 4 different models: Gaussian,

Mixture, Weibull, and Lognormal.

Additionally, the event of a graph becoming contractible deserves special

attention. For example, the edge CON → D3T has lowest error probability and appears

in all 4 predicted patterns. Its addition makes the observed pattern contractible, suggesting

CON → D3T is most likely a true response.

The main point here is that this method of prediction does not alter originally

observed interactions; all 4 predicted patterns are supergraphs of the observed pattern.

The analysis shown here suggests that we can conservatively predicts more refined

interactions that were not originally observed, without altering originally observed

information based on real data.

Functional Validation of the Predicted Patterns

We would like to assess the biological relevance or meaningfulness of patterns

observed with real replicates and patterns predicted with additional synthetic replicates.
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We could apply clustering to observed and predicted patterns, separately, and functionally

validate each cluster. This would, however, add another level of bias due to the choice of

clustering method. Instead, we grouped all genes having same observed patterns into same

sets, producing a collection O of gene sets. Similarly, we grouped all genes having same

predicted patterns into the same sets, producing of collection P of gene sets. Then, we

functionally validated O versus P.

We used a well-known functional tool called DAVID [81], an integrated biological

database aimed at systematically extracting biological meaning from large gene or protein

lists, to extract highly-enriched clusters from gene lists, each of which consisted of all

genes with same pattern. To quantify the degree of biological relevance, we counted the

number of functionally enriched clusters and calculated the average enrichment score per

enriched cluster. We expect biologically meaningful assignments of patterns to genes will

yield many functionally enriched clusters and highly scored cluster.

Figure 9 compares functional enrichment of clusters produced by patterns

observed with experimental replicates only versus patterns observed with experimental

plus additional synthetic replicates. We can see that, with synthetic replicates, not only

were there more enriched clusters, each cluster were also more enriched. Interestingly,

few predicted patterns did not appear originally, i.e. when observed with real data. Few

genes bearing these “new” patterns were actually found by DAVID to belong to enriched

clusters; these are represented by the red bars in the figure. This gives raise to the

following hypothesis that 5 experimental replicates were too few for many genes to show

subtle interactions to similar chemical compounds. When augmented with synthetic

replicates, these interactions emerged.

It is important to observe that adding more synthetic replicates does not

necessarily yield more biological meanings. This affirms what we established in a

previous section that although adding more synthetic replicates reduces false negatives, it

also introduces more false positives. There is a point at which adding more synthetic
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Figure 9: Functional analysis of gene clusters obtained from patterns defined by
experimental replicates versus patterns defined by experimental and additional synthetic
replicates. Left: number of enriched clusters. Right: averaged enrichment score per
enriched cluster. Blue: clusters originally observed with experimental replicates. Red:
clusters discovered when synthetic replicates were introduced.

replicates only gets worse results. The figure shows that for this particular data set, we

would stipulate that adding about 10 synthetic replicates to the 5 real replicates gives

possibly optimal predictions.

2.2.4 Summary

We demonstrated the relatively high accuracy of the method for 4 different models

of gene expression distribution, resulting in more enriched clusters and also better

functionally-enriched clusters. We showed the method could uncover more subtle

interactions that might be missing with a small sample size, which is something traditional

clustering methods are unable to do. Such uncovered interactions only add to and do not

alter the originally observed interactions.

Although there is not yet a formula to determine precisely the optimal number of

synthetic replicates for a specific data set, the proposed method can be used to analyze real

data, as demonstrated in Section 2.2.3. One has to experiment with different numbers of

synthetic replicates and validate predicted patterns using available tools, revealing the

trade-offs between using too few or too many synthetic replicates.
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2.3 mDAG: a Web Tool for Analyzing and Visualizing Gene Expression Data

2.3.1 Introduction

We previously introduced a method based on post hoc pairwise comparisons to

analyze gene expression responses. This method utilized directed graphs to represent gene

response to all treatment pairs. It has been found useful in identifying structure-activity

relationships among drugs and differentiating genes sharing similar functional pathways.

Directed graphs are descriptive, visually expressive and can benefit subsequent functional

analysis. This work led to the creation of a software package that allows visualization of

gene responses and a visual distinction between possibly accurate response patterns (for

genes whose replicates are sufficient) and possibly unreliable response patterns (for genes

whose replicate maybe insufficient). To the best our knowledge, there has been no similar

tool that assists researchers visualize how genes respond to multiple treatments.

Here we introduce mDAG, a web-based software package based on this method for

the analysis, visualization, and interpretation of patterns of responses in gene expression

data involving multiple treatments. mDAG allows users to analyze and visualize gene

response patterns represented as directed graphs. Genes with same directed-graph

response patterns are grouped together and linked to external resources, such as DAVID

[81], GeneMANIA [82], and GCAT [83], for functional analyses. Genes with the same

directed graph patterns hypothetically share similar biological function, which may be

further analyzed using such external tools. To facilitate subsequent functional analysis,

several well-known tools have been incorporated into mDAG to help users explore

hypotheses about gene function and regulation. This tool is useful for any studies that

analyze comparatively response patterns in gene expression data with multiple treatments

(chemicals, cell types, etc.). More details of this tool can be found in Appendix A.
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2.3.2 Method

Response Graphs

Give gene expression data of k treatment groups, each having multiple replicates,

significantly differentially expressed genes are selected. Then, each gene is assigned a

directed-graph pattern or response graph, in which each vertex represent a treatment

group and edges represent how the gene responds to treatment pairs. Edges are defined by

k(k−1)
2

statistical tests. Given a pair of vertices A and B, a Wilcoxon rank sum test

considers replicate data of treatments A and B and determines how the gene responds

comparatively to A and B. If the gene is expressed statistically significantly higher under

A than B, then the edge A→ B is established. Conversely, if the gene is expressed

statistically significantly higher under B than A, then the edge B → A is established.

When the test cannot distinguish how the gene responds comparatively to A and B, there

is no edge between A and B in the graph.

Assessing Confidence of Observed Patterns

Response graphs capture exactly primary and secondary patterns of gene

responses to all treatment pairs. To help users assess confidence in observed patterns, two

types of directed graph patterns are identified: contractible and non-contractible. A graph

is said to be contractible if and only if non-adjacent vertices are equivalent, in the sense

that their incoming vertices are identical and their outgoing vertices are also identical. We

can look at back to Figure 4 in section 2.2.2, which shows examples of contractible and

non-contractible graphs. As shown in [20] and validated in [21], contractible patterns are

more likely to be accurate, whereas non-contractible patterns are inaccurate due to having

too few samples. Contractible patterns are also more easily interpreted. As an example,

genes bearing the pattern shown in Figure 4B are unaffected by treatment 3 and

down-regulated by treatments 1 and 2; these genes also respond more strongly to

treatment 2 compared to treatment 1. Our work [59] further showed the utility of the

contractibility of graphs to make inference about patterns of gene response.
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2.3.3 Results

Implementation

mDAG is written in Python, developed based on a web framework known as

web2py, and support most popular browsers. For database storage, it can be configured to

use SQLite, MySQL, Postgres, or a variety of database management systems. mDAG

needs a minimum requirement that includes a pre-installed Python 2.6+ and Graphviz, an

open source graph visualization software. It has an own scheduler program to manage

requests properly as well as exploit computer resources effectively to perform requests. It

can be configured as a stand-alone application for personal usage or installed on a server

for group usage.

To illustrate the utility of the software, we simulated three sample datasets from a

gene expression dataset of rats’ liver tissues ([20]). The original dataset includes 12906

genes with control and three treatments and 5 replicates per treatment (including control).

The simulated datasets have 8, 10, and 12 treatments (including control), respectively. To

be convenient for manipulating with these datasets, we denote control by C and treatments

by numbers (1 to 7 for the first, 1 to 9 for the second, and 1 to 11 for the third dataset).

Recognizing Contractible Patterns

To help users interpret patterns of gene responses, the software distinguishes two

types of directed graph patterns: contractible and non-contractible patterns. The reason for

differentiating these kinds of patterns is that as shown in [20], contractible patterns are

more likely to be true patterns and can be interpreted unambiguously.

For example, consider Figure 10, which shows four selected patterns from an

analysis with 8, 71, 7, and 23 genes, respectively. We see that pattern A is

non-contractible and patterns B, C, and D are contractible. Non-contractible pattern A is

ambiguous in that, for example, genes having this pattern respond indistinguishably to

both treatment pairs 3 & 5, and 5 & 2, and yet they respond more to treatment 3 than to

treatment 2. On the other hand, contractible pattern B captures precisely how genes
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Figure 10: Examples of response graphs: [A] a non-contractible pattern with control and 7
treatments; [B, C, D] contractible patterns with control and 7, 9, and 11 treatments,
respectively.

respond to all treatments. The response can be unambiguously linearized as follows:

{6 ∼ C} > {5 ∼ 1} > {2 ∼ 4 ∼ 3 ∼ 7}. This means that the 71 genes in pattern B are

not affected by treatment 6, and are down-regulated by treatments 5, 1, 2, 4, 3, 7, but more

so by treatments 2, 4, 3, 7. Further, these genes respond indistinguishably to to treatments

5 & 1, and to treatments 2, 4, 3, & 7. We can similarly and unambiguously interpret

contractible patterns C and D.
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Filtering to Identify Secondary Responses

Users are able to analyze further gene clusters by filtering patterns based on how

genes respond specifically to individual treatments: affected or not affected, up-regulated

or down-regulated by a treatment. Users can also filter patterns for a group of genes

indicated by Probeset IDs, Gene Symbols, UniGene IDs, or Accession Numbers. Figure

11 shows how to filter patterns with gene response criteria (the left side) and how to filter

patterns for a group of genes with proper identifiers (the right side).

Figure 11: Filtering to identify secondary responses: Left: filtering based on treatment
effect: up-regulated, down-regulated, affected, not affected, or any; Right: filtering based
on Probset IDs.

Additionally, to facilitate gene cluster analyses, patterns of gene responses are

pre-grouped into meta-clusters. A meta-cluster at k-level can be defined as a group of

genes that have k groups of equivalent treatments (that can be one or more treatments).

Each meta-cluster can consist of several directed graph patterns. Currently, our software

shows first level meta-clusters, which includes all genes that have one group of equivalent

treatments. For example, patterns in Figures 10A and 10B (see section 2.3.3) share the

same meta-cluster “< {6 ∼ C}” (up-regulated by group “{6 ∼ C}”). We can also

account for up-down responses for meta-clusters, in this case, pattern in Figure 10B has

the meta-cluster “> {2 ∼ 4 ∼ 3 ∼ 7}” (down-regulated by group “{2 ∼ 4 ∼ 3 ∼ 7}”).
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Functional Analyses of Patterns

Genes sharing same directed-graph patterns hypothetically share similar biological

function. To facilitate functional analyses, the software incorporates other tools that are

well known for this task. Each cluster of genes with same patterns can be analyzed further

via three external well-established tools with quite different approaches DAVID [81],

GeneMANIA [82], and GCAT [83]. Figure 12 (upper part) shows how to use these tools

with our software.

Users are also able to link genes in patterns to NCBI resources by using their

identifiers such as Probset IDs, Gene Symbols, UniGene IDs, or Accession Numbers.

Figure 12 (lower part) shows how to link to these resources from our software. Tools with

well-defined APIs will be continually incorporated into the software. To facilitate

subsequence analyses, the software also shows P-value and fold change for each gene. In

the future, we will make users be able to set fold change threshold in the software by

themselves. In this case, the edge A→ B (B → A) will be established if and only if the

gene is expressed statistically significantly higher under A (B) than under B (A), and fold

change is higher than the given threshold. Otherwise, there is no edge between A and B.

2.3.4 Summary

We introduced a novel web-based software to facilitate comparative

gene-expression studies involving multiple treatments. This tool uses directed graphs to

represent patterns of gene response to treatments in such a way that these response

patterns are descriptive and visually informative. We showed how to use the software to

interpret patterns of gene response, filter these patterns to identify secondary responses,

and how to perform functional analyses for genes with same patterns. mDAG has features

to help users analyze, organize and manage data conveniently and can be easily configured

for personal or group usage.
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Figure 12: Functional analyses of genes with same patterns: Upper: analyzing biological
functions of patterns by transferring their gene lists to proper external tools with several
options; Lower: checking information of genes in patterns by linking genes to NCBI
resources using their identifiers.

2.4 Exploiting Orderable sets to Predict True Patterns of Gene Response

2.4.1 Introduction

In this section, we introduce a novel method which uses orderable sets to predict

true patterns of gene response to treatments in experiments with small sample size. We

will show that orderable sets can be exploited to represent patterns of gene response to

treatments and more importantly, the dependencies of pairwise comparison outcomes

could be exploited effectively to predict true patterns of gene response. Most of the

content in this section has been published in ([61, 62]).
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In this method, the patterns are determined by relative orders of gene response to

treatments, which are obtained using pairwise comparisons using the procedure in section

2.1.1. First, we will show that true patterns of gene response must be orderable sets. Then

we modify the conventional pairwise comparison tests by increasing the significance level

α in a proper manner to deduce orderable patterns, which are shown to be most likely true

orders of gene response. We will show that gene lists obtained with this method yield

more and better functional enrichment than those obtained with the conventional

approach. These results were confirmed using DAVID 2, a well-established tool for

extracting biological meaning for gene lists from most major public resources.

Additionally, we will show that gene clusters labelled by patterns produced by our

method are much more enriched than those of hierarchical clustering. This method

discovered clusters of genes with important biological and pharmacological activities that

hierarchical clustering fails to detect, which was confirmed by literature. Moreover,

motivated by the fact that a gene can be involved in multiple biological functions, we

resampled experimental replicates and predicted multiple response patterns for each gene.

Our experiment results using DAVID showed that compared to the conventional method

of fixing α and using only experimental samples, this method increased biological

enrichment of patterns significantly.

Our approach is promising to design cost-effective experiments with small sample

sizes. Using our method, patterns of highly-variantly expressed genes can be predicted by

varying α intelligently based on the exploitation of orderable patterns. Furthermore,

clusters are labeled meaningfully with patterns that describe precisely how genes in such

clusters respond to treatments.

2 http://david.abcc.ncifcrf.gov/
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2.4.2 Method

Representing Gene Response Patterns with Orderable Sets

Let Pg be the set of all k(k−1)
2

outcomes obtained from pairwise comparisons using

the procedure described in section 2.1.1. When the pattern Pg of a gene is observed at a

confidence level α, it may not be the true pattern of gene response, especially if sample

size is small. To distinguish the true patterns from all patterns, we can use the following

observation:

Observation 1. Let ∆ be the pattern defined by the following outcomes:

A ≺ C,A ∼ B,B ∼ C. Then ∆ is likely not a true pattern of gene response to the 3

treatments because sample size is insufficient. Moreover, if a pattern contains ∆, then it is

likely not a true pattern.

As an illustration, Figure 13A shows the ∆ and Figure 13B shows a pattern that

cannot be true as it contains ∆. To explore further properties of true patterns, we define:

Definition 1. A pattern P based on n elements t1, · · · , tn is orderable if ∀i, j such that

ti ∼ tj , G(ti) = G(tj) and L(ti) = L(tj) where G(ti) = {tk|ti ≺ tk} is the set of elements

“larger” than ti, and similarly L(ti) = {tk|tk ≺ ti} is the set of elements “smaller” than ti.

and use the following observation:

Observation 2. A pattern is orderable if and only if it does not contain ∆.

From observations 1 and 2, we can conclude that true patterns are likely orderable.

Although this does not imply that orderable patterns must be true response of genes, if we

assume that already observed outcomes of types A ≺ B are correct (with high

probabilities), then additional samples do not change these and therefore true pattern must

be an extension of the observed pattern, which is defined as:

Definition 2. Q is a orderable extension of P if (1) Q is orderable, and (2) ∀i, j if P

contains ti ≺ tj , then Q also contains ti ≺ tj .
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For instance, the patterns shown in Figure 13C-D are among the orderable

extensions of the pattern shown in Figure 13B. These observations turns out can be used

to predict true patterns of gene response to treatments. The underlying reasoning of these

observations and more details of the method can be found in [62].
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Figure 13: (A) ∆ = {x ≺ z, x ∼ y, y ∼ z}. (B) A pattern that is not true as it contains ∆
(on elements a, e, and b). (C) an orderable pattern. (D) another orderable pattern. Both
patterns C and D are orderable extensions of the pattern B.

Vary α to Predict True Patterns

The conventional procedure to determine patterns of gene response using pairwise

comparisons can be summarized in Algorithm 3, which takes as input the samples of a

gene responding to all treatments and a specific confidence level α.

Algorithm 3: Pattern(S, α)
1: Compute p-values computed in comparison tests for all treatment pairs based on

samples S
2: Let P be the set of all outcomes computed based on α
3: return P

The confidence level α in comparison tests plays an important role in determining

the outcomes A ≺ B or B ≺ A or A ∼ B and ultimately whether or not the collective

pattern is orderable. As an example, suppose that given 4 hypothetical treatments, the

p-values of outcomes for 6 comparison tests are: 0.45 (for the test if µA < µB); 0.03 (for

the test if µA < µC); 0.055 (for the test if µA < µD); 0.03 (for the test if µB < µC); 0.03

for the test if µB < µD; 0.45 (for the test if µC < µD). In independent statistical tests, α is
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fixed at a conventional small value such as 0.05 to reduce false positives [76]. If we set α

at 0.05, then we will get the pattern {A ∼ B,A ≺ C,A ∼ D,B ≺ C,B ≺ D,C ∼ D},

which is the left pattern in Figure 14. But this pattern is not orderable and cannot be true.

If, however, we set α at a slightly higher value at 0.06, we can accept µA < µD (with

p-value = 0.055), which will get an orderable pattern in Figure 14.

Since we have established that true patterns must be orderable, it makes sense to

vary α conservatively in these dependent tests to achieve orderable patterns, which are

more likely to be true patterns of gene response to treatments. Based on this idea, we can

devise a procedure to determine an orderable pattern for a given gene, by finding a

minimal α that yields a nontrivial orderable pattern. Algorithm 4 takes as input samples

(replicates) of all treatment groups and finds an orderable pattern by increasing α (so long

as it does not exceed a large value αmax, e.g. 0.5) until a non-empty orderable patterns is

obtained.

a c

b d

a c

db

Figure 14: Based on the same hypothetical expression data, (Left) observed pattern is not
orderable with α = 0.05. (Right) observed pattern is orderable with α = 0.06.

Algorithm 4: OrderablePattern(S)
1: Let L be the list of p-values computed in comparison tests for all treatment pairs

based on samples S.
2: Sort L in increasing order (duplicates removed).
3: Let m be the largest index of L such that L[m] < αmax

4: for i = 0 to m do
5: α← L[i]
6: Pα be the set of all outcomes computed based on α.
7: return Pα if it is orderable & nontrivial
8: return ∅
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Predict Multiple Patterns for Each Gene

A true pattern must be orderable, but an orderable might not be true. For example,

either patterns in Figure 13 can be the true pattern depending on which α is used. When

there are many patterns with approximately equal probabilities of being true, it makes

more sense to predict multiple patterns for each gene. Further, because a gene might

participate in multiple biological functions or molecular processes, assigning multiple

patterns to a gene makes sense biologically.

Conventionally, methods for determination of patterns of gene response assign one

most-probable pattern to one gene. This strategy however has several problems with

respect to biological interpretation of patterns. One of the problems is, a gene can play a

role in many biological processes, however the assignment of one pattern to one gene do

not capture this situation. To deal with this, one can think about a strategy in which gene

would be predicted probabilistically with several potentially patterns. On the other hand,

we can perform a many-to-one assignment of patterns to genes. This strategy leads to nice

biological interpretation, in which a gene might play multiple roles and participate in

different functions.

To predict the most probable patterns for a given gene, we employ the bootstrap

method [84, 85] to resample (with replacement) from the set of gene expression replicates

to create a large number of datasets for the purpose of approximating the sampling

distribution of gene expression. Algorithm 5 computes the set of most probable patterns

(and their probabilities) of a gene g using M iterations of bootstrap.

To be conservative in predicting multiple patterns, Algorithm 10 employs a

heuristic which stipulates that if a pattern, P , is orderable based on a conventionally low α

such as 0.05, then P is likely the true pattern. In this case, the algorithm returns P and its

probability of 1. In case where P is not orderable at α = 0.05, we generate bootstrap

samples for all treatments ti’s that might contribute to yielding orderable patterns. These

are treatments involving in outcomes of the type ti ∼ tj in P . In each iteration k,
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bootstrap replicates are used to determine a pattern Pk using either the fixed α (Algorithm

3 in section 2.1) or variable α method (Algorithm 5). After a large number (M ) of

probabilistic bootstrap experiments, we can determine the set of patterns with their

corresponding probabilities.

Algorithm 5: MultiplePatterns(g)
1: Let S = {S1, · · · , St} be the set of samples of gene g, where Si is the set of samples

of treatment ti.
2: P ← Pattern(S, 0.05) (Algorithm 3)
3: if P is orderable then
4: return (P, 1)
5: Let Q be a multiset, initially empty.
6: for k = 1 to M do
7: for each i such that ∃j, ti ∼ tj ∈ P do
8: replace samples Si with bootstrap replicates
9: Determine pattern Pk based on experimental and bootstrap replicates, using either

Algorithm 3 or Algorithm 4.
10: Q = Q

⋃
Pk

11: return {(P, fP ) | P ∈ Q, fP is the frequency of P in Q}

2.4.3 Results

Design of Experiments and Evaluation

To validate our method, we used a gene expression data set came from a controlled

study of samples of livers of Sprague-Dawley rats treated with either control diet or one of

three chemopreventive compounds with well understood pharmacological activities,

5,6-benzoflavone (BNF), 3H-1,2-dithiole-3-thione (D3T) and

4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (OLT). This dataset had 5 samples in each

of 4 treatment groups (including control group). It was available publicly with GEO

accession number GSE8880 [20].

There totally 1737 significantly differentially expressed genes were selected using

the Kruskal-Wallis procedure. Each gene is placed into a bin labelled by its pattern. When

we assign multiple patterns (say P1, · · · , Pk) to a gene, we will place the gene to bins with

labels P1 or P2, · · · , or Pk. Thus, each bin contains genes with the same patterns.
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Ultimately, the usefulness of a method lies in its ability to predict biological

functions. To evaluate our method, we consider genes labelled with the same pattern as a

gene cluster. We use DAVID to evaluate functional enrichment of each cluster. DAVID is

a resource aimed at systematically extracting biological meaning from large gene lists.

DAVID integrates biological information from most major public bioinformatics

resources. We used the Gene Functional Classification tool of DAVID to extract

highly-enriched clusters from each gene list. To quantify the degree of enrichment, we

consider the number of functionally enriched clusters, number of enriched genes, and

enrichment score that DAVID returns. All analyses were run with default parameters.

Varying α Results in More Orderable Patterns

With α fixed at 0.05, 1252 (72%) genes acquired 45 orderable patterns and 485

(28%) genes acquired 69 not orderable patterns. We observe that many orderable

extensions can be obtained by modestly raising α beyond 0.05. Figure 15a shows that

with α ≤ 0.075, patterns of 84% of genes were orderable; and with α ≤ 0.15, 97% of

genes had orderable patterns. With α ≤ 0.5, 100% of genes had orderable patterns. There

were 55 orderable patterns, which include all 45 orderable patterns observed with

α = 0.05, plus 10 new patterns.

Figure 15: (a) fraction of orderable patterns at increasing values of α. (b) structural
difference between patterns acquired at α = 0.05 and at higher values.
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When the pattern P of a gene at α = 0.05 becomes another pattern Q at larger α,

by construction, Q is a orderalbe extension of P . We will show quantitatively that the

difference between P and Q is not very much. To compare the structural difference

between patterns obtained at α fixed at 0.05 and their orderable extensions obtained by a

higher α, we define the difference between two pattern P and Q as

d(P,Q) =
∑(n

2)
i=1 δ(pi, qi), where δ(pi, qi) is 0 if the ith outcome of P and Q is the same,

and 1 if it is different. For example, if P and Q are the patterns shown in Fig 13, then

d(P,Q) = 1 as they differ only in the comparison of a and e.

Figure 15b shows the average structural difference between a pattern observed

with α fixed at 0.05 and its orderable extension observed varying α. This difference is

denoted in the figure as µ(d1). As this number is well below 0.4 for all values of α, we see

that on average a pattern is only very slightly different from its orderable extension. This

number, however, does not tell the whole story, because 72% of genes acquired orderable

patterns at α = 0.05 (meaning they are trivially their own orderable extensions). Thus, we

proceed to analyze patterns that were not orderable at α = 0.05. The structural difference

between these patterns and their orderable extensions is denoted in the figure as µ(d2). We

see that this number is below 1.2 at all values of α. This means that on average adding

roughly 1 outcome (of type A ≺ B) to these patterns would make them orderable.

Varying α Results in Better Enrichment

We have shown that varying α, i.e. allowing different α’s for different genes,

resulted in more orderable patterns. Since orderable patterns are more likely to be true

patterns of gene response to treatments, it is expected that genes grouping in patterns that

more likely true would result in more enrichment of the gene set. The enrichment of a

gene list is described by DAVID’s functional annotations in 3 aspects: (i) the number of

enriched clusters (we refer to this in the figures as E.cluster), each of which is a subset of

the gene list, (ii) the number of genes in each enriched clusters (E.gene), and (iii) the

enrichment score of each cluster (E.score).
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Figure 16 shows that gene lists obtained from by varying α for each gene resulted

in better enrichment than those obtained by fixing α at 0.05 for all genes. Specifically,

with α fixed at 0.05, DAVID found 62 enriched genes in 12 enriched clusters, with a total

enrichment score approximately 20.83. Meanwhile, for gene lists obtained with varying α

up to 0.15 for each gene, DAVID founded 119 enriched genes in 23 enriched clusters with

a total enrichment score of 46.70. Thus, gene lists produced by varying α up to 0.15 for

each gene are twice as enriched as fixing α at 0.05.

Figure 16 also shows that setting the maximum α larger than 0.15 did not improve

enrichment very much. It seems that 0.15 is the optimal maximum threshold for this data

set. For other data sets, it might be necessary to impose an upper bound on α, e.g. 0.15, to

reduce false positives. This result suggests that doing so does not affect negatively

functional enrichment very much.

An analysis of the results shown in Figure 16 reveals that varying α up to 0.15

yielded four new patterns (000001, 022221, 20001, and 201002) with a 26 enriched genes

in 5 enriched clusters and total enrichment score approximately 10.37. These patterns

were not observed for any genes when α was fixed at 0.05. Thus, varying α not only

increased enrichment of existing patterns, it also discovers new enriched patterns.

Assigning Multiple Patterns further Increases Enrichment

The motivation for assigning multiple patterns to a gene is that genes might have

multiple biological functions or involve in multiple biological processes. If such is a case,

we expect that such genes acquire several patterns with similarly high probabilities. We

test this hypothesis by comparing gene-set enrichment of clusters produced by two

different schemes: (i) one-pattern assignment scheme, which assigns only one pattern that

is determined by real (experimental) replicates , and (ii) multiple-pattern assignment

scheme, which assigns possibly multiple patterns, each of which is determined by

replicates produced using bootstrap (as discussed in Methods). In comparing these two

assignment schemes, we chose to determine patterns by varying α up to 0.15, since the
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Figure 16: Comparison of gene-set enrichment of clusters produced by fixing α at 0.05
and varying α up to 0.5. The x-axis shows the maximum values of α that can be varied to
obtain patterns. The y-axis shows the number of enriched clusters (E.cluster), the number
of genes in enriched clusters (E.gene), and the enrichment score (E.score). Each color
represents a different pattern, codified by a 6-digit string.

results have shown (as discussed in the previous section) that varying α with the upper

bound of 0.15 resulted in most enrichment.

Figure 17 compares gene-set enrichment of the two assignment schemes. In the

x-axis, we line up patterns with enriched clusters found by DAVID. Each bar corresponds

on a pattern that contains enriched clusters. Patterns assigned to genes by the one-pattern

assignment scheme are colored red. Patterns assigned to genes by the multiple-pattern

assignment scheme are colored dark turquoise. Figure 17 shows clearly that the

multiple-pattern assignment scheme resulted in much more and much better enrichment

than the one-pattern assignment scheme. Specifically, we observe that
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Figure 17: Comparison of gene-set enrichment of clusters produced by one-pattern
assignment (1-1) versus multiple-pattern assignment (m-1), with α ≤ 0.15. The x-axis
lines up patterns with enriched clusters found by DAVID. The y-axis shows the values of
enrichment in terms of the number of enriched clusters (E.cluster), the number of genes in
enriched clusters (E.gene), and the enrichment score (E.score).

• DAVID found enriched gene clusters in many more patterns assigned by

multiple-pattern assignment scheme: 8 patterns by the one-pattern assignment

scheme versus 35 patterns by the multiple-pattern assignment scheme. Further all of

the 8 patterns were contained a subset of the 35 patterns. In other words, the

multiple-pattern assignment scheme had more enrichment by discovering an

additional 25 (3x more) more enriched patterns.

• Looking at each enriched pattern found in both schemes (the columns that contain

both red and dark turquoise), we see that the enrichment for the multiple-pattern

assignment scheme is much better in all 3 aspects: (i) the number of enriched

clusters (E.cluster), (ii) the number of genes in enriched clusters (E.gene), and (iii)
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the enrichment scores for of enriched clusters (E.score). In other words, the

multiple-pattern assignment scheme had better enrichment for the enriched patterns

that it shared with the one-pattern assignment scheme.

This comparison shows much promise for the probabilistic approach to assigning

multiple patterns to genes. It appears that resampling by bootstrap was helpful in

determining true response patterns of genes.

Clusters based on Orderable Patterns are Better Enriched

We may view the placement of genes into bins labelled by patterns as a clustering

method because conceptually genes sharing the same patterns should share some

biological functions. We shall analyze the predictive power of our method as a clustering

method and compare the enrichment of gene clusters produced by this method and gene

clusters produced by hierarchical clustering. Although there are better clustering methods

for specific scenarios, hierarchical clustering remains popular as a general-purpose

clustering technique and as such it is a useful gold standard for comparison. We used

Pearson correlation as the distance between two gene expression vectors; each gene

expression vector consists of mean expressions of all treatment groups of a gene. Average

linkage was used as a measure of similarity between two clusters.

For comparison, it makes more sense to compare hierarchical clustering to our

deterministic one-pattern assignment scheme, which assigns only one pattern to each

gene, although the probabilistic, multiple-pattern assignment yielded much more

enrichment in all aspects than the deterministic one-pattern assignment did. This

comparison is more appropriate because hierarchical clustering assigns each gene to only

one cluster and in essence is similar to the deterministic one-pattern assignment scheme.

For an appropriate comparison, we chose the hierarchy of clusters (for hierarchical

clustering) that gave exactly 78 clusters. Since each hierarchy gives a different number of

clusters, one must selected for comparison. And in our approach, an α threshold results in

a specific number of clusters for set of differentially expressed genes. Specifically, if we
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vary α to maximally 0.15 (αmax = 0.15), we get exactly 78 clusters for our dataset. Since

we chose this threshold for comparison, we needed to chose an appropriate hierarchy for

hierarchical clustering to give the same number of clusters.

As shown in Table 1, DAVID analyzed the set of clusters produced by hierarchical

clustering and found 8 clusters that contained a total of 11 enriched clusters (denoted

E.cluster). One cluster contained 3 enriched clusters; another contained 2 enriched

clusters; and each of the other contained 1 enriched cluster. These enriched clusters

contained between 4 and 16 genes (denoted E.genes). The enrichment score (E.score) for

each enriched cluster was between 0.58 and 5.82.

Table 1: Functional enrichment of clusters produced by hierarchical clustering (hc) and
our method when α is varied up to 0.05 for each gene.

method cluster-id E.cluster E.gene E.score
hc c70 3 16 5.8176
hc c35 2 8 3.8396
hc c11 1 4 3.0557
hc c72 1 4 2.6481
hc c34 1 4 1.2998
hc c71 1 4 1.0265
hc c26 1 4 0.8574
hc c77 1 4 0.5839
α ≤ 0.15 100001 10 52 23.8291
α ≤ 0.15 021220 2 14 6.4583
α ≤ 0.15 201002 1 5 4.9576
α ≤ 0.15 122221 5 23 4.5289
α ≤ 0.15 000001 2 12 2.8358
α ≤ 0.15 022221 1 5 2.1743
α ≤ 0.15 000111 1 4 1.5216
α ≤ 0.15 200001 1 4 0.4007

Very interestingly, DAVID also found 8 clusters in the set of clusters produced by

our method. These 8 clusters, however, contained a total of 23 enriched clusters; this is

more than double the number of enriched clusters for hierarchical clustering. These 23

enriched clusters contained a total of 119 enriched genes; this is also more than double the

number of enriched genes for hierarchical clustering. The individual and overall
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enrichment scores of enriched clusters in our method are again more than twice those in

hierarchical clustering. In summary, our method with α ≤ 0.15 produced clusters that are

more than twice as enriched as those produced by hierarchical clustering.

An important distinction between clustering by comparison-based patterns and by

hierarchical clustering is that comparison-based patterns clusters are labelled, while

clusters produced by hierarchical clustering (or any other unsupervised method) are

unlabeled. The labels of comparison-based clusters are patterns that specify precisely how

genes placed in such clusters respond to all treatment pairs. Such labelled can be

meaningful annotations and carry useful meanings for subsequent analyses. By contrast,

for hierarchical clustering, other than the fact that genes in the same clusters are similar

based on Pearson correlation (some other distance metric), it is harder to interpret genes

that are in the same clusters.

A closer analysis of genes in enriched clusters produced by the two methods

shows that 28 out of 48 genes in enriched clusters produced by hierarchical clustering

were also in enriched clustering found by our method. Hierarchical clustering discovered

20 genes in enriched clusters that our method did not. On the other hand, our method

discover 99 genes in enriched clusters that hierarchical clustering did not.

Biological Associations of Genes in Discovered Patterns

Additional analyses of genes in enriched clusters discovered by our method and

missed by hierarchical clustering showed that some of these genes were in fact associated

in multiple biological networks and had interesting known pharmacological behaviors.

The pattern shown in Figure 18 includes 62 genes, among which 4 transcription

factor-encoding genes (Nfe2l2, Klf2, Egr1, and Irf8) belong to an enriched cluster found

by DAVID. These 4 transcription factors were grouped together in one cluster by our

method, but were placed in different clusters by hierarchical clustering.

Three of the four transcription factors (Nfe2l2, Klf2, and Egr1) have been known

to participate in five biological networks (Figure 19): (i) co-expression network (violet
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Figure 18: Pattern contains 4 transcription factors Nfe2l2, Klf2, Egr1, and Irf8 in an
enriched cluster found by DAVID. These genes participate in multiple biological
networks.

edges) supported by 20 publications; (ii) predicted functional network (yellow edges)

supported by 13 publications; (iii) protein-protein interaction network (pink edges)

supported by 5 data sources, (iv) co-localization network (blue edges) supported by 1

publication, and (v) shared protein domain network (olive edges) supported 2 data

sources. These networks were obtained by GeneMANIA [82] based on the current

literature and many different sources of functional association data. An interesting finding

from these networks is that Egr1, Klf2, and two other genes Sp1 and Egr2 mutually share

protein domains.

Among these transcription factors, Nfe2l2 is known to play an important role in

many reported pharmacological activities by the studied chemo-prenventive chemical

compounds (BNF, D3T, and OLT). Nfe2l2 is a master regulator of the expression of

antioxidant response element-dependent genes, which produce proteins responsible for the

detoxication of electrophiles and reactive oxygen species[86, 87]. Induction of studied

chemical treatments BNF, D3T, and OLT on Nfe2l2 were revealed in many studies. Dewa

et al. [88] revealed that BNF induced many Nfe2l2-regulated genes in a study of oxidative

stress responses in the livers of rats. Kobayashi et al. [89] showed that Nfe2l2 (together

with Keap1) was activated in response to D3T treatment in a study on Zebrafish. Tran et

al. [21] also confirmed that many Nfe2l2-dependent genes, particularly detoxifying and

antioxidant proteins, respond to D3T and OLT treatments in a study to examine

pharmacological structure-activity relationships of these compounds in rat livers. Dong et
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Figure 19: Biological networks that include Nfe2l2, Klf2, Egr1, and Irf8. Edge colors
encode different types of networks. Related genes in the networks are in grey circles.

al. [90] demonstrated that D3T can induce Nrf2 activation and prevent ethanol-induced

oxidative stress and apoptosis in a study on PC12 cells. The results of these studies

support the hypothesis that Nfe2l2 plays an important role in pharmacological activities

by the studied chemical treatments BNF, D3T, and OLT.

2.4.4 Summary

We introduce a novel method for the analysis of gene expression patterns in

studies involving multiple treatments. We derived crucial properties that orderable

comparison-based patterns are more likely to be true patterns. This property helps exploit

the interdependencies among statistical tests whose outcomes constitute observed

patterns. Consequently, we are able to increase α, the threshold used in the statistical tests,
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beyond the traditional value of 0.05 to enable a more accurate prediction of true patterns.

Objective analyses by DAVID confirmed that increasing α carefully in this way indeed

yielded more functional enrichment.

Another novel aspect of this method is in the probabilistic assignment of multiple

patterns to each gene. While fuzzy clustering of genes have been introduced, multiple

pattern assignment based on bootstrap resampling is a refreshing direction. We further

showed that the multiple-pattern assignment scheme increased functional enrichment

manyfold. By assigning multiple patterns to a gene, the method discovered new enriched

patterns and at the same time increased the enrichment of already discovered clusters.

A comparison to hierarchical clustering shows that the one-pattern assignment

scheme produced the same number of enriched clusters, but those clusters were twice as

enriched in all three different aspects: the number of enriched groups in each cluster, the

number of genes in each enriched group, and the total enrichment score of each group. We

compared hierarchical clustering to the one-pattern assignment scheme because both

methods place a gene into one cluster, although the multiple-pattern assignment scheme is

much better than the one-pattern assignment scheme in terms of producing functionally

enriched gene sets. More thorough analysis of 3 transcription factors grouped together in

an enriched cluster found by our method and missed by hierarchical clustering showed

that these transcription factors participated in multiple biological networks. One particular

transcription factor, Nfe2l2, was known to play an important role in many

pharmacological activities related to the studied chemo-preventive chemical compounds.

This method is particularly useful in studies with many drugs, with small sample

sizes or contain highly variantly expressed genes. If the sample size is sufficient but still

small enough that conventional methods might suffer to gauge true response patterns, our

approach might be beneficial in its exploitation of the dependencies among interdependent

statistical tests. Specifically, the exploitation of orderable patterns will help vary α in an

intelligent manner to predict true order of gene response to treatments accurately.
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2.5 Conclusion

In this chapter, we have introduced several methods and tools for representing,

analyzing, and interpreting gene expression with multiple treatments. We exploited

directed graphs and orderable sets, respectively, to represent patterns of gene response and

to deal with the challenge of predicting true patterns of gene response to treatments.

Firstly, we showed that by augmenting experimental replicates with synthetic

replicates, correct outcomes of pairwise comparison, which can be represented by directed

graphs, can be predicted with good accuracy. We then showed by biological analyses that,

objectively, predicted patterns resulted in more and better functionally enriched clusters.

Secondly, we demonstrated that varying α and assigning multiple patterns to genes

ultimately results in gene patterns, which are represented by orderable sets, with more

functional enrichment than conventional methods. We then showed that grouping genes

with same patterns into clusters will yield much more enriched clusters than hierarchical

clustering does. Furthermore, an analysis of genes in enriched clusters identified by our

method but missed by hierarchical clustering showed interestingly that their

pharmacological activities reported by the current literature agree with the patterns

predicted by our method. These methods should be useful for any studies that use

expression data to analyze comparatively patterns of gene response to multiple treatments.

Additionally, we have introduced mDAG and PA, two web-based software

packages to facilitate analysis, visualization, and interpretation of gene expression data

with directed graphs. The gene patterns may be further analyzed using several external

well-established tools such as DAVID [81] or GeneMANIA [82], which have been

incorporated into mDAG and PA to help users explore hypotheses about gene functions

and regulations as well as other downstream analyses. mDAG and PA are useful for any

studies that comparatively analyze response patterns in gene expression data with multiple

treatments such as chemicals, cell types.

53



Chapter 3

Short Read Alignment

Short read alignment is the process of aligning short reads, which are short

fragments extracted from DNA (RNA) of an individual, to a reference genome

(transcriptome) from the same species. This problem is motivated by the fact that

genomes within the same species are very similar, therefore the reference genome (which

is constructed before) can facilitate analyzing genomes or transcriptomes of new

individuals using short reads sequenced across their genome or transcriptome. Results

from the alignment process can be used for a wide range of problems, from gene

expression analysis, genome analysis, to many more problems in genomic and

bioinformatics research. For example, mapping RNA short reads to the reference genome

or transcriptome is the first step of the standard approach to measuring gene expression

levels using RNA-Seq technologies. Another example is, mapping DNA short reads to the

reference genome is the first step of the standard approach to identifying genetic variants

using NGS data. The alignment of short reads to reference genomes therefore plays an

important role in bioinformatics and biomedical research and applications.

Currently genomes for a huge number of individuals from many species have been

sequenced using next-generation sequencing technologies. With this increasing amount of

sequencing data, a lot of methods together with software packages for read alignment

have been developed. They employed diverse data structures and algorithms for efficiently

and accurately aligning reads to the reference. Although these methods and tools have

been proven to work well with the majority of current data sets, many challenges still

exist. One needs to develop efficient but accurate algorithms or needs to deal with

sequencing error of input data. The complexity of the reference genome itself (e.g., the

existence of long repetitive regions) and its incompleteness also put further difficulty to

accurately aligning reads to the reference. Therefore it is still desirable to develop new

algorithms and tools that perform well across a wide range of data aspects.
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In this chapter, we introduce our approach to aligning short reads to reference

genomes and our analysis of relationship between sequence complexity and performance

of short read aligners. Most of content of this chapter has been published in

[63, 64, 65, 66]. In the next sections, we describe in detail this work. In Section 3.1 we

describe an overview of the problem. In Sections 3.2 and 3.3, we introduce a randomized

approach to improving accuracy of the alignment of short reads to the reference genome

across a wide range of read lengths and base error rates as well as an analysis of

relationship between sequence complexity and performance of short read aligners.

Finally, Section 3.4 provides conclusion and future directions of our work.

3.1 Introduction

As mentioned earlier, the alignment of short reads to the reference genome is a

critical task in many bioinformatics and genomic applications. However, there are many

challenges in obtaining accurate alignment of reads to the reference. Current technologies

produce reads with lengths much shorter than genomes (typically read lengths are

hundreds or thousands while genome lengths are millions to billions) which make read

aligners struggle to obtain accurate alignment. Even if advances in technologies produce

longer and more accurate reads, many challenges still remain. For example, complex

genomic variants between individuals in population such as insertions or deletions or

other types of structural variations can complicate the alignment. Additionally, the

repetitive regions and the incomplete regions of the reference genomes are still sources of

erroneous alignment despite a lot of effort in developing advanced read aligners.

To address these problems, researchers have proposed many methods together with

software packages, most of them are based on the seed-and-extend approach. Several data

structures and techniques such as the hash tables, q-grams, suffix trees/suffix arrays, or

FM index are used to speed up searching for seeds [31, 32, 34, 33, 39, 42, 37]. For

example, Bowtie uses the FM index to build a permanent index of the reference genome.

It then applies backtracking algorithm to find alignments. BWA also utilizes the BWT, but
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unlike Bowtie, can handle gaps and mismatches in the reads. More advanced versions of

these methods, which are designed to work with longer reads, have been developed

including Bowtie2 [40] and BWA-SW [38]. Additional heuristics are also used to enhance

efficiency. Bowtie2 [40] and CUSHAW2 [41], for example, use several filtering

techniques with seeds to quickly identify true candidates for alignment. GASSST [39]

uses a filtering technique to reduce noisy seeds. For the extend phase, most of methods

employed alignment algorithms such as the Needleman-Wunsch or the Smith-Waterman

to calculate similarities (dissimilarities) between reads and the reference and then obtain

the final alignment. Implementations of some of these approaches, e.g. Bowtie2 or

CUSHAW2, take advantages of parallelism or special-purpose architectures.

Although these approaches and tools have been proven to work well with vast of

current data sets, many challenges still exist. The rapid advancement of sequencing

technologies continually changes many sequencing aspects such as read lengths,

sequencing errors, or type of errors. Advanced technologies generally produce longer

reads, which facilitate alignment of reads to complex reference genomes, but may have

worse accuracy in some cases. On the other hand, technologies that produce shorter reads

can be less expensive, and might have better accuracy. Nevertheless, many existing

algorithms struggle to perform consistently across such aspects. Thus, it is necessary to

design algorithms and tools that perform well across a wide range of input aspects.

One more problem is, although it is frequently observed that accurately aligning

short reads to genomes becomes harder if they contain complex repeat patterns, there has

not been much effort to quantify the relationship between complexity of genomes and

hardness of short read alignment. Existing measures of sequence complexity seem

unsuitable for the understanding and quantification of this relationship. Therefore, it is

necessary to come up with a better formal establishment of connection between genome

complexity and the accuracy of short read aligners.

In the next sections, we will describe our contributions to these problems.

56



3.2 RandAL: A Randomized Approach to Aligning Reads to Reference Genomes

3.2.1 Introduction

Currently many existing algorithms for read alignment struggle to perform

consistently across a wide range of read lengths and sequencing error rates. Methods such

as Bowtie [35] and Burrows-Wheeler Alignment (BWA) [36] tend to perform better with

shorter reads. More advanced versions of these methods include Bowtie2 [40] and

BWA-SW [38] are designed to work with longer reads. Bowtie2 can align reads with gaps

and works better than Bowtie at longer reads. BWA-SW exploits several heuristics to

speed up the local alignment of reads and obtain accurate alignments. The use of

heuristics can improve performance several folds, but might lead to over-tuning

parameters to a particular set of inputs, e.g. read lengths, species, or base error rates.

Here we introduce a novel algorithm for short read alignment that performs

consistently well over a wide range of read lengths, from 35 to several hundreds base

pairs. We employ two FM indices for efficient bidirectional exact substring matching. To

deal with inexact matching (i.e. allowing gaps), first, we find common substrings between

reads and the reference genome. Then, these common substrings are extended to complete

alignments based on a bounded threshold on the edit distance. We use a special pruning

mechanism to shorten vastly the running time of computing edit distances in a vast

majority of cases. The use of randomization in aligning reads to genomes increases the

probability of finding seeds quickly and enables us determine methodologically important

parameters to speed up the entire alignment process. Our experimental results show that

our algorithm performed consistently well on a wide range of read lengths across several

bacterial and eukaryotic genomes. The alignment quality of our method was better or

generally as good as that of all compared methods. We have also developed RandAL, a

software package for aligning short reads to the reference genome based on this approach.

The tool and its source code are publicly available at http://github.com/namsyvo/RandAL.
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3.2.2 Method

Given a reference genome S and a set of reads R = {r1, · · · , rn}, the main

problem is to align each ri to S. The reference genome S and the reads are DNA

sequences, or strings over the alphabet of characters Σ = {A,G,C, T,N}. The alignment

of a read r to S is essentially finding a substring of S that matches r the most. The set of

reads R are substrings of another genomeR that is different from, but belongs to the same

species as S (that is,R differs from S only several percent of length and the differences

must have biological meaning). Our strategy for read alignment is based on the following

ideas:

1. Detection of identical substring matches between r and S is based on common

substrings of r and S. As we know r and S differ only slightly, we expect long

common substrings exist.

2. A special data structure called the FM-index is used to facilitate memory-efficient,

time-optimal exact string matching. One can use FM-index to find common strings

between r and S in linear time with regard to |r|, which is much smaller than |S|,

therefore facilitates efficient detection of the common substrings.

3. Randomization is employed to find long common substrings between r and S

efficiently and empowers us to methodologically determine important parameters

that are used in critical steps of the algorithm. This translates into consistent

performance in terms of time and accuracy across different species.

4. To account for insertion/deletion polymorphisms as extending the common

substrings, we utilize the edit distance algorithm. Additionally, we employ a

pruning heuristic to shorten the computation of edit distance, without compromising

quality of alignment.

These ideas will be discussed in greater detail in the following sections.
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Indexing the Reference Genome

Naive string matching takes quadratic time and therefore is too costly. Researchers

have used data structures such as suffix tree, suffix array, and FM index to speed up string

matching significantly. The FM index [29] in particular is desirable because it allows

exact string matching to be done optimally in O(m) time, where m is the length of the

query (i.e. the read), and is very space efficient. The FM index of the genome is a

substring index that takes advantage of properties of the Burrows-Wheeler Transform

(BWT) to search incrementally all suffices of a read in the reference genome backwardly

using the last to front mapping:

LF (i) = C[query[i]] +Occ(query[i], i)

where C[x] is the number of occurrences of characters that are lexically smaller than x in

the genome, and Occ(x, i) is the number of occurrences of x in the first i characters of the

Burrow-Wheeler transform of the genome.

By design, the search direction is in reverse (backward) order with respect to the

sequence. To facilitate bidirectional string matching (to be discussed next), we employ

two FM indices. A conventional FM index that traces substring matches backward is

denoted as B. To facilitate searching in the forward dimension, we created an FM index

for the reverse of the reference genome, S. Searching using this index, denoted as F, is

equivalent to search in the forward direction in S. The pair of indices (F,B) helps us

identify long identical stretches of DNA in the reference genome S and each read ri.

Finding Common Substrings between Reads and Genomes

Given a read r and a specific position p in r, Algorithm 6 outlines the steps in

finding longest common substrings of r and the reference genome S, with respect to p.

Figure 20 illustrates this algorithm. Longest common substrings (with respect to p) are

constructed by concatenating maximal matches between substrings of S and those of r,
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which begin and end at p. Searching for matches between substrings of S and substrings

of r is facilitated by the backward and forward FM indices B and F. To save time and

reduce false positives, we only consider common substrings with lengths at least W .

Figure 20: Finding longest common substrings (seeds): ri···p−1 and rp···j may match
several substrings of the genome S, but fews of these (e.g. b2 and f2) form contiguous
substrings, which is considered as seeds.

Algorithm 6: CommonSubstrings(read r, position p)
1: Let B be substrings of reference genome S, which match exactly & maximally to
ri···p−1. {B is found using B}

2: Let F be substrings of reference genome S, which match exactly & maximally to
rp···j . {F is found using F}

3: M := ∅
4: for each b ∈ B do
5: for each f ∈ F do
6: Let s := b⊕ f be a concatenation of b and f .
7: if s is a contiguous block in S and |s| ≥ W then
8: M := M ∪ s
9: return M

The choice of minimum length of common substring W is important. If W is too

small, the set of common substrings M is large, and we will consider many common

substrings between the read and the genome to construct alignments. The more common

substrings we consider, the more likely we can find the correct position of the read in the

genome to align; but we also more likely make mistakes of aligning the read to an

incorrect position. In other words, with smaller W , we might get more true positives

(correct alignments) and more false positives (incorrect alignments) at the same time. On

the other hand, if W is too large, we might not be able to find any common substrings and
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consequently unable to align the read to the genome. Therefore, inappropriate choices of

W results in bad performance.

Our strategy for determining good values of W is based on randomization. As we

shall see soon, the value p given to Algorithm 6 would be a random index of the read. To

calculate W , first suppose that the correct substring of the reference genome S to align to

the read r is r′. Let d be the edit distance between r and r′. These d mismatches divide r

into d+ 1 blocks. Each block (except the last one) includes the closest mismatch to it. Let

the sizes of the blocks be m1,m2, · · · ,md+1. We have |r| = m =
∑d+1

i=1 mi.

The random choice of p implies that the common substring found by Algorithm 6

would be a random block, which is selected with probability pi = mi

m
. This implies that the

expected size of block i is E[Si] = mipi =
m2

i

m
. Thus, the expected size of a random block,

i.e. the expected length of the common substring, is E[X] =
∑d+1

i=1 E[Xi] =
∑d+1

i=1
m2

i

m
.

The Cauche-Schwarz inequality tells us that

(
d+1∑
i=1

1

d+ 1

mi

m

)2

≤
d+1∑
i=1

(
1

d+ 1
)2

d+1∑
i=1

(
mi

m
)2

After simplifying, these imply that E[S] ≥ m
d+1

. In other words, we have

established that:

Lemma: The expected length of the common substring between a read and the reference

genome found by Algorithm 6 is at least m
d+1

.

Although we do not know what d, the distance between r and its aligned substring

r′, is, it can be estimated by the rates of single nucleotide polymorphism (SNP) of the

given genome and given rate of sequencing error. Let b be the rate of each nucleotide

being mutated or sequenced erroneously, which we may assume to be distributed by a

binomial distribution with mean µ = mb and variance σ2 = mb(1− b), where m is the

read length. Therefore upper bound t of d might be estimated by µ+ cσ, for some
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constant c. With 100,000 reads, we found that c = 4 produces good performance with

high true positives and low false positives.

In summary, the two critical parameters of our method t and W are

methodologically derived as follows:

• The upper bound of the distance between a read and its aligned string,

t = dmb+ 4
√
mb(1− b)e.

• The lower bound of the expected length of common substrings,

W ∼ m
t
≤ m

d+1
≤ E[S].

W appears in Algorithm 6, and t appears in Algorithm 7, which is the next step

after finding common substrings between reads and the reference genome.

Algorithm 7: AlignRead(read r)
1: p := 1
2: m := |r|
3: for i from 1 to A do
4: C := ∅
5: M := CommonSubstrings(r, p)
6: for each s ∈M , which is a substring of S do
7: Let ri···j be the substring of r that matches s exactly.
8: Let sL be the (i− 1)-substring of S, preceding s
9: Let sR be the (m− j)-substring of S , following s

10: d := edit-dist(r1···i−1, sL) + edit-dist(rj+1···m, sR)
11: if d ≤ t then
12: C := C ∪ (sL ⊕ s⊕ sR)
13: if C has at least one sequences then
14: Return “fail to align”, if C has more than 2 sequences.
15: Otherwise, align read r to each sequence of C. STOP.
16: p := random(1,|r|)
17: return “fail to align”

Extending Common Substrings to Align Reads to the Reference Genomes

Using long exact common substrings as seeds to align reads to genomes is similar

to [40, 41]. Our approach promises to be efficient because instead of exhaustively
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traversing indices of a read to find optimal common substrings, we find common

substrings with respect to random index p of the read.

In Algorithm 7, we iterate at most A times to find long common substrings

between S and each read r. In each iteration, given a random position p, we invoke

Algorithm 6 to find the longest common substrings (M ) of S that match to a substring of r

with respect to p. As illustrated in Figure 21 each string s ∈M corresponds exactly to a

substring ri···j of r. This exact match between ri···j and s, naturally, pairs up r1···i−1 (a

prefix of r) to sL, the corresponding substring of S preceding s, and rj+1···m (a suffix of r)

to sR, the corresponding substring of S following s. If the total edit distances of these two

pairs are less than the previously calculated upper-bound t, we align r to the

corresponding substring of S.

Figure 21: Extending common substring to alignment. Alignment of a read r to the
reference genome S by extending a common substring of r and S (found in Algorithm 6).
There are generally many substrings of S that match identically to the substring ri···j of r.

Note that in the first iteration, the position p is 1 and not a random index of r. The

reason for this is that we would like the method of finding long common substrings

(Algorithm 6) to be symmetrical in the sense that b and f could “wrap around” r. In other

words, when p = 1, b is a suffix of r and f is a prefix of r. In this case, the concatenation

of b⊕ f is not a contiguous substring, but rather two contiguous strings separated by a big

gap. This conceptualization of “wrapping around” the read, or thinking of it as a circular

instead of linear string, turns out to be quite effective in practice. In many cases, p = 1

leads to very long common substrings that lead to correct alignments of reads.
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If we cannot align r to any substring of S after A attempts, then r is unaligned to

S, the reference genome. So, it is important to choose A appropriately. If A is too small,

there will be many unaligned reads. If A is too large, the algorithm is slow. To select an

appropriate value of A, let us again assume that the read and its correct alignment to the

genome differ in d places (again d ≤ t), consequently diving the reads into d+ 1 blocks.

We want to select a value for A so that the longest block (longest common substring) can

be sampled with high certainty. The probability that the longest block is selected (i.e. if a

random index p lands inside it) is m∗

m
, where m∗ is the length of the longest block. On the

other hand, the Pigeonhole Principle dictates that m∗ ≥ m
d+1

(Otherwise, the total lengths

of d+ 1 blocks would be less than m.) This means, d+ 1 ≥ m
m∗ , which is the expected

number of iterations to sample p to select the longest block.

Thus, setting A = t+ 1 ≥ d+ 1, the longest common substring between a read

and the genome is sampled expectedly after A iterations. Further, if A = c · (t+ 1), then

the probability of landing in the longest block is exponentially increased as a function of

c. Trading for speed, c = 1 seems to work fine in practice, because even if Algorithm 6

does not return the longest common substring, it is often possible to extend it to find the

correct alignment for the read. But longest common substrings minimizes the chance of

running into repeats in the genome; i.e. common substrings upon which extensions will

lead to incorrect alignments.

Fast Heuristic for Computing Edit Distances

Computing edit distances consumes much time of the alignment algorithm

(Algorithm 7). In steps 10-11 of Algorithm 7, we compute the edit distance between a

read and a substring of the genome and discard it if the distance is greater than t. As each

read often match with few substrings of the genome, we expect that such edit distances

often exceed t. Examining lines 10-11 of Algorithm 7, we see that actually we do not need

to compute the exact value of d(x, y), the edit distance of x and y, as long as we can

answer correctly the query d(x, y) ≤ t.

64



We claim that the edit distance of x and y, d(x, y) ≤ t if and only if

Bound(x, y, t) ≤ t, where Bound is defined in Algorithm 8. To see this, observe that

• If d(x, y) ≤ t, then Bound(x, y, t) returns d(x, y).

• If d(x, y) > t, then Bound(x, y, t) returns either d(x, y) or t+ 1. The only difference

between Bound and the conventional edit distance lies in line 6 of Algorithm 8.

Analyzing line 5, we see that once di,j > t for 1 ≤ j ≤ m (line 6), then dm,m > t.

If d(x, y) > t, Bound(x, y, t) might not compute the edit distance correctly.

Nevertheless, d(x, y) ≤ t if and only if Bound(x, y, t) ≤ t. For aligning reads to bacterial

genomes, Bound is much faster than the worst-case complexity Θ(m2).

Algorithm 8: Bound(x, y, t)
1: di,0 := 0 for 0 ≤ i ≤ |x|
2: d0,j := 0 for 0 ≤ j ≤ |y|
3: for i := 0 to |x| do
4: for j := 1 to |y| do
5: di,j := min(di−1,j−1+(xi == yj), di−1,j + 1, di,j−1+1)
6: return t+ 1 if di,j > t for 1 ≤ j ≤ max{|x|, |y|}
7: return d|x|,|y|

3.2.3 Results

One important performance comparison between our tool RandAL and other

state-of-the-art tools is shown in Figure 22. This figure shows the average performance

(precision in the y-axis versus recall in the x-axis) of 6 aligners across 6 different read

lengths on 6 bacterial genomes (left) and 6 eukaryotic genomes (right), respectively. Both

BWA and Bowtie, which designed for reads shorter than 100, showed a poor performance

as read length increases. Bowtie did better at recall for longer reads than BWA, but it was

still not competitive to the other 4 aligners, including RandAL. Among the top 3 aligners,

Bowtie2, CUSHAW2, and RandAL, we can see that RandAL did noticeably better in

terms of precision and was still competitive in terms of recall. More importantly, we can
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see that across the wide range of read lengths from 35 to 400 for both bacterial and

eukaryotic genomes, the performance of RandAL was consistently high in terms of both

precision and recall. This consistency distinguished RandAL from the other top aligners.
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Figure 22: Alignment performance across 6 different read lengths. Recall (x-axis) versus
Precision (y-axis) averaged across bacterial genomes and eukaryotic genomes,
respectively, at read lengths of 35, 51, 76, 100, 200, and 400bp.

Additionally, our experimental results showed that, although eukaryotic genomes

are expected to be harder to align than bacterial genomes, an examination of performance

of the top 4 aligners including our method revealed that these aligners did not always

perform better on bacterial genomes; eukaryotic genomes were not always harder to align.

Using repeat density as a measure of sequence complexity, we showed that this measure

correlated highly negatively with alignment quality (precision and recall). This implied

that for larger and more complex genomes with many more repeats, these aligners will

similarly suffer, as expected.

In practice, there are several problems need to be concerned. For example, the

reads can be single-end or paired-end, or mate-pair reads. The advantages of pair-end or

mate-pair reads can be exploited to further improve accuracy of alignment compared to

single-end reads. Moreover, NGS platforms usually provide qualities of bases on reads.

The quality of a base on reads is determined as a function of probability that the base is
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wrong. Such qualities turn out to be very useful to improve accuracy of alignment.

Characteristics of NGS data such as pair-end (or mate-pair) reads or base qualities will be

further explored in our proposing work on variant calling.

RandAL is implemented in C++; FM-index codes are adapted from an external

library (http://code.google.com/p/fmindex-plus-plus). We compared our method against

several aligners including Bowtie [35], BWA [36], Bowtie2 [40], BWA-SW [38], and

CUSHAW2 [41]. We chose these methods based on the fact that they are recently

published, very popular and their software are available. Comparison tests were conducted

on a workstation with two Intel Xeon E5-2680 2.70GHz CPU and 64 GB RAM.

Each aligner is tested with 100,000 simulated reads generated for each of 6

bacterial genomes and 6 chromosomes of eukaryotic genomes. Sizes of these genomes

range from 1.3 and 28 millions bases; see Table 1. Genomes were obtained from

EMBL-EBI (http://www.ebi.ac.uk/genomes). Since recent sequencing technologies

produce read lengths ranging from 35 to 400bp at greater speed and lower cost than

previous technologies (e.g. Sanger sequencing) [91], we choose this range of read lengths

to evaluate the methods. More specifically, the reads were generated at lengths 35, 51, 76,

100, 200, and 400 as these lengths have been mentioned in the literatures. The wgsim C

program, part of the SAMtool package [44], was used to generate reads.

Extensive comparisons were performed using SAMtool’s default settings, with

base error rate at 2%; 15% of polymorphisms are indels with lengths drawn from a

geometric distribution with density 0.7 ∗ 0.3l−1. Additionally, we present summary results

for 1% and 4% base error rates with similar trends and conclusions.

Aligned reads from aligners are evaluated using the wgsim eval Perl script, a part

of the SAMtool package, using the default setting in which a read is mapped correctly if

its mapping position is within a distance of 20 from the correct position. To compare

alignment quality, we defined:
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Precision =
# correctly aligned reads

# aligned reads

Recall =
# correctly aligned reads

# reads

Alignment Quality of 6 Aligners

At the outset, we found that Bowtie and BWA were decent performers when read

lengths were short, i.e. between 31-56 bases. When read length increased, however, these

two aligners were not competitive. Figure 23 shows the average performance (precision in

the y-axis versus recall in the x-axis) of 6 aligners on 6 bacterial genomes and 6

eukaryotic genomes, respectively. Both BWA and Bowtie suffered from a decrease of

precision as read length increases. For BWA, recall peaked at around 94% even at longer

reads. Bowtie did better at recall for longer reads than BWA, but it was still not

competitive to the other 4 aligners, including RandAL. Its bad performance at longer reads

is unacceptable because technological trends tend to produce longer reads. For this

reason, we will drop them out of head-to-head comparisons at this point, and will only

compare the 4 best aligners: Bowtie2, BWA-SW, CUSHAW2 and RandAL.
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Figure 23: Alignment performance across 6 different read lengths. Recall (x-axis) versus
Precision (y-axis) averaged across bacterial and eukaryotic genomes, respectively, at read
lengths of 35, 51, 76, 100, 200, and 400bp.
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A closer look at Figure 23 reveals that BWA-SW was relatively competitive but

come roughly in the last place. There is no consistent winner (in terms of both precision

and recall) among the top 3 performers, Bowtie2, CUSHAW2, and RandAL. Nevertheless,

we can see that RandAL did noticeably better in terms of precision and was still

competitive in terms of recall. Importantly, we see that across the wide range of read

lengths from 35 to 400 for both bacterial and eukaryotic genomes, the performance of

RandAL was consistently high in terms of both precision and recall; average precision

was never below 0.98 and average recall was never below 0.95. This consistency

distinguishes RandAL from the other top aligners.

An even closer look at individual bacterial and eukaryotic genomes (Figure 24)

further reinforces the consistency in performance of RandAL. The lowest precision

RandAL got in all 12 genomes was about 0.96, and the lowest recall was about 0.90. In

comparison, for the other top performers, the lowest precision was about 0.93 and lowest

recall was about 0.80.

All top 4 aligners perform really well in both precision and recall as read length

increases. Their performance was quite similar at 400 read length. At shorter read lengths,

however, RandAL outperformed the rest, often in both precision and recall.

Rates of Misalignment of Top 4 Aligners

Misalignment means aligning a read at an incorrect position. Misalignment

increases the likelihood of running into problems later when we are interested in

assembling reads into a complete genome and to identify where the constructed genome

different from the reference genome (SNP calling).

The misalignment rate is calculated by dividing the number of incorrect aligned

reads by the total number of reads. Figure 25 shows that averaging across all bacterial and

eukaryotic genomes, RandAL got noticeably lower misalignments than the other aligners

at all different read lengths. This result suggests that RandAL will likely work well with

other tools and methods that require alignment of reads to reference genomes.
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Alignment Quality at Different Base Error Rates

We have compared performance of 4 different methods using a base error rate of

2%; each nucleotide is mutated with the probability of 2%. Our analyses at different base

error rates show similar behaviors as we have observed at 2% error rates. We present a

summary analysis at two other base error rates of 1% and 4% at read lengths of 35bp,

100bp, and 400bp. Table 2 summarizes the average precision and recall of the top 4

aligners. These numbers suggest the followings:

1. All methods performed well at 1% base error rate.

2. With 4% base error rates, the other methods suffered, particularly with shorter

reads. The best of them (Bowtie2) got ∼63% recall at 35bp. Low recall rate means

few reads (out of the total number) were aligned correctly.

3. Our method consistently achieved the highest performance (or among the highest

performance) across different read lengths and base error rates. In precision, our

method always got the highest, consistently above 97.8%. In recall, even at worst

case of 4% base error rate and 35bp read length, we got ∼94%.

Table 2: Average precision and recall at 1% and 4% base error rates

35bp 100bp 400bp
Precision Recall Precision Recall Precision Recall

BWA-SW 97.60 82.86 98.30 98.29 98.98 98.98
1% base error Bowtie2 97.60 93.40 98.31 98.25 99.00 99.00

CUSHAW2 97.59 92.81 98.33 98.33 98.99 98.99
RandAL 98.88 95.49 99.09 97.04 99.18 98.45
BWA-SW 97.64 44.93 98.31 97.05 98.97 98.96

4% base error Bowtie2 97.61 62.92 98.32 91.62 98.96 98.94
CUSHAW2 97.67 60.67 98.34 98.12 98.95 98.95
RandAL 97.80 93.55 98.66 97.48 99.08 98.48

Raw Running Times of Top 4 Aligners

Theoretically, asymptotic complexity of our method in aligning a read of length m

is proportional to m+m2. The worst case complexity of m2 is due to edit distance

70



computation. The heuristic for computing edit distance, however, reduces this worst-case

complexity significantly in practice. Our testing showed that the running times of other

methods, like ours, did not depend much on genome sizes.

Table 3 shows the averaged running times (in seconds) of the 4 aligners in aligning

100,000 reads. Our method suffered with shorter reads, but were the second fastest with

longer reads (≥ 100bp). It seems that the benefit of randomization becomes more evident

with longer reads.

Bowtie2 was the fastest across the board, but as shown in the previous section, its

alignment quality is not as good as our method or CUSHAW2. Compared to ours,

CUSHAW2 was significantly slower. Observing running times at different read lengths,

we speculate that CUSHAW2 might be much be slower than ours with longer reads.

Table 3: Average running times of top 4 aligners at different read lengths

35bp 51bp 76bp 100bp 200bp 400bp
BWA-SW 8.1 13.4 21.6 30.1 56.9 105.2
Bowtie2 2.8 4.1 5.8 8.1 18.3 41.6
CUSHAW2 4.2 7.8 12.7 19.3 67.8 228.5
RandAL 11.1 12.9 13.6 14.5 26.2 81.6

3.2.4 Summary

We introduced RandAL, a novel randomized approach to aligning reads to

reference genomes. We showed that it performed among some of the top aligners that

currently exist. Unlike the other aligners, however, RandAL distinctly performs

consistently well across a wide range of parameters (read lengths and error rates) across

all tested bacterial and eukaryotic genomes. As current sequencing technologies can

produce reads in the tested range at low cost [91], our approach promises to work well

with these technologies.
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3.3 Correlation between Sequence Complexity and Alignment Performance

3.3.1 Introduction

Although eukaryotic genomes are expected to be harder to align than bacterial

genomes, an examination of performance of the top 4 aligners in Figure 4 reveals that

these aligners did not always perform better on bacterial genomes; eukaryotic genomes

were not always harder to align. To quantify the degree of difficulty in aligning reads to

genomes, we define repeat density as a measure of how many repeats a genome has. Since

repeats directly affect alignment quality, the notion of repeat density is meant as a

quantifiable approximation of genome complexity.

Here we formally have established a connection between sequence complexity and

performance of read aligners. We found that length-sensitive measures of sequence

complexity had the highest correlation to accuracy of alignment of short reads to reference

genomes. This result allowed us to quantify the relationship between complexity of

genomes and hardness of short read alignment. It also provided additional useful

information for selecting suitable aligners for new genomes without running many of

them to select the best one. This work has been published in ([65, 66]).

3.3.2 Method

Measures of Complexity

In our work, we have investigated several measures of complexity, including

I-complexity, D-complexity, distinct substrings Dk, and repeat densities Rk.

I-complexity was introduced by Becher et al. as a measure of complexity of strings. It is

proportional to the number of distinct substrings of the input string g:

I(g) =

|g|∑
i=1

log4(LCP [i] + 2)− log4(LCP [i] + 1)

where LCP [i] is the length of the longest common prefix of the suffixes of g starting at

positions S[i] and at S[i− 1], and S is the suffix array of g.
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We introduced a similar measure, D, counts directly the rate of distinct substrings:

D(g) =
2 · |{x : f(x) > 0}|
|g| · (|g|+ 1)

where f(x) denotes the number of occurrences of x in g.

In addition to the I and D, we introduced two length-sensitive measures of

sequence complexity, Dk and Rk. Given a number k, we defined Dk and Rk as follows,

use the same notation of f(x) in D:

Dk(g) =
|{x : f(x) > 0, |x| = k}|

|g| − k + 1
and Rk(g) =

∑
f(x)>1,|x|=k f(x)

|g| − k + 1

Dk and Rk measure the rates of distinct substrings and repeats, respectively, of

length k. Rk is related to the function C(k, r) proposed by Whiteford et al. C(k, r) is the

count of k-mers repeating exactly r times. Therefore, Rk =
∑

r>1 r · C(k, r).

One important notice is, all measures I , D, Dk, and Rk could be computed in

linear time and space using suffix and LCP arrays. More details of these measures can be

found in our recent publications ([65, 66]).

From our experimental results, Rk and especially Dk, where k is similar to the

read length, correlated very highly to alignment performance in terms of precision and

recall. This result showed that the length-sensitive measures can provide additional

information for choosing aligners that would align consistently accurately on new

genomes. We also showed that these measures can be computed efficiently in linear time,

making it useful in practice to estimate quickly the hardness of alignment for new

genomes without having to align reads to them.

3.3.3 Results

Figure 26 shows the correlation between complexity measures, including Dk, Rk,

D, I , and alignment precision at read length 100 for the 100 genomes. We can see that

length-sensitive measures Dk and Rk have much higher correlations with alignment
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precision than D and I for most aligners. Similar results were also observed with recall

and with other read lengths. However, if recalls were comparative lower for several

aligners with several lengths, their correlations were also comparative lower than the other

aligners’, especially if read length is very short. It is important to note that some aligners

were designed to work optimally with longer reads and consequently do not work very

well with shorter reads. One can conclude that if aligners perform predictably in their

comfort zones, Dk (or Rk) is a good complexity measure that correlates highly to the

accuracy of aligning reads to genomes.

To investigate how much repeat density correlates with the difficulty of aligning

short reads to genomes, first, we computed Rk at each read length 35, 51, 76, 100, 200,

and 400. To get a glimpse of its distribution, we show the values of Rk of the bacterial and

eukaryotic genomes, for k’s equal to these read lengths, in Table 4.

Table 4: Repeat density of genomes, Rk, at various length k

Genome Repeat Density at various k
35 51 76 100 200 400

Bacteria

Wolbachia endosymbiont .... 0.181 0.161 0.144 0.134 0.107 0.077
Staphylococcus aureus... 0.064 0.058 0.053 0.050 0.043 0.036
Escherichia coli 042 0.053 0.044 0.036 0.031 0.023 0.017
Pseudomonas aeruginosa ... 0.041 0.037 0.033 0.031 0.026 0.021
Streptomyces hygroscopicus ... 0.046 0.042 0.038 0.036 0.031 0.025
Sorangium cellulosum ... 0.038 0.030 0.024 0.020 0.015 0.011

Eukaryota

Debaryomyces hansenii ... 0.036 0.032 0.028 0.025 0.019 0.013
Ectocarpus siliculosus ... 0.092 0.073 0.056 0.046 0.030 0.020
Schizosaccharomyces pombe ... 0.050 0.047 0.045 0.042 0.036 0.030
Caenorhabditis elegans ... 0.138 0.105 0.080 0.066 0.039 0.024
Taeniopygia guttata ... 0.129 0.100 0.070 0.050 0.017 0.002
Drosophila melanogaster ... 0.068 0.065 0.062 0.060 0.052 0.042

Second, for each k, we computed the Pearson correlation between Rk of all

bacterial and eukaryotic genomes and the performance (precision and recall) of each

aligner on aligning reads of length k to the genomes. Table 5 shows that repeat density is

correlated highly negatively to performance (precision and recall) of all aligners. This
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means the larger D(S|k) is, the worse any aligner will perform. In other words, D(S|k) is

good indicator of alignment difficulty. That said, we also observe that for BWA-SW at

small lengths (k=35, 51), the negative correlation was weakest. This is probably due to

BWA-SW trimming short reads.

Table 5: Pearson correlation coefficients of Rk and performance

k=35 k=51 k=76 k=100 k=200 k=400
BWA-SW -0.94 -0.95 -0.96 -0.95 -0.97 -0.95

Correlation of repeat density Bowtie2 -0.94 -0.95 -0.96 -0.96 -0.97 -0.95
and precision CUSHAW2 -0.94 -0.94 -0.95 -0.95 -0.95 -0.93

RandAL -0.84 -0.83 -0.87 -0.88 -0.93 -0.94
BWA-SW -0.64 -0.37 -0.90 -0.95 -0.97 -0.95

Correlation of repeat density Bowtie2 -0.95 -0.94 -0.96 -0.97 -0.97 -0.96
and recall CUSHAW2 -0.95 -0.94 -0.95 -0.95 -0.95 -0.93

RandAL -0.95 -0.96 -0.97 -0.97 -0.97 -0.96

We also found that sequencing errors did not affect very much the correlation

between repeat complexity and aligner’s performance in terms of precision and accuracy.

As summarized in Table 6, at each sequencing error rate, we found the correlation

between the best Rk and alignment performance in terms of precision and accuracy were

all very strong at between -0.95 and -0.98.

Table 6: Correlation between Rk and performance at different error rates.

Corr. with Precision Corr. with Accuracy
base error rate 0.5 1.0 2.0 0.5 1.0 2.0
Bowtie2 -0.96 -0.98 -0.97 -0.96 -0.98 -0.97
BWA-SW -0.95 -0.96 -0.97 -0.96 -0.98 -0.97
CUSHAW2 -0.95 -0.96 -0.96 -0.95 -0.96 -0.96

3.3.4 Summary

To our knowledge, this work is the first that establish formally and quantitatively

the effect of repeats on the performance of short read alignment. Using repeat density as a

measure of genome complexity, we showed that this measure correlated highly negatively

with alignment quality (precision and recall). This implies that for larger and more
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complex genomes with many more repeats, these aligners will similarly suffer, as

expected. This approach helps researchers select appropriate aligners based on repeat

complexity of genomes of interest, instead of relying on established evaluation of

aligners’ performance on known genomes that might have very different complexity

compared to the genomes of interest.

3.4 Conclusion

In this chapter, we have introduced our approach to accurately aligning short reads

to reference genomes and our analysis of relationship between sequence complexity and

performance of short read aligners. We have also introduced RandAL, a software package

for aligning short reads to the reference genome based on our approach. For the read

alignment problem, our approach exploited a randomized strategy that helps efficiently

finding seeds as well as enables effectively estimating key parameters for alignment

process. It utilized two FM indices to facilitate efficient bidirectional searching from a

random position on read. These improvements helped to align effectively and accurately

short reads that come from a variety of technologies with different read lengths and rates

of sequencing error. Our extensive comparisons showed that our aligner outperformed

popular aligners in most instances and was unique in its consistent and accurate

performance over a wide range of read lengths and error rates.

We also introduce an analysis of genome complexity which established formally

and quantitatively the effect of repeats on the performance of short read alignment. We

found a strong correlation between accuracy of short read aligners and repeat complexity.

This work demonstrated that genome complexity and computational hardness of aligning

short reads can be correlated and predicted well. High correlation of complexity and

alignment accuracy provides practitioners an additional tool and criterion for evaluating

aligners. The accurate prediction of performance can potentially help reduce

computational cost by selecting appropriate aligners without running many of them.
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Figure 24: Recall versus Precision of Top 4 Aligners. Performance of top aligners on
bacterial genomes (top 6 figures) and eukaryotic genomes (bottom 6 figures). X-axis is
recall; Y-axis is precision.
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Figure 25: Rate of misalignment averaged across bacterial and eukaryotic genomes.

Figure 26: Correlation coefficients between different measures of complexity and
aligners’ performance (precision) at read length 100.
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Chapter 4

Genomic Variant Detection

Genomic variant detection, so-called variant calling, is the process of detecting

genomic variants between individuals in a population. Genomic variants are differences

between DNA of individuals, which can be single nucleotide polymorphisms (SNPs) or

structural variants such as insertions/deletions (INDELs), duplications, inversions or

translocations of DNA sequences. Variant calling methods using the NGS data typically

use read alignment as an initial step. The differences between the aligned reads and the

reference genome are then analyzed to identify genomic variants. Genomic variant

detection is an important study in many applications using next generation sequencing

technologies [2]. This study has great significance in bioinformatics and results from this

process can be used for a wider range of problems, from genetic research to medical field.

For example, one can predict how genomic changes are related to phenotype in their

organism of interest, or associate genetic changes to disease risk, medical treatment

efficacy or other traits of interest [4, 92].

Currently a massive high-throughput sequencing data for humans and other

species have been produced by next-generation sequencing technologies. With this huge

amount of sequencing data, many algorithms and tools with several approaches have been

developed for variant calling, most of them rely on statistical methods such as Bayesian

methods or logistic regression models. Although many methods have been proven to work

well with many datasets, they still have several disadvantages. For example, most of them

call variants by analyzing aligned reads produced by an external aligner, which can limit

the use of information from both read alignment and variant calling processes. One more

problem is that current variant callers do not take full advantage of a huge amount of

existing genomic variants, which are collected and validated in public databases such as

dbSNPs, to support accurately detecting variants. Therefore it is still desirable to develop

new algorithms and tools for accurately detecting genomic variants.
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In this chapter, we describe our approach to improving accuracy of variant calling.

Part of this work has been published in our recent publications [67]. In the next sections,

we describe in detail our work. In Section 4.1 we describe an overview of the problem. In

Section 4.2 we introduce an approach to improving accuracy of variant calling. In this

approach, we integrate information of existing genomic variants into a unified process of

read alignment and variant calling. Bayesian method is exploited to determine called

variants and calculate their qualities. By proposing this approach, we aim to detect more

accurate variants than state-of-the-art methods such as GATK [46] or SAMtools [44],

especially with low coverage sequencing data. Section 4.3 describes our most up to date

results of the method on both simulated and real data. Finally, Section 4.4 provides

conclusion and future directions of our work.

4.1 Introduction

Recent advances in next-generation sequencing technologies (NGS) make it

possible to provide cost-effective, high-throughput, and large-scale sequencing data for

humans and other species. This facilitates a wide range of genomics and bioinformatics

research including genomic variant detection. Many methods and tools with several

approaches have been developed for calling variants using NGS data. Most of them are

based on analyzing read alignment results using statistical methods such as Bayesian

methods, hidden Markov models or logistic regression models [93, 48, 46, 47, 50, 54].

Although many methods and tools are well-established and have been proven to work well

with many datasets, they still have several disadvantages.

A common weakness of current methods is that they detect variants based on

analyzing aligned reads from external aligners such as our tool RandAL (Chapter 3). To

speed up the alignment process, most aligners ignore the possible relation between reads

(e.g., reads come from the same regions), which might produce inconsistent aligned reads

and therefore complicate variant calling. There were several efforts to overcome this

problem. Some methods perform realignment to recover misaligned reads at the region of
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interests [94, 46]. Some other methods used de novo assembly to construct unitigs, and

then variants can be called by mapping the unitigs against the reference genome

[95, 96, 54]. Some researchers exploited a special data structure called alignment graphs

to improve detection of long INDELs [97]. Researchers also exploited multi-samples to

support variant detection [93, 50]. Nevertheless, they still have not solved the problem

from the root since read alignment was already done a priori. This makes it difficult to

take full advantage of input data to support whole variant calling process. Consequently,

they usually require high sequencing coverage to be able to detect variants accurately.

They also usually rely on complicated algorithms and require high-computational cost.

Another disadvantage of current methods is that they have not taken full advantage

of known variant information to support variant calling. Currently, a lot of known variants

in populations of humans and other species have been collected in public databases such

as dbSNPs. For example, a large number of human genetic variants were detected and

validated with a lot of efforts such as the 1000 Genomes Project [98]. Such variants were

collected from a large numbers of samples thus a large amount of genetic variants are

likely exist in these databases. Therefore it would be desirable to design methods which

can efficiently exploit them to support calling variants in new genomes, especially

INDELs and other structural variants such as inversions or transpositions. Nevertheless,

the known variants have not been exploited efficiently to support variant calling although

they have been used in some ways. For example, SOAPsnp [45] chose a prior-genotype

probability by the use of dbSNP in the analysis of human data; while Atlas [99] used prior

SNP probability and prior error probability in its training data sets. However, these tools

have not used that known variant information to support analyzing aligned reads.

Crossbow [100] proposed a method which can query the genomic variant databases to

analyze the mismatches, but this approach had limits in improving variant detection.

Recently, BWBBLE [43] were among a few tools which can use known variants to

support read alignment, but this method has not been adapted to variant calling problem.
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One more problem of current methods is in their conventional pipeline, in which

variants are called through many separated steps including read alignment, alignment

sorting, indel realignment, variant calling, and some other auxiliary steps. Although this

pipeline provides flexibilities for variant calling task, it has several disadvantages. Firstly,

it has some limits in incorporating information from one phase to others to help improve

variant calling. Secondly, this requires a careful selection of a diverse set of tools, which

turns out needs more human intervention that is error-prone. Although there were several

efforts to deal with these problems, they did not solve them from the root. For example,

Crossbow [100] is a cloud-computing software that combines the aligner Bowtie and the

SNP caller SOAPsnp using Hadoop to call variants in parallel. Although this approach

can help speed up the whole SNP calling process, the read alignment and SNP calling

phases are still performed independently.

In addition to the above challenges, data related problems also put more challenges

into variant calling problem. They include, but are not limited to, read length, sequencing

errors, and incompleteness and misassembles of reference genomes. The repeats in

genome sequences also put further difficulties to this task [3]. Therefore, it is desirable to

design algorithms and tools to further improve accuracy of variant detection.

In this work, we introduce a novel approach that leverages known variant

information to detect both known and unknown variants from NGS data. In this approach,

we introduce a novel representation, which combines reference genomes and their

associated known variant profiles in an appropriate manner, to help performing read

alignment and variant calling efficiently and accurately. We also develop a novel

algorithm, which can take into account known variant information, to align reads to the

reference and update the variant profile during the alignment of reads. This strategy

allows reads to be aligned more accurately, and variants can be called more accurately

even with few numbers of reads (low-coverage, 5x or fewer) compared to popular

methods. In particular, our method was better at calling INDELs that are otherwise hard to
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call even at high coverage (often 20x or more). The method’s high accuracy at low

coverage can help reduce experimental cost of variant detection. We have also developed

IVC, a software package for detecting genomic variants based on this approach. The tool

and its source code are publicly available at http://github.com/namsyvo/IVC.

4.2 IVC: An Integrated Approach to Detection of Genomic Variants

The overall objective of our approach is to detect genetic variants from short reads

that come from an individual’s genome. The novelty of this approach is in the

incorporation of known information of genetic variants, which are collected in public

databases by efforts such as the 1000 Genomes Project, into the variant calling process.

The main reason behind this idea is, we expect that information of known variants can

help to identify the known variants of a new individual’s genome, i.e., variants that are

already exist in databases, more efficiently. More importantly, we also expect that by

leveraging the known information in the variant calling process, we can detect unknown

variants, i.e., variants that are not exist in databases, more accurately.

Given an individual’s short-read dataset, a reference genome, and a known variant

profile, our approach of detecting the individual’s genetic variants can be described as

followings. First, we create a meta-genome to represent the reference genome and known

variant profile. This meta-genome is then used to build an index structure. An iterated

randomized algorithm is then developed to search for seeds of alignment between reads

and the reference with the assistance of that index structure. A specific-designed

alignment algorithm, which can take into account information of known variant locations,

is developed to fully align reads to the reference. Profiles of potential candidate variants

(both known and unknown) are updated dynamically during the alignment process. As the

alignment process has been finished, variants are called based on quality scores derived

from the probability of each potential candidate variant being a true variant.

Our approach, called IVC (Integrated Variant Calling), includes two main

technical contributions: (1) a meta-genome representation which combines the reference
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genome and known variant profile in an appropriate manner, and (2) a specific-designed

alignment algorithm which can take into account known variant locations in determining

optimal pairwise alignment. Both of them are designed to efficiently and effectively

exploit known variant information in read alignment and variant detection processes,

which is difficult to do with standard reference genomes and conventional alignment

algorithms. Two other contributions are also essential to help improving accuracy of

variant calling: (3) an iterated randomized algorithm which can locates seeds accurately

and efficiently, and (4) a strategy to update variant profiles dynamically during the

alignment process, which helps improving accuracy of read alignment. These

contributions will be described in the following sections.

4.2.1 Representing and Indexing Reference Genomes with Incorporated Known

Genomic Variants

To incorporate known genomic variants into the reference genome, several

approaches have been introduced. [101] proposed a graph representation produced by

integrating multiple genomes. Several work addressed the problem of text indexing with

wildcards in the context of short-read alignment such as [102, 103], however, they were

able to deal with only single variations. Recently, [43] introduced a generalized FM index

in which SNPs are represented by IUPAC symbols. While these approaches are

theoretically interesting and they are elegant in the sense that each representation is one

type of data structure, they either cannot fully describe SNPs and INDELs or are

computationally inefficient or difficult to implement in practice.

Here we introduce a novel representation which incorporates variants into the

reference genome in a simpler and more efficient way. First, we create a reference

meta-genome G which is composed of characters A, C, G, T , N , and V . Positions with A,

C, G, T , and N are corresponding to bases in the standard reference genome which are

not marked as variant locations in the databases. Positions with V represent locations of

known genetic variants in databases, which can be either SNPs or INDELs (other types of
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variants will be added into the design in the future). Thus, a V character can represent

multiple bases (e.g. A or C) in case of SNPs or multiple sequences of bases (e.g., AC or

ACGGT ) in case of INDELs. Together with this reference meta-genome, we create a

hash table H with keys representing locations of known variants and values representing

the variant profiles at corresponding locations. During the alignment of short reads to the

reference, whenever a known variant location is reached, the hash table is used to retrieve

variants at that location. The main advantage of using a hash table together with the

meta-genome is that it allows us to retrieve information of known variants in a quick and

simple way, although it might requires accessing both data structures during the alignment

of reads to the reference.

In summary, our representation consists of two data structures:

1. A meta-genome G, where G[i] = R[i] if i is not a variant location and G[i] = “V ” if

i is a variant location, whereR is the standard reference.

2. A hash tableH, whereH[i] holds the content of variants at location i.

In this approach, mapping reads to the multi-genome might require assessing both

data structures. However, it is efficient once we formulate an effective way to match

approximately reads to the multi-genome.

Together with the meta-genome G and the hash table H , an index I is also created

to speed up the alignment of short reads to the reference. The use of an index to facilitate

short-read alignment is commonplace. The purpose of such indexes is to quickly identify

long common substrings, known as seeds, between reads and the reference. Those seeds

are then extended to find the complete alignment between reads and the reference.

Researchers have used various types of data structures such as hash tables or FM-indexes

to build such indexes [1]. A standard FM-index is a data structure built for a specific string

to allow optimal linear storage and linear time substring query on that string [29]. In

particular, given a string s, to find out if s is a substring of another string t, the FM-index
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search algorithm starts at the end of s and proceeds in a backward fashion to identity all

currently matched suffixes of s in t, using the FM-index data structure created from t. The

search stops when either it cannot find any occurrences of the current suffix of s in t or it

reaches beyond the beginning of s.

In our approach, we exploit the FM-index for indexing the meta-genome G, which

consists of characters A, C, G, T , N , and V as described above, in which V is considered

as a wildcard character. However, to facilitate alignment of reads to the reference

meta-genome, we developed an iterated randomized algorithm to replace the traditional

FM-index search algorithm. This algorithm turns out to be very efficient in our

experimentation as described in next sections.

4.2.2 Overview of Our Variant Calling Algorithm

Given a reference meta-genome G, a hash table H storing information of known

variant locations, and an index I , our integrated variant calling algorithm (IVC) takes as

input a set of reads R and works as follows:

Algorithm 9: IVC(R)
1: Align each read in R to the reference meta-genome G using the index I and table H .

The alignment of each read consists of two main steps: (1) searching for seeds using a
randomized algorithm and (2) extending seeds into a full alignment using an
asymmetric alignment algorithm.

2: In the extension phase, as locations of known variants are encountered (those with V
characters), the variant profiles at those locations in H are updated using Bayesian
method.

3: In the extension phase, as differences (mismatches or indels) between reads and the
reference outside of known variant locations are detected, new variant profiles are
created (for the first aligned reads) and updated (for subsequence aligned reads) using
Bayesian method.

4: After all reads are aligned and variant profiles are updated completely, candidate
variants with maximum probability are declared to be the called variants.

The details of this process are described in the following sections.
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4.2.3 Aligning Reads to the Reference Meta-genome

The purpose of aligning reads to the reference meta-genome in our approach is to

accurately keep track of genomic differences between reads and the reference. Our

alignment strategy is similar to popular methods in its decomposition of the alignment

process into two steps:

1. (Seeding phase) Searching for (appropriate) seeds of the alignment between reads

and the reference meta-genome.

2. (Extension phase) Seeds are extended on both sides (left and right) on reads and on

the reference into a complete alignment.

However, to improve accuracy of aligning reads to the reference meta-genome as

well as detecting differences between them, in each phase we introduce several techniques

which can efficiently deal with sequencing errors and genomic variants.

Algorithm 10 describes our alignment strategy for each input read r to the

meta-genome G. For all proper alignment found, differences (mismatches,

insertions/deletions) between the read r and its mates on the meta-genome G will be

obtained by tracing back the alignment. These differences will be used to call variants.

Procedure FindSeeds in line 3 is used to find seeds, procedures LeftAlign and

RightAlign in line 8 are used to calculate edit distances between r and its mates on G on

the left and the right of the seeds, and procedures LATraceBack and RATraceBack in

line 10 are used to get alignment and therefore the differences between r and its mates.

These procedures will be described in next sections.

In each iteration (line 1), we invoke Algorithm 11, which will be described in

section 4.2.3, to find the seeds ri···j . Naturally, the seeds will pair up r1···i−1 (a prefix of r)

to gL, the corresponding substring of G preceding s, and rj+1···m (a suffix of r) to gR, the

corresponding substring of G following s. Then, if the total edit distances of these two

pairs, which are calculated by the Algorithm 12 described in section 4.2.3, are less than
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Algorithm 10: AlignRead(read r)
1: for n from 1 to A do
2: V := ∅
3: S := FindSeeds(r)
4: for each s ∈ S, which is a substring of meta-genome G do
5: Let ri···j be the substring of r that matches s exactly.
6: Let gL be the (i− 1 + eL)-substring of G, preceding s
7: Let gR be the (m− j + eR)-substring of G, following s
8: d, T := LeftAlign(r1···i−1, gL) + RightAlign(rj+1···m, gR)
9: if d ≤ D then

10: V := V ∪ LATraceBack(r1···i−1, gL, T ) ∪ RATraceBack(rj+1···m, gR, T )
11: if V 6= ∅ then
12: return V
13: return ∅

the threshold D, we align r to G and then get the alignment by using Algorithm 13, which

will be described in section 4.2.3. Notice that the choice of D, which will be described in

the next section, is very important for the accuracy of alignment.

There are several notices with the Algorithm 10. We iterate at most A times to find

approximate matches between G and each read r. If we cannot align r to any places in G

after A attempts, then r is declared to be unaligned to G. So, it is important to choose A

appropriately. If A is too small, there will be many unaligned reads. If A is too large, the

algorithm is slow. The value of A is chosen experimentally.

Seeding Phase

Many current alignment methods determine proper seeds based on long exact

matches between reads and the reference genome. To speed up exact matching, several

data structures such as suffix trees, suffix arrays, and FM indexes are used to build index

of genomes [31, 32, 34, 33, 39, 42, 37]. Although suffix trees can be constructed in linear

time and provide optimal query search (linear time in length of queries), they are

complicated to build and are inefficient in terms of space. Suffix arrays can also be

constructed optimally in linear time, but their constructions are much simpler than suffix

trees. Suffix arrays can further be used to construct FM indexes in linear time, by first
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constructing Burrow-Wheeler transform [29]. FM indexes are desirable because they are

space efficient and allow exact string searching to be done optimally in linear time in

length of queries. By design, exact searching using FM indexes is done backwardly

starting from the last character of a query. The search will stop if it reaches to the first

character of the query, or there is no more exact matches at a particular position on the

query. A good strategy to determine long exact matches must not start near positions on

reads that contain differences between reads and the reference. However, these

differences, which come from either genomic variants or sequencing error, can occur at

any positions. Thus, many seed finding methods are essentially brute-force. For example,

CUSHAW2 [41] attempts to find long seeds by exhaustively starting at all read positions.

Brute-force searches are computational expensive.

Our seed finding strategy is an iterated randomized approach, which is faster than

the brute-force algorithm while having competitive accuracy of finding seeds. This

algorithm is based on searching for exact substrings on an FM index with the following

modifications:

1. The searching for seeds starts at a random position in r and proceeds in a forward

fashion. Instead of considering all positions on the read in the brute-force manner to

find the longest exact matches, this algorithm starts the search from a random

position on the read. By repeating this several times, we can find the nearest longest

exact matches after a number of random iterations which is much less than those

number requiring by the brute-force manner. In our approach, we prefer the forward

search from a position near the beginning of the read than the conventional

backward search from the end of the read. The main advantage of doing this is

making the search less likely encountering sequencing errors earlier. This is based

on observation that probabilities of sequencing errors are likely increased as the

position of bases increases from the beginning of the read [104]. The randomized

strategy was also proven to be efficient in searching for seeds by [64].
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2. The searching for seeds ends as either it reaches a V character (a known variant

location), or it cannot find any occurrences of the current suffix of r in G, or it

reaches beyond the end of r. To avoid as many as possible variant locations (one

source of differences between reads and the reference) as searching for seeds, here

we exploit one advantage of the meta-genome representation. By looking at V

characters on the meta-genome G using the hash table H , we can stop the search for

seeds whenever it reaches a known variant location. In our experimentation, this

strategy significantly improves the chance of finding proper seeds, therefore

improves the chance of mapping reads to accurate locations and aligning reads

accurately at those locations.

Algorithm 11 describes this iterated randomized algorithm. In this algorithm we

aim at finding proper seeds based on long exact matches of the read r and the

meta-genome G with respect to p.

Algorithm 11: FindSeeds(read r)
1: p < − a random position on the read r.
2: for n from 1 to A do
3: repeat
4: Start forward search in r from p using FM-index I of meta-genome G.
5: until seed length ≥ W OR search reaches the end |r|
6: if seed found then
7: return seeds
8: else
9: p < − a random position on the read r.

10: Return ∅.

In line 2, we set the maximal numbers of iterations to A. If A is too small, there

will be many unaligned reads. If A is too large, the algorithm is slow. So, it is important to

choose A appropriately. In line 5, we set minimum seed length to W . If W is too small,

we might run into repeats, which lead to false positives. Small W also leads to more seeds

and we have to perform more approximate matching for the next step (extending seeds),

which is much more time-consuming. Therefore, the choice of W is very important. Our
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strategy for determining good values of A and W is based on randomization, which is

similar to the strategy we employed in RandAL (section 3.2.2).

Extension Phase

Many current methods have exploited dynamic programming-based alignment

algorithms to efficiently extend seeds to a complete alignment. In particular, given a seed

s, which is a substring of the reference and which matches exactly to a substring t of the

read, we need to extend this exact match into a complete alignment by aligning the

extracted left and right sides of s and t. To do that, algorithms such as

Needleman-Wunsch or Smith-Waterman algorithms with some modifications and

heuristics have usually been exploited [1]. These algorithms, however, can not be applied

directly to our design, which needs to consider known variants in alignment process.

Moreover, the representation of meta-genome requires differentiating V characters from

other standard characters (A, C, G, T , or N ) in the pairwise alignment. Therefore, a new

alignment algorithm is needed to deal with theses problems.

Here we introduce an alignment algorithm which can take into account known

variants in the pairwise alignment. This algorithm was implemented in procedures

LeftAlign and RightAlign in line 8 of Algorithm 10. Our goal is computing alignment

between the read r[1 · · ·m] and the substrings of meta-genome g[1 · · ·n], where

r[i] ∈ {A,C, T,G,N} and G[j] ∈ {A, T, C,G,N, V }. To be precise, suppose that the

read has the following form: xsy, and that its mate on the reference has the following

form: usv, in which s is the seed found from the seeding phase (section 4.2.3). A

complete alignment is obtained by aligning (1) x and u, and (2) y and v, and then

combining them with the seed s. The alignment of x and u (and symmetrically between y

and v) is done in two combination steps as follows:

1. Non-gapped alignment: starting at the end of x and u and backwardly, as long as

the current character of x either matches the current character of u or (in case the

current location of u is a known variant) matches one of the variants at the known
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location of u. This process stops when two current characters do not match or the

current location of u is a known INDEL. This step turns out can help to reduce

running time of whole alignment process significantly. The main reason is, mutation

rates are usually small, which means that mismatch locations, including INDELs,

exist on only a small fraction of alignment locations. Therefore in most of cases,

this step will be performed instead of pairwise alignment (the next step) which is

much more time-consuming.

2. Affine-gapped alignment: the rest of x and u are aligned using an asymmetric

edit-distance algorithm with an affine gap penalty scheme. This algorithm is

different from the traditional edit-distance algorithm in that (1) the cost of deleting a

prefix of u (on the reference) to align to an empty prefix of x (on the read) is 0

(asymmetric), and (2) the way of substituting, inserting and deleting bases depends

on their locations on the reference, which can be known or unknown variant

locations, and the corresponding cost is determined based on the variant profiles. By

allowing the asymmetric alignment, we can align a short fragment x to a much

longer fragment u, which is necessary to efficiently capture possible long

reference-deletions, with an appropriate alignment cost. This is because the

alignment cost should not depend on the length of the prefix of u which is aligned to

an empty prefix of x. By using a variant location-dependent alignment process and

variant profile-dependent cost scheme in an appropriate manner, we can efficiently

exploit information of known variants to support determining the appropriate

alignment.

The need for an asymmetric alignment between x and u is due to the high

possibility that u = u′x′, where x′ and x are near match and u′ is a very long prefix of u.

We called this left-oriented alignment. We also define the right-oriented alignment

similarly to align asymmetrically y and v = y′v′, where y′ and y are near match and v′ is a

very long suffix of v.
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The following scheme describes our dynamic programming strategy for

left-oriented alignment. In this strategy, we aim at computing edit distance with affine gap

penalty between s = s1s2 · · · sm and t = t1t2 · · · tn, in which s represents a read and t

represents the matching meta-genome:

• Consider the right-most column of alignment between s = s1s2 · · · si (1 ≤ i ≤ m)

and t = t1t2 · · · tj (1 ≤ j ≤ n), we compute three traditional matrixes, D for an

alignment (si, tj), IS for an alignment (si, −), and IT for an alignment (−, tj):

D(i, j): ... si

... tj

IS(i, j): ... si

... −

IT (i, j): ... −

... tj

• If tj is a standard character (A, C, G, T, N) then we use the traditional dynamic

programming strategy for affine gap alignment.

• If tj is a variant character V (a known variant location) then tj can have several

possibilities, which can be INDELs. The algorithm now needs to consider all

possibilities of matching s to these possible variants. In the case of INDELs (more

than one character), we need to look back on the s from si to take a equal-length

sequence, i.e., the sequence si−k+1si−k+2...si (k is equal to length of INDEL), to

match with the INDEL.

The Algorithm 12 describes our left-oriented edit distance algorithm. The

right-oriented edit distance algorithm is similar. The alignment is asymmetrical due to the

following initial configurations: (1) IT0,j = 0, for j ≤ n: the cost of converting t to an

empty string is 0; (2) ISi,0 = O, for j ≤ n, O is gap open penalty; (3) otherwise, the

values were set to∞. It is not possible to match reads to nothing from the reference

genome. In our experimentation, the cost of substituting a read base si and reference base

tj is − log f(tj), where f(tj) is the probability of tj to be a variant. If tj is a known

variant, f(tj) is obtained from its probability in the variant profile, which is updated

during the alignment of reads. If tj is not a known variant, f(tj) is set to a user-defined
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value, with default value of mismatches, gap opens and gap extensions are 4, 6 and 1,

respectively, the same with default values of BWA-MEM.

Algorithm 12: LeftAlign(r[1 · · ·m], g[1 · · ·n])

1: d← 0
2: while m > 0 and n > 0 and g[n] has same-length possibilities do
3: if n is NOT a variant position then
4: d← d+ cost(r[m], g[n])}
5: n← n− 1
6: m← m− 1
7: else
8: d← d+ min∀g[n]:m−|g[n]|≥0{cost(r[m− |g[n]|+ 1 · · ·m], g[n])}
9: n← n− 1

10: m← m− |g[n]|
11: D[0][j]← 0, 0 ≤ j ≤ n
12: D[i][0]←∞, 1 ≤ i ≤ m
13: for i = 1 to m do
14: for j = 1 to n do
15: if j − 1 is NOT a variant position then
16: if r[i− 1] 6= g[j − 1] then
17: D[i][j] = D[i− 1][j − 1] + 1
18: else
19: D[i][j] = D[i− 1][j − 1]
20: else
21: D[i][j] = min

∀g[j]:i−|g[j]|≥0
{D[i− |g[j]|][j − 1] + cost(r[i− |g[j]|+ 1 · · · i], g[j])}

22: T [i− 1][j − 1] = ming[j]
23: return d+D[m][n], T

This algorithm is exploited together with the aforementioned iterated randomized

algorithm. After several iterations, if it found only one match with distinct minimum

score, it will stop and considers that match as the correct candidate. Our experiment

showed that, in many cases, (e.g, on the non-repeat regions of genomes) the number

iterations are quite small. In some cases (e.g, on the repeat regions of genomes, which can

result in multiple matches with similar score), the number iterations can reach the

maximum number of allowed iterations. In this cases, we employed a filter strategy to

determine the correct matches, which selects the correct candidate among the matches

with lowest scores and proper insert sizes (for paired-end reads). Our method takes into
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account variant information at the alignment phase, and consequently, aligned reads are

more reliable, especially those alignments that overlap with known variant locations.

When the reads are declared to be aligned to the meta-genome, by tracing back

from the computation of the edit distance, we can identify mismatches and

insertions/deletions from the alignment. The trace back algorithm for left-oriented

alignment is described in Algorithm 13. The trace back algorithm for right-oriented

alignment is similar. These differences will then be used for detecting variants.

Algorithm 13: LATraceBack(r[1 · · ·m], g[1 · · ·n], T )

1: V = ∅
2: while i > 0 or j > 0 do
3: if i > 0 and j > 0 then
4: if j − 1 is NOT a variant position then
5: if r[i− 1] 6= g[j − 1] then
6: V = V ∪ g[j − 1]
7: i← i− |g[n]|
8: j ← j − 1
9: else

10: V = V ∪ T [i− 1][j − 1]
11: i← i− |T [i− 1][j − 1]|
12: j ← j − 1
13: else if i = 0 then
14: j ← j − 1
15: else if j = 0 then
16: i← i− 1
17: return V

4.2.4 Updating Variant Profiles and Calling Variants

The variant profile at a location stores all possible variants (SNPs or INDELs) and

their probabilities at the location. Variant profiles of both known and unknown variants are

kept track and updated using Bayes’ theorem during the alignment of reads. After all

reads are aligned and variant profiles are updated completely, the variant with maximum

probability at each location is called as the predicted variant at the location. The main

advantage of updating the variant profiles during the alignment process is, updated variant
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profiles provide latest information to the alignment algorithm (section 4.2.3) during the

read alignment process so the alignments are more likely correct.

To be specific, suppose a read base ai is aligned to a location that is a known or

unknown variant. Then, for each base b of the variant profile at the location, probability of

b to be a true variant given that ai is aligned to that location is calculated by:

P (T = b|A = ai) =
P (T = b) · P (A = ai|T = b)

P (A = ai)
(4.1)

where T is a random variable representing the true variant and A is a random variable

representing the aligned base at the location.

The prior probability P (T = b) is initially assigned based on the initial variant

profile at the location. Initial profiles of known variants are assigned based on input

variant databases (e.g., 1000 Genomes Project data), and the prior probability of variants

is estimated from population allele frequency in the database. Initial profiles of unknown

variants are assigned heavy bias toward the reference (more detail on this is given in the

Supplementary material). This probability is then updated (replaced) by the posterior

probability P (T = b|A = ai) during the alignment process.

To calculate the quantity P (A = ai|T = b), we consider two possible cases: (1) if

b = ai, then P (A = ai|T = b) = 1− ei, where ei is the probability that ai is a sequencing

error, which can be derived from base qualities of the read; (2) if b 6= ai, then

P (A = ai|T = b) = ei
3

, which is probability of one of three non-ai bases to be b. The

other quantity, P (A = ai), can be calculated as P (A = ai) =
∑

b P (A = ai|T = b). In

case of an INDEL, the probability is a product of probabilities of corresponding reference

and read bases.

After all reads have been aligned, the variant profiles are used to call variants at

both known and unknown locations. For each variant profile location, let c be a base (or an

INDEL) with highest probability, f(c), among all of the other bases (or INDELs), then the
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Phred quality score of c is given as Qc = −10 log10(1− f(c)). Qc is declared as quality

score of the called variant c at the location.

Notice that the posterior probability given (the last) aligned base an using this

dynamic strategy is equal to the posterior probability calculated for whole sequence of

aligned bases a = (a1, a2, ..., an). This can be proved by mathematical induction. First,

we can easily check that the formula is correct with a1. Then assume that the formula is

correct with ai. We can prove that the formula is correct with ai+1.

INDEL Calling

In this section, we will give a more detail of our strategy for INDEL calling. Let

assume that ai is an INDEL, which can be denoted by ai = ai1ai2 · · · aim ,

aik ∈ {A,C,G, T}, k = 1...m. At this point, to be simplistic, we assume that there is only

one same INDEL aligned to the position, that is, ai is identical to aj , ∀i, j if they are

INDELs. Let T be the random variable representing true variant (can be SNPs or

INDELs) at the position, and A be the random variable representing an aligned variant

(can be SNPs or Indels as well) at the position. We now can calculate the posterior

probability P (T = b|A = ai) for each base b ∈ {A,C,G, T, I} (I represents the indel)

given an aligned variant ai with corresponding error rate ei using formula 4.1. In the case

of INDEL calling, the probability P (A = ai|T = b) given the aligned variant

ai = ai1ai2 ...aim with corresponding error rate ei = ei1ei2 ...eim , can be calculated as:

P (A = ai|T = b) =


m∏
k=1

(1− eik) if ai = b

m∏
k=1

(eik/3) if ai 6= b.

where,

• If ai is INDEL (ai ∈ {I}) and b is SNP (b ∈ {A,C,G, T}) then

P (A = ai|T = b) = P (A = ai1ai2 ...aim|T = b) =
m∏
k=1

(eik/3)

• If ai is SNP (ai ∈ {A,C,G, T}) and b is INDEL (b ∈ {I}) then

P (A = ai|T = b) = P (A = ai|T = b1b2...bm) = eik/3
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4.3 Results

4.3.1 Experimental Setup

Data

We evaluated IVC and the others on human chromosomes, which were available at

the NCBI Genome Reference Consortium1. The known variant databases associated with

the human chromosomes were available at the 1000 Genomes Project Consortium2. We

performed evaluations primarily on GRCh37 Chromosome 1, which had approximately

250 millions bps. The associated variant profile 1000 Genomes Phase 1, which was

collected from 1092 individuals, had ∼3 millions variant locations, of which ∼110

thousands (∼3%) were INDELs and structural variants.

Since our method IVC was designed to leverage known variants to improve

accuracy of detecting both known and unknown variants, we designed a set of simulated

variants in which part of them are known and the others are unknown to IVC (and other

tools as well). In our primary evaluation, 70% of all variant locations was randomly

assigned to be known and the other 30% was assigned to be unknown to IVC.

Comparisons were also done with percentage of known variant locations varied from 50%

to 90%. These settings seems to be realistic with most of human data, of which a majority

of variants were discovered.

To make the simulated data more “realistic”, the variants were randomly selected

from the databases based on their reported frequency. In our simulation, there were totally

211,855 variants, of which 17,761 INDELs. Among these INDELs, there were 8,379

Insertions and 9,382 Deletions, of which 201 Insertions and 398 Deletions had length

≥ 10bp. We ignored Insertions and Deletions that are longer than read length. Paired-end

reads were then generated using DWGSIM, a popular whole genome simulator3, with

1 http://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.25
2 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/integrated call sets
3 https://github.com/nh13/DWGSIM
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length 2x100bp and average insert size 500bp at coverage from 1x to 50x. The rate of

sequencing errors was chosen to be 0.015% at the start and 0.15% at the end of reads to

capture realistically base quality of high-quality real data. This error rate was increased

monotonically from the beginning to the end of reads by DWGSIM. Additionally, ∼5% of

random reads were inserted into the datasets by DWGSIM to reflect noise.

We also performed evaluation on a high quality Illumina HiSeq 2000 paired-end

dataset, which was sequenced from sample NA12878 and provided by the Platinum

Genomes project4. This dataset (ERR1941475) has read length 100 and coverage ∼50x.

We used variant call set from 1000 Genomes data Phase 1, which does not include

NA12878 individual, as known variant database for IVC. We assumed that part of variants

of the individual NA12878 were already exist in the known database while the others were

unknown. We expected that IVC could exploit the known variants from 1000 Genomes

data to efficiently detect unknown variants for NA12878 using the ERR194147 dataset.

We also used a more recent database for exome variants, called ExAC6, as known variant

database for IVC. This is a more robust variant database compared to 1000 Genomes data

Phase 1, especially for INDELs, with much more number of individuals included in their

data. We expected that IVC could take advantage of this database to further improve

variant calling. To evaluate accuracy of all methods, we used Genome-In-A-Bottle

(GIAB, [105]), a high quality variant calls set generated for the sample NA12878 using

multiple datasets, technologies, and methods, as gold standard to evaluate variant callers.

The evaluation for real data was also performed primarily on GRCh37 Chromosome 1.

A more detail description of the simulated and real data as well as their source

links and citations was given in Supplementary materials.

4 http://www.illumina.com/platinumgenomes
5 http://www.ebi.ac.uk/ena/data/view/ERR194147
6 http://exac.broadinstitute.org
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Evaluation of Accuracy

The accuracy of each calling method is defined in terms of precision and recall as

follows:

Precision =
TP

TP + FP
and Recall =

TP

TP + FN

where TP is the number of correctly called variants, FP is number of incorrectly called

variants, and FN is number of true variants that are not called, by each method.

We compared IVC and other methods basically by considering the increase of

accuracy (in terms of precision and recall) of IVC relative to other methods. The percent

of increase in precision (PIP) and recall (PIR) of IVC relative to another method X is

defined as (p(IV C)
p(X)

− 1) · 100, where p indicates either precision or recall. A positive

(negative) PIP or PIR of a method indicate a better (worse) accuracy of that method, and

the higher PIP or PIR, the better accuracy of the method (compared to another).

Variant Callers

We compared our method (IVC) to GATK UnifiedGenotyper (UG),

HaplotypeCaller (HC) [106, 46], and SAMtools (ST) [44] for both SNP and INDEL

calling. These tools have been reported to outperform others for variant calling [107, 108].

We also compared our method to Scalpel, a recent INDEL caller [109], which has

previously shown to outperform many other state-of-the-art callers, to evaluate ability of

IVC in calling INDELs. All four tools required an external short-read aligner, for which

we chose BWA-MEM [110]. This tool has been applied widely among many popular

aligners for read alignment and variant calling as well as suggested by all above methods

[111, 4].

Additionally, we also used GATK IndelRealigner (IR), a realignment tool

suggested by all tools UG, HC, and ST to improve their accuracy of Indel calling. Indel

realignment is a post-alignment step, which realigns already-aligned reads around Indel

locations. Table 7 showed the percent of increase in precision (PIP) and recall (PIR) of all

these methods after using IndelRealigner. We found that this process could improve
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Table 7: Percent of increase in precision (PIP) and recall (PIR) of all methods (excluding
IVC) after using IndelRealigner

SNP INDEL
1x 5x 10x 20x 50x 1x 5x 10x 20x 50x

UG PIP 0.00 0.14 0.23 0.34 0.45 10.95 1.00 0.29 0.48 0.46
PIR 0.00 0.00 0.00 0.00 0.00 15.00 11.12 2.63 0.30 0.22

HC PIP 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.01 0.00
PIR 0.00 0.00 0.00 0.00 0.00 0.18 0.03 0.01 0.00 0.01

ST PIP 0.00 0.04 0.07 0.11 0.18 0.32 0.52 1.12 1.96 3.91
PIR 0.00 0.00 0.00 -0.01 -0.01 3.53 1.38 0.30 0.19 0.06

considerably the accuracy of variants called by all tools UG, HC, and ST. In particular, for

UG, precision and recall were increased by up to 11% and 22%, respectively. For ST, the

increase was around 4% for precision and 6% for recall. Interestingly, while the

improvement of precision was most dramatic with high-coverage data, the improvement

of recall was most dramatic with low-coverage data. For HC, there was no improvement

for SNP calling but some slight improvement of recall at low coverage for Indel calling.

Based on the overall improvement in accuracy, we used IR to perform Indel realignment

for each of the three tools in all comparisons with our own method.

Detail of used commands and parameter settings for these tools was given in

Supplementary materials.

4.3.2 Overview of the Results

Our comprehensive comparisons on simulated data where IVC knew of 70% of

variant information showed that IVC performed significantly better than the others

(especially at low coverage) at detecting variants at Known locations, where it knew of

variant information. This result will be described in section 4.3.3. At Unknown locations,

where neither IVC nor the other methods knew of variant information, IVC also

performed better than the others with overall higher (or at least competitive) recall and

competitive precision in virtually all instances. This result will be described in section

4.3.3. In cases where Unknown locations are close to Known locations, IVC had

significantly higher precision and recall at detecting unknown INDELs. This result will be
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described in section 4.3.3. Varying IVC’s knowledge of variant information from 50% to

90% showed that as IVC gained more knowledge it also performed better at calling

variants, especially at Unknown locations. These results will be described in section 4.3.3.

For real data evaluation, IVC performed better than GATK-HC and SAMtools in

many cases, especially calling known INDELs. This result will be described in section

4.3.4 IVC also showed a better accuracy on calling known INDELs than Scalpel, an

INDEL caller that was mainly designed to call INDELs in exonic regions. This result will

be described in section 4.3.4.

In terms of runtime and memory usage, our current implementation was better at

low to medium coverage and competitive at high coverage. This result will be described in

section 4.3.5.

4.3.3 Accuracy Comparison on Simulated Data

IVC has Superior Accuracy in Known Locations

As expected, IVC had superior accuracy of detecting variants at the Known

locations. The left part of Table 8 showed the percent increase in precision (PIP) and

recall (PIR) of IVC relative to the three variant calling methods at Known variant

locations (values that are greater or equal to 10 are rounded to integers). IVC had superior

accuracy compared to other tools at INDEL calling in the Known region. IVC were

superior at both precision and recall. In terms of precision, there was between 1% and 2%

improvement. In terms of recall, the improvement was drastic. Among the three other

tools, HC was the best in terms of recall. Even so, IVC was drastically superior to HC in

recall. At 50x, the improvement in recall was about 10%. At lower coverage, the

improvement in recall was more than 10% at 10x, and 189% at 1x. The improvement of

accuracy of calling SNPs in the Known region was not as drastic. Compared to UG, IVC’s

precision was very slightly worse, but its recall was much better, particular at lower

coverage. Compared to HC and ST, IVC was better at both precision and recall, especially

at low coverage. The advantage of exploiting known information of variants was shown
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by the impressive accuracy of IVC compared to the others’ at low coverage data (tens

percent of increase at 5x and even hundreds percent of increase at 1x) and less impressive

at higher coverage (20x-50x). Other methods did not work well at low coverage data but

they did better at high coverage data.

Table 8: Percent of increase in precision (PIP) and recall (PIR) of IVC relative to the other
methods (UG: GATK UnifiedGenotyper, HC: GATK HaplotypeCaller, ST: SAMtools) for
coverage from 1x to 50x, in terms of SNP and INDEL calling.

Known variant locations Unknown variant locations
1x 5x 10x 20x 50x 1x 5x 10x 20x 50x

SNP
PIP UG -0.08 -0.02 0.00 -0.01 0.01 0.37 0.58 0.36 0.36 0.43
PIR UG 126 3.10 0.17 0.10 0.08 0.04 0.01 -0.24 -0.04 -0.04
PIP HC -0.03 0.03 0.02 0.02 0.03 0.49 0.42 0.20 0.08 0.09
PIR HC 140 4.09 0.34 0.21 0.19 6.29 0.97 -0.08 0.07 0.08
PIP ST -0.03 0.26 0.53 0.25 0.01 0.07 0.07 0.41 0.38 0.16
PIR ST 147 4.69 0.92 0.52 0.23 9.41 1.61 0.46 0.35 0.11

INDEL
PIP UG 58 2.27 1.97 2.00 1.97 81 -1.14 0.62 0.86 1.19
PIR UG 23977 125 18 11 10 11039 90 8.28 4.75 5.34
PIP HC 1.03 1.72 1.78 1.74 1.67 2.51 0.31 0.96 0.74 0.74
PIR HC 189 15 9.83 9.52 9.53 19 2.00 1.54 3.66 4.22
PIP ST 2.70 2.18 2.05 2.01 2.24 5.01 2.08 3.49 5.72 13
PIR ST 157 34 17 12 12 3.06 16 7.38 5.53 5.81

IVC has Higher Accuracy in Unknown Locations

We found that at Unknown locations, where IVC had no prior knowledge of those

variants, IVC was also more accurate than the other methods at detecting those variants.

This means IVC was more accurate and often superior to all three methods at detecting

new variants. The superiority was most dramatic at lower coverage and at detecting new

INDELs. The right part of Table 8 showed the percent increase in precision and recall of

IVC relative to the three other methods at Unknown locations.

In term of calling INDELs, IVC was particularly more accurate than the other

methods at both precision and recall. At higher coverage, the increase in recall was

between 3 and 5%. At lower coverage, the percent increase in recall was between 2 and
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20% compared to HC and ST, and up to several hundreds percent compared to UG. In

terms of precision, IVC, by and large, was also better that the other three methods. In

some instances, IVC was slightly worse at precision, but was much better at recall (e.g.

compared to UG at 5x, there was a decrease of ∼1%, but increase of ∼90% at recall).

In term of calling SNPs, IVC was also better than the other three methods.

Compared to ST, IVC was better at both precision and recall. Compared to UG and HC,

IVC was not universally better at both precision and recall at all coverages, however, at

places where IVC lacked a little (less than 1%) in precision, it gained more in recall, and

vice versa. The advantage of exploiting known information of variants to detect unknown

variants was shown by the impressive accuracy of IVC compared to the others’ at low

coverage data and less impressive at higher coverage, similar to what were observed at

Known locations. Again, other methods did not work well at low coverage data but they

did better at high coverage data.

Raw precision and recall at different coverages is shown in Figure 27. IVC had

superior recall and better/competitive precision across all coverages from 5x to 50x,

especially at detecting INDELs. IVC was the only tool with performance at both precision

and recall are always greater than 0.9 at 10x or higher coverage.

IVC’s Accuracy at Varied Percent of Known Locations

We have compared performance of different methods with the assumption that

IVC knew of 70% of variant information. In fact, similarly high accuracy of IVC was also

observed when its knowledge of known variants varied from 50% to 90%. This finding

was shown in Table 9. The table showed the percent increase in precision and recall of

IVC relative to HC, the best tool among the others, when the coverage is fixed at 50x. In

terms of calling SNPs, IVC’s performance was a little better or similar to HC. In terms of

calling INDELs, however, IVC’s performance, especially at recall, was noticeably better

than HC in all levels from 50% to 90%. Furthermore, as IVC’s knowledge increased, its

performance appeared to improve, especially at recall.
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Figure 27: Precision versus Recall for INDEL calling at Unknown variant locations as
coverage varies from 5x to 50x.

IVC has Higher Accuracy in Calling close-by INDELs

Two INDEL are considered to be close-by if their left-most ends are located

closely to each other. Our analysis of INDELs in human chromosome 1 showed that such

close-by INDELs are not rare. In fact, there are 14% of INDELs (15,356 in total of

110,233 INDELs) have at least one INDEL located within 30bp on the left or on the right.

The number of such INDELs that have 2, 3, 4, 5, 6 close-by INDELs are 2268, 500, 110,

68, 14, respectively (there are no INDELs that have more than 6 INDELs located within

30bp on the left or on the right).

Close-by INDELs make it challenging for aligners to get the correct alignments

and consequently for variant callers to make the correct calls [112]. An aligner’s mistake

in getting the correct alignment for one read will likely repeats for another read.
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Table 9: Percentage of increase in precision (PIP) and recall (PIR) of IVC relative to HC
at coverage 50x as IVC’s knowledge of known variants increases from 50% to 90%.

Known variant locations Unknown variant locations
50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

SNP
PIP HC 0.01 0.02 0.03 0.03 0.03 0.00 0.04 0.09 0.24 0.649
PIR HC 0.20 0.19 0.19 0.20 0.18 0.06 0.07 0.08 0.04 0.08

INDEL
PIP HC 0.87 1.35 1.67 1.67 2.28 -0.24 0.35 0.74 1.97 2.13
PIR HC 9.34 9.64 9.53 9.54 9.70 2.65 3.58 4.22 4.55 4.81

Therefore, high coverage probably does not help in improving the accuracy of calling

close-by INDELs. To illustrate this, let’s consider a toy example in which the read

GTAATATTGT is aligned to the reference genome GTATTAGTGT:

location 12 34567890 1234567890

genome GT---ATTAGTGT GTATTAGTGT

read GTAATATT-GT GTAATATTGT

correct algn incorrect algn

The correct alignment yields two INDELs at location 2 and 5, while the incorrect

alignment yields two SNPs at location 4 and 7. An aligner likely chooses the incorrect

alignment as it has better scores (gaps in INDELs are generally penalized seriously by

aligners). This mistake can be repeated for all reads aligned to this region therefore it

makes the alignment based variant callers difficult to detect the correct variants even at

high coverage. However, if we know a priori one of the two INDELs, we might be able to

determine the correct alignment.

Our analysis of true positives and false negatives of all four methods confirmed

this. All four methods were more likely to detect variants correctly when there were fewer

close-by INDELs. Counting the number of INDELs located within 30bp on the left or on

the right of a variant at coverage 50x, we found that on average, the difference in numbers

of close-by INDELs between true positives and false negatives for all four methods is
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approximately 1. Thus, on average, one close-by INDEL within a window size of 30 could

make a difference between a correct call (true positive) and a wrong call (false negative).

IVC’s ability to detect close-by INDELs compared to the other methods is

apparent in Table 8. Even at high coverage 50x, IVC’s recall rate of INDELs was 4-5%

higher than the that of the other methods.

To analyze IVC’s ability to detect these INDELs more carefully, we separate

INDELs into three groups based on the number of known close-by INDELs within 30bp:

0.50, 0.67 and 1.00. For example, Group 0.50 consists of all INDELs for which IVC is

informed of 50% of close-by INDELs. Similarly, Group 1.00 consists of all INDELs for

which IVC is informed of 100% of close-by INDELs. Figure 28 shows the numbers of

true positives and false negatives of INDELs in each of the 3 groups, for all 4 methods.

First, we see that the ratio between true positives and false negatives of GATK-UG,

GATK-HC, and SAMtools are, respectively, similar in all 3 groups. This makes sense

because these tools are not informed of close-by INDELs. Second, the more IVC is

informed of close-by INDELs, the more likely it is able to detect INDELs correctly. In

particular, when IVC is totally informed of close-by INDELs (Group 1.00), the number of

true positives and false negatives increased and decreased significantly, respectively,

compared to the others.

Figure 28: TP and FN at different fractions (left: 0.50, center: 0.67, right: 1.00) of known
INDELs that are close to an INDEL.
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4.3.4 Accuracy Comparison on Real Data

IVC’ Performance on Platinum Genomes Data

To compare the ability to detect variants on real data of IVC, GATK

HaplotypeCaller (HC) and SAMtools (ST), we chose a high-quality short-read dataset

ERR194147 (of human individual NA12878), provided by Illumina Platinum Genomes.

We used variants from the 1000 Genomes Phase 1 data as the known variant database for

IVC. Since the reference variant data do not include the NA12878 individual, the

experiment is meant to show how IVC exploits known variant information from

population to detect variants for a new individual. In this experiment, GATK

UnifiedGenotyper was eliminated because of its inferior performance on simulated data.

To evaluate accuracy of all methods, we used Genome-In-A-Bottle variant call set

(GIAB, [105]), which was generated for the individual NA12878. This high-quality

variant call set has been used as gold standard for benchmarking SNP and INDEL

genotype calls in many studies [113, 55]. GIAB were obtained by integrating 14 datasets

from five sequencing technologies, seven read mappers and three variant callers to help

minimize bias toward any method.

Variant calls of all methods (including IVC) are divided into two main groups: (1)

GIAB-Call: called variants that are exist in the GIAB variant call sets. They are likely true

positives, and (2) GP-Call: called variants that are not exist in the GIAB dataset, but,

however, are in the 1000 Genomes Phase 1 data. They are potentially true positives since

they do exist in the population of thousands of individuals. We also consider called

variants that are neither in the GIAB dataset nor in the 1000 Genomes database. Although

they are potentially false positives, some of them might be new discoveries.

The two top diagrams of Figure 29 showed the number of called variants (SNPs

and INDELs, separately) in GIAB-Call identified by each method. We can see that IVC

shared with both HC and ST most of variant calls in GIAB-Call group. Moreover, IVC

called more unique variants than all other methods. This result showed the practical
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effectiveness of IVC compared to other state of the art methods. Further, the number of

variants shared between IVC and HC is the highest compared to those between IVC and

ST as well as those between HC and ST. This was consistent with the high performance of

IVC and HC compared to ST with simulated data.

The most important result, which confirmed the advantage of exploiting known

variants (here is variants from 1000 Genomes data) by IVC to detect variants in GP-Call

group, was shown in the two bottom diagrams of Figure 29. In this group we saw that IVC

called much more unique variants, especially INDELs, than the other methods. We got ∼9

times more unique SNPs and ∼20 times more unique INDELs than the others’. Because

the 1000 Genomes data is collected from many people, we think that those variant calls

are worth to consider for downstream analysis. Interestingly, while IVC shared the most

number of SNPs with HC, it shared the most number of INDELs with ST, compared to the

number of sharing variants between all two methods.

For the groups of called variants that are neither in the GIAB dataset nor in the

1000 Genomes database, we found that the agreement (disagreement) between IVC, HC,

and ST were the lowest (highest) compared to two above groups (∼3100 SNPs and ∼3300

INDELs). In particular, for INDEL calling, each method also called ∼4000-4500 unique

variants, which were even more than the common calls. It is quite reasonable since those

variants are potentially false positives, though some of them could be new discoveries.

IVC’ Performance with ExAC Database as Known Variants

In this experiment we used ExAC database as the known variant source for IVC.

Because ExAC is an exome database, this experiment was done on the exonic regions

only, but we think it could still show how well IVC can perform with a more robust known

variants. We also randomly selected reads from the original dataset ERR194147 (50x) to

make sub datasets with 5x, 10x, and 20x, respectively, to investigate impact of coverage

on performance of each method.

Table 10 showed that IVC called more INDELs with ExAC compared to 1000
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Genomes data in both categories GIAB-Call (GIAB-INDEL) and ExAC-Call

(ExAC-INDEL), especially at low coverage. It also called more SNPs in ExAC-Call

category (ExAC-SNP). This result showed that IVC can take advantage of the ExAC in

calling variants, especially INDELs. Interestingly, while ExAC helped call more SNPs

than GP at low coverage (5x), the GP helped call more SNPs than ExAC at higher

coverage (GIAB-SNP). We did an analysis of the SNPs shared by GIAB and ExAC or GP,

respectively, and found that the number of SNPs in the former was larger than that of the

latter. It is probably the reason why IVC could call more SNPs with support from GP than

ExAC. Nevertheless, ExAC can help call more SNPs in low coverage, which confirmed

the advantage of using a robust known variant source for calling variants at low coverage.

Table 10: Number of exonic variants called by IVC from dataset ERR194147 for sample
NA12878 with ExAC and GP as input.

5x 10x 20x 50x
GIAB-SNP ExAC 1012 1101 1146 1169

GP 660 1286 1359 1358
ExAC-SNP ExAC 1979 2246 2285 2436

GP 678 1708 2188 2051
GIAB-INDEL ExAC 69 73 74 75

GP 29 66 72 73
ExAC-INDEL ExAC 1089 1260 1322 1381

GP 33 88 113 101

To further investigate ability of IVC in calling INDELs, we benchmarked IVC

against Scalpel, a more recent INDEL caller [109]. Scalpel performs a localized

micro-assembly of specific regions of interest to improve detecting of mutations.

Although Scalpel can run with WGS data, we evaluated Scalpel, GATK-HC, SAMtools,

and IVC in exonic regions to make a fair comparison with Scalpel, which has been

primary tested with exome-capture data.

Table 11 showed that Scalpel did a good job for calling INDELs in exonic regions.

It called more number of total GIAB INDELs than other tools including IVC, especially at

high coverage (>10x). However, for calling GIAB∩ExAC INDELs (GIAB INDELs that
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are in ExAC), IVC was better than Scalpel (and other tools), especially at low coverage

(5x). This result showed that IVC can take advantage of ExAC, especially at low

coverage. Moreover, IVC was able to call much more number of ExAC INDELs than

other tools, including Scalpel. Because the ExAC database is quite a reliable source of

variants, we think that those INDELs are worth to consider for downstream analysis.

Table 11: Number of exonic INDELs called by each
method from dataset ERR194147 for sample NA12878.

5x 10x 20x 50x
GIAB∩ExAC SC 15 51 59 59

HC 57 64 64 64
ST 52 64 63 63
IVC 65 66 69 70

GIAB∩NonExAC SC 10 44 62 71
HC 12 13 14 14
ST 7 8 12 12
IVC 4 7 5 5

ExAC∩NonGAIB SC 30 70 59 52
HC 64 61 55 58
ST 44 55 57 61
IVC 1089 1260 1322 1381

SC: Scalpel, HC: GATK HaplotypeCaller, ST: SAMtools, IVC:
our method. GIAB∩ExAC: variant calls which exist in both
GIAB and ExAC. GIAB∩Non-ExAC: variant calls which ex-
ist in GIAB but not in ExAC. ExAC∩Non-GIAB: variant calls
which exist in ExAC but not in GIAB.

4.3.5 Comparison of Running Time and Memory Usage

IVC integrates short-read alignment and variant calling. IVC’s workflow consists

of 2 steps: building an index and calling variants. The other methods requires at least 6

separate steps with the assistance of external tools for indexing, aligning reads, sorting the

SAM/BAM files, doing some post-alignment tasks, performing realignment, and calling

variants. This is illustrated in (Figure 30). With the same input (reference genome in

FASTA format, reads in FASTQ format, known variant databases in VCF format) and
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output (variant calls in VCF format), IVC’s workflow is simpler, requires less human

intervention, and therefore decreases human errors and manipulation time.

We compared running time and memory usage of IVC and other tools with

coverage from 5x to 50x. For the other tools we summed up runtime and memory of all

steps in whole variant calling process in a proper way. All experiments were run on a

workstation with 2 Xeon E5-2680 2.70GHz CPUs using multi-threaded mode of all tools

whenever possible with maximum number of cores (32) (actually most of them could be

run in multi-threaded mode). In this experiment, we ignored human-time for manipulating

on input/ouput for intermediate steps of other tools. Figure 31 showed that IVC was faster

than the others at low to medium coverage and was quite competitive at 50x.

4.4 Conclusion

By leveraging known genomic variants, IVC could significantly improve accuracy

of detecting not only known but also unknown variants, including close-by INDELs, one

source of hard-to-detect INDELs. Compared to well-known methods such as GATK

UnifiedGenotyper, GATK HaplotypeCaller, and SAMtools, IVC had superior accuracy for

calling unknown variants, especially INDELs that are hard to detect even at high coverage.

Its high accuracy at low coverage can help researchers design less expensive experiments.

Another advantage of IVC is in its integrated and simplified workflow, which

eliminates some intermediate steps and consequently reduces human intervention and

errors. Using pipeline of several tools as conventional methods can increase flexibility,

therefore one of our future works is providing users not only variant calls but alignment

results. The alignment results then can be analyzed by other variant calling methods.

Although the data used in our simulation study do not contain long INDELs and

other structural variants, our method were designed not to strictly limit itself from those

types of variants. In particular, as long as information of long INDELs exists in databases,

IVC can efficiently identify them from the data. Detection of long INDELs at unknown

variant locations are also considered in the next version of IVC.
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One important motivation of our work is the number of known genetic variants is

rapidly growing. However, variant databases such as the 1000 Genomes Project data are

not error-free despite best efforts. Since our method prefers the know variants if they exist

by giving them high prior probabilities in variant profiles, the incorrect known variants

can result in false positives. However, our method do not rely on only known variants, it

considers the alignment between reads and the reference as well. Those incorrect variants

will likely result in the alignments with ambiguities or high cost, which are likely to be

eliminated during the alignment process. Consequently, those variants likely do not have

high probabilities in the final variant profiles and they are likely not called. This makes

our method less suffers from incorrect known variants.

Currently, our method considers data as haploid, though the theoretical framework

is similar with other ploidies. The difference is in the content of variant profiles and the

way of updating them. In particular, the variant profile which stores possibilities of

haploid variants needs to change to store possibilities of variants with other ploidies. The

variant profile updating strategy also needs to change to adapt to those kind of variants.

One further experiment we could do for other methods is matching their variant

calls to the variant databases. This might reduced their false positives of variant calls,

however, false negatives were still their problems. As shown in our comparison study,

other methods did a good job on precisely detecting variants. Actually, their precisions

were competitive with us (and with each other) in many instances. However, their recall

rate was from lower to much lower than that of our method, i.e., they got more false

negatives, which could not be recovered by matching the calls to the databases.

In summary, our method is promising in accurately detecting genetic variants from

NGS data, including close-by INDELs, which are difficult to be detected by other

methods due to low coverage or the hardness of detecting those variants. The current

implementation is not optimized but still competitive with the others in both running time

and memory usage.
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Figure 29: Venn diagram of SNPs and INDELs called by each method from dataset
ERR194147 on sample NA12878. GIAB-Call: called variants that are in the GIAB
dataset. GP-Call: called variants that are not in the GIAB dataset but are in the 1000
Genomes Phase 1 data.
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Figure 30: Workflow of IVC and GATK.

Figure 31: Runtime and memory usage of all tools as coverage varies from 5x to 50x.

115



Chapter 5

Conclusions

Presently, with a massive amount of biological data generated from advanced

technologies, the need for developing efficient computational methods to analyze such

data become very urgent. In this dissertation, we focused on developing computational

methods to address several important issues in gene expression and genomic sequence

analysis, two of the most important areas of bioinformatics. Among many problems in

these areas, we selected three important problems to work on: (1) representing and

analyzing patterns of gene response to multiple treatments (gene pattern analysis), (2)

aligning short DNA sequences to reference genomes (read alignment), and (3) detecting

genomic variants (variant calling). We made several important contributions to these

problems, both in proposing novel approaches and methods as well as in developing tools

for practical usage. Furthermore, our approaches opened several promising future

directions for developing methods and tools to solve remaining problems in these areas.

We will describe these contributions and directions in the following.

5.1 Key Contributions

For the gene pattern analysis problem, we introduced two novel methods to

predict true patterns of gene response to multiple treatments in case of small sample size.

These methods employed directed graphs and orderable sets, respectively, to represent

gene patterns and exploit their certain properties using proper ways to deduce more and

better functionally enriched gene clusters. In the first method, we employed directed

graphs as representation of gene expression patterns. We then showed that true patterns of

gene expression can be predicted by a pre-cautious use of synthetic data. We exploited the

relationship between sample size and a graph property known as contractibility together

with synthetic replicates to predict true patterns of gene response to treatments. Further,

we showed how to use entropy to measure the certainty of such predictions. Directed

graphs can benefit subsequent functional analysis as well. In the second method, we
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showed that true patterns of response must be orderable sets. This property enables the

exploitation of dependencies among outcomes of statistical tests that constitute patterns of

gene response. Specifically, instead of obeying the convention of fixing the level of

significance α at 0.05, we showed that α might be varied (in a different way for each gene)

to predict true patterns more accurately. Moreover, motivated by the fact that a gene might

participate in multiple biological functions or be involved in multiple molecular processes,

we showed how to manipulate experimental replicates to predict and assign multiple

patterns to each gene. These methods are especially useful for gene-expression studies

designed to explore functional similarities and differences of similar chemicals.

For the read alignment problem, we introduced a novel method to improve

accuracy of short-read alignment across a wide range of read lengths and base error rates.

This method exploited an iterated randomized algorithm together with two FM indexes to

improve alignment performance. In this method, we employed two FM indices for

efficient bidirectional (exact) substring matching between reads and reference genomes.

To deal with inexact matching (i.e. allowing gaps), first, we searched for common

substrings, so-called seeds between reads and the reference. Then, these seeds were

extended to complete alignments based on a bounded edit distance algorithm. We used an

iterated randomized algorithm for aligning reads to the reference. This increases the

probability of finding seeds quickly and enables us determine methodologically important

parameters to speed up the entire alignment process. We also used a special pruning

mechanism to shorten vastly the running time of computing edit distances in a vast

majority of cases. Our method is useful for experiments that require consistent

performance across a wide range of read lengths and sequencing error rates.

For the variant calling problem, we introduced a novel method to improve

accuracy of calling genomic variants, especially insertions/deletions. This method

leveraged existing genomic variants, such as those provided by the 1000 Genomes Project,

during read alignment and variant calling process to improve variant calling performance.
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In this method, we designed a special reference genome called multi-genome, which

combines a given variant profile and a reference genome into a unified representation, to

facilitate using existing variants. We then design a mixture technique, which combines

hashing, modified FM index, and an asymmetric local alignment, to accurately align reads

to the reference multi-genome and to call variants simultaneously. Our approach is useful

for experiments with low coverage data. It also help reduce computational cost of calling

variants by reducing running time and human intervention.

5.2 Future Directions

For the gene pattern analysis problem, we plan to make our current method

working with gene expression data that are taken with RNA-Seq technologies due to the

emerge of this type of data. The theoretical framework for RNA-Seq data is expected to be

similar to current one. We also plan to apply and validate this method with several types

of datasets, especially datasets with many treatments, even hundreds of treatments.

For the read alignment problem, we plan to further improve accuracy of our

current method and apply it to diverse datasets from diverse species. The most important

future work is adapting our method to the alignment of reads from RNA-Seq experiments,

especially for discovering splice junctions.

For the variant calling problem, we plan to further improve our current method, in

both accuracy and running time. We also plan to adapt our method to other ploidies. The

theoretical framework for other ploidies is expected to be similar to current one. The most

important future work is making our method working with other types of structural

variants: long insertions/deletions, inversions, translocations, and copy number variants.

In term of application, we plan to apply our method to several types of data sources,

especially cancer data, which include a rich source of variants.
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Appendix A

mDAG - A Web Tool for Analyzing and Visualizing Gene Expression Data

A.1 Introduction

mDAG is a web-based tool for analyzing and visualizing patterns of gene response

to multiple treatments in microarray data. Patterns are represented using directed graphs,

which capture precisely primary and subtle gene responses to all treatments. Genes with

the same patterns in mDAG hypothetically share similar biological functions or are related

on some ways as confirmed by several related works. Users can filter patterns to select

how genes respond specifically to individual treatments (affected or not affected,

up-regulated or down-regulated by a treatment). Users can also filter patterns based on

probe-set ids, gene symbols, uni gene ids, or accession numbers. Gene lists and related

necessary information can be downloaded in a proper format and might be further

analyzed using tools that allows users to analyze gene funtions based on user-input gene

lists. mDAG also incorporates several well-establised tools including DAVID,

GeneMANIA, and GCAT to help users exploit these tools more conveniently. The tool

will be useful in helping users verify various hypotheses about gene functions based on

gene expression data.

The (server/personal/demo) software is freely available at

http://cetus.cs.memphis.edu/mdag and its source code is available at

http://github.com/namsyvo/mDAG. The software is configurable as a stand-alone

application for individual usage, or as an online service on a server for group usage. At

this release, the software assumes microarray data as inputs. Subsequent releases will

allow data from other technologies that measure gene expression levels.

A.2 Using mDAG

Start your analysis by submitting a dataset. Please use the following format for

your dataset. You can use one of the sample data sets while learning how to use the

software. If you have already submitted a dataset, you can analyze it with proper
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parameters. Go to result page to see whether your analyses are completed. If not, the

system will show the approximate remaining time needed to finish the analyses.

Otherwise, you can start to work on the analysis result of your datasets.

To understand more about the meaning of the result, you can take a tutorial about

mDAG. Figure 32 shows a snapshot of an analysis result.

Figure 32: A snapshot of an analysis result from mDAG.

A.2.1 Online Registration

You can use the online version of mDAG without registering and logging in but

people will see your data and results of analyses. In addition, mDAG will delete

automatically every anonymous data/results which are older than 10 days or are out of 100

items in chronological order. You need to register and login if you do not want your data

publically viewable or deleted after a time. For testing purposes, you can use the demo

account with email ”mdagdemo@memphis.edu” and password ”mdagdemo”.

A.2.2 Personal Version

In addition to the online version, mDAG can be run as a stand-alone application on

a personal computer for individual usage. You can download this software and install on

your (Linux) computer to use it via a web interface. A version for Windows computer will

be provided soon.
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The followings are needed for a personal Linux-version of mDAG, please choose a

proper package for your computer:

Python 2.6+ (for Linux)

Graphviz (for Linux)

mDAG (for Linux)

Installing mDAG:

Install Python, Graphviz.

Download the mDAG software and extract into a directory, for example /home/,

the result will be the directory /home/mdag

Go to /home/mdag and run mDAG internal server as following: python web2py.py

Enter a password for this server and press ”start server”, the mdag website will

display in your default web browser.

Follow the instruction in the website.

A.2.3 Data Format

Data must be stored in a tab-separated text file with Windows-format line ending.

The first row is the header that describes each column.

Each row, starting from the second, corresponds to each gene/probe.

Columns are separated by tabs. The best way to do this is select appropriate

columns in your Excel files and save them as text.

First column, Probe Set Id

Second column, Gene Symbol

Third column, UniGene Id

Fourth column, Rep. Pub. Id

Fifth column, Gene Title and other information

Note: the first five columns may have missing values. Missing or even inaccurate

values on the first five columns do not affect our analysis. Note, however, that missing or

129



inaccurate values may cause inaccurate analyses by external resources such as NCBI,

GeneMANIA, DAVID, and GCAT.

Sixth column (and the rest) specifies the expression value of each replicate for a

treatment.

Replicates for each treatment group must be consecutive. The first one must be

Control group.

Expression values must be non-log values.

Figure 33 shows a snapshot of a sample dataset (shown in Excel to see better, but

you must convert to text format before uploading).

Figure 33: A snapshot of a sample dataset for mDAG.
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Appendix B

RandAL - A Randomized Short Read Aligner

B.1 Introduction

RandAL (Randomized Short Read Aligner) is a tool for aligning DNA sequences

to reference genomes. The tool is developed based on a new randomized algorithm with

the distinction of having high performance across a wide range of read lengths and base

error rates.

RandAL is implemented in C++; FM-index codes are adapted from an external

library (http://code.google.com/p/fmindex-plus-plus). The tool has been tested with

Debian Squeeze 6.0.6 and Mac OS 10.7.5.

B.2 Using RandAL

B.2.1 Directory Organization

Source Code of RandAL

./src: source code of RandAL.

See MANUAL for detailed information on how to use RandAL.

See also LICENSE, VERSION, and CHANGELOG for other information.

Sample Datasets for Testing RandAL

./data: several datasets for testing.

./data/genomes: store two reference genomes.

./data/genomes/Staphylococcus.fasta (bacterium,

http://www.ebi.ac.uk/ena/data/view/Taxon:663951)

./data/genomes/Drosophila melanogaster chromosome 3R.fasta (eukaryote,

http://www.ebi.ac.uk/ena/data/view/AE014297)

Genomes are taken from EBI (http://www.ebi.ac.uk). Users also can find reference

genomes at NCBI (http://www.ncbi.nlm.nih.gov).

./data/reads: store simulated reads for above genomes.

./data/genomes/Staphylococcus: simulated reads for Staphylococcus.
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./data/genomes/Drosophila3R: simulated reads for Drosophila melanogaster

chromosome 3R.

Reads are generated with a simulator named wgsim

(https://github.com/lh3/wgsim). 100,000 reads with length from 35bps to 400bps are

generated with default settings. See https://github.com/lh3/wgsim for detailed information

on how to generate simulated reads and evaluate the alignment results.

Supporting Scripts to Run and Evaluate RandAL

./scripts: scripts to support running and testing RandAL.

./scripts/do exps.py: Python script to test RandAL with multiple simulated

datasets.

Usage: python do exps.py -r ref -l read len -e error rate -o result file name

Example: python do exps.py -r Stap -r Dros -l 35 -l 51 -e 0.02 -e 0.04 -o

overall results.txt

./scripts/wgsim eval.pl: Perl script to evaluate a SAM output and then produce

result to screen. Original code from https://github.com/lh3/wgsim.

./scripts/wgsim eval tofile.pl: Perl script to evaluate a SAM ouput and then write

results (including error mapped reads) to files, used in the script do exps.py. Modified

from wgsim eval.pl.

B.2.2 Usage

Building RandAL from Source Code

Usage: make [index] [align] [debug] [clean]

index: to construct indexing module of RandAL.

align: to construct alignment module of RandAL.

clean: to clean remove redundant files in source code directory.

debug: to build a debug version of RandAL.

Indexing a Reference Genome

Usage: randal-index RefFileName.fasta [IndexFileName]
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RefFileName : reference file name (in FASTA format).

[IndexFileName] : index file name (in randal’s binary format), the reference file

name will be used if not indicated. This name will be used for the following index files:

IndexFileName.ref

IndexFileName.rev

IndexFileName.bw

IndexFileName.fw

Aligning Reads to the Reference

Usage: randal-align IndexFileName ReadFileName MapFileName [OPTIONS]

IndexFileName : index file name (taken from preprocessing step 1.2. with

randal-index).

ReadFileName : read file name (in FASTQ format).

MapFileName : map file name, store alignment result (in SAM format).

[OPTIONS] : a list of zero or more optional arguments, default values will be used

if not indicated.

-mode number : distance mode (2: hamming distance; 3: edit distance; default: 3).

-th number : threshould for distance (integer, >= 0, default: calculated based on

input).

-att number : number of attempts for the randomization (integer, > 0, default:

calculated based on input).

-minws number : minimal length of common substring between read and reference

(integer, > 0, < read length, default: calculated based on input).

-maxcdt number : maximal number of candidates for alignment (integer, > 0,

default: 2).

-err number : base error rate, the probability of each nucleotide being a SNP (float,

> 0, default: 0.02).
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B.2.3 Default Parameters

Although we do not know what d, the distance between r and its aligned substring

r0, is, it can be estimated by the rates of SNP of the given genome. Let b be the

probability of each nucleotide being a SNP; sequencing error rate can additionally be

accounted for as well. Given read length m, we can assume that this SNP rate is being

distributed by a binomial distribution with mean = mb and variance = mb(1 - b). Then

parameters can be calculated with pseudo code as following:

th = floor(error rate ∗ read length+ th para ∗ sqrt(read length ∗

error rate ∗ (1− error rate)))

att = att para ∗ (th+ 1)

minws = ceil(read length/(th+ 1)) + 3

where: th para = 4, att para = 1
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Appendix C

IVC - An Integrated Variant Caller

C.1 Introduction

IVC (Integrated Variant Caller) is a tool for calling genomic variants from

next-generation sequencing data. The tool is developed based on a novel approach to

variant calling which leverages existing genomic variants to improve the accuracy of

called variants, including new variants and close-by INDELs. By design, IVC integrates

read alignment, alignment sorting, and variant calling into a unified process. The

simplified workflow eliminates many intermediate steps and consequently reduces human

intervention and errors.

Our method, IVC, was implemented in the Go programming language (see

https://golang.org), which was designed to have high performance, garbage collection, and

primitive support for concurrency. Although Go might not be very common currently and

other languages such as C are also good choices for implementing high performance

software like this, we think that Go is a better choice in this context. It is easier to write

simple, reliable, and efficient software in Go, although the most optimal C code might be

faster than those of Go. We also provided several pre-complied binary packages of the

tool for several common platforms to help users run the tool without installing Go. These

pre-complied binary packages were obtained by using the Go’s built-in cross compilation

feature.

The source code of IVC can be found at https://github.com/namsyvo/IVC. It

currently supports Illumina paired-end reads. Other data formats will be supported soon.

C.2 Using IVC

C.2.1 Installation

1. Download IVC Source Code with Go

Pre-requirement: Go environment is already set up properly.

Get IVC source code:
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go get github.com/namsyvo/IVC

After these steps, IVC source code should be in the directory

$GOPATH/github.com/namsyvo/IVC

Then go to the IVC directory, from which IVC can be run as a Go program:

cd $GOPATH/src/github.com/namsyvo/IVC

2. Download IVC Source Code without Go

Get IVC source code with pre-compiled binary executable files of IVC (compiled

on GNU/Linux 3.2.0-4-amd64 #1 SMP Debian 3.2.68-1+deb7u3 x86 64):

git clone https://github.com/namsyvo/IVC.git

cd IVC

Those binary executable files were obtained by compiling source code with Go:

go build main/ivc-index.go

go build main/ivc.go

The source code can be also downloaded from releases of IVC at

https://github.com/namsyvo/IVC/releases

C.2.2 Usage

Example Commands

IVC comes with a test dataset which includes the following directories:

./test data/refs: includes a reference genome and a corresponding variant profile

for NC 007194.1 (Aspergillus fumigatus Af293 chromosome 1, whole genome shotgun

sequence, see http://www.ncbi.nlm.nih.gov/nuccore/AAHF00000000).

./test data/reads: includes a set of 10.000 simulated paired-end reads generated

with DWGSIM (see https://github.com/nh13/DWGSIM).

1.1. Creating and Indexing Reference Genomes with Variant Profiles:

go run main/ivc-index.go -R test data/refs/chr1 ref.fasta -V

test data/refs/chr1 variant prof.vcf -I test data/indexes
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The command ”go run main/ivc-index.go” can be replaced by the command

”./ivc-index.go”.

1.2. Calling Variants from Reads and the Reference:

go run main/ivc.go -R test data/refs/chr1 ref.fasta -V

test data/refs/chr1 variant prof.vcf -I test data/indexes -1

test data/reads/chr1 dwgsim 100 0.001-0.01.bwa.read1.fastq -2

test data/reads/chr1 dwgsim 100 0.001-0.01.bwa.read2.fastq -O

test data/results/chr1 variant calls.vcf

The command ”go run main/ivc.go” can be replaced by the command ”./ivc.go”.

Commands and Options

2.1. Creating and Indexing Reference Genomes with Variant Profiles:

Required:

-R: reference genome (FASTA format).

-V: known variant profile (VCF format).

-I: directory for storing index.

2.2. Calling Variants:

Required:

-R: reference genome (FASTA format).

-V: known variant profile (VCF format).

-I: directory for storing index.

-1: the read file (for single-end reads) (FASTQ format).

-2: the second end file (for pair-end reads) (FASTQ format).

-O: variant call result file (VCF format).

Options:

-d: threshold of alignment distances (float, default: determined by the program).

-t: maximum number of CPUs to run (integer, default: number of CPU of running

computer).
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-r: maximum number of iterations for random searching (int, default: determined

by the program).

-s: substitution cost (float, default: 4).

-o: gap open cost (float, default: 4.1).

-e: gap extension cost (float, default: 1.0).

-mode: searching mode for finding seeds (1: random (default), 2: deterministic).

-start: starting position on reads for finding seeds (integer, default: 0).

-step: step for searching in deterministic mode (integer, default: 5).

-maxs: maximum number of seeds for single-end reads (default: 1024).

-maxp: maximum number of paired-seeds for paired-end reads (default: 128).

-lmin: minimum length of seeds for each end (default: 15).

-lmax: maximum length of seeds for each end (default: 30).

-debug: debug mode (boolean, default: false)

C.2.3 Preparing Data and Performing Experiments

Simulated Data

IVC comes with a simulator which simulates mutant genomes based on the

reference genome and its associated variant profile. Reads are then can be generated from

the mutant genome using other simulators, such as DWGSIM.

Get the mutant genome simulator:

git clone https://github.com/namsyvo/ivc-tools.git

cd ivc-tools/genome-simulator

Then follow the instructions to generate simulated mutant genomes and evaluate

the called variants.

Real Data

• Reference genome: the NCBI Genome Reference Consortium, GRCh37 p.13.

http://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.25/

• Known variant profile: the 1000 Genomes Project Consortium, Phase 1.
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hftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/integrated call sets/

• Whole genome simulation: DWGSIM.

https://github.com/nh13/dwgsim

• Mutant genome generation: our script.

https://github.com/namsyvo/varcall-tools/tree/master/ivc-tools/genome-simulator

• Real data, Illumina HiSeq 2000 paired-end, sample ERR194147 (individual

NA12878), read length 100, coverage ∼50x:

http://www.illumina.com/platinumgenomes

http://www.ebi.ac.uk/ena/data/view/ERR194147

• GAIB data: The Genome In A Bottle Consortium.

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HG001/NISTv2.19

Commands and Settings

Scripts to run all tools are exist publicly in github:

• Scripts to run IVC on batch commands:

https://github.com/namsyvo/varcall-tools/tree/master/ivc-tools

• Commands and parameters to run IVC (running with default parameters, version

0.8.1).

./ivc-index -R ref.fasta -V tdbSNP -I index-dir

./ivc -R ref.fasta -V dbSNP -I index-dir -O ivc-var-call.vcf -1 read1.fastq -2

read1.fastq
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