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Abstract 
 

 Hospital-acquired infections (HAIs) have high mortality rates around the world and are a 

challenge to medical science due to rapid mutation rates in their pathogens. A new methodology 

is proposed to identify bacterial species causing HAIs based on sets of universal biomarkers for 

next-generation microarray designs (i.e., nxh chips), rather than a priori selections of 

biomarkers.  This method allows arbitrary organisms to be classified based on readouts of their 

DNA sequences, including whole genomes. The underlying models are based on the 

biochemistry of DNA, unlike traditional edit-distance based alignments. Furthermore, the 

methodology is fairly robust to genetic mutations, which are unlikely to reduce accuracy. 

Standard machine learning methods (neural networks, self-organizing maps, and random forests) 

produce results to identify HAIs on nxh chips that are very competitive, if not superior, to current 

standards in the field. The potential feasibility of translating these techniques to a clinical test is 

also discussed. 
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Chapter 1:  Introduction 

 Identifying the species of an unknown bacterium is important in the clinical field, 

especially for pathogens in hospitals since they have high morbidity and mortality rates around 

the world. This problem dates back to 1847, when Ignaz Semmelweis showed that childbed fever 

was transmissible through unsanitary hands of health-care workers. Since then, surgeons and 

health care affiliated workers have adopted new aseptic and antiseptic techniques to reduce 

patient‟s exposure to HAI pathogens. Still, preventative programs established to reduce patient‟s 

susceptibility remain difficult and challenging, as bacteria become antibiotic resistant and 

methods that provide timely and accurate identification of the infectious agents are lacking for 

appropriate patient diagnosis for treatments. Therefore the ability to accurately identify the 

infectious agents in an appropriate time and manner is a critical step for epidemiological 

surveillance and public health decisions. This thesis develops such a method to classify bacterial 

pathogens, with emphasis on hospital-acquired infections (HAIs.) 

 

1.1. Statement of the Research Problem 

 An example of the classification problem is shown in Figure 1 in its most general form. 

In biology, this problem requires grouping together biological organisms based on similar 

characteristics in order to determine whether an unknown organism is a member of an 

established group.   Perhaps the best examples are the attempts by biologists to establish a 

standard taxonomy and phylogeny of all life on earth. There are groups within different levels of 

the biological taxonomy (i.e., domain, kingdom, phylum, class, order, family, genus or species) 

where an organism can be classified. Difficulty arises, however, as the classification of an 

organism to a taxon shifts from coarser levels (like domains) to finer levels (like genera and 
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species.) Thus, research over time has tried to improved methods and technologies that can 

provide enough resolution to classify an organism at the narrowest level, e.g. species. This 

particular problem is known as the species identification problem, see Figure 2. I will propose a 

new method that will provide accurate identification of species of HAI pathogens, along with 

robustness to mutations.  

 

 

 
Figure 1: A classification problem for a collection of objects U calls for placing an object in one 

of a pre-determined mutually exclusive finite set of categories (e.g., three shapes/colors above) 

that partition the full collection U. In the simplest case of binary classification, the partition is 

given by a certain set of objects L and its complement U \ L in U. This is a well-known and 

difficult problem in computer science, usually unsolvable or NP-complete in full generality. 

 

 

 

 

 

 
 

Figure 2: The species (genus) identification problem is a classification problem where each 

category is a specific species (16, middle row) or genus (13, top row), respectively. An object is 

an organism (80 of them in the sample, bottom row), as represented by some biomarker such as a 

gene (like 16S sRNA or COI) or its whole genome sequence (WGS), for example. 
 

Classification problem 

Species and genus identification problems 
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1.2. Significance of the Research Problem 

Research and development for the species identification problem is important, especially 

for the identification of microbial communities, since scientists in different industries (e.g., 

agriculture, clinical microbiology, and food production) use these tools to improve the quality of 

life.  

In particular, a hospital-acquired infection (HAI) is defined as an infection that develops 

within 48 hours after the patient is admitted to a hospital. Of all acquired infections, they account 

for 7% in developed and 10% in developing countries (Khan et al., 2017.) In the U.S., an 

estimated 1 of 25 patients admitted to hospitals gets infected with an HAI (Magill et al., 2014.) A 

summary of the top pathogens known to cause HAI is shown in Table 1 below. 

Patients with an HAI can expect to pay thousands of dollars in healthcare cost depending 

on the HAI site as shown in Table 2 (Zimlichman et al., 2013.) These costs are mostly due to 

increased length of hospital stay and lack of efficient tools for diagnostic and treatments.  In 

Table 1, Clostridium difficile is the top ranked HAI pathogen and infections from C.difficile 

alone cost roughly $1.51 billion in healthcare cost in the U.S annually (Table 2.) Despite a 

number of preventative programs established to reduce the rate of infection and healthcare cost, 

the need for a fast and accurate method to identify HAI is still needed due to the rapid rate of 

mutation of bacterial genomes. The development of such a method will assist with patient 

diagnosis and treatment, as well as controlling future outbreaks.   
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Table 1: Top 10 hospital acquired bacterial infections (HAIs) in the USA for 2011 (Magill et al., 

2014) 

 

Pathogen 

 

Rank 

 

Clostridium difficile 

 

1 

 

Staphylococcus aureus 

 

2 

 

Klebsiella pneumonia 

 

3 

 

Escherichia coli 

 

4 

 

Enterococcus species 

 

5 

 

Pseudomonas aeruginosa 

 

6 

 

Candida species 

 

7 

 

Streptococcus species 

 

8 

 

Coagulase-negative 

staphylococcus species 

 

9 

 

Enterobactor species 

 

10 

 

 

 

Table 2: Financial burden of the top 5 types of HAI (Zimlichman et al., 2013) 

Types of HAIs Average Cost (in USDs) Annual Cost (Billion) 

Central line-associated bloodstream 

infections (CLABIs) 

45,814 1.85 (18.9%) 

Ventilator-associated pneumonia 

(VAPs) 

40,144 3.09 (31.6%) 

Surgical site infections (SSIs) 20,785 3.30 (33.7%) 

Clostridium difficile infections 11,285 1.51 (15.4%) 

Catheter-associated urinary tract 

infections (CAUIs) 

    896 0.03 (00.4%) 
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Chapter 2: Concepts and Methods 

2.1. Molecular Biology Background 

 

Before the development of methods that rely on genomic information for characterizing 

unknown organisms, the best procedures for this problem were based on phenotypic 

characteristics. Micro-organisms could be classified based on their structure, cellular 

metabolism, growing conditions, or differences in their cellular components. In 1884, Hans 

Christian Gram developed a well-known procedure that characterized bacteria based on the 

detection of peptidoglycan in their cell walls. He distinguished bacteria into two groups, Gram-

stain positive (stained violet) and Gram-stain negative (no stain.) This method has been used in 

clinical microbiology laboratories and is sometimes the preliminary procedure for bacterial 

identification (Srinivasan et al., 2012.) However, like other phenotypic methods, this procedure 

does not afford enough resolution to identify bacteria at the species level, since many closely-

related species share similar phenotypes. It was not until 1953, when Watson and Crick solved 

the three-dimensional structure of DNA, that phenotypic methods were replaced by molecular 

techniques.  

Deoxyribonucleic acid (DNA) is a macromolecule that is abundantly present in nearly all 

living organisms on planet earth. It is considered to be the blue print of life since it contains the 

genetic instructions necessary for an organism to be born and live. A sequence of nucleotides 

represented by A, C, G, and T (described in Figure 3) form the genetic code (genome) that 

constitutes the unique characteristics of each individual. A well-known functionality of DNA 

sequence is to help produce proteins. Part of the DNA that codes for genes are transformed into a 

single stranded molecule known as RNA (ribonucleic acid.) This molecule contains the same 

nucleotides as DNA except thymine (T), which is converted to uracil (U) during the transcription 
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process. The resulting messenger RNA (mRNA) strand is then transported from the nucleus and 

into the cytoplasm for protein synthesis. This step is known as the translation process, where 

molecular machines known as ribosomes and adaptor molecules (tRNA), link together chains of 

amino acids to produce proteins. Proteins regulate the functions within cells and are basic 

structures required of most cellular components. 

 

 

 

 
 

 
 

Figure 3: A DNA contains the genetic instruction for an organism to develop, live, and 

reproduce. Nearly every living organism carries a unique DNA genome that essentially defines 

what they are. A single-stranded DNA (ssDNA) contains nucleotides A (adenine), C (cytosine), 

G (guanine), and T (thymine) and a sugar-phosphate backbone. Two single strands form a 

double-helix through hydrogen bonding between A-T and C-G.  

 

 

 

 

 

 

 

DNA structure 
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 Over time and during reproduction, DNA can be just copied or can change due to random 

mutations such as insertion, deletion, or substitution. A conserved region in a genome is a 

subsequence of the genome that codes for an important functionality and undergoes very low 

evolutionary changes by natural selection. This type of sequence occurs across species and is 

useful for differentiating species from one another. The ribosomal RNA (rRNA) for example, is 

essential for protein synthesis and is present in nearly all living organisms. For bacteria, the 16S 

rRNA gene (~1500 bp) is widely used to identify species of unknown organism since the 

similarity is at least 97% between strains within the same species. Still, single conserved regions, 

like the 16S rRNA, cannot provide enough resolution for most bacteria at the species level 

(Janda & Abbot, 2007.)  For example, B.globisporus and B. psychrophilus have 99% similar 16S 

rRNA sequences (Nguyen et al., 2016.) Additionally, the strain, Escherichia coli K12, has two 

copies of the 16S rRNA gene that differs by about 5% (Nguyen et al., 2016.) Alternative 

methods such as multi-locus sequence analysis (MLSA) take 6-7 housekeeping genes (~ 500 bp) 

and align each of the sequenced genes to a database to determine the species of an unknown 

bacterium. This idea may seem to improve the resolution; however, only a limited number of 

species can be compared within a universal database (e.g., https://pubmlst.org/databases/.) 

Limitations arise from the fact that conserved regions of the genome need to be known a priori 

to discriminate species from one another. In this method, no universal sets of housekeeping 

genes can be used for all bacteria (Glaeser & Kämpfer, 2013.) This makes the species 

identification task laborious as different protocols may be required for different species. 

Therefore, effective classification methods should be universal and must prove capable of 

working with large scale genomic, or even proteomic, data to ensure accurate species 
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identification for all bacteria since the classification may, in principle, depend on every 

nucleotide in the sequence. 

 

  2.2. Current methods for HAIs 

 

 Currently, there are various techniques used to identify bacterial pathogens (Fournier et 

al., 2014; Emerson et al., 2008.) Table 3 provides some of the commonly used methods in 

clinical laboratory settings. In this section, popular methods based on large-scale genomic or 

proteomic data will be summarized including matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry, pulse-field gel electrophoresis, whole-genome sequencing, and DNA 

microarray.  

 

Table 3: Clinical methods used for bacterial identification (Fournier et al., 2014; Emerson et 

al., 2008.)  

 

Method Technology   Type 

 

Fingerprinting Pulse-field gel electrophoresis (PFGE) Genomic 

 Riboprinting Genomic 

 Restriction Fragment Length Polymorphism (RFLP) Genomic 

DNA Sequencing Small-subunit ribosomal gene  Genomic 

 Multi-locus sequence  (MLS) Genomic 

 Whole-genome sequencing (WGS) Genomic 

Hybridization DNA Microarray Genomic 

Mass Spectrometry Matrix Assisted Laser Desorption/Ionization Time-

Of-Flight Mass Spectrometry (MALDI-TOF-MS) 

Proteomic 

 Electrospray Ionization Mass Spectrometry (ESI-MS) Proteomic 

 Surface-Enhanced Laser Desorption/Ionization 

(SELDI) 

Proteomic 
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2.2.1. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry 

  
 The use of mass spectrometry (MS) for bacterial identification was first proposed by 

Anhalt and Fenselau in 1975. At the time, MS could only analyze small molecules and was 

limited due to differences in growth conditions and media. Soft ionization MS such as electron 

spray ionization (ESI) and matrix assisted laser desorption ionization time-of-flight (MALDI 

TOF) were later developed in the 1980s to extend the application to larger biomolecules like 

ribosomal proteins (Singhal et al., 2015.) Both techniques measure protein mass by converting 

the proteins to ions with the addition or removal of one or more protons. This method is known 

as peptide mass fingerprinting, and has been useful for characterizing bacteria at the species and 

genus level. In recent years, however, MALDI TOF MS has come to dominate ESI MS for 

bacterial identification (Singhal et al., 2015.) The advantage of MALDI TOF MS over ESI MS is 

that the data is easier to interpret since MALDI TOF MS produce single charged ions. 

Additionally, the chromatography step in ESI MS is not required with MALDI TOF MS, and so 

the simplicity and speed to result is highly desirable.  Therefore, for evaluation of the novel 

methods proposed in this thesis, MALDI TOF MS will be discussed since it is the preferred MS 

method used in clinical laboratories for microbial identification. 

 MALDI TOF MS was developed by Michael Karas, Franz Hillenkamp, and their 

colleagues in 1985, although emergence of its application for clinical use did not begin until 

1996. There are several reasons for the decade long delay prior to common use (Nomura, 2015.) 

Microbiologists speculated whether spectra patterns could consistently reproduce established 

hierarchical order of microbial taxonomy, since protein patterns are expected to change 

depending on growing conditions. Additionally, MALDI TOF MS is almost fully automated, so 

the simplicity and speed seemed unreliable in comparison to other methods that required an 
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expert to perform the task. Moreover, databases for clinically relevant pathogens were still under 

development since MALDI TOF MS requires a comprehensive database for accurate 

identification. It was not until 1996, when MALDI TOF MS was shown to capably produce 

spectral fingerprints from whole bacterial cells without pretreatment, that microbiologists began 

to publish reports of its use in identification of bacteria, fungi, yeast, and mycobacteria (Nomura, 

2015.) 

 There are two types of MALDI TOF MS approved by the US Food and Drug 

Administration (FDA) for routine bacterial identification; MALDI Biotype CA System by 

Bruker Daltonics Inc. (https:// bruker.com/) and VITEK MS by bioMérieux Inc. (http:// 

biomerieux-usa.com.) Both differ in the identification step described below (Clark et al., 2013.) 

Figure 4 (below) shows a typical workflow of MALDI TOF MS for bacterial identification. First, 

a small portion of cultured bacteria colony are smeared onto a spot of a stainless steel plate and 

then mixed with a formic acid solution called a matrix. Typically, the matrix comprises of alpha-

cyano-4-hydroxycinnamic acid (CHCA) that is mixed with organic solvents and water, although 

other type of matrices have been explored to achieve better performance (Nomura, 2015.) The 

plate is set aside to allow time for the sample and matrix solution to crystallize. Finally, the plate 

is deposited into a mass spectrometer for scanning and automatic measurements. Within the mass 

spectrometer, each spot on the stainless-steel plate is hit with a laser beam that converts the 

sample into a gas. The matrix material must be strong enough to absorb the laser‟s energy to 

create ions from molecules with minimal fragmentation. In the gas phase, charge is transferred 

from the matrix solution to the microbial molecules through random collisions. The charged ions 

are then accelerated through a TOF analyzer and measurements are determined by the length of 

time it takes for the ions to travel the length of the tube. In the end, a spectrum of the organism‟s 
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protein mass is generated. This spectrum is compared to other spectra in a database by pattern 

recognition algorithms for peak detection to finally determine a species or genus match. The 

Biotype produces a score between 0 and 3.000. A score ≥ 2.000 is a species match and a score 

between 1.700 and 1.999, inclusively, is a genus match. A score < 1.700 indicates that there is no 

reliable match in the database. The VITEK system has two approaches for identification. The 

first approach uses a pattern matching algorithm, while the second approach groups together 

peaks shared by a minimum number of strains to create a reference „super-spectra‟ weighted 

according to the species or genera. A confidence value between 0 to 100% is also outputted for 

comparison between the unknown spectrum and super-spectra.  

 

 

 

Figure 4: For species/genus identification using MALDI TOF MS, a small sample of a cultured 

bacterial colony is smeared onto a stainless steel plate. A matrix solution, typically alpha-cyano-

4-hydroxycinnamic acid (CHCA) mixed with organic solvents and water, is applied to the spot 

containing the sample. After being air-dried and placed into the mass-spectrometer, a beam of 

laser is fired at the sample and the matrix mixture, causing the molecules in the sample to ionize. 

The ions then travel up the analyzer by size and are then detected by a sensor to obtain a 

spectrum of the mass-to-charge ratio. The spectrum is then compared to other spectra in a 

database by a pattern recognition algorithm to classify the species/genus of the sample. 
 

 

 

MALDI TOF MS workflow 
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 The initial cost of these instruments currently exceeds $150,000, with an additional 

annual maintenance fee that can be troublesome for many clinical laboratories. However, those 

that can overcome the cost can expect to save more money compared to other conventional 

identification methods. A study by (Tran et al., 2015) explored the annual cost between 

traditional methods and MALDI TOF MS (Vitek System) between April 1, 2013, and March 31, 

2014. The total annual cost for the traditional methods was $142,533 versus $68,887 with 

MALDI TOF MS. This resulted in a laboratory savings of about 52%. Moreover, the average 

hands-on time per specimen is about 5 minutes (Dhiman et al., 2011.)  A meta-analysis study by 

(Zhou et al., 2017) showed that MALDI TOF MS can identify bacterial species with about 84% 

accuracy with a confidence interval [81.2%- 88.9%] and bacterial genus with about 91% 

accuracy with a confidence interval [88.3%-93.3%], both at the 95% confidence level. The 

accuracy will vary depending on the species and comprehensiveness of the database. The 

sensitivity of MALDI TOF MS will also depend on the concentration of bacterial cells. It is 

suggested that a minimum of approximately 10
4
 cells per sample is required for reliable 

identification. Nevertheless, the cost, speed, accuracy, and automated features of MALDI TOF 

MS have made it the gold standard technology for bacterial identification, although 

microbiologists would prefer a tool that is smaller and cheaper in capital costs (van Belkum et 

al., 2017.) 

 

2.2.2. Pulse-Field Gel Electrophoresis  

 

 DNA fingerprinting is a method used to uniquely characterize an organism based on 

patterns of DNA fragments. Before 1984, conventional electrophoresis methods were used to 

separate DNA fragments according to size; however, only a single electric field was applied. 

This effectively separated fragments of size up to ~20 kb, but larger fragments would cluster at 
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the top of the gel and appeared as a large band when photographed for analysis. In 1984, 

Schwartzand and Cantorand remedied the issue by inventing pulse-field gel electrophoresis 

(PFGE.) This method is different from conventional electrophoresis in that an alternating electric 

field is applied to modify the direction and speed in which the fragments migrate. Up to ~10 

Mbps (Mega base pairs) can be separated using this technique. 

 Various types of PFGE (e.g., CHEF, FIG, AFIGE, OFAGE, PHOGE and PACE) have 

been developed for separating and typing DNA molecules with large fragments present (Parizad 

et al. 2016.) Each method‟s output goal is the same, but the separation process and maximum 

fragment size that can be separated differ. Among the various types of PFGE, the Contour 

Clamped Homogeneous Electric Field (CHEF) is widely used (Parizad et al. 2016.) Figure 5 

shows the typical workflow for PFGE based on CHEF‟s separation technique. 

 

 

 

Figure 5: Pulsed-field gel electrophoresis (PFGE) is a highly discriminative molecular typing 

technique that is based on DNA banding patterns. Cells from bacteria are embedded in a melted 

agarose gel plug and lysed for DNA extraction. Next, the DNA is cleaved into different size 

fragments using restriction enzymes.  The DNA fragments are then separated according to size 

during electrophoresis using an electric field of alternating polarity. Finally, the DNA banding 

patterns can be seen under UV light and photographed to be stored in a database for later 

identification from unknown samples. 
 

 

Pulse-field gel electrophoresis workflow 
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 Bacterial cells are first cultivated within 24 hours. Next, a cell suspension is prepared 

using an appropriate buffer. The bacterial cells are then mixed with agarose gel in a plug and a 

biochemical is added to release the DNA from the cell membrane. The plug, which now contains 

DNA, is washed several times to remove proteases and cell debris. Next, a restriction enzyme is 

added to the plug. The choice of restriction enzyme for DNA shearing is important in the PFGE 

process since they are able to locate a specific nucleotide sequence and cleave the DNA from 

that exact place. The length of the fragments is important since it will be later used to distinguish 

between bacterial strains. Once the DNA in the plug has been cleaved to several fragments, the 

plug is placed into a cavity at the top of the electric field. The CHEF‟s system contains 24 

electrodes aligned in a hexagonal arrangement. The top portion of the hexagon contains negative 

electrodes while the bottom portion contains positive electrodes. Since DNA is negatively 

charged, the DNA fragments will migrate towards the positive field. The flow of voltage from 

the positive to negative electrodes are altered at an angle of 120 degrees, which allows more time 

for the larger DNA fragment to migrate. The timing between electrodes switch is precisely 

controlled to ensure that all fragments are represented. Finally, the gel is stained so that the 

banding patterns can be seen under ultraviolet (UV) light. A photograph is taken and the image is 

stored into a database for comparison.  

 PFGE is still widely used today in epidemiology and microbiology studies.  It is 

commonly used for bacterial typing since it provides high discrimination power at the strain 

level.  Although widely used, PFGE is not ideal for routine use in clinical settings. The drawback 

of this method is that it is time consuming and costly since it can take up to four days or more to 

obtain results (Aguilera-Arreola et al., 2015.) Moreover, this method lacks discrimination power 
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of bands that are nearly identical in size, which ultimately makes it difficult to interpret the 

banding patterns.  

 

2.2.3. Whole-Genome Sequencing (WGS) 

 In 1995, the first bacterium to have its entire genome sequenced was Haemophilus 

influenzae. Since then, over 564 million whole genomes have been sequenced and deposited into 

Genbank as of February 2018 (https://www.ncbi.nlm.nih.gov/genbank/statistics/.) This was made 

possible due to rapid advances in sequencing technologies and in particular, whole-genome 

sequencing (WGS), over the last decade. Previous sequencing methods known as first-generation 

sequencing were developed based on the Sanger method; however, these technologies have been 

superseded by next-generation sequencing (NGS) techniques (Deurenberg et al., 2017.)  

 Second-generation (NGS2) sequencing technologies are currently the most commonly 

used methods for sequencing genomes. The procedure uses a “shot-gun” based approach, which 

requires library preparation, amplification, and an assembling step described in Figure 6. Third-

generation sequencing (NGS3) technologies aim to sequence the nucleotides directly at the 

molecular level in order to increase the sequencing reads while reducing biases and achieving 

higher throughput (Deurenberg et al., 2017.) Fourth generation technologies (NGS4) sequence 

the nucleic acid in situ, directly in fixed cells and tissues. Both third-generation and fourth-

generation sequencing are still under development and are not yet implemented for broad use due 

to current the lack of robustness of the methods.  

 The role of whole genome sequencing (WGS) technologies is becoming increasingly 

important in public health and hospital infection control-affiliated laboratories. This approach 

provides comprehensive genomic information for understanding infectious diseases and better 
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resolution in characterizing strains. Due to the reduction of cost and speed of current 

technologies, WGS in the future may replace other sequence-based methods that rely on 

conserved regions (16s rRNA and Multi-Locus Sequencing (MLS)) for bacterial identification. 

However, future work on improving NGS workflow, such as automatic pipelines for data 

analysis, external quality controls for proficiency testing, and shorter runs of NGS platforms, are 

needed in order for this method to become widely accepted for patient guidance and infection 

control management (Deurenberg et al., 2017.) 

 

 

 

 

Figure 6: For whole-genome sequencing (WGS), DNA is extracted from bacterial cells and 

sliced into fragments using enzymes or mechanical disruption. Many copies of each DNA 

fragment are produced using polymerase chain reaction (PCR) to create a DNA library, which 

are loaded into a sequencer to obtain DNA reads. Assembling software is used to put together the 

millions of DNA reads in the correct order as one re-constructed sequence for further analysis.  
 

 

Whole-genome sequencing workflow 
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 Generally, alignment (e.g. BLAST and Average Nucleotide Identity (ANI)) or alignment-

free based methods (such as k-mers) are used to classify bacteria using their entire genome 

sequence. For alignment based methods, an algorithm will find local regions of a reference 

genome where the queried sequence has high identical base pair matches. Usually, a percentage 

that indicates how identical the two sequence is given in the end. The drawback to this method is 

that there is no universal cut-off percentage threshold to determine the identity of an unidentified 

genome (Zielezinski et al., 2017.) Cut-off values may vary between 95-97%. Additionally, 

alignment-based methods are time consuming and computationally extensive since the number 

of possible alignments increases as the length of the sequence gets larger, especially for multiple-

sequence alignments (Zielezinski et. al., 2017.) Dynamic programming algorithms can resolve 

this issue; however, the time complexity remains in the order of the product of the length of the 

sequences (Zielezinski et. al., 2017.) Alignment-free based methods such as k-mers are popular 

tools due to their speed to result. These alignment-free based methods use fast algorithms to 

count the frequency of all possible k-mers (short DNA oligonucleotides of length k) and use 

some distance metric (e.g., Euclidean distance) to determine sequence similarities. Other 

methods such as CLARK will find unique k-mers that are specific to a species (Ounit et al., 

2015.) Still, a major disadvantage to alignment-free methods is that memory consumption can be 

relatively large if a large k is selected (there are 4
k
 possible k-mers) (Zielezinski et. al., 2017.) 

Moreover, other k-mer based algorithms may be more memory efficient and computationally 

inexpensive; however, the trade-off is usually failure to identify bacteria at the narrowest 

taxonomic levels (e.g., species.) 
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2.3. Next Generation Microarrays (nxh chips) 

   DNA microarrays are powerful tools used to capture large-scale genomic information by 

means of hybridization between a nucleotide sequence to its (nearly) complementary strand. A 

typical microarray contains a collection of DNA spots that is fixed to a solid glass surface 

arranged in rows and columns.  These spots are referred to as probes in this thesis (sometimes 

contrary to the reverse convention used by biologists.) They consist of a number of copies of 

oligonucleotide (oligo) sequences as shown on the left in Figure 7. Fragments of DNA or RNA 

molecules, consequently called targets herein, hybridize to these probes as explained on the right 

in Figure 7.  

 In 1975, the first DNA microarray was created by Grunstein and Hogness to identify 

DNA of interest cloned within E.coli plasmids by quantifying the hybridization to radiolabeled 

probes. Since then, microarrays have gone through dramatic improvements, which include 

automated steps and fluorescent detections of hybridization. They are mostly used for gene 

expression analysis, which, in a clinical setting, is useful for identifying bacteria, antibiotic 

resistancy, and virulence factors based on a specific set of genes. 
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Figure 7: Left: a DNA microarray is a collection of spots on a solid surface where DNA 

oligonucleotides (oligos) are attached. Each oligo, referred to herein as a “probe”, may hybridize 

with a homologous fluorescently-labeled free fragment from a target to generate a signal when 

exposed to ultraviolet light. Right: targets are poured on the microarray and time is allowed for 

hybridization before a readout (or signature) is obtained with a quantitative aggregated 

measurement of the signals or each probe. Permission for the use of this image was given by 

(Garzon & Mainali, 2017.) 

 

 

 Although DNA microarrays are useful for a wide variability of applications, there are 

several drawbacks and limitations for this tool. First, the reliability and reproducibility of the 

data varies between laboratories since hybridization failure of targets to probes occur (Garzon & 

Mainali, 2017.) In this situation, target strands that provide useful information are missed and 

thus, this results in low reliability and accuracy of the probe intensities value. This is in part, due 

to the fact that probes are arranged on the chip without consideration that the probes do no fully 

capture all possible targets. Moreover, no constraints are provided to ensure minimal 

crosshybridization between probes (Garzon & Mainali, 2017.) Without such restrictions, target 

strands will not have a chance to hybridize to probes that are designed to capture a specific 

strand. Secondly, for microbial analysis, microarrays are designed from a previously known 

reference strain. This is not useful since the genomes of bacteria tend to be highly variable and 

even fairly similar bacteria may require different microarrays.  For example, the gene content of 

Microarray technology 
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A. actinomycetemcomitans, differs by as much as 20% between any two strains (Bumgarner, 

2013.) Therefore, a lot of information is missed that could be useful for identifying two strains 

that belong to the same species. 

 In recent years, researchers have tried to address the limitations of microarrays. In 

particular, Garzon et al. (Garzon & Bobba, 2012) have proposed ways to address these problems 

in a next generation of microarrays, where the probes are designed in such a way that oligos will 

not hybridize with each other or to themselves. The Codeword Design problem described by 

(Garzon & Bobba, 2012) seeks to find sets of DNA oligonucleotides with such 

noncrosshybridizing (nxh) properties. The problem of finding these designs has been proven to 

be hard, even NP complete to solve in full generality (Garzon & Bobba, 2012; Phan et al, 2009.) 

The difficulty arises mostly due to lack of knowledge of the structure of the Gibbs Energy of 

strands of a fixed size, which governs hybridization between oligonucleotides. Such sets will 

afford a next generation microarray, called noncrosshybridizing (nxh) chips.  

 

 

 

 
  

Figure 8: Computation of the h-distance h(x, y) between strands x and y of common length n. 

The strands x and the reverse y
R
 of y are aligned, and the minimum difference from n of the 

number of WC-complementary matches (in red) across all possible frameshifts is taken as the 

value for the h-measure hm(x, y). This procedure is then repeated for the Watson-Crick 

complement (WC) y’ of y. The h-distance between x and y is the minimum of the two h-

measures hm(x, y) and hm(x, y’) (Garzon & Bobba, 2012.) 

Approximating Gibbs energy of hybridization 
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 The Codeword Design problem (CWD) can be depicted by arranging the oligos onto a 

geometric-pack sphere, where the oligos are coordinated in such a way that neighboring high 

hybridization affinity are mapped into a geometric frame similar to that of a Euclidean space 

(Garzon & Bobba, 2012.) A new model was proposed for this representation called the 

hybridization distance (h-distance.) This model measures the likelihood that two oligos, x and y, 

will hybridize with each other (Garzon & Bobba, 2012.) An example of the computation of the 

h-distance between two oligos x and y, where x = agc and y = tgg, is shown in Figure 8. The h-

distance model is shown to be a feasible but reasonable approximation of the Gibbs Energy of 

duplex formation for DNA hybridization in that hybridization decisions based on the h-distance 

agrees with decision based on the Gibb‟s Energy Nearest Neighbor model over 80% of the time 

(Garzon & Bobba, 2012.) The h-distance does not distinguish between an oligo and its Watson-

Crick complement, and so the term p-mer (for complementary poligomer pairs) will be used to 

refer to such pairs. Now, the h-distance can be treated like the ordinary Euclidean distance 

(because it satisfies the same key properties, including the triangle inequality) and used to 

quantify the amount of noise inherent in a microarray design (Garzon & Bobba, 2012; Garzon & 

Mainali, 2017.) 

 Probes for a next generation nxh chip must be carefully selected in order to prevent 

crosshybridiziation. To do so, a stringency parameter τ must first be selected as a threshold to 

decide hybridization using the h-distance between a probe and a target fragment. The probes are 

judiciously selected such that each probe is at the minimal distance τ from all others. An nxh 

chip design, also called a basis, will have a sufficient number of probes to ensure that each target 

will hybridize to at least 1 probe and, ideally to at most one probe. As shown in Figure 9 (right), 
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hybridization to at most 1 probe is possible with a threshold τ/2, since a shred z with h-distance 

less than τ/2 for two of the probes i and j, cannot hybridize to both probes due to the triangle 

inequality and the minimal separation of τ in the h-distance between any pair of probes (a 

property that the Gibbs energy does not possess.) Additionally, each spot on an nxh basis 

contains the same finite number of an oligo and its Watson-Crick complement, separated by an 

appropriate physical distance to prevent crosshybridization, as illustrated in Figure 9 (left.) Once 

the probes that satisfy the above properties have been selected, genomic information can be 

captured from an organism using any DNA biomarker to obtain a digital signature. The process 

for obtaining a digital signature will be similar to standard microarray technology, though probes 

will be fluorescently labeled here instead of targets to avoid pseudo-signals due to hybridization 

among targets. An illustration of using an nxh chip is shown in Figure 10. 

 

 

 

    

 
 

Figure 9: Left: A noncrosshybridizing (nxh) chip design as described in (Garzon & Mainali, 

2017.) All the probes on the chip are at h-distance of at least τ apart.  Each spot consists of a 

fixed number of copies of oligos and the same number of copies of their Watson-Crick 

complements, spaced at a distance to prevent crosshybridization. Right: A target shred z is 

assumed to be able to hybridize with a probe if and only if its h-distance to the probe is less than 

τ/2. Copies of a random z cannot hybridize to two probes otherwise contradicting the triangle 

inequality, which the h-distance property follows. In this way, the amount of noise is reduced, 

thus addressing a major problem for standard microarray technology. Permission for the use of 

this image was given by (Garzon & Mainali, 2017.) 

 

 

 

Noncrosshybridizing (nxh) chip design 
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Figure 10: A sequence x from an organism is first shredded by sonication. Each shred is then 

fluorescently labeled before being poured to the nxh chip to acquire a digital by standard 

microarray procedures. Permission for the use of this image was given by (Garzon & Mainali, 

2017.) 

 

 

 

2.4. Computer Science Background 

 In this thesis, machine learning techniques were used on digital signatures obtained from 

nxh chips to identify the species of bacterial strains. A brief review of the machine learning 

methods used will be given in this section. 

 

2.4.1. Machine Learning Methods 

 Machine Learning methods are becoming commonly used in clinical settings.  Progress 

over recent years has enabled these tools to perform accurate evaluation of complex patterns 

observed in most clinical data. In particular, random forest, artificial neural networks, and deep 

learning are extensively used in the field of bioinformatics for classification tasks.  Moreover, 

they have been combined with microarray expression datasets to accurate classify different types 

of cancer (Chu et al., 2014.) Therefore, the following sections will provide a brief overview of 

neural networks, self-organizing maps, and random forests which will be used to identify HAI 

species based on digital signatures obtained from nxh chips. 

Computing digital signatures on an nxh chip 

x 
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2.4.1.1. Neural Networks (NNs) 

 An artificial neural network consists of a finite number of neuronal units connected 

through directed synaptic links that resemble the synapses in the mammalian brain (Garzon & 

Pham, 2018.) They can solve classification problems in a way similar to how the human brain 

works based on given set of input features (Hassoun, 1995.) A neuron can be in one of several 

states of activation characterized by a real number at any given time, but can change its 

activation in the next time step by applying its characteristic transfer function to the net input of 

its neighboring neurons (obtained by a weighted sum of the states of other neuron with a synaptic 

link into it.)  This process is iterated until all neurons have been updated for any single data point 

as described in Figure 11. A major advantage of using this method is that a prior deep analysis of 

the data is not required. Instead, the model can be trained by a learning algorithm (e.g., back 

propagation (Hassoun, 1995)) to classify data by passing a number of data points labeled with 

the expected correct answer from a training set for an appropriate number of times (or epochs), 

until the answers are mostly right (Figure 12.) The quality of the model is measured by how 

accurate the model predicts the actual labels in a testing set of data that the NN has not seen prior 

to the training phase.  
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Figure 11: An artificial neural network consists of a finite number of neuronal units connected 

through directed synaptic links. They can solve classification problems in a way similar to how 

the human brain does it based on input features. The particular kind of NN above is a feed-

forward neural net (FNN), where the neurons are arranged in layers, each receiving signals from 

neurons in the previous layer. The first is an input layer of neurons (in 1-1 correspondence) 

reading the features in a data point, the last layer producing a prediction as to which category the 

datum in the input belongs, and several neurons arranged in (so-called hidden) layers that try to 

distinguish characteristic features in the input feature vector.  Each of the inputs is multiplied by 

an originally established weight, is continuously changed by an initial created threshold value 

and sent to an activation function (φ) to map its output. 
 

 

 

 

Figure 12: The neural network model can be trained by a learning algorithm (e.g. 

backpropagation) to classify data by passing a number of data points labeled with the expected 

correct answer (category where they belong) from an input space for an appropriate number of 

times (or epochs), until the answers produced are mostly right.  

Definition of neural networks (NNs) 

How to train neural networks 
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 The following procedure to identify HAI species using NNs on digital signatures 

obtained from nxh chips is described in (Garzon & Pham, 2018.) Various feed forward neural 

networks (FNN) were trained for 4000 epochs by using the „h2o‟ library package in R (Arora et 

al., 2006) with a hyperbolic tangent function as a smooth transfer function (nonlinearity.) The 

single output unit produced normalized decimal values between 0 and 1. For species 

identification, each k of the 16 species was assigned a range of outputs in the interval of radius 

0.03125 centered at (k/16) – 0.03125, for k = 1… 16. The data corpus was partitioned into a 

learning set (80% of them, randomly assigned) and the remaining (20%) for the testing set. As is 

customary in machine learning, various combinations of nxh bases, neuron types, and hidden 

layers were tried in an attempt to optimize performance.  As an example, 3mE4-[4-3-2-1] 

describes a FNN with 4 input features, two hidden layers with 3 and 2 neurons, providing input 

to a single 1 neuron in the output layer using the four feature signature vectors on the nxh basis 

3mE4-2-at1.1, as described in Table 4. The h2o.predict function was then used to test the 

accuracy of the model. The accuracy was based on whether the predicted value obtained from the 

h2o.prediction function after training of the network fell within the correct interval coding for 

the corresponding species of a data point (strain.)  This process was repeated for 32 different 

models, and the average of the 32 accuracies was taken to determine the performance of a given 

neural network architecture for the training and testing set. Additional performance measures 

including sensitivity, specificity, and precision, were computed for the testing set using the 

„caret‟ package (Kuhn, 2008.) 
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2.4.1.2. Self-Organizing Maps (SOMs) 

 Self-organizing maps are a type of artificial neural network developed by Tuevo 

Kohonen in the 1980s as a type of solution to classification problems (Kohonen, 1982.) This 

method is different from NNs in that the training process uses a competitive unsupervised 

learning technique, which is useful for clustering together groups that contain similar feature 

patterns without additional labels in the data. A unique property of SOM is that it is able to map 

high-dimensional data onto a two-dimensional map while preserving the topology of the input 

space, as shown in Figure 13. Like other artificial neural networks, though, SOM contains 

neurons (also called units or categories) that read weighted values of the input space and are 

located onto a low-dimensional plane, usually in the form of a rectangular or hexagonal grid. 

Classification using SOMs is achieved by a „winner-takes-all‟ approach described in Figure 14. 

 SOMs have been used to explore the relationship of genes based on microarray gene 

expression data. In particular, high classification of cancer for different type of tissue samples 

can be achieved using oligonucleotide microarray with ~80% accuracy (Covell et al., 2003.) In 

this study, we take a similar approach using SOMs, except that the classification of bacterial 

species is determined by the features in a digital signature on the probes of an nxh chip from 

DNA biomarkers. 
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Figure 13: Self-organizing maps (SOMs) are a special kind of artificial neural network topology that is 

able to learn from unlabeled input data (i.e., with no knowledge of their corresponding categories.) This 

form of unsupervised learning is useful for clustering together data with similar feature patterns. A unique 

aspect of SOMs is that the cluster representation is embedded in a tessellation of a 2D plane, usually a 

rectangular grid or, as shown above, a hexagonal grid. 

 

 

 

                                

Figure 14: SOMs are trained by randomly initializing weights from features in the inputs to 

every neuron on the map. Starting with random weights, the Euclidean distances between the 

training data points and all nodes in the map are computed. Weights of the winner-takes-all (the 

closest) node are adjusted so that next time it will have a better chance of winning, while the 

weights into other (particularly neighbor) nodes are adjusted so that next time they will have less 

chance of winning (recognizing the data point.) Thus, after training, the weights into every node 

have been adjusted to recognize common features that are similar (but different) from their 

neighbors‟ and form a single cluster if recognized by the same winner. After training, a labeling 

phase labels each neuron sites to identify which category they recognize uniquely. Image is free 

to share and use at (https://commons.wikimedia.org/wiki/File:Self-organizing-map.svg.)  

 

 

How to train self-organizing maps  

Definition of self-organizing maps (SOMs) 
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 The following procedure to identify HAI species using SOMs on digital signatures 

obtained from nxh chips is described in (Garzon & Pham, 2018.) In order to perform 

classification with SOMs, the supersom function from the „kohonen‟ library package in R and its 

default settings were used to obtain a SOM classifier since it supports supervised learning and 

prediction (Wehrens & Buydens, 2007.) The strains were classified into 16 species labeled 1-16. 

The data was partitioned into sets of 80%/20% for training and testing data. Features of the nxh 

basis were scaled to z-scores to mimic the example in the package documents. Prediction was 

performed using the predict function without species label and accuracy was based on whether 

the SOM correctly identified the unlabeled species with given input features of the nxh basis. 

This process was repeated for 32 models to obtain accuracy measurements. The mean of the 32 

accuracy is reported. Additional performance measures including sensitivity, specificity, and 

precision were also reported for the testing set using the „caret‟ package (Kuhn, 2008.) 

 

2.4.1.3. Random Forests (RFs) 

 In computer science, a binary tree is a data structure consisting of nodes connected by 

edges. Each node is adjacent (nodes that share the same edge) to at most two others nodes of the 

parent-child type. The tree begins by initializing a root node that contains no incoming edges. All 

other nodes in the tree will have exactly one incoming edge. A node that contains an outgoing 

edge is known as an internal node, while a node that does not is called a leaf node. Decision trees 

are similar to binary trees and have been useful for tackling the classification problem as shown 

in Figure 15 (Song & Lu, 2015.) From a root node, the next level is determined by a threshold 

for the best attribute values that partitions the data set into roughly two halves; the procedure is 

repeated with each subtree using a common additional feature by a recursive binary splitting 
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algorithm until a leaf node that contains a label is reached. The tree is then pruned in order to 

reduce the complexity (Figure 16.)  Classification for a datum begins at the root node and 

continues along an edge that best describes the characteristic of a particular feature until a leaf 

node is reached. The datum is classified as the label of the leaf node it reaches. 

 

 

 

 

 

 

 
                 

 

Figure 15: A tree is a directed acyclic graph with a finite number of nodes and adjacencies of the 

type parent-child. A decision tree solves a classification problem for certain data (e.g. bacteria) 

based on certain features associated with the levels of the tree. The most determinant feature 

determines the top adjacency, for example the growing condition, is shown at the top level.  A 

datum is classified into two subsets, ideally roughly partitioning the data set into two halves. The 

process continues in each subtree at the second level based on a second common feature, and 

culminates in a childless node (leaf) with the category label  There are as many leaves as there 

are categories in the classification, for example three (Clostridium, Klebsiella, and Bacillus) in 

this tree. Thus, a bacterium in this (unrealistic) example would be classified as clostridium genus 

if and only if it grows in anaerobic conditions and Gram-stain positive.  
 

 

 

 

 

Definition of decision tree (DTs) 
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Figure 16: Decision trees are grown by a greedy approach called recursive binary splitting. This divides 

the input space into different subtrees where each node (split point) is evaluated and chosen to minimize a 

cost function (e.g., the Gini Index for classification trees.) Simpler trees are preferred and are less likely 

to overfit the data, so a tree is pruned by measuring how the decision trees perform without some of the 

subtrees. There are different types of pruning methods. The above figure shows a postpruning method 

where the trees are grown fully and then each subtree are pruned until a simpler and more generalized 

decision tree is achieved with minimal classification error. 

 

 A random forest (RF) is a supervised classification method that is built from a finite 

collection of decision trees used to make a prediction on unknown data as shown in Figure 17 

(Breiman, 2001.) Each tree is grown from a bootstrap sampling of k features from the total of m 

features of the original dataset and the best split points are calculated using the subset of k 

features. Unlike decision trees, RF trees are unpruned to obtain low biases. Additionally, the 

randomized selection of features ensures low correlation between the trees. This process is 

repeated until the random forest consists of r number of decision trees as shown in Figure 18. A 

prediction is made on an unknown datum based on a majority vote across all trees. This training 

technique is responsible for making RFs as one of the most accurate classification machine 

learning techniques.  Some of the advantages of using RF with microarray dataset are its running 

efficiency on large datasets, reduction of overfitting, and its predictive performance even when 

most variables are noise (Díaz-Uriarte & Alvarez de Andrés, 2006.)  This eliminates the need for 

a pre-selection step of features. Instead, RFs is able to perform variable importance 

measurements to achieve the best results. 

How to train decision trees  
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Figure 17: A random forest (RF) is another solution to a classification problem where the target data are 

heterogeneous and belong to several fairly distinct types, or there are several competing criteria to 

consider in the classification. It consists of a finite collection of decision trees, one for each type or 

criterion as the feature at the top of the subtree. The figure shows a typical architecture for a random 

forest. There are T decision trees grown from random bootstrap sampling; a simple majority voting can be 

used to determine a category to classify a target datum. 

 

 

 

 

 
Figure 18: Training a random forest requires taking N random bootstrap samples from the data and 

constructing a decision tree for each bootstrap sample. Each node in a tree is trained on the corresponding 

random subset of features, as described in Figure 15. This will ensure that trees are not correlated and the 

random forest ensemble will have low variance. The process is repeated until T number of trees are grown 

that make up the random forest. 
 

 

Definition of Random Forests (RFs) 

How to train random forests 
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 The following procedure to identify HAI species using RFs on digital signatures from 

nxh chips is described in (Garzon & Pham, 2018.) In order to classify the species of HAI, the 

randomForest function from the „randomForest‟ package in R was used to train a data set and 

make predictions (Liaw & Wiener, 2002.) The strains were classified into 16 species labeled 1-

16. As before, the data was partitioned into sets of 80% for training and 20% for testing. A RF 

model was fitted by formulating the species label as the response variable, to the feature values 

in the digital signatures, for each of several combinations of nxh bases. The default settings of 

the randomForest were retained (ntree = 500.) Prediction was done using the predict function 

without the species label for each strain and with only their features depending on the nxh basis. 

Accuracy performance was determined by whether the RF correctly identified the strain to its 

own species. Both training and testing accuracy were measured. The training was run 32 times 

for 32 different models, where each repetition selected different samples of training and testing 

data to obtain an accuracy percentage. The mean and standard deviation of the 32 prediction 

accuracy percentages for each of the training and testing are reported. Like NNs and SOMs, 

performance measures of sensitivity, specificity, and precision were also reported for the testing 

set using the „caret‟ package (Kuhn, 2008.) 

 

2.5. Data Collection and Processing 

 The designs of each nxh basis used in this thesis are shown in Table 4 below. Each nxh 

basis was given by (Garzon et al., 2017.) An example of one of the designs in Table 4 such as A 

(3mE4-2-at1.1) contains 3 probes of length 4, separated at an h-distance of 2 between any pair of 

probes, and two strands will only hybridize with each other if and only if their h-distance is less 

than 1.1. Whole-genome sequences of 80 HAI pathogens were then downloaded from GenBank 

(Benson et al., 2013.) The distribution of species, along with the overall species genome size is 
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shown in Table 5. There were a total of 5 strains per species, and each species was selected based 

on some of the top HAIs listed by the Centers for Disease Control and Prevention (CDC) in 

Table 1 and from the World Health Organization (WHO) list of top pathogens harmful to human 

health (Dontinga, 2017.) 

 In order to obtain a „digital signature‟ for a strain, the whole genome sequence was 

shredded to fragments of length n equal to the length of the probe of an nxh basis. The frequency 

of all p-mers was collected using a Python script. The Python script selects one of the two 

sequences of a p-mer based on lexicographical order. Next, a Perl script was used to compute the 

h-distance between the p-mers and the probes. If the h-distance between a p-mer and a probe was 

less than the stringency condition, τ, then the frequency of the p-mer was accumulated to that 

probe. Finally, the probes were normalized by dividing by the total number of p-mer counts. 

Digital signatures from a sample of two strains per species are shown for each nxh basis in 

Figure 19, 20, and 21. All visualization of the digital signatures was completed using pheatmap 

(Kolde, 2012.) 

 

Table 4: Nxh chip designs used to obtain digital signatures (Garzon, 2017) 

 

Basis  

 

Length of Probes 

 

Number of Probes 

 

      Τ 

A: 3mE4-2-at1.1 3 4 1.1 

 

B: 3mE4b-2at1.1 3 4 1.1 

 

C: 4mP3-3at2.1 4 3 2.1 

 

D: 8mP10-4at4.1 8 10 4.1 
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Table 5: Species in the data sample and their relative genome size 

ID Species 
Genome Size 

(Mbps) 

1 Acinetobacter Baumannii 20.108 

2 Campylobacter Coli   8.610 

3 Campylobacter Jejuni   8.309 

4 Clostridium Difficile 20.808 

5 Escherichia Coli 25.929 

6 Klebsiella Pneumoniae 26.389 

7 Proteus Mirabilis 20.491 

8 Serratia Marcescens 26.161 

9 Enterococcus Faecalis 13.784 

10 Enterococcus Faecium 14.182 

11 Helicobacter Pylori   8.082 

12 Mycobacterium Tuberculosis 22.008 

13 Neisseria Gonorrhoeae 10.967 

14 Neisseria Meningitidis 10.755 

15 Pseudomonas Aeruginosa 33.723 

16 Staphylococcus Aureus 14.713 

 

 

 

 

 
Figure 19: A selection of normalized digital signatures of two strains is shown for each of the 

HAIs species (Table 5) on the first two nxh bases (Table 4) used. 

 

 

Representative digital signatures for 3mE4-2at1.1 and 3mE4b-2at1.1 
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Figure 20: A selection of normalized digital signatures of two strains is shown for each of the 

HAIs species (Table 5) on 4mP3-2at2.1. 

 

 

 

 
Figure 21: A selection of normalized digital signatures of two strains is shown for each of the 

HAIs species (Table 5) on 8mP10-4at4.1. 

Representative digital signatures for 8mP10-4at4.1 

Representative digital signatures for 4mP3-3at2.1 



37 
 

Chapter 3: The Classifiers  

 With the preliminaries in place, I can now present the classifiers for HAIs and an 

assessment of their performance with respect to the current state-of-the-art methods.  

 

3.1. Statistical Solutions 

 

 Traditionally, statistical methods that test for significant differences (e.g., students‟ t-test) 

have been the choice for solutions to problems where uncertainty plays a large role, such as HAI 

infections. Naturally, this kind of method had to be tried first, beginning with the simpler 

problem of statistically significant discrimination of bacterial strains and/or species, particularly 

using decision trees. Two strains were considered significantly different if the z-score of any 

feature was at least σ = 1 unit of standard error (SE) difference apart. Figure 22 shows how well 

each nxh basis could discriminate each strain at different taxa level. This statistical method was 

able to significantly discriminate strains at the genus level with 99.18% accurate discrimination 

using all features in nxh bases A, B, C, and D combined.  
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Figure 22: The success rate of discrimination within different levels of taxa by statistical methods using 

each nxh basis in Table 4 is shown. As the level of taxa decreases, so does the discrimination power. It 

can be observed that as more features are included, the discrimination power increases (3/10/21 features 

in 4mP3/8mP10/All bases, respectively.)  
 

 There is a trend in successful discrimination (e.g., including more features.) 4mP3-3at2.1 

contains 3 features, whereas „All‟ is the combination of all features from bases in Table 5 

achieves the best discrimination power. This method, however, fails to discriminate strains 

within the same genera and thus provides poor resolution for species discrimination, which is an 

easier problem than the full identification problem. Therefore, this method is not ideal for species 

identification since closely related species could not fully be discriminated. Therefore, more 

powerful machine learning techniques have to be used. 

 

3.2. Neural Networks Solutions 

 

 For NNs, single and paired combination of nxh basis performed poorly, with average 

accuracies below 85%. Results improved when they were trained on triplet or quadruplet 

combinations of nxh features. As shown in Figure 23, the triplet and quadruplet combination of 

nxh features could consistently achieve an average accuracy above 90% with low variability 

using various NN architectures. However, features from 3mE4-2at1.1, 3mE4b2-2at1.1, and 
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4mP3-3-at2.1 nor 3mE4-2at1.1, 3mE4b2-2at1.1, and 8mP10-4at4.1 combined could actually 

achieve accuracy above 90% on the average. The best triplet combinations of features are from 

3mE4-2at1.1, 4mP3-3at1.1, and 8mP10-4at4.1 using 3 hidden layers (14, 10, and 8.) This 

combination achieves an average accuracy of 94.14% on the testing set. The combination of 

features from all four bases with a NN architecture of 3-hidden layers (18, 14, and 6), however, 

achieves an average accuracy of 94.34% on the testing set, as well as higher sensitivity, 

specificity, and precision, as shown in Table 6. The average accuracy, sensitivity, specificity, and 

precision between both combinations were not significantly different (p-value > 0.05, a student‟s 

t-test between the measurements of the two combinations of nxh was conducted to test for 

significant with α = 0.05) and so triplet combinations of nxh features will be sufficient to achieve 

high accuracy for species identification. In addition to higher accuracy, the combination of three 

or four bases achieves at least 91% in sensitivity, specificity, and precision on the testing set, as 

can be seen in Table 6.  

 

 

 

Figure 23: Neural Networks can consistently achieve nearly over 90% accuracy on HAI identification of 

bacterial strains. The top five performing feedforward neural networks (FNNs) are shown above, with 

shown standard deviation (blue/red error bars) from the mean (blue/red dotted line.)  Neural networks 

achieved high accuracy with the combination of the features in all bases. The combination of bases and 

neural net architectures are described along the x-axis. 

 

Accuracy for HAI species identification using neural networks 
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Table 6: Performance of neural networks (NNs) on HAI identification 

The combination of all features in the bases in Table 4 achieves the best performance in terms of 

accuracy for training and testing, along with low variance and higher sensitivity, specificity, and 

precision. 
Basis and 

Architecture 
Training 
Accuracy 

Training 
Accuracy Std 

Testing 
Accuracy 

Testing  
Accuracy Std 

Testing 
Sensitivity 

Testing 
Specificity 

Testing  
Precision 

A+C+D 

[17-14-10-8-1] 

99.56 0.99 94.14 7.09 94.87 99.42 95.16 

B+C+D 

[17-14-10-8-1] 

99.37 1.48 90.23 7.09 91.65 99.08 92.05 

A+B+C+D 

[21-14-10-8-1] 

99.56 1.14 90.43 7.61 91.82 99.14 91.98 

A+B+C+D 

[21-16-10-4-1] 

99.32 1.48 91.80 7.18 92.50 99.23 93.44 

A+B+C+D 

[21-18-14-6-1] 

99.90 0.38 94.34 5.30 95.17 99.46 95.64 

 

 These results show that classification with NNs is capable of discriminating power at the 

species level with only the combination of features from 3mE4-2at1.1, 4mP3-3at2.1, and 8mP10-

4at4.1, whereas the statistical method requires all features combined to achieve a high 

discrimination power. Moreover, NNs could discriminate between species within the same genus 

as indicated by the high accuracy, unlike the statistical method. More significantly, NNs with 

combined nxh features also outperform MALDI TOF MS (84%) in terms of accuracy, as 

described in section 2.2.1. 

 

3.3. Self-Organizing Maps Solutions 

 

 SOMs turned out to be one of the two best performers, consistently achieving an average 

accuracy of 97.36% on testing with low variability (std of 2.03) using most combinations of 

features from an nxh basis. As shown in Figure 24, 4mP3-3at2.1 achieves the lowest accuracy on 

the testing set with an average accuracy of 92.77%.  
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Figure 24: Self-organizing maps can achieve nearly 100% accuracy on HAI identification of bacterial 

strains by a genomic method on next generation microarrays (nxh chips.). Virtually any combinations of 

nxh bases can consistently identify the species in each strain with probability at least 92% accuracy on the 

testing set and low standard deviation (blue/red error bars) from the mean (blue/red dotted lines.) 
 

 The best performance on testing in terms of accuracy is the combination of all features 

from the four basis and features from 3mE4-2at1.1 and 8mP10-4at4.1 combined. Both achieve 

99.22% accuracy, as shown in Table 7. However, the standard deviation of the accuracies from 

32 runs is lower using 3mE4-2at1.1 and 8mP10-4at4.1 (3.07) than combining features from all 

four bases (3.46.) Both combinations shared similar sensitivity and specificity and were not 

significantly different (p-value > 0.05 in a similar test as described above.) Thus, the 

combination of features from 3mE4-2at1.1 and 8mP10-4at4.1 would reduce the need for trials of 

combinations of features from three or more nxh bases for high accuracy, which will speed the 

process of species identification. 

  

Accuracy for HAI species identification using self-organizing maps 
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Table 7: Performance of self-organizing maps (SOMs) on HAI identification 

The combination of features from all nxh bases (A+B+C+D) from Table 4 and 3mE4-2at1.1 (A) 

and 8mP10-4at2.1 (D) combined achieves the highest testing accuracy (99.22%.) „A+B+C+D‟ 

achieves the highest specificity while the combination of „A+D‟ achieves the best sensitivity on 

the testing set. „A+D‟ has lower variation of testing accuracy (3.07) than any other combination 

of features from nxh bases. 
Basis Train 

Accuracy 
Train  

Accuracy Std 
Test 

Accuracy 
Test 

Accuracy Std 
Test 

Sensitivity 
Test  

Specificity 
Test 

Precision 
A  97.46 4.69 94.34   10.45 95.03 99.51 97.02 
A+B  98.24 4.04 95.70    9.04 96.35 99.65 97.18 
A+B+C  99.51 2.08 98.83    4.03 98.81 99.90 99.08 
A+B+D  99.80 0.77 97.46    6.52 98.63 99.77 98.44 
A+C  100.00 0.00 98.83    3.70 98.57 99.90 98.85 
A+C+D  99.56 1.99 98.44    5.50 98.55 99.86 98.70 
A+D  99.61 2.21 99.22    3.07 99.46 99.92 99.37 
B  99.61 2.21 97.66    5.20 97.87 99.80 97.74 
B+C  100.00 0.00 98.63    4.69 98.81 99.88 98.81 
B+C+D  99.61 2.21 99.02    3.92 99.24 99.92 99.53 
B+D  99.71 1.66 98.83    6.63 99.15 99.90 99.65 
C  98.39 3.11 92.77  12.41 94.33 99.35 96.54 
C+D  97.95 4.21 95.70    8.90 96.09 99.61 97.29 
D  98.93 3.06 95.70  11.82 96.69 99.60 98.06 
A+B+C+D 99.90 0.55 99.22    3.46 99.40 99.93 99.40 

 

    These results show that SOMs outperform NNs in that fewer nxh features were required to 

achieve accuracy near 100%.  Moreover, unlike NN, the optimal architecture to produce quality 

results did not need to be optimized. Furthermore, SOMs also outperform MALDI TOF MS 

(84%) at the species level, on average accuracy. 
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3.4. Random Forests Solutions 

 

 RFs performs the best, achieving an average accuracy of 98.5% on the testing set with 

low variability (std of 0.4) using any combination of features from nxh basis as show in Figure 

25. The lowest accuracy of the testing set was 97.85% using 3mE4b-2at1.1. The best 

performance across all performance metrics except specificity, are features from 3mE4-2at1.1 as 

shown in Table 8. A triplet combination of features from 3mE4-2at1.1, 3mE4b-2at1.1, and 

8mP10-4at4.1 had the highest sensitivity (99.37%), although it was not significantly different (p-

value > 0.05 in a similar test as described above) from the combination of features from 3mE4-

2at1.1 (99.28%). Using RFs as a classifier with nxh features as input will further reduce the time 

and work required for bacterial identification since only a single basis is needed for high 

performance. 

 

 

 

Figure 25: Random Forests with 500 trees achieve at least 97% accuracy on HAI identification of bacterial 

strains with combinations of nxh bases shown in Table 5, outperforming neural networks and comparable with or 

better  than self-organzing maps. The accuracy  rate is consistent across any combination of nxh bases with low 

standard deviation (blue/red error bars) from the mean (blue/red dotted lines.) 

 

Accuracy for HAI species identification using random forests 
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Table 8: Performance of random forests (RFs) on HAI identification 

The features in basis 3mE4-2at1.1 achieve the best performance in the quality measurements of 

accuracy, specificity, and precision. „A+B+D‟ achieved the highest sensitivity. 
Basis Training 

Accuracy 
Training  

 Accuracy Std 
Testing 

Accuracy 
Testing  

Accuracy Std  
Testing 

Sensivitiy 
Testing 

Specificity 
Testing 

Precision 

A 100.00 0.00 99.22 2.10  99.28 99.93 99.31 

A+B 100.00 0.00 98.83 2.48  98.45 99.90 98.52 

A+B+C 100.00 0.00 98.05 2.94  97.69 99.82 97.74 

A+B+D 100.00 0.00 99.02 2.31  99.37 99.90 99.26 

A+C 100.00 0.00 98.63 2.63  98.39 99.88 98.67 

A+C+D 100.00 0.00 98.44 2.75  98.18 99.85 98.78 

A+D 100.00 0.00 98.83 2.48  99.01 99.88 99.18 

B 100.00 0.00 97.85 6.07  98.18 99.80 98.45 

B+C 100.00 0.00 98.83 2.48  99.14 99.89 99.07 

B+C+D 100.00 0.00 98.63 2.63  98.82 99.86 98.87 

B+D 100.00 0.00 98.05 4.03  98.34 99.81 98.74 

C 100.00 0.00 98.44 2.75  98.62 99.86 98.20 

C+D 100.00 0.00 98.05 3.34  98.10 99.81 98.69 

D 100.00 0.00 98.24 3.27  98.67 99.84 98.24 

A+B+C+D 100.00 0.00 98.44 2.70 98.47 99.85 98.69 

 

 Classification with RFs outperformed NNs and produced accuracy comparable or better 

than SOMs for HAI species identification. Any combination of features could produce an 

accuracy of 97% on the average, whereas NNs required triplet or more combination of features 

to achieve high accuracies. Additionally, some combination of features from nxh bases were 

comparable using RFs and SOMs, although no single nxh basis could achieve an accuracy of at 

least 97% as shown with RFs. In Figure 24, we see that features from the nxh basis, 3mE4b-

2at1.1 (C) achieve an accuracy of 92.77% but RFs achieve an accuracy of 98.44% using the 

same features. These results show that nxh features combined with a RF classifier will be an 

accurate and cost-effective alternative to other classifiers, and, at least in principle, better than 

MALDI TOF MS. 
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Chapter 4: Summary and Conclusions 

 
 

 In this thesis, a new method for the identification of HAIs (Hospital-Acquired bacterial 

Infection) species has been proposed based on genomic data about the species and next-

generation microarray designs. Machine learning techniques yield classifiers (such as Neural 

Nets, Self-Organizing Maps, and Random Forests) for identification of HAI species that are 

competitive with state-of-the-art methods using MALDI and WGS. There are several additional 

advantages to this methodology. First, it is scalable to a wide range of biomarkers, including 

whole genomes. Second, it uses sets of microarray designs that are universal, i.e., prior 

knowledge of DNA sequences that distinguish between species is not required, unlike with 

standard microarrays and other techniques based on conserved regions of the DNA. Moreover, 

this method does not rely on a cut-off threshold to determine a species match. All identifications 

are based on a prediction given by a machine learning algorithm that learns from input features 

(from an nxh base.) Furthermore, this method is robust in the sense that small variations in a 

genomic biomarker (e.g., low-rate mutations caused by development of antibiotic resistance) are 

very unlikely to alter the outcomes of the classification of a given strain, even if they were to 

cause changes in the microarrays readout for the strain. These properties stem from the 

optimization of microarray designs in nxh chips and properties of the h-distance model that allow 

for small mutations in the target strands up to the stringency condition τ, before causing the 

target strand to hybridize to a different probe. Third, the methodology is scalable also in the 

sense that longer probe sequences on the chip designs are likely to increase both the accuracy of 

the classifications and the robustness to mutations in the target.  
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 However, the new methodology does not come without limitations. First, digital 

signatures were obtained in silico, where it is easy to enforce the assumptions of perfect 

shredding of the genomic sequences into fragments of equal length and noise-free hybridization 

of fragments to probes. This assumption is not likely to hold true if the methodology was to be 

implemented in vitro using current standard microarray technology. On the positive side, the fact 

that nxh chips are designed to be primarily error-free for hybridization makes it possible that 

further work may afford a feasible implementation of the technology in vitro, which will remove 

the bottleneck for these classifiers (acquiring digital signatures) to become very fast, even for full 

genomes. They would also substantially reduce the cost of the classification per sample. Thus the 

refinements of these methods to an actual clinical test remain an intriguing possibility, although 

that was not part of the original scope of this project.  
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