
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

7-19-2017

Measuring Semantic Textual Similarity and Automatic Answer Measuring Semantic Textual Similarity and Automatic Answer

Assessment in Dialogue Based Tutoring Systems Assessment in Dialogue Based Tutoring Systems

Rajendra Banjade

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Banjade, Rajendra, "Measuring Semantic Textual Similarity and Automatic Answer Assessment in
Dialogue Based Tutoring Systems" (2017). Electronic Theses and Dissertations. 1703.
https://digitalcommons.memphis.edu/etd/1703

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1703?utm_source=digitalcommons.memphis.edu%2Fetd%2F1703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

MEASURING SEMANTIC TEXTUAL SIMILARITY AND AUTOMATIC

ANSWER ASSESSMENT IN DIALOGUE BASED TUTORING SYSTEMS

by

Rajendra Banjade

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

August 2017

Copyright©2017 Rajendra Banjade

All rights reserved

ii

DEDICATION

To my parents and grandparents ..

iii

ACKNOWLEDGMENTS

I should first recognize my advisor and committee chair Dr. Vasile Rus for

his great mentorship through the years. He always made his time available for

thoughtful discussions and reviews. His pleasant and very supportive personality

has made my life as a PhD student much better. I am also grateful to the rest of my

dissertation committee members Dr. Andrew McGregor Olney, Dr. Lan Wang, and

Dr. Deepak Venugopal for their helpful discussions and suggestions.

Also, I would like to acknowledge the financial supports from the grant

R305A100875 from the Institute for Education Sciences to Dr. Vasile Rus, and the

Institute for Intelligent Systems.

Over the years I have had affecting conversations with my friends and

colleagues including Dr. Nobal Niraula, Dr. Mihai Lintean, Dr. Dan Stefanescu, Dr.

Vivek Datla, Nabin Maharjan, Dipesh Gautam, Borhan Semai and the list goes on.

I am grateful to them for their help and collaboration in research activities.

My special thanks goes to my wife Deepa Pandey for her great support and

patience. I also remember my friends, relatives, teachers, and mentors and

colleagues of the companies I worked for, who directly or indirectly helped me

throughout my journey to this moment.

Rest, I owe to my parents and grand parents for their love and sacrifice.

Specially to my late father who even asked his engineer boss to help buy a very nice

scientific calculator for me and motivated me towards science.

iv

ABSTRACT

Banjade, Rajendra Ph.D. The University of Memphis. August, 2017. Measuring
Semantic Textual Similarity and Automatic Answer Assessment in Dialogue Based
Tutoring Systems. Major Professor: Vasile Rus, Ph.D.

This dissertation presents methods and resources proposed to improve on

measuring semantic textual similarity and their applications in student response

understanding in dialogue based Intelligent Tutoring Systems.

In order to predict the extent of similarity between given pair of sentences,

we have proposed machine learning models using dozens of features, such as the

scores calculated using optimal multi-level alignment, vector based compositional

semantics, and machine translation evaluation methods. Furthermore, we have

proposed models towards adding an interpretation layer on top of similarity

measurement systems. Our models on predicting and interpreting the semantic

similarity have been the top performing systems in SemEval (a premier venue for the

semantic evaluation) for the last three years. The correlations between our models’

predictions and the human judgments were above 0.80 for several datasets while our

models being very robust than many other top performing systems. Moreover, we

have proposed Bayesian models to adapt similarity models across domains.

We have also proposed a novel Neural Network based word representation

mapping approach which allows us to map the vector based representation of a word

found in one model to the another model where the word representation is missing,

effectively pooling together the vocabularies and corresponding representations

across models. Our experiments show that the model coverage increased by few to

several times depending on which model’s vocabulary is taken as a reference. Also,

the transformed representations were well correlated to the native target model

vectors showing that the mapped representations can be used with confidence to

substitute the missing word representations in the target model.

Furthermore, we have proposed methods to improve open-ended answers

v

assessment in dialogue based tutoring systems which is very challenging because of

the variations in student answers which often are not self contained and need the

contextual information (e.g., dialogue history) in order to better assess their

correctness. In that, we have proposed Probabilistic Soft Logic (PSL) models

augmenting semantic similarity information with other knowledge.

To detect intra- and inter-sentential negation scope and focus in tutorial

dialogs, we have developed Conditional Random Fields (CRF) models. The results

indicate that our approach is very effective in detecting negation scope and focus in

tutorial dialogue context and can be further developed to augment the natural

language understanding systems.

Additionally, we created resources (datasets, models, and tools) for fostering

research in semantic similarity and student response understanding in

conversational tutoring systems.

vi

TABLE OF CONTENTS
Chapter Page

List of Tables ix

List of Figures xi

1 Introduction 1

2 Measuring Short Text Similarity 17
2.1 Related Work 19

2.1.1 Word-to-Word Similarity 19
2.1.2 Sentence Level Similarity 21

2.2 Datasets 26
2.3 Preprocessing 27
2.4 Feature Extraction 28

2.4.1 Word-to-Word Similarity 28
2.4.2 Sentence-to-Sentence Similarity 29

Word Alignment Based Method 29
Chunk Alignment Based Method 30
Interpretable Similarity Based Method 30
Vector Composition Based Method 31
Similarity Matrix Based Method 31

2.4.3 Feature List 31
2.5 SVR Model 33

2.5.1 Results 33
2.6 Bayesian Models and Transfer Learning 35

2.6.1 Domain General Model 40
2.6.2 Domain Adaptation using Transfer Learning 44
2.6.3 Evaluation Methods 45
2.6.4 Experiments and Results 46

Feature Selection 46
Statistical Modeling Tool - OpenBUGS 47
Results of Domain General Models 47
Analyzing Model Sensitivity to Priors 49
MCMC Convergence Diagnostics 50
Results of Transfer Learning Models 51

2.7 Conclusion 55

3 Pooling Word Representations across Models 57
3.1 Introduction 57
3.2 Related Work 60
3.3 Mapping Approach 61
3.4 Evaluation Methods 63
3.5 Data 65

vii

3.6 Experiments and Results 67
3.7 Conclusion 72

4 Open-Ended Answers Assessment in Tutorial Dialogue 74
4.1 Introduction 74
4.2 Related Work 77

4.2.1 DataSets 77
4.2.2 Assessment Methods 78

4.3 Data Collection and Annotation 81
4.4 Contextual Word Weighting and Similarity Based Approach 85
4.5 Probabilistic Soft Logic Model 88

4.5.1 PSL Program 89
4.5.2 Data 92
4.5.3 Grounding 92
4.5.4 Weight Learning for PSL Rules 93
4.5.5 Experiments and Results 94

4.6 Conclusion 97

5 Negation Handling in Tutorial Dialogues 99
5.1 Introduction 99
5.2 Negation in Dialogue 101
5.3 Related Work 103
5.4 Data Collection and Annotation 105
5.5 System Description 107
5.6 Experiments and Results 110
5.7 Discussion and Conclusion 112

6 Towards Interpretable Similarity and Diagnostic Feedback Genera-
tion 114
6.1 Introduction 114
6.2 Dataset 116
6.3 Preprocessing 116
6.4 Chunking 117
6.5 Chunk Alignment, Relation and Similarity Prediction 118
6.6 Experiments and Results 120

6.6.1 Runs 120
6.6.2 Evaluation Method 120
6.6.3 Results 121

6.7 Conclusion 123

7 Conclusion and Future Work 126

References 130

viii

LIST OF TABLES
Table Page

1.1 Examples of sentence similarity where similarity scores (SS) are as-
signed by human annotators in the scale of [0, 5] (Agirre et al., 2016). 6

2.1 Summary of training data. These datasets were released over the years
as part of SemEval Semantic Textual Similarity (STS) challenges. 26

2.2 Summary of test data (released in STS 2016). 27

2.3 Results of our SVR model with different runs on STS 2016 test data.
The number of records of each dataset in the test set was used as weight
while calculating weighted correlation score. 34

2.4 Results of our domain general Bayesian models with different config-
urations of model coefficients (β). The results which are better than
LR model results are in bold (B - Beta distribution, σ - precision). 47

2.5 The datasets used for domain adaptation using transfer learning. 52

3.1 Summary of training, validation, and test datasets. Pair of vectors
correspond to the words common to both source and target model.
The information in this table applies to each transformation model. 67

3.2 Results of vector transformation models (↓ - same as next rows, Std -
Standard deviation). 68

3.3 Examples of words in 5k-test set for which the correlation between
Word2vec model representations and the representations obtained from
GloVe by using our transformation model (GloVe→Word2vec) were
high (on left), and low (on right). 71

4.1 A problem and some student answers to the given question. These
examples were extracted from the records of student interactions with
DeepTutor. 76

4.2 Summary of DT-Grade dataset. First part of the table shows the distri-
bution of assessment labels and the second part shows the percentage
of samples requiring context, and the percentage of answers having
additional information than expected in reference answer. 85

ix

5.1 Summary of DT-Neg dataset. 107

5.2 Results of negation scope detection system with DT-Neg dataset (SDR
- Scope Detection Run). 110

5.3 Results of focus detection system with DT-Neg dataset (S - scope used,
FDR - Focus Detection Run). 111

6.1 Types of semantic relations between chunks. 115

6.2 The summary of training and evaluation dataset. 116

6.3 Accuracies of OpenNLP chunker and our CRF chunker at chunk level
(CL) and at sentence level (SL). 118

6.4 F1 scores for chunk alignment, relation and similarity score prediction
on test data with gold chunks and with sys chunks (separated by /).
Best score is the highest score for each metric given by any of the par-
ticipating systems in the shared task including the system submitted
by the team involved in organizing the task. 123

x

LIST OF FIGURES
Figure Page

1.1 Interface of DeepTutor tutoring system. 3

1.2 Snippet of a dialogue showing a student answer recorded during a Deep-
Tutor experiment and a reference answer given by the subject matter
expert. 5

1.3 Vocabulary size of three different pre-trained models (k - thousand, m
- million). 7

1.4 A conceptual physics problem and a set of real student answers to
the given question extracted from DeepTutor (Rus et al (2013)) ex-
periment records. The dialogue context is needed to fully understand
these answers. 9

1.5 Illustrating that we maybe able to infer the correctness of an answer
based on student’s performance in other related questions. 10

2.1 The pipeline of components of our STS models. 18

2.2 Results of SVR model (Run1) compared to best of the best results in
STS 2016 (Agirre et al., 2016). 35

2.3 Density plots of gold scores corresponding to selected predicted scores
(selected from 0 to 4 in the interval of 1) obtained using a Linear
Regression model in the training data presented in Table 2.1, for the
whole dataset as well as for the different groups (domains). 36

2.4 Illustrating errors in the linear model estimates of semantic similarity.
X represents the predicted score which corresponds to a set of feature
values, y’ is the estimated similarity score and y is the expected score
(human annotated score). 38

2.5 Graphical representation of: (a) Domain general model, (b) domain
adaptation model using transfer learning. The observed variables and
the hyperpriors are shaded (β - vector of model coefficients, N number
of training samples, d - domain, p - prior, N - Normal distribution, B
- Beta distribution). 42

2.6 (a) Graph showing changing results (w. average correlation scores
in the test set) depending on shape of beta prior distributions (i.e.,
changing a and b in β(a, b)) for model coefficients, (b) Shape of beta
priors corresponding to the highest and lowest results on (a). 49

xi

2.7 Trace plots (top) and gelman-rubin convergence factor plots (bottom)
with 2,000 iterations (left) and 10,000 iterations (right) for a model
parameter. 51

2.8 Graphs showing the results of domain adaptation with varying size of
domain specific training data for six different transformations corre-
sponding to each permutation of Headlines, Forums, and Images data.
The ODM results are invariant of domain specific training data but
are displayed for the ease of comparisons with UPDM and IPDM. 53

2.9 The types of datasets (domains) and parameter weights learned using
linear Bayesian models. 54

3.1 Vocabulary coverage of three different pre-trained models (k - thou-
sand, m - million). 58

3.2 Schematic diagram of (a) A transformation model, and (b) Multiple
source-to-target transformations (NN - Neural Network, T - Transfor-
mation function/model, SrcV - Source model vector, TrV - Trans-
formed vector, TgV - Target model vector). 61

4.1 An annotation example where problem description, tutor’s question,
student’s answer, and reference answer are shown. 83

4.2 Classification accuracy and weight of the words that are found in the
last utterance. 87

4.3 An illustration of a grounded probabilistic graphical network for a stu-
dent. The shaded nodes are evidence nodes and non-shaded nodes in
the center are query nodes. CL - Correctness label, QD - Question
difficulty, STD - Student, KL - (knowledge level), SIM - Similarity. 93

4.4 Results of different Probabilistic Soft Logic models on DT-Grade dataset. 96

6.1 Results on sys chunks category compared to baseline model and the
best results among the participating submissions in SemEval 2016. 124

xii

Chapter 1

Introduction

One of the earliest goals of Artificial Intelligence (AI) was to successfully emulate a

human in terms of conversational ability. But how would we know the computer is

thinking then? Alan Turing suggested that if the responses from the computer were

indistinguishable from that of a human, the computer could be said to be thinking -

often known as Turing test (Turing, 1950). And the odyssey to achieve this goal is

carried on.

Towards that end, a lot of conversational systems have been developed and

this is one of the active areas of research in recent years (High, 2012; J. D. Williams

et al., 2015). Some popular commercial applications includes Google home, Apple’s

Siri, Amazon Echo, and Microsoft’s Cortana. In fact, IBM has developed a tool

called Watson which won the popular show Jeopardy (High, 2012). These kind of

tools need Natural Language Understanding (NLU) capability which is about

making computers understand our language (e.g., English and Spanish). This

enables them to understand users’ commands and serve accordingly. Though still

young, they are very promising applications and can be considered as “killer apps”

of this era.

Similarly, the natural language understanding has been used in educational

domain. For example, Massive Open Online Course (MOOC) systems where

thousands of students participate can benefit from automatic assignment checking

(Kulkarni et al., 2015). Furthermore, computer tutors that mimic human tutors

with conversational dialogue have been successfully built with the hope that a

computer tutor could be available to every student with access to a computer. They

are called Intelligent Tutoring Systems (ITS; Graesser, VanLehn, Rosé, Jordan, &

Harter, 2001; Rus, DMello, Hu, & Graesser, 2013; VanLehn et al., 2007), the target

1

application of this dissertation. Some of the successful ITS systems are: AutoTutor

(Graesser, Chipman, Haynes, & Olney, 2005), DeepTutor (Rus, DMello, et al.,

2013), GuruTutor (Olney et al., 2012), CIRCSIM-Tutor (Evens & Michael, 2006),

Why2 (VanLehn et al., 2007) and they are motivated by the effectiveness of

one-on-one human tutoring (Bloom, 1984). An extensive review of tutoring research

by VanLehn et al. (2007) and Rus, DMello, et al. (2013) showed that computer

tutors are as effective as human tutors. It means that there is something about the

one-on-one connection that is critical, whether the student communicates with

humans or computers.

Though there are different tutoring systems that rely on natural language

conversations and they might have been designed differently, their ultimate goal is

to mimic the human tutoring in terms of conversational and pedagogical

capabilities. For illustration purpose, let’s take a specific example of a

state-of-the-art conversational tutoring system called DeepTutor (Rus, DMello, et

al., 2013). The DeepTutor’s interface as shown in Figure 1.1 displays the description

of a conceptual physics problem along with supporting multimedia (image) and a

dialogue history. The problem which we often refer to as task is authored by the

domain experts and contains the description of the task, prompts, expected/target

answers to those questions, possible hints, and so on. The system asks questions

and the user interacts with it in the form of natural language texts; i.e., students

type their answers in sentential form and the dialogue continues. The dialogue

includes multiple cycles of tutor-student interactions in the form of (1) tutor

question, (2) student response, and (3) relevant feedback from the tutor until all the

expectations (goal) of the task are complete which is usually the point at which

student masters the concept. During this process, the system has to understand the

student’s response and generate appropriate feedback.

However, in order to reach towards the higher end of the successful tutoring,

2

Fig. 1.1: Interface of DeepTutor tutoring system.

there are several aspects to be improved in tandem. For instance, Rus, DMello, et

al. (2013) have highlighted (a) learner-tailored content and tasks, (b) effective

dialogue and language processing algorithms to guide the interaction between the

tutor and tutee, and (c) focusing on other aspects of learning in addition to

cognitive aspects, such as affect and motivation as important factors of successful

tutoring and they also found that there is much more to do in these areas.

Particularly, in the age of user-friendly interfaces, pleasant and easy

interaction is an essential aspect of the design of any system. Well designed natural

language dialogue systems can meet this requirement. In another words, the natural

3

language understanding is backbone of a conversational system, such as ITS.

Therefore, the quality of these algorithms has a direct impact on core ITS tasks

such as summative and diagnostic assessment, that is, the detection and tracking of

students knowledge states, and providing formative feedback. One of the goals of

this dissertation is to improve the learning experience by improving the interaction

between the tutor and tutee through improved answer assessment models.

For student answer assessment, deep natural language understanding

capability is required which is intractable as it requires collecting huge amount of

knowledge (domain knowledge, world knowledge, linguistic knowledge, and

contextual information) and doing inference over them. This is a yet to-be-solved

problem in artificial intelligence. Alternatively, semantic similarity assessment

methods have been used as a practical alternative to the true understanding

approach. In that, the student answer is compared with a reference (or target)

answer provided by the domain expert as illustrated in the Figure 1.2. If they are

highly similar, it indicates the answer is correct. If not, depending on other factors

the answer may be regarded as partially correct, incorrect, or irrelevant. But it

should be noted that, measuring the similarity between texts, such as student

answer and the reference answer is a much more challenging problem as discussed

next.

Measuring semantic similarity between texts is to quantify the extent of their

similarity in terms of their meanings. The dictionary definition of similarity is:

resembling without being identical (cf. Oxford Dictionary). For example, intelligent

and genius are similar words. Depending on the granularity of the texts, we can

talk about the following fundamental text-to-text similarity problems: word-to-word

similarity, phrase-to-phrase similarity, sentence-to-sentence similarity,

paragraph-to-paragraph similarity, or document-to-document similarity. Mixed

combinations are also possible such as assessing the similarity of a word to a

4

Fig. 1.2: Snippet of a dialogue showing a student answer recorded during a
DeepTutor experiment and a reference answer given by the subject matter expert.

sentence or a sentence to a paragraph. For instance, in summarization it might be

useful to assess how well a sentence summarizes an entire paragraph. But our goal

is to use semantic similarity techniques in short answer (few words to couple of

sentences) assessment which is typically done by measuring the similarity between

student answer and the reference answer. In Table 1.1, we have presented a set of

example sentence pairs along with similarity annotation guideline (or rubric) and

the human judgment scores (Agirre et al., 2016). Each pair in the examples has

been assigned a score in the range of 0 to 5. The score of 5 means the sentences are

equivalent in meaning whereas 0 means they are not similar at all, and so on.

Though the scores shown in the examples are full numbers, the similarity scores can

be in continuous scale indicating the graded nature of similarity perceived by

humans.

Because of the widespread use of semantic similarity methods, such as

automatic answer grading (M. C. Lintean, Moldovan, Rus, & McNamara, 2010;

Mohler & Mihalcea, 2009; Rus & Graesser, 2006), text summarization (Nenkova &

McKeown, 2012), and plagiarism detection (Shrestha & Solorio, 2015), a

considerable amount of effort has been put on calculating the semantic similarity or

5

Table 1.1: Examples of sentence similarity where similarity scores (SS) are assigned
by human annotators in the scale of [0, 5] (Agirre et al., 2016).

SS Scoring rubric (with example)

(5)
The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin

(4)
The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

(3)

The two sentences are roughly equivalent, but some important information
differs/missing.
John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

(2)
The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

(1)
The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

(0)

The two sentences are on different topics.
John went horseback riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early enough
for it.

relatedness between texts (Agirre et al., 2015; Androutsopoulos & Malakasiotis,

2010; Corley & Mihalcea, 2005; Fernando & Stevenson, 2008; Landauer, Foltz, &

Laham, 1998; Rus, DMello, et al., 2013). When you name a Natural Language

Processing (NLP) application, a similar feature is used in one way or other.

However, this long standing problem in AI has posed several challenges and it has in

fact drawn a lot of attention in recent years which is also highlighted by the

organization of Semantic Textual Similarity (STS) challenge as part of the semantic

evaluation (SemEval; Agirre et al., 2015, 2016) program, a premier venue for the

semantic evaluation and overwhelming participation for several years.

One of the problems which we have addressed is missing words in word

representation models where semantics (i.e., meaning) of each word is represented in

6

Fig. 1.3: Vocabulary size of three different pre-trained models (k - thousand, m -
million).

terms of continuous vectors (also called embeddings), such as Latent Semantic

Analysis (LSA; Landauer et al., 1998), Word2vec (Mikolov, Sutskever, Chen,

Corrado, & Dean, 2013), and GloVe (Pennington, Socher, & Manning, 2014).

Preferably, and which is often the case, meaning representations of words are

derived in an unsupervised way from extremely large collections of texts. For

instance, the word2vec and GloVe word vector representations trained on texts

containing billions of tokens and cover millions of unique words: the pre-trained

word2vec model covers 3 million unique words, and the GloVe model has coverage of

1.9 million words. Similarly, a Latent Semantic Analysis (LSA) model developed

from the whole set of Wikipedia articles (LSAwiki; Stefanescu, Banjade, & Rus,

2014b) contains word representations for 1.1 million unique words.

While these are impressive numbers compared to manually created resources

such as WordNet (Miller, 1995), it is interesting to observe that the previously

mentioned unsupervised vector models individually cover only few million words as

shown in Figure 1.4. In another words, a lot of words in the web for example are

missing from each of these models. Because of missing word representations,

similarity calculation methods relying on such representations are affected. Let’s

suppose we have to calculate similarity between two words - deeptutor and tutoring

using representations from a model but it would not be possible if representation of

at least one of them is not available in that model.

7

Additionally, a set of problems include dependent on contextual information

and presence of various linguistic phenomena in the text. Though the concept of

context is vague in itself, the way we describe context is in terms of two attributes:

linguistic context (which is in the scope of primary field of research of this

dissertation) and nonlinguistic or experiential context (which is also incorporated in

our models). Linguistic context is the language that comprises the discourse which

is under analysis. For instance, assessing the student response in dialogue based

tutoring systems by comparing them against reference answer requires

understanding the contextual information (linguistic) as illustrated by the examples

in Figure 1.4. In fact, approximately 1 in every 4 answers required contextual

information (e.g., previous utterance in dialogue) to properly evaluate them by the

human annotators themselves (Banjade, Maharjan, Niraula, Gautam, et al., 2016).

For example, pronouns used by students often refer to entities in the previous

utterances, i.e., in context. Experiential contexts include such things as the type of

communicative event, the topic, setting, the difficult level of questions, prior

knowledge of students, etc.

As illustrated in the Figure 1.4, the student answers may vary greatly. For

instance, answer A1 is elliptical (Carberry, 1989; Carbonell, 1983) - incomplete

utterance but the meaning can be understood from the given context (dialogue

history in this example). Such elliptical utterances are common in conversations

even when the speakers are instructed to produce more syntactically and

semantically complete utterances (Carbonell, 1983). Furthermore, the “bug” in A2

is referring to the mosquito and “they” in A3 is referring to the amount of forces

exerted to each other which is also very common. In an analysis of tutorial

conversation logs, Niraula et al. (2014) found that 68% of the pronouns used by

students were referring to entities in the previous utterances or in the problem

8

Problem description: A car windshield collides with a mosquito, squashing it.
Tutor question: How do the amounts of the force exerted on the windshield by the
mosquito and the force exerted on the mosquito by the windshield compare?

Reference answer: The force exerted by the windshield on the mosquito
and the force exerted by the mosquito on the windshield are an action-reaction pair.

Student answers:
A1. Equal
A2. The force of the bug hitting the window is much less than the force that the
window exerts on the bug
A3. they are equal and opposite in direction
A4: equal and opposite

Fig. 1.4: A conceptual physics problem and a set of real student answers to the
given question extracted from DeepTutor (Rus et al (2013)) experiment records.

The dialogue context is needed to fully understand these answers.

description. In addition to anaphora, complex coreferences are also employed by

students.

Similarly, there may be other linguistic phenomena present in the texts, such

as Negation (Huddleston, Pullum, et al., 2002; Konstantinova, De Sousa, & Sheila,

2011; Morante & Blanco, 2012; Rooth, 1996; Wedin, 1990). A negator (or negation

cue), is a lexical item that expresses negation, such as no, and not. The part of the

sentence affected by the negation cue is called negation scope. The part of the scope

that is most prominently negated is called negation focus (Huddleston et al., 2002).

For example, the desk stops moving because [there is] <no> [{net force} acting on

it] where negation cue, scope, and focus are in <>, [], and {} respectively. In fact,

negation is twice as frequent in dialogue as in literary text (Tottie, 1993) and the

scope can be dependent on the dialogue context. Our analysis of tutorial dialogues

shows that about 9% of the student responses have some form of explicit negation

(Banjade & Rus, 2016). As the negation can completely change the meaning of the

text as shown in the example, the text (or dialogue) understanding systems should

be able to handle them.

9

Fig. 1.5: Illustrating that we maybe able to infer the correctness of an answer based
on student’s performance in other related questions.

Moreover, despite the fact that the semantic similarity methods have been

widely used for answer assessment and such methods are performing well in many

cases, the implied assumption is that the student answers are self contained (i.e.,

grammatically and semantically complete and can be evaluated without needing

much additional information) which is not always true. Particularly, in dialogue

based tutoring systems, students might feel that they are having conversation with

human tutor in chat room like environment and do not become more formal in

writing responses (as shown in Figure 1.4). The off-the-shelve NLP tools (such as

tools for coreference resolution) are mostly developed from general text and are not

the best fit for the texts in conversational systems. That is, the error might

propagate in the standard NLP pipeline making them less effective. Another

approach is to augment the semantic similarity model by adding non-linguistic

information. For example, as illustrated in Figure 1.5, a student giving correct

answer to the most of the difficult questions will probably answer the easier question

correctly. However, to the best of our knowledge, there is no such published work

that combines linguistic and non-linguistic information in order to assess the

open-ended answers in conversational tutoring systems. Also, there is no annotated

dataset available to perform such experiments.

Furthermore, the similarity scores given by the systems are often opaque, i.e.,

it is difficult (if not impossible) to interpret/explain why the similarity score

between given sentence pair is high or low. The interpretation of such system

10

output is a challenge in machine learning in general but the direct use of any system

that is able to interpret the predicted similarity score is on generating diagnostic

feedback. In another words, such systems will be able to answer why the student’s

answer was deemed incorrect, if any? Otherwise, the student would be confused and

the uncertainty and cognitive load can lead to lower levels of learning as studied by

(Shute, 2008). For example, net force is zero and force is zero can have different

interpretations in science. If former is expected but later is the student’s response,

i.e., when framed in a different way the similarity score is not very high and system

tells that the answer is partially correct, student might not be able to figure out

what’s wrong in his or her response. Though some research shows that confusion

can be beneficial for learning (DMello, Lehman, Pekrun, & Graesser, 2014), it might

not be true particularly when the student is not very motivated and the system does

not consistently provide the correct feedback.

In brief, although a lot of progress has been made in semantic similarity and

automatic answer grading research (Basu, Jacobs, & Vanderwende, 2013; Dzikovska

et al., 2013; Landauer, 2003; Mohler & Mihalcea, 2009; Rus & Lintean, 2012;

Sukkarieh & Blackmore, 2009), there have been several issues such as the ones

mentioned before and we speculate that the research in these fields is reaching to

plateau unless such issues, though difficult problems in AI, are addressed. Towards

overcoming them, the work of this dissertation aims to contribute by creating

methods and resources that are not available to address various research questions.

By addressing these issues in natural language understanding, the overall

learning experience with the conversational tutoring systems will be enhanced and

the student engagement will lead to positive outcome which can be inferred from

the effectiveness of such educational tools.

Goal

The applications we target are online Intelligent Tutoring System prototypes

11

and the work in this dissertation is motivated by our continuous efforts to improve

the semantic similarity functions and assessing the correctness of the answers given

by the students interacting with such systems for which semantic similarity methods

are used along with the other knowledge.

Research questions

The specific research questions which we have addressed (but not limited to)

are:

� How to build improved sentence similarity measures and develop approaches

to interpret the predicted similarity score by the system?

� How to cope with missing word representations (also called embeddings) in

vector based word representation models?

� How to adapt the similarity systems across different domains?

� How to improve answer assessment in dialogue based intelligent tutoring

systems where contextual information is important and various linguistic

phenomena (e.g., coreferences, ellipsis, negation) are present?

� How to build answer assessment models including, in addition to semantic

similarity features, non-linguistic knowledge, such as question difficulty and

student’s knowledge level?

� How can we contribute in creating resources (datasets and tools) for semantic

similarity and answer assessment research?

Contributions

The contributions of this dissertation work are outlined below.

In Chapter 2, we present our models to measure the semantic similarity

between sentences. Our sentence similarity prediction models are based on 40+

features including optimal multi-level alignment based similarity, vector based

12

compositional semantic methods, machine translation evaluation methods, and

many others (Banjade, Niraula, et al., 2015; Banjade, Maharjan, Gautam, & Rus,

2016). In one of the approaches, we developed Support Vector Regression (SVR)

models which were among the top performing systems in SemEval Short Text

Similarity competitions 2015 and 2016 (Agirre et al., 2015, 2016). SemEval is a

premier venue for semantic evaluation. Also, our models are more robust than many

other top performing systems. In an another approach, we have treated semantic

similarity probabilistically and proposed Bayesian models (C. K. Williams &

Rasmussen, 1996) for predicting the distribution of sentence similarity scores for the

given set of features and for domain adaptation using transfer learning approach.

Those models are more intuitive to understand and expressive than frequentist

counterpart, such as SVR model.

Additional contributions on developing models and resources on semantic

similarity that are not presented in this dissertation are the development of

composite model for measuring word-to-word similarity (Banjade, Maharjan,

Niraula, Rus, & Gautam, 2015), development of SEMILAR Toolkit (a publicly

available and widely used semantic similarity toolkit; Rus, Lintean, Banjade,

Niraula, and Stefanescu (2013)), and the development of Latent Semantic Analysis

(LSA) models from whole set of English Wikipedia articles (Stefanescu et al.,

2014b). The SEMILAR toolkit and the LSA models are freely available for

download for research purposes.

In Chapter 3, we present our novel approach of handling missing words in

vector based word representation models, such as LSA (Landauer et al., 1998),

GloVe (Pennington et al., 2014), and Word2vec (Mikolov, Sutskever, et al., 2013).

In our approach, the vector representation of words are transformed using Neural

Network (NN) models from one model where they are present (source) to another

model where they are missing (target) (Banjade, Maharjan, Gautam, & Rus, 2017).

13

With this approach, we have significantly improved the coverage of three different

types of popular pre-built models LSA, GloVe, and Word2vec. Furthermore, our

intrinsic and extrinsic evaluations of transformed representations show that they can

be used with confidence to substitute the missing word representations in target

model. Our approach has potential to be equally applicable to phrases and

sentences which are even more sparser than words. We have also made our tool

(VR-Map) available for download.

In Chapter 4, we present our proposed models for student answer

assessment tailored to dialogue based tutoring systems and the dataset we created

for the evaluation of such models. One of our proposed approach for answer

assessment is to apply semantic similarity model with contextual word weighting

scheme. In an another approach, we have proposed building a logical and

probabilistic reasoning model using Probabilistic Soft Logic (PSL; Kimmig, Bach,

Broecheler, Huang, & Getoor, 2012), a version of Markov Logic Network (MLN;

Richardson and Domingos (2006)). This model is capable of capturing the complex

interactions among variables, such as the effect of student’s performance on previous

questions on the correctness of current answer. Our model including semantic

similarity information along with non-linguistic information, such as student’s

knowledge level and question difficulty improved the accuracy by about 4% when

compared to the results obtained using semantic similarity information only. An

another model in which the priors are learned separately further improved the result

by about 3%.

We also present an evaluation dataset we created called DT-Grade (named

after DeepTutor tutoring system; Banjade, Maharjan, Niraula, Gautam, et al.

(2016)) which contains 900 answers to open-ended questions recorded during

students’ interactions with DeepTutor tutoring system (Rus, DMello, et al., 2013) in

which contextual information (i.e., previous utterances) is also very important in

14

understanding and assessing the answers. Each response in the dataset was

annotated for: (a) it’s correctness, (b) whether the contextual information was

helpful in understanding the student answer, and (c) whether the student answer

contained important extra information than typically expected. In fact,

approximately 1 in every 4 answers required contextual information to properly

evaluate them by the human annotators themselves. This type of dataset was not

previously available and we have made this dataset available for research purposes.

Chapter 5 presents methods to detect negation scope and focus in tutorial

dialogue (Banjade, Niraula, & Rus, 2016) and the negation dataset we created

(Banjade & Rus, 2016). We collected and annotated a corpus from real dialogues

between the computer tutor DeepTutor and high-school students. The corpus is

called the DT-Neg corpus - DeepTutor Negation corpus (Banjade & Rus, 2016) -

and consists of 1,088 instances. The corpus was manually annotated with negation

cue, scope, and focus. The negations in the dataset are inter-sentential (the scope is

in the sentence other than the sentence where the negation cue is present) or

intra-sentential (the scope of negation is within the sentence where the cue is

present). We then developed a method to detect negation scope and focus based on

Conditional Random Fields (CRF) (Banjade, Niraula, & Rus, 2016). We report

results for focus detection with and without use of dialogue contextual features. The

results indicate that our approach is very effective in detecting negation scope and

focus in tutorial dialogue context and can be further developed to augment the

natural language understanding systems including the student response evaluation

systems.

Chapter 6 presents our approach towards building interpretable semantic

similarity models with the target of generating diagnostic feedback by answer

assessment models. While useful, the quantitative or even qualitative assessments

are hard to interpret because they do not provide details, i.e., they do not explain or

15

justify why the similarity score was assigned high or low. One way to provide an

explanatory layer to text similarity assessment methods is to align chunks

(sometimes referred as phrases, e.g. noun phrase) between texts and assigning

semantic relation to each alignment. Our system relies on specific rules and

similarity function and aligns the chunks across sentences, assigns semantic labels

(e.g., EQUI - chunks are equivalent, REL - related, SPE1/2 - chunk in first/second

sentence is specific than in second/first), and also predicts the similarity scores for

the alignment quantifying the strength of similarity between the aligned chunks.

Overall, our systems consistently performed the best in interpretable similarity

challenge in SemEval 2015 and 2016 (Agirre et al., 2015, 2016; Banjade, Niraula, et

al., 2015; Banjade, Maharjan, Niraula, & Rus, 2016).

Finally, in Chapter 7 we conclude this dissertation with future directions.

16

Chapter 2

Measuring Short Text Similarity

Measuring semantic similarity is to quantify the extent of similarity in the meanings

of two given texts. The Table 1.1 shows examples of pairs of sentences along with

their average similarity scores assigned by human annotators. As discussed in

Chapter 1, a considerable amount of effort has been put on calculating the semantic

similarity or relatedness between texts (see Section 2.1 for the details). Our goal is

to use semantic similarity techniques in short answer assessment (see Chapter 5).

Therefore, we focus on the more specific task of measuring the similarity of short

texts, i.e., quantifying to what extent the given two words/sentences are similar in

meaning. In this chapter, we present the Support Vector Regression (SVR) models

and Bayesian models we have proposed to measure the semantic similarity. The

pipeline of our system is outlined in Figure 2.1. The preprocessing and feature

generation steps are common to all of our models.

Our SVR models for sentence similarity use various features including the

similarity scores obtained using optimal multi level alignments, vector based

compositional semantics and other general features. We also call this system DTSim

(named after DeepTutor lab; Banjade, Maharjan, Gautam, & Rus, 2016). We

evaluated our sentence similarity models with SemEval 2016 evaluation data (Agirre

et al., 2016) and the correlations between our model’s output and the human

ratings were up to 0.83 in some datasets (Agirre et al., 2016; Banjade, Maharjan,

Gautam, & Rus, 2016). In fact, our system was one of the top performing systems

among around 100 systems (46 teams) submitted in semantic similarity competition

in SemEval 2016 (Agirre et al., 2016). Similarly, one of our systems (NeRoSim;

Banjade, Niraula, et al., 2015) achieved 10th position (4th team) but with no

significant difference with the results of top performing system in SemEval 2015

17

Fig. 2.1: The pipeline of components of our STS models.

competition (Agirre et al., 2015). Our models are more robust than many other top

performing systems as discussed in Section 2.5.

The methods proposed over the years, often criticized as frequentist

approaches, give a single point estimate (i.e., single point output) with sharp

decision rules, i.e., their underlying model parameters are fixed. The implied

assumption is that the samples are infinite and the data are a repeatable random

sample, i.e., they have the same frequency. More specifically, giving a set of

similarity feature values, the outcome of a similarity model would be same every

time we use that model. Also, these methods do not allow us to use our prior

knowledge to inform the model parameters. But the similarity annotated samples

are limited in number which by their limited nature impose random biases. For

instance, the agreement between human annotators while annotating similarity data

collected for STS tasks is below 90% (Agirre et al., 2016). Therefore, we argue that

semantic similarity scores are stochastic variables as opposed to fixed values. The

noise and ambiguities present in the natural language texts are broader reasons to

treat similarity values as stochastic variables. In that, we have also proposed

similarity models using Bayesian approach (Kruschke, 2014).

In addition to other features which we discuss in Section 2.6, the Bayesian

models allow us to use our prior knowledge about the data which maybe updated

during the training phase. In our models we have applied transfer learning approach

to adapt them across domains (we have taken sources of similarity texts as domains,

such as news headlines and community forums). The domain adapted Bayesian

models in which the Gaussian mean priors were learned from out of domain data

18

performed better than the domain specific models, particularly when the domain

specific training data is small.

Furthermore, we have proposed other models also (Banjade, Maharjan, et al.,

2015; Banjade, Niraula, et al., 2015; Stefanescu, Banjade, & Rus, 2014a) but we

focus on the aforementioned two different approaches SVR models and Bayesian

models. Moreover, the similarity score given by the model is generally opaque and

it’s a great challenge in interpreting the numeric score; i.e., it is often difficult to

explain why the similarity score produced by a model is high or low. We have

proposed a model towards interpreting the similarity scores which we present in

Chapter 6.

The outline of this chapter is as follows. Next, we discuss on related work.

Then we describe datasets (Section 2.2) and preprocessing steps (Section 2.3) which

is followed by feature extraction (Section 2.4). These steps are common to both

types of models (SVR models and Bayesian models). And then we present SVR

models and the results (Section 2.5). Similarly, after SVR models we present

Bayesian models and the results (Section 2.6).

2.1 Related Work

Research on semantic similarity of texts focused initially on measuring similarity

between individual words. Also, several methods that are proposed for measuring

the similarity of sentences rely on word-to-word similarity (e.g., word alignment

based methods) while others directly work at sentence level. In this section, we first

discuss about word-to-word similarity methods and then discuss on various methods

proposed over the years for measuring sentence level similarity.

2.1.1 Word-to-Word Similarity

Based on the types of resources used, the methods that measure semantic

relatedness or similarity (often used interchangeably) of words are broadly of two

types: those relying on knowledge bases, such as WordNet (Miller, 1995), and those

19

that infer word associations from bigger collections of texts commonly based on

word co-occurrences, called distributional/distributed methods. In the knowledge

base category, WordNet based methods are quite popular (Pedersen, Patwardhan, &

Michelizzi, 2004; Resnik, 1995). WordNet (Miller, 1995) lexicon groups together

words that have the same meaning, i.e., synonyms, into synsets (synonymous sets).

Synsets are also referred to as concepts. A group of word-to-word similarity

measures were defined that use lexico-semantic information in WordNet (Lin et al.,

1998; Pedersen et al., 2004; Resnik, 1995).

On the other hand, in distributional models words are represented in vector

forms and similarity between them is typically calculated as cosine score. The word

representations are almost always learned in unsupervised manner from huge

collection of texts, such as Wikipedia articles. Distributional similarity methods (or

corpus based methods) include algebraic methods, such as Latent Semantic Analysis

(LSA; Landauer et al., 1998; Stefanescu et al., 2014b) and Hyperspace Analog to

Language (HAL; Burgess & Lund, 1995). Stefanescu et al. (2014b) have developed

probably the biggest LSA models from whole English Wikipedia articles (Spring

2013 snapshot). Rus, Niraula, and Banjade (2013) have proposed of using

contribution of words across topics in Latent Dirichlet Allocation (LDA; Blei, Ng, &

Jordan, 2003) model as vector representations of words and using them to measure

the similarity between words. This one is a probabilistic approach. Pennington et

al. (2014) have proposed a combination of algebraic and probabilistic model called

GloVe. Collobert et al. (2011) obtained word representation using deep neural

network. In recent days, Word2vec (Mikolov, Sutskever, et al., 2013) model in which

word representations are learned using single layer feed forward neural network has

drawn a lot of attention. In one study we combined the word representations

obtained using different models and applied them to word-to-word similarity

measurement (Niraula, Gautam, Banjade, Maharjan, & Rus, 2015).

20

However, latent representations of words are difficult to interpret and the

number of dimensions is chosen empirically. Towards using more interpretable

representation of words, Gabrilovich and Markovitch (2007) have proposed Explicit

Semantic Analysis (ESA) model where Wikipedia articles are used as concepts and

words present in them are represented in terms of those “explicit” concepts.

Previous methods, individually or as a combination of different methods,

have yielded very good performance when it comes to measuring relatedness (Jiang

& Conrath, 1997; Y. Li, Bandar, & McLean, 2003; Stefanescu, Rus, Niraula, &

Banjade, 2014). The popular datasets used for evaluation of word-to-word similarity

models are Sim-353 (Finkelstein et al., 2001) and TOEFL analogy dataset (Turney,

2001). However, as Hill, Reichart, and Korhonen (2014) explored, distributional

similarity methods are not capturing well the true similarity between words. They

also published a dataset containing 999 word pairs (called Simlex-999) with human

rated similarity scores explicitly quantifying the similarity of words. For example,

lemon and tea would get lower score as they are not similar despite the fact that

they are related. It fosters the development of applications that benefit from

similarity than those which take into account a broader range of relations. To this

end, we developed a method that combines several diverse approaches that rely on

corpus and knowledge bases to measure semantic similarity and achieved

state-of-the-art results (Banjade, Maharjan, et al., 2015). However, similarity and

relatedness are often used interchangeably. We are also using them interchangeably.

2.1.2 Sentence Level Similarity

Measuring sentence-to-sentence similarity is also a well-studied topic in NLP

because of its use in many tasks such as question-answering, text mining, text

summarization, plagiarism detection, assessing the correctness of student answers in

education technologies, and assessing the translation quality of automatic

translation systems. Due to this wide applicability, the research literature is

21

abundant in methods for detecting or assessing sentence similarity, which are often

presented as methods for identifying paraphrases (Androutsopoulos & Malakasiotis,

2010; Corley & Mihalcea, 2005; Fernando & Stevenson, 2008; Rus & Lintean, 2012).

In order to streamline and foster the research in this area, semantic similarity

competitions have been organized for last several years and participation is

overwhelming (Agirre, Diab, Cer, & Gonzalez-Agirre, 2012; Agirre et al., 2014,

2015, 2016).

Early applications of text similarity were in the field of information retrieval.

These early developments were essentially “bag-of-words” strategies developed for

solving well-known problems such as selecting the documents most relevant to a

given query (Salton & Buckley, 1988) or text classification (Y. H. Li & Jain, 1998).

The most basic methods rely on lexical matching (i.e., words or n-gram overlap

analysis) and return scores based on the number of lexical units that occur in both

fragments (e.g. sentences). Also, certain preprocessing steps such as stemming,

tagging or stop-words removal were shown to improve the results of the systems. In

fact, we did an analysis with different preprocessing variations and found that they

can be responsible for large differences in the performance of a system (Rus,

Banjade, & Lintean, 2014).

In time, the methods moved beyond lexical matching to using corpus and

knowledge-based word-to-word similarity measures. However, one challenge with

using word-to-word similarity measures is that they cannot be directly applied to

compute similarity of larger texts such as sentences. Researchers have proposed

methods to extend the word-to-word (W2W) similarity measures to text-to-text

(T2T) similarity measures (Fernando & Stevenson, 2008; Han, Kashyap, Finin,

Mayfield, & Weese, 2013; Rus & Lintean, 2012; Rus, Niraula, & Banjade, 2013;

Sultan, Bethard, & Sumner, 2015). For instance, Rus and Lintean (2012) have

applied greedy and optimal word alignment methods where they used WordNet

22

based word similarity methods and Latent Semantic Analysis (LSA) based methods.

They also proposed quadratic alignment based method for paraphrase detection

(M. Lintean & Rus, 2015). One of the models we developed is based on chunk

alignment and weighting chunks by information content (Stefanescu et al., 2014a).

Chunks (loosely called phrases) are more meaningful units than words. Many

systems exploit machine translation evaluation measures, such as BLEU measure

(Madnani, Tetreault, & Chodorow, 2012; Papineni, Roukos, Ward, & Zhu, 2002)

which are generally based on word/phrase alignment. Probably, it would not be

biased to say that alignment based similarity methods are the individually best

performing methods despite their relative simplicity (Agirre et al., 2015, 2016;

Banjade, Niraula, et al., 2015; Banjade, Maharjan, Gautam, & Rus, 2016; Rus &

Lintean, 2012; Sultan et al., 2015). They are also fast to compute.

On the other hand, approaches are being developed for obtaining the

representation of sentences and only then using them to find out the similarity

between sentences. However, it is difficult to directly learn meaningful sentence

representations because of sparseness of texts (Mikolov, Sutskever, et al., 2013; Rus,

Niraula, & Banjade, 2013) and they are not the best options for measuring the

similarity of short texts, such as phrases and sentences. Therefore, most of the

methods use the representation of words or phrases to learn the sentence

representations. One simple and commonly found effective method of combining

word representation to obtain sentence representation is to add the vectors of

individual words (Banjade, Niraula, et al., 2015; Sultan et al., 2015). In one of our

studies, we took the weighted average of the vectors of words in each sentence by

the part-of-speech category and found the consistent improvement in the results

(Maharjan, Banjade, Gautam, J. Tamang, & Rus, 2017).

In recent years, deep learning techniques have been employed in learning the

sentence representations from their constituents (Mikolov, Sutskever, et al., 2013;

23

Socher, Huang, Pennin, Manning, & Ng, 2011). For example, Socher et al. (2011)

applied recursive auto encoder with dynamic pooling in order to obtain sentence

representations using word representations. Once the sentence representations are

learned, similarity, such as cosine between sentences can be computed easily. Most

recently, Kiros et al. (2015) developed an approach using long and short term

memory models for learning sentence representations in continuous vector forms,

called Skip-thought vectors. Similarly, Sent2Vec tool1 which generates sentence

representations has been developed at Microsoft. It uses both Deep Structured

Semantic Model (DSSM; Huang et al., 2013) and the DSSM with

convolutional-pooling (CDSSSM; Gao, Deng, Gamon, He, & Pantel, 2014; Shen, He,

Gao, Deng, & Mesnil, 2014) for mapping from text to low dimensional continuous

vector form.

Moreover, machine learning techniques are employed to further improve

results by combining various features including lexical and semantic features along

with other general features, such as ratio of sentence length (Agirre et al., 2015;

Banjade, Niraula, et al., 2015; Brockett & Dolan, 2005). We developed a Support

Vector Regression model combining similarity scores produced from various

individual methods along with other general features. Likewise, kernel based

methods are also proposed (M. C. Lintean & Rus, 2011; Severyn, Nicosia, &

Moschitti, 2013). Interestingly, M. C. Lintean and Rus (2011) used dissimilarity

kernel to predict the paraphrase.

Providing a venue for the evaluation of state-of-the-art algorithms and

models, STS shared task has been held annually since 2012 (Agirre et al., 2012,

2014, 2015, 2016). During these times, a diverse set of genres and data sources have

been explored (e.g., news headlines, video and image descriptions, glosses from

lexical resources including WordNet, FrameNet, OntoNotes, web discussion forums,

1https://www.microsoft.com/en-us/download/details.aspx?id=52365

24

and Q&A data sets). Dozens of teams have been participating each year and

submitting results produced with their different systems. The systems including

ours that combine various features including similarity from individual methods,

such as alignment based and vector composition based methods have been

consistently performing the best in those competitions (Agirre et al., 2015, 2016).

However, many of the top performing systems were trained separately for each

dataset in the evaluation data and using the training data from the same domain

(Rychalska, Pakulska, Chodorowska, Walczak, & Andruszkiewicz, 2016; Sultan et

al., 2015). For example, model trained using news headlines was used to assess

similarity of subset of the evaluation dataset containing only the text pairs from

news headlines. In another words, the models were tuned for each evaluation

dataset. Our models, however, were trained using a single set of dataset and applied

to full set of evaluation data. This makes our models more robust. Furthermore, we

have treated semantic similarity probabilistically and proposed Bayesian models for

domain adaptation using transfer learning.

In order to build and evaluate the semantic similarity (or paraphrase

identification) models, various human annotated datasets are released over the years

and most of them are created in recent years. We did a comprehensive study of

datasets available for the research in this field (Rus et al., 2014) and here we discuss

them in brief. The performance of similarity methods was (and still is) commonly

evaluated using the Microsoft Research Paraphrase Corpus (MSRP; Dolan, Quirk,

& Brockett, 2004). MSRP contains 5,801 sentence pairs overall, out of which 3,900

(67.23%) are considered paraphrases. However, MSRP does not seem to be the ideal

data set for benchmarking similarity systems, because of the high degree of word

overlap and lack of variations in that dataset. Also, each pair in the dataset is

labeled either as 1 - paraphrase or 0 - non-paraphrase. This does not capture the

graded meaning similarity. The SemEval organizers have released large number of

25

human annotated sentence pairs (more than 10 thousand pairs) over the years

(Agirre et al., 2016). As opposed to MSRP corpus where each sentence pair has

binary label, the sentence pairs released in SemEval competitions have 6 different

labels in the range of [0 5]. Evaluation of system output is performed by comparing

them with the human annotated scores and typically Pearson correlation is used for

that purpose. We also used the SemEval data for model building and evaluation.

2.2 Datasets

For model building and evaluation, we used human annotated datasets released as

part of several STS challenges. Models were built using datasets released as part of

prior STS whereas evaluation was done using the evaluation dataset released during

STS 2016. The training and evaluation/test datasets are summarized in Table 2.1

and Table 2.2 respectively. Each pair in training and test data has a human

annotated similarity rating between 0 and 5 (5 means equivalent) as shown in

Table 1.1. The human annotator agreement was below 90% across all datasets

(Agirre et al., 2016).

Table 2.1: Summary of training data. These datasets were released over the years as
part of SemEval Semantic Textual Similarity (STS) challenges.

Dataset Count Release Year Source

SMTnews 351 STS2012-Testset
Statistical Machine Translation
(SMT) evaluation

Headlines 750 STS2014-Testset newswire headlines
Headlines 742 STS2015-Testset newswire headlines
Deft-forum 423 STS2014-Testset forum posts
Deft-news 299 STS2014-Testset forum news
Answers-forums 375 STS2015-Testset Q&A forum answers
Answers-students 750 STS2015-Testset student answers
Belief 375 STS2015-Testset committed belief forum texts
Total 4065

We selected datasets that included texts from different genres. For example,

STS2012-Test means that the dataset was released as a test set in Semantic Textual

26

Table 2.2: Summary of test data (released in STS 2016).

Dataset Count Source

Plagiarism 230 data from plagiarized text
Postediting 244 post edited machine translated texts
Headlines 249 newswire headlines
Question-Question 209 Stack Exchange forum questions
Answer-Answer 254 Stack Exchange forum answers
Total 1186

Similarity (STS) competition in SemEval 2012 and so on. However, some others,

such as Tweet-news were not included. The Tweet-news data were quite different

from most other texts, such as they include a lot of hash tags, and we believe that

they need to be handled differently.

The test data (summarized in Table 2.2) contained 1186 sentence pairs that

include texts from the following sources: News Headlines, Plagiarized text, Post

edited text obtained from machine translation, Question pairs taken from Stack

Exchange forum, and pairs of community answers taken from Stack Exchange

website. Our SVR model was developed before seeing the test set and we tuned our

model using 10-fold cross validation and applied to unseen test set. On the other

hand, our work on Bayesian model is mostly exploratory in nature and therefore,

apart from training and test, we did not allocate separate dataset for model

validation.

2.3 Preprocessing

Hyphens were replaced with whitespaces if they were not composite verbs (e.g.

video-gamed). The composite verbs were detected based on the POS tag assigned

by the POS tagger. Also, the words starting with co-, pre-, meta-, multi-, re-, pro-,

al-, anti-, ex-, and non- were left intact. Then, the hyphen-removed texts were

tokenized, lemmatized, POS-tagged and annotated with Named Entity tags using

Stanford CoreNLP Toolkit (Manning et al., 2014). We also marked each word as

27

whether it was a stop word. We also created chunks using our own Conditional

Random Fields (CRF) based chunking tool (Maharjan, Banjade, Niraula, & Rus,

2016) which outperforms OpenNLP chunker when evaluated with human annotated

chunks provided in interpretable similarity shared task in 2015. We normalized

texts using mapping data. For example, pct and % were changed to percent.

2.4 Feature Extraction

We used various features in our models including semantic similarity scores

generated using individual methods and other general features, such as relative

length of sentences. That is, in order to improve the robustness of our model, the

similarity scores predicted using individual methods were also used as features in

our final model. Before describing those individual methods, we describe word

similarity methods which were also used for sentence similarity calculation.

2.4.1 Word-to-Word Similarity

We used vector based word representation models, PPDB 2.0 database (Pavlick et

al., 2015), and WordNet (Miller, 1995) in order to measure the similarity between

words as given below.

sim(w1, w2,m) =

1, if w1 and w2 are synonyms

0, if w1 and w2 are antonyms

ppdb(w1,w2), if m = ppdb

X1.X2
|X1||X2| , otherwise

where m ∈ {ppdb, LSAwiki, word2vec,GloV e}, X1 and X2 are vector

representations of words w1 and w2 respectively.

We first checked synonyms and antonyms in WordNet 3.0. If the word pair

was neither synonym nor antonym, we calculated the similarity score based on the

model selected. The word representation models used are: word2vec (Mikolov,

28

Sutskever, et al., 2013)2, Glove (Pennington et al., 2014)3, and LSA Wiki

(Stefanescu et al., 2014b)4. The cosine similarity was calculated between the word

representation vectors. We also used the similarity score found in PPDB database5.

Handling missing words: We checked for the representation of a word in raw

form as well as in base (lemma) form. If neither of them was found, we used vector

representation of one of its synonyms in WordNet for the given POS category. The

same strategy was used while using PPDB to retrieve similarity score. We have

proposed an approach to better handle missing words in vector based word

representation models which is presented in Chapter 3.

2.4.2 Sentence-to-Sentence Similarity

Word Alignment Based Method

In this approach, all the content words (in lemma form) in two sentences (S1 and

S2) were aligned optimally (OA) using Hungarian algorithm (Kuhn, 1955) as

described in (Rus & Lintean, 2012) and implemented in SEMILAR Toolkit (Rus,

Lintean, et al., 2013). The process is same as finding the maximum weight matching

in a weighted bipartite graph. The nodes are words and the weights are the

similarity scores between the word pairs. The sentence similarity is calculated as:

sim(S1, S2) = 2 ∗
∑

(w1,w2)∈OA sim(w1, w2)

|S1|+ |S2|

In order to avoid the noisy alignments, we reset the similarity score below 0.5

(empirically set threshold) to 0.

2https://code.google.com/archive/p/word2vec/

3http://nlp.stanford.edu/projects/glove/

4http://semanticsimilarity.org

5http://paraphrase.org/

29

Chunk Alignment Based Method

We chunked texts (see Section 2.3) and aligned chunks optimally as described in

(Stefanescu et al., 2014a). The difference is that the chunks containing Named

Entities were aligned using rules: (a) the chunks were treated as equivalent if both

were named entities and at least one of the content words was matching, (b) they

were treated as equivalent if one was the acronym of another. In other cases,

chunk-to-chunk similarity was calculated using optimal word alignment method.

The process is same as word alignment based method. First, the words in chunks

were aligned to calculate chunk-to-chunk similarity. Finally, chunks in two sentences

were aligned optimally for sentence level similarity. In order to avoid noisy

alignments, we set similarity score to 0 below 0.5 for word alignment and 0.6 for

chunk alignment. These thresholds were set empirically.

Interpretable Similarity Based Method

We aligned chunks from one sentence to another and assigned semantic relations

and similarity scores for each alignment. The semantic labels were EQUI, OPPO,

SIMI, REL, SPE1, SPE2, and NOALI. For example, the semantic relation EQUI

was assigned if the given two chunks were equivalent. The similarity score range

from 0 (no similarity) to 5 (equivalent). We aligned chunks and assigned labels as

described in (Banjade, Maharjan, Gautam, & Rus, 2016; Banjade, Niraula, et al.,

2015; Maharjan et al., 2016). Once the chunks were aligned and semantic relation

types and similarity scores were assigned, sentence level scores were calculated for

each relation type as well as an overall score was calculated using all alignment

types as shown next.

Norm count(alignment− type) =
(# alignments with type = alignment-type)

Total # alignments including NOALI

Similarity(S1, S2) =

∑
(c1,c2)∈Alignments sim(c1, c2)

5 ∗ (Total # alignments including NOALI)

30

Where c1 ∈ {S1 chunks}, c2 ∈ {S2 chunks}, and alignment-type

∈ {EQUI,OPPO, SIMI,REL, SPE1, SPE2, NOALI}.

Vector Composition Based Method

In this approach, we combined vector based word representations to obtain sentence

level representations through vector algebra as shown below. In a different

experiment (Maharjan et al., 2017), we also weighted word vectors by their POS

categories and found that giving different weights for four major POS categories

(Noun, Verb, Adverb, and Adjective) consistently improved results across datasets.

RV(S) =
∑
w∈W

Vw

where W is the set of content words in sentence S and Vw is the vector

representation for word w. The cosine similarity was calculated between the

resultant vectors - RV(S1) and RV(S2). Word representations from LSAwiki,

word2vec and GloVe models were used.

Similarity Matrix Based Method

The approach is similar to the word alignment based method and similarity scores

for all pairs of words from given two sentences are calculated. However, a key

difference is that all word-to-word similarities are taken into account, not just the

maximally aligned word similarities as in (Fernando & Stevenson, 2008).

2.4.3 Feature List

All or subset of the following features was used for three different runs as described

in Section 2.5. We used word2vec representation and WordNet antonym and

synonym for word similarity unless anything else is mentioned specifically.

1. Similarity scores generated using word alignment based methods where

word-to-word similarity was calculated using methods described in

Section 2.4.1.

31

2. Similarity score using optimal alignment of chunks where word-to-word

similarity scores were calculated using representation from word2vec model.

3. Similarity scores using similarity matrix based methods. The similarities

between words were calculated using different word similarity methods

discussed in Section 2.4.1.

4. Similarity scores using chunk alignment types and alignment scores

(interpretable features).

5. Similarity scores using the resultant vector based method using word

representations from word2vec, GloVe, and LSA Wiki models.

6. Noun-Noun, Adjective-Adjective, Adverb-Adverb, and Verb-Verb similarity

scores and similarity score for other types of words using word alignment

based method.

7. Multiplication of noun-noun similarity scores and verb-verb similarity scores.

8. |Ci1−Ci2|
Ci1+Ci2

where Ci1 and Ci2 are the counts of i ∈ {all tokens, adjectives,

adverbs, nouns, and verbs} for sentence 1 and 2 respectively.

9. Presence of adjectives and adverbs in first sentence, and in the second

sentence.

10. Unigram overlap with synonym check, bigram overlap and BLEU score.

11. Number of EQUI, OPPO, REL, SIMI, and SPE relations in aligning chunks

between texts relative to the total number of alignments.

12. Presence of antonym pair among all word pairs between given two sentences.

32

2.5 SVR Model

In this section, we describe our system SVR model, in which we used various

features in order to predict the similarity score for the given sentence pairs. The

features of the model are described in Section 2.4. The pipeline of components in

SVR is shown in Figure 2.1.

Models and Runs. Using the combination of features described in

Section 2.4.3, we built three different Support Vector Regression (SVR) models

corresponding to three runs (Run1-3) submitted in SemEval 2016. In Run 1, all of

the features except chunk alignment based features were used. The XL version of

PPDB 2.0 was used. In Run 2, we selected the features using Weka’s correlation

based feature selection tool (Hall & Smith, 1998) which also included chunk

alignment based similarity score. In Run 3, we took the representative features from

all of the features described in Section 2.4.3. For example, alignment based

similarity scores generated using word2vec model were selected as it performed

relatively better in training set compared to GloVe and LSA Wiki models. Also, we

used XXXL version of the PPDB 2.0 database (the precision maybe lower but the

coverage is higher as compared to the smaller version of the database).

We used LibSVM library (Chang & Lin, 2011) in Weka 3.6.86 to develop

SVR models. We evaluated our models in training data using 10-fold cross

validation approach. The correlation scores in training set were 0.791, 0.773 and

0.800 for Run1, Run2, and Run3 respectively. The best results in training set was

obtained using RBF kernel. All other parameters were set to Weka’s default.

2.5.1 Results

Table 2.3 shows the correlation (Pearson) of our system outputs with human

ratings. The graph in Figure 2.2 also includes the results of best of the best among

the submitted runs as part of SemEval 2016. The correlation scores of all three runs

6http://www.cs.waikato.ac.nz/ml/weka/

33

Table 2.3: Results of our SVR model with different runs on STS 2016 test data.
The number of records of each dataset in the test set was used as weight while

calculating weighted correlation score.

Data set Run1 Run2 Run3

Headlines 0.815 0.795 0.812
Plagiarism 0.837 0.828 0.832
Postediting 0.823 0.815 0.815
Question-Question 0.614 0.608 0.591
Answer-Answer 0.578 0.550 0.562
Weighted Mean 0.735 0.720 0.724

of our system were 0.8 or above for three datasets - Headlines, Plagiarism, and

Postediting. However, the correlations are comparatively lower for

Question-question and Answer-answer datasets. One of the reasons is that these two

datasets are quite different from the texts we used for the training (we could not

include them as such type of datasets were not available during model building).

For example, the question pair (#24 in Question-question dataset): How to select a

workout plan? and How to create a workout plan? have high lexical overlap but

they are asking very different things. Analyzing the focus of the questions may be

needed in order to distinguish the questions, i.e., the similarity between such pairs

may need to be modeled differently. With the release of this type of dataset will

foster the development of similarity models where the text pair consists of questions.

However, it should be noted that many of the top performing systems were

trained separately for each dataset in the evaluation data and used the training data

from the same domain (Rychalska et al., 2016; Sultan et al., 2015). For example,

model trained using news headlines was used to assess similarity of subset of the

evaluation dataset containing only the text pairs from news headlines. In another

words, the models were tuned for each evaluation dataset. Our models, however,

were trained using a single set of dataset and applied to full set of evaluation data.

This makes our models more robust.

Another interesting observation is that the results of three different runs are

34

Fig. 2.2: Results of SVR model (Run1) compared to best of the best results in STS
2016 (Agirre et al., 2016).

similar to each other. The most predictive feature was the word alignment based

similarity using word2vec model. The correlation in full training set was 0.725. It is

not surprising considering that the alignment based systems were the top

performing systems in the past shared tasks as well (Agirre et al., 2015; Han et al.,

2013; Sultan et al., 2015).

2.6 Bayesian Models and Transfer Learning

As discussed earlier, we treat semantic similarity probabilistically and propose to

develop Bayesian models. In order to illustrate and further motivate the

development of Bayesian models for similarity, we generated density plots of human

annotated similarity scores (gold scores) corresponding to different values of system

predicted scores. For this purpose, we developed a Linear Regression (LR) model

with several features using a set of datasets described in Table 2.1. We performed

10-fold cross validation of LR model and predicted the scores on the same dataset

to see how the human annotated scores would be distributed corresponding to the

scores predicted by a well fitted model. Also, the training set consists of a large

number of samples (around 4,000) and selecting subsets of data corresponding to a

35

a b

c d

e

Fig. 2.3: Density plots of gold scores corresponding to selected predicted scores
(selected from 0 to 4 in the interval of 1) obtained using a Linear Regression model
in the training data presented in Table 2.1, for the whole dataset as well as for the

different groups (domains).

36

predicted score and from a specific data source is possible. We then plotted the

density of gold scores corresponding to selected system generated scores from 0 to 4

in the interval of 1. They are shown in Figure 2.3. We have not shown graph for LR

predicted score of 5.0 due to lack of sufficient samples to generate a density plot

corresponding to that score, i.e., system predicted score.

Since only some of the system predicted scores are the exact full numbers

(e.g., 0, 1, 2), the predicted similarity scores within the interval of +/-0.1 from an

integer/full number are rounded to that nearest integer (e.g., 0.99 was changed to

1.0, 4.05 was changed to 4.0, and so on) such that we have more samples to plot the

graphs. It should be noted that the predicted similarity scores (and the human

rated scores) are in the range of 0 to 5 and we considered +/-0.1 as a reasonable

interval to round the predicted scores.

From Figure 2.3, we can see that there are multiple human rated scores

corresponding to a single LR system generated similarity score which in turn

corresponds to a set of feature values. In another words, there are different human

annotated scores (considered as estimates of true similarity scores) for the same

value of system generated score. Furthermore, the shape of some density plots of

gold scores for different subsets (images, headlines, forums) are quite different. For

example, when system predicted score is 3.0, their graphs are less overlapped and

their means vary approximately from 2 to 3. These illustrate that the output of the

similarity system should be a distribution and the underlying distribution from

which the model parameters are derived can be different across different datasets.

We considered these subsets as different domains (described in Section 2.6.2).

We cautiously modeled the output of our model as normal distribution

around the mean of the predicted scores corresponding to an input x as illustrated

in Figure 2.4. In this figure, X is a set of feature values, y′ is the predicted value

and y is the expected (gold or human annotated) score. Ideally the gold scores and

37

Fig. 2.4: Illustrating errors in the linear model estimates of semantic similarity. X
represents the predicted score which corresponds to a set of feature values, y’ is the

estimated similarity score and y is the expected score (human annotated score).

the predicted scores should be same but practically that is not the case illustrated

in Figure 2.4 and density plots in Figure 2.3. For better visualization, the density

plots in Figure 2.3 maybe be rotated 90 degree anti-clockwise and overlaid in

Figure 2.4 and the mean be positioned in the vertical line. Gold scores vary even for

the same value of predicted score (y′) and sometimes the mean of gold scores does

not match with the predicted score by linear regression model showing the greater

difference in model output and the human annotated scores. For example, in

Figure 2.3b, the system output (y′) is 1.0 (+/- 0.1) but the mean of gold score is

clearly less than 1.0 for the full dataset as well as for the subsets.

But during the prediction time, we do not know the gold scores and the only

thing we can do is to estimate the similarity scores using the model (using the LR

model, for example) with the hope that the predicted scores will be as close as

possible to human judgments (i.e., gold scores). Therefore, for practical reasons we

considered the predicted score by LR model as the mean of our output distribution.

That is, for example, when LR score is 1.0, the output will be normally distributed

around the mean with some deviation (discussed later). Furthermore, the shape of

all the density plots do not necessarily look same and are in some cases deteriorated

from the shape of a normal distribution, but for mathematical convenience we have

38

modeled the output as normal distribution in all cases. On the other hand, the

frequentist methods would give us the fixed score. Therefore, it makes sense to have

the outcome of our system as distributions.

Bayesian models (Kruschke, 2014; C. K. Williams & Rasmussen, 1996) treat

model parameters as unknown quantities and describe parameters as well as

predictions probabilistically. It is the data (i.e., observation) which are fixed.

Furthermore, Bayesian approaches allow us to set our belief about a domain and

update the prior belief as we observe the world. Therefore, we have proposed

Bayesian models for semantic similarity. The key point here is that we do not get a

single point estimate, e.g., “a line of best fit”, as in the frequentist case. Instead we

get a distribution for each input, i.e., set of features and we set that distribution to

be Gaussian distribution.

In that, we have built domain general models and domain adapted models

using transfer learning (Pan & Yang, 2010). In domain general models all available

training data is used to build the model and applied directly to the data in the test

set. Furthermore, we posit that the domain specific models can take benefit from

other domains or domain agnostic models. While the notion of domain is not very

crispy, we differentiate the sources of sentence similarity text pairs as different

domains (see Table 2.1 in Section 2.2). For example, some pairs come from news

headlines while some others are from community forums and image annotations. We

can see that headlines texts contain more named entities and are more formal than

texts from community forums. As discussed above, the density plots for different

types of data are also quite different from each other (see Figure 2.3) in some cases.

Therefore, we treat headlines, images, and forum texts as three different domains.

In the proposed transfer learning approach for the domain adaptation, the priors are

learned only from the out of domain data and are later updated based on the

39

observations from the target domain. We describe the models in further details in

Section 2.6.2.

2.6.1 Domain General Model

In this section, we discuss the domain general Bayesian model to STS. That is, a

model developed from the full set of training data is applied to all the data in test

set. In another words, the model is not tuned for a particular set of data. The

Bayesian models proposed for domain adaptation are presented subsequently. Here

we first discuss the least-square regression model which is a frequentist counter-part

of a linear Bayesian model.

When given a set of training data (xi, yi),..., (xn, yn), least-square regression

finds a relationship between response variable (y) and explanatory variables (x).

The least-squares regression is expressed as the following equation.

f(X) = β0 +
k∑

i=1

βixi + ε (2.1)

where β is the coefficient vector and k is the number of features or dimensions. The

assumption in conventional linear regression is that the error ε (also known as

measurement error) is normally distributed around mean 0; i.e., ε ∼ N (0, σ2). Then

the goal is to find out the best coefficients β. It means minimizing some form of

error. The most popular method to do this is sum square error (SSE), which is the

sum of the squared differences between the outputs and the linear regression

estimates.

SSE(β) =
N∑
i=1

(Yi − f(Xi))
2

=
N∑
i=1

(Yi − βTXi)
2

Therefore, the goal is to minimize SSE. The Maximum Likelihood Estimate (MLE)

of β is minimized when,

40

β̂ = (XTX)−1XTY

We use those β values obtain predicted values of given x. However, the β are point

estimates (i.e., each take a single value). On the other hand, a linear Bayesian

model (C. K. Williams & Rasmussen, 1996) represents Y and the parameters β in

the form of probability distributions (p.d.f. in short).

If our hypothesis is,

Y ′ = β0 + β1X1 + ...+ βnXn (2.2)

Y ∼ p.d.f.(Y ′) (2.3)

We set the output as a Gaussian distribution with mean Y ′ as mentioned earlier.

Y ∼ N (µ = Y ′, σ2) and the parameters β0, β1,..,βn, σ are also stochastic

variables each following a certain distribution, such as Gaussian distribution. We

use the human annotated score for the given sentence pair as an expected similarity

score (Y).

Below are some equations that further illustrate our approach. We start with

Bayes rule which indicates that

P (H|D) =
P (D|H)P (H)

P (D)
(2.4)

where H is the hypothesis and D is the data (or observation). In terms of model

parameters,

P (β0, β1, ..., βn, σ|D) =
N (D|β0, β1, ..., βn, σ)P (β0, β1, ..., βn, σ)

P (D)

Assuming model parameters are independent of each other, the joint probability can

be expressed as the multiplication of their probability distributions.

41

a b

Fig. 2.5: Graphical representation of: (a) Domain general model, (b) domain
adaptation model using transfer learning. The observed variables and the

hyperpriors are shaded (β - vector of model coefficients, N number of training
samples, d - domain, p - prior, N - Normal distribution, B - Beta distribution).

P (β0, β1, ..., βn, σ|D) =
N (D|β0, β1, ..., βn, σ)P (β0)P (β1)P (...)P (βn)P (σ)

P (D)

Furthermore, by assuming that the coefficients are from the normal distribution and

the standard deviation of the output distribution follows gamma distribution,

P (β0, β1, ..., βn, σ|D) =
N (D|β0, β1, ..., βn, σ)N (D|β0, σ0)(D|...)(D|βn, σn)Γ(g, h)

P (D)

(2.5)

The gamma distribution (Γ) was chosen to model the standard deviation of the

output distribution (σ) as it is a natural choice to sample a positive value and it is

also a conjugate prior distribution for various types of distributions, such as Poisson

distribution.

Then, for the new input x, the output is

y ∼ N (µ = β0 + β1x1 + ...+ βnxn, σ
2) (2.6)

Figure 2.5a shows the graphical representation of domain general model, in which

the output (y) is semantic similarity score whose underlying distribution is Gaussian

distribution with βTx mean for a set of features x (x1, x2, .., xn) as input (see

Section 2.4.3) where n is the number of features in the input data. This model is

42

built with full set of training examples (N count), i.e., training set includes data

from all available domains (see Table 2.1). In another words, the model is domain

agnostic. The model coefficients (β) are set to Gaussian distributions with zero

mean prior and each coefficient is set to have σi (0 ≤ i ≤ n) standard deviation.

The zero mean Gaussian priors for co-efficients can also be seen as regularization of

model parameters as it tends to control the parameter values from growing too large

or reducing too small.

We have represented standard deviation (or variance) in terms of precision.

The precision is the inverse of variance as shown below. But it should be noted that

we still use the symbol σ to represent precision as an alias of variance for the ease of

understanding them.

precision =
1

σ2
(2.7)

The representation of standard deviation (or variance) in terms of precision

is influenced from the conventions used by widely used BUGS family of languages

(WinBUGS, OpenBUGS and JAGS) which are used for statistical modeling (see

Section 2.6.4). They apparently use “precision” in specifying distributions. We also

used OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) for our experiments.

The precision for model output distribution (which is set to Gaussian

distribution) is Γ distribution with pre-defined parameters g and h. The parameters

g and h (used for σ) are tunable parameters. We chose positive value for the

precision and which in turn gives positive value for standard deviation σ. As a

natural choice, we used gamma distribution for this.

The model learning process consists of optimizing the log conditional

likelihood of the data with respect to the parameters (L(D|β, σ)). This likelihood

function can take different forms depending on the priors for the model parameters

and may not have a close form solution. Thus, those likelihood optimization

43

parameters are estimated by using MCMC based sampling, such as Gibbs sampling.

The training data consists of human annotated similarity scores which are in the

range of 0 to 5 (see Section 2.2).

The domain adaptation model (Figure 2.5b) is described next.

2.6.2 Domain Adaptation using Transfer Learning

As discussed earlier, the notion of domain can be different in different context. We

treat different sources of similarity text pairs as separate domains. For example,

news headlines, texts from community forums, image annotations, etc. The idea of

domain adaptation is that the domains have commonalities and differences,

therefore, one may be able to use the information from another domain. The

proposed domain adaptation model is illustrated in Figure 2.5b.

Our domain adaptation models are based on transfer learning approach (Pan

& Yang, 2010). Instead of using zero mean Gaussian parameters, the priors learned

from the other domain are used to initialize domain specific model co-efficients as

illustrated in Figure 2.5b. We refer such priors as informed priors. The mean of βd

(i.e., domain model parameters) is initialized with βp (i.e., prior parameters learned

from other domain). It allows domain specific model to tune its parameters using

the data from its own domain while some information of other domains might be

still useful for predicting similarity scores of the domain of interest. For instance,

models build using community forum texts can be adapted to news headlines by

initializing the model parameters of headline model (domain model) with that

learned from forum texts. This approach is more appealing when the domain

specific training data is scarce (because if trained with limited samples the domain

specific model can underfit) or when the target domain appears to be very new or

perceived to be very different from the dataset used to train the model. Partly, the

domain adaptation can also act as regularization by controlling the growth of the

parameter values of the domain model.

44

More formally, in Domain Adaptation model (DAM) or Transfer Learning

Model (TLM) the prior parameters (βp) are learned using out of domain data only.

For example, βp are learned using Forum data only and are used as Gaussian mean

priors for Headlines model. This would give us an idea of whether the out of domain

information (prior) help for the target domain.

We developed three different types of models and from which first two are

used for comparison purposes.

� Out of Domain Model (ODM): Model with parameters learned using out

of domain data only. The zero mean Gaussian priors are used to initialize

model coefficients.

� Uninformative Prior Domain Model (UPDM): The model parameters

are learned from domain data but initialized with zero mean Gaussian prior.

� Informed Prior Domain Model (IPDM): Model is developed from

domain specific data only but this time the Gaussian mean priors for

coefficients are learned from out of domain data. That is, IPDM model

coefficients are initialized using weights learned from ODM.

2.6.3 Evaluation Methods

The Bayesian approach is more expressive and intuitive to understand when

compared with frequentist methods but it is very subjective in evaluation as output

of a Bayesian model is a distribution rather than a single point estimate which is

easier to compare with human judgments and quantify the results, such as

calculating correlation scores. Also, the existing datasets have a single value of

similarity score assigned by human annotators (most often, the average of similarity

scores assigned by several annotators is published) for each sentence pair.

Therefore, in order to validate our models, we generated point estimates for

similarity scores (as expected values) by sampling from the output distribution of

45

similarity scores which we set to be a Gaussian distribution. The similarity score for

a given input x is calculated as:

µi = samplei(β0) + samplei(β1)x1 + ...+ samplei(βn)xn (2.8)

score(x) =
1

Ns

Ns∑
i=1

sample(N (µi, sample(σ)2)) (2.9)

where Ns - number of samples to use for score calculation. We discard the burn-in

samples and use the most recent samples as they tend to be more stable. We discuss

on this later.

The score(x) is compared with human judgment score for the record

corresponding to input x. In specific, we calculate the Pearson (r) correlation

between system output and the human rated scores. To validate our model, we

compared the results of our model with the results obtained using standard

least-square regression. However, it should be noted that the main difference is in

the interpretation of the output rather than the quantity.

Furthermore, in domain adaptation models (see Section 2.6.2), the results

obtained using Informed Prior Domain Model (IPDMs) were compared with two

different systems: (a) Out of Domain Model (ODM), and (b) Uninformed Prior

Domain Model (UPDM). The results of ODM model tells that how well the model

developed from another domain works for the domain of interest and comparing

IPDM with UPDM tells the benefits of transfer learning, i.e., the benefits of using

informed priors.

2.6.4 Experiments and Results

Feature Selection

Instead of working with all the features we selected the most predictive

features using Weka’s correlation based feature subsection selection tool

(CfsSubsetEval; Hall & Smith, 1998). We chose only 6 most predictive features.

46

Also, reducing the number of features made Bayesian models run faster. The

selected features include alignment based similarity and resultant vector based

similarity features among others.

Statistical Modeling Tool - OpenBUGS

We used one of the widely used statistical modeling tools called OpenBUGS

(Lunn et al., 2009) to develop our Bayesian models. It is one of the versions of

BUGS software package and is useful for statical modeling, such as performing

Bayesian inference using Gibbs sampling. It allows users to specify a statistical

model, of (almost) arbitrary complexity, by simply stating the relationships between

related variables. The software includes an ‘expert system’ which determines an

appropriate MCMC (Markov chain Monte Carlo) scheme (e.g. the Gibbs sampling)

for learning the specified model.

Results of Domain General Models

We built a domain agnostic model using all data in the training set presented

in Table 2.1 and evaluated in the test set presented in Table 2.2. The model

coefficients were Gaussian distribution with µ = 0.0 and prior for standard deviation

of output distribution was set to gamma distribution: Γ(g = 0.01, h = 0.01). The

number of iterations MCMC performed during model building by OpenBUGS tool

was set to 10,000 with 5,000 burn in steps. The thin step was 1, i.e., after burn in

all samples were used.

Table 2.4: Results of our domain general Bayesian models with different
configurations of model coefficients (β). The results which are better than LR

model results are in bold (B - Beta distribution, σ - precision).

Config Headlines Plagiarism Post Edit. Q-Q A-A W.Avg

LR 0.812 0.832 0.815 0.591 0.562 0.725
σ = 0.04 0.782 0.814 0.846 0.603 0.566 0.724
σ = 1*exp-6 0.781 0.814 0.846 0.601 0.565 0.723
B(0.1, 2) 0.727 0.773 0.813 0.597 0.513 0.685

47

The results are presented in Table 2.4. We have reported results of different

datasets in terms of correlation between system output and human assigned

similarity scores (see Section 2.6.3) as well as the weighted average of their

correlations. The number of sentence pairs in each subset in evaluation data was

used as weight. For comparison purpose, we also present the results obtained using

Least Square Regression (LSR). Our Bayesian models are linear in nature and LSR

is the frequentist counterpart of our models. We can see that the weighted average

result of our model (M1) with zero mean Gaussian prior for co-efficients is 0.724 and

is comparable with LSR results. In the first place, this validates that our Bayesian

implementation is correct.

Furthermore, the results of subset data (Post editing, Question-Question,

and Answer-Answer) are better than linear regression while the overall results are

comparable. Particularly, the results of our models (that used Gaussian distribution

for the parameters) for Post edited text are both 0.846 whereas it is 0.815 for LSR.

We also changed the prior parameters to get some sense of whether different priors

yield very different results. For instance, we changed model parameters to β(a, b)

instead of using Gaussian distributions. We found that the results are less good in

the later case. The parameters of the prior distributions (e.g., a and b in β(a, b))

were chosen empirically and only few results are accommodated in the table and

sensitivity of priors is analyzed in further details in Section 2.6.4. However, the

varying results with different priors suggest that some prior distributions happen to

be closer to the distributions that describes the underlying hidden parameters of the

domain and have great importance. Based on the results, the zero-mean Gaussian

prior which we chose initially has best described our model coefficients.

Next, we further analyze the sensitivity of the priors in the model outcome.

48

a b

Fig. 2.6: (a) Graph showing changing results (w. average correlation scores in the
test set) depending on shape of beta prior distributions (i.e., changing a and b in
β(a, b)) for model coefficients, (b) Shape of beta priors corresponding to the highest

and lowest results on (a).

Analyzing Model Sensitivity to Priors

In Table 2.4, we have presented results with few different priors: some are

zero mean Gaussian and a Beta distributions. Additionally, we chose Beta priors for

model parameters and performed experiments for further analysis on the sensitivity

(or effect) of model parameter priors in the model outcome. We chose beta priors as

they are more expressive in terms of representing different shape of data

distributions and we changed the shape of Beta distributions by varying values of a

and b in B(a, b) both in the interval of 0.25. The results are plotted in Figure 2.6a.

Figure 2.6a shows the results in test set with various values of a and b of the

beta priors used for model coefficients. The best result (avg. score = 0.714) among

them were obtained with B(a = 1.0, b = 2.0) The lowest results were obtained with

B(a = 0.25, b = 0.75). The difference in highest score and the lowest result was 4

correlation points. On the right (in Figure 2.6b), we have plotted the shape of Beta

distributions corresponding to highest and lowest results presented in (a). In both

cases, the densities of parameters are high in the lower range (< 0.1) particularly

the one which belongs to lowest results indicating that the model coefficients need

to be shifted towards zero but not too harshly. These results in addition to the

results presented in Table 2.4 show that the model outcome can vary greatly

49

depending on the priors we choose. But at the same time it enables us to use the

prior information which is one of the coveted attributes of Bayesian models.

MCMC Convergence Diagnostics

Although it is virtually impossible to certainly know whether the MCMC

(Markov Chain Monte Carlo) process was converged, we have run diagnostics tests

that are considered good indicators of convergence. In that, we calculated

gelman-rubin convergence factors (also known as shrink factor or potential scale

reduction factor; Gelman & Rubin, 1992) and at the same time also observed some

traceplots with different number of iterations for MCMC sampling (Gibbs

sampling). The gelman-rubin factor (GR factor in short) looks at the variance of

samples within the chain and across chains to calculate a single score and the factor

less than 1.1 is considered as a good indicator of convergence of MCMC sampling,

i.e., approximate convergence is diagnosed when the upper limit of shrink factor is

close to 1. Calculating gelman-rubin factor can be automated whereas the

traceplots help us visualizing the stability of the sampling distribution.

The Figure 2.7 shows samples of traceplots and shrink factor plots with 2,000

iterations and 10,000 iterations of MCMC sampling of a model parameter. We used

samples from 3 chains for shrink factor calculation. In the figures we can see that

the samples were not very stable with 2,000 iterations and the shrink factor also did

not descend to 1.1 or lower. On the other hand, we obtained shrink factors less than

1.1 when number of iterations were set to above 5,000. Also, the traceplots show

more stable samples being produced towards the end indicating the convergence of

sampling. We repeated these tests with some other parameters and found the

similar pattern. Therefore, we set number of iterations to be at least 10,000 in all of

our experiments.

50

a b

c d

Fig. 2.7: Trace plots (top) and gelman-rubin convergence factor plots (bottom) with
2,000 iterations (left) and 10,000 iterations (right) for a model parameter.

Results of Transfer Learning Models

In order to study domain adaptation using transfer learning, we selected data

from three domains: news headlines, community forum texts, and image

annotations. The former two are selected from Table 2.1 and Table 2.2. The later

one (image annotations) was added particularly for this study. We selected these

domains for our study as the number of records in each type was quite enough for

splitting into training and test. Once we collected the data, we shuffled the records

in each group and split each of them into two sets - training and test. In each case,

we allocated 1,000 records for training and the rest of the data was allocated for the

evaluation. The equal number of training data was used for uniformity and fairness

of comparisons. These datasets are summarized in Table 2.5.

By using datasets from three different domains as shown in Table 2.5, we had

51

Table 2.5: The datasets used for domain adaptation using transfer learning.

Domain Training Test Description

Headlines (HDL) 1000 492
Headlines from training set
(in Table 1)

Forum (FRM) 1000 427
Deft-forum, Belief, Answers-forums,
Answer-answer combined

Images (IMG) 1000 499
Data released as part of STS 2015,
and STS 2014 evaluation

six different pairs of out-of-domain and in-domain settings. For example, in one

setting we learned parameters from headlines and used those parameters as priors in

models developed from forum data. In this scenario, the model developed from

headlines is considered as out of domain model (ODM), model developed from

forum data with zero mean Gaussian prior is uninformed prior domain model

(UPDM), and when the model parameters were initialized using those learned from

headlines as informed priors is called informed prior domain model (IPDM). In order

to study the effect of size of domain specific data, we built domain models (UPDM,

and IPDM) with varying number of training records (from 100 to 1000). In each

case (ODM, UPDM, or IPDM), we evaluated our models on domain specific test

samples which is in this example the test set of forum data presented in Table 2.5.

The results of our domain adaptation models are plotted in Figure 2.8. In

each of the six domain adaptation settings of ODM and DM, we can see that results

of domain models with uninformed prior (i.e., zero mean Gaussian prior) are very

lower than the adapted models when the number of domain specific training data is

small (<600). When domain specific training size is increased, the results are

mixed. In FRM → HDL transformation (in Figure 2.8a), the results of IPDM

model is better than both ODM and UPDM showing the advantage of domain

adaptation even when the domain specific training size is quite big (up to 1000). In

an another example of HDL→ IMG (in Figure 2.8e), when the training data is

52

a b

c d

e f

Fig. 2.8: Graphs showing the results of domain adaptation with varying size of
domain specific training data for six different transformations corresponding to each
permutation of Headlines, Forums, and Images data. The ODM results are invariant
of domain specific training data but are displayed for the ease of comparisons with

UPDM and IPDM.

53

Fig. 2.9: The types of datasets (domains) and parameter weights learned using
linear Bayesian models.

towards the right end, the results of IPDM are better than the ODM but are less

than UPDM. But it still indicates informed prior domain model is better than out

of domain model.

On the other hand, the FRM → IMG (in Figure 2.8c) results are more or

less same when the domain specific training size is large. It indicates that the two

domains are quite similar in nature. But it should be noted that there is clear (and

consistent) win of using transfer learning approach particularly when the domain

specific training data has up to several hundred records. It shows that the level of

performance of ODM is good enough and is expected and the domain adaptation is

useful in certain situations. But when compared UPDM and IPDM, the IPDM has

performed better or at least same as UPDM in most of the cases, including the

situation where the size of training data is large. This shows the advantages of

transfer learning. But on the other hand, the frequentist methods do not allow us to

use any prior knowledge and in the situation where the domain specific training

data is small, the model will perform very poorly in domain specific test data.

We also built Bayesian linear models using training data of each of the

domain and plotted the average values of samples of each model coefficients to get

some insight into the difference in domains. They are presented in Figure 2.9. The

model coefficients of Images data model and Headlines data look somewhat similar

compared to Forum data. Though the density plots (in Figure 2.3) also show some

54

variations in distributions of scores across domains, in general, our datasets seem to

have more similar pattern. However, we expect that the results will be different

when the domains are quite different.

Overall, the results show the benefit of domain adaptation, most

importantly, when the number of domain specific sample size is small and we are

not sure about using out-of-domain data. We did not combine the out-of-domain

data and the in-domain data for model building for two different reasons (a) the

focus of this experiment was on using the transfer learning approach which is one of

the salient features of Bayesian models, and (b) it is not always possible to retrieve

the out-of-domain data but previously built (and published) model parameters

maybe available as rough estimates and can be used with some confidence to

initialize domain specific models and when the domain specific training data is

large, the model parameters will get updated with no or little harm, if not

beneficial, on the domain specific model.

2.7 Conclusion

In this chapter, we have presented our two different approaches to measuring the

semantic similarity of texts at sentence-level. In one approach, we built Support

Vector Regression (SVR) model with many features. Our models were evaluated by

third person using a dataset that was not known during the model development.

The correlation of our model predicted similarity scores and human judgments was

up to 0.83 for some of the datasets in evaluation data released during SemEval 2016

STS challenge. Our system was one of the top performing systems among dozens of

submitted systems in SemEval. Moreover, in comparison to many other systems,

our models are more robust as we developed our models using a single set of data

and applied to all the data in the evaluation set. In another words, we did not tune

our models for each type of evaluation data.

In an another approach, we have modeled semantic similarity

55

probabilistically and proposed Bayesian models for measuring the similarity between

sentences. We also proposed a domain adaptation approach using transfer learning.

Our results indicate that the domain specific models adapting Gaussian mean priors

learned from out of domain data performed better than the zero mean Gaussian

models developed only from domain data as well as the domain general models,

particularly when the domain data is small in size (< 600). Overall, the Bayesian

models are more expressive than frequentist counterparts as they allow us to use the

prior knowledge of the parameters which may be updated based on the observations

and the similarity output is modeled probabilistically which is more interpretable

compared to the point estimates.

Though we have not presented the results of our word-to-word similarity

models, they are in fact integral part of many sentence similarity methods and we

have worked on word level similarity as well. Furthermore, we have proposed other

models and developed tools to facilitate measuring the semantic similarity. We will

further discuss on these and our future directions in Chapter 7.

56

Chapter 3

Pooling Word Representations across Models

3.1 Introduction

Different approaches have been proposed over the years to represent words, phrases,

sentences, or even larger texts in continuous vector forms (also called embeddings)

(Landauer et al., 1998; Baroni & Zamparelli, 2010; Turian, Ratinov, & Bengio,

2010; Collobert et al., 2011; Mikolov, Chen, Corrado, & Dean, 2013; Pennington et

al., 2014; Baroni, Dinu, & Kruszewski, 2014; Yu & Dredze, 2014; Iacobacci,

Pilehvar, & Navigli, 2015). These vector based representations have been used in

many Natural Language Processing (NLP) applications (Manning, Raghavan,

Schütze, et al., 2008; Collobert et al., 2011; Socher et al., 2013; Lei, Xin, Zhang,

Barzilay, & Jaakkola, 2014). Preferably, and which is often the case, the

representations are derived in an unsupervised way from extremely large collections

of texts. For instance, the pre-trained Word2vec (Mikolov, Chen, et al., 2013)1 and

GloVe (Pennington et al., 2014)2 word vector representations were developed from

texts containing billions of tokens covering millions of unique words: the pre-trained

Word2vec model covers 3 million unique words, the GloVe model has a coverage of

1.9 million words, and a Latent Semantic Analysis (LSA) model developed ourselves

from the whole set of Wikipedia articles (LSAwiki; Stefanescu et al., 2014b)3

contains representations for 1.1 million words4.

While these are impressive numbers compared to manually created resources

such as WordNet (Miller, 1995), it is important to note that the aforementioned

word representation models share a limited number of words, as illustrated in

1https://code.google.com/p/word2vec/

2http://nlp.stanford.edu/data/glove.42B.300d.zip

3Wiki NVAR f7 at http://semanticsimilarity.org/

4We have used ‘token’ and ‘word’ interchangeably though they are not precisely the same.

57

Fig. 3.1: Vocabulary coverage of three different pre-trained models (k - thousand, m
- million).

Figure 3.1. The GloVe and Word2vec have about 154,000 words in common. Only

about 107,000 words are common to all three models, which equates to only 3 to

10% of the words depending which model’s vocabulary size is used as a reference.

This clearly indicates that a significant chunk of words in each of these models are

unique to the respective models and that they are missing from the other models.

For example, the word “Totalizator” is present in Word2vec model but not in other

two models. Therefore, systems using the LSAwiki or GloVe model will have

difficulty processing the word “Totalizator” because of the missing word

representation whereas systems using Word2vec model will not encounter this

situation, and so on.

Even though these numbers and the overlap in vocabulary among models can

vary depending on the source of data used to build the models and the nature of

preprocessing steps performed (e.g., lemmatization keeps only the base or dictionary

form of the words), we will not have any single model that covers all the words in

the web, for example. On the other hand, by design, many (if not all) existing NLP

algorithms cannot work with multiple types of representations side by side.

Accepting set of heterogeneous representations can greatly increase the complexity

of such algorithms.

Yet another, better approach to the problem of missing word representations

in vector based models, which we propose and explore in this chapter, is to

automatically map word vector representations from one model (where they are

58

present; the source model) to another (where they are missing; the target model).

We used Neural Network (NN) models for such mappings. That is, we make use of

existing word representation models in combination with the NN-based mapping

approach to extend the coverage (i.e., expand the vocabulary) of a given target

model. The benefit of our approach is that we extend the coverage of a target model

without the need to collect any extra texts and re-train the model, which could be

non-trivial, as already mentioned, because such representation models are generally

developed by different groups or organizations using non comparable set of corpora

and obtaining all such corpora is not always possible due to various reasons

including copyright and privacy issues.

Using our approach we can expand, for instance, the Word2vec, GloVe, and

LSA models coverage to about 5.2 million unique words while showing that the

transformed representations are well correlated (average correlation up to 0.801 for

words in Simlex-999 dataset) with the native target model representations

indicating that the transformed vectors can effectively be used as substitutes for

native word representations of the target model. Also, the process can be

automated if pre-trained word representation models are available. We rely on a

novel Neural Network (NN) based approach to obtain vector-based representations

for missing words in a target model from another model, called the source model,

where representations for these words are available.

We have evaluated our approach intrinsically and extrinsically (see

Section 3.4) on all possible source → target model permutations of three different

pre-trained word vector models: word2vec, GloVe, and LSAwiki. The results show

that obtaining word representations for one model from another without much loss

of representation power relative to the native target vectors is mostly possible and

indicate that the transformed vectors can be used to augment the target models.

59

3.2 Related Work

The issue of handling unknown and missing words has been previously explored to

some extent. Bengio, Ducharme, Vincent, and Janvin (2003) and Alexandrescu and

Kirchhoff (2006) proposed deriving continuous word representations for unknown or

missing words in Neural Language Models (NLMs) based on the words in context.

However, (full) context of a word is not always available. Mikolov, Sutskever, et al.

(2013) demonstrated that Word2vec vectors capture enough syntactic and semantic

linguistic regularities to derive vector representations of missing words based on

simple vector operations. For example, the following expression illustrates a

singular/plural relation: v(‘cats’) = v(‘dogs’) - v(‘dog’) + v(‘cat’). However, such

nice linguistic regularities might not hold for complex and rare words and their

vector representations might not be properly estimated (Luong, Socher, & Manning,

2013). Furthermore, it’s hard to automatically find out such relations, such as in the

case of proper nouns. Also, it will not work if certain word representations that are

needed on the right hand side of an expression like the one above are not available.

Recursive Neural Networks (RNNs) have also been used to construct missing

word representations from the vectors of words’ morphemes (Luong et al., 2013).

This approach works only if the missing word can be broken into morphemes, which

in the case of some words such as proper nouns this is not possible, and

representations for morphemes are available. In some of our models, we used

representation of a word’s synonyms, if exist, obtained from WordNet as a

substitute representation for the target word (Banjade, Niraula, et al., 2015).

However, this only works if representations for the word’s synonyms exist, which is

not always the case.

Though, to some extent, these techniques can handle the issue of missing

word representations, the processes are not very straightforward to automate. Also,

the increase in coverage will be limited as these methods have difficulty handling

60

a b

Fig. 3.2: Schematic diagram of (a) A transformation model, and (b) Multiple
source-to-target transformations (NN - Neural Network, T - Transformation

function/model, SrcV - Source model vector, TrV - Transformed vector, TgV -
Target model vector).

named entities which constitutes a large chunk of the vocabulary derived from very

large corpora. In our mapping based approach, we directly transform word

representations from one model to another model effectively pooling together their

vocabularies (i.e., expanding each model’s vocabulary). Additionally, this approach

has potential to be equally applicable to phrase level or sentence level

representations which have much more acute missing representation issues as the are

even sparser than in the case of words.

3.3 Mapping Approach

As discussed previously and illustrated in Figure 3.1, words missing from a model

may be present in another model. Therefore, by learning a word vector mapping

model (or function) that can map one vector representation onto another,

representations for missing words in the target model can be obtained from source

model where the words are present. The schematic diagrams in Figure 3.2 illustrate

this approach.

TrV = Tsource→target(SrcV) (3.1)

V oc∗target = V octarget ∪ (∪Si=1V ocsource(i)) (3.2)

In Eq. 3.1, Tsource→target is a transformation model (function) corresponding

to the source → target transformation. The transformation model consists of a

61

feed-forward Neural Network. The input to the model is in the form of source model

vectors (SrcV) and the output of the transformation model (TrV) is similar to

target model vectors (TgV). That is, ideally, the TrV should be the mirror image of

TgV . The source vectors and target vectors can be of different types. For instance,

the SrcV can be LSA vectors while the TgV can be word2vec vectors and vice

versa. Also, the dimensionality of the source and target vectors may be different.

And using S different source models (as depicted in Figure 3.2b), the

effective size of the target model (V oc∗target) will be increased greatly, particularly

when there is less overlap among model vocabularies. For example, if one model is

developed using corpus containing academic texts, such as Touchstone Applied

Science Associates (TASA) corpus (Landauer et al., 1998) and another model is

built from Wikipedia articles, then many words in Wikipedia will be missing in the

TASA-based model (the vocabulary of Wikipedia-based model is a much larger than

that of the TASA-based model). The proposed transformation model that can map

vectors derived using Wikipedia onto the TASA-based model, thus greatly

increasing the coverage of the latter. Similarly, the TASA-based model’s word

coverage can be further increased by adding other source models.

Specifically, we developed Neural Network models to map between any two of

the following vector-based word representation models: LSA, word2Vec, and GloVe.

There are six different transformations such as LSA-to-GloVe or word2vec-to-GloVe.

It is important to note that these models are quite different in their underlying

principles to derive word representations and that they are all unsupervised. LSA is

an algebraic method. Word2vec is a feed-forward neural network based language

model and its bag of word model utilizes the context of four words (two before and

two after). GloVe model is based on algebraic as well as probabilistic approach

theories.

The process of building mapping models and then mapping vectors from one

62

model to another can be automated allowing us to seamlessly use several word

representation models as source to expand the vocabulary of a model of interest (see

Figure 3.2b).

3.4 Evaluation Methods

We evaluated our transformation approach intrinsically and extrinsically. We used a

simulation based approach in both cases, i.e., we simulated a set of missing words

from an existing target model by removing them from it. This enables us to

accurately assess the transformed vectors (TrV s) with respect to the native vectors

in target model (TgV s). It should be noted that in the ideal case, the TrV would

be same as TgV . That is, for developing and evaluating purposes of our NN based

transformation models, we removed certain words that are common in the source

(SrV s) and target model (TgV s) from the target model and then obtained

representations for these words from the source model using our transformation

model. We then compared the obtained transformed representations with the native

representations from the target model (the vectors that were purposely removed) to

check if they are alike (intrinsic evaluation) and perform similarly in NLP

applications such as word-to-word similarity computations (extrinsic evaluation).

Intrinsic evaluation. We chose as our simulated missing words a set of N words

that are present in both the source and target models so that the TrV could be

directly compared to the TgV , i.e., the representations of the underlying target

model itself. Then, we calculated an average correlation (r) score (AvgCorr)

between the two vectors as shown in Eq. 3.3.

AvgCorr =
1

N

N∑
i=1

r(TrVi, T gVi) (3.3)

Extrinsic evaluation. For an extrinsic evaluation of the transformed vectors, we

used a word-to-word similarity task which is one of the approaches used to measure

the quality of word representations. If word representations are good, then similar

63

words will lead to high similarity score whereas dissimilar words will lead to low

similarity score. Using a benchmark dataset containing pairs of words together with

human-expert judgments of similarity and which is described in Section 3.5, we

computed similarities between vector-based word representations (Sim(Vw1, Vw2)) of

words using the standard cosine similarity measure (normalized dot-product)

applied on the transformed vectors TrV s of those words. Then, an overall

correlation (r) between the similarity scores and human judgments’ scores were

computed as shown below.

TrSim = r({(Sim(TrVi1, T rVi2), Hi)}) (3.4)

TgSim = r({(Sim(TgVi1, T gVi2), Hi)}) (3.5)

where 1 ≤ i ≤ K, K: size (# word pairs) of word similarity evaluation

dataset, Hi: human rated similarity score for ith word pair in the set.

We repeated the process using TgV s. When using the transformed vectors

we obtained an overall correlation similarity score denoted as TrSim and when

using the native vectors the overall correlation score across all word pairs in our

benchmark dataset is denoted as TgSim. A comparable TrSim score to the TgSim

score would indicate that the transformed vectors can act as a substitute for word

representations of the target model.

Baselines. We also used two baseline approaches to obtain transformed

representations. A baseline approach used randomly chosen word vectors from the

source model to transform onto the target model (we denote this transformation as

RandV@Src). A second baseline approach used randomly chosen word vector

representations from the target model itself without using any transformation model

(RandV@Trg). The RandV@Src and RandV@Trg vectors were then compared

with the actual, native word vector representations. These baselines help detect

64

whether the system is actually learning something or there is simply a random

mapping.

3.5 Data

In this section, we start by briefly describing the word representation models which

we chose for experimental evaluation of our proposed approach. Then, we describe

the word-to-word similarity benchmark dataset and the training, evaluation, and

test data generated from the word representation models for building and evaluating

our transformation models.

Selected word representation models. We selected three different word

representation models: (a) LSA model built using whole Wikipedia articles, (b)

Word2vec model, and (c) GloVe model. These models were developed independently

by different groups and were downloaded “as-is” without any intervention on our

part as our purpose to take advantage of existing models without altering them in

any way.

� Word2vec: This model is a pre-trained vector model based on the Google

News dataset (about 100 billion words) and was developed by (Mikolov,

Sutskever, et al., 2013) at Google. The distributed word vectors were

computed using feed forward neural network based on a skip-gram model.

� GloVe: The GloVe (Global Vector), developed at Stanford University, is an

unsupervised learning model for representing words (Pennington et al., 2014).

The model was trained on non-zero elements in a global word co-occurrence

matrix. We used the pre-trained model GloVe-42B which was trained on 42

billion words of Common Crawl corpus and it contains about 1.9 million

unique tokens.

� LSAwiki: We used the LSA model developed ourselves (Stefanescu et al.,

65

2014b) from the whole set of English Wikipedia articles (an early-2013

snapshot). The model was generated considering the lemmas of the content

words that appeared at least 7 times in the corpus. This model contains 1.1

million unique entries.

All these models have 300-dimensional vectors, which, in the context of our

research, is a pure coincidence as the dimensionality of various source and target

models can be different.

Simlex-999. Simlex-999 (Simlex; Hill et al. (2014)) is a recently released dataset

for word-to-word similarity evaluation. In this dataset, the related but semantically

less equivalent word pairs are rated with low similarity scores by human judges. For

instance, lemon and tea are related but not similar, and therefore, they are rated

with low similarity score. The dataset consists of 999 word pairs. But some of the

words in Simlex-999 dataset were not available in LSAwiki and for consistency of our

evaluation, we used only 955 word pairs that are available in all three word

representation models. We used this dataset for both extrinsic and intrinsic

evaluations.

Training, validation, and test datasets. From the pre-trained Word2vec,

GloVe, and LSA models, we extracted 107,813 vectors corresponding to the common

words in all three models (only 107,813 words were common in all three models).

For each pair of models, we set-aside 1,017 Simlex word vectors for intrinsic

evaluation and the remaining ones were randomly assigned for training (95,000 pairs

of vectors), validation (5,000 pairs), and intrinsic evaluation (5,000 pairs or 5k-test).

Simlex words were used for both intrinsic as well as extrinsic evaluation. That is, we

used two datasets (Simlex, and 5k-test) for intrinsic evaluation. The difference in

Simlex and 5k-test is that the words in Simlex are curated words and contains only

66

Table 3.1: Summary of training, validation, and test datasets. Pair of vectors
correspond to the words common to both source and target model. The information

in this table applies to each transformation model.

Dataset # pairs Remarks

Training vectors 95,000 Used to build transformation model.
Validation vectors 5,000 Used for validating transformation model.
Simlex word vectors 1,017 Intrinsic evaluation (set 1).

5k-test vectors 5,000 Intrinsic evaluation (set 2).
Simlex words 955 Extrinsic (word-to-word similarity) evaluation.

Baseline (Rand@Src) 6,017 Source model vectors were randomly selected.
Baseline (Rand@Trg) 6,017 Randomly selected target model vectors used as TrV s.

common and meaningful words whereas the words in 5k-test are randomly selected

from the vocabulary containing millions of words. All the words in 5k-test are not

necessarily the meaningful ones (due to typos and other reasons) but this test set is

bigger and practically more general. The remaining 1,796 vectors from the common

vocabulary along with other (excluding vectors in training, validation, and test:

Simlex and 5k-test) randomly selected vectors (6,017 in total) from the

corresponding source/target model were used for developing the baseline

transformations, RandV@Src and RandV@Trg. The vectors were normalized by

their L2-norms bringing them into the same scale. These datasets are summarized

in Table 3.1.

3.6 Experiments and Results

We built NN models with a number of input units and output units equal to the size

of the vectors in corresponding source and target models, respectively. They all were

300-dimension vectors (which was a pure coincidence and not a constraint of our

mapping model). Therefore, the number of input units and output units were 300.

We added only one hidden layer keeping the model relatively simple and

considering potential sparseness during training and performed experiments with

varying number of hidden units. We developed those models using the neural

network toolbox in Matlab (R2015a). The NN learning algorithm was set to the

67

Table 3.2: Results of vector transformation models (↓ - same as next rows, Std -
Standard deviation).

Source→Target
Word Similarity AvgCorr (TrV, TgV) (Std)
TgSim TrSim Simlex 5k-test

RandV@Src ↓ ∼0.0 0.0-0.251 0.0-0.187
RandV@Trg ∼0.0 0.005-0.136 0.012-0.100

Word2vec→GloVe
0.427

0.446 0.748 (0.085) 0.488 (0.180)
LSAwiki→GloVe 0.284 0.677 (0.092) 0.380 (0.160)

Word2vec→LSAwiki 0.276
0.301 0.791 (0.104) 0.553 (0.214)

GloVe→LSAwiki 0.292 0.801 (0.103) 0.541 (0.217)
LSAwiki→Word2vec

0.469
0.262 0.538 (0.089) 0.515 (0.147)

GloVe→Word2vec 0.369 0.676 (0.073) 0.610 (0.116)

Scaled Conjugate Gradient (Møller, 1993) with logistic activation function and the

number of iterations was set to 1,000.

Each source → target transformation model was trained using the training

dataset of 95k pairs of vectors. We did experiments with different number of hidden

units from 100 to 800 incrementing by 100. The AvgCorr (see Eq. 3.3) on the

validation set was used to calibrate the number of hidden units in the NN models.

The results were improving with the increasing number of hidden units up to 600.

However, the differences among the results with 400-600 hidden units were very

small in all models5. Therefore, we chose to use 600 hidden unit models for all pairs

of source → target models. We then evaluated the learned models on the test data

(Simlex and 5k-test). The results are summarized in Table 3.2. The TgSim column

presents the correlations (r) between the word similarities computed using target

vectors and the human annotated similarity scores (see Eq. 3.5), for the word pairs

in the Simlex dataset. The TrSim column shows the same correlations for word

similarities but this time using transformed vectors (see Eq. 3.4). The TrSim scores

when compared with TgSim scores indicate how well the transformed vectors can

act as a substitute for word representations in the target model. It is customary to

5In order to reduce the complexity of the model (or risk of overfitting), the number of hidden units
could be set to 500 or 400 with small reduction in performance.

68

interpret the word similarity results in TrSim with respect to TgSim as the goal

here is to have the transformed vectors that perform as good as the native target

model vectors. In fact, Simlex is considered as a difficult dataset when compared

with other popular word similarity evaluation datasets such as WordSim-353

(Finkelstein et al., 2001) because the related but not similar word pairs (e.g., bread

and butter) in it are also assigned low similarity scores. And the correlation between

similarity scores obtained using state-of-the-art word representation model and

human judgment scores was found to be less than 0.5 for Simlex (Hill et al., 2014).

We can see in Table 3.2 that the word-to-word similarity results using the

transformed vectors (TrSim) are comparable or better in some cases with the

results obtained using the native target model vectors (TgSim). For instance, the

correlation between the similarity scores obtained using the native GloVe vectors

and human judgments is 0.427 while the correlation (with human judgments) of

similarity scores obtained using vectors transformed to GloVe from the Word2vec

model is better at 0.446 (see Word2vec→GloVe in Table 3.2). However, some others,

particularly the results obtained using transformations from LSAwiki are relatively

lower than those obtained by using the native target model vectors directly. For

instance, TgSim for GloVe is 0.427 but the results using the vectors transformed

from LSAwiki to Glove is 0.284 (in LSAwiki→Glove). But still, the correlation of

0.284 can be considered as good given the difficulty of Simlex data. Additionally,

for each transformation we calculated correlation score between word-to-word

similarity scores calculated for the Simlex dataset using the target model vectors

and the similarity scores calculated using the transformed vectors. This correlation

score was up to 0.842 and it was for Word2vec→GloVe transformation. It was

greater than 0.71 for four of the six different transformations and the lowest one was

0.633 for LSAwiki→Word2vec. This indicates that the transformed vectors mostly

69

behave similar to the target model vectors in calculating word-to-word similarity

and, therefore, the transformed vectors can be used to augment the target model.

Moreover, the average correlation score of TrV s with corresponding TgV s (in

AvgCorr column) for Simlex words was up to 0.801 (in Glove→LSAwiki) and it was

up to 0.610 (in Glove→Word2vec) for 5k-test. These correlation scores indicate that

the transformed vectors closely resemble the target model vectors. In average, the

AvgCorr scores across all transformations were 0.705 and 0.514 for Simlex words

and words in 5k-test, respectively. However, some transformations, particularly from

LSAwiki yielded relatively lower scores. This is on a par with the word-to-word

similarity results. The loss can be partly attributed to the transformation process.

But at the same time, the results of transformation from Word2vec and

GloVe to LSAwiki were better (see Word2vec→LSAwiki and Glove→LSAwiki).

Therefore, it seems that the Word2vec model and the GloVe model we used were

more effective than LSAwiki for the task we chose for the evaluation of our models

(i.e., word-to-word similarity task). Likewise, it might mean that Word2vec and

GloVe models are more powerful representation models than LSAwiki and it is hard

to obtain representations of their form from LSAwiki. But this information may not

be sufficient enough to draw conclusions about this point as the scientific

community is still striving towards finding a common ground on what measures to

use for evaluating the word representation models and which word representation

models are more powerful than others (Batchkarov, Kober, Reffin, Weeds, & Weir,

2016) by organizing events, such as RepEval (Representation Evaluation) workshop

(Nayak, Angeli, & Manning, 2016).

Also, the correlations are relatively stronger and less spread (i.e, Std values

are low) for Simlex than 5k-test. It seems that some of the words in 5k-test are not

quite common (or meaningful) as compared to the Simlex words and transformation

of such words’ representations were not very effective. For example, we have

70

Table 3.3: Examples of words in 5k-test set for which the correlation between
Word2vec model representations and the representations obtained from GloVe by
using our transformation model (GloVe→Word2vec) were high (on left), and low

(on right).

Word Corr. (TrV , TgV)

whimsical 0.8428
fashionable 0.8421
thinkers 0.8413
kayaking 0.8411
likable 0.8403
estrategia 0.8400
nicer 0.8396
whiny 0.8391
lovely 0.8391
puedes 0.8374

Word Corr. (TrV , TgV)

poins 0.2225
witrh 0.2184
killingly 0.2159
poppermost 0.2120
pacifically 0.2046
witih 0.1945
tasman 0.1887
biolabs 0.1830
superboard 0.1734
pitchside 0.1472

presented, in Table 3.3, examples of words in 5k-test for which the correlation

between Word2vec model representations (TgV s) and the representations obtained

from GloVe (TrV s) by using our transformation model GloVe→Word2vec are high

(on left) and low (on right). We can see that the words on the right are rare words

or misspelled words. Similarly, the correlation between TgV and TrV for misspelled

word “whihc” found in 5k-test is less than 0.35 in all source → target

transformations.

Results for the RandV@Src and RandV@Trg baselines are presented as a

range because the results were similar for all six different transformations. The

highest average correlation (AvgCorr) was 0.251 for the GloVe to LSAwiki

transformation of Simlex words. In all other cases, the correlations were below 0.2.

The word similarity results (TrSim) were around zero. These mean that providing

random vectors from the source model as input or using randomly selected words

for missing words in the target model has no significant outcome. Additionally, we

checked the direct correlation between native source and target vectors in each case

71

but it was approximately zero when tested on 5k-test. These indicate that learning

a mapping function is needed.

3.7 Conclusion

We have presented a novel approach of expanding the vocabularies of word

representation models by mapping vectors from one model (source) to another

(target). Our results with three different pre-trained models indicate that the

Neural Network based vector mapping approach is mostly effective. The average

correlation between the target model’s vectors and the transformed vectors was

upto 0.801 for the words in Simlex-999 dataset. The extrinsic evaluation using

word-to-word similarity task with Simlex dataset shows the results obtained using

the transformed vectors are comparable with that of using the target model’s

representations. The results indicate that the transformed vectors mostly behave

similar to the target model vectors and, therefore, the transformed vectors can be

used with confidence to augment the target model.

Such type of mappings that vastly increases the coverage of a target model

can be very useful in many NLP applications which most likely need to handle

missing words or phrases. Our experiments with pre-trained models: Word2vec,

GloVe, and LSAwiki show that their representations can be pooled together to have

vocabulary coverage of 5.2 million words for each model where the maximum

number of words in a single model was about 3 million. However, this approach is

particularly important when the representation models are developed from diverse

corpora and there is less overlap in their vocabularies, and it can alleviate the

problem of missing word representations in many NLP applications. Moreover, our

approach is very straightforward and can be automated once a set of representation

models are available.

Nevertheless, finding out whether certain type of source or target model

makes transformations more or less effective is a topic of future investigation.

72

Additionally, the proposed solution can be used to obtain phrase representations

which are even sparser than words. It is another interesting topic for future

research.

73

Chapter 4

Open-Ended Answers Assessment in Tutorial Dialogue

4.1 Introduction

Open ended answers are responses produced by students to questions, e.g. in a test

or in the middle of a tutorial dialogue. Such answers are very different from answers

to multiple choice questions where students just choose one or more options from

the given options and they are more easier to evaluate than open ended answers. In

this chapter, we present Probabilistic Soft Logic (PSL; Kimmig et al., 2012) model

for automatic assessment of open-ended answers in dialogue based intelligent

tutoring systems. We also present an evaluation dataset (called DT-Grade; named

after DeepTutor tutoring system) containing 900 responses that we annotated for

their correctness (Banjade, Maharjan, Niraula, Gautam, et al., 2016).

Typically, automatic answer assessment systems assess student responses by

measuring how much of the targeted concept is present in the student answer. To

this end, subject matter experts create target (or reference) answers to questions

that students will be prompted to answer and the semantic similarity between

student’s answer is measured with reference answer to evaluate the correctness of

the answer. As discussed in Chapter 1, the true understanding of student answers is

intractable as it requires collecting and inferring over a huge knowledge, including

the linguistic knowledge, domain knowledge, and world knowledge. As a practical

alternative, semantic similarity methods are applied. In this approach, the high

similarity between student answer with reference answer indicates the answer is

correct. Otherwise, the answer is partially correct, incorrect, and so on. This is in

fact a de facto standard in automatic answer assessment (see Section 4.2.2). It is

fast, does not require too much of information, and found to be effective in general.

However, the implied assumption in similarity based answer assessment is

74

that the student answer and the reference answer are self contained (i.e.,

grammatically and semantically complete). But almost always, the student

responses depend on the context (at least broadly on the context of a particular

domain) but it is more prominent in some situations. Particularly in conversational

tutoring systems, the meanings of students’ responses often depend on the dialogue

context and problem/task description. For example, students frequently use

pronouns, such as they, he, she, and it, in their response to tutor’s questions or

other prompts. In an analysis of tutorial conversation logs, Niraula et al. (2014)

found that 68% of the pronouns used by students were referring to entities in the

previous utterances or in the problem description. In addition to anaphora, complex

coreferences are also employed by students. Also, in tutorial dialogues students

react often with very short answers which are easily interpreted by human tutors as

the dialogue context offers support to fill-in the blanks or untold parts. Such

elliptical utterances are common in conversations even when the speakers are

instructed to produce more syntactically and semantically complete utterances

(Carbonell, 1983). By analyzing 900 student responses given to DeepTutor tutoring

systems, we have found that about 25% of the answers require some contextual

information to properly interpret them.

As illustrated in the Table 4.1, the student answers may vary greatly. For

instance, answer A1 is elliptical. The “bug” in A2 is referring to the mosquito and

“they” in A3 is referring to the amount of forces exerted to each other. Due to such

variations in the answer, we augment the semantic similarity model by adding

additional information, such as question difficulty. For instance, a high knowledge

student answering many of the difficult questions correctly will probably answer the

current question correctly.

We have proposed a Probabilistic Soft Logic (PSL) model, a version of

Markov Logic Network (MLN; Richardson & Domingos, 2006), which works based

75

Table 4.1: A problem and some student answers to the given question. These
examples were extracted from the records of student interactions with DeepTutor.

Problem description: A car windshield collides with a mosquito, squashing it.

Tutor question: How do the amounts of the force exerted on the windshield by the mosquito

and the force exerted on the mosquito by the windshield compare?

Reference answer: The force exerted by the windshield on the mosquito and the force exerted

by the mosquito on the windshield are an action-reaction pair.

Student answers:

A1. Equal

A2. The force of the bug hitting the window is much less than the force that the window

exerts on the bug

A3. they are equal and opposite in direction

A4. equal and opposite

on logical and probabilistic reasoning framework. PSL allows us to model the

complex interactions between the stochastic variables, such as student’s knowledge

level, question difficulty and the correctness of the student answer and perform

inferencing over Probabilistic Graphical Model (PGM).

Also, the existing datasets (described in Section 4.2.1) contain pairs of

student answers and reference answers annotated for their correctness and such

student answers are mostly self contained. Therefore, in order to foster research in

automatic answer assessment in dialogue context (also in general), we annotated

900 student responses gathered from an experiment with the DeepTutor intelligent

tutoring system (Rus, Niraula, & Banjade, 2015; Rus, DMello, et al., 2013). We

have made the dataset freely available for research purposes1. We also present a

model which is based on word weighting and alignment based semantic similarity

feature.

1http://language.memphis.edu/dt-grade

76

4.2 Related Work

In this section we discuss on the available datasets and the methods proposed in the

literature.

4.2.1 DataSets

Nielsen, Ward, Martin, and Palmer (2008) described a representation for reference

answers, breaking them into detailed facets and annotating their relationships to the

learners answer at finer level. They annotated a corpus (called SCIENTSBANK

corpus) containing student answers to assessment questions in 15 different science

domains. Sukkarieh and Bolge (2010) introduced an ETS-built test suite towards

establishing a benchmark. In the dataset, each target answer is divided into a set of

main points (called content) and recommended rubric for assigning score points.

Mohler and Mihalcea (2009) published a collection of short student answers

and grades for a course in Computer Science. Most recently, a Semantic Evaluation

(SemEval) shared task called Joint Student Response Analysis and 8th Recognizing

Textual Entailment Challenge (Dzikovska et al., 2013) was organized to promote

and streamline research in this area. The corpus used in the shared task consists of

two distinct subsets: BEETLE data, based on transcripts of students interacting

with BEETLE II tutorial dialogue system (Dzikovska et al., 2010), and

SCIENTSBANK data. Student answers, accompanied with their corresponding

questions and reference answers are labeled using five different categories. Basu et

al. (2013) created a dataset called Powergrading-1.0 which contains responses from

hundreds of Mechanical Turk workers to each of 20 questions from the 100 questions

published by the USCIS (United States Citizenship and Immigration Services) as

preparation for the citizenship test.

Our work differs in several important ways from previous work. Our dataset

is annotated paying special attention to dialogue context. In addition to the tutor

question, we have provided the problem description as well which provides a greater

77

amount of contextual information and we have explicitly marked whether the

contextual information was important to properly interpret/annotate the answer.

Furthermore, we have annotated whether the student answer contains important

extra information. This information is also very useful in building and evaluating

natural language tools for automatic answer assessment.

4.2.2 Assessment Methods

Most of the earlier works on automatic answer assessment were focused on essay

grading. Essays are typically open ended, i.e. expressing ideas or thoughts about

some topic. On the other hand, short answers are mainly close ended, i.e. have a

fixed target answer. We mainly discuss approaches for constructed answer

assessment where the expected answer is short (one to just few lines) and reference

answers are available to compare with in order to assess the student answer.

Martin and VanLehn (1995) proposed an assessment system OLAE using

Bayesian nets. In OLAE, assessment produces a student model, i.e. a collection of

correct and incorrect rules from the domain model known and used by a particular

student. A student model is essentially a rule-based computer program that

computes answers to actual problems in the same way as the student does. OLAE

uses such an approach because assessments of which rules a student uses are

necessarily uncertain. Though their solution is distinctive, the problem with this

approach is that the human must generate the Bayesian network for each problem;

this is why the approach does not scale.

The short answer grading has reached commercial levels as well. The C-rater

system (Leacock & Chodorow, 2003; Sukkarieh & Blackmore, 2009) is one of the

ETSs automatic scoring technologies (e-rater, c-rater, m-rater, and SpeechRater for

essay scoring, content scoring, math scoring, and Speech input scoring respectively).

C-rater is used for automatic analytic-based content scoring of short free-text

responses. Analytic-based content is the kind of content that is predefined by a test

78

developer in terms of main ideas or concepts. These concepts form the evidence that

a student needs to demonstrate as her/his knowledge in his/her response. C-Rater

matches the syntactical features of a student response (subject, object, and verb) to

that of a set of correct responses. Their system breaks the reference answers into

constituent concepts that must individually be matched for the answer to be

considered fully correct. The c-rater system has been used within many domains,

including biology, English, mathematics, information technology literacy, business,

psychology, and physics. The C-rater requires that the reference answer be broken

down into a set of concepts in the form of simple sentences. Then, it applies textual

entailment techniques based on syntax, lexical semantics, and simple semantic roles

to identify whether the concept is present or not. However, the process is time

consuming and requires more human effort. As they mentioned (Sukkarieh &

Blackmore, 2009), the knowledge engineering process of building a model for a

question took at least 12 hours. They proposed automatic model building for

C-rater.

LSA (Landauer et al., 1998; Landauer, 2003) and machine translation

evaluation methods are also applied for short answer grading. Pérez et al. (2005)

applied the combination of Bleu-inspired algorithm and LSA. Their idea was to

perform both syntactic and semantic analysis. They did some syntactic analysis

such as stemming, closed-class word removal, word sense disambiguation and

synonyms treatment procedures etc. They combined LSA method with syntax

based methods where LSA captures the semantics. Despite the simplicity of these

shallow NLP methods, they achieved significant correlations to the teachers scores

while keeping language-independence and without requiring any domain specific

knowledge. Another short answer grading system, used in AutoTutor system

(Graesser et al., 2000) applied LSA approach. Later work on AutoTutor seeks to

expand upon the original bag-of-words approach.

79

Mohler and Mihalcea (2009) explore unsupervised text similarity techniques

for the task of automatic short answer grading answers to the introductory

computer science assignments. They applied a number of knowledge-based (for

example, WordNet) and corpus-based measures (LSA and ESA) of text similarity.

They explored the impact of domain and size of the model development corpus on

the accuracy. To evaluate the domain impact, they developed LSA model from

Computer Science articles and compared with the LSA models developed from

general Wikipedia articles. They found higher correlation of similarity score with

human ratings when domain specific (i.e. model developed computer science

articles) model was used. Mohler, Bunescu, and Mihalcea (2011) applied semantic

similarity methods and dependency graph alignments to grade short answer

questions. Similarly, Murrugarra, Lu, and Li (2013) proposed using domain general

methods, bag-of-words approach, LSA representation, textual entailment, and

others.

Rus and Lintean (2012) presented a novel, optimal semantic similarity

approach based on word-to-word similarity metrics to solve the important task of

assessing natural language student input in dialogue-based intelligent tutoring

systems. The optimal matching is guaranteed using the sailor assignment problem,

also known as the job assignment problem, a well-known combinatorial optimization

problem. They compared the optimal matching method with a greedy method as

well as with a baseline method on data sets from two intelligent tutoring systems,

AutoTutor (Graesser et al., 2005) and iSTART (McNamara, Levinstein, &

Boonthum, 2004). Creating a good set of reference answers is one point where the

human involvement is needed in automatic answer grading. Student can express the

same concept using various ways. The automatic answer grading would be done

more confidently when the student answer is expressed similar to the reference

answer(s). Utilizing the student answers to increase the pool of reference answer is a

80

possibility. Also, grouping the similar answers and evaluating them in a group

requires less effort. Basu et al. (2013) have proposed a model on that called

power-grading. They utilize the similarity methods used in answer grading to form

clusters and sub-clusters. The answers in the same cluster are evaluated by teacher

in a single action and similar feedback is given to the whole group.

As semantic similarity and textual entailment are closely related to the

problem of automatic answer evaluation, virtually every text to text similarity and

entailment method could be framed into this task. Various researches show that the

similarity based methods can be potentially used in the answer grading tasks. In

fact, a Semantic Evaluation (SemEval) shared task called Joint Student Response

Analysis and 8th Recognizing Textual Entailment Challenge was organized in 2013

(Dzikovska et al., 2013) to promote and streamline research in this area and almost

all of the participating teams applied semantic similarity techniques.

Although various results show that the similarity based methods can be used

in the answer grading tasks, their implied assumptions are that the text available are

standard texts with noise filtered. Our work is focused on using naturally occurring

texts from conversational tutoring systems where various linguistic phenomena are

present, such as coreferences (Raghunathan et al., 2010), ellipsis (Carbonell, 1983).

We also augment the semantic similarity based model using additional knowledge.

4.3 Data Collection and Annotation

Data Collection

We created the DT-Grade dataset by extracting student answers from logged

tutorial interactions between 40 junior level college students and the DeepTutor

system (Rus, DMello, et al., 2013). During the interactions, each student solved 9

conceptual physics problems and the interactions were in the form of purely natural

language dialogues, i.e., with no mathematical expressions and special symbols.

Each problem contained multiple questions including gap-fill questions and short

81

constructed answer questions. As we focused on creating constructed answer

assessment dataset with sentential input, we filtered out other types of questions

and corresponding student answers. We selected 900 answers for the annotation.

We chose the more difficult ones such that improving results on this dataset will

greatly improve the assessment systems. Particularly, the similarity based models

will have difficulty judging those answers.

Annotation

The annotation was conducted by a group of graduate students and researchers who

were first trained before being asked to annotate the data. The annotators had

access to an annotation manual for their reference.

Each annotation example (see Figure 4.1) contained the following

information: (a) problem description (describes the scenario or context), (b) tutor

question, (c) student answer in its natural form (i.e., without correcting spelling

errors and grammatical errors), (d) list of reference answers for the question. The

annotators were asked to read the problem and question to understand the context

and to assess the correctness of the student answer with respect to reference

answers. Each of the answers has been assigned one of the following labels.

1. Correct: Answer is fully correct in the context. Extra information, if any, in

the answer is not contradicting with the answer.

2. Correct-but-incomplete: Whatever the student provided is correct but

something is missing, i.e., it is not complete. If the answer contains some

incorrect part also, the answer is treated as incorrect.

3. Contradictory: Answer is opposite or is very contrasting to the reference

answer. For example, “equal”, “less”, and “greater” are contradictory to each

other. However, Newton’s first law and Newton’s second law are not treated

82

<Instance ID =“386”>
<MetaInfo StudentID = “DTSU017” TaskID = “LP03 PR09.bLK.sh”
DataSource = “DeepTutorSummer2014”/ >
<ProblemDescription>A car windshield collides with a mosquito, squashing it.
< /ProblemDescription>
<Question>How does Newton’s third law apply to this situation?< /Question>
<Answer>both objects exert the same amount of force on each other.< /Answer>
<Annotation Label = “correct(0),correct but incomplete(0),contradictory(0),incorrect(0)”
<Additional Annotation ContextRequired = “0,1” ExtraInfoInAnswer = “0,1” / >
<Comments Watch = “0,1” > < /Comments>
< /Annotation>
<ReferenceAnswers>
The action is the windshield squashing the mosquito, and the equal and opposite
reaction is the mosquito hitting the windshield.
< /ReferenceAnswers>
< /Instance>

Fig. 4.1: An annotation example where problem description, tutor’s question,
student’s answer, and reference answer are shown.

as contradictory since there are many commonalities between these two laws

despite their names.

4. Incorrect: Incorrect in general, i.e., none of the above three judgments is

applicable. Contradictory answers can be included in the incorrect set if we

want to find all kinds of incorrect answers.

Additionally, annotators were asked to mark:

� ContextRequired: whether contextual information was really important to

fully understand a student answer. For instance, the student answer in the

Figure 4.1 contains the phrase “both forces” which is referring to the force of

windshield and the force of mosquito in problem description. Therefore,

contextual information is useful to fully understand what both forces the

student is referring to. As shown in Table 4.1 (in Section 4.1), a student

answer could be an elliptical sentence (i.e., does not contain complete

information on its own). In such cases, annotators were asked to judge the

83

student response based on the available contextual information and reference

answers and nothing more; that is, they were explicitly told not to use their

own science knowledge to fill-in the missing parts.

� ExtraInfoInAnswer: If a student response contained extra information (i.e.,

more information than in the reference/ideal answer provided by experts), we

asked annotators to ignore the extra parts unless it expressed a misconception.

However, we told annotator to indicate whether the student answer contains

some additional important information such as a detailed explanation of their

answer.

The annotators were encouraged to write comments and asked to set the

‘watch’ flag whenever they felt a particular student response was special/different.

Such ‘to watch’ instances were considered for further discussions with the entire

team to either improve the annotation guidelines or to gain more insights regarding

the student assessment task.

The dataset was divided equally among 6 annotators who then annotated

independently. In order to reach a good level of inter-annotator agreement in

annotation, 30 examples were randomly picked from each annotation subset and

reviewed by a supervisor, i.e., one of the creators of the annotation guidelines. The

agreements (in terms of Cohen’s kappa) in assigning correctness label, identifying

whether the context was useful, and identifying whether the student answer

contained extra information were 0.891, 0.78, and 0.82 respectively. In another

words, there were significant agreements in all components of the annotation. The

main disagreement was on how to use the contextual information. The

disagreements were discussed among the annotators team and the annotations were

revised in few cases.

84

Table 4.2: Summary of DT-Grade dataset. First part of the table shows the
distribution of assessment labels and the second part shows the percentage of
samples requiring context, and the percentage of answers having additional

information than expected in reference answer.

Parameter Value

All 900
Correct 365 (40.55%)
Correct but incomplete 209 (23.22%)
Contradictory 84 (9.33%)
Incorrect 242 (26.88%)
Requiring context 223 (24.77%)
Containing extra info 102 (11.33%)

The Dataset: We have annotated 900 answers. Table 4.2 offers summary statistics

about the dataset. The 40.55% of total answers are correct whereas 59.45% are less

than perfect. We can see that approximately 1 in every 4 answers required

contextual information to properly evaluate them.

Next, we describe a base model where contextual word weighting approach is

used in semantic similarity based assessment model. The PSL based model is

described subsequently (in Section 4.5).

4.4 Contextual Word Weighting and Similarity Based Approach

Approach

Once the dataset was finalized we wanted to get a sense of its difficulty level. We

developed a semantic similarity approach in order to assess the correctness of

student answers. Specifically, we applied optimal word alignment based method

(Banjade, Niraula, et al., 2015; Rus & Lintean, 2012) to calculate the similarity

between student answer and the reference answer and then used that score to

predict the correctness label using a classifier. In fact, the alignment based systems

have been the top performing systems in semantic evaluation challenges on semantic

textual similarity (Agirre et al., 2014, 2015; Han et al., 2013; Sultan et al., 2015).

The challenge is to address the linguistic phenomena such as ellipsis and

85

coreferences. An approach can be to use off-the-shelf tools, such as coreference

resolution tool included in Stanford CoreNLP Toolkit (Manning et al., 2014).

However, we believe that such NLP tools that are developed and evaluated in

standard dataset potentially introduce errors in the NLP pipeline where the input

texts, such as question answering data, are different from literary style or standard

written texts.

As an alternative approach, we assigned a weight for each word based on the

context: we gave a low weight to words in the student answer that were also found in

the previous utterance, e.g. the tutoring systems question, and more weight to new

content. This approach gives less weight to answers that simply repeat the content

of the tutor’s question and more weight to the answers that add the new, asked-for

information; as a special case, the approach provides more weight to concise answers

(see A1 and A2 in Table 4.1). The same word can have different weight based on

the context. Also, it partially addresses the impact of coreferences in answer grading

because the same answer with and without coreferences will be more likely to get

comparable scores. The reference answers are usually self contained, i.e., without

using coreferring expressions and only those student answers which are also

self-contained and similar to reference answer will get higher score. On the other

hand, answers using coreferences (such as: they, it) will get lower score unless they

are resolved and the student answer becomes similar to reference answer. Giving

lower weights to the words, if present in the student answer, for which student could

use coreferrences makes these two types of answers somewhat equivalent.

Finally, the similarity score was calculated as:

sim(A,R) = 2 ∗
∑

(a,r)∈OAwa ∗ wr ∗ sim(a, r)∑
a∈Awa +

∑
r∈R wr

(4.1)

Where A/R refers to student/reference answer and a/r is a token in it. The

sim(a, r) referes to the similarity score between a and r calculated using word2vec

86

Fig. 4.2: Classification accuracy and weight of the words that are found in the last
utterance.

model (Mikolov, Chen, et al., 2013). OA is optimal alignment of words between A

and R obtained using Hungarian algorithm as described in Banjade, Niraula, et al.

(2015). The 0 ≤ wa ≤ 1 and 0 ≤ wr ≤ 1 refer to weight of the word in A and R

respectively.

Experiments and Results

In order to avoid noisy alignments, the word-to-word similarity score below 0.4 was

set to 0.0 (empirically set). The sim(A,R) was then used with Multinomial Logistic

Regression (in Weka) to predict the correctness label. If there were more than one

reference answers, we chose one with the highest similarity score with the student

answer. We then set different weights (from 1.0 to 0.0) for the words found in tutor

utterance (we considered a word was found in the previous utterance if its base form

or the synonym found in WordNet 3.0 (Miller, 1995) matched with any of the words

in the previous utterance). We changed the weight in the student answer as well as

in the reference answer and the impact of weight change in the classification results

were assessed using 10-fold cross validation approach. The changes in classification

accuracy with changing weights are presented in Figure 4.2.

87

Giving weight of 1.0 to each word is equivalent to aligning words in student

answer with the reference answer without looking at the context. But we can see

the improvement in classification accuracy after reducing word weights up to 0.4

(accuracy 49.33%; kappa = 0.22) for the words found in the previous utterance and

then decreases. It indicates that the words found in previous utterance should get

some weight but new words should get more importance. This approach is

somewhat intuitive. But deeper semantic understanding is required in order to

improve the performance. For instance, sometimes this word weighting approach

infers more information and gives higher weight to the incomplete utterance where

student’s true understanding of the context is hard to predict. Furthermore, it is

non-trivial to use additional context, such as problem description including

assumptions and graphical illustrations.

4.5 Probabilistic Soft Logic Model

Probabilistic Soft Logic (PSL) is an approach to combining knowledge in the form

of first-order logic and Probabilistic Graphical Models (PGM) in a single

representation. Probabilistic graphical models allow us to efficiently handle

uncertainty and first-order logic allows us to compactly represent the knowledge.

Furthermore, it allows to model the complex interactions among stochastic variables

which is not possible to model in many other algorithms, such as Logistic

Regression which treats each examples as i.i.d. (independent and identically

distributed). But, for example, voting decision of friends has some influence on each

other. Similarly, in answer assessment, a high knowledge student giving correct

answers to the difficult questions will probably answer another difficult or easy

question correctly and we model such knowledge in our PSL model. In specific, our

model uses semantic similarity information augmented with other knowledge, such

as question difficulty and knowledge level of the student.

88

First-Order Knowledge Base. A first-order knowledge base (KB) is a set of

formulas in first order logic (Genesereth & Nilsson, 1987). Formulas are constructed

using symbols: constants, variables, predicates, and functions. Constant

represents an object (e.g., John). Functions represent mappings from tuples of

objects to objects (e.g., FatherOf). Predicate represents relations among objects

(e.g., Friends) or attributes of objects (e.g., Smokes). The formulas are typically

written in clausal form (also known as conjunctive normal form (CNF)). For

example,

Friends(x, y) ∧ Friends(y, z)→ Friends(x, z) (4.2)

4.5.1 PSL Program

A PSL program consists of rules along with relative weights associated with them

and the data (or observations).

5.0 : Friends(x, y) ∧ Friends(y, z)→ Friends(x, z) (4.3)

2.0 : Friends(x, y) ∧ Colleague(y, z)→ Friends(x, z) (4.4)

The rules are grounded using observations, i.e., each variable in the rules is

assigned to all possible values in the observed data. For example, if there are three

people: Joe, Bob, and Lili, then a grounded rule would look like,

5.0 : Friends(Joe,Bob) ∧ Friends(Bob, Lili)→ Friends(Joe, Lili) (4.5)

Predicates in PSL porgram can have truth values in the range of [0 1], i.e.,

they are soft. For example, question difficulty can be defined in the range of 0 to 1.

However, in Markov Logic Network (MLN) the predicates can have either true or

false. That is, the constraints in MLN are harder than in PSL.

Furthermore, the prior knowledge can also be encoded as rules in the PSL

89

program. In our hypothetical example, let’s assume that people who are neither

friends of friends nor friends of colleagues can still be friends but the chances are

very low. This can be coded in the PSL program as illustrated below. It should be

noted that the weight to our prior is very low as our belief is that any two persons

being friends to each other (given no additional information) is possible but less

likely.

0.0001 : Friends(x, z) (4.6)

The weights to the rules can be learned from the data itself. We discuss on this

later. Next, we discuss some of the variables, predicates and rules we used in our

PSL program.

Variables

s - Student id

a - Answer id (or just id) which uniquely identifies an instance in the

dataset. It should be noted that the question belonging to a may be same as that of

some other answer id b because the same set of problems were attempted by

multiple students.

By convention, the variables are represented by lower case letters.

Predicates

� SimHigh(a) ∈ 0/1 - similarity of answer a with corresponding reference

answer is high

� SimMedium(a) ∈ 0/1 -similarity of answer a with corresponding reference

answer is medium

� SimLow(a) ∈ 0/1 - similarity of answer a with corresponding reference answer

is low

� PriorKHigh(s) ∈ 0/1 - prior knowledge of the student s is high

90

� PriorKMedium(s) ∈ 0/1 - prior knowledge of the student s is medium

� PriorKLow(s) ∈ 0/1 - prior knowledge of the student s is low

� QDifficultyHigh(a) ∈ [0 1] - question difficulty is high (fraction of students

who answered the question corresponding to a incorrectly)

� QDifficultyMedium(a) ∈ [0 1] - question difficulty is medium (fraction of

students who answered the question corresponding to a correctly but

incompletely)

� QDifficultyLow(a) ∈ [0 1] - question difficulty is low (fraction of students

who answered the question corresponding to a correctly)

� AttemptedBySameStudent(a, b) ∈ 0/1 - whether a and b were attempted by

the same student

� Correct(a) ∈ [0 1] - the truth value of answer a being correct

� CorrectButIncomplete(a) ∈ [0 1] - the truth value of answer a being correct

but incomplete

� Incorrect(a) ∈ [0 1] - the truth value of answer a being incorrect

Some Rules and Priors

We present few rules with quite arbitrary weights. We learn the weights for

those rules from the data which we present later in this section. The priors (starting

with negation symbol ∼) specify the possibilities of being false. It should be noted

that the weights do not have to sum up to 1.

91

2.0 : SimilarityHigh(a) ∧ QdifficultyLow(a)→ Correct(a)

0.1 : Correct(b) ∧ AttemptedBySameStudent(a, b)→ Correct(a)

3.0 : SimilarityLow(a)→ Incorrect(a)

0.004 :∼ Correct(a)

0.002 :∼ CorrectButIncomplete(a)

0.003 :∼ Incorrect(a)

4.5.2 Data

We used DT-Grade dataset described in Table 4.2. Since the number of

Contradictory answers was low in number, we collapsed them to more general

category Incorrect and therefore, we have used just three different labels for the

correctness: Correct, CorrectButIncomplete, and Incorrect. Also, we did not have

pretest score for four students and we performed experiments with the rest 36

students’ data which resulted 790 answers in the dataset.

4.5.3 Grounding

During grounding phase, all the variables in the rules are substituted with possible

values from the observations (i.e., data). Figure 4.3 illustrates an example of a

grounded graphical network for a student’s data but the graph can grow very large.

For instance, the nodes corresponding to correctness labels of each answer are

actually 3 (Correct, CorrectButIncomplete, Incorrect) but in the graph they are

represented by a single node CL. Similarly, the question difficulty QD has three

values (high, medium, and low) and each one is actually represented by a separate

node. Also, each student has attempted 20 questions in average (counting those in

the DT-Grade dataset only) which makes the graph bigger than what is shown in

the figure. We discuss on the scale of the network in Weight Learning section.

The shaded nodes in the graph are observed nodes which we call evidence,

92

Fig. 4.3: An illustration of a grounded probabilistic graphical network for a student.
The shaded nodes are evidence nodes and non-shaded nodes in the center are query

nodes. CL - Correctness label, QD - Question difficulty, STD - Student, KL -
(knowledge level), SIM - Similarity.

whereas the light nodes are query nodes. During inference, the truth values of the

query nodes are predicted based on the evidence.

4.5.4 Weight Learning for PSL Rules

Laving out the internal details, the PSL rules’ weight learning process is similar to

typical supervised model learning process. We provide the ground truth (human

annotated correctness label of the given answer) for the query predicate (which

corresponds to a node in the grounded network graph). For each answer, there will

be three query predicates one for each of the three labels. Since, the labels are

mutually exclusive, only one of them is set to 1.0 while other two will be set to 0.0.

As we discussed earlier, the grounded network can become very large depending on

the set of rules and the size of the dataset used to ground the rules.

Also, the same node cannot be a query node as well as evidence node at the

same time. Therefore, we have replicated each student’s data several times and

93

renamed their ids such that we can make each answer in the original set (though

renamed) a query at one time while using it as an evidence when other nodes are

query nodes. This is important for us in both training (i.e., learning rules’ weight

learning) and evaluation phase because the dataset we used is comparatively small.

For instance, if we make one answer for each student a query and make others as

evidence, then we will have only 36 records for the weight learning as well as for the

evaluation. But giving each node a chance to be a query node, we have the data

several times bigger than the aforementioned size and we can also evaluate our

model using full dataset (for example, by using leave-one-out approach). Actually,

this process allows us to utilize the full set of data.

Just to get a sense of the scale of the graph, let’s assume that each student’s

data is replicated 5 times. Then the size of the graph (by taking the dominant term

only) will be (5 ∗ 790) ∗ (5 ∗ 790) ∼ 1.5 million. Weight learning in such a huge

probabilistic graphical model is impossible at least in our experimental settings.

Therefore, we have pruned some rules and the resulting graph has about 200,000

nodes, on which we have managed to learn the weights for the rules.

For those rules which rapidly increase the size of the network with increasing

size of the data, we have learned the weights for each student and estimated the

weights of the rules using weights learned at student level which is the sub-optimal

solution. For each student, the average size graph has about 35,000 nodes.

4.5.5 Experiments and Results

Including semantic similarity and additional information, we built several PSL

models. We also performed experiments changing the priors learned separately. For

the evaluation purpose, we took leave one student out approach.

The similarity between student answer and the corresponding reference

answer was calculated using optimal word alignment based method which has

performed very well in general (which we discussed in Chapter 2). The optimal

94

word alignment approach has been discussed in Section 4.4 also. We then grouped

the similarity scores into high (score > 0.5), medium (0.5 ≥ score > 0.35), and low

(≤ 0.35) using empirically chosen threshold values. Similarly, we have grouped the

prior knowledge of the students into high (> 0.8), medium (0.8 ≥ score > 0.5), and

low (≤ 0.5) based on their pretest scores. We also calculated the question difficulty

(high, medium, and low) as discussed in Section 4.5.1. However, for question

difficulty we have used soft values. In specific, each question has soft value for each

of the difficulty levels: high, medium, and low. But for the difficult question, for

example, the truth value of the predicate QDifficultyHigh(a) will have higher value

than the truth value of the predicates corresponding to other difficulty levels

(medium, and low).

By assuming the performance of a student is independent of others, we

refactor the graph into subgraphs one for each student and take the leave one

student out approach for PSL rules’ weight learning and evaluation. As discussed in

Section 4.5.4, we learned the weights for the rules from 35 students at a time (except

for few rules for which weights were estimated using weights learned student-wise)

and applied to the leave out student. Performing inference in such smaller graphs is

computationally very efficient (takes few seconds for each student when run in a

normal workstation). Also, it should be noted that the question difficulty was

calculated based on training data only, i.e., using 35 students’ data at a time.

Once inference is complete, i.e., the truth value for Correct,

CorrectButIncomplete, and Incorrect predicates are assigned for each answer, we

chose the correctness label corresponding to the highest truth value among those

three. It should be noted that the truth value for each of them is in the interval [0

1] but their sum does not have to be 1.0. Then we calculated the accuracy and F1

scores. The results of our various models are presented in Figure 4.4.

The baseline system is the majority class classifier, i.e., which labels each

95

Fig. 4.4: Results of different Probabilistic Soft Logic models on DT-Grade dataset.

answer as correct. The accuracy of this baseline model was 40.379% which is

equivalent to the percentage of correct answers in the dataset. SIM model used the

similarity information only. It obtained 9% improvement over the baseline. As

mentioned earlier, the DT-Grade dataset was developed by selecting the difficult

cases, particularly difficult to judge by only comparing the student answer with the

reference answer. Therefore, we consider 9% improvement in accuracy over baseline

results as a notable improvement. We augmented the model using knowledge level

(KL) of the student and question difficulty (QD). The KL includes the prior

knowledge of the student which was assessed using multiple choice questions and

the performance of the student on other than current question. While assessing

correctness of an answer a given by student s, answer a is excluded while applying

rules of types if a is correct, then b is also correct. Furthermore, the results were

improved after adding question difficulty and knowledge level separately. When

combined with similarity information, our model achieved 53.417% accuracy which

is above 4% improvement over results obtained using similarity information only.

In an another experiment, we used the priors learned using Logistic

Regression (LR). In specific, we obtained the probabilities of being Correct,

CorrectButIncomplete, and Incorrect as predicted by LR model and used them in

96

our PSL models as priors (model names ending P). This has improved the results

by about 5% in SIM QD model and about 3% in SIM QD KL model. These

results are also better when compared to the results of LR model. This shows that

the LR model which is very different from PSL can complement the PSL model.

For our experiments, we used PSL tool 2 developed at University of

Maryland, College Park. The tool uses hinge-loss Markov random fields (HL-MRFs)

for inference and weight learning (S. Bach, Huang, London, & Getoor, 2013;

S. H. Bach, Broecheler, Huang, & Getoor, 2015). We set the number of iterations to

perform by the optimizer during rule learning to 50,000.

4.6 Conclusion

We have presented Probabilistic Soft Logic models for open-ended answer

assessment. Our results show that PSL models built using semantic similarity

information perform better than the baseline. We have also found that augmenting

the PSL model with additional information, such as question difficulty and

knowledge level improved the performance of assessment models by about 4%.

Similarly, using the prior probabilities of being correct, correct but incomplete, and

incorrect that are learned from logistic regression model further improved the

results. Our models achieved accuracy up to 57% when evaluated with DT-Grade

dataset which is unique and difficult dataset.

We also presented the dataset called DT-Grade which contains student

answers given to the intelligent tutoring system and annotated for their correctness

in context. We explicitly marked whether the contextual information was required

to properly understand the student answer. We also annotated whether the answer

contains extra information. That additional information can be correct or incorrect

as there is no specific reference to compare with but the answer grading systems

should be able to handle them. Additionally, we presented a system in which we

2http://psl.linqs.org/

97

used semantic similarity generated using optimal alignment with contextual word

weighting as feature in the classifier for predicting the correctness label. The results

of this model indicate that giving lesser weight to the words found in the recent

utterances in the dialogue compared to the new content in the student answer

improved the results.

98

Chapter 5

Negation Handling in Tutorial Dialogues

5.1 Introduction

According to SIL International (Summer Institute of Linguistics), negation is a

morphosyntactic operation in which a lexical item denies or inverts the meaning of

another lexical item or construction. A negator (or negation cue), is a lexical item

that expresses negation. Morphological negation occurs when a word is negated by

an affix (prefix or suffix) as in un-happy or sense-less whereas syntactic negation

means an entire clause is negated explicitly (using a negator) or implicitly, e.g.

verbs or nominalizations that negate their complements such as fail or deny. In

explicitly negated statements, negation is marked using cue words, such as not, no

and neither ... nor. A negation cue word or negator can affect the meaning of a

part of the sentence in which it appears or part of previous sentence from the

discourse context. The part of the sentence affected by the negation cue is called

negation scope. The part of the scope that is most prominently negated is called

negation focus (Huddleston et al., 2002).

An example of negation is shown in the following sentence where we indicate

the negation cue (in <>), the negation scope (in []) and the negation focus (in {}):

The desk stops moving because [there is] <no> [net force acting on it]. Negation is

a frequent and complex phenomenon in natural language. Tottie (1993) noted that

negation is twice as frequent in spoken sentences (27.6 per 1,000 words) as in written

text (12.8 per 1,000 words). Elkin et al. (2005) found that 12% of the concepts in 41

health records are negated while Councill, McDonald, and Velikovich (2010) report

that 19% of the product review sentences contain negations. In an analysis of

student utterances in dialogues collected from the Intelligent Tutoring System (ITS)

DeepTutor (Rus, DMello, et al., 2013), it has been found that 9.36% of the student

99

answers contain explicit negation. The relative high frequency of negation and its

key role in many applications such as intelligent tutoring, sentiment analysis, and

information extraction emphasize the importance of the negation handling problem.

In particular, the negation scope and focus can be used in semantic representations

of negation, such as the one proposed by Blanco and Moldovan (2012).

Negation may become quite complex when interacting with other linguistic

phenomena such as ellipsis and pragmatics, two frequent phenomena in dialogues, as

illustrated in the example below. The example shows four different real answers

(A1-4) as typed by high-school students during their interaction with the intelligent

tutoring system DeepTutor.

Example 1

DeepTutor: Do these balls (red ball and blue ball) ever have the same

speed?

A1: They do not have the same speed.

A2: No.

A3: The balls never have the same speed.

A4: The red one goes faster.

The four student answers are triggered by the same hint in the form of a

question from the intelligent tutoring system. Answers A1− A3 contain explicit

negations whereas in answer A4 the negation is not explicit. We do not handle such

cases, as in answer A4, as our focus is on explicit negation.

While datasets and computational approaches to negation have been recently

developed, to the best of our knowledge, there is no previous work that

systematically addresses the identification of negation scope and focus in dialogues.

Previous work on computational approaches to negation have focused primarily on

same-sentence negations, i.e. the scope and focused are in the same sentence where

the negation cue word is (Morante & Daelemans, 2009; Morante, Schrauwen, &

100

Daelemans, 2011; Morante & Blanco, 2012; Thompson, Nawaz, McNaught, &

Ananiadou, 2011; Vincze, Szarvas, Farkas, Móra, & Csirik, 2008). Our approach can

detect negation scope and focus even when they reside in another sentence, i.e. the

previous dialogue utterance. It should be noted that even when the scope and focus

are in the same sentence as the negator, the context (of the dialogue in our case)

could be helpful to correctly identify the focus.

We present in this chapter a method and negation dataset we created to

handle negation scope and focus in tutorial dialogue (Banjade, Niraula, & Rus,

2016; Banjade & Rus, 2016). We collected and annotated a corpus from real

dialogues between the computer tutor DeepTutor and high-school students. The

corpus is called the DT-Neg corpus DeepTutor Negation corpus (Banjade & Rus,

2016)1 - and consists of 1,088 instances. The corpus was manually annotated with

negation cue words, negation scope, and negation focus. We then developed a

method to detect negation scope and focus based on Conditional Random Fields

(CRF; Banjade, Niraula, & Rus, 2016). We report results for focus detection with

and without use of dialogue contextual features.

5.2 Negation in Dialogue

We argue that the scope and focus of negation in dialogue utterances is best

determined in context. In this view, we adhere to the principle that the focus of

negation is determined by coherence constraints in a discourse (Anand & Martell,

2012; ?, ?). That is, the scope and focus identification processes are informed by

dialogue coherence constraints in the sense that, for instance, a word is preferred as

a focus over another if it leads to better dialogue coherence. In our case, we use

clues from previous dialogue utterances to help us disambiguate the scope and focus

of a negation instance.

In Example 1, student answer A1 contains an explicit form of negation. The

1The dataset is freely available at http://language.memphis.edu/dt-neg

101

student answer is ambiguous in the sense that the focus switches from ever to have,

given that ever is not mentioned by the student. That is, in one interpretation the

student answer is understood as indicating that the two balls do not have the same

speed (ever, i.e. ever is assumed to be implied by the student answer given the

context of the tutor question). In another interpretation, the student answer A1

may be understood as indicating that the two balls do not have the same speed at

some moment but may have the same speed at some other moment, which is the

correct answer, by the way.

Answer A2 is a short answer. Such short answers are a typical case of ellipsis

which is quite frequent in dialogue contexts, i.e. when words are elided from the

student answer albeit implied by the context. Indeed, these types of negations in

the presence of ellipsis can only be interpreted by considering the previous dialogue

context which in this case is the tutor’s previous question. Answer A3 is the

cleanest form of negation because it is easiest to interpret as the student answer is

self-contained and well-formed. A4 is an interesting answer in the sense that it does

not contain an explicit negation. However, in the context of the previous question

from the tutor this student answer is an indirect answer to the question. That is, in

order to obtain the direct answer to the tutor question, answer A4 should be

interpreted as “Because of the fact that the red one goes faster the two balls do not

have the same speed, where we underlined the implied direct answer to the tutor

question. This implied direct answer contains a negation. When analyzing negation

in dialogues, the dialogue context will influence subtly the negation scope and focus.

Consider the dialogue snapshot below.

- Does the coin land in his hand?

- No.

Because the focus of the question is asking where the coin will land, the

102

focus of the negation in the student answer is the location, i.e. hand. That is, the

student is saying that the coin will land somewhere else (not in his hand).

Lets now consider the following dialogue snapshot:

- Can you articulate the relevant principle?

- No.

In this example, the computer tutor is specifically asking the student to

articulate (not to apply) the relevant principle. Therefore, the focus is the verb

articulate. One can also argue that the focus is the verb can. However, the clear

intention of the “Can you articulate utterance from the intelligent tutoring system

is an invitation to the student to articulate the principle, that is, the tutor’s

intention is actually “Please articulate the relevant principle. Since the invitation to

articulate the principle maximizes the dialogue coherence, we choose articulate as

the focus.

5.3 Related Work

Negation has been studied in the field of philosophy, psychology, linguistics, and

computational linguistics starting with Aristotle (Wedin, 1990). Horn (1989)

describes negation from philosophical and psychological perspectives, including

constructs, usage, and cognitive processing of negation.

While logical negation has a very crisp definition (Horn, 1989; Rosenberg &

Bergler, 2012), negation in natural language statements is more nuanced and subtle.

Tottie (1993) presents a comprehensive taxonomy of clausal English negations

denials, rejections, imperatives, questions, supports, and repetitions. Huddleston et

al. (2002) have categorized the expression of negation into two types verbal or

nonverbal, and analytic or syntactic in their book The Cambridge Grammar of the

English Language. Miestamo (2006) distinguishes between standard negation and

negation in imperatives, existential, and non-verbal clause.

Negation handling approaches were initially developed in the medical domain

103

for the purpose of processing and indexing clinical reports and discharge summaries.

Mutalik, Deshpande, and Nadkarni (2001) developed Neg-finder in order to

recognize negated patterns in medical texts. Chapman, Bridewell, Hanbury, Cooper,

and Buchanan (2001) created a simple regular expression algorithm called NegEx

that can detect phrases indicating negation and identify medical terms falling

within the negative scope. Morante and Daelemans (2009) proposed a method of

learning the scope of negation in biomedical text. Many other research works in

negation handling focused on the medical domain (Gindl, Kaiser, & Miksch, 2008;

Mac Namee, Kelleher, & Delany, 2008; Rokach, Romano, & Maimon, 2008). Vincze

et al. (2008) annotated negation cues and their scopes in the BioScope corpus. The

corpus consists of medical free texts, biological full papers and abstracts.

Negation was also studied in the context of sentiment analysis. Councill et

al. (2010) focused on explicit negation and created a product review corpus

annotated with negation cue and scope. Others have studied content negators, such

as “hampered” and “denied” (Choi & Cardie, 2008; Moilanen & Pulman, 2007).

Since identification of negation in review texts can help opinion mining tasks,

Konstantinova et al. (2011) annotated the SFU Review Corpus.

In 2011, Morante, Schrauwen, and Daelemans published a more

comprehensive set of guidelines for the annotation of negation cues and their scope.

In fact, one of the shared tasks in the *SEM 2012 conference was dedicated to

negation scope and focus detection (Morante & Blanco, 2012). Blanco and

Moldovan (2012) annotated negation focus on text extracted from the PropBank

corpus and the resulting dataset was used in the shared task (Morante & Blanco,

2012). Many of the participating teams adopted machine learning techniques for

cue, scope, and focus detection. Some others used rule based systems as well.

Although some of the evaluated approaches showed good performance on that

104

dataset, it is not clear whether those systems perform well in general as they were

evaluated only with narrative, non-dialogue texts.

Zou, Zhou, and Zhu (2014) showed the importance of discourse context for

negation focus detection but their work was limited to focus detection when the

focus and negator are in the same sentence. But we approach the tasks of scope and

focus detection for intra- and inter-sentential negation in dialogue.

5.4 Data Collection and Annotation

We created the DT-Neg dataset by extracting student answers containing explicit

negation cues from logged tutorial interactions between high-school students and

the DeepTutor tutoring system. During the interactions, students solved conceptual

physics problems, as opposed to quantitative problems, and the interactions were in

the form of pure natural language texts (i.e., no mathematical expressions and

special symbols were involved). Each problem contained multiple questions. In

27,785 student responses, we found 2,603 (9.36%) student responses that contained

at least one explicit negation cue word, such as no and not. We have not considered

affixal negations, such as un in un-identified.

We tokenized the dialogue utterances using Stanford CoreNLP Toolkit

(Manning et al., 2014). As we focused on explicit negation, we identified student

answers containing negation cue words based on a list of cue words which we

compiled from different research reports (Morante et al., 2011; Vincze et al., 2008)

as well as our own data. If a student response contained multiple negations, they

were treated as separate instances in our corpus. We then annotated each such

candidate negation instance for negation cue, scope, and focus.

Annotation procedure. During annotation, annotators were asked to

validate the automatically detected negation cue words and identify the

corresponding negation scope and focus. It should be noted that we only targeted

student responses for negation handling and not all the dialogue utterances, because

105

the system/tutor utterances are system generated and therefore their interpretation

is known.

The annotation was conducted by a group of 5 people comprised of graduate

students and researchers who were first trained before being asked to annotate the

data. They had access to an annotation manual during actual annotation for

reference. The guidelines have been inspired from the one prepared by Morante et

al. (2011) for non-dialogue texts. We have developed our guidelines to best fit the

context of our work, i.e. dialogues.

Annotators were instructed to use contextual information to best

disambiguate the scope and focus. For this, annotators were shown the student

response containing the negation as well as the previous system turn (tutor

question). The Example 2 and Example 3 below illustrate annotations where in one

case the negation scope and focus are in the same sentence as the negation cue word

(Example 2) whereas in the other (Example 3) the negation scope and focus are

located in the dialogue context, i.e. the previous dialogues utterance generated by

the tutor. The cue, scope, and focus are marked by <>, [], and {}, respectively.

Example 2:

Question: Do these balls (red ball and blue ball) ever have the same speed?

A: [They do] <not> [have the same speed].

Example 3:

Question: Do [these balls (red ball and blue ball)] ever [have the same speed]?

A: <No>.

The annotators agreement for a scope location judgment, i.e. the same

sentence or in the previous utterance was very high at 94.33%. When the

annotators agreed on the location of scope and focus, we measured the agreement

for scope and focus, respectively. The average token (sentence) level agreement was

89.43% (66.60%) and 94.20% (66.95%) for scope and focus, respectively. The main

106

Table 5.1: Summary of DT-Neg dataset.

Parameter Training Test

instances (total) 761 327
#instances with scope/focus in context 328 130
unique cues 10 9

disagreement among annotations was on how to use the contextual information.

The disagreements were discussed among the annotators and fixed. The role of the

discussion was to both reach an agreement and improve consistency of future

annotations. In total, we have annotated 1,088 valid instances (an instance is a pair

of tutor question and student answer).

We randomly divided the data into training and test set in 70-30%. General

characteristics of the DT-Neg corpus are offered in Table 5.1. Different forms of the

same cue, such as n’t or not or NOT were considered identical while counting

unique cues. We can observe that 42% of the instances in DT-Neg dataset have

scope and focus in context (i.e., they are inter-sentential negations).

5.5 System Description

We have modeled negation scope and focus detection as a sequence labeling task in

which each word in the negated sentence is either labeled as in-scope/focus or

out-of-scope/focus. We used MALLET SimpleTagger (McCallum, 2002) which is a

Java implementation of Conditional Random Fields (CRFs). CRF is a

discriminative method for sequence labeling. It has been successfully applied in a

number of sequence labeling tasks such as POS-tagging, and Chunking. It defines

conditional probability distributions P (Y |X) of label sequences Y given input

sequences X. In our case, Y is a set of binary decisions about a token in the sentence

where the negation scope/focus lies and X is the input sequence represented as a set

of features. CRFs models may account for the full context of a set of observations

such as the labels of tokens before and after the current token in the sentence. For

instance, if a given token in a phrase is labeled as within the negation scope, the

107

probability of other tokens in the same phrase being in the negation scope will be

high. Therefore, CRF is a best choice to label scope/focus when expert-labeled data

are available to train the model.

Features. Each token in the student answer where the negation is present has a set

of features which includes positional, lexical, syntactic, and semantic information.

The following features were used for CRFs modeling and labeling purposes.

1. Cue − the negation cue itself (multiple words in the cue, such as neither nor,

were merged together).

2. Before cue − whether the current token appears before the cue (first cue word

if the cue has multiple words).

3. Distance from the cue− how far the current token is from the cue. Word next

to the cue word has distance of 1.

4. POS tag − Part-of-speech tag of the token.

5. Conjunction in between − whether there is a conjunction (coordinating or

subordinating) in between the token and the negation cue.

6. Punctuation − whether the token is punctuation.

7. Student Answer type (1/0) − short versus full sentence; this features suggest

whether to look in the student answer for the scope and focus or in the previous

utterance.

8. Dep1 − whether there is a direct syntactic dependency between the current

token and the cue word.

9. Semantic role − semantic role of the token based on head verb of the sentence.

10. First word of question − wh-word or first word of previous tutor utterance.

11. Head word of question − the lemma of the head word of the question

obtained from the dependency parsing.

12. Found in Question − whether the word (stop-words are ignored) in its

lemmatized form is found in question.

108

We will refer to these features by their numeric ids. Also, we categorize these

features into the following groups: basic features (1-3), syntactic-semantic roles

features (4-9, 9), and contextual features (10-12). We used Stanford CoreNLP

Toolkit (Manning et al., 2014) to extract POS tags, dependency information, and

head words. Semantic roles were generated using SENNA tool (Collobert et al.,

2011).

Models and Evaluation

The training examples consist of tokens, associated features, and scope labels (using

IOB2 format where the B- prefix before an in-scope/focus tag indicates that the tag

is the beginning of the scope, and an I- prefix before a tag indicates that the tag is

inside a scope/focus and O indicates that a token is outside of the scope/focus).

Scope labels were removed from the test examples as the goal is to discover the

labels automatically. As discussed earlier, the focus of negation may depend on the

context even if it is in the same sentence where the negation cue word is

(intra-sentential negation) or not (inter-sentential negation). The type of the

previous question from the intelligent tutoring system (or another conversational

partner in the general case of a dialogue system), the head word of the previous

tutor question, and information about whether the word in the student answer is

found in previous utterances are used as contextual clues in our model.

To measure the performance of the proposed models, we adopted the token

label scoring used in *SEM 2012 Shared task (Morante & Blanco, 2012). We

ignored punctuations when computing token label performance. A training-testing

methodology was followed in which we first cross-validated the models using

training data and then evaluated their performance on separate, previously unseen

testing data. The default settings of CRF in MALLET (version 2.0.7) tool were

used during model development.

109

Table 5.2: Results of negation scope detection system with DT-Neg dataset (SDR -
Scope Detection Run).

System/Features Precision Recall F1

Baseline 57.87 1.00 73.31
SDR1/1-3 76.97 95.89 85.40
SDR2/4-9 80.83 81.56 81.19
SDR3/1-9 90.80 95.31 93.00
SDR4/1-12 92.97 95.74 94.34
SDR5/1-3, 10-12 83.64 92.92 88.04

5.6 Experiments and Results

Scope detection (SD). Results (Precision, Recall, and F-measure) for scope

detection are summarized in Table 5.2. In Run 1 (SDR1), we used just the basic

features. In Run 2 (SDR2) syntactic and semantic role features were used. Runs

SDR3 and SDR4 combine basic and syntactic-semantic role features with and

without the contextual features. Run SDR5 uses basic features and contextual

features. The baseline results were generated by labeling all tokens as they were in

the negation scope.

As can be seen from the table, all of our systems performed significantly

better than the baseline system. The combination of basic and syntactic-semantic

features produced an F1 score of 93.00 and adding contextual features improved the

results. The modest improvement when adding contextual features on top of the

basic and syntactic-semantic role features could be due to the fact that we used a

limited number of contextual features or it might be the case that the performance

of the SDR3 model is already very good and significant improvement is difficult to

obtain without an extremely rich model that would include many more contextual

features or that the features have limited power. It could also mean that for scope

detection syntax and semantic roles features play a more important role than our

limited set of contextual features. To find a more precise answer to this latter

hypothesis we analyzed the performance of a model (SDR5 in Table 6.2) that

110

Table 5.3: Results of focus detection system with DT-Neg dataset (S - scope used,
FDR - Focus Detection Run).

System/Features Precision Recall F1

Baseline 17.04 98.03 29.03
FDR1/1-9, S 77.06 75.54 76.29
FDR2/1-12, S 80.82 81.00 80.91
FDR1-Intra 76.60 81.52 78.98
FDR2-Intra 83.88 81.52 82.68
FDR1-Inter 80.00 51.67 62.80
FDR2-Inter 77.41 80.38 78.87

excluded the syntactic and semantic roles features. By comparing the performance

of SDR1, SDR5, and SDR4 we can notice that adding the contextual features to the

basic features model (SDR1) leads to an almost 3% improvement in the F1 measure.

The further addition of the syntactic and semantic roles features to the SDR5 model

that includes the basic and contextual features leads to a more than 6%

improvement.

Focus detection (FD). The results for focus detection are summarized in

Table 5.3. In this case, we used the same set of features (i.e., features 1-12). In

addition, for focus detection we rely on scope labels obtained with the best

performing scope detection model (i.e. SDR4 in Table 6.2) as we assume that the

focus is within the scope. The baseline model was developed by treating all the

in-scope tokens predicted by the best system (SDR4) as they were also in the focus.

Compared to the scope detection, the results suggest that focus detection is

more challenging and it requires more context to best disambiguate it (we can see

that by comparing FDR2 and FDR1 results). In an another experiment, we

extracted from the DT-Neg corpus only instances in which the scope and focus were

in the same sentence as the negation cue word, i.e. similar to how previous data sets

treated negation. This allowed us to gauge the importance of context for

same-sentence focus detection. Rows with the mark Intra denote this Answers-only

focus subset, which includes 197 instances from the test set. By comparing results

111

of FDR1-Intra and FDR2-Intra, we can see that context can improve results and

therefore is important for focus detection. Furthermore, we tested the role of

contextual features on the remaining instances (i.e., instances where the negation

focus itself lies in the context). These results are presented in the FDR1-Inter and

FDR2-Inter rows. In this case also, contextual information improved the results.

5.7 Discussion and Conclusion

The proposed method for negation scope and focus detection in dialogue performed

very well. Specifically, the results show that the contextual information in intra-

and inter-sentential negation focus detection is important. This can be very useful

towards improving natural language understanding in conversational (i.e., dialogue

based) systems.

However, there are still issues that must be addressed. For instance, some of

student responses were not well formed which introduce errors in our feature

extraction step. Moreover, as the MITRE Corporation noted in their recent report,

there are still some issues with respect to negation annotation and evaluation (Wu

et al., 2013) that need to be addressed by future research. For example, previously

existing datasets assumed negation scope is within the same sentence with the

negation cue word (or at least annotated so) which does not generalize across all

kind of data. We addressed this issue in our work presented here. Also, there may

be inconsistencies in annotations proposed by various teams. For example, some

negation corpora include cues within the scope whereas others don’t. We did not

include cue in the scope.

In order to foster research in this area, we intend to make our annotated

dataset and annotation proposal freely available.

In the future, we want to work with datasets from different sources and work

on the interpretation of negated texts in dialogue contexts which is an important

task once negation scope and focus have been identified. For example, we plan to

112

handle negation in automatic answer grading systems in conversational tutoring

system.

113

Chapter 6

Towards Interpretable Similarity and Diagnostic Feedback Generation

6.1 Introduction

Measuring the semantic similarity of texts is to quantify the degree of semantic

similarity between a given pair of texts which we discussed in Chapter ??. For

example, a similarity score of 0 means that the texts are not similar at all and 5

means that they have same meaning, and so on. While useful, such quantitative or

even qualitative assessments are hard to interpret because they do not provide

details, i.e., they do not explain or justify why the similarity score was assigned high

or low. If we look at the output of the automatic answer assessment systems, the

final outcome is either the similarity score between student answer and the reference

answer, or a label (such as Correct, CorrectButIncomplete, or Incorrect). But if the

answer is not correct, the student may not be able to figure out what exactly was

wrong in his or her answer. On the other hand, human tutor can generate

explanation for the partially correct or incorrect answer. Towards achieving that

goal of being able to generate the explanation for the given assessment score or

label, we have developed interpretable similarity models and tools (Banjade,

Niraula, et al., 2015; Banjade, Maharjan, Niraula, & Rus, 2016; Maharjan et al.,

2016) which we describe in this chapter.

One way to provide an explanatory layer to text similarity assessment

methods is to align chunks (phrases can be loosely called chunks) between texts and

assigning semantic relation to each alignment. To this end, Brockett (2007) and Rus

et al. (2012) produced datasets where corresponding words (or multiword

expressions) were aligned and in the latter case their semantic relations were

explicitly labeled. We align chunks, indicating the semantic relation (see Table 6.1)

and the similarity score between chunks. The semantic relations were proposed as

114

Table 6.1: Types of semantic relations between chunks.

Semantic Relation Description

EQUI Chunks are semantically equivalent
SPE1/2 Chunk in sentence 1/2 is more specific than chunk in sentence 2/1
OPPO Opposite in meaning
SIMI Similar meanings, but not EQUI, OPPO, SPE
REL Related meanings, but not SIMI, EQUI, OPPO, SPE
NOALI Has no corresponding chunk in the other sentence

part of the SemEval challenge for interpretable similarity (Agirre et al., 2015, 2016)

and are more comprehensive. Also, though less frequent, we allow one-to-many

alignments.

For example, given the following two sentences (source: Agirre et al. (2016)),

12 killed in bus accident in Pakistan

10 killed in road accident in NW Pakistan

They are first chunked using some chunking tool (see Section ??).

[12] [killed] [in bus accident] [in Pakistan]

[10] [killed] [in road accident] [in NW Pakistan]

Once chunks are obtained, we align the chunks and assign similarity score in the

range of 0 to 5 and the output looks as shown below

[12] <=> [10] : (SIMI 4)

[killed] <=> [killed] : (EQUI 5)

[in bus accident] <=> [in road accident] : (SPE1 4)

[in Pakistan] <=> [in NW Pakistan] : (SPE2 4)

Our system (Banjade, Maharjan, Niraula, & Rus, 2016; Maharjan et al.,

2016) which is also freely available for download 1 performed overall best in

SemEval 2015 and 2016 (Agirre et al., 2015, 2016).

Using this approach, we target to produce detailed feedback as illustrated below.

Student answer: The force on the box is zero

1from http://semanticsimilarity.org

115

Table 6.2: The summary of training and evaluation dataset.

Dataset Training Test Source

Images 750 375 image captions
Headlines 750 375 news headlines
Student Answers 333 344 student answers

Reference answer: The net force on the box is zero

Alignments:

The force <=> The net force (SPE2)

the box <=> the box (EQUI)

zero <=> zero (EQUI)

The tutor feedback would look something like below:

Great! But to be specific, you should state “the net force” (because the

expected answer is more specific than student’s answer, i.e., the netforce and force

are quite different concepts in science and netforce is more specific than force).

6.2 Dataset

We used the dataset released during SemEval competitions in 2015 and 2016. We

used the dataset released during 2015 as training and evaluated the system using

the dataset released in 2016. The dataset is summarized in Table 6.2. Each pair in

the dataset is in plain text as well as chunked. These chunks were created manually

(i.e., reference chunks or gold chunks). If the text is not chunked, system should be

able to chunk them first before doing any alignments and the system generated

chunks are referred as sys chunks. Our system can process the chunked text (gold

chunks category) as well as in plain text which is first chunked by our system itself

(sys chunk category).

6.3 Preprocessing

Hyphens were replaced with whitespaces if they were not composite words (e.g.

video-gamed). Also, the words starting with co-, pre-, meta-, multi-, re-, pro-, al-,

anti-, ex-, and non- were left intact. Then, the texts were tokenized, lemmatized,

116

POS-tagged and annotated with Named Entity (NE) tags using Stanford CoreNLP

Toolkit (Manning et al., 2014). We also marked each word as whether it was a stop

word. In the system chunks category, we had plain texts and we created chunks

using our own Conditional Random Fields (CRF) based chunking tool (see

Section 6.4). We normalized texts using mapping data. For example, pct and %

were changed to percent. These preprocessing steps were performed for both gold

chunks and system chunks category.

In student-answers dataset which consists of student answers given to a

computer based logic tutor (Agirre et al., 2016), we replaced symbol A/B/C with

bulb A/B/C. Similarly, X/Y/Z was replaced by switch X/Y/Z. We used this domain

knowledge based on the notes found in student-answers training data description file.

6.4 Chunking

We developed a Conditional Random Field (CRF) based chunker2 using both

CoNLL-2000 shared task training and test data3. This data consists of a Wall Street

Journal corpus: sections 15-18 as training data (211727 tokens) and section 20 as

test data (47377 tokens). We generated shallow parsing features such as previous

and next words from current word, current word itself, current word POS tag,

previous and next word POS tags and their different combinations as described in

Tjong Kim Sang and Buchholz (2000). We used CRF++ tool4 to build the CRF

models.

Furthermore, we analyzed its output (i.e., chunks) and added the following

rules in the system to merge some of the chunks, resulting in chunks that make

more sense and are consistent with iSTS gold chunks.

(a) PP + NP => PP

2Our chunker is available at http://semanticsimilarity.org

3http://www.cnts.ua.ac.be/conll2000/chunking/

4https://taku910.github.io/crfpp/

117

Table 6.3: Accuracies of OpenNLP chunker and our CRF chunker at chunk level
(CL) and at sentence level (SL).

DataSet Chunker CL SL

Headlines
O-NLP 53.88 16.13
CRF 83.32 63.23

Image
O-NLP 52.71 5.33
CRF 90.29 74.93

(b) VP + PRT => VP

(c) NP + CC + NP => NP

For example, it merges chunks [on] and [Friday] to form single PP chunk [on

Friday] using rule (a).

The details about the chunking tool is available in (Maharjan et al., 2016).

We also chunked the input texts using the Open-NLP chunking tool

(O-NLP). The results in SemEval 2015 test set which consisted of 375 Images data

and 378 pairs of Headlines text are presented in Table 6.3. The accuracies were

calculated at chunk level (CL) and sentence level (SL) by comparing the chunks

created by the system against the manually created chunks (i.e., gold chunks). Since

the accuracy of our CRF based chunker is better than that of OpenNLP, we used

our CRF chunker for chunking texts in sys chunks category.

6.5 Chunk Alignment, Relation and Similarity Prediction

For a given sentence pair, the chunks of the first sentence were mapped to those

from the second by assigning different semantic relations and scores based on a set

of rules, similarity functions, and lookup resources. Before preforming alignments,

we preprocessed texts as described in Section 6.3.

We built upon our previous system called NeRoSim. We refer the reader to

Banjade, Niraula, et al. (2015) for further details of NeRoSim and in this section we

describe our recent updates and results only. The limitation of NeRoSim was that

the alignments were restricted to 1:1. We modified it to support many to many

118

alignments as well. Also, the NeRoSim system was able to process only gold chunks

(i.e., chunks provided by the organizers). Now, the system can take input in the

form of plain texts as well and create chunks on the fly. In addition to the chunking

feature described in Section 6.4, the updates made to the system are described

below.

Many-to-Many Alignments:

MULTI1 : If there is any ALIC chunk (i.e., chunk which does not have any

corresponding chunk in the other sentence because of the 1:1 alignment restriction)

in sentence A whose content words are subsumed by the content words of any

already aligned chunk (C) in another sentence B, merge ALIC chunk with the chunk

in A paired with C. If the content words of merged chunk and those of C are

same/equal, realign chunk C with merged chunk as EQUI and update the score to

5.0.

For example:

// [Iran] [hopes] [nuclear talks] [. . .].

// [Iran Nuclear Talks] [spur] [. . .].

Step 1:

nuclear talks <=> Iran Nuclear Talks // SPE2

Iran <=> //ALIC

Step2:

Iran nuclear talks <=> Iran Nuclear Talks // EQUI

MULTI2 : In MULTI1, if all the content words of merged chunk and those of C are

not matching completely, then realign chunk C with merged chunk but keep the

previous alignment type and score.

Furthermore, we have expanded the rules for SIMI and EQUI.

EQx : If unmatched words are morphological inflections of each other and all

other words in the chunks are already matched, assign the EQUI relation.

119

E.g. Korean Air <=> Air Korea

SIMIx : If nouns are matching but not the adjective or vice-versa, assign

SIMI label.

E.g. red carpet <=> brown carpet

6.6 Experiments and Results

6.6.1 Runs

We run our system in three different settings (called Runs) which are described

below.

Run1 : We included many-to-many alignment in NeRoSim (i.e., MULTI1

and MULTI2 were added).

Run2 : Same as Run1 in alignment but the alignment scores were assigned

based on the average scores for each alignment type in the full training data.

Run3 : Same as Run2 but SIMIx and EQx rules added.

It should be noted that our system can process both chunked text and plain text.

The results of our system using manually created chunks (gold chunks) as well as

system created chunks (sys chunks) are presented in the next section.

6.6.2 Evaluation Method

The results were evaluated by calculating F1 scores based on Melamed (1998) which

has been adopted in Agirre et al. (2016). This evaluation approach was proposed in

the context of alignment for Machine Translation (MT) evaluation. In our case, the

system generated alignments are compared with human annotated alignments.

Given,

g = gold standard token:token alignments (produced aligning all tokens in

chunk:chunk alignments).

s = system token:token alignments (produced aligning all tokens in

120

chunk:chunk alignments).

precision(g, s) =
overlap(g, s)

|s|

recall(g, s) =
overlap(g, s)

|g|

where overlap returns the number of token:token alignments in common between

both sets. The punctuations were ignored during the evaluation. In order to adjust

the length of the chunks, the alignment at word level is counted and the weight is

assigned as,

weight(t1, t2) =
1

max(fanout(t1), fanout(t2)

where t1 and t2 are aligned tokens, and the fanout(t) is the number of token:token

alignments which have their origin at t.

In order to calculate the F1 score for the similarity score match, the weight

of the token alignment is penalized for differences in score between the system

generated score and the gold standard score as,

penalty = 1− abs(score(t1 : t2, sys)− score(t1 : t2, gold))

5

weight(t1, t2) =
1

max(fanout(t1), fanout(t2)
∗ penalty

The precision, recall, and F1 scores are computed for all alignments of all

pairs in one go (i.e., as opposed to averaging F1 of each sentence pair). Additional

information about the evaluation method can be found in Agirre et al. (2016).

6.6.3 Results

The results on test datasets are presented in Table 6.4. The results are presented in

terms of F1 scores on test set with gold chunks and sys generated chunks (separated

121

by /). The baseline system consists of several procedures as described in Agirre et

al. (2016) and is considered as quite strong system in itself.

In gold chunks category, we can see that the alignment scores are higher

compared to the baseline system and are very close to the best results from all

submissions in those categories. However, the alignment type score in each case is

relatively lower than the alignment-only score and it ultimately impacted the F1

score calculated for type and score together (i.e., T+S). We found the same pattern

in all submitted systems in SemEval (Agirre et al., 2016). It indicates that the

system’s overall performance will be improved greatly if improvements can be made

in predicting the alignment types. Also, the scores for student-answers are lower

than headlines and image texts and it requires further analysis to fully understand

why this is the case. One of the reasons might be that we did not use this dataset

while developing the system and no prior information about such dataset was

modeled. Additionally, more errors might have been introduced in our NLP pipeline

as the texts in this dataset were not standard written texts compared to news

headlines and image captions.

Similar to the results in gold chunks category, the values in Table 6.4 after /

are the results on the test set but this time with system chunks. In image and

headlines data, our system obtained the best results. However, following the same

pattern as in gold chunk results, the F1 scores for alignments are high but the scores

for predicting the alignment types are relatively lower. Also, the overall results in

sys chunks category are lower than those of gold chunks. The reduction in the

performance can be partly attributed to the error in chunking which is propagated

to the final results.

In addition to the difficulty of the task of aligning the chunks and assigning

relation types, we found some discrepancies in the annotation which we think

induced some errors. For example, on a sofa <=> on a blue sofa (#65 in image

122

Table 6.4: F1 scores for chunk alignment, relation and similarity score prediction on
test data with gold chunks and with sys chunks (separated by /). Best score is the
highest score for each metric given by any of the participating systems in the shared

task including the system submitted by the team involved in organizing the task.

System Alignment Relation Type Sim. Score Type+Score

Headlines
Baseline 0.8462/0.6486 0.5462/0.4379 0.7610/0.5912 0.5461/0.4379
Run1 0.9072/0.8366 0.6650/0.5605 0.8187/0.7394 0.6385/0.5384
Run2 0.9072/0.8366 0.6650/0.5605 0.836/0.7595 0.6487/0.5467
Run3 0.9072/0.8376 0.6583/0.5595 0.8329/0.7586 0.6405/0.5446
Best 0.9278/0.8366 0.7031/0.5605 0.8382/0.7595 0.6960/0.5467

Image
Baseline 0.8556/0.7127 0.4799/0.4043 0.7456/0.6251 0.4799/0.4043
Run1 0.8766/0.8429 0.6530/0.6148 0.7955/0.7591 0.6238/0.5870
Run2 0.8766/0.8429 0.6530/0.6148 0.8144/0.7806 0.6362/0.5990
Run3 0.8766/0.8429 0.6675/0.6276 0.8156/0.7813 0.6483/0.6095
Best 0.9077/0.8557 0.6867/0.6276 0.8552/0.7961 0.6708/0.6095

Student-answers
Baseline 0.8203/0.6188 0.5566/0.4431 0.7464/0.5702 0.5566/0.4431
Run1 0.8584/0.8165 0.5552/0.5157 0.7686/0.7248 0.5432/0.5049
Run2 0.8584/0.8165 0.5552/0.5157 0.7809/0.7367 0.5458/0.5074
Run3 0.8614/0.8181 0.5468/0.5112 0.7798/0.7360 0.5374/0.5029
Best 0.8922/0.8166 0.6511/0.5651 0.8433/0.7589 0.6385/0.5547

data), the human annotated label is SIMI but arguably the SPE2 label best

describes the relation. Similarly, in a field <=> in a green field (#693 in image

data), the SPE1 label has been found in the training set but it should be SPE2. In

another example (#193 in image data), A young boy <=> A young blonde girl has

been assigned a label SPE2 in the training data. Though the second chunk gives

some additional details, the question is whether we should really compare them

(and decide which one is more specific) because these two chunks are referring to

different objects and therefore it sounds more like comparing apples and oranges.

6.7 Conclusion

In this chapter, we have presented our approach towards making the semantic

similarity assessment more interpretable. In specific, we aligned chunks in the given

pair of sentences and assigned semantic labels and similarity scores. Our system can

123

a b

c d

Fig. 6.1: Results on sys chunks category compared to baseline model and the best
results among the participating submissions in SemEval 2016.

process chunked text as well as plain text input. In the later case, it itself creates

chunks using our CRF based chunking tool. Our results on gold chunks as well as

on system chunks categories are superior to the baseline results. In fact, our system

was one of the best systems submitted in the SemEval shared task in 2016 and in

overall, it performed the best.

The interpretable approach not only allows us to better understand the

semantic similarity between texts but it can also be used in applications. For

instance, the application we target to build using this approach is a feedback

generator in our automatic answer assessment system and for following up question

generation in conversational tutoring system. However, as our results suggested, the

alignment in student answers is more difficult than in the more formal text.

Particularly, assigning alignment labels requires further attention which we intend

124

to address in the future work. Furthermore, the annotated dataset is now quite big

and it will certainly be useful in applying alternative approaches to predict chunk

alignments and alignment types.

125

Chapter 7

Conclusion and Future Work

In this dissertation we have proposed several methods and created resources to

improve measuring semantic similarity between short texts (word- and

sentence-level) and automatic answer assessment. The target application is the

dialogue based intelligent tutoring systems.

For measuring semantic similarity between given pair of sentences, we

proposed two different approaches. In one of the approaches, we built Support

Vector Regression models with various features and evaluated in SemEval 2016

evaluation dataset. We achieved correlation between our system’s output and the

human judgments up to 0.83 (0.735 in average) and our system emerged as one of

the top performing systems submitted in the SemEval for the last three years. Our

most recent system (which has not been reported in this dissertation) was ranked

second among dozens of participating systems in SemEval competition in 2017.

Similarly, our interpretable similarity methods achieved better results than strong

baseline model and most of the participating systems in SemEval competition

securing top position in overall evaluation. These results on SemEval datasets which

are generally used for benchmarking semantic similarity models show our significant

contribution in this research area. We also proposed Bayesian approach to model

the semantic similarity and our domain adaptation models using transfer leaning

approach has been found to be useful, particularly when the domain specific data is

small in size.

We also addressed several issues in semantic similarity systems. One of the

problems we often encounter is the missing word representations in vector based

word representation models. We have proposed a Neural Network based mapping

approach which can map vectors from one model where representation of the given

126

word is available (source) to another model where the representation for the word is

missing (target). Our results with three popular pre-trained models show a

significant growth in model coverage. The coverage increased from few to several

times depending on the which model’s vocabulary is taken as a reference. Also, our

experiments show that the transformed vectors are well correlated to native target

model’s vectors and the mapped vectors can be used with confidence to augment

the model of our interest.

Moreover, we proposed methods and dataset for negation handling in

tutorial dialogues. We developed intra- and inter-sentential negation scope and

focus detection models using Conditional Random Fields and the accuracy of our

models detecting negation scope and focus was above 90%. We also created a

dataset of negation in tutorial dialogues annotated for negation scope and focus in

dialogue context which is very different from negation in literary style text.

As the target application of our work is the intelligent tutoring systems, we

proposed models and created dataset to improve the open-ended answer assessment

models. We used semantic similarity methods to answer assessment and augmented

with additional knowledge, such as question difficulty and knowledge level of the

students. Our Probabilistic Soft Logic (PSL) model including the semantic

similarity and additional knowledge achieved the answer assessment accuracy of

57% when evaluated using DT-Grade dataset which includes the quite difficult cases

to evaluate using semantic similarity methods alone. The answer assessment

accuracy including additional knowledge to semantic similarity model is improved

by about 7% compared to the model created using semantic similarity features only.

This is particularly important because the students’ responses in conversational

tutoring systems vary a lot and are sometimes difficult to evaluate only using the

semantic similarity information. We also created DT-Grade dataset which contains

900 responses collected during an experiment with DeepTutor tutoring system and

127

annotated for their correctness (correct, correct but incomplete, and incorrect) in

the context of tutorial dialogue.

Additionally, we have proposed other models and tools for measuring the

semantic similarity at word-level as well as at sentence-level that are not described

in much details in this dissertation. For example, we contributed significantly in

developing SEMILAR (a Semantic Similarity Toolkit) which has been used widely,

created Latent Semantic Analysis (LSA) models from whole English Wikipedia

articles and made available for download, and so on.

Future Work

In order to further advance the research in semantic similarity and answer

assessment, we intend to work on one or more of the following areas.

� We have found that our model is giving higher scores where the expected

similarity scores are around zero. Similarly, we intend to further analyze the

performance of our models on various subsets, such as texts with high lexical

overlap, low lexical overlap, high similarity, and low similarity and try to nail

down the particular situations where our model is weak and address those

issues.

� Most of the research on representation learning has been done on learning

word or phrase representations and we also focused more on that level.

Research on obtaining sentence representations has gained great attention in

recent years and we also found sentence representations very effective for

semantic similarity assessment. Therefore, in addition to learning word

representations and linearly combining them to get the sentence

representations we intend to explore on learning sentence representations

using more direct approach.

128

� Perform word vector mapping experiments with additional word

representation models and try to understand which types of models are most

effective in mapping. Also, extend the vector based word representation

mapping approach to phrases and sentence level which are even more sparser

than words.

� Integrate the negation scope and focus detection models in Natural Language

Understanding (NLU) applications including semantic similarity and answer

assessment.

� Improve rules weight learning in Probabilistic Soft Logic (PSL) model using

more heuristics in situations where weight learning from the full dataset is not

computationally feasible. Clustering data and refactoring the graphical model

to further reduce the scale of the problem can be one direction to take.

� The interpretable approach not only allows us to better understand the

semantic similarity between texts, it also can be used in applications. For

instance, the application we target to build using this approach is a feedback

generator in our automatic answer assessment system and for follow up

question generation in conversational tutoring systems. However, as our

results suggested, the alignment in student answers is more difficult than in

the more formal text. Particularly, assigning alignment labels requires further

attention which we intend to address in the future work. Furthermore, we

intend to annotate student answers collected in tutoring system and align with

reference answers and develop model for detail feedback generation.

129

References

Agirre, E., Banea, C., Cardie, C., Cer, D., Diab, M., Gonzalez-Agirre, A., . . .

Wiebe, J. (2014). Semeval-2014 task 10: Multilingual semantic textual

similarity. In Proceedings of the 8th international workshop on semantic

evaluation (semeval 2014) (pp. 81–91).

Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez-Agirre, A., Mihalcea, R., . . .

Wiebe, J. (2016). Semeval-2016 task 1: Semantic textual similarity,

monolingual and cross-lingual evaluation. Proceedings of SemEval , 497–511.

Agirre, E., Baneab, C., Cardiec, C., Cerd, D., Diabe, M., Gonzalez-Agirrea, A., . . .

others (2015). Semeval-2015 task 2: Semantic textual similarity, english,

spanish and pilot on interpretability. In Proceedings of the 9th international

workshop on semantic evaluation (semeval 2015) (pp. 252–263).

Agirre, E., Diab, M., Cer, D., & Gonzalez-Agirre, A. (2012). Semeval-2012 task 6:

A pilot on semantic textual similarity. In Proceedings of the first joint

conference on lexical and computational semantics-volume 1: Proceedings of

the main conference and the shared task, and volume 2: Proceedings of the

sixth international workshop on semantic evaluation (pp. 385–393).

Alexandrescu, A., & Kirchhoff, K. (2006). Factored neural language models. In

Proceedings of the human language technology conference of the naacl,

companion volume: Short papers (pp. 1–4).

Anand, P., & Martell, C. (2012). Annotating the focus of negation in terms of

questions under discussion. In Proceedings of the workshop on

extra-propositional aspects of meaning in computational linguistics (pp.

65–69).

Androutsopoulos, I., & Malakasiotis, P. (2010). A survey of paraphrasing and

textual entailment methods. Journal of Artificial Intelligence Research, 38 ,

135–187.

130

Bach, S., Huang, B., London, B., & Getoor, L. (2013). Hinge-loss markov random

fields: Convex inference for structured prediction. arXiv preprint

arXiv:1309.6813 .

Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2015). Hinge-loss markov

random fields and probabilistic soft logic. arXiv preprint arXiv:1505.04406 .

Banjade, R., Maharjan, N., Gautam, D., & Rus, V. (2016). Dtsim at semeval-2016

task 1: Semantic similarity model including multi-level alignment and

vector-based compositional semantics. Proceedings of SemEval , 640–644.

Banjade, R., Maharjan, N., Gautam, D., & Rus, V. (2017). Pooling word

representations across models. Proceedings of 18th International Conference

on Computational Linguistics and Intelligent Text Processing .

Banjade, R., Maharjan, N., Niraula, N. B., Gautam, D., Samei, B., & Rus, V.

(2016). Evaluation dataset (dt-grade) and word weighting approach towards

constructed short answers assessment in tutorial dialogue context.

Banjade, R., Maharjan, N., Niraula, N. B., & Rus, V. (2016). Dtsim at

semeval-2016 task 2: Interpreting similarity of texts based on automated

chunking, chunk alignment and semantic relation prediction. Proceedings of

SemEval , 809–813.

Banjade, R., Maharjan, N., Niraula, N. B., Rus, V., & Gautam, D. (2015). Lemon

and tea are not similar: Measuring word-to-word similarity by combining

different methods. In International conference on intelligent text processing

and computational linguistics (pp. 335–346).

Banjade, R., Niraula, N. B., Maharjan, N., Rus, V., Stefanescu, D., Lintean, M., &

Gautam, D. (2015). Nerosim: A system for measuring and interpreting

semantic textual similarity. SemEval-2015 , 164.

Banjade, R., Niraula, N. B., & Rus, V. (2016). Towards detecting intra-and

inter-sentential negation scope and focus in dialogue. In The twenty-ninth

131

international flairs conference.

Banjade, R., & Rus, V. (2016). Dt-neg: Tutorial dialogues annotated for negation

scope and focus in context..

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Dont count, predict! a systematic

comparison of context-counting vs. context-predicting semantic vectors. In

Proceedings of the 52nd annual meeting of the association for computational

linguistics (Vol. 1, pp. 238–247).

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices:

Representing adjective-noun constructions in semantic space. In Proceedings

of the 2010 conference on empirical methods in natural language processing

(pp. 1183–1193).

Basu, S., Jacobs, C., & Vanderwende, L. (2013). Powergrading: a clustering

approach to amplify human effort for short answer grading. Transactions of

the Association for Computational Linguistics , 1 , 391–402.

Batchkarov, M., Kober, T., Reffin, J., Weeds, J., & Weir, D. (2016). A critique of

word similarity as a method for evaluating distributional semantic models.

ACL 2016 , 7.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic

language model. The Journal of Machine Learning Research, 3 , 1137–1155.

Blanco, E., & Moldovan, D. (2012). Fine-grained focus for pinpointing positive

implicit meaning from negated statements. In Proceedings of the 2012

conference of the north american chapter of the association for computational

linguistics: Human language technologies (pp. 456–465).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal

of machine Learning research, 3 (Jan), 993–1022.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring. Educational researcher , 13 (6),

132

4–16.

Brockett, C. (2007). Aligning the rte 2006 corpus. Microsoft Research.

Brockett, C., & Dolan, W. B. (2005). Support vector machines for paraphrase

identification and corpus construction. In Proceedings of the 3rd international

workshop on paraphrasing (pp. 1–8).

Burgess, C., & Lund, K. (1995). Hyperspace analog to language (hal): A general

model of semantic representation. In Proceedings of the annual meeting of the

psychonomic society (Vol. 12, pp. 177–210).

Carberry, S. (1989). A pragmatics-based approach to ellipsis resolution.

Computational Linguistics , 15 (2), 75–96.

Carbonell, J. G. (1983). Discourse pragmatics and ellipsis resolution in

task-oriented natural language interfaces. In Proceedings of the 21st annual

meeting on association for computational linguistics (pp. 164–168).

Chang, C.-C., & Lin, C.-J. (2011). Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2 (3), 27.

Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., & Buchanan, B. G.

(2001). Evaluation of negation phrases in narrative clinical reports. In

Proceedings of the amia symposium (p. 105).

Choi, Y., & Cardie, C. (2008). Learning with compositional semantics as structural

inference for subsentential sentiment analysis. In Proceedings of the conference

on empirical methods in natural language processing (pp. 793–801).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.

(2011). Natural language processing (almost) from scratch. The Journal of

Machine Learning Research, 12 , 2493–2537.

Corley, C., & Mihalcea, R. (2005). Measuring the semantic similarity of texts. In

Proceedings of the acl workshop on empirical modeling of semantic equivalence

and entailment (pp. 13–18).

133

Councill, I. G., McDonald, R., & Velikovich, L. (2010). What’s great and what’s

not: learning to classify the scope of negation for improved sentiment analysis.

In Proceedings of the workshop on negation and speculation in natural

language processing (pp. 51–59).

DMello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be

beneficial for learning. Learning and Instruction, 29 , 153–170.

Dolan, B., Quirk, C., & Brockett, C. (2004). Unsupervised construction of large

paraphrase corpora: Exploiting massively parallel news sources. In Proceedings

of the 20th international conference on computational linguistics (p. 350).

Dzikovska, M. O., Moore, J. D., Steinhauser, N., Campbell, G., Farrow, E., &

Callaway, C. B. (2010). Beetle ii: a system for tutoring and computational

linguistics experimentation. In Proceedings of the acl 2010 system

demonstrations (pp. 13–18).

Dzikovska, M. O., Nielsen, R. D., Brew, C., Leacock, C., Giampiccolo, D.,

Bentivogli, L., . . . Dang, H. T. (2013). Semeval-2013 task 7: The joint student

response analysis and 8th recognizing textual entailment challenge (Tech.

Rep.). DTIC Document.

Elkin, P. L., Brown, S. H., Bauer, B. A., Husser, C. S., Carruth, W., Bergstrom,

L. R., & Wahner-Roedler, D. L. (2005). A controlled trial of automated

classification of negation from clinical notes. BMC medical informatics and

decision making , 5 (1), 13.

Evens, M., & Michael, J. (2006). One-on-one tutoring by humans and machines.

Computer Science Department, Illinois Institute of Technology .

Fernando, S., & Stevenson, M. (2008). A semantic similarity approach to

paraphrase detection. In Proceedings of the 11th annual research colloquium of

the uk special interest group for computational linguistics (pp. 45–52).

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., &

134

Ruppin, E. (2001). Placing search in context: The concept revisited. In

Proceedings of the 10th international conference on world wide web (pp.

406–414).

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In Ijcai (Vol. 7, pp. 1606–1611).

Gao, J., Deng, L., Gamon, M., He, X., & Pantel, P. (2014, June 13). Modeling

interestingness with deep neural networks. Google Patents. (US Patent App.

14/304,863)

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using

multiple sequences. Statistical science, 457–472.

Gindl, S., Kaiser, K., & Miksch, S. (2008). Syntactical negation detection in clinical

practice guidelines. Studies in health technology and informatics , 136 , 187.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). Autotutor: An

intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions

on Education, 48 (4), 612–618.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W., & Harter, D. (2001).

Intelligent tutoring systems with conversational dialogue. AI magazine, 22 (4),

39.

Graesser, A. C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Tutoring

Research Group, T. R. G., & Person, N. (2000). Using latent semantic

analysis to evaluate the contributions of students in autotutor. Interactive

learning environments , 8 (2), 129–147.

Hall, M. A., & Smith, L. A. (1998). Practical feature subset selection for machine

learning.

Han, L., Kashyap, A., Finin, T., Mayfield, J., & Weese, J. (2013). Umbc

ebiquity-core: Semantic textual similarity systems. In Proceedings of the

second joint conference on lexical and computational semantics (Vol. 1, pp.

135

44–52).

High, R. (2012). The era of cognitive systems: An inside look at ibm watson and

how it works. IBM Corporation, Redbooks .

Hill, F., Reichart, R., & Korhonen, A. (2014). Simlex-999: Evaluating semantic

models with (genuine) similarity estimation. arXiv preprint arXiv:1408.3456 .

Horn, L. (1989). A natural history of negation.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning

deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22nd acm international conference on conference on

information & knowledge management (pp. 2333–2338).

Huddleston, R., Pullum, G. K., et al. (2002). The cambridge grammar of english.

Language. Cambridge: Cambridge University Press , 1–23.

Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2015). Sensembed: learning sense

embeddings for word and relational similarity. In Proceedings of acl (pp.

95–105).

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus

statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008 .

Kimmig, A., Bach, S., Broecheler, M., Huang, B., & Getoor, L. (2012). A short

introduction to probabilistic soft logic. In Proceedings of the nips workshop on

probabilistic programming: Foundations and applications (pp. 1–4).

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., &

Fidler, S. (2015). Skip-thought vectors. In Advances in neural information

processing systems (pp. 3294–3302).

Konstantinova, N., De Sousa, S. C., & Sheila, J. (2011). Annotating negation and

speculation: the case of the review domain. In Ranlp student research

workshop (pp. 139–144).

Kruschke, J. (2014). Doing bayesian data analysis: A tutorial with r, jags, and stan.

136

Academic Press.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval

research logistics quarterly , 2 (1-2), 83–97.

Kulkarni, C., Wei, K. P., Le, H., Chia, D., Papadopoulos, K., Cheng, J., . . .

Klemmer, S. R. (2015). Peer and self assessment in massive online classes. In

Design thinking research (pp. 131–168). Springer.

Landauer, T. K. (2003). Automatic essay assessment. Assessment in education:

Principles, policy & practice, 10 (3), 295–308.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent

semantic analysis. Discourse processes , 25 (2-3), 259–284.

Leacock, C., & Chodorow, M. (2003). C-rater: Automated scoring of short-answer

questions. Computers and the Humanities , 37 (4), 389–405.

Lei, T., Xin, Y., Zhang, Y., Barzilay, R., & Jaakkola, T. (2014). Low-rank tensors

for scoring dependency structures. In Proceedings of the 52nd annual meeting

of the association for computational linguistics (Vol. 1, pp. 1381–1391).

Li, Y., Bandar, Z. A., & McLean, D. (2003). An approach for measuring semantic

similarity between words using multiple information sources. IEEE

Transactions on knowledge and data engineering , 15 (4), 871–882.

Li, Y. H., & Jain, A. K. (1998). Classification of text documents. The Computer

Journal , 41 (8), 537–546.

Lin, D., et al. (1998). An information-theoretic definition of similarity. In Icml

(Vol. 98, pp. 296–304).

Lintean, M., & Rus, V. (2015). An optimal quadratic approach to monolingual

paraphrase alignment. In Proceedings of the 20th nordic conference of

computational linguistics, nodalida 2015, may 11-13, 2015, vilnius, lithuania

(pp. 127–134).

Lintean, M. C., Moldovan, C., Rus, V., & McNamara, D. S. (2010). The role of

137

local and global weighting in assessing the semantic similarity of texts using

latent semantic analysis. In Flairs conference (pp. 235–240).

Lintean, M. C., & Rus, V. (2011). Dissimilarity kernels for paraphrase

identification. In Flairs conference.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The bugs project:

Evolution, critique and future directions. Statistics in Medicine, 28 (25),

3049–3067.

Luong, M.-T., Socher, R., & Manning, C. D. (2013). Better word representations

with recursive neural networks for morphology. CoNLL-2013 , 104 .

Mac Namee, B., Kelleher, J., & Delany, S. J. (2008). Medical language processing

for patient diagnosis using text classification and negation labelling.

Madnani, N., Tetreault, J., & Chodorow, M. (2012). Re-examining machine

translation metrics for paraphrase identification. In Proceedings of the 2012

conference of the north american chapter of the association for computational

linguistics: Human language technologies (pp. 182–190).

Maharjan, N., Banjade, R., Gautam, D., J. Tamang, L., & Rus, V. (2017). Dt team

at semeval-2017 task 1: Semantic similarity using alignments, sentence-level

embeddings and gaussian mixture model output. In Semeval (p. 120124).

Maharjan, N., Banjade, R., Niraula, N., & Rus, V. (2016). Semaligner: A tool for

aligning chunks with semantic relation types and semantic similarity scores. In

Lrec.

Manning, C. D., Raghavan, P., Schütze, H., et al. (2008). Introduction to

information retrieval (Vol. 1). Cambridge university press Cambridge.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky,

D. (2014). The stanford corenlp natural language processing toolkit. In Acl

(system demonstrations) (pp. 55–60).

Martin, J., & VanLehn, K. (1995). Student assessment using bayesian nets.

138

International Journal of Human-Computer Studies , 42 (6), 575–591.

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit.

Retrieved 2013-06-01, from http://mallet.cs.umass.edu.

McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). istart: Interactive

strategy training for active reading and thinking. Behavior Research Methods,

Instruments, & Computers , 36 (2), 222–233.

Melamed, I. D. (1998). Manual annotation of translational equivalence: The blinker

project. arXiv preprint cmp-lg/9805005 .

Miestamo, M. (2006). On the complexity of standard negation. A man of measure:

Festschrift in Honour of Fred Karlsson on His 60th Birthday , 345–356.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances

in neural information processing systems (pp. 3111–3119).

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of

the ACM , 38 (11), 39–41.

Mohler, M., Bunescu, R., & Mihalcea, R. (2011). Learning to grade short answer

questions using semantic similarity measures and dependency graph

alignments. In Proceedings of the 49th annual meeting of the association for

computational linguistics: Human language technologies-volume 1 (pp.

752–762).

Mohler, M., & Mihalcea, R. (2009). Text-to-text semantic similarity for automatic

short answer grading. In Proceedings of the 12th conference of the european

chapter of the association for computational linguistics (pp. 567–575).

Moilanen, K., & Pulman, S. (2007). Sentiment composition. In Proceedings of ranlp

(Vol. 7, pp. 378–382).

139

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised

learning. Neural networks , 6 (4), 525–533.

Morante, R., & Blanco, E. (2012). * sem 2012 shared task: Resolving the scope and

focus of negation. In Proceedings of the first joint conference on lexical and

computational semantics-volume 1: Proceedings of the main conference and

the shared task, and volume 2: Proceedings of the sixth international workshop

on semantic evaluation (pp. 265–274).

Morante, R., & Daelemans, W. (2009). Learning the scope of hedge cues in

biomedical texts. In Proceedings of the workshop on current trends in

biomedical natural language processing (pp. 28–36).

Morante, R., Schrauwen, S., & Daelemans, W. (2011). Annotation of negation cues

and their scope: Guidelines v1. Computational linguistics and

psycholinguistics technical report series, CTRS-003 .

Murrugarra, N., Lu, S., & Li, M. (2013). Automatic grading student answers.

Mutalik, P. G., Deshpande, A., & Nadkarni, P. M. (2001). Use of general-purpose

negation detection to augment concept indexing of medical documents.

Journal of the American Medical Informatics Association, 8 (6), 598–609.

Nayak, N., Angeli, G., & Manning, C. D. (2016). Evaluating word embeddings

using a representative suite of practical tasks. ACL 2016 , 19.

Nenkova, A., & McKeown, K. (2012). A survey of text summarization techniques.

In Mining text data (pp. 43–76). Springer.

Nielsen, R. D., Ward, W., Martin, J. H., & Palmer, M. (2008). Annotating

students’ understanding of science concepts. In Lrec.

Niraula, N. B., Gautam, D., Banjade, R., Maharjan, N., & Rus, V. (2015).

Combining word representations for measuring word relatedness and

similarity. In Flairs conference (pp. 199–204).

Niraula, N. B., Rus, V., Banjade, R., Stefanescu, D., Baggett, W., & Morgan, B.

140

(2014). The dare corpus: A resource for anaphora resolution in dialogue based

intelligent tutoring systems. In Lrec (pp. 3199–3203).

Olney, A., DMello, S., Person, N., Cade, W., Hays, P., Williams, C., . . . Graesser,

A. (2012). Guru: A computer tutor that models expert human tutors. In

Intelligent tutoring systems (pp. 256–261).

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on

knowledge and data engineering , 22 (10), 1345–1359.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting on association for computational linguistics (pp. 311–318).

Pavlick, E., Bos, J., Nissim, M., Beller, C., Van Durme, B., & Callison-Burch, C.

(2015). Ppdb 2.0: Better paraphrase ranking, finegrained entailment relations,

word embeddings, and style classification. In Proc. acl.

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). Wordnet:: Similarity:

measuring the relatedness of concepts. In Demonstration papers at hlt-naacl

2004 (pp. 38–41).

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for

word representation. Proceedings of the Empiricial Methods in Natural

Language Processing (EMNLP 2014), 12 , 1532–1543.

Pérez, D., Gliozzo, A. M., Strapparava, C., Alfonseca, E., Rodŕıguez, P., & Magnini,

B. (2005). Automatic assessment of students’ free-text answers underpinned

by the combination of a bleu-inspired algorithm and latent semantic analysis.

In Flairs conference (pp. 358–363).

Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky,

D., & Manning, C. (2010). A multi-pass sieve for coreference resolution. In

Proceedings of the 2010 conference on empirical methods in natural language

processing (pp. 492–501).

141

Resnik, P. (1995). Using information content to evaluate semantic similarity in a

taxonomy. arXiv preprint cmp-lg/9511007 .

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning ,

62 (1-2), 107–136.

Rokach, L., Romano, R., & Maimon, O. (2008). Negation recognition in medical

narrative reports. Information Retrieval , 11 (6), 499–538.

Rooth, M. (1996). Focus. the handbook of contemporary semantic theory, ed. by

shalom lappin, 271-97. Oxford: Blackwell.

Rosenberg, S., & Bergler, S. (2012). Uconcordia: Clac negation focus detection at*

sem 2012. In Proceedings of the first joint conference on lexical and

computational semantics-volume 1: Proceedings of the main conference and

the shared task, and volume 2: Proceedings of the sixth international workshop

on semantic evaluation (pp. 294–300).

Rus, V., Banjade, R., & Lintean, M. C. (2014). On paraphrase identification

corpora. In Lrec (pp. 2422–2429).

Rus, V., DMello, S., Hu, X., & Graesser, A. (2013). Recent advances in

conversational intelligent tutoring systems. AI magazine, 34 (3), 42–54.

Rus, V., & Graesser, A. C. (2006). Deeper natural language processing for

evaluating student answers in intelligent tutoring systems. In Proceedings of

the national conference on artificial intelligence (Vol. 21, p. 1495).

Rus, V., & Lintean, M. (2012). A comparison of greedy and optimal assessment of

natural language student input using word-to-word similarity metrics. In

Proceedings of the seventh workshop on building educational applications using

nlp (pp. 157–162).

Rus, V., Lintean, M., Moldovan, C., Baggett, W., Niraula, N., & Morgan, B.

(2012). The similar corpus: A resource to foster the qualitative understanding

of semantic similarity of texts. In Semantic relations ii: Enhancing resources

142

and applications, the 8th language resources and evaluation conference (lrec

2012), may (pp. 23–25).

Rus, V., Lintean, M. C., Banjade, R., Niraula, N. B., & Stefanescu, D. (2013).

Semilar: The semantic similarity toolkit. In Acl (conference system

demonstrations) (pp. 163–168).

Rus, V., Niraula, N., & Banjade, R. (2013). Similarity measures based on latent

dirichlet allocation. In International conference on intelligent text processing

and computational linguistics (pp. 459–470).

Rus, V., Niraula, N., & Banjade, R. (2015). Deeptutor: An effective, online

intelligent tutoring system that promotes deep learning. In Twenty-ninth aaai

conference on artificial intelligence.

Rychalska, B., Pakulska, K., Chodorowska, K., Walczak, W., & Andruszkiewicz, P.

(2016). Samsung poland nlp team at semeval-2016 task 1: Necessity for

diversity; combining recursive autoencoders, wordnet and ensemble methods

to measure semantic similarity. In Proceedings of the 10th international

workshop on semantic evaluation (semeval 2016), san diego, ca, usa.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text

retrieval. Information processing & management , 24 (5), 513–523.

Severyn, A., Nicosia, M., & Moschitti, A. (2013). ikernels-core: Tree kernel learning

for textual similarity. In Proceedings of the second joint conference on lexical

and computational semantics (Vol. 1, pp. 53–58).

Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014). A latent semantic model

with convolutional-pooling structure for information retrieval. In Proceedings

of the 23rd acm international conference on conference on information and

knowledge management (pp. 101–110).

Shrestha, P., & Solorio, T. (2015). Identification of original document by using

textual similarities. In International conference on intelligent text processing

143

and computational linguistics (pp. 643–654).

Shute, V. J. (2008). Focus on formative feedback. Review of educational research,

78 (1), 153–189.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A. Y. (2011). Dynamic

pooling and unfolding recursive autoencoders for paraphrase detection. In

Advances in neural information processing systems (pp. 801–809).

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., &

Potts, C. (2013). Recursive deep models for semantic compositionality over a

sentiment treebank. In Proceedings of the conference on empirical methods in

natural language processing (emnlp) (Vol. 1631, p. 1642).

Stefanescu, D., Banjade, R., & Rus, V. (2014a). A sentence similarity method based

on chunking and information content. In International conference on

intelligent text processing and computational linguistics (pp. 442–453).

Stefanescu, D., Banjade, R., & Rus, V. (2014b). Latent semantic analysis models on

wikipedia and tasa.

Stefanescu, D., Rus, V., Niraula, N. B., & Banjade, R. (2014). Combining

knowledge and corpus-b to-word similarity measures for word.

Sukkarieh, J. Z., & Blackmore, J. (2009). c-rater: Automatic content scoring for

short constructed responses. In Flairs conference (pp. 290–295).

Sukkarieh, J. Z., & Bolge, E. (2010). Building a textual entailment suite for the

evaluation of automatic content scoring technologies. In Lrec.

Sultan, M. A., Bethard, S., & Sumner, T. (2015). Dls@cu: Sentence similarity from

word alignment and semantic vector composition. In Proceedings of the 9th

international workshop on semantic evaluation (pp. 148–153).

Thompson, P., Nawaz, R., McNaught, J., & Ananiadou, S. (2011). Enriching a

biomedical event corpus with meta-knowledge annotation. BMC

bioinformatics , 12 (1), 393.

144

Tjong Kim Sang, E. F., & Buchholz, S. (2000). Introduction to the conll-2000

shared task: Chunking. In Proceedings of the 2nd workshop on learning

language in logic and the 4th conference on computational natural language

learning-volume 7 (pp. 127–132).

Tottie, G. (1993). Negation in english speech and writing: A study in variation.

Language, 69 (3), 590–593.

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: a simple and

general method for semi-supervised learning. In Proceedings of the 48th annual

meeting of the association for computational linguistics (pp. 384–394).

Turing, A. M. (1950). Computing machinery and intelligence. Mind , 59 (236),

433–460.

Turney, P. D. (2001). Mining the web for synonyms: Pmi-ir versus lsa on toefl. In

European conference on machine learning (pp. 491–502).

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P.

(2007). When are tutorial dialogues more effective than reading? Cognitive

science, 31 (1), 3–62.

Vincze, V., Szarvas, G., Farkas, R., Móra, G., & Csirik, J. (2008). The bioscope

corpus: biomedical texts annotated for uncertainty, negation and their scopes.

BMC bioinformatics , 9 (11), S9.

Wedin, M. V. (1990). Negation and quantification in aristotle. History and

Philosophy of Logic, 11 (2), 131–150.

Williams, C. K., & Rasmussen, C. E. (1996). Gaussian processes for regression.

Advances in neural information processing systems , 514–520.

Williams, J. D., Niraula, N. B., Dasigi, P., Lakshmiratan, A., Suarez, C. G. J.,

Reddy, M., & Zweig, G. (2015). Rapidly scaling dialog systems with

interactive learning. In Natural language dialog systems and intelligent

assistants (pp. 1–13). Springer.

145

Wu, S. T.-I., Miller, T. A., Masanz, J. J., Coarr, M., Carrell, D., Halgrim, S. R., . . .

Clark, C. (2013). Negation’s not solved: Reconsidering negation annotation

and evaluation. In Amia.

Yu, M., & Dredze, M. (2014). Improving lexical embeddings with semantic

knowledge. In Association for computational linguistics (acl) (pp. 545–550).

Zou, B., Zhou, G., & Zhu, Q. (2014). Negation focus identification with contextual

discourse information. In Acl (1) (pp. 522–530).

146

	Measuring Semantic Textual Similarity and Automatic Answer Assessment in Dialogue Based Tutoring Systems
	Recommended Citation

	tmp.1636142528.pdf.P6uR2

