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Abstract

Phosphor thermometry has been investigated in recent years as

means to explore instantaneous remote thermometry. Many dif-

ferent types of thermographic powders exist. In most cases work

has been performed on these materials while in a fine powder form.

There are significant challenges when working with fine powders

(nm-µm particle size) and these challenges have limited the range

of characterizations and potential applications of these materials.

Among the different types of thermographic phosphors La2O2S:Eu

is one of the most sensitive types that is currently available. Lan-

thanum oxysulfide doped with Eu has been reported to have a

sensitivity of 0.01 ◦C with a wide temperature range of response-

cryogenics to 1500 ◦C. In this work two types of La2O2S:Eu (0.1 %

and 1.0 % Eu concentration) have been fully characterized at cryo-

genic temperatures and at elevated temperatures while embedded

in an elastomeric sleeve. The flexible optically transparent elas-

tomer Sylgard 184 was chosen as the encapsulant for this study.

Samples with increasing levels of La2O2S:Eu powder (from 1 wt

% to 25 wt%) were prepared and studied. Both single layer (sin-

gle concentration) and multilayer (concentration gradient) sample

types were prepared using spin-coating techniques and fully char-

acterized. The effect of the La2O2S:Eu particles on the thermal,

mechanical, and luminescence behavior of the composite materials

was fully investigated and reported here. While the percentage of

the Eu (0.1% versus 1.0%) did not have a detectable effect on the

emission characteristics of the composites, it did indeed affect the

thermal and mechanical properties of the composites. SEM inves-

tigation suggests that the differences in the granular structure of

ix



the two powders has influenced the properties of the composite

polymers prepared in this study. Furthermore, the emission be-

havior of the La2O2S:Eu+Sylgard184 composites showed a strong

non-linear temperature dependence in the range of -40 ◦C to 75 ◦C

and little dependence on the powder concentration level.
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Chapter 1

Introduction

1.1 Phosphor thermometry

Phosphor-based thermography is a low-cost, portable, rapid, and noninva-

sive thermal detection technique with a high degree of precision where the

luminescence properties (decay time and amplitude) reflect the temperature

of the material. A variety of industries have taken advantage of phosphor

thermometry and recently they have been investigated for biomedical ap-

plications as well the method makes use of phosphor materials identical or

similar to many that are manufactured for lighting, display, scintillation, or

medical X-ray applications. Typically, a phosphor is selected for the tem-

perature range of the application and painted or otherwise coated onto the

surface whose temperature is of interest. Luminescence is stimulated either

directly or with the aid of lenses and/or optical fibers. Any of several emission

characteristics such as lifetime or ratio of different spectral emission bands

can indicate temperature [1]. An advantage of phosphor-based thermometry

is that temperature-dependent luminescence can be measured from a dis-

tance and even through intervening scattering or partially absorbing media

[2]. Elastomers from the family of polydimethylsiloxane (PDMS) are flexible

and inert polymers with tunable chemical, physical, and electrical properties

used in some cases for biomedical and in vivo applications [3].
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1.2 Challenges associated with working with

phosphor powders

The visible-light-generating components of emissive, full color, flat panel dis-

plays are called phosphors [4]. When it comes to phosphor thermometry

measurements, the phosphor compound must be sprayed directly onto the

surface of interest as a thin uniform film or with a mixture of an adhesive

agent [5][6]. This can create surface imperfections, on the surface that is be-

ing coated and sin some cases applying a thin film coating can be extremely

difficult. Finally, the phosphors that are used in this manner are no longer

reusable.

1.3 Existing methods of temperature mea-

surement and their limitations

Different methods for the remote temperature measurements are there. For

example, electronic thermometers, infrared pyrometers, liquid crystals etc.

however, they all have some limitations to their performance. Thermocou-

ple, although work very nicely when fine, fail to prove useful to relatively

benign flames [8]. Pyrometers, on the other hand, work by receiving an in-

frared energy from the target. However, they receive the energy from its sur-

roundings when they receive energy from the target and may lead to pseudo

information. Accurate information regarding temperature measurement is

provided by the electronic thermometers which include thermocouples, digi-

tal thermometers, thermistors and etc. The disadvantages come when they

provide little immunity to electromagnetic interference. The heating up of

the metallic leads due to the electromagnetic waves may lead to the inac-

curate measurements [9]. Liquid crystal gives the temperature information

2



from a large surface area resulting in the temperature drift, so anyone will

be in dilemma regarding which data to use.

1.4 Advantages of composite polymers

In an attempt to create a non-destructive means to assess surface tempera-

ture, papers published before [1][7] have demonstrated the feasibility of Ther-

mographic Phosphor thermometry with the phosphor particles encapsulated

within an elastomeric polymer casing with no adverse effects on the emission

characteristics and temperature response of the thermographic phosphors

used [10]. The properties of the combined material can be tuned to deliver

the sensitivity of choice by controlling the dopant concentration, among other

things [11].

1.5 Polymer encapsulated thermographic phos-

phor temperature sensors

Thermal measurements involving thermographic phosphors, whether in the

form of powder, crystal, or glass, continue to be of interest for a wide range

of applications and temperature ranges [12]. A laser of definite wavelength

is incident on the sample and the emission is observered, from where the

decay time is calculated and the temperature of the sample is known. Pre-

vious work with thick films (prepared using drop-cast methods) where the

phosphor powder is encapsulated in a polymeric matrix demonstrated that

for the two phosphor types tested so far, the luminescence behaves the same

way as the neat powder [1][13]. This suggests that chemical reaction between

the polymer matrix and the phosphor powder is either negligible or, nonex-

istent. Earlier work published by authors has demonstrated the applicability

of polymer composites loaded with phosphor for biomedical applications uti-
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lizing optical, and X-Ray excitation mechanisms [3][14]. More recently, it was

demonstrated that spin-coating techniques can be used to create thin flexible

phosphor-doped films that are geometrically conformable, without detrimen-

tal effect to the decay characteristics of the thermographic phosphors used

for the study [10].

The present account involves using spin-coating techniques to create mul-

tilayered structures with a gradient concentration of the phosphor powder

and its luminescence thoroughly characterized between -45◦C and 70◦C, in a

low humidity environment. Thin multilayer assemblies offer unique features

that can (1) address the possible interplay of scattering and absorption, (2)

establish signal levels for various thicknesses and concentrations, and, (3) de-

velop a heat flux sensor. Here, the author presents the thermal, mechanical,

and luminescence properties of multilayer, stacked, flexible thermographic

phosphor temperature sensors.

1.6 Thesis Outline

In Chapter 2 the concepts and the mechanisms behind the luminescence,

thermal conductivity and tensile test are shown by explaining the physics

behind them. Also, information about phosphor thermometry and modeling

related to thermal conductivity are presented. Methods and the materials

used to follow the methods for the preparation of the required samples are

explained in Chapter 3. Tree diagram has been shown to give a clear idea

regarding the types of samples prepared along with their picture. Results

produced after the different characterization when done with the samples

are discussed in Chapter 4 while Chapter 5 concludes the result giving a

brief description about the results. All the work that can be done with the

future following the same technique applied to this research are explained in

Chapter 6.
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Chapter 2

Theory

2.1 Phosphor Thermometry

There are many ways to measure the temperature of any substance. But

every technique has its own limitations. They can’t be used everywhere.

For example, thermocouple can be used to measure the temperature. There

are two wires from two different metals. A voltage is then produced from the

junction between the two voltages which is proportional to the temperature

of a surface in direct contact with the device. Thermocouples can accurately

measure temperatures up to approximately 2500◦C. However, their perfor-

mance drops when exposed to oxidizing or reducing environments, such as in

gas turbine engines. Also, non-stationary surfaces, such as turbine blades or

pistons cannot be measured because thermocouples require direct physical

contact with a surface. In the meantime, even the fluid dynamics of a given

system can be spoiled.

Phosphor thermometry is a non-contact technique which uses optical sig-

nals to measure temperature remotely. However, this technique is not vulner-

able to the issues of pyrometers, thermocouples, thermal paints, and many

other thermal sensors. Phosphors are composed of a ceramic lattice doped

with a small amount of luminescent ions which emit visible, infrared, or

UV radiation upon excitation from an external energy source. The intensity,

wavelength, or lifetime (duration of light) of the visible emission is used to de-

termine the temperature of a surface. Unlike many other thermocouples and

thermal paints, phosphors are composed of inorganic and ceramic materials
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which means that phosphors are resistant to oxidation in high-temperature

environments and are non-reactive with harsh chemicals.

If the matter is concerned with the measurement of temperature, phos-

phor thermometry has several major advantages over standard temperature

measurement methods. Response of the phosphor does not depend on the

surface properties, has the performance capacity from cryogenic system up to

2000K. Calibrated thermographic phosphors (TGP) do not drift over time.

Very useful in measurement system with fast time dependency as TGPs have

responsive time of microseconds [16].

2.1.1 Thermographic Phosphors

Phosphors are usually white in appearance and exhibit luminescence when

excited by an external source of certain wavelength. Recently, they have

wide range of applications from cathode ray tubes, plasma displays, light

bulbs and x-ray conversion screens. The history of the phosphor goes back

all the way to 1940s when the word phosphor came for the first time. After

that, many researchers are working on it and have given their contribution

in making phosphor [17].

TGP thermometry has many advantages over the conventional tempera-

ture sensors. TGPs can work over a wide range of temperature, i.e. cryogenic

to 1800◦C, remotely accessible, accuracy up to 0.05◦C for some compounds,

very economical, easily transportable, reusable, easy to store, and high ver-

satility [10].

Phosphors are designed in many ways and the one that have been specifi-

cally designed for measuring temperature remotely are called thermographic

phosphors. These materials consist of an oxide matrix and are doped with

a rare-earth (RE) or transition metal ion [18]. After exciting the phosphor,

the emitted luminescence can be observed in the UV, visible, or even in the

6



infrared region. Here, the luminescence is concentrated in the visible region.

The emitted luminescence differs with the change in temperature [19] and this

dependency has been used here to observe the various responses that change

with temperature and make a sensor out of the phosphor (La2O2S:Eu).

2.1.2 Measurement Method

Since, phosphor emits energy as heat or lattice vibrations caused by the

higher temperatures, they can be used as a thermal sensor. The change in

the surface temperature highly affect the photo luminescent properties such

as the luminescence wavelength, intensity, or lifetime. Surface temperature

measurements are determined by evaluating experimental luminescent data

against calibration data, which contain the temperature-dependence of a par-

ticular luminescent property. There are different ways to obtain the surface

temperature such as evaluating the emission wavelength, intensity, or the life-

time (duration of the emission). In this work, we will focus on temperature

dependent lifetime [18].

When a light of certain wavelength is incident on the sample, there is

emission of photons depending on the intensity of the emitted light, which

effects the number of the excited states. This change in the excited states is

mathematically given by,

dN = −βN dt (2.1)

where, dN is the changed excited states, β is the rate constant and dt is the

elapsed time. Integrating eq.(2.1), we get

N = N0e
−βt (2.2)

where N0 is the initial number of excited stated. Differentiating eq.(2.2), we

get,
dN

dt
= −βN0e

−βtdt (2.3)
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Here, the intensity I of the emitted light is given by dN
dt

, I0 = βN0 is

the initial intensity. The negative sign shows that the intensity is decreasing

with time. Hence,

I = I0e
−βt (2.4)

Taking logarithm on both sides and rearranging, we get-

ln

(
I

I0

)
= −βt (2.5)

Comparing above equation with y = mx+ c, we see that −β is given by

the slope of the straight line in equation (2.5). The inverse of this slope is

defined by the lifetime decay (τ), where τ = β−1 [19].

2.1.3 Luminescence

We might have seen materials glowing due to high temperature or due to ra-

diation, however, luminescence is different. It is created sources apart from

heat and is observed when the electrons from lower energy state are excited

to the higher energy state along with the emission of light. Many types of

luminescence have been observed by the researchers like triboluminescence,

bio-luminescence, chemo-luminescence, photoluminescence and many more.

Here, photoluminescence is our interest of study. Luminescence induced by

light energy is termed photoluminescence and is formally divided into two

categories: fluorescence and phosphorescence. They both are similar, how-

ever, different in the sense that phosphorescence has longer excited life time

than fluorescence. Also, phosphorescence is observed during the excitation

and fluorescence is observed after the excitation. Since, the interest is to

observe the intensity of the excitation, phosphorescence is the one that is

usually used for finding the temperature in a thermographic phosphor sys-

tem.

8



Figure 2.1: Jablonski energy level diagram showing luminescence process

[17].

To make it easier, in 1888 the term luminescence was introduced by Eil-

hard Wiedemann that includes all light emission including both fluorescence

and phosphorescence. Regardless, these two terms are still a subject of dis-

cussion [17].

We know that the excitation by a light of certain wavelength makes the

electrons to jump to the higher states. However, they cannot remain there

for a long time. The vibration, relaxation, internal conversion, intersystem

crossing, and emission happens soon causing the excited electrons to come

back to the ground state giving the glow to the materials which can be shown

by the Jablonski diagram in Figure 2.1.

9



2.2 Thermal Conductivity

There are different means and modes for the transfer of heat energy like

electrical carriers lattice waves, electromagnetic waves or other excitation in

solids. However, in solids, the electrical carriers carry the majority of the heat

in metal whereas lattice wave dominant in insulators [20]. Thermal diffusivity

and specific heat including thermal conductivity are used to describe the

heat transport through a material [21]. Here, we are focusing on the thermal

conductivity of our material.

Thermal conductivity is defined as a property that indicates how fast heat

is conducted through a material [22]. Normally, the total thermal conduc-

tivity K can be written as a sum of all the components representing various

excitations.

K =
∑
i

Ki

where i is the excitation. Depending on the magnitude and temperature,

K values of solids vary from one material to another. Differences in sample

size, grain size, lattice defect, and dislocation may be the reasons behind the

variations of κ value. Mathematically,

κ = − Q

∇T

where Q is the heat flux and ∇T is the temperature gradient [20]. Thermal

conductivity, among the thermal properties of insulation materials, is consid-

ered as the most significant as it directly affects the resistance to transmission

of heat (R-Value) that the insulation material must offer [23].

Different methods like transient hot wire(THW), transient line source

(TLS), transient hot strip (THS), and Transient Plane source (TPS) are

used for the measurement of the thermal conductivities of the isotropic and

the homogeneous materials [21]. In this work, we have measured the thermal

conductivity of our sample by TPS technique.
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2.2.1 Transient plane source (TPS) Technique

TPS technique also known as the “hot disk” is a very appropriate way for

characterizing the K values of materials [23]. The measurement with this

technique is generally applied to the materials that are considered as insula-

tors and is conducted with a guarded-hot-plate apparatus [24].

Two flat samples of identical area, density and thickness are placed on

the opposite side of the probe. The probe is made up of Nickel metal double

spiral and is supported by a thin kapton film to protect the shape, provide

mechanical strength and to keep it electrically insulated. Current passing

through the sensor increases the temperature of the samples and thermal

conductivity is calculated on the basis of time dependent temperature in-

crease [25].

For a hot disk sensor that is electrically heated, the resistance increases

as a function of time and can be taken from the temperature coefficient

equation:

R(t) = R0[1 + TCR(∆T0 + ∆Tavg)] (2.6)

This equation can be rewritten in terms of the total temperature change as

∆Tt(t) =
1

TCR

(
R(t)

R0

− 1

)
(2.7)

where TCR is temperature coefficient The total change in temperature recorded

by the sensor produces a response curve as shown in Figure 2.2, with

∆Tavg = ∆Tt(t)−∆T0 (2.8)

The time dependent temperature increase is dependent on sensor radius

and output power, provided by the Therm Test reference manual is [25]

∆Tavg(t) =
P0

π
3
2

1

r2κ

√
t

α
(2.9)

The hot disk sensor simultaneously reads the values for ∆Tt(t) and R(t)

over the time of the measurement. Manually, the measurement time and out-

put power are set. Thermal conductivity was then solved for by an iterative

11



Figure 2.2: Total and average temperature response curves of a TPS sample

process using equations (2.7) and (2.8).

2.2.2 Modeling of thermal conductivity in composites

There are two models that were followed while taking the measurements for

the K values, series model and parallel model.

The parallel model assumes there is contact between the particles. In the

parallel model, each phase is considered to contribute independently to the

total conductivity, proportionally to its volume fraction as shown in equation

(2.10).

Kc = Kp.φp +Km.φm (2.10)

where, Kc, Kp, Km are the thermal conductivity of the composite, particle,

matrix respectively and φp, φm are the volume fractions of the particles and

matrix respectively. Now, the series model assumes that there is no contact

between the particles and the conductivity of the composites in this model
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is given by,

Kc =
1(

φm
Km

+ φp
Kp

) (2.11)

According to the literature published before, most of the values obtained for

the K usually falls within these two models [26].

2.3 Mechanical Test

Every material has a limited strength, and the strength is determined by its

rigidity or elasticity. PDMS is an elastic and soft material and that is the rea-

son it can be easily used for reversible deformations needed during the analyt-

ical operations. PDMS has the property of bonding to itself and/or to other

surfaces creating a watertight seal. Using this property, PDMS membranes

with different thicknesses can be used to form various three-dimensional mi-

crostructures such as micro-channels and micro-chambers. PDMS is gener-

ally considered as a bulk but this is not always the case, as the thickness

decreases we should understand whether or not it makes PDMS membranes

dimensional dependent [27].

Recent microfluidic and micro electro mechanical systems have shown

that the high elastic properties of the PDMS has provided distinct pros over

conventional materials like glass, silicon and harder materials. This increas-

ing no of advantages of elastic substrate of PDMS has provided a reason to

look for its mechanical properties [28].

Here, we are trying to observe how the addition of powder in the elas-

tomer will change the mechanical properties of the PDMS doped by weight.
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2.3.1 Tensile Testing

Different samples of PDMS were prepared in different rpm to investigate the

mechanical properties of PDMS films with different mixing ratios of the base

polymer and curing agent. As the samples are easily affected by various

natural factors like tensile, compression and shear stress, they need to be

considered in materials selection for mechanical design. Also, we should not

neglect the time and temperature conditions.

All of our tests for the tensile were done in the room temperature. Testing

stress and strain of PDMS helps us know the strength of the substance. This

test is a destructive method in which we cut our specimen to a dog bone

shape to a standard size.

The strength of phosphor doped Sylgard 184 is known by interpreting

the Young’s Modulus from the slope of a stress-strain curve after doing the

linear fit in the curve. It is also defined as the ratio of stress to the strain,

i.e.

Young’s Modulus (Y ) =
Stress

Strain

Where, stress is the ratio of force to cross-sectional area and strain is the

ratio of change in length to the original length.
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Chapter 3

Materials and Methods

3.1 Sample synthesis and preparation

For the conduction of our experiment, we have prepared different kinds of

samples with different thickness. This includes the samples prepared using

Sylgard 184 Silicone with Lanthanum Oxysulphide (La2O2S:Eu), commonly

known as phosphor only and silicone with phosphor and carbon. For both

case, we have samples made in single layer and samples made in multiple

layer. The method applied to prepare these samples is almost the same but

however differs slightly.

3.1.1 Single-layer single-concentration La2O2S:Eu/Sylgard

184 composites

There were two different batches of Lanthanum Oxysulphide (La2O2S:Eu)

that were used while preparing the samples. The first batch used was 23010

SKL63/F-X La2O2S:Eu with 0.1m/o %Eu, and the second batch of sam-

ple used for the preparation of sample was from lot 23015 SKL63/F-A1

La2O2S:Eu doped with 1m/o %Eu.

For different measurements like thermal conductivity, mechanical test and

fluorescence, single sided drop cast samples were prepared without using the

phosphor (Neat Sylgard) and using the phosphor from two different batches

(SKL63/F-X:0.1% Eu and SKl63/F-A1:1%EU). No thin films or multilayered
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samples were prepared.

For this, Sylgard 184 and cross-linker were mixed in the ratio 10:1 i.e.

the guidelines provided by the manufacturer (Dow Corning, Midland, MI).

Then the required amount of La2O2S:Eu powder by weight was added to the

mixture and was stirred with a metallic spatula until it got mixed thoroughly.

All of the measurements were done in Fisher EMD XE Series Model 100A

microbalance. The mixture was poured into a very thin flat surface of alu-

minum pan and then outgassed in a Precision M-3 Scientific vacuum oven at

room temperature until the mixture had no air bubbles remaining and finally

left for curing in Cascade Tek oven from TEK for 1 hour at 80◦C. Then the

samples as shown in Figure 3.1 and 3.2a were peeled from the substrate.

Figure 3.1: Samples prepared from two different batches (a)SKL63/F-X with

0.1 % Eu and (b) SKl63/F-A1 23015 with 1 % Eu

1, 10 and 25% doped PDMs was cured using the phosphor with 0.1% Eu.

Whereas phosphor with 1% Eu was used to synthesize 1%, 5%, 10%, 15%,

20%, and 25% doped PDMS. Samples of PDMS doped in different concen-

tration with just phosphor (La2O2S:Eu) were prepared.

16



Figure 3.2: Schematic diagrams of (a) single layer composites and (b) multi-

layer composites

3.1.2 Multi-layer multi-concentration La2O2S:Eu /Syl-

gard 184 composites

We have prepared three different types of multilayered samples, namely 15-

P-5, 15-P-10 and 5-P-20 spun in 0, 500, 1000, 2000, and 3000 rpm. Figure

3.2b shows a schematic diagram of the multilayer structure created, where

the Neat Sylgard184 layer is sandwiched between two layers of Sylgard 184

with different concentrations of La2O2S:Eu.

For this, the Sylgard 184 and cross-linker were added in the ratio 10:1

as mentioned in section 3.1.1 and required amount of phosphor were added

together, outgassed and spin coated at 500, 1000, 2000 and 3000 rpm for each

required concentration in Chemat Technology Spin-Coater KW-4A, again

outgassed and finally left for curing in oven for 1 hour at 80◦C.

Similarly, Neat Sylgard mixture (no powder) was prepared and poured

onto the top of the same sample previously prepared, it was cured and finally

another same powder doped mixture of different concentration was cured onto

the top of the same sample. The samples as shown in Figure 3.3 were then

carefully peeled out from their supporting surface.

Similar to the thin film 2 sided, the drop cast ones were prepared in the
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same way followed by the mixture of Sylgard 184 and cross-linker in the

ratio 10:1 and mixing of phosphor by weight and outgassing. But instead

of spin coating, PDMS doped with definite X concentration is cured first in

the petri dish. After that, Neat Sylgard is cured on top of that and finally

PDMS doped with Y concentration is cured. In this way, 15-P-5, 15-P-10,

5-P-20 samples were made in 0 rpm.

Figure 3.3: Multilayer doped PDMS spun in 1000rpm (a and b), and in

500rpm (c and d).

Figure 3.4: Multilayer doped PDMS spun in 0rpm showing thickness gradient

3.1.3 Carbon/ La2O2S:Eu /Sylgard 184 composites

Both the drop cast and the thin films were synthesized using the carbon,

silicone and phosphor. To increase the conductivity of the sample was the

reason behind using carbon powder along with the phosphor.

There were three kinds of thin films prepared. The first one includes 50%

carbon and 50% phosphor by weight doped PDMS, the second includes 1%
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carbon and 99% Phosphor, and third includes 5% carbon (same for all) and

phosphor required by weight doped PDMS. We also had prepared 1%, 10%

and 25% phosphor along with 5% carbon (amount of carbon same for all)

doped PDMS in 2000 rpm.

3.1.4 Preparation of 5% Carbon doped (thin and drop

cast) PDMS

To synthesize these samples, we follow the same instructions given by Dow

Corning, Midland, MI, that is mixing the silicone and the cross-linker in the

ratio 10:1 respectively. However, the way of encapsulating the carbon and

phosphor powder is different.

We had prepared 1%, 10% and 25% Carbon mixed samples both in 0

rpm and in 2000rpm. In the mixture of the silicone and cross-linker, 5%

Carbon by weight is added to the mixture and then the required amount

(1%,0.10%,0.25%) of the phosphor by weight is added. After the proper

stirring, the mixture is outgassed and placed in oven for 1 hour at 80◦C to

get cured. Finally, samples as shown in Figure 3.5 were prepared.

Figure 3.5: Carbon doped thin film doped with 1% carbon(a) and with 5%

carbon with 1(b),10(c) and 25%(d).

Preparation of the sample is not only limited to their synthesis. Getting

them in the desired shape according to the nature of the measurement tech-

nique is also a part of preparation. We did a mechanical test, thermal test,
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luminescence test and even did SEM imaging for them, and for each test the

synthesized samples needed to be prepared in proper shape and sizes.

3.1.5 Sample preparation for Scanning Electron Mi-

croscope (SEM) imaging

To make a sample that can be used for SEM is an interesting work. The SEM

samples needed are mounted on a SEM stub. Sputter coater from Electron

Microscopy Sciences was used to sputter coat the samples with gold. The

samples were coated with 99.99% pure gold (60mm in diameter × 0.01 mm

thick) from Electron Microscopy Sciences, with a thickness of 10nm. All the

samples were then viewed with the Scanning Electron Microscope (SEM)

from Phenom Pure.

3.1.6 Sample preparation for Optical microscopy

Different samples spun in different rpms (0, 3000) were used to take the op-

tical images. The Accu-Scope Unitron microscope was used to capture the

optical images of the thin films using 319CU 3.2M CMOS S/N:141020 mi-

croscopes digital camera. The thin film has the Neat Sylgard sandwiched be-

tween two different layers of PDMS doped with different amount of phosphor.

So, for the same sample the image had been taken twice. The Micrometrics

SE Premium image software was used to analyze the images. Using this

software, different functions like brightness, contrast, exposure were played

with until the phosphor particles were seen easily against the Sylgard 184

background. Since we have multiple layers, to be sure that we are on the

right side of the sample, a mark was made on the side which we were trying

to focus on. After, taking the image of one side, then the side was flipped

and images were taken following the same procedure. The scaling was done

manually using the same micrometrics software.
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3.1.7 Summary

To summarize, the tree diagram shown in Figure 3.6 describes the samples

that had been prepared while doing the research.

Figure 3.6: Flow diagram showing the various samples prepared for this study

3.1.8 Thickness Measurement of the Sample

The samples, as were prepared in different rpm, maintain different thickness

which imply different methods to measure the thickness of them. For the drop

cast sample, the thickness was measured directly by the Vernier Calipers.

Five different measurements were recorded and then averaged out. But the

same could not be applied for the thin films. So, to overcome this, micrometer

screw gauze from Mahr GmbH Esslingen Type 40 was used to measure the

thickness of the thin films. The thin samples were sandwiched between two

identical microscopic slides and the measurement was taken for 5 times and

averaged out. Then the thickness of the two slides were deducted from the

averaged value which gave us the thickness of the sample.
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3.1.9 Sample percentage preparation

It has been explained that most of the samples prepared were using phosphor,

however, the amount of phosphor needed to be added had not been explained.

Simple mathematical concept like ratio and proportion had been the basis

of calculation. For any amount of doping, the silicone and cross linker were

added in the ratio 10:1, and suppose the amount made is x gm. Now if we

want to make y% doped sample, then the following formula was applied to

calculate amount of phosphor needed to prepare y% doped sample,

z

x+ z
= y%

where the amount of x and y is known. By doing algebra z was calculated

which would be the amount of phosphor needed to prepare y% doped sample.

3.2 Sample Characterization and testing

3.2.1 Thermal Conductivity measurements

Only drop cast single sided PDMS samples were used to measure the thermal

conductivity. Knowing the K values for the thin films would have interesting,

however, the samples need to be at least 4 mm thick, so getting k values for

the thin films was not done. Starting from Pure (un-doped) PDMS, the ex-

periment was done for 1%, 10%, 25% and 50% La2O2S:Eu doped PDMS that

comes from the batch of phosphor having 0.1% Eu. All of the measurement

were done inside Tenny Junior Environmental Chamber. The transient plane

source (TPS) technique was used to collect the K values. 5100 (13 mm) Ni-

metal double spiral sensor was used for thermal conductivity measurement

in this technique.

The samples were placed above and below the sensor as shown in Figure

3.7a. It should be noted that the size of the sample surface should be larger
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than the diameter of the Hot Disk Sensor so that there won’t be any short-

ening of the transient recording. The samples need to be identical too. Hot

disk constant thermal Analyzer version 7.1.22 was used to determine the K

values. Measurements were done with the TPS 1500 according to the ideal

settings for power and measurement time for the materials tested.

Figure 3.7: Schematic diagram for (a) and (b) measuring thermal conductiv-

ity

When the thermal transport measurement is done, there is a flow of

electrical current, high enough to increase the temperature of the sensor

between a fractions of a degree up to several degrees along with keeping

the track of the resistance (temperature) increase as a function of time (11).

The measurement was done for 3 times for each of the sample and for each

temperature to assess error and uncertainty in the experiment. Also, at least

30 minutes was given for the system to reach thermal equilibrium when the

samples were changed. All the data for the specific temperature was then

averaged and the graph between the temperature and thermal conductivity

was plotted. For the measurement of the thermal conductivity, we needed

the samples of definite thickness. The drop cast phosphor doped PDMS were

cut to a size of 5X6X5 mm3. And the measurement was done for 1%, 10%,

25% and 50% phosphor doped PDMS. Also did prepare a pellet of powder by

compressing the powder using a carver compressor from Carver Corporation,

and the pellet was about 4-5 mm thick.
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3.2.2 Tensile Testing

Mechanical test requires its sample in a required shape. The samples were

cut in a dog bone shape. The detail description is provided in section 3.2.2.

The tensile test is done to know the strength of the material. Our samples

are of different thickness ranging from 0.11mm to 4.5 mm including PDMS

doped with just one concentration of phosphor and two different concentra-

tion of phosphor. The concept for the drop cast double sided one was to

observe whether the application of force going to separate the layers or not.

Before running the test, all the samples were cut into a shape of dog

bone following the ASTM standard-ASTM D-1708 test standard as shown

in Figure 3.8b.

Figure 3.8: ASTM standard dog bone punch(a) and sample(b)

The dog bone punch shown in Figure 3.8a was placed on top the samples

and pressed hard and the required specimen was separated from its surface.

We had three samples for each 0, 500, 1000, 2000 and 3000 rpm, and three

samples from Carbon with Phosphor doped PDMS and just regular one sided

phosphor doped PDMS cut in dog bone shape. Mark-10 from model BG200

bench top tensile tester was used to observe the stress-strain behavior of the

samples under the ambient conditions. The tensile tester has the maximum

24



load of 1.5 kN.

The specimen was placed in the grips of the double clamped gripper and

held firmly but not too much tightened [15]. After the installation, a standard

test of tensile properties of the samples was performed by slowly increasing

stress on the samples from zero to the value at which the specimen fractures

with a pull rate of 1 inch per minute with a resolution of 0.01. Mesur gauge

software was used to analyze the data. The data was then exported in an

excel file and finally the calculation was done. For each sample from different

rpm, the Young’s modulus was obtained twice and the final Young’s Modulus

is the average of the two of them.

3.2.3 Luminescence measurements

Here, we were focused on the decay properties of the carbon + phosphor

doped thin film PDMS and two sided thin film PDMS. Our aim was to

measure the temperature of the surface by observing the luminescent life-

time. Fluorescence is observed only if the wavelength of the exciting source

is shorter than the emitted fluorescence.

The measurement was supposed to be done at both high and low temper-

ature. However, at the low temperature there is always risk of having layer

of frost on the surface of the sample. Because of this, the experiment was

conducted inside the environmental chamber. The environmental chamber

is a transparent box like structure with a pair of plastic gloves attached with

it. Humidity can be controlled inside the chamber. For the measurement

we had a desiccator column attached with the Desiccant Pump Dehumid-

ification System MODEL 5471 from ETS connected to the environmental

chamber from ETS. The chamber has an inlet and an outlet. From outlet,

the humid air goes to the desiccator where the desiccants absorb the humidity

and the dry air is again sent back to the chamber through the inlet.

To have the information of humidity, a dehumidifier controller MODEL
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5112 from ETS was also connected and the sensor was inserted inside the

chamber. Temperature controller MK 1000 from INSTEC a stage was needed

in which the sample is placed. The stage has an inlet through which the liquid

nitrogen is passed to maintain low temperature. The schematic diagram of

the experiment is given in Figure 3.9a.

Figure 3.9: Schematic diagrams of test setup in an environmental chamber

(a) and (b) actual setup for luminescence measurements.

The setup for testing luminescence consists of 30 mm cage from Thorlabs

associated with SM-1 lens tubes and mounting hardware. Light emitting

diode emitting 365nm from LED Engine (part no-LZ1-10U600) was specified

at 200mW. The LED emission is reflected from a Thorlabs long pass dichroic

mirror, part number DMLP425R with 425nm cutoff, after passing through

a silica lens L1. There is another silica lens L2, through which the light is

focused onto the sample. There we can see luminescence of many visible

wavelengths consisting of yellowish orange colors. The luminescence within

the collection angle of the L2 lens directs the light back up, vertically and

through the dichroic mirror which passes light greater than 425 nm. The

third lens L3, is for focusing the light onto the photosensitive surface of a

photomultiplier tube (PMT). Then the light of 510+/- 5 nm is transmitted

from an intervening pass filter. This allows the 5D2 emission from the phos-

phor to reach the detector which is very temperature dependent. Then this
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optical signal is converted to electrical analog by the PMT, which is then dig-

itized by a Tektronix TDS 2012-C oscilloscope. Finally, the data received by

the computer is saved in .csv files, and the calculation was done in EXCEL.

The experiment was performed in two sections. One in high temperature

and another in the cryogenic. For getting the decay curve of the sample at

a high temperature, the temperature is set on the MK 1000. Once the set

number is reached, the decay curve is observed and is saved.

However, the situation is not the same for cryogenic. There should be

the regular supply of liquid nitrogen for maintaining low temperature. A

separate instrument LN2-P from INSTEC is needed in addition to MK 1000,

which pumps the liquid nitrogen from the VAT. Extra care should be given

while handling the nitrogen as it is harmful when it is 77K cold.

After the completion of the observation for the double sided thin film,

observation for the multilayered thin films and single layered drop cast were

done using the same process.

A simple negligence can result in the error as the thin films are very

delicate and can stick to any other surface, should be handled carefully. The

sample should be in a flat position; elevation should be avoided at its best.

27



Chapter 4

Results and Discussion

4.1 Luminescence behavior

The temperature dependent luminescence behavior of the single layer and

multilayer samples prepared for this study are presented in this section over

a wide range of temperatures, as shown in the graphs below.

4.1.1 Single layer

Figure 4.1: Luminescence of single layer drop cast PDMS

The temperature dependent luminescence decay characteristics of the 1%,

10%, 25% drop cast single layer composite samples are shown in Figure 4.1.

Measurements were taken from -40 ◦C to +70 ◦C in a continuous sweep allow-

28



ing for thermal equilibrium to be reached at each temperature, for each sam-

ple tested. At lower temperatures, the decay times are significantly higher

than those measured at high temperatures and as the temperature increases,

the decay times become shorter and shorter, as expected and observed pre-

viously [29]. The low temperature decay behavior is consistent with previous

studies measured for the powder only [30]. The decay time constant is not

expected to have any dependency on the concentration level of the powder

itself, as long as the intensity of the emission signal detected is above noise

level for the instrumentation and test setup used. The measured time con-

stants for all three concentrations 1, 10, and 25% do in fact appear to be

very close at each temperature and independent of the concentration level.

The slight discrepancy between the values reported for the 1% sample and

the 10% and 25% is attributed to experimental error inherent to making such

measurements. Overall, the results show that the sensitivity to temperature

is dramatic. For instance, for the 1% dropcast sample data depicted in Fig-

ure 4.1 the decay time at 10◦C is 15.8 µs and at 0◦C it is 23.6 µs. This is a

change of 50% in only 10 degrees.

4.1.2 Multilayer: Dropcast and 2000 rpm

The temperature dependent decay profile of the multilayer samples was also

characterized for both the drop cast (0 rpm) (Figure 4.2) and 2000 rpm

samples (Figure 4.3). Once again the samples were tested from -40 ◦C to

+70 ◦C
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Figure 4.2: Luminescence of multi-layer drop cast doped PDMS

in a low humidity environmental chamber as previously described. The

decay constants for drop cast 15P10, Figure 4.2(a), 5P20 Figure 4.2(b), and

15P5 Figure 4.2(c) samples follow a similar trend to that observed for samples

in Figure 4.1 meaning that as the temperature rises the decay time decreases
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Figure 4.3: Luminescence of multi-layer 2000 rpm doped PDMS
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substantially. In spite of the insulating layer of Neat Sylgard sandwiched

between the two composite layers, a significant change in the decay time

constant of the two sides was not observed for any of the samples tested

suggesting that a detectable temperature gradient did not exist. The de-

cay behavior of the multilayer samples at 2000 rpm similarly did not show

a temperature gradient across the sample, not surprisingly, since the 2000

rpm samples would have reached thermal equilibrium faster than the drop

cast samples (0 rpm) of Figure 4.2. Additionally, at 2000 rpm the samples

appeared optically transparent and it is quite likely that exciting once side

of the composite structure inevitably lead to excitation and hence emission

from the opposite side also. No noticeable differences were detected in the

emission behavior of the 0.1% and 1% Eu batch of phosphor powders ac-

quired. Samples thinner than the 2000 rpm were difficult to handle and were

not tested for this region.

4.2 Tensile properties

4.2.1 Single Layer

The tensile properties of single layer samples prepared for this study are

presented here.

In our discussion we are assuming a uniform and homogeneous particle

distribution and dispersion.

The effect of La2O2S:Eu powder concentration on the tensile properties

of the composite polymers was evaluated and is shown in Figure 4.4 both

for the 0.1% (Figure 4.4a) and 1% Eu (Figure 4.4b) concentrations. As the

concentration of the La2O2S:Eu (0.1%) increased from 1 wt % to 25 wt %

the composite material became stiffer, by a noticeable change in its Young’s

modulus (Figure 4.5) which has been observed previously and is supported
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by published literature [31][32][33][34]. In the case of La2O2S:Eu (1.0%) how-

ever, an increase in powder concentration from 1 to 25 wt % surprisingly did

not lead to a noticeable change in Young’s modulus (Figure 4.5), and, at low

strains the values remained very close to one another. At higher strains how-

ever (nonlinear region of Figure 4.4b) a slight dependence on concentration

levels did begin to appear. Tensile testing was terminated prior to rupture

of samples.
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Figure 4.4: Stress-strain curve of 0 rpm with 0.1%Eu(a) and with 1% Eu(b)

as a function of concentration
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Figure 4.5: Young’s modulus as a function of concentration

Figure 4.6: Stress-strain curve of carbon doped PDMS with 5% carbon

Similarly, the effect on the tensile properties of the composite polymer

with the addition of the carbon powder along with La2O2S:Eu which is shown

in Figure 4.6. From the Figure 4.6, it is seen that the Neat Sylgard with 1%

of phosphor is more elastic than 10 and 25%.
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4.2.2 Multilayer

The tensile properties of the multilayer composites prepared in this study

are presented here.
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Figure 4.7: Stress-strain curve of multilayer thick (a), thin films (b and c)

and their Young’s modulus (d) as a function of concentration.
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The tensile properties of the multilayer PDMS+La2O2S:Eu (0.1%) com-

posites are shown in Figure 4.7 for 0 rpm (Figure 4.7 (a)) 500 rpm (Figure

4.7b), 2000 rpm (Figure 4.7c), and comparision of Young’s Moduli for differ-

ent rpm (Figure 4.7(d)). At low strains the differences in the tensile behavior

of the 3 layers combined is not noticeable. However, at higher strains dif-

ferences in the multilayer tensile properties become more prominent. Given

that interfacial bonding between particles and PDMS matrix is not expected

to occur due to the polymer’s low surface energy [35][36] leading to an ab-

sence of stress transfer, the differences in the tensile profiles is attributed

to the differences in particle distribution. As the spin speed was increased

it was discovered that the multilayer composite polymers became stiffer, by

the same amount, and weakly dependent on the actual layer structure (Fig-

ure 4.7c). The stiffening effect observed here as a function of rpm has been

observed previously [15] for neat PDMS and described as“dimension depen-

dent” change in tensile properties when transitioning from bulk samples to

thin samples prepared by spin coating techniques.

Figure 3.1.2 shows optical images of the 500 rpm and 1000 rpm multilayer

samples and that at 500 rpm and above as the film thickness is reduced the

composite samples appear clearer and clearer. Non uniformities in the drop

cast film thicknesses (shown in Figures 3.4a and 3.3b) across the length of

the dog bones prepared could lead to inaccuracies in the tensile behavior of

the multilayer samples created. For very thin samples (e.g 3000 rpm) we

were not able to collect reliable tensile profiles due to slipping of the speci-

men through the grips. At 1000 rpm and above all multilayer samples were

optically transparent while below 1000 rpm (500 rpm and below) the samples

showed a degree of translucency due to scatter from the powder particulates.

All drop cast samples (0 rpm) were opaque. In some studies, more than

5% wt. loading content particle aggregation occurred leading to composite

strength degradation [37].
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4.3 Microscopy results

4.3.1 Scanning Electron Microscope (SEM) results of

La2O2S:Eu powder

Scanning Electron Microscope images of the La2O2S:Eu (0.1% and 1%) in

powder form revealed a noticeable difference in grain size, as seen in Figures

4.8a and b for the 0.1 % powder and in 4.8c and (4.8f for the 1% powder.

In addition to the size differences, the 0.1% powder formed clusters, which

we associate with the presence of a high electrostatic charge, while the larger

particulates of the 1% powder do not appear to form large clusters. The

1% powder has much larger particles than the 0.1% as can be seen from the

SEM images. Also, it can be seen that in the case of the smaller particles of

0.1% they are sticking together in large numbers and this is attributed to the

electrostatic charge present and it is most likely contributing to the cluster

formation and “towering” that is observed (Figure 4.8d arrows). This type

of accumulation has been observed previously with other µm-sized charged

particles [33]. The compression of the powder with the Carver did not affect

the grain size as can be seen in Figures 4.8b and 4.8e, which is an image of

the 1% powder after compressed into a pellet form.

39



Figure 4.8: SEM image for just La2O2S:Eu (a) and (b) with 0.1%Eu, (c) and

(d) pallet powder with 1%Eu, (e) and (f) with 1% Eu.

4.3.2 SEM of Carbon powder

The SEM image of the carbon powder shown in Figure 4.9 shows a huge

difference when compared with the SEM of the powder shown in figure 4.8.

The cluster size is bigger than the 0.1% powder shown in figure 4.8a which

contributes to the electrostatic charge. This change in the morphology of

the powder agrees well with the different result obtained for the carbon and

phosphor tensile test.
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Figure 4.9: SEM image for carbon powder

4.3.3 Optical Microscope results

Figure 4.10 shows the optical images of multilayer sample from two differ-

ent rpm, 0rpm (Figure 4.10a) and 3000rpm (Figure 4.10b). These images

show the distribution of the La2O2S:Eu powder encapsulated inside the Neat

Sylgard as a function of rpm. Both of the samples were observed with a mag-

nification 10X. There is high distribution of the particles in 3000rpm sample

and the particles seem to be in compact form in 0 rpm sample.

Figure 4.10: Optical image of 0 rpm sample (a) and 3000 rpm sample (b)

taken at magnification of 20x
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4.4 Thermal conductivity

This section describes the results we obtained for the thermal conductivity

of the composite samples we prepared here.

Figure 4.11: Thermal conductivity as a function of concentration

The thermal conductivity of the composite polymers was measured be-

tween -60 ◦C and 200 ◦C, in increments of 20 ◦C and is shown in Figure

4.11. The thermal conductivity of Neat Sylgard 184 (without phosphor pow-

der added) compares well with other published literature [37]. For pure

La2O2S:Eu powder no published literature was available. Both the 0.1 %

and 1 % powders were measured. The thermal conductivity of the powder

only did not appear to be strongly dependent on temperature, in the range

studied here. However, the 0.1 % powder generally had a higher K value

than the 1.0% powder. This could in part be due to the fact that the grain

size of the 0.1 % powder is smaller and as a result forms a more compact

pellet, with less air space between the grains while the 1% powder has large

grain sizes and as a result allows for more air space between particles and

consequentially shows a lower K value. The measured K values for the 1%,
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10%, and 25% composite polymers were greater than the K value for pure

Sylgard 184, and, less than pure La2O2S:Eu (100% powder) K value. Each

measurement is an average of 3 independent measurements for each sample,

at each temperature.

4.4.1 Modeling of thermal conductivity in composites

Table 4.1: K values calculated using parallel and series method

Thermal Conductivity(W/mK) at RT

Powder

Concentration

(wt %)

Parallel

Method

(1%)

Parallel

Method

(0.1%)

Series

Method (1%)

Series

Method

(0.1%)

Measured

Value

0% 0.161 0.16 0.161 0.16 0.16

1% 0.162 0.16 0.162 0.16 0.17

10% 0.175 0.20 0.169 0.17 0.17

25% 0.196 0.27 0.182 0.2 0.23

50% 0.231 0.38 0.210 0.25 0.23

100% 0.301 0.6 0.301 0.6 0.3

The two accepted basic models representing thermal conductivity of compos-

ites are the rule of mixture of parallel model and the series model [26]. In

the parallel model each phase is assumed to contribute independently to the

overall thermal conductivity of the composite and assumes perfect contact

between particles in the matrix. In the series model however no contact be-

tween particles exists. Most experimental results fall in the region between

what the two models predict [26]. Table 4.1 shows the calculated k values

using parallel and series method and Figure 4.12 shows a plot of the calcu-

lated series and parallel model values for our composites and compared with
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the experimental values measured at room temperature. The experimental

values obtained at room temperature do indeed mostly fall in-between the

values obtained from the series and the parallel models.

Figure 4.12: Comparison of the measured K values with calculated K values

4.5 Thickness measurements

The thickness of the samples prepared in different rpm had been measured

which is shown in Table 4.2. Here the thickness seems to be decreasing with

the increase in rpm for all samples which shows that the thickness is inversely

related to the rpm. However, for the drop cast single layer ones, the thickness

shows no consistency. For the thin films, the thickness is controlled by the

spin coater whereas, in case of drop cast the thickness cannot be controlled.
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Table 4.2: Thickness measurement of different samples averaged over 5 times

Thickness

(mm)

Drop

Cast

500

rpm

1000

rpm

2000

rpm
3000rpm

15-P-5 4.06±0.18 0.37±0.008 0.29±0.03 0.22±0.02 0.19±0.04

15-P-10 3.74±0.04 0.38±0.001 0.35±0.01 0.24±0.02 0.16±0.004

5-P-20 3.74±0.06 0.42±0.01 0.21±0.009 0.21±0.01 0.15±0.02

1% 2.13±0.01

5% 2.24±0.01

10% 2.66±0.007

15% 2.10±0.01

25% 2.84±0.004
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Chapter 5

Summary and Conclusion

All samples exhibit the pronounced, expected temperature dependence and

are therefore useful for thermometry. Luminescence from the thinner samples

is weaker but still worthwhile. Signals could readily be enhanced by using a

brighter and focused source such as from a laser diode or other laser device.

The thinnest samples were difficult to mount and test without tearing. More

effort could be expended to arrange a mounting and fixturing approach to

enable working with them in the future. Alternatively, there are formulations

of PDMS that are more durable. They were not used in this study because

of expense and availability.

The experiment with all the samples were done successfully. The lu-

minescence results obtained from the samples in which phosphor powders

are encapsulated within the elastomer is in well agreement with the results

obtained from the powder only. So our aim of making a sensor from the

powder embedded in the elastomer is achieved which also turn out to be

flexible, detachable, reusable and an insulator. The temperature measured

from two different amount of phosphor concentrated side were similar, thus

they cannot be used as heat flux.

Summarizing, we can say that the sensor is made that can work in very

cryogenic temperature as well as high temperature.
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Chapter 6

Future Work

6.1 Use of different types of phosphor

Our aim with this experiment was to observe whether there will be a dif-

ference in luminescence from the thick and thin films. Also, if the amount

of concentration of phosphor has an effect on the emissivity. However, the

similarity in the emission obtained from all those samples gave us new ways

of doing the experiment.

In the future, instead of using same phosphor on either side of the multiple

layer, we can use two different phosphors on two different sides and observe

the emission. It will be interesting to compare the luminescing properties

obtained from these two samples. Also, in thin samples only, samples spun

at 2000 rpm were taken for the study; thinner samples spun at 3000 rpm can

be worked with in the future.

6.2 Preparing a patterned thermal sensor

Sensor that we have prepared measures the temperature of a large surface

area. But when it comes to measure the temperature of something that is

microns in size, then this sensor won’t work properly as it will give us the in-

formation from a large area. Creating a pattern and preparing a sensor using

the same pattern will be our next future work. This sensor when prepared

will be useful in biology too as can measure the temperature of the cells. In
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future, difficulty will be figuring out the way of pattern and creating that

pattern itself.

Figure 6.1: Pattern created in a neat Sylgard

Figure 6.1 is the one that we tried to create a pattern, however, the size of

the holes turned out to be much bigger than our need. So, in future preparing

similar kinds of sample with a hole size of microns will also be on our focus.

6.3 To observe the change in the measure-

ment with the addition of carbon

All the carbon samples were prepared using 5% of carbon of the total amount

and the characterization was done. In future, changes will be made regard-

ing the concentration of the carbon powder and the changes in the different

kinds of measurements will be studied.
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6.4 Thermal expansion measurements

Observing the expansion of the samples by calculating their thermal expan-

sion would be another focus of our work in the future since it will affect the

thermal gradient across the sample.
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