
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

11-30-2015 

An Empirical Evaluation Of Predictive Models Of Programmer An Empirical Evaluation Of Predictive Models Of Programmer 

Navigation Navigation 

Alka Rani Singh 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Singh, Alka Rani, "An Empirical Evaluation Of Predictive Models Of Programmer Navigation" (2015). 
Electronic Theses and Dissertations. 1288. 
https://digitalcommons.memphis.edu/etd/1288 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1288?utm_source=digitalcommons.memphis.edu%2Fetd%2F1288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


AN EMPIRICAL EVALUATION OF PREDICTIVE MODELS OF PROGRAMMER
NAVIGATION

by

Alka R. Singh

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Computer Science

The University of Memphis

December 2015



ABSTRACT

Singh, Alka R. M.S. The University of Memphis. December 2015. An Empirical
Evaluation of Predictive Models of Programmer Navigation. Major Professor: Dr. Scott
D. Fleming

The process of software development consists of many activities, such as writing code,

debugging, and navigating through code. Navigating through the code to understand or

seek information for developing new code is a very time consuming and tedious task.

Many tools are developed based on predictive models to help programmers in navigation.

These models predict the fragments of code which might be of developer’s interest. There

have been studies for comparing these models to determine their predictive accuracy.

However, the models are often based on crude approximations of where a developer’s

attention is. For example, prior work has both where the developer’s cursor location as

well as what is on the center of the screen to approximate where he/she is looking. To

address this concern, we conducted an empirical evaluation of these approximations to see

how well they agree with a human evaluator’s perception of where the developer’s

attention is. We conducted a replication study on 10 participants and manually coded their

navigation pattern. The goals of the study was to evaluate the generalizability of prior

work as well as to evaluate the prior operationalizations of navigation. The key findings of

this study are: (a) The operationalization based on where the programmer clicks agreed

most closely with human evaluator’s assessment and, (b) prior navigation results did not

generalize well likely due to small sample size and particulars of the task content.

ii



Contents

1 Introduction 1

2 Background 6
2.1 Operationalizations of Navigation 6

2.1.1 Click-Based Operationalization 7
2.1.2 View-Based Operationalization 8
2.1.3 Human-Assessment-Based Operationalization 8

2.2 Predictive Models of Programmer Navigation 10
2.2.1 Recency and Working Set Models 11
2.2.2 Frequency Model 12
2.2.3 Within-File Distance Model 12
2.2.4 Forward Call Depth and Undirected Call Depth Models 12
2.2.5 Source Topology Model 13

3 Study Method 14
3.1 Participants 14
3.2 Tasks and Environment 15
3.3 Procedure 16
3.4 Analysis Method 17

4 RQ1 Results: Generalizability of Piorkowski Study 18
4.1 Navigation-Profile Comparison 19
4.2 Model Accuracy Comparison 21

5 RQ2 Results: Operationalizations of Navigation 26
5.1 Navigation-Profile Comparison 26
5.2 Model-Accuracy Comparison 30

6 Discussion 35
6.1 Why Did the Piorkowski Results Differ from Ours (RQ1)? 35
6.2 Which Operationalization of Navigation Was Closest to a Human Evalua-

tor’s Perception of Navigation (RQ2)? 37

7 Conclusion 39

References 39

A Study Documents and Materials 43
A.1 IRB Approval Letter 43
A.2 IRB Informed Consent 48
A.3 Study Session Procedure 53
A.4 Participant-Recruitment Email 56

iii



A.5 Background Questionnaire 59

iv



Chapter 1

Introduction

One of the major challenges for developers, laboratories and software vendors in

today’s world is enhancing efficiency of software development in terms of time. The IT

industry requires that software products not only satisfy user requirements, but also be

quickly produced and maintained to keep pace with an increasing demand for quality,

functionality and cost-effectiveness. A delay in development can hurt the overall value of

a software product, as the value of the product depends not only on its quality, but also on

its timely delivery. From a business perspective, software product delays can hinder

competitive advantage and reduce the opportunity to generate revenues. Unfortunately, a

1995 survey of over 8000 projects found that only 16% of the projects were finished on

schedule and within the estimated budget [1]. The remaining 84% were incomplete or

delayed, and the projects completed late were, on average, nearly twice their originally

estimated cost. A more recent survey of projects from 2005 and 2007 found similar

issues: only approximately 50% of the surveyed projects were able to meet schedule

targets [2]. Thus, reducing the time needed for software development could have a

considerable impact on overall project success.

A considerable amount of the time spent on development happens during software

evolution. The term software evolution is used in software engineering to refer to the fact

1



that the software is constantly changing both during initial development as well as during

maintenance. Software maintenance is an inevitable activity for successful, long-lived

software because such software periodically demands improvements and enhancements

for many reasons, such as bug fixes, software upgrades and feature requests. Among all

the software development activities, the most time-consuming phase is software

maintenance. Studies have shown that 50%−80% of software costs are in

maintenance [3, 4, 5, 6]. Thus, reducing the cost of software evolution can considerably

reduce the overall cost.

A key cost during software evolution tasks is in navigating source code. During

development or maintenance, the developers are consistently faced with the need to gain

an understanding of the code. This understanding of code is important in identifying code

dependencies and determining how and where features were implemented [7]. A study

by Corbi et al. shows that 40% of the total software maintenance time goes into

understanding and building a mental model of the software program [8]. In order to

develop an understanding of the code, programmers spend a substantial amount of time

navigating through the code. Navigating code to develop understanding for maintenance

purposes is a complex and time-consuming process [9]. For example, one study showed

that developers spent 35% of their total maintenance time on the mechanics of navigation

alone [9].

Many promising tools have been proposed to make navigation more efficient, and these

tools are often implicitly based on predictive models of programmer navigation. That is,

each tool uses a model to predict where the programmer wants to go, and based on the

prediction tries to get them there quicker. Mostly, the tools are based on a single factor,

such as the recency of a visited code fragment. On the other hand, some tools make

predictions based on other factors such as hierarchical relationship among classes [10],

lexical similarities among methods [11] or structural similarities within the code [12].

Other tools mine logs of developer activity to make predictions about

2



navigation [13, 14, 15, 16, 17, 18]. Even though preliminary evidence has shown that

these tools help developers in efficient navigation, most of the tools have not been

validated for a wide variety of development contexts and have not received widespread

adoption in practice.

The success of these tools is closely tied to the predictive accuracy of their associated

models; however, researchers have only recently begun to systematically compare the

accuracy of different models. One early study by Parnin and Görg evaluated a set of

models and techniques for suggesting relevant context for next navigation to facilitate

exploration of source code [14]. They evaluated four predictive models of navigation and

they are based on page caching algorithms. In particular, each of these are based on how

recently or frequently a given method is visited. Piorkowski et al. expanded the models

and included some other models such as adjacency, forward call depth, undirected call

depth and source topology [19]. They compared head-to-head a broad range of models to

assess their predictive accuracy based on multiple factors under two different

operationalizations of navigation (click-based and view-based). The study reported that

recency has the best accuracy in click-based operationalization and adjacency has more

accuracy over other models in view-based operationalization.

Although these studies have begun to shed light on the relative effectiveness of various

models, open questions remain. One such question is the extent to which these prior

results generalize. In particular, the most recent study, reported by Piorkowski et al. [20],

had only one participant and that participant worked on only two debugging tasks.

However, prior studies have shown significant differences in productivity among

individuals. For example, a study by Sackman et al. found substantial variations in

individual programming productivity [21]. Another study observed that because some

people do not make tangible contribution, the data understates the actual variation in

productivity [22].

3



Another open question is how best to operationalize navigation. The most widely used

operationalization of navigation in studies have been click-based operationalization of

navigation. This click-based operationalization considers a navigation as the change in the

cursor position from one fragment of code to another fragment. Along with click-based

operationalization, Piorkowski et al. introduced and evaluated another operationalization

of navigation called view-based [19]. The view-based operationalization considers each

navigation as being to the fragment of code which is in middle of the screen. These two

different operationalizations of navigation yielded very different results, both in terms of

what navigations were counted and of the predictive accuracy produced by the models.

The goal of this thesis is to address these open issues of generalizability and navigation

operationalization. In particular, we seek to answer the following research questions:

• RQ1: How well do Piorkowski et al. results generalize with our replication-study

results?

• RQ2: How well do the operationalizations of navigation agree with human

evaluator’s perception?

To answer these research questions, we conducted a qualitative empirical study of

programmer’s navigation behavior. To address RQ1, we conducted the study on 10

participants to evaluate generalizability of Piorkowski et al.’s lone-participant results.

Furthermore, Piorkowski et al.’s participant worked on two debugging tasks, whereas, our

participants worked on a variety of evolutionary tasks chosen by them in context of their

own project. To address RQ2, we compared the click-based and view-based

operationalization of navigation studies by Piorkowski et al. with a new opeartionalization

based on a human analyst’s assessment of which code fragments a programmer places

his/her attention on during tasks. For both RQs, we looked for differences in

programmer’s navigation profile (e.g., number of methods visited per minute, the revisit

4



pattern to already visited methods and number of different methods visited) and in the

accuracy of various predictive models from the literature.

The remainder of this thesis is organized as follows: Chapter 2 discusses the relevant

literature in the field. Chapter 3 describes the study method adopted for our study. Chapter

4 reviews the evaluation methodology used in the study. Chapter 5 and 6 report our RQ1

and RQ2 results, respectively. Finally, chapter 7 discusses the results of our research

questions in further detail and chapter 8 concludes with a discussion of possible future

work.

5



Chapter 2

Background

The two principle research questions of this thesis center around two concepts from the

literature: (1) Operationalizations of navigation and (2) predictive models of navigation.

The operationalizations of navigation provide different approximations for recording

where a programmer places his/her attention (often trading off on certain

strengths/weaknesses, such as automatically vs. ability to detect certain types of

navigation). Based on a sequence of recorded navigations, the predictive models each aim

to forecast where the programmer will navigate to next using a variety of methods.

2.1 Operationalizations of Navigation

In addressing our research questions, we applied three operationalizations of

programmer navigation. In particular, these operationalizations each provide a method for

approximating the sequence of code locations (Java methods in our case), where a

programmer puts his/her attention. Two of the operationalizations, click-based and

view-based, were previously described in the literature [19]. For this work, we also used a

third operationalization, human-assessment, against which to compare the first two

operationalizations (see RQ2).

6



2.1.1 Click-Based Operationalization

A click-based navigation is operationalized as the change in the cursor position from

one Java method to another. When a programmer clicks in a method other than the current

method where the cursor is, it is counted as a click-based navigation. That is, if the current

position of a programmer’s cursor is in some method A and then the programmer clicks in

another method B, it is counted as a click-based navigation. But if the current position of

the programmer’s cursor is in method A and the programmer clicks somewhere else inside

the body of the method A, it is not counted as a click-based navigation. For example, in

Fig. 1, the current method under the click-based operationalization is

getBalanceNoSign in which the text cursor is currently present. If the programmer

clicks somewhere else inside the getBalanceNoSign method, it will not be counted as a

click-based navigation. However, if programmer clicks in any other method, for example,

in getLastName, the click-based operationalization records a navigation to that method.

In particular, the following actions were counted as click-based navigations:

1. clicking into a method other than the current one,

2. clicking on a tab to make the contents of another file visible, and

3. opening a file, for example, by clicking on it in the package explorer.

In the case of a newly opened file, the first method in the opened file is considered to be

the next navigation. Although, the click-based operationalization has been widely used

(e.g., in [14, 20, 19]) and is automatable, it has a few disadvantages. It will fail to record

navigations if a programmer scrolls through a file, but does not actually click in any of the

methods that scroll by. Also, just because a programmer clicked on a method does not

necessarily mean that programmer has his/her attention on that method.

7



2.1.2 View-Based Operationalization

Unlike the click-based operationalization of navigation, the view-based

operationalization does not take the position of the text cursor into account to

operationalize a navigation; instead, it defines the current method as the one in the middle

of the text-editor pane. For example, in Fig. 1, the current method (view-based) is

getFirstName, which is present in the middle of the text-editor pane. Furthermore, we

adhered to the following two additional rules to record view-based navigations. If when

switching or opening editor tabs, a method A’s definition becomes completely visible in

the text editor and it is present above the middle of the screen while method B is in the

middle of the screen, then navigations are recorded in the order of first a navigation to

method A and then to method B. Also, if a programmer scrolls through a file, navigations

to each method are recorded in the sequence they come to the middle of the screen. The

disadvantage of view-based operationalization is that it is not automated and hence it is

difficult to record navigations, which has to be done manually. Also, if the programmer

quickly scrolls through a file, it records all the methods which passes through the middle

of the screen as navigations even if the programmer did not pay attention to them.

2.1.3 Human-Assessment-Based Operationalization

The human-assessment-based operationalization leverages the opinion of a human

observer. It stands to reason that this operationalization will be more accurate than the

click-based and view-based operationalizations because a human observer is able to take

more information into account in deciding where the programmer’s attention is. For

example, a human-analyst can recognize navigations to methods based on:

• the programmer talking about the methods,

• the programmer creating/editing the methods, and/or

• the programmer copying/selecting/highlighting the contents of the methods.

8



Current method in view-based 
operationalization  

Middle of text-editor pane 

Current method in click-based 
operationalization  

Text cursor 

Figure 1: Example of navigations in click-based versus view-based operationalizations.
The editor depicted is the Eclipse Java editor(the same kind used by our study participants).

In a few special situations, the human analyst ignored certain actions that might have

otherwise been considered navigations:

• if the programmer visited a file just to run it, because the programmer was using an

IDE feature to run the program and not to view the content of the file.

• if the programmer clicked on a tab by mistake and did not look at the content of the

file.

• if the programmer closed a tab, causing another file to be automatically opened, but

the programmer did not look at the content of that file.

We used standard inter-rater reliability methods [23] to ensure our

human-assessment-based navigations would be consistent across different observers.

Following the method, two researchers analyze 20% of the total data independently and

then check the level of agreement. If their results agree 80% or more using the Jaccard

9



index, they can divide the remainder of the data and analyze it separately. In our study, two

analysts independently analyzed the same 4 hours of video data (which was 20% of our

total video data), and their level of agreement was more than 86%. Because this exceeded

the 80% threshold, they divided the remaining 16 hours of video to be separately coded.

2.2 Predictive Models of Programmer Navigation

To address our research questions, we applied the same predictive models of navigation

used by Piorkowski et al. [19]. The models assessed in Piorkowski study can be classified

in three major categories: working set approximation models, structural similarity models

and lexical similarity models. We have included all the models assessed in the prior work

except the lexical similarity model Bug Report Similarity due to the lack of bug reports in

the projects on which the participants were working on.

Following from Piorkowski et al. [19], each of the models takes as input a sequence of

method-to-method navigations from a programmer’s programming session. Such a

navigation history is represented by H, which is a sequence of method-to-method

navigations (m1,m2, . . . ,mn) such that for every mi in H, mi 6= mi+1. If the navigation

history H j for a programming session is given up to a particular point where H j =

(m1,m2, . . . ,m j), each model tries to predict the next method m j+1 which is most likely to

be visited. At this particular point, the developer has opened multiple source files and the

set of methods now known to the programmer is M j. M j contains all the methods defined

and referenced in the previously opened files irrespective of the fact that they might be

closed after opening it. H j contains a subset of the methods from M j because the

programmer has to open a file before navigating to one of its methods.

In order for a model to predict the next method m j+1, the model ranks the methods

from the set of known existing methods M j-{m j}, from least likely to most likely. For a

rank of a method to be calculated, the model creates a mapping A j from each method in

M j-{m j} to an activation value. According to model’s prediction, the methods with higher

10



activation value are more likely to be visited. Then an activation function is used by

models to create a ranking function R j in such a way that R j is A j with rank-transformed

activation values. The higher the activation value of the method, the lower the rank

number the method will get (with lower rank numbers, such as rank 1, corresponds to

higher ranks). Remember that according to model’s prediction, methods with higher rank

are more likely to be visited than methods with lower rank. For example, a method with

rank 1 is more likely to be visited next by a programmer than a method with rank 3

according to a model. Also, if there are n methods with the same activation value, their

ranks would be averaged by n. Every model uses a different approach for calculating the

activation value for methods.

Some models incorporate a notion of cost of navigation between methods, such that

higher activation is assigned to methods that cost less to navigate to from the current

method than to the methods that cost more. The models maintain a graph G j such that

every method in M j corresponds to a different vertex in G j. For a particular model, all m

in M j−{m j}, A j(m) for that model subtracts from |M j| the length of the shortest path

from m to the current method m j.

2.2.1 Recency and Working Set Models

The recency model ranks more-recently visited methods higher than less-recently

visited methods. Formally, for every method m in the set of visited method M j, if

programmer already visited m, the activation function A j() will assign activation value to

the method m such that A j(m) = the max sequence number for m in the programmer’s

navigation history H j; otherwise, if the method m was not visited previously, the

activation A j(m) = 0.

The working Set model is similar to the recency model, but the difference is that only a

fixed number of recently visited methods are ranked, while all other methods are ranked

11



zero. Formally,working Set assumes a window-size W . If a method m is in last W visited

methods, the activation A j(m) = 1 otherwise A j(m) = 0.

2.2.2 Frequency Model

The frequency model assigns lower ranks to methods visited more frequently than

those visited less frequently. Formally, for every method m in the list of visited method

M j, the activation A j(m) = number of occurrences of m in the programmer’s navigation

history H j.

2.2.3 Within-File Distance Model

The Within-File Distance model assigns higher ranks to methods closer to the current

method in the file. The ranking function of this model is based on the adjacency

factor—that is, this model assumes that the methods closer to the current method are more

likely to be visited next. This model creates a graph G j, where there are links between

method nodes, which are textually adjacent in a file. Formally, for every method m in M j,

there is a undirected edge from m to the methods adjacent to m. The adjacent methods

could appear before or after the method m.

2.2.4 Forward Call Depth and Undirected Call Depth Models

The Forward Call Depth model ranks methods based on a call graph with

unidirectional links—that is, the methods being called from the current method are ranked

higher than the other methods. Similar to the Within File Distance model, the

Forward-Call Depth model also creates a graph G j, where there is an edge from each

method m to every method called by m. Formally, in the constructed graph G j, there is a

directed edge from method ma to mb, if method ma calls method mb.

The Undirected Call Depth model is similar to the Forward Call Depth model, with the

only difference being that the links from both directions are considered in ranking. That

is, this model ranks both the methods: (1) which are being called from the current method

12



and, (2) methods which call the current method. Formally, in the constructed graph G j,

there is an edge between method Ma to Mb, if method Ma calls method Mb or vice versa.

2.2.5 Source Topology Model

The Source Topology model ranks methods higher which share one or more of several

structural relationships with the method where programmer’s current position is. The

Source Topology model constructs a source topology graph which is similar to the graphs

constructed by other models, except that in addition to method nodes, this graph contains

nodes for classes, interfaces, variables, packages and projects. If there is a calls-a, has-a or

within-file adjacency relationship among these nodes, then there is an edge between these

elements. Formally, for every element v in M j
⋃

C j
⋃

Vj
⋃

Pj where C j is the set of classes

or interfaces referenced in the files the programmer has opened so far, Vj is set of variables

and Pj is the set of packages, which includes every package and variable referenced in a

file), there is an vertex that maps to v. The source topology graph has an edge between

elements va and vb if va calls vb, if va has vb or if va and va are adjacent methods in a file.

13



Chapter 3

Study Method

To address our two research questions, we conducted a laboratory study of developers

engaged in software evolution tasks. Our data analysis focused on a panel of descriptive

statistics regarding each programmer’s navigation behavior (e.g., rate of navigation and

revisits) and how accurately the various models from Chapter 2.2 predicted those

navigations. To address the question of generalizability (RQ1), we compared our analysis

results with those reported by Piorkowski et al. [19] to see how well Piorkowski et al.’s

results generalize. To address the accuracy of prior operationalizations of navigation

(RQ2), we compared each of the prior operationalizations of navigation (i.e., click-based

and view-based) with our human-assessment-based operationalization (as defined in

Chapter 2.1) to see which was more consistent with the perception of a human.

3.1 Participants

Our participants consisted of 10 graduate students enrolled in a graduate-level software

engineering course at the University of Memphis. Table 1 lists their background

information. Each participant had a unique identifier of the form P〈 identifier number〉

(e.g., P1, P2, etc). Participants had an average of 6.75 years of programming experience

14



(standard deviation = 2.51). Seven of the ten participants also had experience

programming professionally (mean = 2.93 years, standard deviation = 1.54).

Table 1: PARTICIPANT BACKGROUND INFORMATION
!

ID!
!

Sex!
!

Age!
!

Major!
Years of Programming 
Experience!

Total  ! As Professional!

P1! M! 30s! CS! 12! 5!

P2! M! 20s! CS! 5! 0!

P3! F! 20s! CS! 6! 0!

P4! M! 20s! CS! 6! 1!

P5! F! 20s! CS! 6! 2.5!

P6! M! 20s! CS! 4! 0!

P7! M! 20s! CS! 8! 4!

P8! M! 20s! CS! 5.5! 1!

P9! M! 20s! CS! 5! 4!

P10! M! 20s! EE! 10! 3!

3.2 Tasks and Environment

For this study, participants worked on their projects from the software engineering

course. Their projects were Java EE based web applications for helping students and

advisors track student progress through the degree program with features such as

registration of courses and grading by faculty. The participants were members of teams in

the course, and the team worked collaboratively on the project.

For each study session, the participant worked on tasks of his/her choice. The tasks

observed could be loosely categorized as (1) implementing different features for their

project or (2) debugging if there was a bug present in the source code. However, the exact

features and bugs worked on varied widely. Most of the participants worked on four or

more tasks during their sessions.

15



To perform their tasks, participants worked on a workstation with a 24-inch monitor.

Their programming environment consisted of the Eclipse integrated development

environment (IDE), the MySQL Workbench (relational database management system) and

a web browser with full internet access. They were also allowed to use any software

pre-installed on a Windows PC. For example, two participants used Notepad to make

notes and Microsoft Paint to sketch their ideas while working on project.

The development environment was outfitted with several technologies for our

collection of data. Camtasia1 recorded screen-capture video throughout each participant’s

session. Participants wore a headset with microphone to collect audio of their utterances.

An HD webcam recorded video of the participant.

3.3 Procedure

In the beginning of the session, participants were familiarized with the intent of the

study, and read and signed an informed-consent form. Participants were then asked to fill

out a questionnaire about their backgrounds. In that questionnaire, they were asked

questions about their age, gender, major, mother tongue, programming experience and

professional experience (if any).

To better understand where participants placed their attention, we employed the

think-aloud method [24]. The think-aloud method is a well-validated method by which

participants externalize their inner dialogue by continuously uttering their thoughts as they

perform a task. It is a well-established research method in Psychology and

Human-Computer Interaction, which is used to gain insight into the goals and intentions of

the person thinking aloud. Following the method, we asked our participants to think-aloud

while working on their task. If a participant stopped talking for three minutes, an attending

researcher asked the participant to “Please keep talking”. To familiarize them with the

concept of thinking-aloud, they were shown a demonstration of thinking aloud while

1http://discover.techsmith.com/try-camtasia/

16



answering a question. After the demonstration, participants were asked to think-aloud

while answering a similar question in order to practice thinking aloud. Following the

exercise, they also practiced thinking-aloud using a computer. After the initial training and

practicing, the participant worked on his/her project tasks for 120 minutes.

3.4 Analysis Method

We analyzed the videos as per the methods in Chapter 2.1 to produce analysis data for

click-based, view-based, and human-assessment-based navigations. Then, these

navigation data was used as an input to the predictive models from Chapter 2.2. Finally,

we assess the predictive accuracy of the models.

Predictive accuracy of a model is defined by its ability to accurately predict a

programmer’s next navigation. A model is said to get a hit if the programmer’s actual

navigation is among the model’s top-W predictions, where W is the window size. For

example, if a model predicts five methods, m1, m2, m3, m4 and m5, as its top-five

predictions, where m1 is the top most prediction with rank 1 and m5 is ranked 5 as its

lowest prediction, and if the actual method which the programmer navigated to is m4, then

it is considered as a hit for W = 4 but is a miss for W = 3. Some of the model’s rankings

were of partial ordering. To address the issue of ties, we refined the definition of a hit as

follows: if R is the rank of a method, T is number of ties and A is the actual navigation of

programmer, then a hit is considered when bT/2c+ bR(m)c<W .

17



Chapter 4

RQ1 Results: Generalizability of

Piorkowski Study

To assess the generalizability of Piorkowski et al.’s results [19] on programmers’

navigation behaviors and models thereof (RQ1), we directly compared those results with

our replication-study results. Given the well-known individual differences among people

in general and programmers in particular [25], there was reason for concern about the

representativeness of Piorkowski et al.’s single participant. Our comparison focused on

two aspects of Piorkowski et al.’s results. The first aspect was programmer navigation

profile—that is, descriptive qualities of navigation behavior, such as number of different

places (i.e., Java methods) visited and rate of navigation. The second aspect was the

predictive accuracy of a slate of models (detailed in Chapter 2.2) of programmer

navigation—that is, models that aim to predict where a developer will navigate next at a

given point in time. In the remainder of this chapter, we report our comparison results for

each of these aspects in turn.

For each aspect we compared, we considered the two different operationalizations of

programmer navigation that Piorkowski used: click-based and view-based. Recall from

Chapter 2.1, the click-based operationalization records a navigation each time the

18



programmer clicks in a Java method in the code editor, whereas, the view-based

operationalization records a navigation each time a method passes through the center of

the programmer’s code editor. Below, we report the results for each of these

operationalizations, for each aspect of comparison (i.e., participant navigation profile and

predictive-model hit rate).

4.1 Navigation-Profile Comparison

We evaluated, the generalizability of the navigation behavior exhibited by the

participant in the Piorkowski study by comparing our results for both click-based and

view-based operationalizations. We report our results for each operationalization in turn.

Fig. 2 shows our navigation-profile results alongside those from the Piorkowski study

for click-based operationalization. Fig. 2a–c each focuses on a different aspect of

navigation behavior: rate of navigation, number of different methods visited and the

percentage of revisits, respectively. Fig. 2d summarizes the relative differences in our data

and the Piorkowski data for each of the three aspects. The relative difference between the

two quantities x and y is expressed as a percentage, indicating how much the two quantities

differed. For example, a 50% relative difference indicates that the value of either x or y is

double than that of the other. Formally, we compute relative difference as follows:

Relative difference(x,y) =
|x− y|

max(x,y)

For the click-based operationalization of navigations, Piorkowski et al.’s

navigation-profile results were substantially different from those of our participants’. For

example, the relative difference in the rates of navigation was considerable at 49%—our

participants navigated twice as much as the Piorkowski participant; Furthermore, the

average relative difference across all aspects of the navigation profile was 33%—i.e., on

average the result from one study was 1.5 times the result from the other.

19



0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

Piorkowski Singh 
0 

5 

10 

15 

20 

25 

30 

Piorkowski Singh 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Piorkowski Singh 

 (a) Rate of Navigations 

N
av

ig
at

io
ns

 p
er

 M
in

ut
e 

D
iff

er
en

t M
et

ho
d 

N
av

ig
at

io
ns

 p
er

 H
ou

r 
(b) Number of Different Methods Visited 

(c) Proportion of Navigations to 
Previously Visited Methods 

P
er

ce
nt

ag
e 

of
 N

av
ig

at
io

ns
 

R
el

at
iv

e 
D

iff
er

en
ce

 

(d) Comparison of Navigation 
Profiles with the Piorkowski Study 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Average 
Navigations 
per Minute 

Unique 
Methods per 

Hour 

Revisits 

Average = 33% 

Figure 2: Navigation profiles for click-based operationalization. Charts a–c compare the Pi-
orkowski results with our results for three aspects of navigation behavior. The values of our
study are averaged among 10 participants hence there is a standard error bar. Piorkowski
et al. had only one participant; thus, there is no standard error bar for their results. Chart d
shows the relative differences across all aspects of the navigation profile.

20



Fig. 3 presents the navigation-profile results for the view-based operationalization. The

organization of this figure is similar to that of Fig. 2. Similar to the click-based results,

Piorkowski et al.’s participant navigation profile results for the view-based

operationalization were also substantially different from that of our participants. The

largest difference was in the number of different methods visited, which had 52% relative

difference in both studies, and the average relative difference across all aspects of

navigation profile was 30%.

4.2 Model Accuracy Comparison

In addition to navigation profiles, we also evaluated the generalizability of the results

that Piorkowski et al. reported for the predictive accuracy of the 7 models of navigation

from Chapter 2.2. Similar to the above section, we looked at both the click-based

operationalization and the view-based operationalization. To compute the hit rates for the

models, we used a window size W=10 (same as Piorkowski et al.). That is, if a developer’s

actual navigation was to a method in the top-ten predictions made by a model, it was

considered a hit; otherwise a miss. Fig. 4a juxtaposes the model-accuracy results for the

Piorkowski study and our study based on the click-based operationalization. Fig. 4b

shows the relative difference between ours and the Piorkowski’s hit rates for each model.

As the Fig. 4 shows, for the click-based operationalization of navigation, Piorkowski et

al.’s models predictive accuracy results were considerably different from ours. Our hit

rates for models, such as frequency and undirected call depth, were considerably different

from the Piorkowski study at 49% and 63%, respectively. The Piorkowski study

generalized well for a couple factors: within-file distance and forward call depth both had

a relative difference less than 15%. However, the mean relative difference in model results

across all models was substantial at 31%.

Turning to the view-based operationalization, as the Fig. 5 shows, there was even less

agreement between our model-accuracy results and Piorkowski et al.’s than for the

21



0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

Piorkowski Singh 
0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Piorkowski Singh 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Piorkowski Singh 

 (a) Rate of Navigations 

N
av

ig
at

io
ns

 p
er

 M
in

ut
e 

(b) Number of Different Methods Visited 
D

iff
er

en
t M

et
ho

d 
N

av
ig

at
io

ns
 p

er
 H

ou
r 

P
er

ce
nt

ag
e 

of
 N

av
ig

at
io

ns
 

R
el

at
iv

e 
D

iff
er

en
ce

 

(c) Proportion of Navigations to 
Previously Visited Methods 

(d) Comparison of Navigation 
Profiles with the Piorkowski Study 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Average 
Navigations 
per Minute 

Unique 
Methods per 

Hour 

Revisits 

Average = 30% 

Figure 3: Navigation profiles for view-based operationalization. Charts a–c compare the Pi-
orkowski results with our results for three aspects of navigation behavior. The values of our
study are averaged among 10 participants hence there is a standard error bar. Piorkowski
et al. had only one participant; thus, there is no standard error bar for their results. Chart d
shows the relative differences across all aspects of the navigation profile.

22



(a) Predictive Accuracy of Model in Click-Based Operationalization 
!

(b) Relative Difference in Hit Rate in Click-Based Operationalization (W=10)  
 

R
el

at
iv

e 
D

iff
er

en
ce

  

!
H

it 
R

at
e 

 

!

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

Recency Working Set 
(Δ=W) 

Frequency Within-File 
Distance 

Forward 
Call Depth 

Undirected 
Call Depth 

Source 
Topology 

Piorkowski! Singh!

Average = 31.16% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Recency Working Set 
(Δ=W) 

Frequency Within-File 
Distance 

Forward 
Call Depth 

Undirected 
Call Depth 

Source 
Topology 

Figure 4: Model’s Predictive Accuracy in Click-based operationalization (W=10).23



click-based results. The hit rates of most of the models in view-based operationalization

were considerably different when compared to the Piorkowski study. The models that

differed most were frequency, source topology and undirected call depth, with over a 50%

relative difference for each. The mean relative difference between the predictive accuracy

of both the studies in view-based operationalization was also very high at 49%.

24



(a) Predictive Accuracy of Model in View-Based Operationalization 

!

(b) Relative Difference in Hit Rate in View-Based Operationalization (W=10)  
 

R
el

at
iv

e 
D

iff
er

en
ce

  

!
H

it 
R

at
e 

 

!

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

Recency Working Set 
(Δ=W) 

Frequency Within-File 
Distance 

Forward Call 
Depth 

Undirected 
Call Depth 

Source 
Topology 

Piorkowski! Singh!

   Average = 48.61% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Recency Working Set 
(Δ=W) 

Frequency Within-File 
Distance 

Forward Call 
Depth 

Undirected 
Call Depth 

Source 
Topology 

Figure 5: Model’s Predictive Accuracy in View-based operationalization (W=10).

25



Chapter 5

RQ2 Results: Operationalizations of

Navigation

To understand how well prior operationalizations of navigation agree with a human

evaluator’s perception (RQ2), we applied the operationalizations to our replication-study

data, and we compared the analysis results with the results of a manual qualitative

analysis. In particular, the two prior operationalizations of navigation were click-based

(Section 2.1.1) and view-based (Section 2.1.2) and the manual qualitative analysis was

based on human-assessment (Section 2.1.3). Similar to our RQ1 analysis, we focused our

comparison on different aspects of navigation behavior, such as rate of navigation and

number of different methods visited, and the predictive accuracy of the models of

navigation from Chapter 2.2. In the remainder of this chapter, we report our comparison

results for each of these aspects in turn.

5.1 Navigation-Profile Comparison

We evaluated the accuracy of the prior operationalizations (i.e., click-based and

view-based) by comparing the different aspects of a programmer’s navigation behavior

with respect to each operationalization with that of the human-assessment-based

26



operationalization. For the comparison, we take into consideration the same navigation

profile as in Section 4.1, which consisted of rate of navigation, number of different

methods visited and number of revisits to already visited methods.

Fig. 6 shows our participant’s navigation-profile results for each operationalization

(click-based, view-based and human-assessment-based). Each chart focuses on a different

aspect of navigation behavior: (a)rate of navigation, (b) number of different methods

visited and (c) the percentage of revisits, respectively. For example, Fig. 6a illustrates the

comparison of rate of navigation for click-based and view-based versus

human-assessment-based operationalization (Human-assessment-based results are

provided n the middle of the bar charts to facilitate comparison with the other

operationalization results). Fig. 7 summarizes the relative difference across these aspects

of the navigation-profile results for each of the prior operationalizations versus the

human-assessment-based operationalization.

As the figures make clear, the participant navigation profile for the click-based

operationalization was very similar to the participant navigation profile for the

human-assessment-based operationalization. Among all factors, only rate of navigation

was significantly different among both click-based and human-assessment-based

operationalization (Wilcox-Test: V = 48, p = 0.04).

Unlike the click-based operationalization, the participant navigation profile for the

view-based operationalization was considerably different than that of the

human-assessment-based operationalization. There was a significant difference between

rate of navigation in view-based and human-assessment-based operationalization

(Wilcox-Test: V = 54, p = .004). Also, number of different methods visited was

significantly different in view-based and human-assessment-based operationalization

(Wilcox-Test: V = 55, p = .002) The relative difference between the participant

navigation profiles in click-based and human-assessment-based operationalization was

27



0 

1 

2 

3 

4 

5 

6 

Click-Based Human-Assessment -Based View-Based 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Click-Based Human-Assessment -Based View-Based 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Click-Based Human-Assessment -Based View-Based 

 (a) Rate of Navigations 

(b) Number of Different Methods Visited 

(c) Proportion of Navigations to Previously Visited Methods 

N
av

ig
at

io
ns

 p
er

 M
in

ut
e 

D
iff

er
en

t M
et

ho
d 

N
av

ig
at

io
ns

 p
er

 H
ou

r 
P

er
ce

nt
ag

e 
of

 N
av

ig
at

io
ns

 

Figure 6: Comparison of navigation profiles in click-based and view-based operationaliza-
tion with that of in human-assessment-based operationaliztion.Charts a, b and c compare
the click-based and view-based results with human-assessment-based results for three as-
pects of navigation behavior. The values of our study are averaged among 10 participants
hence there is a standard error bar.

28



Table 2: NAVIGATION-PROFILE STATISTICS FOR CLICK-BASED, VIEW-BASED
AND HUMAN-ASSESSMENT-BASED OPERATIONALIZATION.

Operationalization 
of Navigation 

Aspect of 
Navigation 

Profile Mean 
Std. 
Dev. 

Difference 
with 

Human-
Assessmen

t-based V p 

Human-
Assessment-Based 

Navigation per 
minute 1.73% 0.57% n/a% n/a% n/a%
 
Different 
methods 
visited per 
hour 18.43% 7.38% n/a% n/a% n/a%
 
Proportion of 
navigations to 
previously 
visited 
methods 0.80% 0.10% n/a% n/a% n/a%

Click-Based 
Navigation per 
minute 2.00% 0.76% 0.27% 48% 0.04$*$
 
Different 
methods 
visited per 
hour 19.59% 8.13% 1.16% 29% 0.14%
 
Proportion of 
navigations to 
previously 
visited 
methods 0.82% 0.07% 0.02% 37% 0.09%~%

View-Based 
Navigation per 
minute 4.28% 2.26% %%2.55% 54% .004$*$
 
Different 
methods 
visited per 
hour 33.94% 14.16% 15.51% 55% .002$*$
 
Proportion of 
navigations to 
previously 
visited 
methods 0.84% 0.08% 0.04% 46% .07%~%

In the last column, * and ∼ indicates the significant and marginal differences respectively.

29



click-based  view-based  

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Average 
Navigations per 

Minute 

Unique Methods 
per Hour 

Revisits Average 
Navigations per 

Minute 

Unique Methods 
per Hour 

Revisits 

Average = 7% 

Average = 37% 

Figure 7: Relative difference in participant navigation profile in human-assessment-based
operationalization and participant navigation profile in click-based and view-based opera-
tionalization

only 7%, while the relative difference between the same in view-based and

human-assessment-based operationalization was 37%.

5.2 Model-Accuracy Comparison

To evaluate the extent to which the prior operationalizations produce model-accuracy

results that agree with the accuracy results of our human-assessment-based

operationalization, we ran the navigation data produced by each operationalization

through the seven models of navigation from Chapter 2. Fig. 8a illustrates the

predictive-model hit rate for all three operationalizations, while Fig. 8b illustrates the

relative difference between the predictive-model hit rate in human-assessment-based

30



operationalization and click-based operationalization versus view-based

operationalization respectively. As before, each human-assessment bar is positioned in

between the corresponding click-based and view-based bars to facilitate comparison.

The models’ predictive accuracy for both click-based and view-based

operationalizations were very close to the models’ predictive accuracy for

human-assessment-based operationalization for most of the models. The model within-file

distance has the prominent relative difference (47%) in view-based and

human-assessment-based operationalization. The within-file distance model’s predictive

accuracy for both click-base (Wilcox-Test: V = 50.5, p = .02) and view-base

operationalization (Wilcox-Test: V = 55, p = .002) is significantly different than that of

human-assessment-based operationalization. Also, the frequency model’s predictive

accuracy for view-based operationalization is significantly different than that of

human-assessment-based operationalization (Wilcox-Test: V = 54, p = .004) The

wilcox-test results for comparison of each model’s predictive accuracy for click-based and

view-based operationalization with that of human-assessment-based operationalization is

mentioned in Table 3 and Table 4 respectively. The average relative difference of models’

predictive accuracy among all factors in click-based and human-assessment-based

operationalization is 2% as compared to 11% relative difference in average predictive

accuracy of models between view-based and human-assessment based operationalization.

31



0%#

10%#

20%#

30%#

40%#

50%#

60%#

Recency Working Set 
(Δ=W) 

Frequency Within-File 
Distance 

Forward Call 
Depth 

Undirected 
Call Depth 

Source 
Topology 

click.based# view.based#

(a) Predictive Model Hit Rate of All Operationalizations 

(b) Relative Difference between Predictive Model Hit Rate of Human-Assessment-Based 
operationalization and Click-Based and View-Based Operationalization 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Recency 

Working Set (Δ
=10) 

Frequency 

Within-File Distance 

Forward Call D
epth 

Undirected Call D
epth 

Source Topology 

click.based# human.assessment.based# view.based#

Figure 8: Comparison of model’s predictive accuracy hit rate in click-based and view-based
operationalization with human-assessment-based operationalization.

32



Table 3: MODEL ACCURACY STATISTICS FOR CLICK-BASED AND HUMAN-
ASSESSMENT-BASED OPERATIONALIZATION.

Click-Based 

Human-
Assessment-

Based 
Difference in 

Mean 
Wilcox-Test 

Results 

Model Mean SD Mean SD (Absolute Value) V p 

Recency 79.40% 9% 77% 12%   2.4% 37 0.10 ~ 

Working 
Set 69.71% 10% 67% 13% 2.71% 44 0.04 * 

Frequency 69.99% 12% 68% 13% 1.99% 48 0.10 ~ 

Within File 
Distance 24.90% 15% 17% 9% 7.9% 50.5 0.02 * 

Forward 
Call Depth 0.95% 1% 1% 2% 0.05% 5 0.59 

Undirected 
Call Depth 3.96% 5% 4% 5% 0.04% 7 1 

Source 
Topology 6.28% 5% 5% 4% 1.28% 48 0.04 * 

In the last column, * and ∼ indicates the significant and marginal differences respectively.

33



Table 4: MODEL ACCURACY STATISTICS FOR VIEW-BASED AND HUMAN-
ASSESSMENT-BASED OPERATIONALIZATION.

View-Based 

Human-
Assessment-

Based 
Difference in 

Mean 
Wilcox-Test 

Results 

Model Mean SD Mean SD (Absolute Value) V p 

Recency 75% 20% 77% 12% 2% 21.5 .57 

Working 
Set 64% 21% 67% 13% 3% 15 .40 

Frequency 60% 20% 68% 13% 8% 54 .004 * 

Within File 
Distance 63% 16% 17% 9% 46% 55 .002 * 

Forward 
Call Depth 5% 9% 1% 2% 4% 21 .03 * 

Undirected 
Call Depth 7% 9% 4% 5% 3% 13 .67 

Source 
Topology 11% 13% 5% 4% 6% 54 .004 * 

In the last column, * indicates the significant difference.

34



Chapter 6

Discussion

6.1 Why Did the Piorkowski Results Differ from Ours (RQ1)?

Piorkowski et al.’s results for both programmer behavior and predictive accuracy of

models did not generalize well for both the click-based and the view-based

operationalizations. For instance, the average relative difference in the navigation profiles

of the Piorkowski participant and our participants was 33% for click-based

operationalization and 30% for view-based operationalization. We noted a number of

possible reasons for these considerable differences.

One possible reason was that our participants were familiar with the code base they

were working on. For example, the rate of navigation for our participants was double the

rate of navigation for Piorkowski et al.’s participant for click-base operationalization. In

the previous study, the participant spent a considerable amount of time navigating through

the code to get familiar with it, which involved frequent scrolling and scanning of files.

Such scrolling and scanning do not involve clicking in any method; therefore, far fewer

click-based navigations were recorded for the Piorkowski participant. In contrast, our

participants were working on a familiar project, and hence, spent more time clicking and

changing the code, which resulted in a higher click-based navigation rate. Familiarity with

the code may have also led to differences in number of different methods visited. Our

35



participants knew which methods to navigate to for completing the task, which resulted in

less exploring and a lower number of different methods visited in click-based

operationalization.

Another possible reason for the substantial differences in our data had to do with the

types of tasks participants performed. For example, the percentage of navigations which

were revisits to already visited methods was higher (more than 50% relative difference) in

our study than the Piorkowski study for view-based operationalization. In our study,

participants worked on feature addition/enhancement tasks, where they spend more time

developing or modifying a larger segment of code and clicking more frequently, whereas

in the Piorkowski study, the task was debugging, where the participant spent considerable

amount of time scanning the code without clicking in any method with the intention of

understanding the code. Because the task in our study involved adding new features,

participants were navigating to different methods which have a similar functionality to the

current method they were working on. The intent of these navigations was to copy the

functionality from another method or to reference another method.

Our participants were copying and pasting the code from methods having similar

functionality and hence, they revisited the methods frequently relevant to their task. The

Piorkowski participant spend time inspecting a lot of methods for bugs but not finding

them did not end in revisits. The frequent navigations to these methods not only increased

the percentage of revisits in their total navigation rate for view-based operationalization,

but also increased the predictive accuracy of models such as recency, frequency and

working set for both click-based and view-based operationalization when compared to the

previous study.

A final possible reason for the poor generalizability of the Piorkowski study could be

tied to the difference in the type of project. The predictive accuracy of source topology

model was higher in the Piorkowski study when compared to our study for both

click-based (more than 20% relative difference) and view-based (more than 80% relative

36



difference) operationalization. In our study, participants worked on JSP pages in addition

to the plain old Java code, and the way the models work is that they only take Java

method’s definition into consideration. The models treated JSP pages as 1-method class

and ignored the contents of those methods and it resulted in lower predictive accuracy (for

both click-based and view-based operationalization) of models such as undirected call

depth and source topology which takes methods’ definition for predicting the next

navigation.

6.2 Which Operationalization of Navigation Was Closest

to a Human Evaluator’s Perception of Navigation (RQ2)?

RQ2 results report that the click-based operationalization of navigation was very close

to a human evaluator’s perception of navigation and hence was more accurate in

operationalizing navigation than the view-based operationalization of navigation. The

average relative difference in navigation profile of participants between click-based and

human-assessment-based operationalization was 7% in contrast to the average relative

difference between view-based and human-assessment-based operationalization which

was 37%. The average relative difference in predictive accuracy of models for click-based

and human-assessment-based operationalization was negligible (2%) when compared to

the average relative difference in predictive accuracy of models for view-based and

human-assessment-based operationalization, which was 11%.

The most significant difference among view-based and human-assessment-based

operationalization was in the navigation profile of the participants (Table 2). These

differences were likely caused by the way the view-based operationalization has been

defined—a navigation is considered to a method which is in the middle of the screen of

the text editor (Section 2.1), but the human-assessment-based operationalization only

considers a navigation to a method if that method has programmer’s attention. During the

study session, participants quickly scrolled within files to get to the desired methods

37



without paying attention to methods which passed by the middle of the screen. However,

the view-based operationalization recorded navigations to all those methods while

human-assessment-based operationalization ignored them. This resulted in a higher rate

of navigation and a higher number of different methods visited for the view-based

operationalization in comparison to human-assessment-based operationalization.

On the other hand, the click-based operationalization recorded navigations to the

methods in which the text cursor is present, which could be either because the

programmer clicked in it intentionally or by mistake. Mostly our participants clicked in

the methods they wanted to navigate to or the ones on which they were working. The

clicks in the methods by mistake resulted in a negligible difference in navigation profiles

for click-based and human-assessment-based operationalization.

The most significant difference between the prior models with respect to human

assessment was in the predictive accuracy of models of the within-file distance model.

The predictive accuracy of within-file distance model for view-based operationalization

was much higher (more than 45% relative difference) than that of

human-assessment-based operationalization. As mentioned in Section 2.2, the within-file

distance model assigns higher ranks to methods closer to the current method in the file. In

the view-based operationalization, when participants were scrolling through the file, the

operationalization recorded navigations to a stream of methods, each next to the

previously visited method in the file, leading inordinately high predictive accuracy for that

model.

38



Chapter 7

Conclusion

In this thesis, we conducted a replication study that was the first to test the

generalizability of prior navigation behavior and prediction results and the first to evaluate

prior operationalizations of navigation with respect to a human evaluator’s perception of

navigation. Key findings of our study were the following:

• The click-based operationalization was reasonably good approximation of a human

evaluator’s perception.

• In contrast, the view-based operationalization was a poor approximation of a human

evaluator’s perception.

• The Piorkowski et al.’s results did not generalize well in our study both in terms of

the participant navigation profile and predictive accuracy hit rate of models.

These results have implications for how to automate navigation detection. Even though

human-assessment-based operationalization is the most accurate way to operationalize

navigation but it is not automatable but click-based operationalization is automatable.

Also, generalizability findings shed light on the effects of tasks, familiarity with the code

base, and type of project on navigation behavior.

39



References

[1] J. Johnson, “Chaos: the dollar drain of it project failures,” Application Development
Trends, 1995.

[2] K. E. Emam and A. G. Koru, “A replicated survey of it software project failures.”
IEEE Software, vol. 25, no. 5, pp. 84–90, 2008. [Online]. Available:
http://dblp.uni-trier.de/db/journals/software/software25.html#EmamK08

[3] T. A. Standish, “An essay on software reuse,” IEEE Trans. Softw. Eng., vol. 10, no. 5,
pp. 494–497, Sep. 1984. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1984.5010272

[4] R. D. Banker, S. M. Datar, and C. F. Kemerer, “A model to evaluate variables
impacting the productivity of software maintenance projects,” Manage. Sci., vol. 37,
no. 1, pp. 1–18, Jan. 1991. [Online]. Available:
http://dx.doi.org/10.1287/mnsc.37.1.1

[5] C. Kim and S. Weston, “Software maintainability: Perceptions of edp professionals,”
MIS Q., vol. 12, no. 2, pp. 167–185, Jun. 1988. [Online]. Available:
http://dx.doi.org/10.2307/248841

[6] J. T. Nosek and P. Palvia, “Software maintenance management: Changes in the last
decade,” Journal of Software Maintenance, vol. 2, no. 3, pp. 157–174, Sep. 1990.
[Online]. Available: http://dx.doi.org/10.1002/smr.4360020303

[7] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask during
software evolution tasks,” in Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering. ACM, 2006, pp. 23–34.

[8] T. A. Corbi, “Program understanding: Challenge for the 1990’s,” IBM Syst. J.,
vol. 28, no. 2, pp. 294–306, Jun. 1989. [Online]. Available:
http://dx.doi.org/10.1147/sj.282.0294

[9] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software
maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, Dec.
2006. [Online]. Available: http://dx.doi.org/10.1109/TSE.2006.116

40

http://dblp.uni-trier.de/db/journals/software/software25.html#EmamK08
http://dx.doi.org/10.1109/TSE.1984.5010272
http://dx.doi.org/10.1287/mnsc.37.1.1
http://dx.doi.org/10.2307/248841
http://dx.doi.org/10.1002/smr.4360020303
http://dx.doi.org/10.1147/sj.282.0294
http://dx.doi.org/10.1109/TSE.2006.116


[10] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent software
development artifacts,” in Proceedings of the 25th International Conference on
Software Engineering, ser. ICSE ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 408–418. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776866

[11] T. Schummer, “Lost and found in software space,” in Proc 34 th HICSS. IEEE,
2001.

[12] V. Sinha, R. Miller, and D. Karger, “Relo: Helping users manage context during
interactive exploratory visualization of large codebases,” in Visual Languages and
Human-Centric Computting (VL/ HCC. IEEE Computer Society, 2006, pp. 4–8.

[13] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards understanding
programs through wear-based filtering,” in Proceedings of the 2005 ACM Symposium
on Software Visualization, ser. SoftVis ’05. New York, NY, USA: ACM, 2005, pp.
183–192. [Online]. Available: http://doi.acm.org/10.1145/1056018.1056044

[14] C. Parnin and C. Görg, “Building usage contexts during program comprehension,” in
14th International Conference on Program Comprehension (ICPC 2006), 14-16
June 2006, Athens, Greece, 2006, pp. 13–22. [Online]. Available:
http://dx.doi.org/10.1109/ICPC.2006.14

[15] M. P. Robillard and G. C. Murphy, “Automatically inferring concern code from
program investigation activities,” in 18th IEEE International Conference on
Automated Software Engineering (ASE 2003), 6-10 October 2003, Montreal,
Canada, 2003, pp. 225–235. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240310

[16] J. Singer, R. Elves, and M. Storey, “Navtracks: Supporting navigation in software,”
in Program Comprehension, 2005. IWPC 2005. Proceedings. 13th International
Workshop on. IEEE, 2005, pp. 173–175.

[17] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting source code
changes by mining change history,” IEEE Trans. Softw. Eng., vol. 30, no. 9, pp.
574–586, Sep. 2004. [Online]. Available: http://dx.doi.org/10.1109/TSE.2004.52

[18] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version histories to
guide software changes,” in Proceedings of the 26th International Conference on
Software Engineering, ser. ICSE ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 563–572. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998675.999460

[19] D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B. E. John, M. M.
Burnett, and R. K. E. Bellamy, “Modeling programmer navigation: A head-to-head
empirical evaluation of predictive models.” in VL/HCC, G. Costagliola, A. J. Ko,
A. Cypher, J. Nichols, C. Scaffidi, C. Kelleher, and B. A. Myers, Eds. IEEE, 2011,

41

http://dl.acm.org/citation.cfm?id=776816.776866
http://doi.acm.org/10.1145/1056018.1056044
http://dx.doi.org/10.1109/ICPC.2006.14
http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240310
http://dx.doi.org/10.1109/TSE.2004.52
http://dl.acm.org/citation.cfm?id=998675.999460


pp. 109–116. [Online]. Available:
http://dblp.uni-trier.de/db/conf/vl/vlhcc2011.html#PiorkowskiFSJBJBB11

[20] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John, R. Bellamy,
and C. Swart, “Reactive information foraging: An empirical investigation of
theory-based recommender systems for programmers,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’12. New
York, NY, USA: ACM, 2012, pp. 1471–1480. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208608

[21] H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory experimental studies
comparing online and offline programming performance,” Commun. ACM, vol. 11,
no. 1, pp. 3–11, Jan. 1968. [Online]. Available:
http://doi.acm.org/10.1145/362851.362858

[22] N. R. Augustine, Augustine’s Laws and Major System Development. Defense
Systems Management Review, 1979.

[23] C. B. Seaman, “Qualitative methods in empirical studies of software engineering,”
IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572, Jul. 1999. [Online]. Available:
http://dx.doi.org/10.1109/32.799955

[24] M. W. van Someren, Y. F. Barnard, and J. A. C. Sandberg, The Think Aloud Method:
A Practical Guide to Modelling Cognitive Processes. Academic Press Limited,
1994.

[25] S. McConnell, “What does 10x mean? measuring variations in programmer
productivity,” in Making Software: What Really Works, and Why We Believe It.
O’Reilly Media, Inc., 2010, ch. Chapter Thirty.

42

http://dblp.uni-trier.de/db/conf/vl/vlhcc2011.html#PiorkowskiFSJBJBB11
http://doi.acm.org/10.1145/2207676.2208608
http://doi.acm.org/10.1145/362851.362858
http://dx.doi.org/10.1109/32.799955


Appendix A

Study Documents and Materials

A.1 IRB Approval Letter

On the following pages, we include the IRB approval letter for the study.

43



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 2408 
Expiration Date: October 19, 2013  Page 1 of 1 

  Consent to Participate in a Research Study 

Understanding How Developers Forage for Information during the Maintenance of Multilingual Software 

 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 

You are being invited to take part in a research study about how developers maintain multilingual software.  You 
are being invited to take part in this research study because you are experienced in the development of 
multilingual web applications base on Java EE.  If you volunteer to take part in this study, you will be one of about 
20 people to do so.  
 

WHO IS DOING THE STUDY? 

The person in charge of this study is Alka Singh of the University of Memphis Department of Computer Science. 
She is being guided in this research by Dr Scott Fleming.  There may be other people on the research team 
assisting at different times during the study. 
 

WHAT IS THE PURPOSE OF THIS STUDY? 

By doing this study, we hope to learn about the challenges that developers face in maintaining multilingual 
software, and about the strategies that developers use to cope with those challenges. 
 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY? 

You could be excluded from this study if you are not currently enrolled in COMP/EECE 4081. 
 

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST?  

The research procedures will be conducted at Dunn Hall.  You will need to come to a laboratory in Dunn Hall one 
time during the study.  Each of those visits will take about 2.5 hours.  The total amount of time you will be asked 
to volunteer for this study is 2.5 hours over the next month. 
 

WHAT WILL YOU BE ASKED TO DO? 

As a participant in this study, you will be asked to part in a session in which you spend the majority of the time 
working on a programming task. You will be asked to “think aloud” as you work on the task.  That is, you will be 
asked to continually say whatever you are looking at, thinking, doing, and feeling, as you go about the task.  Prior 
to the task, you will also be asked to fill out a background questionnaire, and you will perform a short warm-up 
task in which you practice thinking aloud. 

Throughout the session, you will be videotaped and audio recorded. 

 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 2408 
Expiration Date: October 19, 2013  Page 2 of 2 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 

To the best of our knowledge, the things you will be doing have no more risk of harm than you would experience 
in everyday life. 

There is only a minimal psychological and social risk stemming from judgment of the your performance on the 
task.  
 

WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 

There is no guarantee that you will get any benefit from taking part in this study.  However, the experience of 
performing the development task may increase your expertise in maintaining multilingual software.  Your 
willingness to take part, however, may, in the future, help society as a whole better understand this research 
topic.  
 

DO YOU HAVE TO TAKE PART IN THE STUDY? 

If you decide to take part in the study, it should be because you really want to volunteer.  You will not lose any 
benefits or rights you would normally have if you choose not to volunteer.  You can stop at any time during the 
study and still keep the benefits and rights you had before volunteering.  As a student, if you decide not to take 
part in this study, your choice will have no effect on you academic status or grade in the class. 
 

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES? 

If you do not want to take part in the study, you may alternatively earn the reward (which is described below) by 
writing a short essay. The essay should take an in-depth look at one of the methods/techniques covered in the 
course. It should describe the strengths/weaknesses of the technique, define the scope of applicability, and 
thoroughly back-up your position from the literature (books or research papers). For sources, you should look to 
recent (within last 10 years) conferences in software engineering (e.g., ICSE, ASE, and FSE) or publication by the 
ACM or IEEE. In terms of format: The paper should be no less than 2 pages in the IEEE conference-proceedings 
format (10-point, Times Roman font, two columns), and you must cite at least 3 references. 
 

WHAT WILL IT COST YOU TO PARTICIPATE? 

You may have to pay for the cost of getting to the study site and a parking fee. 
 

WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 

You will receive 1.5% added to your final percentage grade for the class for taking part in this study. Example: 
86% + 1.5% = 87.5%. The extra credit will be awarded upon completion of the given task.  
 

WHO WILL SEE THE INFORMATION THAT YOU GIVE? 

We will make every effort to keep private all research records that identify you to the extent allowed by law. 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 2408 
Expiration Date: October 19, 2013  Page 3 of 3 

Your information will be combined with information from other people taking part in the study. When we write 
about the study to share it with other researchers, we will write about the combined information we have gathered. 
You will not be personally identified in these written materials. We may publish the results of this study; however, 
we will keep your name and other identifying information private. 

 We will make every effort to prevent anyone who is not on the research team from knowing that you gave us 
information, or what that information is.  

The questionnaire and video data will be stored in an office on campus. To protect the data, the computer holding 
the video data will be password protected, and the office will be kept locked. When our analysis of the data is 
complete, the data will be destroyed. As an additional constraint, the data will be destroyed within two years of 
when it was collected. 

For grading purposes, the investigator will provide a list of participants’ names to the course instructor. 
Information about your performance in the study will be kept confidential from the instructor; however, the 
investigator may share aggregate and/or anonymized study data with instructor. 

We will keep private all research records that identify you to the extent allowed by law.  However, there are some 
circumstances in which we may have to show your information to other people.  For example, the law may require 
us to show your information to a court.  Also, we may be required to show information which identifies you to 
people who need to be sure we have done the research correctly; these would be people from such organizations 
as the University of Memphis. 

 
CAN YOUR TAKING PART IN THE STUDY END EARLY? 

If you decide to take part in the study you still have the right to decide at any time that you no longer want to 
continue.  You will not be treated differently if you decide to stop taking part in the study.   

The individuals conducting the study may need to withdraw you from the study.  This may occur if you are not 
able to follow the directions they give you, if they find that your being in the study is more risk than benefit to you, 
or if the agency funding the study decides to stop the study early for a variety of scientific reasons.   
 
 
WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR COMPLAINTS? 
 
Before you decide whether to accept this invitation to take part in the study, please ask any questions that might 
come to mind now.  Later, if you have questions, suggestions, concerns, or complaints about the study, you can 
contact the investigator, Alka Singh at 901-679-5930, or her advisor, Scott Fleming at 901-678-3142.  If you have 
any questions about your rights as a volunteer in this research, contact the Institutional Review Board staff at the 
University of Memphis at 901-678-3074.  We will give you a signed copy of this consent form to take with you.  
 

WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT MIGHT AFFECT YOUR DECISION 
TO PARTICIPATE?  

If the researcher learns of new information in regards to this study, and it might change your willingness to stay in 
this study, the information will be provided to you. You may also be asked to sign a new informed consent form if 
the information is provided to you after you have joined the study. 

 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 2408 
Expiration Date: October 19, 2013  Page 4 of 4 

☐ By checking this box, you agree to be videotaped and audio recorded for the study. 
 
_________________________________________   ____________ 
Signature of person agreeing to take part in the study          Date 
  
_________________________________________ 
Printed name of person agreeing to take part in the study 
  
_________________________________________   ____________ 
Name of [authorized] person obtaining informed consent          Date 
  
  



A.2 IRB Informed Consent

On the following pages, we include the IRB-approved informed consent document for

the study.

48



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 
Expiration Date:  Page 1 of 4 

  Consent to Participate in a Research Study 

Understanding How Developers Forage for Information during the Maintenance of Multilingual Software 

 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 

You are being invited to take part in a research study about how developers maintain multilingual software.  You 
are being invited to take part in this research study because you are experienced in the development of 
multilingual web applications base on Java EE.  If you volunteer to take part in this study, you will be one of about 
20 people to do so.  
 

WHO IS DOING THE STUDY? 

The person in charge of this study is Alka Singh of the University of Memphis Department of Computer Science. 
She is being guided in this research by Dr Scott Fleming.  There may be other people on the research team 
assisting at different times during the study. 
 

WHAT IS THE PURPOSE OF THIS STUDY? 

By doing this study, we hope to learn about the challenges that developers face in maintaining multilingual 
software, and about the strategies that developers use to cope with those challenges. 
 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY? 

You could be excluded from this study if you are not currently enrolled in COMP/EECE 4081. 
 

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST?  

The research procedures will be conducted at Dunn Hall.  You will need to come to a laboratory in Dunn Hall one 
time during the study.  Each of those visits will take about 2.5 hours.  The total amount of time you will be asked 
to volunteer for this study is 2.5 hours over the next month. 
 

WHAT WILL YOU BE ASKED TO DO? 

As a participant in this study, you will be asked to part in a session in which you spend the majority of the time 
working on a programming task. You will be asked to “think aloud” as you work on the task.  That is, you will be 
asked to continually say whatever you are looking at, thinking, doing, and feeling, as you go about the task.  Prior 
to the task, you will also be asked to fill out a background questionnaire, and you will perform a short warm-up 
task in which you practice thinking aloud. 

Throughout the session, you will be videotaped and audio recorded. 

 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 
Expiration Date:  Page 2 of 4 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 

To the best of our knowledge, the things you will be doing have no more risk of harm than you would experience 
in everyday life. 

There is only a minimal psychological and social risk stemming from judgment of the your performance on the 
task.  
 

WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 

There is no guarantee that you will get any benefit from taking part in this study.  However, the experience of 
performing the development task may increase your expertise in maintaining multilingual software.  Your 
willingness to take part, however, may, in the future, help society as a whole better understand this research 
topic.  
 

DO YOU HAVE TO TAKE PART IN THE STUDY? 

If you decide to take part in the study, it should be because you really want to volunteer.  You will not lose any 
benefits or rights you would normally have if you choose not to volunteer.  You can stop at any time during the 
study and still keep the benefits and rights you had before volunteering.  As a student, if you decide not to take 
part in this study, your choice will have no effect on you academic status or grade in the class. 
 

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES? 

If you do not want to take part in the study, you may alternatively earn the reward (which is described below) by 
writing a short essay. The essay should take an in-depth look at one of the methods/techniques covered in the 
course. It should describe the strengths/weaknesses of the technique, define the scope of applicability, and 
thoroughly back-up your position from the literature (books or research papers). For sources, you should look to 
recent (within last 10 years) conferences in software engineering (e.g., ICSE, ASE, and FSE) or publication by the 
ACM or IEEE. In terms of format: The paper should be no less than 2 pages in the IEEE conference-proceedings 
format (10-point, Times Roman font, two columns), and you must cite at least 3 references. 
 

WHAT WILL IT COST YOU TO PARTICIPATE? 

You may have to pay for the cost of getting to the study site and a parking fee. 
 

WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 

You will receive 1.5% added to your final percentage grade for the class for taking part in this study. Example: 
86% + 1.5% = 87.5%. The extra credit will be awarded upon completion of the given task.  
 

WHO WILL SEE THE INFORMATION THAT YOU GIVE? 

We will make every effort to keep private all research records that identify you to the extent allowed by law. 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 
Expiration Date:  Page 3 of 4 

Your information will be combined with information from other people taking part in the study. When we write 
about the study to share it with other researchers, we will write about the combined information we have gathered. 
You will not be personally identified in these written materials. We may publish the results of this study; however, 
we will keep your name and other identifying information private. 

 We will make every effort to prevent anyone who is not on the research team from knowing that you gave us 
information, or what that information is.  

The questionnaire and video data will be stored in an office on campus. To protect the data, the computer holding 
the video data will be password protected, and the office will be kept locked. When our analysis of the data is 
complete, the data will be destroyed. As an additional constraint, the data will be destroyed within two years of 
when it was collected. 

For grading purposes, the investigator will provide a list of participants’ names to the course instructor. 
Information about your performance in the study will be kept confidential from the instructor; however, the 
investigator may share aggregate and/or anonymized study data with instructor. 

We will keep private all research records that identify you to the extent allowed by law.  However, there are some 
circumstances in which we may have to show your information to other people.  For example, the law may require 
us to show your information to a court.  Also, we may be required to show information which identifies you to 
people who need to be sure we have done the research correctly; these would be people from such organizations 
as the University of Memphis. 

 
CAN YOUR TAKING PART IN THE STUDY END EARLY? 

If you decide to take part in the study you still have the right to decide at any time that you no longer want to 
continue.  You will not be treated differently if you decide to stop taking part in the study.   

The individuals conducting the study may need to withdraw you from the study.  This may occur if you are not 
able to follow the directions they give you, if they find that your being in the study is more risk than benefit to you, 
or if the agency funding the study decides to stop the study early for a variety of scientific reasons.   
 
 
WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR COMPLAINTS? 
 
Before you decide whether to accept this invitation to take part in the study, please ask any questions that might 
come to mind now.  Later, if you have questions, suggestions, concerns, or complaints about the study, you can 
contact the investigator, Alka Singh at 901-679-5930, or her advisor, Scott Fleming at 901-678-3142.  If you have 
any questions about your rights as a volunteer in this research, contact the Institutional Review Board staff at the 
University of Memphis at 901-678-3074.  We will give you a signed copy of this consent form to take with you.  
 

WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT MIGHT AFFECT YOUR DECISION 
TO PARTICIPATE?  

If the researcher learns of new information in regards to this study, and it might change your willingness to stay in 
this study, the information will be provided to you. You may also be asked to sign a new informed consent form if 
the information is provided to you after you have joined the study. 

 



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.3074 
        Fax:  901.678.2199 

 

IRB #: 
Expiration Date:  Page 4 of 4 

� By checking this box, you agree to be videotaped and audio recorded for the study. 
 
_________________________________________   ____________ 
Signature of person agreeing to take part in the study          Date 
  
_________________________________________ 
Printed name of person agreeing to take part in the study 
  
_________________________________________   ____________ 
Name of [authorized] person obtaining informed consent          Date 
  
  



A.3 Study Session Procedure

On the following pages, we include the procedure used for the study sessions.

53



Study	Procedure	

Materials	
• Workstation	with	web	browser	(e.g.,	Firefox),	Eclipse	with	subversion	plugin,	video	camera	

(e.g.,	a	webcam),	microphone,	and	video	capture	software	(e.g.,	Camtesia),	START_HERE	
folder.	

• Pen/pencil	and	paper	

Debugging	Session	
Initial	setup	

1. Thank	the	participants	for	their	participation	and	collect	the	signed	consent	form.	
2. Have	participant	setup	their	workspace	to	make	sure	everything	works	and	is	ready	to	go	
3. Save	a	copy	of	the	project	code	(so	we	can	do	before/after	comparison)	

Main	session	
4. Establish	context	(Read	Script	1	below)	
5. Start	recording	video	
6. Interview:	Ask	BACKGROUND	questions.	
7. Interview:	Ask	the	participant	what	task(s)	he/she	will	be	working	on	

a. Explain	that	it	is	not	required	that	they	complete	the	tasks,	but	we	ask	that	they	
work	for	a	full	2	hours.	

8. Give	think-aloud	instructions	and	warmup	(Read	Script	2	below)	
9. Participant	works	while	thinking	aloud	for	2	hours	

Script	1	–	Establish	Context	
<ADD	BIT	ABOUT	MULTI-LINGUAL	ENVIRONMENT—i.e.,	Familiarize	them	with	the	meaning	of	
MULTI-LINGUAL	ENVIRONMENT>	

As	a	participant	in	this	study,	you	will	be	working	on	your	project	work.	As	you	work,	I	will	ask	you	to	
provide	verbal	reports	by	thinking	aloud.	I	will	explain	this	more	in	a	moment.	

Throughout	this	study,	I	will	be	recording	what	you	say	and	be	videotaping	you	with	this	camera	
<point	out	the	camera>.	Please	do	not	touch	either	of	these	instruments.	Additionally,	I	will	be	
capturing	video	of	the	computer	screen	as	you	work,	and	the	computer	will	log	everything	you	do	
with	the	interface.	

Script	2	–	Think-Aloud	Instructions	and	Warmup	
I	will	start	by	familiarizing	you	with	the	procedure	for	giving	verbal	reports.	In	particular,	I	am	going	
to	ask	you	to	solve	some	practice	problems.	I	am	interested	in	knowing	your	thoughts	as	you	work	
through	each	problem.	In	order	to	obtain	this	information,	I	am	going	to	ask	you	to	think	aloud	as	
you	work.	What	I	mean	by	“think	aloud”	is	that	I	want	you	to	say	your	thoughts	out	loud	from	the	
moment	you	finish	hearing	a	practice	question	until	you	say	the	final	answer.	I	would	like	you	to	talk	



aloud	as	much	as	you	comfortably	can	during	that	time.	Don't	try	to	plan	or	explain	what	you	say.	
Just	act	as	if	you	are	alone	and	speaking	to	yourself.	Keep	talking	while	you	are	coming	up	with	the	
solution	to	each	problem.	If	you	are	silent	for	a	long	time,	I'll	remind	you	to	think	aloud.	Do	you	
understand	what	I	would	like	you	to	do?	

Good.	Now	we	will	see	some	practice	problems.		

<Play	window	task	video.>	

Now	you	try	thinking	aloud.		First,	listen	to	the	question,	then	answer	it	as	soon	as	you	can.	Are	you	
ready?	

How	many	lights	are	in	your	current	apartment?	

Good.	Now,	those	problems	were	solved	entirely	in	our	heads.	However,	when	you	are	working	on	
the	computer	you	will	be	looking	at	things	and	seeing	things	that	catch	your	attention.	These	things	
you	are	looking	for	and	things	that	you	see	are	as	important	to	our	observations	as	thoughts	you	are	
thinking,	so	please	verbalize	these	too.		

Now	you	will	think	aloud	as	you	are	using	the	computer.	I	have	pointed	this	browser	to	the	
Computer	Science,	University	of	Memphis	website.	Please	think	aloud	as	you	find	the	bioinformatics	
student	project	by	Pranitha	Appidi	.	Please	click	around	to	find	this	answer,	do	not	use	search.	

<Observe	when	participant	does	this	task.	Time	bound	this	task	to	3	minutes>	

Great!	We	can	move	on	to	the	real	task.	As	you	are	doing	this	task,	I	won’t	be	able	to	answer	any	
questions.	But	if	a	question	pops	into	your	head	as	you	work,	go	ahead	and	ask	it	anyway	and	we	
can	discuss	it	after	the	session.	If	you	forget	to	think	aloud,	I’ll	say,	“Please	keep	talking”.	

Do	you	have	any	questions	about	thinking	aloud?	

Good.	Please	begin	thinking	aloud	now.	

<Observe	the	programmer	and	remind	if	he	is	silent	for	a	long	time.>	

<After	2:00	has	elapsed>	

The	time	is	over.	Thank	you.	

<Stop	Video	Recording	and	Save>	

Move	saved	videos	to	P#	folder	in	server	

	



A.4 Participant-Recruitment Email

On the following pages, we include the participant-recruitment email for the study.

56



Hi folks, 
 
Here is a way to earn 1.5 A&B points (see below). You may choose only one 
option (so please don't ask). I'll say more about this opportunity in class. 
 
Cheers, 
SDF 
 
 
= Extra Credit Opportunity = 
 
You may choose one of two extra credit options, each worth 1.5 percentage 
points that will be added to your final percentage grade for the course. To select 
one of the options, email your choice to your course instructor, Dr. Scott Fleming 
(Scott.Fleming@memphis.edu). 
 
== Option #1: Participate in Research Study == 
 
Wanted: Programmers to participate in a research study about how developers 
maintain multilingual software. 
 
As a participant, you will take part in a study session that may last up to 2.5 
hours. Your main task during the session will be to debug a multilingual Java EE 
program. You will be asked to “think aloud” as you work on the task. That is, you 
will be asked to continually say whatever you are looking at, thinking, doing, and 
feeling, as you go about the task. 
 
This research is conducted under the direction of Alka Singh (faculty advisor: Dr. 
Fleming) from the Computer Science Department at the University of Memphis. If 
you choose the study option, Dr. Fleming will provide your email to Ms. Singh, so 
she can contact you regarding scheduling arrangements. The study sessions will 
be conducted at Dunn Hall. Your session will be scheduled based on your 
availability. 
 
== Option #2: Essay == 
 
The essay should take an in-depth look at one of the methods/techniques 
covered in the course. It should describe the strengths/weaknesses of the 
technique, define the scope of applicability, and thoroughly back-up your position 
from the literature (books or research papers). For sources, you should look to 
recent (within last 10 years) conferences in software engineering (e.g., ICSE, 
ASE, and FSE) or publication by the ACM or IEEE. In terms 
of format: The paper should be no less than 2 pages in the IEEE 
conference-proceedings format (10-point, Times Roman font, two 



columns), and you must cite at least 3 references. 
	



A.5 Background Questionnaire

On the following pages, we include the background questionnaire that participants

filled out.

59



Background Questionnaire 
 
1. Age range: 

! 18–19 
! 20s 
! 30s 
! 40s 
! 50 or over 

 
2. Education (highest degree or level completed): 

! High school graduate - high school diploma or the equivalent (for example: GED) 
! Some college credit, but less than 1 year 
! 1 or more years of college, no degree 
! Associate degree (for example: AA, AS) 
! Bachelor's degree (for example: BA, AB, BS) 
! Master's degree (for example: MA, MS, MEng, MEd, MSW, MBA) 
! Professional degree (for example: MD, DDS, DVM, LLB, JD) 
! Doctorate degree (for example: PhD, EdD) 

 
3. Current field of study or major: 

! Computer Science 
! Computer Engineering 
! Electrical Engineering 
! Mechanical Engineering 
! Mathematics 

 
! Other: _______________________________________________ 

 
 
4. Is English your primary language? 

! Yes 
! No 

 
5. If not, then what is your primary language? ______________________________________ 
 
 
6. How many years of… 
 

a. … programming experience:  __________________________________________ 
 

b. … professional programming experience:  ________________________________ 
 

c. … multilingual programming experience:  ________________________________ 
 

d. … professional multilingual programming experience:  _____________________ 
 


	An Empirical Evaluation Of Predictive Models Of Programmer Navigation
	Recommended Citation

	Introduction
	Background
	Operationalizations of Navigation
	Click-Based Operationalization
	View-Based Operationalization
	Human-Assessment-Based Operationalization

	Predictive Models of Programmer Navigation
	Recency and Working Set Models
	Frequency Model
	Within-File Distance Model
	Forward Call Depth and Undirected Call Depth Models
	Source Topology Model


	Study Method
	Participants
	Tasks and Environment
	Procedure
	Analysis Method

	RQ1 Results: Generalizability of Piorkowski Study
	Navigation-Profile Comparison
	Model Accuracy Comparison

	RQ2 Results: Operationalizations of Navigation
	Navigation-Profile Comparison
	Model-Accuracy Comparison

	Discussion
	Why Did the Piorkowski Results Differ from Ours (RQ1)?
	Which Operationalization of Navigation Was Closest to a Human Evaluator's Perception of Navigation (RQ2)?

	Conclusion
	References
	Study Documents and Materials
	IRB Approval Letter
	IRB Informed Consent
	Study Session Procedure
	Participant-Recruitment Email
	Background Questionnaire


