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ABSTRACT

Noor, Imama. PhD. The University of Memphis. May, 2013. An Adaptive

Optimal Bandwidth Sensor for Video Imagining and Sparsifying Basis. Major

Professor: Dr. Eddie Jacobs

Many compressive sensing architectures have shown promise towards reducing

the bandwidth for image acquisition signi�cantly. In order to use these architectures

for video acquisition we need a scheme that is able to e�ectively exploit temporal

redundancies in a sequence. In this thesis we study a method to e�ciently sample

and reconstruct speci�c video sequences. The method is suitable for implementa-

tion using a single pixel detector along with a digital micromirror device (DMD) or

other forms of spatial light modulators (SLMs). Conventional implementations of

single pixel cameras are able to spatially compress the signal but the compressed

measurements make it di�cult to exploit temporal redundancies directly. Moreover

a single pixel camera needs to make measurements in a sequential manner before

the scene changes making it ine�cient for video imaging. In this thesis we discuss

a measurement scheme that exploits sparsity along the time axis for video imag-

ing. After acquiring all measurements required for the �rst frame, measurements

are only acquired from the areas which change in subsequent frames. We segment

the �rst frame and detect magnitude and direction of change for each segment and

acquire compressed measurements for the changing segments in the predicted direc-

tion. TV minimization is used to reconstruct the dynamic areas and PSNR variation

is studied against di�erent parameters of proposed scheme. We show the reconstruc-

tion results for a few test sequences commonly used for performance analysis and

demonstrate the practical utility of the scheme. A comparison is made with existing

algorithms to show the e�ectiveness of proposed method for speci�c video sequences.

We also discuss use of customized transform to improve reconstruction of submil-
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limeter wave single pixel imager. We use a sparseness inducing transformation on

the measurements and optimize the result using l1 minimization algorithms. We

demonstrate improvement in result of several images acquired and reconstructed

using this technique.
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Chapter 1

Introduction

1.1 Motivation and Roadmap

Since the inception of digital signal processing there is an ever increasing

demand for faster and more robust devices. The amounts of data generated using

classical acquisition techniques is increases the burden on analog to digital convertors

and pushes them to limits. It is no longer possible to meet the growing demands

while still adhering to the classical Shannon Nyquist sampling rate. Fortunately we

are able to understand the nature of signal processing better then before. We no

longer have to treat all sorts of signals in a similar manner. Instead we can adjust

the sampling rate depending on the information content in any signal.

The majority of natural and man made signals have an inherent structure

which is not used in classical methods for acquisition. These signals when trans-

formed have their energy concentrated in a few signi�cant basis vectors and most co-

e�cients are negligible. It has be shown that sampling in the speci�c sparsity domain

reduces the number of samples compared to classical Nyquist sampling technique.

The marriage of transform knowledge and sparse sampling schemes has generated

a new framework for signal acquisition called compressive sampling. A single pixel

camera (SPC) is designed to make compressive measurements of a scene to render

still images. The SPC is designed to acquire samples sequentially taking one sample

at a time. This approach cannot be translated directly applied to video acquisition.

In this thesis we propose an algorithm to acquire measurements compressivley for

video acquisition.

For the remainder of the chapter we give an overview of Compressive Sensing

and some associated concepts. In Chapter 2, we detail the prior work done on static

and dynamic compressive sensing. In Chapter 3, we present an adaptive scheme for
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dynamic scene acquisition. In Chapter 4, we analyse utility of a dictionary learning

scheme.

1.2 Compressive Sensing

The compressed sensing framework for image acquisition exploits properties of

a signal to reduce the number of samples required for reconstruction. It exploits the

sparsity hidden in the signal and acquires measurements in the domain where the

signal is sparse. The measurement matrices or projections are carefully designed to

acquire maximum information in the signal. Random projections have been shown

to have this property. Many other forms of measurement matrices have also been

shown to yield good results.

The CS framework captures the higher frequency information while sampling

below Nyquist rate. The signal and sample relationship can be expressed as

y = Ax+ ω (1.1)

Here ω incorporates the detection and quantization noise and A is the mea-

surement matrix. The variable y is an m × 1 vector of measurements and x is the

signal n× 1 with m < n. The value of m depends on the sparsity of signal and the

coherence between the measurement matrix and the sparsity basis. The relationship

is mentioned in its mathematical form later in this chapter.

1.2.1 Signal and Sparse Representations

If x is not sparse in the spatial domain we can express x in a sparse basis φ

such that z is a sparse vector.

x = φz
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Therefore, the measurement model can be rewritten as

y = Aφz + ω (1.2)

The knowledge of the sparse basis gives information about the structure of the

signal to be reconstructed. The basis vectors are also known as atoms. If a signal

is sparse in a speci�c basis, only a few atoms are required to represent the signal

precisely. The sparse basis needs to be incoherent with the measurement matrix in

order to reduce the number of samples required for reconstruction.

1.2.2 Dictionary Learning

CS theory requires the signal to be sparse in a speci�c domain for exact re-

construction. Many o�-the-shelf sparse basis functions are available but they can

only sparsely represent a subset of signals. In order to �nd a basis customized to a

particular class of signals, we can pick key features in the set and form a dictionary.

There are many ways to �nd a dictionary which can represent the signal as a linear

combination of few atoms. I used an online learning approach for sparse coding.

The algorithm considers a �nite training set of signals and optimizes an empirical

cost function

fn(φ) ,
1

n

∑
l(xi, φ) (1.3)

where φ is the dictionary in Rm×n . Each column of φ is called an atom which

are the sparse basis vectors. The variables xi are the training signals in Rm×k .

The function l is the loss function which is small when φ represents xi using a few

sparse basis vectors or atoms. The number of training signals k is typically large

and each signal is represented by only a few columns of φ . This approach is fast

and guaranteed to converge.
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(a) (b) (c)

Figure 1.1: a. 30x64 Matrix M b. A 64 x 64 Dictionary D c. Product of D and M

1.2.3 Mutual Coherence

A measurement matrix is formed based on a couple of rules. First, the mea-

surement matrix should be incoherent with the basis matrix. A constant term used

to determine the number of measurements depends on the coherence measure of the

measurement matrix A and the sparsity basis φ. If ai and ψj represent the columns

of A and φ respectively then

µ = max1≤i,j≤n |〈ai, ψj〉| (1.4)

The matrices are incoherent if

n−1/2 ≤ µ ≤ 1 (1.5)

To be able to reconstruct from fewer samples we need to make measurements

such that they are incoherent with the sparsity basis matrix. The eigenvalues of the

gram matrix should be almost equal to one in the case where the two matrices are

incoherent.

AφT ≈ I (1.6)
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1.2.4 Restricted Isometry Property(RIP)

In order to fully recover signal from the undersampled data, the measurement

matrix needs to satisfy the restricted isometry property(RIP). The RIP implies that

the measurement matrix conserves the energy in the signal, which further implies

that the measurement matrix have a zero mean. This condition can be formally

written as

(1− δS)||z||2
2
≤||Aφz||22≤(1 + δS)||z||2

2
(1.7)

where z is the sparse vector, δs is the RIP constant and lies between 0 and

1. Another way of stating the restricted isometry property is that it ensures that

the transformation Aφ preserves the distances between the nonzero planes of sparse

vectors. This is equal to the requirement that the largest eigenvalue of Aφ(Aφ)T

lies in between the interval [1 + δs, 1− δs]. Let Z, P ⊆ RNthen the de�nition can be

also be expressed as

(1− δS)||z − p||2
2
≤||Aφz − Aφp||22≤(1 + δS)||z − p||2

2
(1.8)

for all zεZ and pεP . In order to verify this property, all subsets of S columns

taken from A are nearly orthogonal, and all pairwise distances between S-sparse

signals can be well preserved in the measurements space. This makes veri�cation

of RIP a NP-hard problem. Random, iid Gaussian and Bernoulli matrices have

proven to satisfy the RIP. The bounds on the number of measurements required

to reconstruct a k-sparse signal have been established for these matrices as well.

The �gure shows transformation by an RIP veri�ed matrix. The distances between

k-sparse planes of the signal is conserved under the transformation by φ. If the

entries of A are iid sampled from N(0, 1) Gaussian or U(=1, 1) Bernoulli than we
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Figure 1.2: Distances between K-planes is conserved under transformation φ

can reconstruct the original signal with probability 1 − e−Cn with O(klog(C/k))

complexity. Where A has a RIP of order (k, δ).

1.2.5 Null Space Property

A matrices capability to capture key information in the signal and allow accu-

rate reconstruction can be veri�ed by the Null-Space property(NSP). The Null-Space

of a matrix is the solution space for a homogeneous linear system of equations. These

set of equations are formed when there is no driving signal. Mathematically NSP

for all vectors s in the null space of φ is evaluated based on

||s||k,1 ≤ αk||s||1 (1.9)

This holds for all vectors s in the null space of A (i.e Ax=0) where ||s||k,1

denotes the sum of the k largest absolute values of entries in s. Here αkε [0, 1] and

||s||1is the l1 norm of vector s. If a matrix satis�es the NSP of order (2k, α) for α

belonging to [0,1] then it will satisfy the RIP of third order (3k, δk).

1.2.6 k-Neighbourliness Condition

Neighborliness can also be used as a measure to verify if the measurement

matrix is appropriate for fully recovering a signal from under sampled data. If we

6



de�ne P = AL, where L denotes cross polytopes in RNand A is the measurement

matrix then the convex polytope P should be centrally k-neighborly. This implies

every subset of k vertices forms k-1 faces.[4] This property has been veri�ed for

random matrices.[4] A random matrix n×d with k =.089d and n = 2d is k-neighborly

and a sparse solution is possible with far less computation if the solution exists.

1.2.7 Recovery Conditions

There are lower bounds on the number of samples required for reconstructing

the signal accurately. It is directly proportional to the sparsity index of a signal and

varies at log scale with the dimensionality of the signal.

Theorem 1(sparse reconstruction) : If we have an n-dimensional signal which

is k-sparse in φ, then given m measurements such that

m ≥ C · µ(A, φ) · k · log n (1.10)

the signal can be recovered exactly, with overwhelming probability. Here C is

a constant, µ is the coherence measure between A and φ sand can be calculated using

Eq. 1.4. The smaller the coherence between the two matrices, the fewer samples

will be required.

1.2.8 Signal Reconstruction using Convex Optimization

The problem of recovering a sparse signal from undersampled data requires

optimization of an under-determined set of linear equations. The most direct way

is to minimize the l0 norm over the solution space bounded by the linear equations.

This method is NP hard and the complexity grows by O(nm). Research has shown

that if the objective function is replaced by the l1 norm instead of the l0 norm, the

problem complexity can be reduced toO(klog(n/k)), provided that the measurement

7



matrix satis�es the RIP. The l1 norm is convex and thus the problem can be solved

using fewer computations. If ω is zero, we can formulate the problem as a basis

pursuit optimization.

minimize ||x||1 subject to y = Ax (1.11)

We can write x = φz as a product of a sparse basis and a vector, to obtain

minimize ||z||1 subject to y = Aφz (1.12)

If we have bounded noise in the measurements such that |ω| < ε, we can

formulate the problem as a basis pursuit denoising (BPDN) problem.

minimize ||x||1 subject to ||y − Ax||2 < ε (1.13)

Or

minimize ||z||1 subject to ||y − Aφz||2 < ε (1.14)

In addition to BPDN, LASSO is also a popular technique for solving this

problem. It uses Lagrangian multipliers to make a combination of BP objective

function and constraints. The Lagrangian determines the contribution of the BP

objective functions to the solution at any point. For ω = 0 it is formally expressed

as

minimize

(
1

2
||y − Aφz||22 + λ||z||1

)
(1.15)

The �rst term is a loss function and the second function induces sparsity.

When closer to a solution, λ is manipulated such that the second term contributes

8



Algorithm 1.1 Bayesian learning for signal recovery

1: Input: Φ, y
2: Output: w,

∑
, γ

3: Initialize all γi = 0, λ = 0
4: while convergence criterion not met do
5: Choose a γi(or equivalently choose a basis vector φi)
6: if q2i − si > λAND γi = 0 then
7: Add γi to the model
8: else if q2i − si > λ AND γi > 0 then
9: Re-estimate γi
10: else if q2i − si < λthen
11: Prune from the model (set γi = 0)
12: end if
13: Update

∑
and µ

14: Update si, qi
15: Update λ using

N−1+ ν
2∑

i γi/2+ν/2

16: Update ν using log ν
2

+ 1− ψ(ν
2
) + logλ− λ = 0

17: end while

more to the solution. Other optimization techniques mentioned below are also e�-

cient in recovering the solution based on di�erent objective functions.

1.2.8.1 Matching Pursuit(MP)/Greedy Algorithms

In greedy approaches, instead of an objective function, the algorithm steers to

an optimum solution by some greedy rules. These algorithms are computationally

less intensive than basis pursuit algorithms and the reconstruction accuracy is also

comparable. The complexity of MP increases by k2O(n) in comparison to O(n3).

[5, 6]

1.2.8.2 Bayesian Learning(BL)

The bayesian learning[7] approach has shown promise in recovering the signal

provided some a-priori information is available. This class of algorithms uses the

location of zeros in a signal as prior information and uses expectation maximization

to optimize the solution.
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1.2.8.3 Iterative Hard Thresholding (IHT)

A proxy is added in the �rst step to the current signal estimate as+1 = xs +

AT (y − Axs), at sth iteration. A prede�ned threshold is applied to select only the

K largest elements of as+1 using a prede�ned function. This step is optimizing the

function 1
2
||y − Ax||22.

minimize(
1

2
||y − Ax||22) ||x||0 = K (1.16)

Other �rst order algorithms such as approximate message passing proceed in

a similar manner

1.2.8.4 Proximal Point Methods

Proximal point methods are �rst order algorithms designed to solve problems

where the objective function is not continuous over the whole solution space. The

formal expression is

min
1

2
||z − (ẑ − 1

L
5 f(ŵ))||22 +

λ

L
Ω(z) (1.17)

They have a closed form solution for most choices of regularization function

Ω. For compressive sensing, Ω is chosen to be the l1 norm and it operates as a

soft threshold. L is the upper bound on the Lipschitz constant. The computation

complexity of proximal point methods is O(1/k) where k is the iteration number.

Objective functions that are convex over the solution space can be used ac-

cording to requirements. Some are listed below

10



Algorithm 1.2 Proximal Structural Sparisty [3]

u1, z1� arbitrary feasible values
for t=1,2,. . . do

Compute a �xed point v̂(t) by Picard-Opial
ut+1 � zt−1 − 1

L
∇E(zt)− c

L
Ω>v̂(t)

where E(z) = 1
2
||Aφz − y||22 and Ω is a regularizer

zt+1� πt+1ut+1 − (πt+1 − 1)ut
end for

1.2.8.5 Lp Norms and Log Functions

Most commonly used Lp norms are l1 and l2 norms also known as Manhattan

distance and euclidean distance respectively. These norms involve relatively fewer

computations. If a matrix satis�es the RIP, then the l1 and l2 norms are convex

in the solution space and converge to a solution in polynomial time. Generally the

p-norm is de�ned as

||x||p = (|x1|p + |x2|p + ...+ |xn|p)
1
p (1.18)

Minimizing the l0 norm returns the sparest solution in a given solution space.

If a matrix follows the RIP then the l1 norm has proven to be a good approximation

to the l0 norm. The l0 norm minimization is of combinatorial complexity and this

approximation improves the time and computation required to reach a solution

drastically. Figure 1.3 shows the combination of the l1andl2 balls in a 2-dimensional

space.
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Figure 1.3: Variation of Lagrangian multipler with l1, l2 norms in LASSO

The sum of log convex functions is also convex and is widely used for optimiz-

ing a solution in polynomial time.

1.2.8.6 TV-Norm

Total variation minimization is useful for denoising corrupted images. It is

calculated by the di�erence of the horizontal and vertical gradients. In mathematical

form it is described as

xTV =
∑√

(xi,j − xi,j+1)2 − (xi,j − xi+1,j)2 (1.19)

The combined minimization problem can be expressed as

minimize

(
xTV +

1

2λ
||x− g||22

)
(1.20)

It is computationally expensive due to the gradient calculation before calcu-

lating the norm but gives an accurate solution.
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1.2.9 Noise Suppresion

Detection and quantization noise are signi�cant in any optical system. De-

tection noise is produced at the detector and varies directly with integration time.

Quantization noise arises at the analog to digital convertor due to limited dynamic

range and discrete levels. One of the most attractive features of CS is the equal

entropy in each sample acquired by using a RIP conforming matrix. In order to

minimize quantization noise, it is possible to trade o� between saturation and quan-

tization while using compressive projections for measurements.[8] Since each com-

pressive measurement carries the same information, by adjusting the quantization

levels to saturate more measurements the quantization error can be greatly reduced

on all the unsaturated measurements.

1.2.10 Feature Speci�c Imaging

One of the emerging techniques in the compressive sensing community is fea-

ture speci�c imaging. There are many applications where the point of interest is just

some features of an object. It is a waste of resources to capture the whole scene in

order to extract those features. Scientist have come up with measurement matrices

that measure only speci�c features in a scene to train the system. This helps to

reduce the computational load at the sampling stage.

1.2.11 Universal Coding Property of CS

CS is a universal encoder for it maps the source signal to codewords and the

resulting average code length is bounded. Given an arbitrary source with nonzero

entropy, a universal code achieves average code length which is at most a constant

times the optimal possible for that source. An asymptotically optimal code is one for

which average codeword length approaches entropy. A universal code with constant

13



=1 is asymptotically optimal.

1.3 Segmentation

1.3.1 Clustering Techniques

In this thesis we used segmentation as a tool to separate background and

foreground objects. Segmentation is a key step for implementing this scheme. It

separates the background from the objects which helps to track the direction of

motion e�ectively. There are di�erent techniques used for clustering. some are

graph based Clustering, K-Means Clustering, Connectivity based Clustering etc.

In this study we used a graph based technique and utilizing normalized cut

to measure the goodness of the segmentation.[9] In the graph based technique, a

set of points in the feature space are represented as a weighted graph. Nodes in

the graph are points in the feature space and an edge is formed between each node.

The weight on the edges represent the similarity between each node. A graph can

be partitioned by removing the edges between two nodes based on a dissimilarity

measure.The dissimilarity is calculated based on

cut(A,B) =
∑

uεA,vεB

w(u, v) (1.21)

where w(u, v) is the weight associated with the removed edges. The normalized

cut for two nodes for a given partition will be

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(1.22)

here assoc(A, V ) =
∑

uεA,tεV w(u, t) is the sum of weights from node A to all

nodes in the space.[9] The e�ectiveness of the technique varies depending on the

contrast and texture in a video frame. The main goal here is to e�ectively separate

the stationary background from objects that move.
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1.3.2 Segmentation Quality Measures

Segmentation quality is determined by how e�ectively the technique separated

the background from the foreground. An important parameter is the number of seg-

ments, which can be varied depending on the sparsity of a particular video sequence

to achieve optimum segmentation. In order to determine the number of segments we

maximize the inter-cluster distance and minimize the intra-cluster distances over a

prede�ned range of the number of clusters. The contrast measure between clusters

can be maximized to separate a cluster from neighboring clusters.[10] In order to

decrease intra-cluster distances, variance can be minimized. We �nd the number of

segments corresponding to the maximum value of contrast over a range of number

of segments. This range is bounded below by the number of segments correspond-

ing to the value of mean variance and bounded above by the maximum number of

segments.

1.4 Motion Estimation

In order to sense a video e�ciently we need to perform both spatial and tem-

poral compression. If the signal is sparse in the spatial domain, random sampling

can compress the signal e�ectively or the signal can be sensed randomly in a di�er-

ent sparse domain. In the time domain, change is sparse in most video sequences.

In order to take measurements e�ciently in the change domain we need a transfor-

mation that detects change. Most transformations require knowledge of past and

future frames to calculate the change. This approach can compress the signal after

acquisition or by using additional hardware to reach video rates. Another way to

detect change is predictive modeling but due to the ephemeral nature of videos it is

hard to model these changes with the exception of a few speci�c video sequences. In

this thesis a simple optical �ow technique is implemented, which uses the multiplex-
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ing properties of spatial light modulators employed in single pixel cameras.[1] The

scheme locates the dynamic and static segments in a frame and makes some strate-

gic averages to access the direction in which the segments might be moving. The

scheme predicts the direction of motion based on a novel feature of moving segments

and allocates measurements in that direction for the next frame. We encircle each

segment and note that the di�erence in averages outside the segment and inside the

circle generates peaks at values of the angle θ which predicts the direction in which

the segment is moving.[11] It is assumed that the motion is sparse along the time

axis and only a few segments move between consecutive frames. A binary �lter is

formed based on these locations which �lters out the static segments and enables

measurements to be performed for only the dynamic pixels of moving objects. The

binary pattern and the random sampling matrix are multiplied to acquire samples.
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Chapter 2

Literature Review

2.1 Static Compressive Sensing

The methods to perform sparse reconstructions from under-determined linear

model are older then the origin of compressive sensing. Penalty function using the

l1 norm were used to recover missing information from seismic data. However, it

was not used for reconstruction with compressive sensing until the late 90's. The

basic idea of CS is to take advantage of sparse information present in the signal in

a speci�c domain. Measuring a signal in a sparse domain requires a transformation

that is viable optically. Scientist have come up with a few imaging architectures

which acquire measurements compressively in the sparse domain. They have em-

ployed spatial light modulators(SLMs) of di�erent kinds to modulate the incoming

light from the scene and direct the modulated light onto the focal plane of a single

detector. The kinds of SLMs used are digital micromirror devices(DMD), coded

apertures and CMOS programmable chips. They hold the measurement patterns

and the incoming light is multiplied by these patterns one at a time. The resulting

light is focused on a focal plane and summed by a single detector. An A/D convertor

samples the signal from the detector after a complete integration period. The ar-

chitectures designed to acquire compressed measurements can be divided into three

categories; sequential, parallel and photon sharing. Most architectures designed to

acquire compressive measurements use a single pixel detector to acquire measure-

ments. The sample are acquired sequentially based on Eq. 1.1. This method is

not suitable for applications involving fast changing scenes. Figure 2.2 shows one

such camera designed at Rice University known as the Single Pixel Camera(SPC).

Parallel architectures are expensive as they employ multiple modulators to acquire
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measurements simultaneously. They can be implemented using photon sharing ar-

chitectures which use beam splitters along with modulators to collect measurements.

2.1.1 Coded Aperture CS

This technique is probably the oldest among other spatial modulation tech-

niques. It was employed for solving the problem of imaging light from weak and

di�use sources. By design it increases the SNR without compromising the spectral

resolution. When a coded aperture is placed in the path of light, it allows light to

pass through multiple holes distributed in space. Samples are taken for di�erent

hole patterns and the image is estimated by post processing the recorded measure-

ments. The formation of the coded aperture is important in order to compressively

sense the signal. These matrices have to follow some properties. Ideally a compres-

sive measurement is random and involves negative coe�cients as well. Due to the

implementation constraints of optical systems a random matrix with negative val-

ues is not realizable. Some matrices with non zero mean have been able to satisfy

the restricted isometry property. One of the popular options are block circulant

matrices.[12] The structure of these matrices allows for faster reconstruction than

simple random measurements. These techniques have been used for high resolution

video imaging and super resolution imaging. Coded apertures do not o�er diversity

in measurement matrices which makes it a solution to only a few problems. However

we can optimally make all measurements needed in one instance with this setting

for the reconstruction of a frame by using a detector array.
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Figure 2.1: Hadamard transform coded-aperture submillimeter wave Imager

2.1.2 CMOS CS Imager

These devices are capable of performing convolution of measurement matrices

with a signal in the analog domain. Due to much faster speeds of CMOS technology,

these devices are able to compute inner products at a rate faster than the above

mentioned techniques. The architecture is also very �exible and can implement all

sorts of matrices in which the signal is thought to be sparse. In [13], the authors

have used noiselets as a basis for making measurements. CMOS technology is cheap

and energy e�cient for implementation. Rather than making one measurement at a

time they can make all measurement at a given instance by adding the modules ac-

cordingly. They require good signal to noise ratio for carrying out the measurement

process.

2.1.3 Single Pixel Camera (SPC)

These devices were used for projecting small images onto large screens. They

have tiny micromirrors arrays, which can be controlled electrically to change the

re�ected path of the incident light by one orientation or the other. Typically only

two orientations are available. When the light falls on a 2 dimensional DMD array,
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it is spatially modulated by the pattern of orientation of the mirrors. Recently, this

technology has been used for compressively sensing a scene. The two positions of a

micromirror are made to either focus the light on a single detector or disperse the

light. Each pattern of the mirrors generates a projection vector. With only two

degrees of freedom there is not much �exibility to generate a variety of matrices

for di�erent signals according to the sparse basis. Random Bernoulli matrices are

used to set the mirror direction. In order to compressively sense the scene these

matrices should follow the RIP property.[14] The measurement vectors should be

independent of each other. The DMD is able to generate such matrices but when

it comes to video imaging they don't have much to o�er. A single detector can

only measure one projection at a time, this makes it ine�cient for video imaging.

The DMD's are also a costly part of the optical system which e�ects its commercial

feasibility at large scale.

Figure 2.2: Single pixel Imager based on DMD

2.2 Dynamic Compressive Sensing

In this thesis, we discuss and analyse a technique to only acquire measurements

corresponding to the dynamic areas in a scene changing over time.
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2.2.1 3D-Wavelet CS

Wavelets are e�cient at representing a natural signal with few signi�cant

coe�cients. Many digital compression algorithms employ wavelet based compression

for maintaining the entropy. In compressive sensing wavelets are used as a sparse

basis in the spatial and temporal domain. Measurements are taken in the wavelet

domain and after reconstruction, the actual signal is recovered from the wavelet

vectors.

Figure 2.3

2.2.2 Linear Dynamical System(LDS) Based CS

Another approach is based on modeling speci�c video sequence evolution as

a linear dynamical system.[15] It reduces the required samples for reconstruction

considerably but this approach is restricted to videos possessing a LDS representa-

tion which is possible for only a few speci�c sequences. These sequences have slow

motion content of largely textural nature such as �ames, tra�c and water. The

model �xes some static parameters and the dynamic parameters are compressively

measured.
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Algorithm 2.1 Kalman Filtered Compressed Sensing

1. Initially support T is estimated by CS reconstruction from the measurements
2. Run Kalman �ltering to estimate x at t give x at t-1

xt|t−1 = ˆxt−1
(Pt|t−1)T,T = (Pt−1)T,T + σ2

sysI

Kt,T = (Pt|t−1)T,TA
′
T

∑
ie,t

∑
ie,t = AT (Pt|t−1)T,TA

′
T + σ2

obsI

( ˆxt)T = (xt|t−1)T c = (̂xt−1)T c
(Pt)T,T = [I −Kt,TAT ](Pt|t−1)T,T

3. Where P is a posterior error covariance matrix, A is a random measurement
matrix, K is optimal Kalman gain and y is measurements vector and
T is the support of x.
4. Compute the �ltering error, if its greater then threshold we need to add some
support.
5. Addition: Run CS on the observation, values greater than threshold gets added
to support vector. In case of values smaller than CS ignore them.
6. Deletion: If some values are smaller then threshold delete them.
Assign T to Tt → xt → zt . Go to step two.

2.2.3 Motion Compensated(MC)/Motion Estimation(ME) CS

A lifting based invertible adaptive transform is used for sparsifying the video

in the temporal direction and wavelets are used for 2D compression to achieve a

3D transform. This method improves the signal to noise ratio but it is also non-

causal and reconstruction is performed after collecting measurements for a number

of frames.

2.2.4 Kalman Filtered CS(KFCS)

The static solution to sparse reconstruction is l0and l1 minimization. In KFCS,

a Kalman �lter is used for predicting the sparsity patterns in a video sequence. It

is assumed that the sparsity patterns change slowly over time.[16] MRI machines

measure the Fourier coe�cients directly which are sparse and fMRI sequences change

slowly over time. A basic algorithm is given below
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This approach is real time, fast, and gives better reconstructions compared to

other approaches. One assumption made by this technique is that change happen

slowly. This does not �t the situation of object motion in natural images.

2.2.5 Block-Based CS(BCS)

Block based CS is an alternate way to solve CS problems. CS reconstructions

for large images are complex and time consuming. By breaking the frame into a

number of blocks, each block can be processed in parallel, thus making the process

faster. BCS can be readily realized in hardware using a DMD. Figure 2.4 shows a

matrix used for reconstruction after acquiring the measurements using

Φ =



ΦB 0 . . . . . . . . . 0

0 ΦB 0 · · · · · · 0

...
...

. . . · · · ...
...

...
...

...
. . .

...
...

0 0 0 0 0 ΦB


Some works based on block based compressive sensing such as block based

compressive sensing with smooth projection Landweber reconstruction(BCS-SPL),

divide the frame into non overlapping blocks and process each block separately.

The basic technique splits the processing into smaller blocks and combines the re-

construction for the �nal result [17]. This method does not take into account the

temporal redundancies in a video. More advanced techniques based on BCS-SPL

take into account motion estimation parameters to aid the reconstruction process.

Motion estimation/motion compensation BCS (ME/MS -BCS) selects a group of

pictures (GOP) for estimating motion vectors and reconstruct the GOP using this

information. This improves the subrate performance but incurs an undesirable time

delay in addition to increasing reconstruction complexity [18, 19, 20, 21].
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Figure 2.4: Measurement Matrix unwrapped

One variant of the block based approach is adaptive block based compressive

sensing in which a frame is divided into a speci�c number of blocks and each block

is assigned measurements based on changes and texture.[22] This approach accu-

mulates residual error and gives block artifacts after recovery as with simple BCS.

Moreover it is computationally expensive to optimize measurement allocation before

each frame acquisition.

2.2.6 Distributed CS

Distributed CS is based on distributed video coding(DVC). In DVC, the frames

are encoded separately at the encoder but processed jointly at the decoder. This is

similar to the underlining concept of CS for static imaging. Distributed CS extend

this concept to combine CS with DVC for video acquisition.[23] Each frame is indi-

vidually compressivly sensed at the encoder and reconstructed together with other

frames at the decoder. This approach reported improved reconstruction results com-

pared to the direct approach. The number of samples satis�es Eq. 1.10 which can

be further improved by designing sampling matrices based on the properties of the
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video.

2.2.7 Interframe Di�erence CS

Considering the CS requirement for sparsity, change is sparse in most video

sequences. Frame di�erencing has been used where the di�erences between consec-

utive frames are compressively measured and recovered using sparse reconstruction

methods followed by addition to the previous frame.[24] This method not only ac-

cumulates residual error but the mean square error increase when the di�erence is

not sparse as in the case of large changes.

Figure 2.5: The Acquisition and the recovery using Di�erence Compressive Sensing
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Chapter 3

Adaptive Compressive Sampling for Video

3.1 Parameter Estimation

Segmentation is a key step for implementing our proposed scheme. It separates

the scene into segments which helps to identify and track object motion e�ectively.

In this study we used normalized cut image segmentation [9]. The e�ectiveness

of the technique varies depending on the contrast and texture in a video frame.

The main goal here is to e�ectively separate portions of the image that may move

in subsequent frames from static background portions of the scene. An important

parameter is the number of segments produced during segmentation. This can be

varied depending on the sparsity of a particular video sequence to achieve optimum

segmentation. In order to determine the number of segments we maximize the inter-

cluster distance and minimize the intra-cluster distances over a prede�ned range of

number of clusters. The contrast measure between clusters can be maximized to

separate a cluster from neighboring clusters [10]. In order to decrease intra-cluster

distances, variance can be minimized. We �nd the number of segments correspond-

ing to a maximum value of contrast by searching over a range of the number of

segments. This range is bounded by the number of segments corresponding to the

value of mean variance and a speci�ed maximum number of segments. Variance for

l clusters can be calculated as

σ =
1

l

l∑
i=1

σi =
1

l

l∑
i=1

1

mi

mi∑
k=1

|xk − µi| (3.1)

where σi is the variance of pixels within the segment i and µi is the mean of

ith segment, l is the total number of segments and mi corresponds to the number

of pixels within the segment i. Mean contrast for l clusters can be computed using

the equation below,
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Ct =
1

l

l∑
i=1

Cti =
1

l(l − 1)

l∑
i=1

l∑
j=1

√
(µi − µj)2 + (σi − σj)2
(µi + µj)2 + (σi + σj)2

j 6= i (3.2)

where Ct is the mean contrast of all segments. The variation of the number of

segments against maximum contrast is used to determine the number of segments

used for all further processing.

We next classify segments as static or dynamic. The static and dynamic

areas are found by looking at the temporal di�erences in the average pixel value

over a segment. In the context of a single pixel DMD based sensor, averages over

arbitrary shaped regions are easily calculated by simply directing the light associated

with those pixels to the single detector and dividing the measured value by the

number of pixels in the segment. These averages are compared with a threshold

value. We assume only a few segments change signi�cantly from one frame to the

next. Therefore the histogram of di�erences between the segment averages forms

a unimodal distribution with a mode at the �rst bin. We estimate the change

detection threshold based on unimodal distribution to select segments that have

signi�cantly changed between consecutive frames. A straight line joining peak and

last bin is drawn as shown in Figure 3.4a. The value corresponding to the point on

the histogram with maximum divergence from the straight line gives an estimate for

threshold [25].The area above threshold is classi�ed as dynamic and below is taken

as static. In the event that more segments change signi�cantly, the histogram is

inverted to calculate the threshold. All segments are selected in the case where no

population is considerably larger than the other. The practical implementation of

this procedure is described in section 3.
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3.1.1 Motion Estimation

In order to sense a video e�ciently we need to perform both spatial and tem-

poral compression. Random sampling can compress the signal e�ectively if applied

in the domain where the signal is sparse. In the time domain, changes are sparse

in many video sequences. In order to take measurements e�ciently in the change

domain we need a transformation that detects change. Most transformations re-

quire knowledge of past and future frames to calculate the change. This approach

can compress the signal after acquisition or by using additional hardware to reach

video rates. Another way to detect change is predictive modeling but due to the

ephemeral nature of videos it is hard to model these changes with the exception of a

few speci�c video sequences. In this paper a simple optical �ow technique is imple-

mented, which uses the multiplexing properties of DMDs employed in single pixel

cameras[1]. The scheme locates the dynamic and static segments in a frame and

takes some strategic averages to access the direction in which the segments might

be moving. The scheme predicts the direction of motion based on a novel feature of

moving segments and allocates measurements in that direction for the next frame.

The process begins by encircling each segment by a circle with a radius larger than

the maximum size of the segment. The circle is divided into sectors. The di�erence

in averages outside the segment and inside the circle generates peaks at values of

the angle θ which predicts the direction in which the segment is moving[11]. The

possible directions are quantized by the number of sectors used to divide the circle

(eight in the current research). It is assumed that motion is sparse along the time

axis and only a few segments move between consecutive frames. A binary �lter is

formed based on these locations which �lters out the static segments and enables

measurements to be performed for only the dynamic pixels of moving objects. The

binary pattern and the random sampling matrix are multiplied to acquire samples.
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(a) (b)

Figure 3.1: a. Single Pixel Camera [1] b. Adaptive compressive sensing imager block
diagram

3.1.2 Hardware implementation

The proposed method can be e�ciently realized in hardware. The basic oper-

ations to implement this scheme can be computed rapidly. To acquire measurements

for dynamic regions, the mirrors of the DMD are turned o� where the mask is zero

and a random pattern is projected on the rest of the mirrors. The sampling re-

quirements for the discussed algorithm depend upon the dynamic region in a video

sequence and varies directly with the number of pixels that are changing. Our pro-

posed technique adapts the sampling to these changing regions. In order to achieve

real time video streaming, the sampling process on the encoder side would need to

be fast enough to acquire dynamic measurements in less than 33 milliseconds. On

the decoder end, the computations would need to be fast enough to optimize the

dynamic area in less than 33 milliseconds. Under the assumption of slow change, the

segmentation process can be performed in parallel and the newest segmentation can

be used to form sampling masks instead of requiring the latest frame to be recon-

structed. This saves signi�cantly on reconstruction time. The discussed scheme for

measurement allocation is capable of acquiring a number of frames without consum-

ing as many resources for many types of video as compared to existing techniques.
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The bandwidth gained by reducing samples required for a frame reconstruction can

be used towards increasing frame rate or decreasing bandwidth.

3.2 Methodology

The setup described by Takhar [1] is used as an example for practical imple-

mentation (see Figure 3.1). We propose to acquire all the measurements for the

reconstruction of the �rst frame by projecting di�erent random patterns on the en-

tire DMD. For subsequent frames, only temporally changing regions of the image

are measured. To calculate magnitude and direction of change we adopt the scheme

shown in the �ow chart of Figure 3.2.

We segment the �rst frame after reconstruction into a number of segments.

The segmentation algorithm used is based on normalized cut criterion which mea-

sures both dissimilarity between the groups and similarity within a group. It max-

imizes the normalized cut criterion for a given number of clusters. In order to

estimate change due to each moving object between consecutive frames we try to

separate each object from the background and estimate the minimum number of

groups that can separate objects present in an image.

In order to optimize the number of segments we maximize the contrast between

the segments and minimize the variance within segments in a frame. We start with a

minimum of �ve segments and calculate variance and contrast between each frame.

The number of segments is incremented in each iteration until a maximum contrast

limit is reached. The contrast is estimated over a range of variance above the

mean value as shown in Fig. 3.3. The number of segments corresponding to the

maximum contrast is used for all subsequent calculations. The segment can be

expressed formally as
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Figure 3.2: Flow Chart

yp(x, y) =

 1 x, yεpth segment

0 otherwise

 (3.3)

The segmentation mask for each segment is used to drive the DMD of the single

pixel camera to route light from each segment to the detector one by one. The

output of the detector is the average of each segment.

Next we calculate the temporal di�erences in the averages over each segment

to see which segment has changed signi�cantly. We assume that change is sparse

between two consecutive frames and only a few segments change signi�cantly relative

to the rest. In view of this assumption, unimodal thresholding can be used to

estimate the level of signi�cance for change detection [25]. We form the histogram

of segment average di�erences and the threshold is the point of maximum divergence

on the curve from the straight line joining the peak and the bin before the last empty

bin as shown in Figure 3.4. The number of bins is kept equal to the number of

segments. Increasing the number of bins does not a�ect the detection signi�cantly.

The probability to detect change accurately depends on the quality of segmentation
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Algorithm 3.1 Adaptive Compressive Sensing for Video Acquisition Using SPC
1- Acquire the number of measurements for �rst frame according to Eq. 3.1
2-Divide the frame into a number of segments that maximize contrast and minimize
variance within the segments and

calculate the vector SegAvgyp(t) =
1

sp

∑
i,j∈yp

xi,jwhere yp is set of pixel locations in

a segment, p = 1,2,...,F, sp is
number of pixels in yp, and t is the frame number.

3- Measure SegAvgyp(t + 1) =
1

sf

∑
i,j∈yp

xi,j and select p for which |SegAvgyp(t) −

SegAvgyp(t+ 1)| > α, where α is
the change threshold determined by unimodal thresholding.

4- Draw a circle circ(cenyp , radp) where radp is greater than the distance between
the center and the farthest pixel in
the segment.

5- De�ne sectors θ from (k − 1)π/4 → kπ/4 where k = 1,2,3,...8. Measure each

PartAvgθk(yp, t) =
1

sp

i,j<radymaxp∑
i,j>yp

xi,j

and �nd all ranges of θ for which |PartAvgθk(yp, t) − PartAvgθk(yp, t + 1)| > β
where β is a �xed threshold and
update the motion vector for each yp.

6- Update the segments location based on calculated magnitude and direction of
signi�cant motion vectors and form
a mask covering the dynamic area.

7- Calculate number of samples required for reconstruction using Eq. 3.1.
8- Form a measurement matrix asA = Mask×rand(m,n) and use the measurements
for reconstruction.
9- Go to step 3 if area under mask is less than a prede�ned dynamic area. Start
from Step 2 if area is greater than
the dynamic area using same number of clusters estimated using �rst frame and

same threshold value in step 3.

and the threshold estimation technique. In this approach, if the di�erence histogram

is not unimodal, all segments are selected for further processing. We noticed in our

simulations that increasing the number of segments makes the change detection more

precise. Considering that the number of segments should be moderate in order for

this scheme to be competitive with other methods we kept an upper bound of 40

segments with a negligible e�ect on the performance.
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Figure 3.3: a. Mean contrast vs number of clusters, b. Mean variance vs number of
clusters
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Figure 3.4: a. Threshold estimation, b. Segmented frame c. Selected segments with
di�erences above threshold

The segments with changed average are selected and encircled with a radius

exceeding the distance from the centroid to the farthest pixel in a segment by a �xed

amount. For this work, this value was set to 4 pixels. Setting the radius beyond

the farthest pixel de�nes the area within which a segment can move. In order to

calculate the magnitude and direction of motion, we partition the circle into 8 equal

sectors covering 0 → 2π and representing eight degrees of freedom a segment can

move. For each segment, the space outside the segment boundary and inside the

circle is determined. This is projected by the DMD onto the detector to calculate

the average in this boundary area. This average is compared with the previous frame

average of this same area. We restrict the estimate of the direction of motion to the

8 central angles θk, k = 1...8 of the 8 sectors. We �nd all directions θk for which the
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di�erence of the boundary averages exceeds a prede�ned threshold. Mathematically,

the average can be written as

PartAvgk(yp, t) =
1

sp

∑
hk · ft for k = 1...8 (3.4)

where ft is the frame at time t and hk is a mask de�ned by

hk = (cp ∪ yp) ∩ sk

Here cp is the circle around the centroid of segment yp .

cp(x, y) =

 1
√
x2 + y2 < radp

0 otehrwise

 (3.5)

and sk is the kth sector centered at radp.

sk(x, y) =

 1 π(k−1)
4

< θk <
πk
4

0 otherwise

 (3.6)

We �nd all θk for which

|PartAvgk(yp, t)− PartAvgk(yp, t+ 1)| > β (3.7)
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: a. Foreman frame b. Segmented foreman frame c. One of the changed

segment partitioned into eight parts d. Area outside the segment partitioned into

eight parts e. PartAvgθk(yf , t) − PartAvgθk(yf , t + 1) for same x f. Direction of

movement

35



(a) (b) (c)

(d) (e) (f)

Figure 3.6: a. A dynamic segment of foreman video b. Initial segment posi-

tion, PartAvgθ=45o(yf , t) c. Segment position incremented in single direction and

PartAvgθ=45o(yf , t) for xi1,j1 d. Another segment position PartAvgθ=45o(yf , t) for

xi2,j2 e. PartAvgθk(yf , t)− PartAvgθk(yf , t + 1) for all θ f. Final dynamic area for

measurements

In order to calculate the magnitude of change we move the segment in the

estimated direction θk for all possible x and y inside the circle and measure the

average outside the segment for each coordinate pair. For pixel locations yp

yp(xi, yi) = yp(x+ ricosθk, y + risinθk)

where ri is such that the distance of the farthest pixel in segment yp remains

less than the radius of the circle i.e. d(yp, cenp) < radp. Using Eq. 3.4 we calculate

all averages outside the segment boundary, maximizing the di�erence between the
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average calculated and the previous frame average over all pairs of coordinates. We

then calculate the magnitude of the displacement mθk in the θk direction.

mθk = max|PartAvgθk(yp(x, y), t+ 1)− PartAvgθk(yp(xi, yi), t)| ∀ i (3.8)

The new coordinates for yp in direction θk will be de�ned as

x′ = x+mθkcosθk

y′ = y +mθkysinθk

We calculate the updated segment dynamic area by combining the translated

segment in all signi�cant θk directions. The updated segment dynamic area is found

as

yp(x, y) = yp(x, y)∪yp(x+mθ1cosθ1, y+mθ1sinθ1)∪...∪yp(x+mθkcosθk, y+mθksinθk)

(3.9)

A mask for all dynamic segment areas can be formally expressed as

Mt = y1 ∪ y2 ∪ . . . . . . ∪ yp (3.10)

The measurement matrix then can be written as a scalar product of a Gaussian

rand matrix and the mask.

A = rand(m,n).×Mt (3.11)

A binary mask is created using the location information of the dynamic seg-

ments. By rewriting Eq. 3.1, the number of measurements M3 are assigned based

on
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M3 = log(n)/[ε/(C.S)]2p/(p−2) (3.12)

where n is sum of ones in the mask, S is the sparsity index of the last segmented

frame dynamic area inside the mask, ε is the reconstruction error bound, C is a

constant value dependent on the correlation between the sampling and basis matrix,

and p is taken as 2/3. The number of measurements k is bounded below by 0.3n

and bounded above by 0.6n.

In order to form a measurement matrix we need to transmit the information

about segments corresponding to each pixel. The location of each segment is shared

with the encoder after resegmentation is performed at the decoder end. Therefore,

the bandwidth required per frame depends on the resegmentation interval and es-

timated number of segments required using contrast and variance information from

Eq. 3.1 and Eq. 3.2. We calculate the measurements required to transmit the

information using the relationship shown below.

M1 =
Total Number of pixels

(bit depth− bits req to represent segments)Resegmentaion interval
(3.13)

The number of measurements required for motion estimation is calculated

using the following equation.

M2 = direction resolution× Avg. dynamic segments/frame+No. of segments

(3.14)

These measurements are used at the encoder to generate a new mask and transmitted

from encoder to decoder for updating the mask at the decoder for reconstruction.

The total number of measurements can be expressed as

M = M1 +M2 +M3
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After acquisition of the measurements from the dynamic area we use the total

variation minimization algorithm for estimation in a manner similar to equation

1.11.

minimize ||x||TV subject to y = Ax (3.15)

All the dynamic pixels are replaced by new estimates and static pixel values

are taken from the previous frame.

ft+1 = M c
t · ft +Mt · x

where M c
t is the complement of Mt.

When the area under the mask is less than a prede�ned percentage of the

whole frame κ, averages for each segment are measured and any segment other than

the previously selected segment with changed average above threshold is included

in the mask. Above threshold segments are processed further for motion detection

and mask creation for the next frame. Re-segmentation is performed when the κ

value jumps above a prede�ned percentage.

We have found this scheme e�cient for surveillance videos with complex back-

ground and slow changes. Masking the static background using segmentation re-

duces the number of pixels to be estimated with greater precision thereby increasing

the performance of the reconstruction algorithm.

3.3 Simulations and Analysis

In the experimental studies we �rst show the variation of subrate and PSNR

for the proposed technique. Simulated and real videos were obtained for this study.

Each video was created or downsampled to a size of 64x64 pixels per frame. The

machine used for simulation has a 2.4 GHz processor and 4 GB RAM. The simulated

videos are of a human shaped object moving linearly across a uniform background
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at di�erent speeds. The real videos are taken with a thermal infrared camera and

show animals moving at di�erent speeds under control of human handlers. These

videos are representative of the types of scenes expected to be encountered in a

practical implementation of our algorithm in a sensor. The quantization is assumed

to be 16-bits for calculation of M1 and M2. The subrate is controlled by varying the

multiplicative constant Cm from 0.1 to 0.8 in the following expressionM3 = Cm×n,

where n is sum of ones in the mask. The κ threshold was set at 0.1 for simulated

video and 0.5 for real video sequence. Here values of κ are chosen according to the

changes in video. This also show the e�ect of κ on the number of motion estimation

(ME) and mask measurements. All measurements are averaged over 30 frames. The

results are shown in Table 3.1 for a simulated video and real video and plotted in Fig

3.7. The ME measurements for simulated video are less due to less complexity of

scene. Mask measurements are high due to a smaller percentage of area threshold. In

real video the mask measurements are less due to higher percentage of area threshold

and ME measurements are high due to a greater number of segments selected to

separate the foreground and background.
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Table 3.1: The break up of subrate into measurement for mask transmission (M1),

ME (M2), and scene measurements (M3) for a. Simulated video sequence b. Real

video sequence

(a)

Sr.no. M1 M2 M3 M subrate PSNR

1 82 10 149 241 0.05 27.8

2 82 10 176 268 0.06 28.9

3 82 10 201 293 0.07 35.5

4 82 10 247 339 0.08 42.7

5 82 10 327 419 0.102 44.5

6 82 10 340 432 0.105 49

7 82 10 355 447 0.109 50

8 82 10 399 491 0.119 52.5

(b)

Sr.no. M1 M2 M3 M subrate PSNR

1 63 60 162 285 0.069 27.2

2 63 60 272 395 0.096 29.5

3 63 60 331 454 0.110 32.7

4 63 60 366 489 0.119 35.2

5 63 60 571 694 0.169 37.2

6 63 60 574 697 0.169 38.4

7 63 60 768 891 0.217 39.9

8 63 60 827 950 0.231 40
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Figure 3.7: PSNR to subrate curve for simulated video sequence and real video

sequence
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3.3.1 Comparison study with existing techniques

In order to demonstrate the performance of the proposed technique, we per-

formed a simulation using simulated and real video sequences and recorded the peak

signal to noise ratio (PSNR) and the subrate used for each frame. In simulated

videos, temporal changes are varied for eight video sequences over a minimum to a

maximum range of temporal changes. The texture in each frame is kept minimum

in order to minimize the number of segments required for separating foreground and

background. A random 2D signal with 10−4 variance is added to each frame as well

to simulate small changes. Change is calculated based on the expression below.

∆ = MSE (f(t− 1), f(t)) (3.16)

The subrate and PSNR is recorded for each reconstructed video sequence and com-

pared with intraframe TV, frame di�erencing, and BCS-SPL-CT methods. Real

videos were recorded using a long wave infrared camera in a �xed position in a

natural environment. The video is of an animal passing through the �eld of view at

di�erent speeds controlled by a human.

The proposed method reduces the computational complexity of the recon-

struction algorithm and produces a frame in less time than the other methods when

the change is below a threshold. It adapts the subrate according to the changes in a

video. An average subrate over 30 frames for a particular video using our proposed

method is used for reconstruction using the other methods. The time requirements

and PSNR for intraframe TV and BCS-SPL-CT are irrespective of the changes in

the video but depend on the subrate. As mentioned before the subrate of our adap-

tive method is passed to the other methods for reconstruction which changes the

PSNR and time accordingly. Therefore we have used a ratio of PSNR to seconds per

frame in order to demonstrate the performance comparison. As shown in Fig. 3.8

42



Table 3.2: Simulated Video sequences Comparisons with three other methods

∆ M1 M2 M3 M subrate
Adaptive CS Intraframe CS Frame Di�erencing Block CS

PSNR t

sec

ratio PSNR t

sec

ratio PSNR t

sec

ratio PSNR t

sec

ratio

1 1.15 36 38 199 273 0.066 37.7 0.95 39.5 35.8 1.83 19.5 45.7 2.9 15.4 14.1 5.2 2.67

2 1.2 36 38 205 279 0.067 38.4 0.96 39.7 36.1 1.9 19 45.6 2.83 16.04 14.19 5 2.83

3 1.25 36 38 215 288 0.073 38.5 1.03 37.2 36.5 1.93 18.8 45.5 2.9 15.6 15.8 5.3 2.98

4 1.27 36 50 220 306 0.074 38.7 1.1 35.1 36.9 1.93 19.0 45.7 2.96 15.4 15.7 5 3.14

5 1.28 36 50 221 307 0.074 38.5 1.13 33.9 37.1 1.96 18.8 45.7 3 15.2 15.78 5.5 2.85

6 1.33 36 50 225 311 0.075 38.8 1.18 32.8 37.5 1.96 19.0 45.6 3.2 14.25 15.7 5.13 3.05

7 1.44 36 50 230 316 0.077 39.5 1.2 32.7 37.6 1.96 19.11 45.3 3.3 13.45 15.12 5.3 2.85

8 1.48 36 50 235 321 0.078 39 1.23 31.6 37.8 2.03 18.5 45.2 3.4 13.29 15.6 5.03 3.09

the ratio is maximum for least change for our proposed method and the di�erencing

algorithm and drops as the change increases.

The PSNR is also compared to the existing methods and it is noted that results

using the proposed method holds the PSNR value in the 2db range while other

algorithms PSNR drops as the temporal changes are decreased. The reason for drop

is non adaptive nature of other methods used for comparison. The proposed method

adapts to less changes while the other algorithms, with the exception of di�erencing,

reconstruct irrespective of changes in a scene. The change in subrate required by

our proposed technique is not pronounced in the simulated video as compared to

real videos. This a�ects the performance of the other algorithms curves in both

cases. The di�erencing algorithm shows less steep downward trend compared to our

proposed algorithm.

Fig. 3.9 shows �ve frames from four original and reconstructed simulated

videos with ∆ increasing from top down, following the increased speed of the object.

Fig. 3.10 shows �ve frames from four original and reconstructed real videos, recorded

at a trail using a long wave infrared camera. The κ threshold was kept at 0.3 and

0.5 for simulated and real video respectively for reconstruction. The parameter

C was empirically chosen to be 1.5 and ε was taken to be 0.1. The parameter
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Table 3.3: Real Video sequences Comparisons with three other methods

∆ M1 M2 M3 M

sub

rate

Adaptive CS Intraframe TV Frame Di�erencing Block CS

PSNR t

sec

ratio PSNR t

sec

ratio PSNR t

sec

ratio PSNR t

sec

ratio

1 0.3 49 50 179 278 0.06 34.9 0.73 47.5 23.4 1.63 14.3 46.3 2.4 19.2 17.3 4.6 3.7

2 0.35 49 50 221 320 0.07 33.8 0.9 37.5 24.6 1.73 14.19 45.7 3.03 15.0 16.9 4.06 4.15

3 0.37 49 50 324 423 0.10 33.1 1.2 27.5 26 2 13 45.7 4 11.4 21.2 3.7 5.6

4 0.39 49 63 346 458 0.113 32.1 1.3 24.6 26.3 2.3 11.4 44.8 4.3 10.4 19.1 3.8 5.02

5 0.41 49 63 361 473 0.115 36.1 1.36 26.4 25.5 2 12.7 44.3 4.43 9.99 18.3 3.8 4.8

6 0.44 49 63 376 488 0.118 32.1 1.4 22.9 27.5 2.06 13.3 45.02 4.93 9.1 22.4 3.1 7.14

7 0.5 49 63 373 485 0.118 31.4 1.5 20.9 26.8 2.2 11.8 40.7 5.1 7.9 21.2 3.0 6.91

8 0.55 49 63 408 520 0.12 33.6 1.6 20.16 26.3 2.3 11.4 41.7 5.4 7.7 19.7 3.4 5.79
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Figure 3.8: PSNR/time verses temporal change curves for a. Simulated video se-
quence b. Real video sequence

S was calculated based on a threshold taken as 0.13 in Eq. 3.12. The �rst real

surveillance video was reconstructed with about 6% of the measurements necessary

for each frame on average compared to traditional raster scanning. The number of

samples falls to only 1% for a few frames where most of the dynamic area over the

whole frame is below threshold. These measurements are used to reconstruct only

the dynamic area which is on average about 25% per frame for this video. This

takes the computational load from the optimization algorithm hence improving the

time required for reconstruction. This number can be further improved if we assign

some parameters such as a threshold and number of clusters individually to each
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(a)

(b)

Figure 3.9: a. Simulated motion of person across a frame at di�erent speeds in-
creasing from top to bottom b. Reconstructed frames of simulated motion in 9a
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(a)

(b)

Figure 3.10: a. Real videos of animals walking across a frame with increasing MSE
top to bottom b. Reconstructed videos frames in 10a
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sequence based on the characteristics of the sequence. Basically the scheme tracks

an object once it is detected in motion. Prediction of the direction and magnitude of

motion enables us to assign measurements strategically and improve reconstruction

e�ciency. Due to the shape and texture of segments, some static areas are picked

up and some dynamic areas fall below threshold. The algorithm checks for change

before collecting measurements and incorporates the new dynamic areas in the next

frame so there is minimal residual error accumulation. The residual error may

accumulate in areas classi�ed as static. In all test cases in this study, the errors

were removed within a few frames.

Table 3.4: Foreman Video sequence comparisons with three other methods

video ∆ M1 M2 M3 M subrate

Adaptive CS Intraframe CS Frame Di�erencing Block CS

PSNRt

sec

ratio PSNRt

sec

ratio PSNRt

sec

ratio PSNRt

sec

ratio

foreman3.4 136 168 989 1294 0.32 27.2 3.4 7.8 25.4 3.3 7.6 33.5 12.1 2.7 23.5 0.9 25.1

Our interest in CS techniques is in applying them to problems related to

surveillance videos. Most researchers applying CS to video are interested in a more

general application of this technique to all types of video. The videos we have used

represent the types of videos we expect to encounter in our applications. However,

our restriction to these types of videos leaves open the question of how our technique

would work against more traditional video sequences. To address this question, we

show the results for the �Foreman� video sequence in Table 3.4. This video was

downsampled to the same 64x64 pixel size as used for the other videos. This video

is very di�erent in character from the ones shown previously in this paper. The

amount of change between frames as indicated by the ∆ parameter is an order of

magnitude bigger. As with most of the other videos, our technique has PSNR values
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second only to the frame di�erencing method. However, the Block CS technique in

this case outperforms our method signi�cantly with respect to execution time. This

is to be expected since our algorithm scales with the number and size of segments

changing and there is a signi�cant amount of change in this video. The Block CS

method uses Contourlets as a sparsifying transform and seems to be more e�ec-

tive when the changes are larger. Since reconstruction in Block CS is done in the

sparse domain and then transformed, this indicates that the �Foreman� video pos-

sess greater sparsity in this domain than the other videos used in this study. While

this indicates that our algorithm loses performance for the conditions inherent in

the �Foreman� video, the prior results presented in this paper indicate that Block

CS loses performance when the change in videos is small. A full exploration of the

reasons for this behavior is left for future study.

3.3.2 Parameter analysis

In order to see e�ects due to segmentation, the number of segments was varied

keeping the parameter κ constant. PSNR was recorded against total subrate which

is the sum of scene measurements, ME measurements, and mask transmission mea-

surements and is plotted in Fig 3.11. The numbers above the points in Fig 3.11

represent the number of segments used. The PSNR does trend upward with an

increase in subrate but is not strictly monotonic function of subrate. There is very

little apparent relationship between the number of segments and PSNR. ME mea-

surements and mask transmission measurements are directly related to the number

of segments for simulated and real videos but they do not appear to directly re-

late to PSNR. Each video has an optimal number of segments for which PSNR is

maximum. We believe that PSNR is primarily re�ecting the characteristics of the

segmentation algorithm used. As a result, further analysis was deemed outside the

original scope of this paper and will be pursued in future research.
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Figure 3.11: PSNR Variation with subrate by changing Number of Segments a.

Simulated Video b. Real Video, the number beside each data point shows number

of segments used.

We varied the upper bound on the area of the mask that has to be reached

before performing resegmentation and studied the impact on the number of sam-

ples, the interval for resegmentation, and PSNR of the reconstructed frames for

the simulated moving letter sequence and a surveillance intelligent room video se-

quence. In the case of moving letter sequence, the increase on the upper bound on

the mask area resulted in an increase in the required number of samples but the

PSNR remained almost the same over the whole range of the upper bound as shown

in Figure 3.12b and c. The resegmentation interval extends up to 33 frames for

the maximum upper bound of 100% while for the minimum upper bound of 30% it

reduced to 10 frames as shown in Figure 3.12a over a length of 90 frames. In the

case of the Intelligent room video, when the upper bound on the mask area was

increased, the number of samples required for reconstruction rose according to Eq.

3.12. This result was expected. The increase in PSNR is proportional to the rise
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in the upper bound but does not exhibit a signi�cant change and varies only up to

2db as shown in Figure 3.13c. The number of times resegmentation was performed

during 300 frames of the intelligent room video decreased with the increase in up-

per bound. This reached up to a gap of 16 frames for a maximum upper bound

of 100%. The number of samples reached 45.9% of the total number of pixels for

the maximum upper bound. Conversely, for a minimum lower bound of 30%, which

was kept above the percentage changes between two frames, the resegmentation was

performed after every 1.3 frames and the corresponding number of samples required

was 27.09% as shown in Figure 3.13 a and b. These experiments show that in order

to get optimum performance, the value for the resegmentation interval should be

adjusted according to the dynamic area. Some other test videos were used from

online repository and results are shown in Fig. 3.14, 3.16, 3.17 and 3.18.
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Figure 3.12: Variation of a. Segmentation interval b. No. of Samples c. PSNR

of reconstructed frame with Mask Area upper bound for Simulated Moving Letter

video sequence
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Figure 3.13: Variation of a. Segmentation interval b. No. of Samples c. PSNR

of reconstructed frame with Mask Area upper bound for Intelligent Room video

sequence

51



(a) (b)

(c)

Figure 3.14: A single frame from Moving Letter video a. Original frame b.

Reconstructed frame c. Measurement Mask Reconstructed using 0.05n2 with

PSNR=33.8db
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(a) (b)

(c)

Figure 3.15: A single frame from foreman and surveillance video a. Original foreman

b. Reconstructed foreman c. Measurement Mask Reconstructed using 0.17n2with

PSNR=25.15db

53



(a) (b)

(c)

Figure 3.16: A single frame from Tra�c Surveillance video a. Original b. Recon-

structed c. Measurement Mask Reconstructed using 0.17n2 with PSNR=32.7db
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(a) (b)

(c)

Figure 3.17: A single frame from Border Surveillance video a. Original b. Recon-

structed c. Measurement Mask Reconstructed using 0.17n2 with PSNR=31.8db
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(a) (b)

(c)

Figure 3.18: A single frame from Intelligent room video a. Original b. Reconstructed

c. Measurement Mask Reconstructed using 0.17n2 with PSNR=25.8db

After mask transmission and until resegmentation, measurement allocation

in our algorithm is performed at the sensor level with less complexity and higher

speed than previous methods. The method is adaptive to the complexity of the

scene. A change in average from a previous frame is calculated before sampling.

At the decoder, only dynamic pixels are reconstructed reducing the complexity by

the number of static pixels. Some methods based on motion estimation and mo-

tion compensation, such as ME/MC BCS-SPL and MH-BCS-SPL accumulate the

measurements for a series of frames and perform reconstruction of all frames simul-

taneously [19, 18, 17]. The method proposed here reduces the complexity of the

optimization process used in reconstruction not only by single frame reconstruc-
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tion but also by reconstructing only the dynamic area of each frame. Scenes where

the dynamic area is small and the motion is not complex can be potentially recon-

structed in real-time. The resegmentation interval is adaptive to the complexity and

the spread of motion in a video as shown in Table 3.2 and 3.3 , thereby reducing

the computational requirements for segmentation. In addition, if the slow change

assumption holds, segmentation of previous frames can be used for forming the mask

and performing motion estimation which removes the constraint of generating new

masks after reconstruction.

In a feature comparison to existing adaptive block based techniques which

require optimization of measurement allocation before each frame on the decoder

side, this technique can acquire a number of frames with far less computational

time required on the encoder side depending on the dynamic areas spread in the

scene[22]. We have observed that if the segmentation is of good quality then this

method is e�cient for surveillance videos in terms of computations and sampling

e�ciency.

In this study we have taken the last reconstructed frame for resegmentation

but in order to avoid latency due to the segmentation process, we can also make

it a parallel background process. Segmentation can be performed after each recon-

struction and the last available segmented frame before the mask area upper bound

is reached can be used to avoid any delays in making measurements. This scheme

basically reduces computations by load sharing between two routines. It can be

further improved by implementing better parameter estimation techniques and by

optimizing the process of measuring averages for motion detection. The TV mini-

mization package used for reconstruction in this paper had the parameters shown

in Table 3.5.[26]
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Table 3.5: Parameters used for TV minimization

Parameter Value

opt.mu 28

opt.beta 25

opt.tol 1× 10−3

opt.maxit 300

opt.TVnorm 1

opt.nonneg true

In order to give an overview of computational time requirements to realize

this technique, we calculated some values based on the �rst real video results. The

nominal �ipping rates of 200 nsec for a micromirror array are taken from the ad-

vertised speci�cations of the device.[?] The sampling and transmission is assumed

to be performed at the same rate. Total time for measurement acquisition, motion

estimation, mask update and transmission latency is calculated and subtracted from

the minimum time to render a frame for real-time streaming. This time bound can

be used to complete reconstruction and segmentation in parallel. The results are

listed in Table 3.6.
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Table 3.6: Computational time bounds for real-time reconstruction

Task Analytical Time Time

Requirement

msec

Measurement

Acquisition

M3× sampling rate 0.09

Motion

Estimation

M2× sampling rate+

Subtraction time

0.0009

Mask update transmission rate×M1 0.0002

Transmission

latency

(M1 +M2 +M3)×

sampling rate

0.10

Reconstruction

|| Segmentation

0.33− Total time 320

All <0.33 sec

In order to summarize the important points, in the proposed technique, after

mask transmission and until resegmentation, the measurement allocation is per-

formed at the sensor level with less complexity and high speed. The method is

adaptive to the complexity of the scene. A change in average from previous frame

is calculated before sampling. At the decoder only dynamic pixels are reconstructed

reducing the complexity and thereby increasing the e�ciency of reconstruction al-

gorithms.

3.4 Conclusion and Future Work

We have discussed in this paper a new scheme to acquire measurements for

video reconstruction. We found this scheme useful for temporal compression in
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videos having static background and slow foreground changes over time. Depending

on the video, this scheme is able to decrease reconstruction time and computations

compared to some existing sampling techniques. Furthermore, the motion estima-

tion is very e�cient from a hardware implementation perspective. However, while

we believe we have made a good case that the computational burden of this algo-

rithm is actually less than most other compressive sensing techniques for video, it

should not be compared with traditional video compression. Given the fact that

memory is inexpensive, visible band cameras are inexpensive, and hardware cod-

ing/decoding is fairly inexpensive for traditional video devices, the desirability of

any compressive sensing technique is limited for visible band sensors. However, our

scheme can prove useful at wavelengths where an array of sensors is expensive and

single pixel detection is the most cost e�cient method for producing video. Exam-

ples would include terahertz sensors[27] and perhaps infrared [12]. The gains from

this scheme can be utilized towards reducing reconstruction time and computational

requirements or increasing frame rates for video imaging at wavelengths where sen-

sor arrays are expensive. In order to improve the results shown here, use of spatial

sparsity transform domain knowledge incorporated with the sampling matrix could

prove fruitful. Further studies of the impact of parameters such as the radius of

the circle and shape to encircle should also be performed. The motion estimation

scheme can be optimized to use least averages for predicting the direction. Further,

other robust methods can be investigated for parameter estimation. Noise should

be taken into consideration to study the e�ects on performance and a denoising

schemes designed and applied for reducing the artifacts due to quantization and

detection noise. We are constructing a hardware simulator of a single pixel camera

device for testing and further development of this algorithm.
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Chapter 4

Sparse Transform and Sensor Selection

4.1 Introduction

Submillimeter wave are capable of traveling through non-conducting materials

such as cloth, paper, cardboard etc. without much attenuation. Many applications

such as security scanning and tumor detection require submillimeter wave imaging.

In this thesis, we consider the problem of estimating an undersampled signal formed

by sub-millimeter waves(SMMW). Earlier methods solved an inverse problem for

signal reconstruction which requires as many or more measurements than the signal

dimension. We address the issue of reconstruction from less measurements than

required by a least square or inverse solution and show that the number of mea-

surements required for optimum reconstruction is less than the dimensions of the

signal for a speci�c error bound. If the measurement matrix satis�es certain re-

quired conditions, then we can use CS methods for reconstruction using far fewer

measurements. To reconstruct an undersampled signal using CS principles, we need

knowledge of the sparsifying basis for SMMW images. For this purpose we used an

online dictionary learning algorithm to �nd a sparsity basis in which the signal can

be represented by fewer atoms and is also incoherent with the measurement matrix.

The measurements obtained along with the product of the measurement ma-

trix and sparsity basis is passed to the reconstruction algorithm. We cast the prob-

lem as a basis pursuit optimization. It estimates a solution to a set of underde-

termined linear equations. The objective function l1 norm minimization guarantees

�nding the sparsest solution consistent with the measurements if RIP is satis�ed.[14]

This problem falls into the convex optimization category, ensuring the solution is

unique and tractable. As discussed above there are a lot of libraries available to

solve convex optimization problems.[28] We used the disciplined convex optimiza-
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tion CVX modeling system used for implementing BP optimization. It uses a base

library of convex functions and sets. The solution obtained is an estimate of the

coe�cients in the sparse basis. The actual signal is obtained by transforming the co-

e�cients back to the spatial domain. We demonstrate this method by reconstructing

images from simulations and experimental measurements.

4.2 Imaging Device Architecture

The SMMW imager consist of heterodyne source and receiver pair, image

forming optics, a spatially selective mask, and data acquisition and post-processing

hardware and software. The receiver detects the intensity coming from the object,

�ltered by the spatially selective mask. An analog to digital converter outputs a

digital signal after receiving an analog output from receiver.[29] The hardware out-

puts linear measurements and an algorithm using CS methods is used to reconstruct

the signal. After digitizing the measurements we feed the measurements to the re-

construction algorithm.

The waves guided by an optical setup are made to fall on the mask through

an imaging window.[2] The mask consist of a disk with holes along a constant radius

of same size at random locations. The size and spacing of holes dictates the quality

of the reconstructed image. we will analyze errors for a range of permissible sizes

and spacings to �nd the optimal parameters.
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Figure 4.1: Conceptual diagram of spatial mask and receiver[2]

4.3 Solution Optimization

The measurement process of a spatially selective mask can be modeled by a

matrix. The measurement matrix used for calculations is shown in Fig. 4.2. There

are many factors which can be optimized in construction of the mask. In this paper

we talk about two parameters: hole diameter and spacing. The thickness of the

diagonals signi�es the diameter of holes and the distance between the diagonals

is related to the spacing between holes. We optimized the spacing and diameter

of holes over a range of permissible values by minimizing the mean square error.

The optimum value of diameter and spacing was used for further computations and

implementation. The measurements are obtained using obtained values.

Submillimeter wave images can be well represented by a sum of Gaussians due

to their inherent blur. As we know a linear combination from a set of basis func-

tions spanning the entire space can be used to represent any signal. We acquired the

image of a point source and translated it over the whole spatial range. The set of

signals obtained are fed to a dictionary learning algorithm to obtain a transforma-

tion by training it with images.[30] The parameters for the algorithm were chosen

empirically. The dictionary learning algorithm enforced minimum l1norm to obtain

a sparse representation.[30] We use the learned dictionary along with the measure-

63



ment matrix for reconstruction. For reconstruction of the signal from an optimal

number of measurements, the two matrices are tested for their degree of incoher-

ence. The sum of columns of the gram matrix as in equation1.6 for both matrices

was found to be in the range of equation 1.4, which implies the incoherence of these

two matrices.

(a) (b) (c)

Figure 4.2: a. 30x64 Matrix M b. A 64 x 64 Dictionary D c. Product of D and M

Now that we have written our problem as an underdetermined system of lin-

ear equations. We have cast the problem as a BP and use the SeDuMi solver for

optimization. It was chosen due to its lower computation time and consistent per-

formance compared to other available algorithms.

For noiseless reconstruction we solve using equality constraints. In case of

noisy reconstruction we �rst estimate the value of an error bound ε. The value of

the error bound is kept greater than the noise variance. For a �xed number of mea-

surements we estimated optimum ε which minimized the MSE of the reconstructed

signal. The optimum value of error bound for a speci�c number of measurements

was used for noisy reconstruction.

4.4 Mask Position Selection

The pattern of holes at an instance forms the projection vector. For a disk of

radius speci�ed, a �xed number of hole patterns can be used for making measure-
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ments. In this study we used 1000 di�erent patterns for acquiring measurements.

In order to select the measurement vector combination that produce least error we

used convex optimization to select an optimum subset of the sensor measurements

to reconstruct the image.[31] From the measurement model a single measurement

can be written as

yi = aTi x+ vi

where a is the measurement vector, x is the image and y denotes the measure-

ments. The maximum likelihood estimate of the solution can be expressed as

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai

The log volume of the con�dence ellipsoid which contains the solution can be

expressed as

log vol(εα) = β −
(

1

2

)
log det

(
m∑
i=1

aia
T
i

)

The log volume measures the information in the subset of measurements. we

maximize the the log function to incorporate maximum information in the selected

subset S.

maximize log det

(∑
iεS

aia
T
i

)

subject to |S| = k

where S is a subset of {1,2, ... , m}. and |S| is the cardinality of S. Here k is

the number of selected measurements.
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4.5 Results and Discussion

We simulated 90 signals of length 64x1 with a 64x64 measurement matrix. A

measurement vector of size 64x90 was calculated. A 64x64 dictionary was obtain by

training 64 samples of point spread functions spanning the whole space shown in Fig

4.2. A line image was created spanning the spatial space of length 64x1. The signal

was reconstructed using 30 noiseless measurements for each sample. The optimum

hole size and spacing was found by minimizing MSE over a range of permissible

values of hole sizes and maximum spacing. Fig. 4.3 shows the variation of MSE

with hole diameter and maximum spacing.

Figure 4.3: MSE vs Hole Diameter and Maximum spacing in mm

We simulated noisy measurements with σ = 0.2. Using the above results for

the optimized hole size and spacing, we minimized MSE over a range of error bound

ε starting from the minimum ε = σ . The error bound against least MSE was found

to be 1.2 which is used in further analysis. Fig. 4.6a shows the MSE plotted against

a range of error bound for a speci�c number of measurements.
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(a) (b)

Figure 4.4: Reconstruction optimization and analysis a. MSE vs Error bound b.

MSE vs Measurements

(a) (b) (c)

Figure 4.5: Simulated signal 90 (64x1) vectors a. Object M b. Reconstruction using

m = 30 c. Reconstruction using m = 60

Fig. 4.6b shows the mean square error plotted against the number of measure-

ments for a �xed ε = 1.2. We also compare the MSE with and without the aid of

a dictionary for reconstruction. The error using the dictionary is lower than with-

out the dictionary when smaller numbers of measurements have been used. After

the speci�ed number of measurements is passed the error starts to increase. The

speci�ed number of measurements in this case were 30 which shows optimum recon-

struction can be achieved by less than half the number of measurements required

by a conventional algorithm for a given error bound. Moreover this optimum re-
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construction is achieved earlier with the aid of a dictionary in the reconstruction

process.

We gathered real data using the imaging device for an object representing the

character �M� and shown in Fig. 4.7. The value of optimum error bound ε is calcu-

lated by minimizing MSE over a range of ε for a speci�c number of measurements

as shown in Fig 4.6a.

(a) (b)

Figure 4.6: Reconstruction, optimization and analysis of real data a. MSE vs Error

bound b. MSE vs no. of Measurements

(a) (b)

Figure 4.7: Real Data 191 (64x1) vectors a. Object M b. Reconstruction using m

= 30 c. Reconstruction using m = 60
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The mean square error increases after exceeding the speci�c number of mea-

surements as shown in Fig. 4.6b. The error is lower initially when the dictionary is

used in the reconstruction process before the speci�ed number of measurements. Fig

4.7b shows the reconstructed object M shown in Fig. 4.7a from 30 measurements

for each vector . The results were consistent with simulations.

The selection of measurements using convex optimization was simulated for the

letter M. MSE was recorded for the measurement matrix built using the selection

algorithm. Fig. 4.9 shows the results for consecutive measurement and selected

measurements reconstructions using same number of measurements. Fig. 4.8 a and b

shows the measurement matrix formed using consecutive and selective measurements

respectively.
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Figure 4.8: a. Measurement Matrix formed using consecutive measurements b.

Measurement Matrix formed using selected measurements using convex optimization
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Figure 4.9: a. Reconstruction using 35 consecutive measurements MSE=11.02 b.

Reconstruction using 35 selected measurements MSE=10.32

4.5.1 Conclusion

The SMMW imager under analysis requires an object to be stationary until

it makes same number of measurements as the resolution of the device. Since fewer

measurements are required by compressive sensing reconstruction methods we can

let the object move at a faster speed before inducing motion blur. To further improve

the RIP property of measurement matrix we will also work on adding another degree

of freedom to the distance of holes from center.

On the processing side the quality can be enhanced by thresholding the co-

e�cients before transforming them back to spatial domain. Some methods will be

explored to �nd the optimum threshold level. Also there is room to improve the

role of the sparsity basis, so that its more robust to noise in the signal and other

variations. Sparsity in the third dimension (time) can be explored to further reduce

the number of required samples.
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Appendix A

Matlab Listings

A.1 Main Function

c l c

c l e a r a l l

pathname = pwd ;

f i l ename = s t r c a t ( pathname , ' / foreman . avi ' ) ;

BndryThres = . 2 3 ;

g l oba l RowThres nbSegments s i ze Im

RowThres = . 0 1 ;

segm = 1 ;

dm = 1 ;

s i ze Im = 64 ;

SegMov = ze ro s ( nbSegments , 1 ) ;

MaskforMeas = ze ro s ( s i ze Im ) ;

H = f s p e c i a l ( ' gauss ian ' , [ 2 2 ] , 1 ) ;

%[movdr nFrames vidHeight vidwidth ] =

readv ideo ( f i l ename , s i ze Im ) ;

load ' foremanframes207 ' ;

%load ( ' Cow3Video310Frames ' )

%load ( ' MovingLetters ' )

%load ( ' i n t e l l i g en t room300 f rames ' )

%load ( ' v i s o r_Tra f f i c Su rv i l l a n c e ' )

%load ( ' visor_ManWalkingOcludded ' )

%load ( ' Camera1_SchoolParking ' )

% f o r i =1:nFrames
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%movdr ( i ) . cdata=movdr ( i ) . cdata . /max(max(movdr ( i ) . cdata ) ) ;

%end

%load ( ' dscr8 ' )

%load ( ' dsch1 ' )

%load ( ' i rd1 ' )

%load ( ' dscsp7n1 ' )

%load ( ' irdp07 ' )

nFrames = 30 ;

%%%%%%%%%%%%Inc ldue f o r I n f r a r ed Videos%%%%%%

%nFrames = s i z e (mov , 2 ) ;

% % movdr ( 1 : nFrames ) = . . .

% %s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , 1 , ' double ' ) , . . .

% % ' colormap ' , [ ] ) ;

% % k = 1 ;

% % fo r i =25:nFrames

% s t a r t at 250 f o r i n f r a r e d video

% % movdr (k ) . cdata = mov( i ) . cdata . / 2 5 5 ;

% % k = k + 1 ;

% % end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fix_Seq ( 1 : 6 ) =

s t r u c t ( ' data ' , z e r o s ( s izeIm , s izeIm , 1 , ' uint8 ' ) ) ;

f o r i =1:6

Fix_Seq ( i ) . data = sq r t ( 6 ) . * randn ( sizeIm , s i ze Im ) ;

end

ReconsIm ( 1 : nFrames ) =

s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , 1 ,
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' double ' ) , ' colormap ' , [ ] ) ;

MeasMatrix ( 1 : nFrames)=

s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , 1 ,

' uint8 ' ) , ' meas ' , z e r o s ( 1 , 1 , 1 , ' double ' ) , . . .

' colormap ' , [ ] ) ;

CorrMotn ( 1 : nFrames−200)=

s t r u c t ( ' S e l f ' , z e r o s ( s izeIm , s izeIm , 1 , ' double ' ) ,

'Crx ' , z e r o s ( s izeIm , s izeIm , 1 , ' double ' ) ) ;

movd_seg ( 1 : nFrames ) =

s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , 1 , ' double ' ) ) ;

p1=0;

k=1;%1;

Re_seg = 1 ;

DetChangeSeg = 0 ;

DB_ratio = . 1 ;

VarA = [ ] ;

ContA = [ ] ;

nbSegments = 5 ;

b=1;

NoiseFloor = 0 ;

Se l e c tSeg (1:8)=

s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

ReconsIm (k ) . cdata=movdr (k ) . cdata ;

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%Fi r s t f r ame r e c on s t ru c t i on%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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[ r , c ] = f i nd (movdr (k ) . cdata > 0 . 2 2 ) ;

NoMeas = f l o o r ( log10 ( s i ze Im * s i ze Im )

* s i z e ( r , 1 )*1/ .8 ) ;%10* percen

NoMeas = .6*4096;% s i z e ( r , 1 ) ;

NewMeasMat_ber = ze ro s (NoMeas , s i ze Im * s i ze Im ) ;

NewMeasMat = ones ( 6 4 , 6 4 ) ;

f o r j = 1 :NoMeas

Ber = sq r t (6)* randn ( s i ze Im ) ;

NewMeasMat_ber( j , : ) = (NewMeasMat ( : ) . * Ber ( : ) ) ' ;

end

NewMeasVector = NewMeasMat_ber *

movdr (k ) . cdata ( : ) ;

opts .mu = 2^8;

opts . beta = 2^5;

opts . t o l = 1E−3;

opts . maxit = 300 ;

opts .TVnorm = 1 ;

opts . nonneg = true ;

[U, out ] = TVAL3(NewMeasMat_ber , NewMeasVector

, s izeIm , s izeIm , opts ) ;

ReconsIm (k ) . cdata = reshape (U, s izeIm , s i ze Im ) ;

MeasMatrix (k ) . cdata = NewMeasMat ;

MeasMatrix (k ) . meas = NoMeas ;

c l e a r NoMeas r c

sumt = 0 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%
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%Segment the prev ious frame and run i n s i d e

loop f o r a l l segments

whi l e ( k <= 30) %140 f o r s imulated v ideos

DiffBoundary=sum( abs (movdr (k ) . cdata ( 1 , : )

− movdr (k+1). cdata ( 1 , : ) ) )

+sum( abs (movdr (k ) . cdata ( : , 1 )

− movdr (k+1). cdata ( : , 1 ) ) )

+sum( abs (movdr (k ) . cdata ( s izeIm , : )

− movdr (k+1). cdata ( s izeIm , : ) ) )

+sum( abs (movdr (k ) . cdata ( : , s i ze Im )

− movdr (k+1). cdata ( : , s i ze Im ) ) ) ;

i f (Re_seg == 1)

p1 = p1+1;

b = 1 ;

VarA = [ ] ;

ContA = [ ] ;

nbSegments = 40 ;

%30 f o r i n f r a r e d video , 2 f o r s imulated v ideos

[ movd_seg ( p1 ) . cdata , NcutDiscrete , NcutEigenvectors ,

NcutEigenvalues ,W, imageEdges ]=

NcutImage (ReconsIm (k ) . cdata , nbSegments ) ;

[dm MaskSeg dmV thresh ] =

MovedSegmentManual (movd_seg , movdr , movdr , k ,

s izeIm , nbSegments , p1 ) ;

%%*added ReconsIm

dm = dm − 1 ;

end
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i f ( DiffBoundary < BndryThres )

[dm MaskSeg ] =

MovedSegmentManual (movd_seg , movdr , segm ,

Seg , k , s izeIm , nbSegments ) ;

% Ca l cu l a t e s the Segment that moved .

% and output i s MaskSeg s t r u c tu r e having a l l

%Segements that moved ,

% dm i s the count

%dm = dm − 1 ;

c = 0 ;

dmMov = [ ] ;

i f ( DetChangeSeg == 1)

[ dc MaskSegCh dmCh threshCh ] =

MovedSegmentManual (movd_seg , movdr , movdr , k ,

s izeIm , nbSegments , p1 ) ;

f o r i =1: s i z e (dmCh, 2 )

i f (sum(dmCh(1 , i )~=dmV)==s i z e (dmV, 2 ) )

c = c + 1 ;

dmMov(1 , c ) = dmCh(1 , i ) ;

end

end

end

CombineMask ( 1 :dm+c ) =

s t r u c t ( ' ses ' , z e r o s ( s izeIm , s izeIm , ' double ' ) , . . .

' x ' , z e r o s ( s izeIm , 1 , ' double ' ) , ' y ' , z e r o s ( s izeIm , 1 , ' double ' ) ) ;

i f ( c~=0)

f o r i =1: c
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imx = f i nd (dmMov(1 , i ) == dmCh) ;

CombineMask (1 , i ) . s e s = MaskSegCh (1 , imx ) . s e s ;

CombineMask (1 , i ) . x = MaskSegCh (1 , imx ) . x ;

CombineMask (1 , i ) . y = MaskSegCh (1 , imx ) . y ;

end

end

f o r i=c+1:dm+c

CombineMask ( i ) . s e s = MaskSeg ( i−c ) . s e s ;

CombineMask ( i ) . x = MaskSeg ( i−c ) . x ;

CombineMask ( i ) . y = MaskSeg ( i−c ) . y ;

end

dmV = [dmMov dmV] ;

dm = s i z e (dmV, 2 ) ;

[MeasMaskAvg MeasOutAvg MaskSegAvg]=

MaskOutnIn (CombineMask ,dm, s i ze Im ) ;

%Ca l cu l a t e s In and out s id e mask f o r each segment

MeasAvgSeg = MeasMaskAvg * ReconsIm (k ) . cdata ( : ) ;

MeasAvgSeg1 = MeasMaskAvg * movdr (k+1). cdata ( : ) ;

MeasOutSeg = MeasOutAvg * ReconsIm (k ) . cdata ( : ) ;

MeasOutSeg1 = MeasOutAvg * movdr (k+1). cdata ( : ) ;

Dif fOut = abs (MeasOutSeg1 − MeasOutSeg ) ;

k1=1;

f o r u = 0 : 8 : (dm*8)−8

Dif fOut ( k1 : k1+7,1)=

DiffOut ( k1 : k1+7 ,1) ./sum( DiffOut ( k1 : k1+7 ,1)) ;

k1 = k1 + 8 ;

end
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MotionMat = CalcMotionMatrix ( DiffOut , dm ) ;

% Ca lcu la te the motion matrix

%%%%%%%%%%%%%%NEW MEASUREMENT MASK%%%%%%%%%%%%%%%%%%%%%%

[NewMeasMat MaskSeg ] =

DispMeasureMaskNew ( MotionMat , CombineMask , MaskSegAvg ,

movdr , s izeIm ,dm, MeasOutSeg1 , k ) ;

e l s e i f ( DiffBoundary > BndryThres )

[dmB BorderMask]=MovedBorderSeg (movdr , movdr ,

movd_seg , s izeIm , nbSegments , k , RowThres , p1 , thresh ) ;

%%*added ReconsIm

% ca l c u l a t e the motion vec to r o f the se segments

% Calcua l t e the measurement matrix f o r the se segments

% Make measurements f o r t h i s area on the outer s i d e

% Segements that moved ,

% dm i s the count

dmbS = s i z e (dmB,2)−1;

c1=0;

dmBor = [ ] ;

f o r i =1: s i z e (dmB, 2 )

i f (sum(dmB(1 , i )~=dmV)==s i z e (dmV, 2 ) )

c1 = c1 + 1 ;

dmBor(1 , c1 ) = dmB(1 , i ) ;

end

end

dm = c1 + s i z e (dmV, 2 ) ;

dmV = [ dmBor dmV] ;

c2 = 0 ;
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dmMov = [ ] ;

i f ( DetChangeSeg == 1)

[ dc MaskSegCh dmCh threshCh ] =

MovedSegmentManual (movd_seg , movdr , movdr , k ,

s izeIm , nbSegments , p1 ) ;

f o r i =1: s i z e (dmCh, 2 )

i f (sum(dmCh(1 , i )~=dmV)==s i z e (dmV, 2 ) )

c2 = c2 + 1 ;

dmMov(1 , c2 ) = dmCh(1 , i ) ;

end

end

end

dmV = [dmMov dmV] ;

dm = s i z e (dmV, 2 ) ;

CombineMask ( 1 :dm) =

s t r u c t ( ' ses ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ,

' x ' , z e r o s ( s izeIm , 1 , ' double ' ) , ' y ' ,

z e r o s ( s izeIm , 1 , ' double ' ) ) ;

i f ( c2~=0)

f o r i =1: c2

imx = f i nd (dmMov(1 , i ) == dmCh) ;

CombineMask (1 , i ) . s e s = MaskSegCh (1 , imx ) . s e s ;

CombineMask (1 , i ) . x = MaskSegCh (1 , imx ) . x ;

CombineMask (1 , i ) . y = MaskSegCh (1 , imx ) . y ;

end

end

i f ( c1~=0)
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f o r i=1+c2 : c1+c2

ibx = f i nd (dmB==dmBor(1 , i−c2 ) ) ;

CombineMask ( i ) . s e s = BorderMask ( ibx ) . s e s ;

CombineMask ( i ) . x = BorderMask ( ibx ) . x ;

CombineMask ( i ) . y = BorderMask ( ibx ) . y ;

end

end

f o r i=c1+c2+1:dm

CombineMask ( i ) . s e s = MaskSeg ( i−(c1+c2 ) ) . s e s ;

CombineMask ( i ) . x = MaskSeg ( i−(c1+c2 ) ) . x ;

CombineMask ( i ) . y = MaskSeg ( i−(c1+c2 ) ) . y ;

end

%%

[MeasMaskAvg MeasOutAvg MaskSegAvg ] =

MaskOutnIn (CombineMask ,dm, s i ze Im ) ;

%Ca l cu l a t e s In and out s id e mask f o r each segment

MeasAvgSeg = MeasMaskAvg * ReconsIm (k ) . cdata ( : ) ;

MeasAvgSeg1 = MeasMaskAvg * movdr (k+1). cdata ( : ) ;

MeasOutSeg = MeasOutAvg * ReconsIm (k ) . cdata ( : ) ;

MeasOutSeg1 = MeasOutAvg * movdr (k+1). cdata ( : ) ;

Dif fOut = abs (MeasOutSeg1 − MeasOutSeg ) ;

k1=1;

f o r u = 0 : 8 : (dm*8)−8

Dif fOut ( k1 : k1+7,1)=DiffOut ( k1 : k1+7 ,1)

. / sum( DiffOut ( k1 : k1+7 ,1)) ;

k1 = k1 + 8 ;
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end

MotionMat = CalcMotionMatrix ( DiffOut , dm ) ;

% Ca lcu la te the motion matrix

%%

%%%%%%%%%%%%%%%%%NEW MEASUREMENT MASK %%%%%%%%%%%%%%%%

[NewMeasMat MaskSeg ] =

DispMeasureMaskNew ( MotionMat , CombineMask , MaskSegAvg ,

ReconsIm , s izeIm ,dm, MeasOutSeg1 , k ) ;

end

end

% f i g u r e (1 )

% colormap ( gray )

% t i t l e ' Reconstructed Image us ing 36% Measurements '

% co l o rba r

% imagesc (NewMeasMat)

%

%% i f (sum(sum( isnan (NewMeasMat)==0)))

U = ze ro s ( s izeIm , s i ze Im ) ;

NoMeas = 0 ;

%%%%%%%%%%%%MAKE MEASUREMENTS %%%%%%%%%%%

i f (sum(sum(NewMeasMat)~=0))

N = log10 (sum(sum(NewMeasMat ) ) ) ;

MaxIm = max(max(ReconsIm (k ) . cdata ) ) ;

de l taVal = 0 . 2 2 ;

[ r c ] = f i nd (ReconsIm (k ) . cdata .*NewMeasMat

> (MaxIm − de l taVal ) ) ;

spa r s ty = s i z e ( r , 1 ) ;
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C = 1 . 5 ;

Err = . 8 ;

Nt = sum(sum(NewMeasMat ) ) ;

NoMeas = .4 * Nt ;

%NoMeas = (N*C* spar s ty )/ Err ;

upBound = 0 . 5 ;

LwBound = 0 . 3 ;

i f (NoMeas > upBound*sum(sum(NewMeasMat ) ) )

NoMeas = upBound*sum(sum(NewMeasMat ) ) ;

end

i f (NoMeas < LwBound*sum(sum(NewMeasMat ) ) )

NoMeas = LwBound*sum(sum(NewMeasMat ) ) ;

end

%NoMeas = f l o o r ( . 7 0* s i z e ( r ,1 ) ) ;%10* percen

NewMeasMat_ber = ze ro s (NoMeas , s i ze Im * s i ze Im ) ;

f o r j = 1 :NoMeas

Ber = sq r t (6)* randn ( s i ze Im ) ;

NewMeasMat_ber( j , : ) = (NewMeasMat ( : ) . * Ber ( : ) ) ' ;

end

Noise_var = . 0 1 ;

regp = 4 . 5 ;

s2 = s ize Im * s i ze Im ;

NewMeasVector = NewMeasMat_ber * movdr (k+1). cdata ( : ) ;

% + Noise_var .* randn (NoMeas , 1 ) ;

%reducedImage=

uint8 ( ( s i n g l e ( grayImage )/256)*2^ intege rVa lue ) ;

%%%%%%%%%%%%%%%%%%%%%RECONSTRUCTION%%%%%%%%%%%%%%%%%%%%%%
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opts .mu = 2^8;

opts . beta = 2^5;

opts . t o l = 1E−3;

opts . maxit = 300 ;

opts .TVnorm = 1 ;

opts . nonneg = true ;

t i c

[U, out ] =

TVAL3(NewMeasMat_ber , NewMeasVector , s izeIm , s izeIm , opts ) ;

%% cvx_begin

%% va r i ab l e x ( s2 ) ;

% minimize ( norm(x , 1 ) ) ;

% sub j e c t to

% norm ( (NewMeasMat_ber*x − NewMeasVector ) , 2 ) <= regp ;

% cvx_end

% ReconsX = reshape (x , 6 4 , 6 4 ) ;

%%%%%%%%%%%%%%%%RECONSTRUCTION%%%%%%%%%%%%%%%%%%%

t = toc ;

sumt = t + sumt ;

U = U.*NewMeasMat ;

%U = U./max(max(U) ) ;

end

%i f (sum(sum(NewMeasMat))==0)

%k

%end

temp = ReconsIm (k ) . cdata ;

[ r , c ] = f i nd (NewMeasMat ~=0 ) ;
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f o r i =1: s i z e ( r , 1 )

temp( r ( i , 1 ) , c ( i , 1 ) ) = U( r ( i , 1 ) , c ( i , 1 ) ) ;

end

NoiseLeve l =

sum(sum( sq r t ( abs ( temp .^2 − movdr (k+1). cdata . ^ 2 ) ) ) )

. / ( s i ze Im * s i ze Im ) ;

%Diff_Seq = ze ro s ( 1 , 6 ) ;

%f o r p=1:6

% Diff_Seq (1 , p) =

sum(sum( temp .* abs (Fix_Seq (p ) . data ) ) ) −

sum(sum(movdr (k+1). cdata .* abs (Fix_Seq (p ) . data ) ) ) ;

%end

%

%sum_diff = abs (mean( abs ( Diff_Seq . / ( s i ze Im * s i ze Im ) ) ) ) ;

%ErrorThres = . 0 1 ;

%i f ( sum_diff < ErrorThres )

%DetChangeSeg = 0 ;

%e l s e

%DetChangeSeg = 1 ;

%end

DetChangeSeg = 1 ;

PercenCoverThres = . 7 ;

% .1 f o r s imu la t i on s

i f (sum(sum(NewMeasMat ) ) < PercenCoverThres* s i ze Im * s i ze Im )

Re_seg = 0 ;

e l s e

Re_seg = 1 ;
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% DetChangeSeg = 0 ;

end

ReconsIm (k+1). cdata=temp ;

MeasMatrix (k+1). cdata = NewMeasMat ;

MeasMatrix (k+1).meas = NoMeas ;

k = k + 1 ;

d i sp l ay (k )

f i g u r e (2 )

colormap ( gray )

t i t l e ' Reconstructed Image us ing 36% Measurements '

c o l o rba r

imagesc ( temp)

%pause

c l o s e a l l

c l e a r NewMeasMat U out temp NewMeasMat_ber

NewMeasVector Ber MotionMat Dif fOut

MeasAvgSeg MeasAvgSeg1 MeasOutSeg

MeasOutSeg1 MeasMaskAvg MeasOutAvg

MaskSegAvg BorderMask CombineMask

VarA ContA Cont Var NoMeas

end

end

%%

%pause

% comparison ( 1 : nFrames ) = . . .

% s t r u c t ( ' cdata ' , z e r o s ( s izeIm , 2* s izeIm , 1 ,

' double ' ) ,
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' colormap ' , [ ] ) ;

% Video ( 1 : nFrames)= s t r u c t ( ' cdata ' , z e r o s ( s izeIm ,

2* s izeIm , 3 , ' uint8 ' ) , ' colormap ' , [ ] ) ;

% Videocmp ( 1 : nFrames)= s t r u c t ( ' cdata ' , z e r o s ( s izeIm ,

s izeIm , 3 , ' uint8 ' ) , ' colormap ' , [ ] ) ;

%

% f o r i =1:nFrames

%Video ( i ) . cdata ( : , : , 1 )= ReconsIm ( i ) . cdata .*255 ;

%Video ( i ) . cdata ( : , : , 2 )= ReconsIm ( i ) . cdata .*255 ;

%Video ( i ) . cdata ( : , : , 3 )= ReconsIm ( i ) . cdata .*255 ;

% end

%

% movie2avi (ReconsIm , ' InsertFramesVid1 ' , ' compression ' , ' None ' )

%

% f o r i =1:nFrames

% comparison ( i ) . cdata ( : , 1 : 64 )= Ful lVid ( i ) . cdata ( : , : ) ;

% comparison ( i ) . cdata ( : ,64+1:2*64)= movdr ( i +1). cdata ;

% end

%

% fo r i =1:nFrames

% Videocmp ( i ) . cdata ( : , : , 1 )= comparison ( i ) . cdata .*255 ;

%Videocmp ( i ) . cdata ( : , : , 2 )= comparison ( i ) . cdata .*255 ;

%Videocmp ( i ) . cdata ( : , : , 3 )= comparison ( i ) . cdata .*255 ;

% end

% movie2avi ( Video , ' InsertFramesVid1 ' , ' compression ' , ' None ' )

A.2 Function for Moved Segments identi�cation
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f unc t i on [dm MaskSeg dmV Est_thresh ]

= MovedSegmentManual (movd_seg , movdr ,

ReconsIm , k , s izeIm , nbSegments , p1 )

dm = 1 ;

dmV = [ ] ;

MaskforMeas = ze ro s ( s i ze Im ) ;

Est_thresh = 1 ;

Seg (1 ) = s t r u c t ( 'Mean ' , z e r o s ( nbSegments , 1 , 1 , ' double ' ) ,

'Var ' , z e r o s ( nbSegments , 1 , ' double ' ) ) ;

MaskSeg ( 1 : nbSegments)=

s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) , ' ses ' ,

z e r o s ( s izeIm , s izeIm , ' double ' ) , ' x ' , z e r o s ( s izeIm , 1 , ' double ' ) ,

' y ' , z e r o s ( s izeIm , 1 , ' double ' ) , ' Rad ' , z e r o s ( 1 , 3 , ' double ' ) ) ;

d i f f = ze ro s ( nbSegments , 1 ) ; MaxHist = nbSegments ;

f o r i =1:nbSegments

[ r , c ] = f i nd (movd_seg (1 , p1 ) . cdata == i ) ;

SegFirstFrameMean =

mean( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

%movdr changed to ReconsIm

SegSecondframeMean =

mean( diag ( (movdr (k+1). cdata ( r , c ) ) , 0 ) ) ;

%Averages from net frame

d i f f ( i , 1 ) =

abs ( SegFirstFrameMean − SegSecondframeMean ) ;

end

Est_thresh = . 0 0 30 ; %Threshold f o r Foreman video = .0030
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%Threshold f o r pony video i s .0013

% Threshold f o r horse v ideo i s .0009

%Threshold f o r s imulated video o f puppet was .0009

%Threshold f o r donkey video i s .001

f o r j =1:nbSegments

%Ca l cu l a t e s the Segment that moved . and output

%i s MaskSeg s t r u c tu r e having a l l Segements that

%moved , dm i s the count

[ r , c ] = f i nd (movd_seg ( p1 ) . cdata == j ) ;

i f ( s i z e ( r ,1)> 5)

Seg (k ) .Mean( j , 1 ) = mean( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

Seg (k ) . Var ( j , 1 ) = var ( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

Seg (k+1).Mean( j , 1 ) = mean( diag ( (movdr (k+1). cdata ( r , c ) ) , 0 ) ) ;

Seg (k+1).Var ( j , 1 ) = mean( diag ( (movdr (k+1). cdata ( r , c ) ) , 0 ) ) ;

Maskdum = ze ro s ( s izeIm , s i ze Im ) ;

i f ( abs ( Seg (k ) .Mean( j ,1)−Seg (k+1).Mean( j , 1 ) )

> Est_thresh )

f o r p=1: s i z e ( r )

MaskforMeas ( r (p , 1 ) , c (p , 1 ) ) = j . / j ;

Maskdum( r (p , 1 ) , c (p , 1 ) ) = j . / j ;

end

end

i f (sum(sum(Maskdum) ) ~= 0)

MaskSeg (dm) . seg = edge (Maskdum , 0 . 0 1 ) ;

MaskSeg (dm) . s e s = Maskdum ;

MaskSeg (dm) . x = r ;
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MaskSeg (dm) . y = c ;

%MaskSeg (dm) . x = r

dm = dm + 1 ;

%MaskSeg (dm) . y = c

f i x ed at l a t e r in the program a f t e r l i n e 307

dmV = [dmV j ] ;

end

c l e a r r c ;

end

end

end

A.3 Function for Creating Mask

f unc t i on [NewMeasMat MaskSegMoved ] =

DispMeasureMaskNew ( MotionMat , MaskSeg ,MaskSegAvg , ReconsIm ,

s izeIm ,dm, MeasOutSeg1 , k )

NewMask ( 1 :dm*8) = s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

NewAvgMeas = ze ro s ( 7 , 1 ) ;

diffAvgNew = ze ro s ( 7 , 1 ) ;

NewMeasMat = ze ro s ( s i ze Im ) ;

NewMaskAvgseg = ze ro s ( s i ze Im ) ;

NewMaskAvgout = ze ro s ( s i ze Im ) ;

change = ze ro s (dm, 1 ) ;

MaskSegMoved ( 1 :dm)= s t r u c t ( ' ses ' , z e r o s ( s izeIm , s i ze Im ) ,

' x ' , z e r o s ( s izeIm , 1 , ' double ' ) , ' y ' , z e r o s ( s izeIm , 1 , ' double ' ) ) ;

% NewTempMask( j ) . seg = ze ro s ( s izeIm , s i ze Im ) ;
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multx = 0 ;

multy = 0 ;

Temp1x = 0 ;

Temp1y = 0 ;

Temp2x = 0 ;

Temp2y = 0 ;

NewTempMask ( 1 :dm) = s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

ns = 0 ;

TempM = ze ro s ( s i ze Im ) ;

f o r j = 1 :dm

f o r d = 1 :8

%ns = ns + 1 ;

nsc = i n t 2 s t r (d ) ;

temx = s t r c a t ( ' xd ' , nsc ) ;

temxm = s t r c a t ( 'xm' , nsc ) ;

temy = s t r c a t ( ' yd ' , nsc ) ;

temym = s t r c a t ( 'ym' , nsc ) ;

Temp1y = g e t f i e l d (MotionMat ,{1 j } , temy ) ; %#ok<GFLD>

Temp2y = c e i l (1* ( g e t f i e l d (MotionMat ,{1 j } ,temym ) ) ) ;

Temp1x = c e i l (1* ( g e t f i e l d (MotionMat ,{1 j } , temx ) ) ) ;

Temp2x = c e i l (1* ( g e t f i e l d (MotionMat ,{1 j } ,temxm ) ) ) ;

i f ( sum(Temp1y) ~= 0 | | sum(Temp1x ~= 0))

i f ( d==1)

IncR = 1 ;

IncC = 0 ;

end

i f ( d==2 )
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IncR = 1 ;

IncC = 1 ;

end

i f ( d == 3)

IncR = 0 ;

IncC = 1 ;

end

i f (d == 4)

IncR = −1;

IncC = 1 ;

end

i f (d == 5)

IncR = −1;

IncC = 0 ;

end

i f (d == 6)

IncR = −1;

IncC = −1;

end

i f ( d== 7)

IncR = 0 ;

IncC = −1;

end

i f (d == 8)

IncR = 1 ;

IncC = −1;

end
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r = MaskSeg ( j ) . x ;

c = MaskSeg ( j ) . y ;

i f ( IncR <=1 | | IncC <=1)

inc = 1 ;

whi l e ( inc <= 2)

f o r i = 1 : s i z e ( r , 1 )

x = c e i l ( r ( i ,1)+ IncR* i n c *Temp2x ) ;

y = c e i l ( c ( i ,1)+ IncC* i n c *Temp2y ) ;

i f (x>s ize Im )

x=s ize Im ;

end

i f (y>s ize Im ) %Boundary Condit ions

y=s ize Im ;

end

i f ( x <= 0)

x=1;

end

i f ( y <= 0)

y=1;

end

NewTempMask( j ) . seg (x , y ) = MaskSeg ( j ) . s e s ( r ( i , 1 ) , c ( i , 1 ) ) ;

end

NewTempMask( j ) . seg = NewTempMask( j ) . seg ( 1 : s izeIm , 1 : s i ze Im ) ;

NewMaskAvgout = MaskSegAvg ( 8 . * ( j−1)+d ) . mask .*

(1−NewTempMask( j ) . seg . /max(max(NewTempMask( j ) . seg ) ) ) ;

NewAvgMeas( inc , 1 ) = sum(sum(NewMaskAvgout

.* ReconsIm (k ) . cdata ) ) ;
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%%*movdr changed to ReconsIm

diffAvgNew ( inc , 1 ) = abs (NewAvgMeas( inc , 1 )

− MeasOutSeg1 ( 8 . * ( j−1)+d ) ) ;

%f i g u r e ;

imagesc ( 30 .*NewTempMask( j ) . seg +20.*MaskSegAvg ( 8 . * ( j−1)+d ) . mask )

inc = inc + 1 ;

NewMaskAvgout = ze ro s ( s i ze Im ) ;

NewTempMask( j ) . seg = ze ro s ( s i ze Im ) ;

end

diffAvgNew==min( diffAvgNew ) ) ) ;

f o r i = 1 : s i z e ( r , 1 )

x = c e i l ( r ( i ,1)+ IncR* incF ) ;

y = c e i l ( c ( i ,1)+ IncC* incF ) ;

i f (x>s ize Im )

x=s ize Im ;

end

i f (y>s ize Im )

y=s ize Im ;

end

i f ( x <= 0)

x=1;

end

i f ( y <= 0)

y=1;

end

TempM(x , y ) = MaskSeg ( j ) . s e s ( r ( i , 1 ) , c ( i , 1 ) ) ;

end
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TempM = TempM(1 : s izeIm , 1 : s i ze Im ) ;

NewMask( j ) . seg = NewMask( j ) . seg + TempM;

NewMask( j ) . seg = c e i l (NewMask( j ) . seg . /max(max(NewMask( j ) . seg ) ) ) ;

TempM = ze ro s ( s i ze Im ) ;

NewTempMask( j ) . seg = ze ro s ( s izeIm , s i ze Im ) ;

diffAvgNew = ze ro s ( 7 , 1 ) ;

multx = 0 ;

multy = 0 ;

Temp1x = 0 ;

Temp1y = 0 ;

Temp2x = 0 ;

Temp2y = 0 ;

end

change ( j , 1 ) = 1 ;

end

end

NewMask( j ) . seg ( i snan (NewMask( j ) . seg ) ) = 0 ;

%NewMask( j ) . seg = NewMask( j ) . seg . /max(max( NewMask( j ) . seg ) ) ;

Temp = NewMask( j ) . seg ( 1 : s izeIm , 1 : s i ze Im ) ;

i f ( k == 1)

Lg1= l o g i c a l (MaskSeg ( j ) . s e s ) ;

Lg2= l o g i c a l (Temp) ;

outL = Lg1 | Lg2 ;

MaskSegMoved ( j ) . s e s = double ( outL ) ;

e l s e

MaskSegMoved ( j ) . s e s = Temp;

end
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[ r1 , c1 ] = f i nd (MaskSegMoved ( j ) . s e s == 1 ) ;

MaskSegMoved ( j ) . x = r1 ;

MaskSegMoved ( j ) . y =c1 ;

NewMeasMat = NewMeasMat + Temp;

NewMeasMat = c e i l (NewMeasMat . /max(max(NewMeasMat ) ) ) ;

NewMeasMat( i snan (NewMeasMat))=0;

Temp = ze ro s ( s i ze Im ) ;

end

f o r j =1:dm

i f ( change ( j , 1 ) ~= 1)

NewMeasMat = NewMeasMat + MaskSeg ( j ) . s e s ;

NewMeasMat = c e i l (NewMeasMat . /max(max(NewMeasMat ) ) ) ;

MaskSegMoved ( j ) . s e s = MaskSeg ( j ) . s e s ;

[ r1 , c1 ] = f i nd (MaskSegMoved ( j ) . s e s == 1 ) ;

MaskSegMoved ( j ) . x = r1 ;

MaskSegMoved ( j ) . y =c1 ;

end

end

A.4 Function for Calculating required averages

f unc t i on [MeasMaskAvg MeasOutAvg MaskSegAvg ] =

MaskOutnIn (MaskSeg ,dm, s i ze Im )

dem = 1 ;

segm = 1 ;

sk ip = 1 ;

MaskSegAvg (1 : 8*dm)= s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ,

' out ' , z e r o s ( s izeIm , s izeIm , ' double ' ) , ' mask ' ,
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z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

NewMaskAvg(1 : 8*dm)= s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ,

' out ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

l = 0 ;

MeasMaskAvg = ze ro s (dm*8 , s i ze Im .^ 2 ) ;

MeasOutAvg = ze ro s (dm*8 , s i ze Im .^ 2 ) ;

f o r j = 1 :dm %Ca l cu l a t e s the masks o f d i r e c t i o n s

%Maks each segments in to 8 s epa r t e

%d i r e c t i o n s

%

i f ( narg in == 4)

%i f ( s i z e ( f i nd ( j == dmB) , 2 ) ~= 0 )

%zero when not a l r eady done = true f o r cond i t i on

%sk ip = 0 ;

%one when a l r eady done

%end

%end

%

%i f ( sk ip ~= 0 | | narg in == 3)

% Donot sk ip i f sk ip i s 1

c = MaskSeg ( j ) . y ;

r = MaskSeg ( j ) . x ;

i f ( s i z e ( c ,1)~=0 && s i z e ( r ,1)~=0)

min_Xy = [ c (min ( f i nd ( r==min( r ) ) ) ) min ( r ) ] ;

min_Yx = [min ( c ) r (min ( f i nd ( c==min( c ) ) ) ) ] ;

max_Xy = [ c (max( f i nd ( r==max( r ) ) ) ) max( r ) ] ;

% Finding Max and min f o r Segment i
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max_Yx = [ max( c ) r (max( f i nd ( c==max( c ) ) ) ) ] ;

avgy=0;

avgx=0;

po int =0;

segm = max(max(MaskSeg ( j ) . s e s ) ) ;

f o r i g =1: s i ze Im

f o r ih=1: s i ze Im

i f (MaskSeg ( j ) . s e s ( ig , ih ) == segm)

avgx = avgx + ig ;

avgy = avgy + ih ;

po int = point + 1 ;

end

end

end

Cen (1 , 1 ) = avgx . / po int ;

Cen (1 , 2 ) = avgy . / po int ;

Radius =

[ sq r t ( (Cen(1 ,1)−min_Xy(1 ,2) ) .^2+(Cen(1 ,2)−min_Xy ( 1 , 1 ) ) . ^ 2 ) . . .

s q r t ( (Cen(1 ,1)−max_Xy(1 ,2) ) .^2+(Cen(1 ,2)−max_Xy( 1 , 1 ) ) . ^ 2 ) . . .

s q r t ( (Cen(1 ,1)−min_Yx(1 ,2) ) .^2+(Cen(1 ,2)−min_Yx ( 1 , 1 ) ) . ^ 2 ) . . .

s q r t ( (Cen(1 ,1)−min_Yx(1 ,2) ) .^2+(Cen(1 ,2)−min_Yx ( 1 , 1 ) ) . ^ 2 ) ] ;

MaxRad = max( Radius ) ;

MaskSeg ( j ) . Rad(1 , 1 ) = MaxRad ;

MaskSeg ( j ) . Rad(1 , 2 ) = Cen ( 1 , 1 ) ;

MaskSeg ( j ) . Rad(1 , 3 ) = Cen ( 1 , 2 ) ;

th = 0 : p i /50 :2* pi ;

xunit = MaxRad * cos ( th ) + Cen ( 1 , 1 ) ;
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yunit = MaxRad * s i n ( th ) + Cen ( 1 , 2 ) ;

HorLinex1 = MaxRad * cos (0 ) + Cen ( 1 , 1 ) ;

HorLiney1 = MaxRad * s i n (0 ) + Cen ( 1 , 2 ) ;

HorLinex2 = MaxRad * cos ( th (1 , 50 ) ) + Cen ( 1 , 1 ) ;

HorLiney2 = MaxRad * s i n ( th (1 , 50 ) ) + Cen ( 1 , 2 ) ;

VerLinex1 = MaxRad * cos ( th (1 , 25 ) ) + Cen ( 1 , 1 ) ;

VerLiney1 = MaxRad * s i n ( th (1 , 25 ) ) + Cen ( 1 , 2 ) ;

VerLinex2 = MaxRad * cos ( th (1 , 75 ) ) + Cen ( 1 , 1 ) ;

VerLiney2 = MaxRad * s i n ( th (1 , 75 ) ) + Cen ( 1 , 2 ) ;

T i l tL ine1x1 = MaxRad * cos ( th (1 , 14 ) ) + Cen ( 1 , 1 ) ;

T i l tL ine1y1 = MaxRad * s i n ( th (1 , 14 ) ) + Cen ( 1 , 2 ) ;

T i l tL ine2x1 = MaxRad * cos ( th (1 , 39 ) ) + Cen ( 1 , 1 ) ;

T i l tL ine2y1 = MaxRad * s i n ( th (1 , 39 ) ) + Cen ( 1 , 2 ) ;

T i l tL ine1x2 = MaxRad * cos ( th (1 , 64 ) ) + Cen ( 1 , 1 ) ;

T i l tL ine1y2 = MaxRad * s i n ( th (1 , 64 ) ) + Cen ( 1 , 2 ) ;

T i l tL ine2x2 = MaxRad * cos ( th (1 , 89 ) ) + Cen ( 1 , 1 ) ;

T i l tL ine2y2 = MaxRad * s i n ( th (1 , 89 ) ) + Cen ( 1 , 2 ) ;

masks ( 1 : 8 ) = s t r u c t ( ' seg ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ) ;

in =0;

f i = pi /4 ;

f o r f =1:8

f o r th = in : p i /100 : f i

f o r ra = 0 : . 1 :MaxRad+2

x = f l o o r ( ra * cos ( th ) + MaskSeg ( j ) . Rad ( 1 , 2 ) ) ;

y = f l o o r ( ra * s i n ( th ) + MaskSeg ( j ) . Rad ( 1 , 3 ) ) ;

i f (x>s ize Im )

x=s ize Im ;

103



end

i f (y>s ize Im )

y=s ize Im ;

end

i f ( x <= 0)

x=1;

end

i f ( y <= 0)

y=1;

end

masks ( f ) . seg (x , y ) = 1 ; %#ok<AGROW>

end

end

in = f i ;

f i = in + pi /4 ;

% masks ( f ) . seg && MaskSeg ( f ) . Seg

MaskSegAvg ( f+l ) . seg = MaskSeg ( j ) . s e s .* masks ( f ) . seg ;

MaskSegAvg ( f+l ) . out = masks ( f ) . seg .*

(1−MaskSeg ( j ) . s e s . /max(max(MaskSeg ( j ) . s e s ) ) ) ;

MaskSegAvg ( f+l ) . mask = masks ( f ) . seg ;

end

mh=1;

f o r ma = 1 :8

i f (sum(sum(MaskSegAvg (mh) . seg ) ) ~= 0)

MeasMaskAvg(mh+l , : ) = MaskSegAvg (mh+l ) . seg ( : ) ;

MeasOutAvg(mh+l , : ) = MaskSegAvg (mh+l ) . out ( : ) ;

mh = mh + 1 ;
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end

end

mh=1;

l = l + 8 ;

dem = dem + 1 ;

%sk ip = 1 ;

end

end

A.5 Function for Border averages

f unc t i on [dmB BorderMask ] =

MovedBorderSeg (movdr , ReconsIm , movd_seg , s izeIm , nbSegments ,

k , RowThres , p1 , threh )

dmB = [ ] ;

MaskforMeas = ze ro s ( s i ze Im ) ;

BorderMask ( 1 : nbSegments ) =

s t r u c t ( ' ses ' , z e r o s ( s izeIm , s izeIm , ' double ' ) , . . .

' x ' , z e r o s ( s izeIm , 1 , ' double ' ) , ' y ' , z e r o s ( s izeIm , 1 , ' double ' ) ) ;

SegI ( 1 : 2 ) = . . .

s t r u c t ( 'Mean ' , z e r o s ( nbSegments , 1 , 1 , ' double ' ) ) ;

D i f f_Fi r s tCo l = sum( abs (ReconsIm (k ) . cdata ( : , 1 )

− movdr (k+1). cdata ( : , 1 ) ) ) ;

Dif f_LastCol = sum( abs (ReconsIm (k ) . cdata ( : , s i ze Im )

− movdr (k+1). cdata ( : , s i ze Im ) ) ) ;

Diff_FirstRow = sum( abs (ReconsIm (k ) . cdata ( 1 , : )

− movdr (k+1). cdata ( 1 , : ) ) ) ;
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Diff_LastRow = sum( abs (ReconsIm (k ) . cdata ( s izeIm , : )

− movdr (k+1). cdata ( s izeIm , : ) ) ) ;

mm = 1 ;

f o r d = 1 : nbSegments

[ r , c ] = f i nd (movd_seg ( p1 ) . cdata == d ) ;

i f ( s i z e ( r ,1) >5)

SegI ( 1 ) .Mean(d , 1 ) = mean( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

SegI ( 2 ) .Mean(d , 1 ) = mean( diag ( (movdr (k+1). cdata ( r , c ) ) , 0 ) ) ;

%Ca l cau la t ing averages o f next frame

tempF_col = f i nd ( c==1);

tempF_row = f ind ( r==1);

tempL_col = f i nd ( c==size Im ) ;

tempL_row = f ind ( r==size Im ) ;

i f ( s i z e ( tempF_col , 1 ) == 0)

C_condf = f a l s e ;

e l s e

C_condf = true ;

end

i f ( s i z e (tempF_row , 1 ) == 0)

R_condf = f a l s e ;

e l s e

R_condf = true ;

end

i f ( s i z e ( tempL_col , 1 ) == 0)

C_condl = f a l s e ;

e l s e

C_condl = true ;
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end

i f ( s i z e ( tempL_row , 1 ) == 0)

R_condl = f a l s e ;

e l s e

R_condl = true ;

end

i f ( Di f f_Fi r s tCo l > RowThres && C_condf &&

abs ( SegI ( 1 ) .Mean(d,1)− SegI ( 2 ) .Mean(d , 1 ) ) > threh )

f o r p=1: s i z e ( r )

BorderMask (mm) . s e s ( r (p , 1 ) , c (p , 1 ) ) =

movd_seg ( p1 ) . cdata ( r (p , 1 ) , c (p , 1 ) ) . / d ;

%Orignal Segmentation

end

BorderMask (mm) . x = r ;

BorderMask (mm) . y = c ;

mm = mm + 1 ;

dmB = [dmB d ] ;

e l s e i f ( Dif f_LastCol > RowThres && C_condl

&& abs ( SegI ( 1 ) .Mean(d,1)− SegI ( 2 ) .Mean(d , 1 ) ) > threh )

%enable a l l segments along t h i s Col

f o r p=1: s i z e ( r )

BorderMask (mm) . s e s ( r (p , 1 ) , c (p , 1 ) ) =

movd_seg ( p1 ) . cdata ( r (p , 1 ) , c (p , 1 ) ) . / d ;

%Orignal Segmentation

end

BorderMask (mm) . x = r ;

BorderMask (mm) . y = c ;
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mm = mm + 1 ;

dmB = [dmB d ] ;

e l s e i f ( Diff_FirstRow > RowThres && R_condf

&& abs ( SegI ( 1 ) .Mean(d,1)− SegI ( 2 ) .Mean(d , 1 ) ) > threh )

%enable a l l segments along t h i s row

f o r p=1: s i z e ( r )

BorderMask (mm) . s e s ( r (p , 1 ) , c (p , 1 ) ) =

movd_seg ( p1 ) . cdata ( r (p , 1 ) , c (p , 1 ) ) . / d ;

%Orignal Segmentation

end

BorderMask (mm) . x = r ;

BorderMask (mm) . y = c ;

mm = mm + 1 ;

dmB = [dmB d ] ;

e l s e i f ( Diff_LastRow > RowThres &&

R_condl && abs ( SegI ( 1 ) .Mean(d,1)− SegI ( 2 ) .Mean(d , 1 ) ) > threh )

%enable a l l segments along t h i s row

f o r p=1: s i z e ( r )

BorderMask (mm) . s e s ( r (p , 1 ) , c (p , 1 ) ) =

movd_seg ( p1 ) . cdata ( r (p , 1 ) , c (p , 1 ) ) . / d ;

%Or i g ina l Segmentation

end

BorderMask (mm) . x = r ;

BorderMask (mm) . y = c ;

mm = mm + 1 ;

dmB = [dmB d ] ;

end
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end

end

end

end

end

% Calcu la te the average o f c on so l i da t ed segment Mask

% Keep segments above the th r e sho ld

A.6 Function for optimal segment number

%i n t e r c l u s t e r and i n t r a c l u s t e r r a t i o [ FinalVar FinalCon ]

func t i on [ Cont FinalVar ] =

Inte randInt ra (ReconsIm , movd_seg , nbSegments , s izeIm , p1 , k )

%s im i l a r i t y measure i s Eucl idean d i s t anc e between

%average o f the c l u s t e r and each p i x e l

Maskdum = ze ro s ( s izeIm , s i ze Im ) ;

MaskSeg ( 1 : nbSegments)= s t r u c t ( ' ses ' ,

z e r o s ( s izeIm , s izeIm , ' double ' ) , ' seg ' ,

z e r o s ( s izeIm , s izeIm , ' double ' ) , ' x ' ,

z e r o s ( s izeIm , 1 , ' double ' ) , ' y ' ,

z e r o s ( s izeIm , 1 , ' double ' ) , ' AvgDis ' ,

z e r o s ( s izeIm , 1 , ' double ' ) , ' contras t ' ,

z e r o s ( 1 , 1 , ' double ' ) , ' var ' ,

z e r o s ( 1 , 1 , ' double ' ) , ' var iance ' ,

z e r o s ( 1 , 1 , ' double ' ) , ' mean ' ,

z e r o s ( 1 , 1 , ' double ' ) ) ;

NeighSeg ( 1 : nbSegments)=
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s t r u c t ( ' cdata ' , z e r o s ( s izeIm , s izeIm , ' double ' ) ,

'NoSeg ' , z e r o s ( s izeIm , 1 , ' double ' ) , d i s t out s eg ' ,

z e r o s ( 1 , 1 , ' double ' ) , ' Len ' , z e r o s ( 1 , 1 , ' double ' ) ) ;

segm = 1 ;

f o r j =1:nbSegments

% Ca l cu l a t e s the nonzero i n d i c e s o f each segment

% Segements that moved , dm i s the count

[ r , c ] = f i nd (movd_seg ( p1 ) . cdata == j ) ;

i f ( sum( r )~=0)

AvgofSeg = mean( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

d istAvgInClus = ze ro s ( s i z e ( r , 1 ) , 1 ) ;

f o r p=1: s i z e ( r , 1 )

Maskdum( r (p , 1 ) , c (p , 1 ) ) = ReconsIm (k ) . cdata ( r (p , 1 ) , c (p , 1 ) ) ;

MaskSeg ( j ) . seg ( r (p , 1 ) , c (p , 1 ) ) = segm ;

distAvgInClus (p , 1 ) = sq r t ( abs (Maskdum( r (p , 1 ) , c (p ,1)) .^2−

AvgofSeg . ^ 2 ) ) ;

end

MaskSeg ( j ) . s e s = Maskdum ;

MaskSeg ( j ) . seg = edge (MaskSeg ( j ) . seg , . 0 1 ) ;

MaskSeg ( j ) . x = r ;

MaskSeg ( j ) . y = c ;

MaskSeg ( j ) . AvgDis = distAvgInClus ;

segm = segm + 1 ;

Maskdum = ze ro s ( s izeIm , s i ze Im ) ;

end

end

f o r j =1:nbSegments

110



u = 1 ;

[ r , c ] = f i nd (MaskSeg ( j ) . seg == 1 ) ;

f o r l =1:nbSegments

InSec =(MaskSeg ( l ) . seg + MaskSeg ( j ) . seg ) ;

i f ( j~=l && l o g i c a l (sum( f i nd ( InSec == 2 ) ) ) )

NeighSeg ( j ) . cdata = NeighSeg ( j ) . cdata

+ MaskSeg ( l ) . s e s ;

NeighSeg ( j ) . NoSeg (u , 1 ) = l ;

u = u + 1 ;

end

NeighSeg ( j ) . Len = u−1;

%NeighSeg ( j ) . NoSeg = NeighSeg ( j ) . NoSeg ( 1 : u , 1 ) ;

InSec = ze ro s ( s izeIm , s i ze Im ) ;

end

end

%Ratio o f i n t e r c l u s t e r and i n t r a c l u s t e r s im i l a r i t y measure

f o r j =1:nbSegments

l = NeighSeg ( j ) . Len ;

% Se l e c t i n g the main segment

r = MaskSeg ( j ) . x ;

c = MaskSeg ( j ) . y ;

i f (sum( r )~=0)

RatioInOut = ze ro s (1 , l ) ;

d istAvgInClus = MaskSeg ( j ) . AvgDis ;

[m n ] = f i nd (MaskSeg ( j ) . seg == 1 ) ;

% f o r d=1: s i z e (m, 1 )

% pm = m(d , 1 ) ;
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% pn = m(d ,1)−1;

%

% i f (pm > size Im )

% pm = size Im ;

% end

% i f (pn>s ize Im )

%Boundary Condit ions

% pn = size Im ;

% end

% i f (pm <= 0)

% pm = 1 ;

% end

% i f (pn <= 0)

% pn = 1 ;

% end

%

%

%MaskSeg ( j ) . c on t ra s t = MaskSeg ( j ) . c on t r a s t

+ abs (movdr ( 1 ) . cdata (pm, n(d , 1 ) )

−movdr ( 1 ) . cdata (pn , n(d , 1 ) ) ) ;

%end

%

% i f s i z e (m,1)~=0

% MaskSeg ( j ) . c on t r a s t = MaskSeg ( j ) . c on t r a s t . / s i z e (m, 1 ) ;

% end

% MaskSeg ( j ) . var = mean( distAvgInClus ) ;

MaskSeg ( j ) . va r i ance = var ( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;
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MaskSeg ( j ) . mean = mean( diag ( ( ReconsIm (k ) . cdata ( r , c ) ) , 0 ) ) ;

i f ( l ~=0)

f o r p=1: l

Contrast = 0 ;

idx = NeighSeg ( j ) . NoSeg (p , 1 ) ;

%Se l e c t i n g the 1 s t Neighbour and so on

v = MaskSeg ( idx ) . x ;

w = MaskSeg ( idx ) . y ;

MeanOutClus = mean( diag ( ( ReconsIm (k ) . cdata (v ,w) ) , 0 ) ) ;

VarOutClus = var ( diag (ReconsIm (k ) . cdata (v ,w) , 0 ) ) ;

Num = sqr t ( (MaskSeg ( j ) . mean − MeanOutClus).^2+

(MaskSeg ( j ) . va r i ance − VarOutClus ) . ^ 2 ) ;

den = sq r t ( (MaskSeg ( j ) . mean + MeanOutClus).^2+

(MaskSeg ( j ) . va r i ance + VarOutClus ) . ^ 2 ) ;

i f ( den ~= 0)

Contrast = Num./ den ;

end

RatioInOut (1 , p) = Contrast ;

%choose average i f max i s too much p r e c i s e

end

% Ratio between var o f cur r ent and neighbour to the

% d i f f e r n c e between averages

% NeighSeg ( j ) . d i s t ou t s e g = max( RatioInOut ) ;

end

end

end
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SortedVar = ze ro s ( nbSegments , 1 ) ;

% % SortedCon = ze ro s ( nbSegments , 1 ) ;

% % fo r i =1:nbSegments

SortedVar ( i , 1 ) = MaskSeg ( i ) . va r i ance ;

% % SortedCon ( i , 1 ) = MaskSeg ( i ) . c on t ra s t

end

% %

% % SortedVar = so r t ( SortedVar , ' ascend ' ) ;

% % SortedCon = so r t ( SortedCon , ' descend ' ) ;

% % % % percenV = f l o o r ( . 7* nbSegments ) ;

FinalVar = sum( SortedVar ) . / nbSegments ;

% % percenC = f l o o r ( . 5* nbSegments ) ;

% % FinalCon = sum( SortedCon ( 1 : percenC ) ) . / percenC ;

% maxR = NeighSeg ( 1 ) . d i s t ou t s e g ;

% % f o r j =1:nbSegments

% %

% % i f (maxR < NeighSeg ( j ) . d i s t ou t s e g )

% % maxR = NeighSeg ( j ) . d i s t ou t s e g ;

% % end

% % end

meanRatio = 0 ;

f o r i =1:nbSegments

meanRatio = meanRatio + ( NeighSeg ( i ) . d i s t ou t s e g ) ;

end

Cont = meanRatio . / nbSegments ;

A.7 Function for Results
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MSE = ze ro s (k , 1 ) ;

NonZeroMeas = ze ro s (k , 1 ) ;

spatMeas = ze ro s (k , 1 ) ;

temporalMeas = 0 ;

temporalComp = ze ro s (k , 1 ) ;

spatComp = ze ro s (k , 1 ) ;

PSNRim=0;

FramePSNR = ze ro s (k , 1 ) ;

f o r i = 1 : k

NonZeroMeas ( i , 1 ) = sum(sum(MeasMatrix ( i ) . cdata ) ) ;

spatMeas ( i , 1 ) = MeasMatrix ( i ) . meas ;

i f (NonZeroMeas ( i ,1)~=0)

spatComp( i , 1 ) = (

NonZeroMeas ( i ,1)− spatMeas ( i , 1 ) ) . / NonZeroMeas ( i , 1 ) ;

e l s e

spatComp( i , 1 ) = 0 ;

end

temporalComp ( i , 1 ) = (4096−NonZeroMeas ( i , 1 ) ) . / 4 0 9 6 ;

temporalMeas = NonZeroMeas ( i , 1 ) + temporalMeas ;

MSE( i , 1 ) =

mean(mean ( ( 255 .*movdr ( i ) . cdata − 255 .*

ReconsIm ( i ) . cdata ) . ^ 2 ) ) ;

FramePSNR( i ,1)=

10* l og10 ( ( 255 .*max(max(ReconsIm ( i ) . cdata ) ) ) . ^ 2

/MSE( i , 1 ) ) ;

PSNRim =

10* l og10 ( ( 255 .*max(max(ReconsIm ( i ) . cdata ) ) ) . ^ 2
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/MSE( i ,1))+PSNRim;

end

AvgTemporalComp = sum( temporalComp ) . / k ;

temporalMeas = temporalMeas . / k ;

spatMeasAvg = sum( spatMeas ) . / k ;

TempCompAvg = sum( temporalComp ) . / k ;

MSEAvg = sum(MSE) . / k ;

PSNRim = PSNRim/k spatCompAvg = sum( spatComp ) . / k

load ( ' movingletterANDintelligentroomRESULT ' )

f o r i =1:15

NoSamp( i ,1)=IntRoom (1 , i ) . NoSamp ;

PerCov ( i ,1)=IntRoom (1 , i ) . PerCov ;

ReSeg ( i ,1)=IntRoom (1 , i ) . ReSeg ;

PSNR( i ,1)=IntRoom (1 , i ) . psnr ;

end

p lo t (100 .*PerCov ( 1 : 1 3 ) , 3 0 0 . / ReSeg ( 1 : 1 3 ) )

p l o t (100 .*PerCov ( 1 : 1 3 ) ,PSNR( 1 : 1 3 ) )

p l o t (100 .*PerCov ( 1 : 1 3 ) ,NoSamp( 1 : 1 3 ) )

f o r i =1:14

NoSamp( i ,1)= Result (1 , i ) . NoSamp ;

PerCov ( i ,1)= Result (1 , i ) . PerCov ;

ReSeg ( i ,1)= Result (1 , i ) . ReSeg ;

PSNR( i ,1)= Result (1 , i ) . psnr ;

end

p lo t (100 .*PerCov ( 1 : 1 3 ) ,NoSamp( 1 : 1 3 ) )

p l o t (100 .*PerCov ( 1 : 1 3 ) ,PSNR( 1 : 1 3 ) )

p l o t (100 .*PerCov ( 1 : 1 3 ) , 1 0 0 . / ReSeg ( 1 : 1 3 ) )
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