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ABSTRACT 

Saadat, Sanaz. Ph.D. The University of Memphis. August 2014. Probabilistic 

Seismic Loss Analysis for Design of Steel Structures - Optimizing for Multiple-Objective 

Functions. Major Professor: Charles Camp, Ph.D. 

 

An optimized seismic performance-based design methodology considering 

structural and non-structural system performance and seismic losses is considered to 

design steel structures. Multi-objective optimization methodology is implemented 

considering various sets of optimization objectives which would take into account 

minimization of the initial construction cost, associated with the weight of the structural 

system, and the expected annual loss considering direct economic losses, and a social loss 

parameter defined as expected annual social loss. A non-dominated sorting genetic 

algorithm method is implemented for the multi-objective optimization. Achieving the 

desired confidence levels in meeting performance objectives of interest are set as 

constraints of the optimization problem. Inelastic time history analysis is used to evaluate 

structural response under different levels of earthquake hazard to obtain engineering 

demand parameters. Hazus fragility functions are employed for obtaining the damage 

probabilities for the structural system and non-structural components. The optimized 

designs and losses are compared for example steel structures, located in two geographic 

locations: Central United States and Western United States. 
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CHAPTER 1 

INTRODUCTION 

Civil structures are typically designed, based on their location and type, to 

withstand different types of hazards such as earthquakes, wind, etc. Performance-based 

design (PBD) is an alternative to traditional design procedures, which are generally force-

based design methods (Bazeos 2009) and provide only qualitative expressions for the 

level of protection for life safety or earthquake-induced damages (Hamburger et al. 

2004). PBD in its current form originated in the 1990s and is based on a Federal 

Emergency Management Agency (FEMA) report (FEMA 1997a) that addressed seismic 

strengthening of existing buildings and initial concepts of performance levels defined in 

terms of damageability and varying levels of seismic hazard (FEMA 2012). The current 

forms of PBD pursue meeting the performance objectives, which are defined as statement 

of the acceptable risk of meeting specified performance levels specified as expressions of 

acceptable damage for certain hazard levels. PBD can provide more understanding on the 

performance of a structure to probable hazards. In addition, it facilitates meaningful 

discussions between stakeholders and design professionals on the development and 

selection of design options (FEMA 2012). The performance objectives are based on the 

safety and economy of a structure. They can be used to provide standard performance at a 

reduced cost, or confirm higher performance needed for critical facilities (FEMA 2012). 

In seismic PBD, performance objectives should be met for earthquake ground motions 

related to different hazard levels. The uniqueness and advantage of the PBD is that it uses 

a probabilistic approach in evaluating the performance of a structure in meeting 

performance objectives (Augusti and Ciampoli 2008). In addition, the probable 
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performance of structures in future earthquakes could be expressed in quantitative 

statements of the risk of casualty, occupancy and economic losses (Hamburger et al. 

2004).   

 Seismic risk assessment is an important part of real estate financial decision-

making for regions at risk of damaging earthquakes (ASTM 2007). Estimating the 

variability of earthquake risk would be very useful for developing mitigation policies and 

planning funding levels in both the public and private sectors. Applying seismic design 

codes and using specialized construction techniques might reduce potential losses in new 

buildings; however, the economic evaluation of these solutions requires evidence of risk 

(FEMA 2008). Expected annualized loss (EAL) is a common term in earthquake loss 

estimation and an outcome of seismic risk assessment that measures the average yearly 

loss and accounts for frequency and severity of various levels of loss (Porter et al. 2004). 

The Pacific Earthquake Engineering Research Center (PEER) has presented a framework 

to break the loss evaluation process into four steps, beginning with seismic hazard 

characterization, simulation of structural response to evaluate engineering demand 

parameters, damage modeling and assessment, and decision variable evaluation (Moehle 

and Deierlein 2004). This method has been implemented to evaluate expected annual 

values for economic and social losses associated with earthquake events. 

Different objectives can be used to optimize the PBD of structures. Beck et al. 

(2000) introduced an optimal PBD methodology by incorporating multiple preference 

functions and aggregating them using multiplicative trade-off strategy. Ganzerli et al. 

(2000) minimized the structural cost subjected to performance constraints on plastic 

rotations of beams and columns and behavioral constraints for reinforced concrete 
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frames.  Liu et al. (2005) formulated the seismic performance-based design of steel 

moment frames as a multi-objective optimization problem considering present capital 

investment and future seismic risk, which is considered in terms of maximum interstory 

drift demands at two hazard levels. Xu et al. (2006) presented a multi-criteria 

optimization for seismic PBD of steel structures under equivalent static seismic loading 

that minimized cost and earthquake damage. Fragiadakis et al. (2006) performed a 

performance-based optimum design of steel structures with respect to initial and life 

cycle cost. Alimoradi et al. (2007) and Foley et al. (2007) used a multi-objective 

optimization in the performance-based design of steel structures in which their objectives 

were the weight of the structure and a confidence parameter calculated based on the 

procedure presented in FEMA (2000a). Genturk and Elnashai (2011) considered reducing 

the life-cycle cost of buildings by reductions in material usage and seismic damage cost 

to achieve the objectives of economy and sustainability. Rojas et al. (2011) developed a 

multi-objective optimization PBD of steel structures using the weight of the structure and 

the expected annual loss as the optimization objectives. 

In this study, seismic loss evaluations are considered in optimizing the PBD of 

steel structures. Probabilistic hazard analysis is used to measure the potential losses due 

to earthquake and two different sites are considered: Memphis, TN located in the Central 

United States (CUS) and Los Angeles, CA, located in the Western United States (WUS). 

A multi-objective optimization method is applied to different sets of optimization 

problems that have considered minimizing combinations of the initial construction cost, 

modeled by the weight of the structural system, expected annual loss value associated 

with direct economic losses, and expected annual loss value associated with direct social 
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losses. Inelastic time history analysis is used to evaluate structural response under 

different levels of earthquake hazard to obtain engineering demand parameters such as 

inter-story drifts and peak floor accelerations. The calculated annualized loss values 

provide planners and engineers with a risk-based method for evaluating alternative 

structural designs and a quantitative parameter to compare seismic risks in different 

geographic locations. 
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CHAPTER 2 

PERFORMANCE BASED DESIGN 

In this chapter, after a general introduction to the concept of PBD, the 

implemented PBD method is explained. It includes the definition of performance 

objectives and the performance evaluation method implemented for design of steel 

moment frames. 

2.1.  Introduction to Performance-Based Design 

Structural design aims to specify and proportion the elements of a structure to 

support the loads applied to it during its lifetime. The structural designer needs to make 

sure that the design provides enough strength to support the loads in a manner that is safe 

and convenient for the occupants and at the same time should consider factors that lower 

the costs without sacrificing the safety. Therefore, the primary objectives of the structural 

designer are safety and economy (McCormac 1992). The traditional design methods in 

building codes intend to meet the acceptance criteria for stiffness and strength to provide 

adequate ductility, promote dynamic response and avoid premature formation of collapse 

mechanisms and other instabilities (Hamburger et al. 2004). However, one shortcoming 

of these methods is that the level of protection and performance of the structure is only 

stated qualitatively. As a result, these methods for defining design objectives would not 

be of enough application to all stakeholders such as owners, occupants, and insurers. 

The traditional measures of seismic performance have been in terms of force and 

deformation computed by structural analysis and interpreted by limits set forth in 

building codes. Unfortunately, this type of seismic analysis does not generally have a 

direct relationship to performance metrics that are of interest to or easily understood by 
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the building’s stakeholders (ATC 2007). PBD in its current form originated in the 1990s 

and is based on the report on NEHRP guidelines for seismic rehabilitation of buildings 

(FEMA 1997a), which addressed seismic strengthening of existing buildings and initial 

concepts of performance levels defined in terms of damageability and varying levels of 

seismic hazard  (FEMA 2012). In PBD, the traditional seismic metrics are used to define 

a series of standard performance levels that provide quantitative information about 

building performance that are more readily interpreted and thus of more value to decision 

makers (ATC 2007).  Seismic PBD (SPBD) permits a realistic understanding of the 

structure’s performance by providing a quantitative statement of the probable 

performance of the structure subjected to earthquake loads (Hamburger et al. 2004). 

SPBD can be applied to the design of new buildings or the retrofit of existing buildings 

by defining a set of performance objectives that achieve specific performance limits for 

defined hazard levels. Figure 1 shows a typical flowchart of the current PBD procedures 

that details the definition of performance objectives, development of a preliminary 

design, assessing the response of the structure in terms of the desired performance 

metrics, comparing the resulting performance with the defined performance objectives, 

and revising the design to meet the performance objectives, if necessary (ATC 2007).    
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Figure 1. Performance-based design flow diagram 

2.2. Performance Objectives 

Performance objectives are design criteria defined in the form of probabilistic 

statements of the acceptable risk of incurring damage and the consequent losses. 

Selection of these objectives would be made considering the desires of a wider group of 

stakeholders who may not directly participate in the design process (ATC 2007). In order 

to specify the performance objectives in PBD, decision makers need to identify 

acceptable performance levels in the defined levels of seismic hazard. This process is 

explained further in the following sections. 

2.2.1.  Performance Level 

Performance level, as described in FEMA (1997a), is defined as the intended 

post-earthquake condition of a building that expresses how much loss is caused by 

No Yes 

Develop Preliminary 

Design 

Select Performance 

Objectives 

Assess Performance 

Capability 

Does Performance 

Meet Objectives? Done 

Revise Design and/or 

Objectives 
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earthquake damage. This loss can be expressed in term of casualties, or damage to 

property or occupational capability. Table 1 lists some performance levels as defined by 

FEMA (1997a).  

 

Table 1. Definition of performance levels 

Performance Level Description 

Operational Level 

Very little overall damage, Backup utility 

services maintain functions, Structure 

substantially retains original strength and 

stiffness. No permanent drift. 

Immediate Occupancy Level 

Light overall damage. The building receives a 

“green tag” (safe to occupy) inspection rating. 

Repairs are minor. Structure substantially 

retains original strength and stiffness. No 

permanent drift. 

Life Safety Level 

Moderate overall damage. Structure remains 

stable and has significant reserve capacity. 

Some residual strength and stiffness left in all 

stories. Hazardous non-structural damage is 

controlled. Some permanent drifts. 

Collapse Prevention Level 

Severe overall damage. The building remains 

standing, but only barely, any other damage or 

less is acceptable. Little residual stiffness and 

strength, but load bearing columns and walls 

function. Large permanent drifts. 

 

 

The discrete damage states listed in Table 1 are selected from a large spectrum of 

possible damage states that a structure could experience as a result of earthquake 

response (FEMA 2000a). Two of the most common performance levels are collapse 

prevention and immediate occupancy. 

2.2.2.  Collapse Prevention Performance Level 

The collapse prevention (CP) structural performance level is defined as the 

damage state in which the structure is on the verge of partial or total collapse. The 
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structure would experience substantial degradation in the strength and stiffness of the 

lateral-force-resisting system along with large permanent lateral deformations. However, 

the gravity-load-resisting system must continue to carry gravity-load demands. Under the 

CP performance level the structure is not safe for re-occupancy (FEMA 2000a). 

2.2.3. Immediate Occupancy Performance Level 

The immediate occupancy (IO) structural performance level is defined as the 

damage state in which only limited structural damage has occurred that usually would not 

require repair. The vertical and lateral force-resisting systems retain nearly all their pre-

earthquake strength and stiffness. The structure should be safe for immediate post-

earthquake occupancy (FEMA 2000a). 

2.2.4. Seismic Hazard 

Seismic hazards imposed by earthquake events include direct ground rupture, 

ground shaking, land-sliding, liquefaction, and settlement. Since the most significant 

cause of earthquake damage to buildings is due to ground shaking, the effects of ground 

shaking form the basis for seismic design requirements in most design codes (FEMA 

1997a). However, for the structures located where other seismic hazards could result in 

significant ground deformation, these hazards should also be considered in performance 

evaluation of the structure (FEMA 2000a).The goal of earthquake resistant design is to 

produce a structure that can withstand a certain level of shaking without excessive 

damage. Selecting the design ground motions requires considering the significant 

uncertainties in the size, time, and location of potential earthquakes. Seismic hazard 

analysis is the quantitative estimation of ground shaking hazards at a particular site 

(Kramer 1996).  
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There are two general approaches for seismic hazard analysis: deterministic 

seismic hazard analysis (DSHA) and probabilistic seismic hazard analysis (PSHA). 

DSHA involves the development of a particular seismic scenario upon which a ground 

motion hazard evaluation is based (Kramer 1996). Implementing a probabilistic approach 

to consider uncertainties associated with future earthquakes has been introduced by 

Cornell (1968). PSHA considers the uncertainties in earthquake size, location, and time 

of occurrence and integrates over all potential magnitudes and source distances to 

estimate the mean frequencies of earthquake ground motion occurring at the site in any 

given time period (Bazzurro and Cornell 1999). Hazard levels may be defined on either a 

probabilistic or deterministic basis. Probabilistic hazards are defined as the probability 

that more severe demands will be experienced (probability of exceedance) in a specific 

time period. Deterministic demands are defined within a level of confidence in terms of a 

specific earthquake scenario (a specific magnitude event on a particular fault), which 

would be more appropriate for buildings located in the vicinity of a major active fault 

(FEMA 1997a). Table 2 lists some more frequently used probabilistic hazard levels in 

terms of their probability of exceedance (POE) and their corresponding mean return 

period, which is defined as the average number of years between events of similar 

severity (FEMA 1997a). 
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Table 2. Some frequently used probabilistic levels 

Earthquake Having Probability of Exceedance 

(POE) 
Mean Return Period (years) 

50% in 50 years 72 

20% in 50 years 225 

10% in 50 years 474 

2% in 50 years 2475 

 

 

Based on the recommendations of FEMA (1997b), structures could be assigned to 

one of three specified Seismic Use Groups (SUG): SUG-III, which includes structures 

that have essential facilities and are required for post-earthquake recovery and those 

containing substantial quantities of hazardous substances; SUG-II, in which structures 

have a substantial public hazard due to occupancy or use (e.g. high capacity educational 

structures, water treatment facilities, etc.); and SUG-I, that include structures not 

assigned to SUG-II or SUG-III. Figure 2 shows the recommended building performance 

levels for different levels of ground motion (FEMA 2000a). 
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Figure 2.  Recommended building performance levels for different levels of ground  

motion (FEMA 2000a) 

 

In FEMA (1997a), performance objectives are presented in a deterministic 

manner. The definition of these performance objectives include defining the limiting 

damage state, termed as performance level, and correlating the performance level to the 

defined ground motion hazard level (FEMA 2000a). 

Significant uncertainty exists in predicting the amount of damage that the 

building would experience for a given ground motion. This uncertainty is due to factors 

that affect the building behavior and response, such as stiffness of non-structural 

elements, quality of construction, etc.; inaccuracies associated with analysis procedures; 

and the uncertain character of earthquake ground motions. Therefore, it would be more 

appropriate to predict the performance in a probabilistic manner instead of 

deterministically (FEMA 2000a).  To address these uncertainties, FEMA (2000a) 
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developed a reliability-based probabilistic approach for performance evaluation. In this 

method, uncertainties are expressed in terms of acceptable confidence levels and 

recommended methods to improve these confidence levels such as increasing the 

stiffness and strength of the structure and reducing uncertainties associated with 

performance evaluation.  

2.3.  Confidence Levels 

As described in Section 2.2.2, in order to address the uncertainties inherent in the 

evaluation of structural performance in different seismic hazard levels, FEMA 350  

(FEMA 2000a) has developed a reliability-based probabilistic approach for performance 

evaluation in which uncertainties are expressed in terms of acceptable confidence levels 

(CLs) in meeting the performance objectives. In this study, the FEMA (2000a) 

methodology for the calculation of CLs is implemented. Structural analysis is used to 

estimate various structural response parameters such as interstory drift and axial forces on 

individual columns under different loading conditions which include seismic ground 

motions for different hazard levels. Predicted demands, calculated from structural 

analysis, are later adjusted for an analytical uncertainty factor accounting for the 

uncertainty inherent in the analytical technique, and a demand variability factor 

accounting for sources of variability in structural response. These predicted demands are 

compared with structural capacity modified by resistance factors to account for 

uncertainties inherent in predicting capacity. The ratio of factored demand-to-capacity is 

implemented to calculate confidence level (FEMA 2000a).   

Selected performance objectives are CP for hazard level of 2% POE in 50 years 

and IO for hazard level of 50% POE in 50 years, which are the two performance levels 
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considered in the FEMA (2000a) PBD recommended procedure. Structural demands for 

the earthquake ground motions associated with selected hazard levels are considered as 

the median values of maximum inter-story drift (ISD) and maximum column 

compressive forces of structure for suites of ground motions in each hazard level (Rojas 

2008) and are determined using non-linear time-history analysis. The confidence 

parameter λCL is calculated as the factored demand-to-capacity ratio as 

 

C

Da
CL




   (1) 

 

where γ is the demand variability factor accounting for the variability in predicted 

demand related to assumptions made in structural modeling and character of ground 

shaking, γa is an analysis uncertainty factor, D is the calculated demand on a structure, 

obtained from the structural analysis, C is the median estimate of the capacity of the 

structure, and resistance factor ϕ accounts for the uncertainty in the prediction of 

structural capacity. FEMA (2000a) provides recommended values for γ , γa and C, listed 

in Tables A-1 to A-3 in Appendix A.  

The CL is calculated as 

 

)(CL xK  (2) 

 

where Φ(Kx) is the normal cumulative distribution function value corresponding to Kx 

which is a standard Gaussian variant associated with probability x of not being exceeded 

(FEMA 2000a) and is back-calculated from: 
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where βUT is an uncertainty measure equal to the vector sum of the logarithmic standard 

deviation of the variations in demand and capacity resulting from uncertainty, b is a 

coefficient relating the incremental change in demand (ISDs and column forces) to an 

incremental change in ground shaking intensity at each hazard level, taken as 1.0 (FEMA 

2000a), and k is the slope of the hazard curve, in natural log coordinates, at the hazard 

level of interest. An example of calculating k (FEMA 2000a) is  
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where S1(10/50) and S1 (2/50) are the spectral amplitudes for hazard levels of 10% in 50 years 

and 2% in 50 years, respectively; HS1 (10/50) is the probability of exceedance for 10% in 50 

years which is calculated as 1/475=0.0021, and HS1 (2/50) is the probability of exceedance 

for 2% in 50 years, calculated as 1/2475=0.00040. 

In order to further improve the performance-based design procedure, the aim is to 

consider performance measures that better relate to the decision making needs of 
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stakeholders and create procedures for estimating probable repair cost, casualties, and 

time of occupancy interruption, for both new and existing buildings. The steps for this 

methodology include: characterization of the ground shaking hazard, analysis of the 

structure to determine its probable response and the intensity of shaking transmitted to 

non-structural components, determination of the probable damage to the structure at 

various levels of response, determination of the potential for casualty, capital and 

occupancy losses as a function of structural and non-structural damage, and computation 

of the expected future losses as a function of intensity, structural and nonstructural 

response, and damage (FEMA 2006). 

2.4.  Seismic Loss Evaluation 

Seismic losses are metrics for decision making in seismic risk mitigation. 

Evaluation of loss due to building damage from an earthquake event depends on both 

seismic hazard and the building vulnerability (Kappos et al. 2007). The types of losses 

that could be considered include casualties (loss of life and serious injuries), direct 

economic losses (including the cost of repair and replacement of damaged systems and 

components), and downtime (including the time of occupancy interruption due to 

damage) (ATC 2007).  

Expected annual loss values are calculated by aggregating the probabilistic 

seismic hazard analysis (PSHA), probabilistic seismic demand analysis, probabilistic 

capacity analysis, and probabilistic loss analysis, using the total probability theorem.  

PEER center has developed a loss assessment framework (Moehle and Deierlein 

2004, Ramirez et al 2012) to calculate the mean annual occurrence rate of decision 

variable λ[DV] as  
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   dIMdEDPdDMIMIMEDPPEDPDMPDMDVPDV ][][][][][   (6) 

 

where DV is the decision variable, DM is the damage measure, EDP is the engineering 

demand parameter, and IM is the intensity measure. The cumulative distribution function 

of the random variable X conditioned on random variable Y is P[X│Y]. Direct economic 

loss is evaluated through calculating the EAL parameter. For direct social loss 

calculation, a parameter defined as expected annual social loss (EASL) is considered. 

Therefore, in loss calculations two types of DV (i.e. EAL and EASL) are considered. The 

steps of this framework are further explained in the following sections. 

2.4.1.  Probabilistic Seismic Hazard Analysis 

PSHA quantifies and rationalizes the uncertainties regarding the location, size, 

and resulting shaking intensity of possible future earthquakes at a given site (Baker 

2008). This method implements the characterization of the earthquake sources and their 

seismicity and ground motion attenuation relationships, along with considering the 

uncertainties associated with these characterizations, to estimate the probabilities that the 

ground motion parameters will be exceeded during a particular time period (Kramer 

2007). 

PSHA is performed for Memphis using the EZ-FRISK software package (EZ-

FRISK 2013). The New Madrid seismic zone (NMSZ) and CUS gridded data are 

considered as seismic sources and the attenuation relationships recommended by USGS 

(2008) are implemented. EZ-FRISK generates the uniform hazard response spectra 

(UHRS) for different hazard levels. More information about the implemented software 

can be found in Appendix B. Figure 3 shows the obtained response spectra for hazard 



18 

levels considered for Memphis which are 2, 5, 10 and 50 percent probability of 

exceedance (POE) in 50 years. 

Synthetic ground motions are generated using the stochastic methods 

implemented in SMSIM (Boore 2000). A stochastic method for synthetic ground motion 

generation is used to address the need for ground motion records compatible with local 

seismic characteristics in regions with scarce recorded data. The ground motions are 

modified to match the uniform hazard response spectra for four hazard levels of 

earthquakes with 2, 5, 10, and 50 POE in 50 years (Shahbazian and Pezeshk 2010). The 

SHAKE91 computer program is used to account for site effects using the Memphis site 

properties considering the information given by Romero and Rix (2001) for Lowlands 

geological conditions and damping and modulus degradation curves adopted from EPRI 

(1993). The SHAKE91 program (Idriss and Sun 1992), which is a modification of 

SHAKE (Schnabel et al. 1972), analyzes the behavior of the horizontally layered soil 

deposits subjected to seismic loading. A total of 40 ground motions (10 time histories for 

each of the four hazard levels) are considered for calculation of losses at Memphis site. 

Increasing the number of considered hazard levels would result in the more accurate EAL 

calculation which on the other hand would be equivalent to having a more 

computationally expensive analysis procedure.  

For a site located in Los Angeles, CA, suites of ground motions are from the SAC 

steel research project (Somerville et al. 1997) for three different hazard levels (2, 10, and 

50 percent POE in 50 years). The ground motions are scaled so that, on average, their 

spectral values match with the least square error fit to the USGS national hazard mapped 

values at 0.3, 1.0, and 2.0 seconds, and an additional predicted value at 4.0 seconds 
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(Somerville et al. 1997). The weights assigned to the four period points are 0.1 at the 0.3-

second period point and 0.3 for the other three period points. The target spectra provided 

by USGS are for the SB/SC soil type boundaries, which have been modified to be 

representative for soil type SD (FEMA 2000b).  A total of 30 ground motions are 

considered for the site located in Los Angeles, CA. 

 

 

Figure 3.  Spectral accelerations for different hazard levels for a site located in  

Memphis, TN obtained from EZ-FRISK 

 

2.4.2.  Probabilistic Seismic Demand Analysis 

In the seismic demand analysis, the response of the structure subjected to the 

ground motions defined by the PSHA is used to calculate engineering demand parameters 

(EDPs). Engineering demand parameters describe structural response by simulation of 

the building to the input ground motions (Moehle and Deierlein 2004). Considering that 

ISDs and peak floor accelerations (PFAs) could be implemented to evaluate the damage 
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to structural and nonstructural components (HAZUS-MR 2003b), in this study, the EDPs 

are the ISD and PFA, calculated from a non-linear time-history analysis of the structure. 

The DRAIN-2DX (Dynamic Response Analysis of Inelastic 2-Dimensional Structures) 

computer program is used for the analysis of the structure. DRAIN-2DX is a computer 

program written in FORTRAN 77 and performs nonlinear static and dynamic analysis 

(Powell 1993 and Prakash et al. 1993). Yield surfaces for structural elements are based on 

the models presented in Powel (1993), Alimoradi (2004), and Rojas et al. (2011). More 

details are presented in Appendix C. 

2.4.3.  Probabilistic Damage Analysis 

The EDPs for structural and nonstructural components are linked to damage 

measures (DMs) which describe the physical condition of these components. For the 

purpose of damage assessment, fragility curves for the structure of interest should be 

developed. Fragility functions are probability distributions to indicate the likelihood of 

damage to an element or system due to a given damage state as a function of a single 

demand parameter such as the ISD or the PFA (ATC 2007). Fragility curves are defined 

as lognormal distributions of the conditional probability of damage exceeding a certain 

DM given EDP (Hazus-MH 2003a and Rojas 2008) which can be expressed as  
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where EDPDM is the median value of the considered EDP (e.g. ISD) and βDM is the 

lognormal standard deviation of the EDP for the DM considered (such as slight, 

moderate, extensive, and complete) 
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Fragility curves are obtained using the parameters given in Hazus technical 

manual Hazus-MH (2003a) for structural and non-structural members for different 

damage states. Figures 4 through 6 show the fragility curves for a low-rise building type 

S1 (steel moment frames) with high-code seismic design level. Values of βDM are 

determined from Hazus-MH (2003a). Figure 7 shows an example of damage analysis. 

This analysis would be performed for structural components (SS) and drift sensitive 

(NSD) and acceleration sensitive (NSA) non-structural components. 

 
Figure 4. Fragility curves for structural (SS) elements for sample structure 
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Figure 5.  Fragility curves for drift-sensitive non-structural (NSD) elements for sample 

structure 

 

 
Figure 6.  Fragility curves for acceleration-sensitive non-structural (NSA) elements for 

sample structure 
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Figure 7. Damage analysis for different components 

 

2.4.4.  Probabilistic Seismic Loss Analysis 

Probabilistic loss analysis estimates the consequences of structural damage from 

an earthquake and is used to evaluate decision variables (DVs). These variables are 

related to consequences of earthquake damage which can be expressed in terms like 

social losses or casualties or economic losses associated with repair cost or repair time. 

The DVs considered in this study are economic loss and social loss. Economic loss is 

expressed in terms of the percentage of the building replacement cost (%BRC).  

Expected economic losses E[Lc,EDP] (%BRC) for each component (SS, NSD, 

NSA), are calculated for a specific IM as 
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where Lc,EDP(IM) is the loss associated with each component c (SS, NSD, and NSA) for the 

EDP at a specific IM, P[DMi,EDP] is calculated using fragility curves for the EDP at a specific 
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IM, and RCDMi,c is defined as the repair cost for each component due to DMi which varies 

from slight (i=2) to complete (i=5) (Hazus-MH, 2003b). Expected loss E[LEDP] for a 

particular structure and a specific IM is calculated as the sum of losses for all components 

as 
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The total loss curve is obtained from the loss curves for each hazard level and 

hazard curve as 
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where P[L > l] is probability of loss L exceeding a specific value l, which is obtained 

from the loss curves for each hazard level, λ is the annual rate of exceedance for each 

IMi, m is the number of hazard levels considered, and ΔλIMi is the change in annual rate of 

exceedance associated with dividing the hazard curve into m different segments, as 

shown in Figures 8 and 9. The hazard curve for the Memphis site is obtained using the 

EZ-FRISK program. For the Los Angeles site, the hazard curve is obtained from USGS 

(2013). For the Memphis site, since four hazard levels are considered in the analysis, the 

curve is divided into four segments (m=4). The segments are set to have the points 

associated with the four considered hazard levels (for this case, 2%, 5%, 10%, and 50% 

POE in 50 years) would be located at the midpoint of each segment. In the Figures 8 and 

9, diamond markers show the points on the hazard curve that are associated with the 

hazard levels considered in the loss analysis. Same procedure is followed for the Los 
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Angeles hazard curve, with the difference that it is divided to three segments (m=3), since 

three hazard levels (2%, 10%, and 50% POE in 50 years) are considered for the Los 

Angeles site. 

 

Figure 8. Memphis, TN hazard curve, amplified for soil type D 

 

Figure 9. Los Angeles, CA hazard curve, amplified for soil type D 
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The EAL is the area under the total loss curve. EASL is calculated following the 

same procedure presented for EAL with direct social loss as the decision variable. The 

methodology presented in Hazus-MH (2003b) is used to perform probabilistic loss 

analysis with casualties as DV. This methodology assumes that there is a relationship 

between building damage and the number and severity of casualties and estimates 

casualties caused by both structural and nonstructural damage (Hazus-MH, 2003b). 

Figure 10 shows an overview of the Hazus methodology, in which casualties 

caused by an earthquake are modeled by developing a tree of events leading to their 

occurrence (Hazus-MH 2003b). In this figure CSLi (i= 1,4) is the casualty severity level 

for i equal 1 (lowest severity level associated with minor injuries) to 4 (highest severity 

level). More description is presented in Table A-4, Appendix A. The four damage 

measures are associated with slight to complete damage levels. 

 

Figure 10. Injury event tree model 
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Equations (11) and (12) below show the aggregation of these different events to 

calculate the social losses. Social losses for indoors and outdoors injuries for each 

intensity measure IM, E[SLindoors,EDP] and E[SLoutdoors,EDP], respectively, are calculated as 
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where P[DMi,EDP] is the probability of damage measure [slight (i=2) to complete (i=5) damage] 

for the EDP at a specific IM, CSLj is the casualty severity level for j equal 1 (lowest severity 

level) to 4 (highest severity level), and wj are the weights given to different CSLs based 

on financial costs. The probabilities for different CSLs are based on recommendations 

presented in Hazus-MH (2003b). The weights wj are chosen based on the comprehensive 

costs for different injury levels suggested by National Safety Council (NSC) (NSC 2013) 

and α (in $/person) is the comprehensive cost for CSLi.  

The expected number of occupants injured or killed, ENOI,EDP, for a specific IM is 

calculated as 

 

 ][][ ,,, EDPoutdooroEDPindoorioEDPOI SLEnSLEnNEN   (13) 

 

where No is the number of occupants in building, ni and no are factors that account for the 

distribution of people indoors and outdoors, considering recommendations from Hazus 
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MH (2003b). The expected number of occupants injured or killed is calculated for all 

ground motions and all hazard levels. EASL is calculated using the area under the total 

social loss curve obtained from the aggregation of the loss curves for each hazard level 

and hazard curve.  

Figures 11 and 12 show total loss curves for economic and social losses for 

Memphis, TN and Los Angeles, CA. Total economic loss curves present the annual rates 

of exceedance for different values of total repair cost, RCT. Total social loss curves 

present the annual rates of exceedance for different values of total social cost, SCT. The 

presented total loss curves in Figures 11 and 12 show that both parameters EAL and 

EASL, calculated as the area under the curve, are significantly larger for the site located 

in Los Angeles, as compared to the site located in Memphis.   

 

 

Figure 11.  Total economic loss curves for Memphis, TN and Los Angeles, CA sites for 

an example structure 
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Figure 12.  Total social loss curves for Memphis, TN and Los Angeles, CA sites for an 

example structure 
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CHAPTER 3 

OPTIMIZATION METHOD 

Optimization is the process of making a system, design, etc. as efficient as 

possible as measured by a set of optimization objectives. Therefore, optimization seeks to 

improve performance toward some optimal point or points (Goldberg 1989). 

Optimization in design is the determination of properties of the structure to amplify the 

value of a certain characteristic while the values of the rest of its characteristics are 

constrained to remain within prescribed limits (Vasiliev and Gurdal 1999). ASCE (1997) 

presented several examples of optimization methods applied to structural design 

problems (e.g. design of plate girders, cold-formed steel beams, composite members, 

reinforced and prestressed concrete beams, steel frameworks, and tall buildings).  

The general form of the optimization problem can be expressed as finding a 

design variable vector Xd ={x1,x2,…,xn} to minimize or maximize the objective function 

f(X) as:  

 

)(o dXfMaxrMin  (14) 

 

 

subject to 

 

      Equality Constraints              Edi niXc ,...,2,10)(   (15) 

      Inequality Constraints           Idi npiXc ,...,2,10)(   (16) 

where ci(X) are equality and inequality constraints (ASCE 1997). 
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Various optimization methods have been developed over the last several decades, 

many of which have matured to be utilized in realistic engineering systems (ASCE 1997).  

Some of these optimization methods are based on direct search for exact mathematical 

solutions, such as linear and nonlinear programming methods: sequential quadratic 

programming, successive linear programming, and gradient-based search methods 

(Soliman and Mantaway 2012). Another approach to optimization uses stochastic 

methods based on observations of natural phenomena. Some of the more popular 

techniques include genetic Algorithms (GA), simulated annealing algorithm (SAA), 

evolutionary algorithms (EA), artificial neural networks (ANN), ant colony optimization 

(ACO), and particle swarm optimization (PSO). These stochastic methods provide a 

means of coping with models and systems that are highly nonlinear, have high 

dimensionality, or are inappropriate for classical deterministic methods of optimization 

(Spall 2004).  

Evolutionary algorithms (EA), inspired by evolutionary biology, are very flexible 

techniques that are capable of solving very complex optimization problems. Some 

examples of EAs include GAs, evolution strategies, evolutionary programming, and 

genetic programming (Castro 2006).  These algorithms can be applied to a wide variety 

of subjects including the design of artificial intelligence systems, image processing, facial 

recognition, structural design, etc. 

EAs have been applied to a variety of civil and architectural engineering 

problems such as structural design, structural control, damage detection, architectural 

design, and traffic engineering and transportation. Jenkins (1997) used a GA to optimize 

the geometry and design of a multi-story frame with truss-supported hangers. Camp et al. 
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(1998) investigated the application of a GA in two-dimensional steel structures. 

Matsuzaki et al. (1999) implemented a GA for solving the multi-floor facility layout 

problem. Li et al. (2000) used a GA for multi-level optimization of buildings with active 

control under wind loads. Caldas and Norford (2003) used a GA for the optimization of 

building envelopes and the design of HVAC systems. Park et al. (2013) applied a GA to 

minimize the worker vertical transportation time in high-rise building construction. The 

above-mentioned studies are just a few examples among so many that demonstrate the 

diversity of problems in civil engineering that use EAs. 

3.1.  Genetic Algorithm 

Within the field of stochastic optimization, GAs are among the most widely used 

methods. Simply stated, a GA attempts to mimic the processes of natural evolution. GAs 

were first introduced and developed by John Holland in the 1960s (Coley 1999). 

Holland’s goal was to implement the mathematical abstraction of the biological 

adaptation process into a wide range of complex systems with factors that interact in a 

nonlinear manner (Holland 1975). Holland’s GA moves from one population of 

chromosomes (e.g. strings of ones and zeroes that encode and represent the values of 

design variables) to a new population by applying a form of natural selection using 

genetics-inspired operators such as crossover and mutation (Mitchell 1999). A GA 

combines a strategy of the survival of the fittest among the string structures with an 

organized and yet randomized exchange of information to form a search algorithm. GAs 

have proven themselves to provide robust search mechanics in complex search spaces 

(Goldberg 1989). During the last several decades, there has been a widespread interaction 

among researchers who work on various evolutionary computation methods and the term 
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“genetic algorithm” used by researchers is sometimes far from Holland’s original 

conception (Mitchell 1999). 

3.1.1. Selection 

In a GA, chromosomes represent a population of candidate solutions within the 

search space of a specific optimization problem. Selection is the process of selecting 

individual chromosomes from the population for the purpose of reproduction. Choosing 

an appropriate selection method will encourage the GA to maintain the diversity within 

the population through exploration and at the same time moves the population  towards 

finding the best individual (Coley 1999). Usually, selection is based on the fitness value 

assigned to each chromosome. There are several selection methods suggested by different 

researchers such as tournament selection, proportional selection methods (e.g. roulette 

wheel selection), truncation selection, linear ranking selection, and exponential ranking 

selection (Blickle and Thiele 1995). In this study, a roulette wheel selection (RWS) 

strategy, which is one of the commonly used selection methods in GA applications, is 

implemented.  In this RWS method, each individual chromosome in the population is 

given a chance to become a parent proportional to its assigned fitness value. Therefore, 

individuals with a better fitness value have a higher chance of being selected. The 

probability of individual i being selected in a population of N individuals can be 

expressed as: 
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Figure 13 shows a sample RWS, in which the largest portion of the wheel (in this 

example 40%) is assigned to the fittest individual based on Equation (17), leading to a 

higher chance of this individual being selected. To implement this method, a probability 

is assigned to each individual using the Pi value, and probabilities are summed 

cumulatively to place individuals on the considered roulette wheel. Then, a random 

number is generated between zero and one and based on which portion the random 

number has been fallen into, the associated individual would be selected. The individuals 

have a chance of being selected multiple times and their probability of being selected 

would depend on their fitness value. 

 

Figure 13. Roulette Wheel Selection Method 

3.1.2.  Crossover 

Crossover is a genetic operator used in GAs to reproduce individuals from one 

generation for the next generation. Among the various methods proposed for crossover 

are: single-point crossover, multipoint crossover, and uniform crossover. Figure 14 shows 

some of these crossover methods that recombine pairs of individuals to generate new 

offspring. The difference between these methods is in the number of crossover points. 



35 

Some studies suggest that for some cases, for example for larger search spaces, uniform 

crossover outperforms single and double point crossover methods (Spears and De Jong 

1991). In this study, uniform crossover is implemented in which, offspring is generated 

by swapping the bits of the chromosome string between the two parent individuals, using 

the crossover probability. The considered crossover probability is 0.6, which has been 

used in the similar optimization problems (Rojas et al 2011).  

 

Figure 14. Different Crossover Method 

3.1.3. Mutation 

Mutation is a genetic operator that helps add new genetic material to 

chromosomes in a population to both aid in the exploration of the search space and to 

help the GA avoid premature convergence to a local optimum (Gen and Cheng, 2000). 

However, the probability of mutation is usually kept low to avoid losing the knowledge 

from the previous generation and turning into a random search. In this study mutation 

probability of 0.03 is considered. Figure 15 shows a sample mutation procedure for 
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binary represented individuals, in which bits on the individual are randomly switched 

from zero to one with the mutation probability.  

 
Figure 15. Sample Mutation Method 

3.2.  Multi-Objective Optimization 

In multi-objective optimization problems, there is more than one objective 

function to be optimized simultaneously. In this case, due to the usual conflict among 

different objectives, there is not a single solution that is best with respect to all objectives. 

Instead, there is a set of solutions, called non-dominated solutions or Pareto optimal 

solutions, that cannot simply be compared with each other because no improvement is 

possible in one objective function without sacrificing at least one of other objective 

functions (Gen and Cheng 2000). Many researchers have worked on the multi-objective  

optimization in variety of fields, originally pioneered by Pareto (1906).  

The general form of the multi-objective optimization problem can be expressed as 

finding a design variable vector Xd = {x1, x2, …, xn} to minimize or maximize the 

objective functions 
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        Equality Constraints       Edi niXc ,...,2,10)(   (19) 

 
 

 

        Inequality Constraints     Idi npiXc ,...,2,10)(   (20) 

 

where fi(Xd) are q objective functions and ci(Xd) are equality and inequality constraints. If 

S is used to denote the feasible region in the decision space, the feasible region in 

criterion space Z can be defined as 
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minimization case, a solution z
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there does not exist another different solution z  Z that: 

 

 

klzz

qkzz

nd

ll

nd

kk





allfor 

,...,2,1somefor 
 (22) 

 

where z
nd

 is the non-dominated solution. 

As mentioned, these non-dominated solutions cannot simply be compared with 

each other because you cannot select one solution among them which is better than the 

others in all objectives. Therefore, in order to select one solution from the non-dominated 

set of solutions, the decision maker needs to provide additional preference information 

regarding various objectives (Gen and Cheng 2000).  Multi-objective optimization results 

can be presented in two general ways: generating approaches and preference-based 

approaches. In generating approaches an entire set of non-dominated solutions would be 
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identified and would not consider any preferences among the objectives. Pareto approach 

is a generating approach. In preference-based approaches, a preferred solution based on 

the relative importance of objectives is identified. Typical preference approaches include: 

weighted sum, utility function, compromise, and lexicographic ordering (Gen and Cheng 

2000).  Preference-based approaches have the advantage of providing the decision maker 

with one solution based on a predefined importance structure of objectives. However, 

defining this importance structure (e.g. objective weights in weighted sum approach or 

utility function for utility function approach) is controversial for some optimization, since 

the resulting solutions are very sensitive to the values of the weights or the prescribed 

order of objectives (Gen and Cheng 2000).  On the other hand, generating approaches 

would not require preference information to present results and provide the decision 

makers with a set of Pareto solutions to select from. 

In this study, the multi-objective optimization results are presented in a 

generating format. A multi-objective GA using an elitist non-dominated sorting strategy 

(Deb et al. 2002) is implemented to perform the optimization. In order to preserve the 

diversity of the solutions in the Pareto front, a crowding distance methodology is used. 

Figure 16 is the graphical explanation of a non-dominated sorting genetic algorithm 

(NSGA-II) implemented for a problem with two optimization objectives f1 and f2. The 

closed markers in the Figure 16(b) represent the non-dominated solutions on the front. 

The first step in this optimization strategy is to randomly generate a population PN and 

compute a fitness value for each parent individual in the population based on a non-

dominated sorting. Fitness is assigned to individuals based on the number of solutions 

they dominate. An individual dominates another solution when it excels in both 
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objectives. A new child population QN is generated based on general GA methodology 

(roulette wheel selection, uniform crossover, and mutation). Next, a new population 

PN
New

 is developed from the parent and child populations (size 2N) by grouping 

individuals into subsets of different fronts Fi based on the non-dominated sorting 

procedure. The next generation (size N) is populated with members for the first front F1 

(the most dominate front). If the new generation is not fully populated from the F1 front 

pool, members are taken form the second front F2, and so on, until the new generation 

PN
New

 is fully populated. If there are fewer unfilled positions in the new generation than 

there are members in a front group, a crowding distance sorting strategy is applied where 

individuals with larger crowding distances (the distance between the individuals 

immediately before and after the individual j located on the Pareto front, as shown in 

Figure 16b) are chosen to fill out the parent population.  

 

Figure 16. (a) NSGA-II procedure, (b) crowding distance calculation (Deb et al 2002) 

3.3.  Optimization Problems 

Three different optimization problems are considered. The first two problems are 

optimized for two objectives. In the third optimization problem, three objectives are 
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considered. The first multi-objective optimization problem attempts to minimize the 

combination of the initial cost associated with the weight of the structural system w and 

EAL of a building while achieving the desired confidence levels for performance 

objectives and seismic design codes. The performance objectives are immediate 

occupancy performance level for the hazard level of 50% in 50 years and collapse 

prevention for the hazard level of 2% in 50 years, while satisfying design criteria for 

strong column-weak beam (AISC 2011).  

In the second optimization problem, the objectives are defined as the lifetime cost 

of the structure or the present value of the total cost and direct social loss defined as the 

EASL.  

The third optimization problem considers three optimization objectives defined as 

the initial cost of the structure, direct economic loss parameter EAL, and direct social loss 

parameter EASL. The formulation and the results of these optimization problems are 

discussed in more detail in Chapter 4.  

3.4.  Summary 

In this chapter, a general introduction to optimization problems has been 

presented. Different optimization methods, including definite methods, based on direct 

search for exact mathematical solutions, and stochastic methods are introduced and the 

application of some of these optimization methods in engineering problems is briefly 

discussed. The basic formulation of a GA, an algorithm inspired by natural selection, is 

introduced in detail. Since the many practical engineering optimization problems involve 

multiple objectives, there has been much interest and research conducted in multi-

objective optimization problems. There are several strategies proposed to address the 
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multi-objective optimization problems, including generating approaches and preference-

based approaches. In this study a multi-objective elitist non-dominated sorting GA 

strategy is implemented for problems with various objectives.  
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CHAPTER 4 

OPTIMIZATION DESIGN EXAMPLES 

Multi-objective optimization has been implemented in the probabilistic 

performance-based design of various steel moment frame structures. The optimization 

objectives include combinations of initial cost, expected annual seismic economic loss, 

and expected annual seismic social loss. Three different optimization problems are 

considered. The first two problems are optimizing for two objectives. In third 

optimization problem, three objectives are considered. The following sections present 

each of the considered problems in details. 

4.1  Optimization Problem I 

This multi-objective optimization attempts to minimize the combination of the 

initial cost associated with the weight of the structural system w and EAL of a building, 

while achieving the desired confidence levels for performance objectives. An example 3-

story steel moment frame is considered. The performance objectives are IO performance 

level for the hazard level of 50% in 50 years and CP for the hazard level of 2% in 50 

years, while satisfying design criteria for strong column-weak beam (AISC 2011).  

4.1.1  Problem Definition 

The multi-objective optimization problem is formulated as two minimization 

problems for the considered objectives. The general form of the optimization statement is 

defined as 

 

)3,1(:

),(

ictoSubjected
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i

 (23) 
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where W and EL are the penalized values for the weight w and EAL of the structure, 

respectively; and ci is the i
th

 constraint that is applied on the optimization problem.  The 

penalized values W and L are calculated as 

 

wW   (24) 

 

EALEL   (25) 

 

 

where φ is the penalty function. The constraints for the confidence levels for collapse 

prevention CLCP and immediate occupancy CLIO are 

 

0.1:
min,

1 
CP

CP

CL

CL
c  (26) 

0.1:
min,
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CL
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c  (27) 

 

 

where CLCP,min=90% and CLIO,min=50%, as recommended by FEMA 350 (FEMA 2000a). 

The constraint for ensuring the AISC strong column-weak beam criteria of for seismic 

design, calculated for each connection in the frame is 

 

0.1:
*

*

3 



pb

pc

M

M
c  (28) 

 

 

where M
*
pc is the modified flexural strength of the column and M

*
pb is the modified 

flexural strength of beam sections (neglecting the additional moment due to shear 

amplification from the location of the plastic hinge to the column centerline). Equation 

(28) is calculated using the AISC (2011) specifications Section E3.  

The penalty function φ is defined as 
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Figures 17 and 18 show the example structure which is adopted from the SAC 

structure presented in FEMA (2000b). The structural steel is A992. The lumped masses 

are calculated based on the loading presented in FEMA (2000b) for this structure. Based 

on these loading definitions, the seismic mass for the structure is considered as 70.90 

kips-sec
2
/ft for the roof and 65.53 kips-sec

2
/ft for the floors (the values are for the entire 

structure) (FEMA 2000b). Masses are lumped (LMi) at the beam-to-column locations. 

Moment frame A-E/1 is considered for the design. Lean-on columns are used in the 

analysis to represents the gravity frame system that is tributary to the moment resisting 

frame. The gravity loads for lean-on columns are calculated as 100% of permanent dead 

load and 25% of transient live load. In this example, since there are two moment resisting 

frames in the considered direction, the tributary gravity load associated with one half of 

the structure is assigned to the moment frame A-E/1. Lean-on columns are pin-ended 

columns that are connected to the moment frame considered through rigid links, as shown 

in Figure 17.  
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Figure 17. Elevation of the considered structure 

 

 

Figure 18. Plan view of the considered structure 

Figure 17 shows the five design variables for the seismic PBD optimization (two 

column types C1 and C2 and three beam types B1, B2, and B3). The search space 

includes a list of 60 AISC W sections (W10, W12, and W14) for columns and another list 
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of 64 AISC W sections (W18, W21, W24, W27, W30, W33, W36, and W40) for beam 

elements. Therefore, the size of the search space for this problem would be 

approximately 9.44(10
8
). The lists of the considered sections are presented in Appendix 

D. The genetic algorithm uses a population size of 100, maximum number of generations 

of 300, a roulette wheel selection method, a uniform crossover method with probability 

of 0.6, and a mutation probability of 0.03. Figure 19 shows the Pareto fronts obtained 

using the NSGA-II multi-objective optimization strategy (Deb et al. 2002) for the 

combination of structural weight and EAL. The Pareto fronts represent a range of feasible 

designs that are mathematically equivalent. Table 3 lists the design details for the 

example frame for three sample designs located on the Pareto front for both geographic 

locations: design associated with the minimum weight, design located on the middle of 

the front (which could be approximated as assigning similar importance or weight to the 

both optimization objectives), and design associated with the minimum EAL. 

 

 

Figure 19.  Pareto front for the example frame for sites located in Memphis, TN and 

Los Angeles, CA  
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Table 3.  Comparison of the results for the example frame located in Memphis and Los 

Angeles 

 

Memphis, TN 

Designs C1 C2 B1 B2 B3 W (kips) EAL(%BRC) 

Min Weight W12X152 W12X106 W21X44 W21X44 W18X40 39.78 0.03188 

Midpoint 

front 

W14X233 W14X233 W30X99 W30X99 W27X94 80.53 0.01268 

Min EAL W14X455 W14X550 W40X167 W40X199 W30X191 167.37 0.00508 

Los Angeles, CA 

Designs C1 C2 B1 B2 B3 W (kips) EAL(%BRC) 

Min Weight W14X398 W14X233 W18X71 W27X114 W21X44 86.02 0.37296 

Midpoint 

front 

W14X370 W14X426 W30X124 W36X170 W27X94 125.48 0.28846 

Min EAL W14X605 W14X605 W33X130 W40X183 W40X167 175.91 0.23601 

 

 

Figures 19 shows that values for EAL are significantly larger for a site located in 

Los Angeles, CA compared to the site located in Memphis, TN; the difference is 

associated with the seismicity characteristics of the two geographic locations 

characterized by the hazard curves and larger PGAs for the considered hazard levels in 

the Los Angeles site. Comparing Figures 12 and 13 shows that for frequent earthquakes, 

associated with larger values of λ, the PGA values are considerably larger on the Los 

Angeles hazard curve; the difference is less notable for rare events (smaller λ values). In 

addition, the slope of the hazard curve for Los Angeles, CA is greater than that for 

Memphis, TN and results in a considerable difference in the calculated EAL values for 

these two locations. The ratio of the change in EAL to the change in weight, computed 

from Figure 18, is several times greater in Los Angeles, CA than in Memphis, TN 

indicating an increase in weight would result in a significantly larger decrease in EAL. 
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Using the Pareto fronts, decision makers would have a wider range of EAL to choose 

from for a structure in Los Angeles, CA. 

The present value of the total cost PC
T

t considering initial cost and seismic 

economic loss for a lifetime period of t years, is estimated as 

 
S

t

IT

t PLCPC   (30) 

 

.where C
I
 is the initial cost of the structure and PL

S
t  is the present value of the seismic 

direct economic loss. The initial cost C
I
 is  

  

WC I    (31) 

 

 

where W is the weight of the frame and ρ is the cost per unit weight of the frame. The 

present value of the seismic economic loss PL
S

t is calculated as 
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(32) 

 

where ir is the discount rate, assumed to be 2% (Porter et al. 2004), and t is considered as 

50 years. The value of EAL in Equation (32) is calculated by considering the BRC to be 

equal to C
I
. 

Table 4 lists the calculated ratios CI
/PC

T
50 and PL

S
50/PC

T
50 for the structure designs. 

The ratio of seismic cost to the total cost of the structure is significantly higher in Los 

Angeles, CA than in Memphis, TN. Figures 20 and 21 show the distribution of losses for 

the designs. The following observation can be made from the obtained results: 
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 By moving from the lighter structures with larger EAL to heavier structures with 

smaller EAL, the contribution of structural and drift-sensitive non-structural 

components to the total loss value decreases and the contribution of acceleration 

sensitive non-structural components increases.  

 Drift-sensitive non-structural components have the highest contribution to the 

calculated seismic loss for all hazard levels for the three selected designs in Memphis, 

TN and for the minimum weight and middle front designs in Los Angeles, CA. In 

general, NSD components have had a higher contribution in the calculated EAL. 

 

Table 4. Costs for the example frame located in Memphis, TN and Los Angeles, CA 

Memphis, TN 

Designs W(kips) EAL(%BRC) CLCP(%) CLIO(%) C
I
/PC

T
50 PL

S
50/PC

T
50 

Min 

Weight 

39.782 0.03188 98.7 100.00 0.990 0.0100 

Midpoint 

front 

80.529 0.01268 100.0 100.00 0.996 0.0040 

Min EAL 167.37.060 0.00508 100.0 100.00 0.998 0.0016 

Los Angeles, CA 

Designs W(kips) EAL(%BRC) CLCP(%) CLIO(%) C
I
/PC

T
50 PL

S
50/PC

T
50 

Min 

Weight 

86.020 0.37296 90.00 76.56 0.895 0.1054 

Midpoint 

front 

125.480 0.28846 99.50 99.98 0.916 0.0836 

Min EAL 175.910 0.23601 100.00 100.00 0.931 0.0694 
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Figure 20. Distribution of losses for structures for Memphis, TN 

 

Figure 21. Distribution of losses for structures for Los Angeles, CA 
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4.1.2  Summary and Conclusions 

In this problem, the EAL and the initial construction cost (the weight of the 

structure) are the optimization objectives for the PBD of structures. The obtained PBD 

Pareto fronts provide engineers with a decision making tool for designing structures 

considering both initial cost and EAL. Additionally, the effect of geographical location 

on the calculated loss values are evaluated by considering two different site locations: 

Memphis, TN (CUS) and Los Angeles, CA (WUS). Seismic PBD results show a 

significantly larger seismic loss for structures located in Los Angeles, CA than in 

Memphis, TN, which is attributed to the differences in the seismicity characteristics and 

the slopes of the hazard curves in these locations. Consequently, for structures in Los 

Angeles, CA, seismic loss should have a much greater role in real-state decision-making 

processes as compared to structures in Memphis, TN. Moreover, analyzing the 

distribution of losses indicates that, in general, NSD components have the highest 

contribution to the total seismic loss associated with direct economic losses for most 

designs in both geographic locations. Additionally, by moving along the Pareto front 

from lower weight designs to higher weight designs, the contribution of SS and NSD 

components to total loss decreases and the contribution of the NSA components 

increases.  
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4.2  Optimization Problem II 

In the second optimization problem, two optimization objectives are defined as 

the lifetime cost of the structure (expressed as the present value of the total cost PC
T

t) and 

the expected annual social loss EASL.  

The lifetime cost of the structure takes into account the initial cost and expected 

annual economic loss associated with earthquake events at the site of interest. The PBD 

of the example 3-story steel moment frame considered in Optimization Problem I is used. 

Moment frame A-E/1 is considered for the design. 

The performance objectives are immediate occupancy performance level for the 

hazard level of 50% in 50 years and collapse prevention for the hazard level of 2% in 50 

years, while satisfying design criteria for strong column-weak beam (AISC 2011). The 

search space includes a list of 60 AISC W sections (W10, W12, and W14) for columns 

and another list of 64 AISC W sections (W18, W21, W24, W27, W30, W33, W36, and 

W40) for beam elements. Therefore, the size of the search space for this problem would 

be approximately 9.44(10
8
). The considered sections are listed in  

Appendix D.  

4.2.1  Problem Definition 

The Multi-objective optimization problem includes minimization of two specified 

objectives. The optimization problem would be expressed as 
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53 

where TC and SL are the penalized values of PC
T

t and EASL, respectively; and ci is the i
th

 

constraint that is applied on the optimization problem. The penalized values TC and SL 

are calculated as 

 
T

tPCTC   (34) 

 

EASLSL   (35) 

 

where φ is a penalty function. The constraints c1, c2, and c3 and the penalty function 

implemented are the same as in Optimization Problem I. 

Figure 22 shows the obtained Pareto fronts for the two sites for the specified 

optimization objectives. 

 

 

Figure 22. Pareto fronts for site locations in Memphis, TN and Los Angeles, CA 
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The results presented in Figure 22 show the significant difference between the calculated 

seismic loss values between the two considered sites. This variance can be explained by 

the difference in site seismicity characteristics and the less steep slope of the hazard curve 

for Memphis, TN as compared to Los Angeles, CA and indicates the significance of 

seismicity characteristics of the region in the evaluation of expected annual seismic loss 

parameters. Additionally, the ratio of change in PC
T

t to change in EASL between extreme 

designs along the Pareto front (i.e. min PC
T

t and min EASL designs) is several times 

larger for designs in Los Angeles as compared to Memphis. This higher ratio implies that 

for the structure located in Los Angeles, a specific increase in the value of PC
T

t would 

result in more reduction in the EASL value as compared to the structure located in 

Memphis.  

In order to determine which constraint has the most effect on the optimization, the 

original constraints defined in Equations (26)-(28) are scaled as follows 

 

( 1 and 2)
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Figures 23 to 28 show the scaled constraint values for the example steel structure 

located in Memphis and in Los Angeles; respectively.  In all figures, darker colored 

circles specify smaller values for the Ci’s for designs, which is an indicator of associated 

constraints being closer to the defined limit states. As expected, when designs move 

along the Pareto front towards higher cost, the values of C1 and C2, defined by confidence 
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levels for CP and IO performance objectives, increase. However, no specific pattern is 

observable for C3 (SCWB criterion). Comparing the Ci values in Figures 23 to 28 shows 

that C3 is often controlling for both sites, which implies that the strong column weak 

beam (SCWB) requirement is typically the controlling constraint in the optimization 

problem.   

 

 

Figure 23.  Variation in criteria C1 along the Pareto front for structures located in 

Memphis, TN  
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Figure 24.  Variation in criteria C2 along the Pareto front for structures located in 

Memphis, TN  

 

Figure 25.  Variation in criteria C3 along the Pareto front for structures located in 

Memphis, TN  
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Figure 26.  Variation in criteria C1 along the Pareto front for structures located in Los 

Angeles, CA  

 

 

Figure 27.  Variation in criteria C2 along the Pareto front for structures located in Los 

Angeles, CA  
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Figure 28.  Variation in criteria C3 along the Pareto front for structures located in Los 

Angeles, CA  

 

In order to better compare the losses at the two sites, three designs are selected 

along the Pareto fronts for each site. These designs are associated with the solutions with 

minimum values for the PC
T

t and EASL objectives and one design with calculated 

objectives close to the mean value of the extreme points. Figure 29 shows the distribution 

of losses between different components for both site locations. Table 5 lists the selected 

designs and their corresponding values of optimization objectives. Table 6 lists the 

calculated loss values for these designs for both sites.  
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Table 5.  Three designs selected from the obtained Pareto fronts for site locations in 

Memphis, TN and Los Angeles, CA. 

Memphis, TN 

Designs C1 C2 B1 B2 B3 
PC

T
t/ρ 

(KN) 

EASL 

(%αNo) 

Min PC
T

t W14X109 W14X109 W21X50 W21X44 W18X46 175.01 0.01485 

Midpoint 

front 
W14X176 W14X233 W27X94 W30X99 W18X46 312.01 0.00369 

Min EASL W14X550 W14X605 W40X183 W40X199 W36X160 797.61 0.00001 

Los Angeles, CA 

Designs C1 C2 B1 B2 B3 
PC

T
t/ρ 

(KN) 

EASL 

(%αNo) 

Min PC
T

t W14X257 W14X257 W27X84 W24X76 W24X68 385.69 0.13349 

Midpoint 

front 
W12X336 W14X398 W36X150 W30X116 W24X104 573.95 0.06531 

Min EASL W14X550 W14X605 W40X199 W40X199 W40X183 884.62 0.01375 

 

Table 6.  Calculated loss values for the designs located on Pareto front for site  

locations in Memphis, TN and Los Angeles, CA. 

Memphis, TN 

Designs W(KN) EAL(%BRC) PC
T

t/ρ (KN) EASL (%αNo) CLCP(%) CLIO(%) 

Min PC
T

t 173.33 0.0307 175.01 0.0149 98.50 100.00 

Midpoint front 310.27 0.0177 312.01 0.0037 100.00 100.00 

Min EASL 796.69 0.0036 797.61 0.0000 100.00 100.00 

Los Angeles, CA 

Designs W(KN) EAL(%BRC) PC
T

t/ρ (KN) EASL (%αNo) CLCP(%) CLIO(%) 

Min PC
T

t 345.73 0.3657 385.69 0.1335 90.95 76.02 

Midpoint front 523.12 0.3076 573.95 0.0653 99.55 99.62 

Min EASL 818.16 0.2571 884.62 0.0138 98.50 100.00 
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Figure 29.  Distribution of economic losses for different components of the building for 

structures located in Memphis, TN and Los Angeles, CA 

 

Figures 30 and 31 present a comparison between the distributions of economic 

and social losses for the structures at both sites. Both loss parameters have a descending 

trend from the designs that minimized for PCt
T
 to the designs minimized for EASL. 
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Figure 30.  Comparison between distribution of direct economic losses and direct social 

losses for structures in Memphis, TN 
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Figure 31.  Comparison between distribution of direct economic losses and direct social 

losses for structures in Los Angeles, CA 

 

Figures 31 to 33 show the comparison of the calculated loss values for an 

example design with frame sections of W12x336 and W14x398 for C1 and C2 and 

W36x150, W30x116, and W24x104 for B1, B2, and B3 for the two considered site 

locations. 
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Figure 32.  Economic losses for an example structure located in Los Angeles, CA and 

Memphis, TN 

 

 
Figure 33.  Social losses for an example structure located in Los Angeles, CA and 

Memphis, TN 
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Figure 34.  Distribution of economic losses for different components for an example 

structure located in Los Angeles, CA and Memphis, TN 

 

4.2.2  Summary and Conclusions 

The objective of this study is to develop an optimal PBD procedure that considers 

the economic and social losses associated with probable future earthquakes. Designs for a 

steel moment frame structure are developed using the proposed PBD procedure. The 

PBD of a structure is accomplished using a multi-objective optimization considering two 

objectives. Seismic losses are used to evaluate optimization objectives, which are 

calculated through the integration of four steps of probabilistic seismic hazard analysis, 

probabilistic demand analysis, probabilistic damage analysis, and probabilistic loss 

analysis, by implementing total probability theorem. The first optimization objective is 

the present value of the total cost, calculated based on the initial construction cost and 
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EAL associated with seismic direct economic losses. The second optimization objective 

is the direct social loss modeled as EASL, which is a parameter developed in this study to 

facilitate the interpretation of social loss in calculations and to provide a comparison tool 

between economic and social loss parameter values. The multi-objective optimization 

results are presented in the form of Pareto fronts which could be used to visualize the 

trade-offs between the various objectives. 

An evaluation of the critical optimization criteria for designs along the Pareto 

fronts indicates that the strong-column weak-beam constraint often controls the feasibility 

of designs generated by the optimization. 

A comparison of the economic and social expected annual losses shows that these 

loss values are considerably lower for a site located in Memphis, TN than a site located in 

Los Angeles, CA, as observed in the previous problem. This variance can be explained 

by the difference in site seismicity characteristics and the hazard curves for Memphis, TN 

as compared to Los Angeles, CA and indicates the significance of seismicity 

characteristics of the region in the evaluation of expected annual seismic loss parameters. 

Additionally, the ratio of change in PC
T

t to change in EASL between extreme designs 

along the Pareto front (i.e. min PC
T

t and min EASL designs) is several times larger for 

designs in Los Angeles as compared to Memphis. This higher ratio implies that for the 

structure located in Los Angeles site, a specific increase in the value of PC
T

t would result 

in more reduction in the EASL value as compared to the structure located in Memphis 

site.  
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4.3.  Optimization Problem III 

In this multi-objective optimization problem, in order to better compare the 

relationship between the initial cost and two loss parameters, three optimization 

objectives are defined as the initial cost of the structure, EAL, and EASL. The 

performance objectives are immediate occupancy performance level for the hazard level 

of 50% in 50 years and collapse prevention for the hazard level of 2% in 50 years, while 

satisfying design criteria for strong column-weak beam (AISC 2011). 

4.3.1  Problem Definition 

The multi-objective optimization problem includes minimization of the three 

specified objectives. The optimization problem would be expressed as 
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where W, EALP, and EASLP are the penalized values of w , EAL, and EASL, respectively; 

and ci is the i
th

 constraint that is applied on the optimization problem. The penalized 

values EALP and EASLP are calculated as 

 

EALEALP   (39) 

 

EASLEASLP   (40) 

 

where φ is a penalty function. c1, c2, and c3 and the penalty function implemented are 

given in Equations (26) to (29). 
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4.3.2  Example Structures 

The multi-objective SPBD optimization problem is applied to 3-story and 7-story 

steel structures shown in Figures 34 to 36. The search space includes a list of 60 AISC W 

sections (W10, W12, and W14) for columns and another list of 64 AISC W sections 

(W18, W21, W24, W27, W30, W33, W36, and W40) for beam elements. Therefore, the 

size of the search space for this problem would be approximately 3.40(10
12

) for the 3-

story structure and 4.40(10
19

) for the 7-story structure. The lists of the considered 

sections are presented in Appendix D. For the 3-story frame, four groups are considered 

for columns: ground floor exterior and interior columns and 2
nd

 and 3
rd

 floor exterior and 

interior columns. One group is considered for beams at each floor level. For the 7-story 

frame, eight groups are considered for columns: exterior and interior ground floor, 2
nd

 & 

3
rd

 floor, 4
th

 & 5
th

 floor, and 6
th

 & 7
th

 floor. Three groups are considered for beams. The 

structural steel is A992. The seismic masses for the 3-story structure are 73.10 kips-

sec
2
/ft for the roof, 67.86 kips-sec

2
/ft for the 2

nd
 floor and 69.86 kips-sec

2
/ft for the 1

st
 

floor. The seismic masses for the 7-story structure are 73.10 kips-sec
2
/ft for the roof, 

67.86 kips-sec
2
/ft for the 2

nd
 to 6

th
 floors and 69.86 kips-sec

2
/ft for the 1

st
 floor (the 

values are for the entire structure). Masses are lumped (LMi) at the beam-to-column 

locations. Moment frame A-E/1 is considered for the design. 
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Figure 35. Plan view of the example structures 

 

 

Figure 36. Elevation for the example 3-story structure 
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Figure 37. Elevation for the example 7-story structure 

 

Figures 37-40 relate the optimization objective values for the solutions on the 

Pareto front for the 3-story and 7-story structure examples, respectively for the two 

considered sites of Memphis, TN and Los Angeles, CA. For each site, approximately 

similar patterns of relationships between pairs of objectives, i.e. W and EAL, W and 

EASL, and EAL and EASL, is observed. An increase in initial construction cost 

(associated with W) would result in a decrease in both EAL and EASL values. EAL and 

EASL have a direct relationship and an increase in one, as expected, would be associated 

with an increase in the other. Figures 41 and 42 combine the results from Figures 35-38 

to facilitate comparison between the 3-story and 7-story solutions for both sites. In these 

figures it should be taken into account that BRC and No would be considerably different 
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for 3-story and 7-story buildings. The percentile values can be compared in this figure but 

not the net loss values.   
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(a) 

 
(b) 

 
(c) 

Figure 38.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 3-story example structure located in Memphis, TN: (a) 

W (kips) versus EAL (%BRC), (b) W (kips) versus EASL (%α No), (c) 

EAL (%BRC) versus EASL (%α No) 
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(a) 

 
(b) 

 
(c) 

Figure 39.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 7-story example structure located in Memphis, TN: (a) 

W (kips) versus EAL (%BRC), (b) W (kips) versus EASL (%α No), (c) 

EAL (%BRC) versus EASL (%α No) 
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(a) 

 
(b) 

 
(c) 

Figure 40.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 3-story example structure located in Los Angeles, CA: 

(a) W (kips) versus EAL (%BRC), (b) W (kips) versus EASL (%α No), (c) 

EAL (%BRC) versus EASL (%α No) 
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(a) 

 
(b) 

 
(c) 

Figure 40.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 7-story structure example located in Los Angeles, CA: 

(a) W (kips) versus EAL (%BRC), (b) W (kips) versus EASL (%α No), (c) 

EAL (%BRC) versus EASL (%α No) 
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Figure 41.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 3-story and 7-story structures, located in Memphis, TN. 
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Figure 42.  Comparison of the optimization objective values for the solutions on the 

Pareto front for the 3-story and 7-story structures, located in Los Angeles, 

CA. 
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Figures 43 and 44 show a comparison of the Pareto fronts for the 3-story and 7-

story structures for both sites in the 3D space, with each axis presenting one of the three 

objectives. In these figures the EAL is presented as a percentage of the replacement cost 

for one story of the building (%BRC1st), assuming that %BRC would be approximately 

equivalent to 3 times %BRC1st for the 3-story building and 7 times %BRC1st for the 7-

story building. Similarly, EASL is presented as %α No1st, where No1st is the number of 

occupants in one story of the building which implies that No for the three and seven story 

buildings would be equivalent to 3No1st and 7No1st, respectively. The reason for presenting 

the losses this way is to be able to better compare the net loss values for structures with 

different numbers of floors, since the BRC and No values would depend on the number of 

floors.  
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Figure 41. Comparison of the Pareto fronts for the 3-story and 7-story structures located 

in Memphis, TN. 
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Figure 42. Comparison of the Pareto fronts for the 3-story and 7-story structures located 

in Los Angeles, CA. 

 

Tables 7 and 8 list the calculated loss and confidence level parameters for designs 

associated with minimum weight, minimum EAL and minimum EASL for the 3-story 

and 7-story structures located in Memphis, TN and Los Angeles, CA, respectively. For 

some cases, similar designs are obtained for the minimum EAL and minimum EASL 

objectives.  
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Table 7.  Calculated loss and confidence level parameters for designs associated with 

minimum weight, minimum EAL and minimum EASL, for 3-story and 7-

story structures located in Memphis, TN. 

7-Story Structure 

Designs W(kips) EAL(%BRC) 
EASL 

(%αNo) 
CLCP(%) CLIO(%) 

Min W 149.57 0.017149 0.006779 99.41 100.00 

Min EAL 491.08 0.004345 0.000096 100.00 100.00 

Min EASL 491.08 0.004345 0.000096 100.00 100.00 

3-Story Structure 

Designs W(kips) EAL(%BRC) 
EASL 

(%αNo) 
CLCP(%) CLIO(%) 

Min W 50.00 0.024100 0.009740 99.88 100.00 

Min EAL 201.00 0.002260 2.20E-11 100.00 100.00 

Min EASL 174.00 0.002280 2.75E-12 100.00 100.00 

 

Table 8.  Calculated loss and confidence level parameters for designs associated with 

minimum weight, minimum EAL and minimum EASL, for 3-story and 7-

story structures located in Los Angeles, CA. 

7-Story Structure 

Designs W(kips) EAL(%BRC) 
EASL 

(%αNo) 
CLCP(%) CLIO(%) 

Min W 207.00 0.31 0.12 90.96 99.81 

Min EAL 434.00 0.22 0.05 99.27 100.00 

Min EASL 434.00 0.22 0.05 99.27 100.00 

3-Story Structure 

Designs W(kips) EAL(%BRC) 
EASL 

(%αNo) 
CLCP(%) CLIO(%) 

Min W 91.72 0.31 0.08 98.69 97.29 

Min EAL 184.57 0.22 0.02 99.98 100.00 

Min EASL 191.20 0.23 0.01 99.99 100.00 

 

Tables 9 to 13 show the design parameters for the 3-story and 7-story structures 

for Memphis and Los Angeles sites. The design parameters can be compared for the three 

selected designs on the Pareto front, which are the designs with the minimum values for 

each of the three considered objectives.  
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Table 9. Design parameters for the 3-story structure located in Memphis, TN. 

3-Story Structure 

Design Parameter Min W Min EAL Min EASL 

C1 W14X193 W14X605 W14X605 

C2 W14X193 W14X605 W14X605 

C3 W14X132 W14X605 W14X455 

C4 W14X109 W14X605 W14X455 

B1 W18X40 W36X182 W36X182 

B2 W18X40 W27X161 W33X130 

B3 W18X40 W24X68 W27X94 

 

Table 10. Design parameters for the 7-story structure located in Memphis, TN. 

7-Story Structure 

Design Parameter Min W Min EAL Min EASL 

C1 W14X370 W14X605 W14X605 

C2 W14X311 W14X605 W14X605 

C3 W14X257 W14X605 W14X605 

C4 W14X257 W12X136 W12X136 

C5 W14X257 W14X605 W14X605 

C6 W12X120 W14X605 W14X605 

C7 W12X106 W14X605 W14X605 

C8 W12X106 W14X605 W14X605 

B1 W18X40 W40X199 W40X199 

B2 W18X40 W36X150 W36X150 

B3 W18X40 W27X102 W27X102 
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Table 11. Design parameters for the 3-story structure located in Los Angeles, CA. 

3-Story Structure 

Design Parameter Min W Min EAL Min EASL 

C1 W14X342 W14X605 W14X550 

C2 W14X342 W14X605 W14X550 

C3 W14X233 W14X605 W14X605 

C4 W14X233 W14X550 W14X605 

B1 W27X102 W27X114 W30X132 

B2 W21X57 W27X102 W30X132 

B3 W21X44 W27X84 W27X94 

 

Table 12. Design parameters for the 7-story structure located in Los Angeles, CA. 

7-Story Structure 

Design Parameter Min W Min EAL Min EASL 

C1 W14X605 W14X605 W14X605 

C2 W14X550 W14X605 W14X605 

C3 W14X342 W14X370 W14X370 

C4 W14X257 W12X252 W12X252 

C5 W14X211 W14X605 W14X605 

C6 W14X211 W14X455 W14X455 

C7 W14X159 W14X455 W14X455 

C8 W14X159 W14X455 W14X455 

B1 W21X57 W18X175 W18X175 

B2 W21X57 W30X173 W30X173 

B3 W18X40 W27X102 W27X102 

 

Comparisons of the distribution of losses for the 3-story and 7-story structures located in 

Memphis, TN and Los Angeles, CA are presented in Appendix E. Comparisons are 

presented in percentages of BRC and αNo and it is important to take into account their 

difference for 3-story and 7-story structures when comparing the losses. 

4.3.3  Summary and Conclusions 

The objective of this optimization problem has been to compare the relationship 

between the initial cost and two loss parameters, EAL and EASL, for structures with 

different heights. Two steel structures, one 3-story and another 7-story, are considered 
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and the multi-objective optimization method is implemented to optimize the probabilistic 

performance-based design of the structures. The results are compared for two different 

sites with different seismicity characteristics: Memphis, TN and Los Angeles, CA. The 

three optimization objectives considered are initial construction cost (modeled as the 

weight of the structure), EAL associated with expected annual economic loss, and EASL 

associated with expected annual social loss.  The optimization results are presented in the 

form of three-dimensional Pareto fronts. In most cases, the Pareto fronts are presented in , 

3D space, with each axis presenting one of the three objectives. For all cases, an increase 

in the initial cost would be associated with a decrease in both loss parameters. For some 

cases, the design associated with minimum EAL and minimum EASL are similar. As in 

previous problems, considerable difference exists between the calculated loss values for 

the two sites for all structures which can be explained by the differences in the seismicity 

characteristics of the regions.   
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

The objective of this study has been to consider seismic loss values, which are of 

interest in the recent frameworks for performance-based design of structures, in the 

optimized probabilistic PBD. A multi-objective optimization method has been 

implemented for several example problems with different sets of optimization objectives. 

The optimization objectives include combinations of initial cost, expected annual seismic 

economic loss parameter, EAL, and expected annual seismic social loss parameter, 

EASL. Three different optimization problems are considered. The first problem considers 

two optimization objectives of initial cost, modeled as the weight of the structure and 

EAL. The results are presented for an example three-story steel moment frame structure 

for two different site locations of Memphis, TN and Los Angeles, CA. In the second 

problem, initial cost and EAL are combined as one objective, defined as the present value 

of the total cost, and the second objective is the social loss parameter, EASL. The results 

of this optimization problem are presented for a three-story structure located at the same 

two sites considered in the first problem. In the third optimization problem, three 

objectives are considered as weight, EAL, and EASL. The obtained designs for example 

3-story and 7-story structures located in Memphis, TN and Los Angele, CA are presented 

and compared.  

The multi-objective optimization results are presented in the form of Pareto 

fronts. For the first two problems with two optimization objectives the fronts are two 

dimensional. For these problems, three designs, two located on the extremes and one 

located on the mid-front are selected to demonstrate and compare calculated loss values 
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for the two sites. For the third problem, with three optimization objectives, the Pareto 

fronts are three dimensional. The obtained Pareto fronts provide engineers with a 

decision-making tool for designing structures considering different objectives.  

Seismic PBD results show a significantly larger seismic loss for structures located 

in Los Angeles, CA than in Memphis, TN, which is attributed to the differences in the 

seismicity characteristics and the slopes of the hazard curves in these locations. 

Consequently, for structures in Los Angeles, CA, seismic loss should have a greater role 

in real-estate decision-making processes. Moreover, analyzing the distribution of losses 

indicates that, in general, NSD components have the highest contribution to the total 

seismic loss associated with direct economic losses for most designs in both geographic 

locations. In addition, an evaluation of the critical optimization criteria for designs along 

the Pareto fronts indicates that the strong-column weak-beam constraint often controls 

the feasibility of designs generated by the optimization. Additionally, by moving along 

the Pareto front from lower weight designs to higher weight designs, the contribution of 

structural (SS) and drift-sensitive non-structural (NSD) components to total loss 

decreases and contribution of acceleration-sensitive non-structural (NSA) components 

increases. 

FUTURE WORKS 

The implemented methodology for the seismic loss evaluation could be applied to 

a wider range of geographic locations to obtain a better understanding of the effect of the 

seismicity characteristics in the calculation of seismic loss parameters. In addition, other 

types of hazard could be considered in the calculation of the expected annual losses. 
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NOTATIONS  

Notation Definition Notation Definition 

EAL Expected Annual Loss SLindoor Social Loss associated with indoor injuries 

EASL Expected Annual Social Loss CSLj Casualty Severity Level j 

TC Penalized value of the PC
T

t α Comprehensive cost for CSL1($/person) 

PC
T

t 
Present value of the total 

economic cost 
No Number of occupants in building 

SL Penalized value of the EASL t Lifetime period 

φ Penalty Function C
I
 Initial Cost 

CLCP 
Confidence Levels for Collapse 

Prevention 
PL

S
t 

Present value of the seismic direct economic 

loss 

CLIO 
Confidence Levels for Immediate 

Occupancy 
ENOI,IM 

Expected number of occupants injured or 

killed in an event with intensity measure IM 

ci i
th
 constraint W Weight of the frame 

Ci Scaled i
th
 constraint ρ Cost per unit weight of the frame 

DV Decision Variable ir Discount rate 

DM Damage Measure BRC Building Replacement Cost 

EDP Engineering Demand Parameter λCL Confidence parameter 

IM Intensity Measure γ Demand variability factor 

Lc 
Direct economic loss for each 

component 
γa Analysis uncertainty factor 

L Direct economic loss D Calculated demand on a structure 

RCDMi,c Repair Cost for each component c C 
Median estimate of the capacity of the 

structure 
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Notation Definition Notation Definition 

λ 
Annual rate of exceedance for 

each intensity measure 
ϕ 

Uncertainty in the prediction of structural 

capacity 

Δλi 

change in annual rate of 

exceedance associated with 

dividing the hazard curve into m 

different segments 

Kx Standard Gaussian variant 

SLoutdoor 
Social loss associated with 

outdoor injuries 
βUT Uncertainty measure 

m 
Number of hazard levels 

considered 
CL Confidence Level 
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APPENDIX A 

CL Parameters and Injury Classifications 

 

Table A-1. Interstory Drift Angle Analysis Uncertainty Factors γa (FEMA 2000a) 

Analysis Procedure LSP LDP NSP NDP 

System Characteristic I.O. C.P. I.O. C.P. I.O. C.P. I.O. C.P. 

Special Moment Frames (SMF) 

Low Rise (3 stories or less) 0.94 0.7 1.03 0.83 1.13 0.89 1.02 1.03 

Mid Rise ( 4 – 12 stories) 1.15 0.97 1.14 1.25 1.45 0.99 1.02 1.06 

High Rise (> 12 stories) 1.12 1.21 1.21 1.14 1.36 0.95 1.04 1.1 

Ordinary Moment Frames (OMF) 

Low Rise (3 stories or less) 0.79 0.98 1.04 1.31 0.95 1.31 1.02 1.03 

Mid Rise ( 4 – 12 stories) 0.85 1.14 1.1 1.53 1.11 1.42 1.02 1.06 

High Rise (> 12 stories) 0.8 0.85 1.39 1.38 1.36 1.53 1.04 1.1 

 

 

Table A-2. Interstory Drift Angle Demand Variability Factors γ (FEMA 2000a) 

Building Height 

γ 

Immediate 

Occupancy 

(I.O.) 

Collapse 

Prevention 

(C.P.) 

Special Moment Frames (SMF) 

Low Rise (3 stories or less) 1.5 1.3 

Mid Rise ( 4 – 12 stories) 1.4 1.2 

High Rise (> 12 stories) 1.4 1.5 

Ordinary Moment Frames (OMF) 

Low Rise (3 stories or less) 1.4 1.4 

Mid Rise ( 4 – 12 stories) 1.3 1.5 

High Rise (> 12 stories) 1.6 1.8 
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Table A-3. Global Interstory Drift Angle Capacity C and Resistance Factors φ for 

Regular SMF and OMF Buildings (FEMA 2000a) 

Building Height 

Performance Level 

Immediate Occupancy Collapse Prevention 

Interstory 

Drift Angle 

Capacity C 

Resistance 

Factor φ 

Interstory 

Drift Angle 

Capacity C 

Resistance 

Factor φ 

Special Moment Frames (SMF) 

Low Rise (3 stories or less) 0.02 1 0.1 0.9 

Mid Rise ( 4 – 12 stories) 0.02 1 0.1 0.85 

High Rise (> 12 stories) 0.02 1 0.085 0.75 

Ordinary Moment Frames (OMF) 

Low Rise (3 stories or less) 0.01 1 0.1 0.85 

Mid Rise ( 4 – 12 stories) 0.01 0.9 0.08 0.7 

High Rise (> 12 stories) 0.01 0.85 0.06 0.6 

 

 

Table A-4. Injury Classification Scale (Hazus-MH, 2003b) 

Injury Severity Level Injury Description 

Severity1 

Injuries requiring basic medical aid that could be administered by 

paraprofessionals. These types of injuries would require bandages or 

observation. Some examples are: a sprain, a severe cut requiring 

stitches, a minor burn (first degree or second degree on a small part of 

the body), or a bump on the head without loss of consciousness. Injuries 

of lesser severity that could be self-treated are not estimated by HAZUS. 

Severity 2 

Injuries requiring a greater degree of medical care and use of medical 

technology such as x-rays or surgery, but not expected to progress to a 

life threatening status. Some examples are third degree burns or second 

degree burns over large parts of the body, a bump on the head that 

causes loss of consciousness, fractured bone, dehydration or exposure. 

Severity3 

Injuries that pose an immediate life threatening condition if not treated 

adequately and expeditiously. Some examples are: uncontrolled 

bleeding, punctured organ, other internal injuries, spinal column 

injuries, or crush syndrome. 

Severity 4 Instantaneously killed or mortally injured 
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APPENDIX B 

PSHA Using EZ-FRISK 

EZ-FRISK is a software package to perform site-specific earthquake hazard 

analysis. It has database of earthquake faults characteristics and ground motion 

attenuation equations that could be implemented to perform probabilistic seismic hazard 

analysis (PSHA) for the site of interest. The advantage of this software is that database 

for an extensive collection of attenuation equations and seismic sources for different 

regions are included. EZ-FRISK has been used to perform PSHA for Memphis site, 

considering the attenuation relationships recommended by USGS (2008). The considered 

attenuation relationships are listed in Table B-1. 

 The New Madrid seismic zone (NMSZ) and CEUS gridded data are considered 

as the seismic sources. EZ-FRISK generates the uniform hazard response spectra (UHRS) 

for different hazard levels. The obtained UHRS for the Memphis site are presented in 

Figure 7.  

Table B-1. Attenuation relationships used for the Memphis, TN site 

Number Attenuation Relationship 

1 Atkinson-Boore (2006) -140 Bar Mw and 200 Bar Mw 

2 Cambpell (2003) 

3 Frankel (1996) 

4 Silva et al (2002) 

5 Tavakoli-Pezeshk (2005) 

6 Toro (1999) 

7 Somerville (2001) 
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APPENDIX C 

DRAIN-2DX 

The computer program DRAIN-2D (Dynamic Response Analysis of Inelastic 2-

Dimensional Structures) was first released in 1973 (Powell 1973). DRAIN-2DX 

(Allahabadi 1987 and Allahabadi and Powell 1988, Prakash et al. 1993) is a modification 

to the program DRAIN-2D. The program is written in FORTRAN-77 and performs 

nonlinear static and dynamic analyses. For dynamic analysis considers ground 

accelerations, ground displacements, imposed dynamic loads (e.g., wind), and specified 

initial velocities (e.g., impulse loading). 

Considered yielding surfaces for the nonlinear response-history analysis for beam 

and beam-column members in DRAIN-2DX are shown in Figure D-1 (Rojas et al. 2011). 

In this figure, Pyt is the axial tensile yield capacity of a beam-column in the absence of 

bending moment. Pn is the axial compression capacity of the beam column in the absence 

of bending moment. Mp
+
 and Mp

-
 are the positive and negative plastic moment capacities 

of the cross-section in the absence of axial loading (Rojas et al. 2011, AISC 2011). 

 
Figure C-1 Yield surfaces in the nonlinear response history analysis for: (a) beam 

members, (b) beam-column members 
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The nonlinear analysis for the frame shown in Figure C-2 is performed using two different 

programs: DRAIN-2DX and Zeus-NL, to compare the results. The frame sections are W14x455 

for C1 and C2 and W30x108, W36x170, and W30x99 for B1, B2, and B3, respectively. The 

considered ground motion is shown in Figure C-3. 

 
Figure C-2 Example frame 

 
Figure C-3 Considered ground motion 

 

The compatibility of the obtained maximum top-story displacements for the specified example 

using the two analysis approaches (using DRAIN-2DX and Zeus-NL) could be observed from the 

results presented in Table C-2.  

Table C-1 Comparison of the results 

Max Displacement DRAIN-2DX Zeus-NL 

Top-Story Disp. (in) 3.84 4.07 
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APPENDIX D 

List of Considered W-Sections 

Table D-1. List of the considered AISC W-sections for the beams search space 

  Section Name Area 

(in
2
) 

Ix(in
4
) Iy(in

4
) My(kips.in) Mp(kips.in) 

1 W18X40 11.8 612 19.1 3420 3920 

2 W21X44 13 843 20.7 4080 4770 

3 W18X46 13.5 712 22.5 3940 4535 

4 W21X50 14.7 984 24.9 4725 5500 

5 W21X55 16.2 1140 48.4 5500 6300 

6 W21X57 16.7 1170 30.6 5550 6450 

7 W18X60 17.6 984 50.1 5400 6150 

8 W24X62 18.2 1550 34.5 6550 7650 

9 W18X65 19.1 1070 54.8 5850 6650 

10 W24X68 20.1 1830 70.4 7700 8850 

11 W18X71 20.9 1170 60.3 6350 7300 

12 W21X73 21.5 1600 70.6 7550 8600 

13 W24X76 22.4 2100 82.5 8800 10000 

14 W21X83 24.4 1830 81.4 8550 9800 

15 W27X84 24.7 2850 106 10650 12200 

16 W18X86 25.3 1530 175 8300 9300 

17 W21X93 27.3 2070 92.9 9600 11050 

18 W27X94 27.6 3270 124 12150 13900 

19 W18X97 28.5 1750 201 9400 10550 

20 W30X99 29 3990 128 13450 15600 

21 W21X101 29.8 2420 248 11350 12650 

22 W27X102 30 3620 139 13350 15250 

23 W24X103 30.3 3000 119 12250 14000 

24 W24X104 30.7 3100 259 12900 14450 

25 W18X106 31.1 1910 220 10200 11500 

26 W30X108 31.7 4470 146 14950 17300 

27 W21X111 32.6 2670 274 12450 13950 

28 W27X114 33.6 4080 159 14950 17150 

29 W30X116 34.2 4930 164 16450 18900 

30 W24X117 34.4 3540 297 14550 16350 

31 W18X119 35.1 2190 253 11550 13100 

32 W21X122 35.9 2960 305 13650 15350 

33 W30X124 36.5 5360 181 17750 20400 

34 W27X129 37.8 4760 184 17250 19750 

35 W33X130 38.3 6710 218 20300 23350 

36 W24X131 38.6 4020 340 16450 18500 
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Table D-1 (continued). List of the considered AISC W-sections for the beams search 

space 
  Section Name Area 

(in
2
) 

Ix(in
4
) Iy(in

4
) My(kips.in) Mp(kips.in) 

37 W30X132 38.8 5770 196 19000 21850 

38 W33X141 41.5 7450 246 22400 25700 

39 W18X143 42 2750 311 14100 16100 

40 W27X146 43.2 5660 443 20700 23200 

41 W21X147 43.2 3630 376 16450 18650 

42 W30X148 43.6 6680 227 21800 25000 

43 W36X150 44.3 9040 270 25200 29050 

44 W33X152 44.9 8160 273 24350 27950 

45 W18X158 46.3 3060 347 15500 17800 

46 W36X160 47 9760 295 27100 31200 

47 W27X161 47.6 6310 497 22900 25750 

48 W24X162 47.8 5170 443 20700 23400 

49 W21X166 48.8 4280 435 19000 21600 

50 W40X167 49.3 11600 283 30000 34650 

51 W33X169 49.5 9290 310 27450 31450 

52 W36X170 50 10500 320 29050 33400 

53 W30X173 50.9 8230 598 27050 30350 

54 W18X175 51.4 3450 391 17200 19900 

55 W24X176 51.7 5680 479 22500 25550 

56 W27X178 52.5 7020 555 25250 28500 

57 W40X183 53.3 13200 331 33750 38700 

58 W36X182 53.6 11300 347 31150 35900 

59 W30X191 56.1 9200 673 30000 33750 

60 W24X192 56.5 6260 530 24550 27950 

61 W36X194 57 12100 375 33200 38350 

62 W27X194 57.1 7860 619 27950 31550 

63 W40X199 58.8 14900 695 38500 43450 

64 W33X201 59.1 11600 749 34300 38650 
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Table D-2. List of the considered AISC W-sections for the columns search space 

  Section Name Area 

(in
2
) 

Ix(in
4
) Iy(in

4
) My(kips.in) Mp(kips.in) 

1 W10X19 5.62 96.3 4.29 940 1080 

2 W10X26 7.61 144 14.1 1395 1565 

3 W10X30 8.84 170 16.7 1620 1830 

4 W10X33 9.71 171 36.6 1750 1940 

5 W10X39 11.5 209 45 2105 2340 

6 W12X40 11.7 307 44.1 2575 2850 

7 W12X45 13.1 348 50 2885 3210 

8 W10X45 13.3 248 53.4 2455 2745 

9 W14X48 14.1 484 51.4 3510 3920 

10 W10X49 14.4 272 93.4 2730 3020 

11 W12X50 14.6 391 56.3 3210 3595 

12 W12X53 15.6 425 95.8 3530 3895 

13 W14X53 15.6 541 57.7 3890 4355 

14 W10X54 15.8 303 103 3000 3330 

15 W12X58 17 475 107 3900 4320 

16 W10X60 17.7 341 116 3335 3730 

17 W14X61 17.9 640 107 4605 5100 

18 W10X68 19.9 394 134 3785 4265 

19 W14X68 20 722 121 5150 5750 

20 W12X72 21.1 597 195 4870 5400 

21 W14X74 21.8 795 134 5600 6300 

22 W10X77 22.7 455 154 4295 4880 

23 W12X79 23.2 662 216 5350 5950 

24 W14X82 24 881 148 6150 6950 

25 W12X87 25.6 740 241 5900 6600 

26 W10X88 26 534 179 4925 5650 

27 W12X96 28.2 833 270 6550 7350 

28 W10X100 29.3 623 207 5600 6500 

29 W12X106 31.2 933 301 7250 8200 

30 W14X109 32 1240 447 8650 9600 

31 W10X112 32.9 716 236 6300 7350 

32 W12X120 35.2 1070 345 8150 9300 

33 W14X120 35.3 1380 495 9500 10600 

34 W14X132 38.8 1530 548 10450 11700 

35 W12X136 39.9 1240 398 9300 10700 

36 W14X145 42.7 1710 677 11600 13000 

37 W12X152 44.7 1430 454 10450 12150 
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Table D-2 (continued). List of the considered AISC W-sections for the columns search 

space 

  Section 

Name 

Area 

(in
2
) 

Ix(in
4
) Iy(in

4
) My(kips.in) Mp(kips.in) 

38 W14X159 46.7 1900 748 12700 14350 

39 W12X170 50 1650 517 11750 13750 

40 W14X176 51.8 2140 838 14050 16000 

41 W12X190 56 1890 589 13150 15550 

42 W14X193 56.8 2400 931 15500 17750 

43 W12X210 61.8 2140 664 14600 17400 

44 W14X211 62 2660 1030 16900 19500 

45 W12X230 67.7 2420 742 16050 19300 

46 W14X233 68.5 3010 1150 18750 21800 

47 W12X252 74.1 2720 828 17650 21400 

48 W14X257 75.6 3400 1290 20750 24350 

49 W12X279 81.9 3110 937 19650 24050 

50 W14X283 83.3 3840 1440 22950 27100 

51 W12X305 89.5 3550 1050 21750 26850 

52 W14X311 91.4 4330 1610 25300 30150 

53 W12X336 98.9 4060 1190 24150 30150 

54 W14X342 101 4900 1810 27900 33600 

55 W14X370 109 5440 1990 30350 36800 

56 W14X398 117 6000 2170 32800 40050 

57 W14X426 125 6600 2360 35300 43450 

58 W14X455 134 7190 2560 37800 46800 

59 W14X550 162 9430 3250 46550 59000 

60 W14X605 178 10800 3680 52000 66000 
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APPENDIX E 

Distribution of Losses for Optimization Problem III 

 
Figure E-1. Comparison of the distribution of losses between different components for 

the 3-story structures located in Memphis, TN and Los Angeles, CA 
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Figure E-2. Comparison of the distribution of losses between different components for 

the 7-story structures located in Memphis, TN and Los Angeles, CA 
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Figure E-3. Comparison of the economic and social losses between for the 3-story 

structures located in Memphis, TN 

 

 

Figure E-4. Comparison of the economic and social losses between for the 3-story 

structures located in Los Angeles, CA 

 



107 

 
Figure E-5. Comparison of the economic and social losses between for the 7-story 

structures located in Memphis, TN 

 

 
Figure E-6. Comparison of the economic and social losses between for the 7-story 

structures located in Los Angeles, CA 
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