
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

7-14-2017 

On New Procedures of Estimation for Binary Data On New Procedures of Estimation for Binary Data 

Latia Carraway 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Carraway, Latia, "On New Procedures of Estimation for Binary Data" (2017). Electronic Theses and 
Dissertations. 1690. 
https://digitalcommons.memphis.edu/etd/1690 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1690?utm_source=digitalcommons.memphis.edu%2Fetd%2F1690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


ON NEW PROCEDURES OF ESTIMATION FOR BINARY DATA

by

Latia Carraway

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

August 2017



Acknowledgments

First, I would like to thank God for giving me the strength to persevere. All

the times I wanted to give up or could go no farther, God helped me to continue

to the next step and not worry about the big picture. He closed doors that would

have allowed me to quit, and opened new ones that allowed me to finish.

I have to thank my family. My mom and my husband for supporting me and

encouraging me, always listening to me, and feeling my pain. They always made

up for my shortcomings because I was working. I can never thank them enough

for their help.

I want to thank Dr. Bowman. She went above and beyond to help me finish

my degree. She worked weekends to accommodate my schedule because I have a

job and small kids. She was kind, patient, and encouraging. I know there are not

many people like her, and I am so thankful that God let me work with her.

ii



Abstract

Carraway, Latia, Rachelle. PhD. The University of Memphis. August, 2017.
On New Procedures of Estimation for Binary Data. Dale Bowman, PhD.

In developmental toxicity studies, current methods divide animals equally among

all treatment groups. New procedures are introduced for estimating correlated

binary data. Instead of allocating an equal number to each treatment, observe

clusters one at a time until a desired number of clusters have a chosen number

of responses or more. Dose levels, or treatments, known to have many responses

would not need as many animals. This procedure could save animals but not

sacrifice any information. Focusing on exchangeable binary data, a new proce-

dure for estimating the probability of a response is investigated. This alternate

design is analyzed through a simulation study and applied to a clinical data set.

Comparisons are made between past estimators and the new estimator given.
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Chapter 1

Introduction

Investigators of animal studies generally attempt to determine whether

exposure to a chemical causes adverse effects in the experimental subjects. To do

so, the investigator estimates the probabilities, θ0, . . . , θg, of positive response for

each dose group, and a dose-response curve may be estimated to show the

relationship between the dose level and the probability of an adverse effect. This

information is used to determine safe exposure levels of the chemical for humans.

Human exposure typically occurs at low dose levels. The dose levels used in

studies are usually higher than the expected levels for human exposure.

Investigators must extrapolate from the observed risks at high doses in order to

estimate risks at low doses which apply to humans (Chen and Kodell, 1989). In

addition, two different distributions may fit the observed data adequately at the

high doses but may give very different estimates at the lower end of the curve.

Many animals are unnecessarily sacrificed at high doses, where response rates are

high. This raises the question of animal allocation.

Further research needs to be done on the current method used to allocate

the total number of animals among the different treatment groups. Finney

(1964) reported the total number of animals used should be divided equally

between all the doses used unless there are specific reasons not to do so. Animals

would be saved if fewer were assigned to the high dose levels where more

responses occur. Instead of assigning the same number of litters to each dose, a

desired number of successes could be chosen and only the animals needed to

reach the desired number of responses would need to be sacrificed.
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There are many different types of animal studies. Research areas such as

biomedical, pharmaceutical, and environmental research use animals in an effort

to know more about safe exposure. In regular animal studies, each animal

receives the toxin, and the response is measured on the animal. Each animal is

independent so the binomial distribution can be used to count the number of

positive responses. In developmental toxicity studies female animals are used to

determine safe exposure to the offspring. Since the offspring are the individuals

used to determine the response, a litter of responses are not independent but are

correlated and respond similarly. According to the U.S. FDA (1993), a minimum

number of 20 rats, mice, rabbits, or hamsters should be used in developmental

toxicity testing. There should be at least three test groups and one control

group. At the high dose, no more than 10% parental mortality, and at the lose

dose, there should be no observable effects to the parent attributable to the test

substance. The low dose should be set at a level which is expected to provide a

margin of safety. The intermediate doses should be spaced to allow an arithmetic

or geometric progression between the low and high doses. The addition of one or

more groups is preferable to the use of large intervals between doses.

Currently, work is being done to develop alternatives to the use of animals.

Two areas discussed by the Society of Toxicology are using cell or organ cultures

rather than whole organisms and specific human gene mutations induced and

quantified in cell culture. The Society of Toxicology claim, even with these other

testing options, whole animal testing will still be needed in the future to validate

the results of non-animal methods and as a last protective step before exposure

of humans. Designs for developmental toxicity studies will require different

analysis to reduce the number of animals needed.

Dette, Pepelyshev, and Wong (2009) investigated optimal designs for

dose-finding experiments in toxicity studies. At the time of publication, there

were few theoretical articles that used statistical principles to design toxicology

studies. Since toxicology studies are expensive and labor intensive, Dette et al.

(2009) claim an efficient design could significantly reduce the number of animals
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needed. In their results, they found locally optimal designs and compare the

results to uniform designs that are more commonly used. The conditional

covariance in their work is incorrectly written, and it is incorrectly assumed that

the litter size only depends on the dose level. George et al. (2016) give the

correct covariance matrix for exchangeable multinomial data. With this

contribution, the information matrix of the design could be corrected to include

the correct conditional covariance matrix. Optimality criteria for designs involve

the information matrix. This correction could improve procedures and give

better results. Another approach to designs of this type could be using a negative

binomial model instead of the traditional binomial model as discussed later.

Often data are observed in clusters where independence of response is not a

valid assumption. Cluster sampling is useful when the population of interest has

natural grouping or occur in natural clusters. Often government agencies or

private research organizations will use cluster sampling by demographic regions.

Cluster sampling involves randomly selecting clusters and using all individuals

within those clusters for the sample. Similarly, nested designs are designs that

have multiple observations within each object (or cluster). Nested designs occur

in toxicology studies, neuroscience, biomedical research, when more than one

observation is taken from an individual (person or animal). Nested designs can

also occur in the social sciences (children nested in classes), behavioral genetics

(relatives nested in families), and the field of medicine (patients nested in clinics)

(Emmeke Aarts et al.,2014). A problem that arises in nested designs is that

observations from the same object tend to be more similar than when taken from

different objects. This results in a ”within cluster” correlation that can make

results misleading if not considered.

Another issue is sample size. In all statistical studies, the balance of having

a large enough sample for reliable, meaningful results and minimizing the cost to

obtain enough individuals is key to determining the sample size. To maximize

the effect size, it is recommended to set the treatment as low as possible in the

control group and high as ethically possible in the experimental group. This

3



advice is not easily followed when you think of testing on animals or in the social

sciences when it can be difficult to find an intervention with any noticeable affect

(Gelman, 2007). In the negative binomial distribution the sample size is the

random variable. If clusters could be drawn until the desired number had enough

responses for meaningful results, sample sizes could be minimized. In addition,

cost could be minimized; yet, the same or more information could be attained.

The recent advances and future advances of reducing sample sizes (animals used)

in toxicology studies was discussed earlier, but the approach of sampling one

cluster at a time has not been investigated. The nested design, or cluster data,

discussed in this paper is the developmental toxicity study. Currently, pregnant

females are equally divided among the doses and are randomly assigned to

receive a toxic substance at varying dose levels. The females are sacrificed before

their term, and the offspring are examined for binary responses, such as tumor or

no tumor. The responses are recorded as Bernoulli random variables.

In the case of non-clustered data, X1, ..., Xn, are independent Bernoulli

trials, where the probability of success for each trial is µ. Define R =
∑n

i=1Xi as

the number of successes in the n trials. Then the probability distribution

function for R is P (R = r) =
(
n
r

)
µr(1− µ)n−r for r = 0, 1, ..., n. Under those

conditions, R is a binomial random variable with E(R) = nµ and

V ar(R) = nµ(1− µ). Instead of fixing the number of experimental units, n, we

could fix the number of positive responses, r of interest. Then we would observe

experimental units until there are r responses, making the number of trials Y the

random variable of interest. Then, Y follows a negative binomial distribution

with parameters r and µ, and

P (y|r, µ) = P (Y = y) =

(
y − 1

r − 1

)
µr(1− µ)y−r,

where y = r, r + 1, . . . gives the probability that exactly y trials are required to

observe r success when the trials occur sequentially. Under those conditions, the

expected number of trials is E(Y ) = r
µ
, with variance, V ar(Y ) = r

µ2
.

The binomial and negative binomial models just discussed are not
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appropriate for developmental toxicity studies. The assumption of independence

is needed, and it cannot be assumed that the offspring in a litter are independent.

Offspring from the same litter tend to respond more similarly to a stimulus than

fetuses from different litters. This within litter correlation causes over-dispersion,

which means the variance of the responses is greater than the nominal variance.

Recent statistical procedures account for this litter effect. Bowman and George

(1995) introduce a non-parametric model called the exchangeable binary model

where exchangeablility is assumed instead of independence.

Dose-response estimation is used to study the relationship between the dose

of a toxic substance given and the probability of a response. It is often of interest

to estimate the dose-response curve and the effective dose (EDα). The effective

dose is the dose level such that the proportion with an effect is α. Dose-response

curves can be estimated using parametric models such as probit and logit

functions (Prentice, 1976). Morgan (1992) provided a comprehensive review of

parametric estimation methods. Non-parametric models were introduced to

enhance the robustness of estimation. Mukhopadhyay (2000) developed a

Bayesian nonparametric approach based on the Dirichlet process prior. Dette,

Neumeyer, and Pilz (2005) constructed a nonparametric estimate of the quantile

response curve and classical density curve. Dette and Scheder (2010) gave a finite

comparison of nonparametric estimates of the effective dose in quantal bioassay.

Yuan and Yin (2011) construct semi-parametric estimates of the dose-response

curve to retain the advantages of parametric and non-parametric approaches.

Another important estimate to investigators is the

no-observed-adverse-effect-level (NOAEL). This is the environmental dose level

just below the lowest dose level with responses that are significantly different

from the control. The EPA give guidelines, but this has been under scrutiny.

Chen and Kodell (1989) proposed the benchmark dose (BD) estimated from a

dose-response curve.

Estimating the probabilities, θ0, θ1, . . . , θg, of positive response is another

important aspect of developmental toxicity studies. Investigators would want to

5



know for instance the probability of a positive response, θ1, at each dose level.

Bowman and George (1995) and Stefanescu and Turnbull (2003) discuss

estimating the probability of a positive response and more for equal and random

cluster sizes.
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Chapter 2

Exchangeable Binomial Distribu-

tion

2.1 Introduction

For a nested design suppose there are g treatment groups. Clusters are

assigned to each treatment such that there are mi clusters in treatment i,

i = 1, . . . , g. The jth cluster in the ith dose group has nij individuals. Each

individual is examined for a response. A success is recorded if the individual has

the desired response (or response of interest), otherwise it is denoted a failure.

In a typical developmental toxicity experiment, pregnant females are

randomly assigned to different treatment groups. The responses of the offspring

from the female that has been exposed to a toxin are observed. A response is

considered a success if there is an adverse affect observed such as death or

malformation. The choice of dose groups start from a control group dose of 0 to

the highest dose. Consider a developmental study with g dose groups,

d1, d2, ..., dg. Clusters are assigned to each dose group. The guidelines for the

number of clusters assigned to a dose was discussed earlier. Each individual is

examined for a response, and success is denoted Xijk = 1. A failure is denoted

Xijk = 0.

Xijk =

 1 response(death,malformation, ...)

0 otherwise

where Xijk is the response of the kth fetus in the jth litter of the ith dose group

7



for i = 1, ..., g, j = 1, ...,mi, k = 1, ..., nij, and nij is the size of the jth litter of

the ith dose group. Further, denote the probability of success (i.e. probability of

observing the response of interest) P (Xijk = 1) = µi in the ith dose group. Then,

Xijk is a Bernoulli random variable with probability of success µi.

Consider a single cluster of size n in a fixed dose group, X1, . . . , Xn are the

observations of the units within the cluster. Let R =
∑n

k=1Xk be the total

number of successes in the n trials. Since X1, ..., Xn are not independent, let

ρ = corr(Xa, Xb), where a 6= b, be the within litter correlation. Then by

definition, ρ = corr(Xa, Xb) = cov(Xa,Xb)
σXaσXb

. It follows that

V ar(R) = V ar(
∑n

k=1Xk) =
∑n

k=1 V ar(Xk) + 2
∑∑

a<b cov(Xa, Xb) =

nµ(1− µ) + n(n− 1)ρµ(1− µ) = nµ(1− µ)(1 + ρ(n− 1)). Observations in a

litter tend to respond similarly, so ρ is expected to be positive. In this case, the

correlation factor [1 + ρ(n− 1)] is greater than 1 and represents over-dispersion

relative to the binomial model.

Bowman and George (1995) introduced a non-parametric model called the

exchangeable binary model. This model is based on the assumption of

exchangeability between litter mates. Although the litter-mates’ responses are

not independent, it may be reasonable to assume they are exchangeable.

Exchangeability means for any different permutation of litter-mates the

probability of responses stays the same. Suppose X1, X2, ... is a finite or

countable sequence of random variables. These variables are exchangeable if for

any vector (X1, X2, ...) and for any n, the

P (Xπ(1) = x1, ..., Xπ(n) = xn) = P (X1 = x1, ...Xn = xn) for any permutation

π(1), ..π(n) of 1, ...n.

Although the definitions are the same for finite or infinite sequences, there

are probabilistic differences in the properties of finite and infinite exchangeable

sequences. These differences are important in applications to modeling data.

One such difference involves the fundamental theorem of de Finetti, which states

that given an infinite sequence of exchangeable binary random variables

8



X1, X2, ... there exists a distribution function F on [0, 1] such that

P
( n∑
k=1

Xk = r
)

=

(
n

r

)∫ 1

0

um(1− u)n−mdF (u).

This theorem is not necessarily true for a finite sequence of exchangeable random

variables (Freedman and Diaconis, 1982). Therefore, George and Bowman (1995)

gave the joint distribution of any finite set of exchangeable binary random

variables in terms of the probability of similar response among members of a

cluster.

Correlated binary data are commonly analyzed by modeling the marginal

response by the beta-binomial (Williams, 1975,1987; Prentice, 1986) and

quasi-likelihood techniques and generalized estimating equations for estimating

the mean response (Zeger and Liang, 1986; Ryan, 1992). Generalized estimating

equations model the mean and variance parameters and use working matrices to

specify the third and fourth moments while ignoring higher moments (Bowman

and George, 1995). Under the assumption of exchangeability, moments of all

orders can be efficiently estimated. For correlated binary data such as

observations from some familial studies, developmental toxicity experiments, and

ophthalmologic clinical trials, the assumption that data from the same dam,

individual, or cluster are exchangeable may be reasonable.

An important subclass of multivariate binary distributions is the family of

exchangeable binary distributions. Let X1, X2, ..., Xn be a set of exchangeable

binary random variables, and let

λk = P (X1 = 1, ..., Xk = 1) (2.1)

where λ0 = 1. Using inclusion and exclusion principles George and Bowman

(1995) obtained P (X1 = x1, ..., Xn = xn) =
n−r∑
j=0

(−1)j
(
n−r
j

)
λr+j, where

9



r =
∑n

k=1 xk. They also derive the following exchangeable binomial distribution,

P (R = r) =

(
n

r

) n−r∑
j=0

(−1)j
(
n− r
j

)
λr+j, (2.2)

where R =
∑n

k=1Xk. The expected number of responses, E(R) = nλ1, and the

variance of R can be written as V ar(R) = nλ1 + n(n− 1)λ2 − n2λ21.

To define ρk, the correlation of order k, using the definition

(var(X1))
k/2ρk = E(Xin − µ), ..., E(Xik − µ) = E(X1 − µ), ..., E(Xk − µ), (2.3)

where E(X) = µ = λ1. Bowman and George (1995) obtained

ρk =

∑k
j=0(−1)k−j

(
k
j

)
λk−j1 λj

[λ1(1− λ1)]k/2
. (2.4)

For a set of exchangeable binary data, X1, ..., Xn, higher moments may now be

expressed in terms of λk’s (Bowman and George, 1995).

2.2 Estimation with Exchangeable Binary Data

with Equal Cluster Sizes

Bowman and George (1995) show how the MLE’s of λk can be obtained and

used to compute the MLE’s of the joint probabilities, marginal means, moments,

and correlations of all orders for data when the cluster sizes are the same. Let

(Xj1, ..., Xjn) be independent vectors of binary random variables such that each

of the vectors has a common exchangeable distribution where j = 1, ...,m

denotes the cluster. Let Rj =
∑n

k=1Xjk. Then (R1, ..., Rm) is a random sample

from a population with discrete probability function given by P (R = r) from

equation 2.2. Let Ak be the number of samples for which Rj equals k,

10



k = 0, ..., n and j = 1, ...,m, and let

pr =
n−r∑
k=0

(−1)k
(
n− r
k

)
λr+k (2.5)

r = 0, 1, ..., n. Then P (R = r) =
(
n
r

)
pr and (A0, A1, ..., An) have a multinomial

distribution with parameters (n, p0,
(
n
1

)
p1,
(
n
2

)
p2, ..., pn). As a result, the MLE of

pr is given by

p̂r =
Ar[(
n
r

)
m
] . (2.6)

An inversion of equation 2.5 gives

λ` =
n−∑̀
j=0

(
n− `
j

)
pn−j (2.7)

and hence the MLE of λ` is given by

λ̂` =
1

m

n−∑̀
j=0

(
n− `
j

)
An−j(
n
j

) , (2.8)

` = 1, ..., n. It is shown in Bowman and George (1995) that the λ̂` are unbiased.

Using the properties of transformations of estimates from a multinomial

population described in Bickel and Doksum (1977) and Bowman and George

(1995) show that the estimated variance of λ̂` is given by

ˆvar(λ̂`) =
1

m


n∑
i=`

Ai
m

(
n−`
n−i

)(
n
i

)2 −
(

n∑
i=`

Ai
m

(
n−`
n−i

)(
n
i

)2
)2
 . (2.9)

When all clusters are of common size, n, the likelihood for m clusters is

proportional to the multinomial likelihood

n∏
r=0

P (R = r)Ar (2.10)

where Ar is the number of litters containing exactly r successes for (0 ≤ r ≤ n).

As an example of exchangeable data with equal cluster sizes, Bowman and

11



George (1995) discuss an application to a clinical trial that compares two

antibiotics for ear infections in children. The data set is from a double-blind

randomized clinical trial comparing cefaclor (CEF) and amoxicillian (AMO),

used for the treatment of acute otitis media (OME). Seventy-five children have

OME in both ears at the beginning of the study and are randomly assigned to a

14-day treatment of CEF or AMO. X1 is defined to be 1 if the right ear is clear

at the 14th day, 0 otherwise, and X2 is similarly defined in terms of the left ear.

It is discussed how exchangeability is appropriate for this data set, and MLE’s of

λ1, λ2, and ρ2 are given.

2.3 Parameter Estimation for Data with Ran-

dom Cluster Sizes

Bowman and George (1995) provide estimates for λ` in the case where

cluster sizes are not equal, however, Xu and Prorok (2003) showed that these

estimates are not maximum likelihood estimates. In most applications involving

cluster sampling, the litter size is random. Consider a sample in which m litters

are independently chosen, but of varying sizes, with the jth litter having nj

observations, denoted (Xj1, ..., Xjnj
) for j = 1, . . . ,m. Let n denote the cluster

size, and because we are only concerned with finite clusters, assume the

maximum value for n is K. Clusters of different sizes can be viewed as coming

from clusters of equal-size, K, but with (K − n) observations missing at random;

even if this is not the true nature of the missing values. To make inferences

based on combined information from litters of varying sizes, the parameters will

need to have the same meaning irrespective of the litter size. This is termed the

interpretability assumption by Stefanescu and Turnbull (2003). Under

interpretability, λr,n, the probability of observing r responses in a cluster of size

n, is the same for all clusters K ≥ n, in other words, λr,n = λr,K = λr. This

assumption needs to be justified in any given application. Without it, it is

difficult to combine the information from clusters of different sizes without

12



imposing some model assumption for the effect of cluster size on the joint

distribution. Stefanescu and Turnbull (2003) give testing procedures for the

interpretability assumption. In addition, Szabo and George (2010) and Pang and

Kuk (2007) give the setting and testing procedure for the interpretability

assumption, also called marginal compatibility.

Stefanescu and Turbull (2003) propose using the EM algorithm which takes

natural advantage of the statistical structure of the problem. The

Expectation-Maximization (EM) Algorithm is an approach to approximate the

maximum likelihood estimates when some of the data are missing. Under the

interpretability assumption, the likelihood of any particular litter of size n is the

same as the likelihood of those outcomes arising from a larger cluster of size K,

but with K − n observations missing completely at random. Thus, it is natural

to consider using the EM algorithm to obtain maximum likelihood estimates.

To use the EM algorithm, first show the likelihood of the complete data

with clusters of equal size K. Define Ar,n to be the number of clusters of size n

with exactly r successes. The full data likelihood is

L =
K∏
n=1

n∏
r=0

{(
n

r

) n−r∑
j=0

(−1)j
(
n− r
j

)
λr+j

}An,r

. (2.11)

Let qr,n = P (R = r) =
(
n
r

) n−r∑
j=0

(−1)j
(
n−r
j

)
λr+j, then the complete data

likelihood could be reduced to L =
∏K

n=1

∏n
r=0 qr,n

Ar,n . For a generic cluster of

size n, with observations (x1, . . . , xn) and responses
∑n

i=1 xi = r, the probability

conditional on cluster size n is

P (x1, ..., xn|N = n) =
qr,n(
n
r

) =
n−r∑
j=0

(−1)j
(
n− r
j

)
λr+j. (2.12)

For a cluster of size n where n < K, there are K − n observations missing

completely at random. If all K were obtained the maximum number of

responses, T , would be greater than or equal to r. If we observe r responses in n

observations, T could be any value from r to K − (n− r). By induction on

13



K − n missing observations, P (x1, ..., xn|N = n), equation 2.12, becomes

=
K−n+r∑
t=r

(
K − n
t− r

)K−t∑
j=0

(−1)j
(
K − t
j

)
λt+j.

Simplify back into terms of qr,n,

=
K−n+r∑
t=r

(
K − n
t− r

)
qt,K(
K
t

) , (2.13)

which by exchangeability is the probability of observing (x1, ..., xn) in a cluster of

size K, when responses (xn+1, ..., xK) are missing completely at random. And,

under the interpretability assumption, the likelihood of any particular cluster of

size n is the same as the likelihood of those outcomes from a larger cluster of size

K, but with K − n missing. The incomplete-data likelihood is then,

L =
K∏
n=1

n∏
r=0

{
K−n+r∑
t=r

qt,K

(
K−n
t−r

)(
K
t

) }An,r

. (2.14)

Now start the algorithm with initial estimates for P (T = t) = qt,K = 1
K+1

for t = 0, ..., K. Let At,K be the number of clusters with exactly t successes if the

missing data were present so that all clusters have common size K. The

complete data log-likelihood is then given by

l = log
(∏K

n=1

∏n
r=0 qr,n

Ar,n

)
=
∑K

t=0At,K log(qt,K).

For any cluster j with n < K observations, Rj = Xj1 + ...+Xjn is the

incomplete data and Tj = Rj +Xj,r+1 + ...+Xj,K is the complete data. Then

denote

pt,r,n = P (T = t|R = r)

=
P (R = r|T = t)P (T = t)∑
t′ P (R = r|T = t′)P (T = t′)

=

{(
t
r

) ((
K−t
n−r

))
/
(
K
n

)}
qt∑K−n+r

t′=r

{(
t′

r

) ((
K−t′
n−r

))
/
(
K
n

)}
qt′

=

{(
t
r

) ((
K−t
n−r

))}
qt∑K−n+r

t′=r

{(
t′

r

) ((
K−t′
n−r

))}
qt′
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for t = r, r + 1, ..., K − n+ r, where we have used the exchangeability of the X’s.

Also, let pK,r,t = 1 if r = t and 0 otherwise. To estimate A
(i)
t,K , for iteration i,

conditional on the observed data {Rj}

A
(i)
t,K = E(At,K|{Rj}) =

K∑
n=1

min(t,n)∑
r=max(0,t+n−k)

Ar,npt,r,n (2.15)

where Ar,n is the number of clusters size n with r responses. Update the

estimates of q
(i)
0,K , q

(i)
1,K , ..., q

(i)
K,K , with q

(i)
t =

A
(i)
t,K

K
at each iteration, (i), until

convergence. The MLE’s of λ̂1, ρ̂2, and Ê(X1, X2) can then be estimated.
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Chapter 3

Exchangeable Negative Binomial Dis-

tribution

Tan et al. (2010) introduce the exchangeable negative binomial distribution

as another way to model count data. Poison regression is the standard method

used to model count data. However, the Poisson distribution requires the

equality of its mean and variance, an assumption which is rarely met in real

data. What often happens is that the variance of data is larger than the mean

which was discussed earlier as over-dispersion. The standard parametric model

to account for Poisson over-dispersion is the negative binomial distribution, and

negative binomial regression is finding increased use (Hilbe, 2007). The negative

binomial random variable can be viewed as the count to get the desired number

of successes in a series of independent and identically distributed Bernoulli trials.

When independence can not be assumed, an assumption of exchangeability is

often used as an alternative to independence. The exchangeable negative

binomial distribution has many advantages over some existing models. In an

exchangeable model, the joint distribution is expressed in terms of marginal

probabilities. The correlations of all orders are given by these probabilities so

that an exchangeable model incorporates higher order moments and makes the

full use of the information in them (Tan et al., 2010).

The data, X1, X2, ..., is assumed to be a sequence of exchangeable Bernoulli

random variables. Let r be the desired number of successes. Then, the

probability that Y trials are needed to obtain r successes is given by Tan,
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Rayner, Wang, and Peng 2010 to be

P (Y = y) =

(
y − 1

r − 1

) y−r∑
k=0

(−1)k
(
y − r
k

)
λr+k, (3.1)

where y = r, r + 1, .... The exchangeable Bernoulli sequence X1, X2, ... may be

unobservable, but we can observe Y , the number of trials to get the first r

successes which is the same as observing the number of failures to get the first r

successes. Let S be the number of failures, then Y = S + r. Equation 3.1 can be

rewritten

P (S = s) =

(
s+ r − 1

r − 1

) s∑
k=0

(−1)k
(
s

k

)
λr+k (3.2)

where s = 0, 1, . . . (Tan et al., 2010).

Tan et al. (2010) go on to justify the exchangeable negative binomial

distribution as a probability distribution, derive the moment generating function,

and derive the mean and variance. Let Y ∼ ENB(λ, r) with λ = {λr, λr+1, ...} .

The moment generating function of Y by definition is given by

MY (t) = E(etY ) =
∞∑
y=r

etY P (Y = y), t ∈ N.

Using the de Finetti theorem, Tan et al. (2010) obtain

P (Y = y) =

(
y − 1

r − 1

)∫ 1

0

ur(1− u)y−rdQ(u) (3.3)

where y = r, r + 1, . . . . Assuming convergence they substitute 3.3 into the

moment generating function definition and swap the summation and integration.

By the Taylor expansion of the infinite negative binomial series,∑∞
k=0

(
r+k−1
r−1

)
(1− u)k = u−r they obtain

MY (t) = etr
∫ 1

0

ur[1− (1− u)et]−rdQ(u). (3.4)

Differentiating the moment generating function and evaluating it where t=0
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yields

E(Y ) =
d

dt
MY (t)

∣∣∣
t=0

= M ′
Y (0) = r

∫ 1

0

u−1dQ(u). (3.5)

When r = 1, the Taylor series of negative binomial series,∑∞
k=0

(
r+k−1
r−1

)
(1− u)k = u−r, becomes

∑∞
k=0(1− u)k = u−1. We can then write

equation 3.5 as

E(Y ) = r

∫ 1

0

∞∑
k=0

(1− u)kdQ(u). (3.6)

If the sum and integral converge, we can interchange the integral and

summation; changing the expected value to

E(Y ) = r
∞∑
k=0

∫ 1

0

(1− u)kdQ(u). (3.7)

Now, using the Hausdorff theorem (Feller, 1971) which states

to every infinite sequence of exchangeable binary random variables

X1, X2, ... there corresponds a probability distribution Q concentrated

on [0, 1] such that for y = `+ 1, `+ 2, ...

P (X1 = 1, ..., X` = 1, X`+1 = 0, ..., Xy = 0) =

∫ 1

0

u`(1− u)y−`dQ(u)

If ` = 0 in the Hausdorff Theorem, then

P (X1 = 0, ..., Xk = 0) =
∫ 1

0
(1− u)kdQ(u). This is the probability that the

number of successes is zero, P (R = 0), in the exchangeable binary model.

According to equation 2.2 previously defined,

P (R = 0) = P (X1 = 0, ..., Xn = 0) =
∑n

j=0(−1)j
(
n
j

)
λj. Hence, using Hausdorff

Theorem with ` = 0, the expected value from equation 3.7 becomes

E(Y ) = r

∞∑
n=1

n∑
j=0

(−1)j
(
n

j

)
λj. (3.8)

In the same manner the variance of Y can be defined. By definition the
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V ar(Y ) = E(Y 2)− (E(Y ))2. The E(Y 2) can be found by

E(Y 2) = M ′′
y (0) = r(r + 1)

∫ 1

0

u−2dQ(u)− r
∫ 1

0

u−1dQ(u).

.

It has already been shown that E(Y ) = r
∫ 1

0
u−1dQ(u), so

E(Y 2) = r(r + 1)
∫ 1

0
u−2dQ(u)− E(Y ). The only part of the equation not

previously discussed is r(r + 1)
∫ 1

0
u−2dQ(u). Using the Taylor series of negative

binomial series, where r = 2,u−2 =
∑∞

k=0(k + 1)(1− u)k. This gives

r(r + 1)
∫ 1

0
u−2dQ(u) = r(r + 1)

∫ 1

0

∑∞
k=0(k + 1)(1− u)kdQ(u). Assuming the

sum and integral converge and using Hausdorff theorem when ` = 0, we get

E(Y 2) = r(r + 1)
∞∑
k=0

(k + 1)
k∑
j=0

(−1)j
(
k

j

)
λj − E(Y )

= r(r + 1)
∞∑
k=0

(k + 1)
k∑
j=0

(−1)j
(
k

j

)
λj − r

∞∑
k=1

k∑
j=0

(−1)j
(
k

j

)
λj

= r(r + 1)
∞∑
k=0

k
k∑
j=0

(−1)j
(
k

j

)
λj + r2

∞∑
k=1

k∑
j=0

(−1)j
(
k

j

)
λj

.

The variance of Y is then given by,

V ar(Y ) = r(r+1)
∞∑
k=0

k
k∑
j=0

(−1)j
(
k

j

)
λj+r

2

∞∑
k=1

k∑
j=0

(−1)j
(
k

j

)
λj−

(
r
∞∑
k=1

k∑
j=0

(−1)j
(
k

j

)
λj

)2

.

(3.9)

.

Tan et al. (2010) apply their procedure to a clinical burn wound data set to

show the benefits of the exchangeable negative binomial distribution.
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Chapter 4

An Alternate Design for Estima-

tion using Exchangeable Binary Data

4.1 Motivation

The use of animals in toxicity studies began in the 1920’s when J.W. Trevan

introduced the use of the 50% lethal dose (LD50). In the 1960’s, regulatory

agencies made mandatory the submission of toxicity profiles for investigating

new drugs. In the 1980’s OECD, Organization for Economic Co-operation and

Development, and ICH, International Conference on Harmonization, brought out

guidelines for toxicity testing of pharmaceutical substances (Parasuraman, 2011).

As discussed in the introduction, animals will always be used in toxicology

research because the experimental environment of a whole animal can not be

reproduced in a laboratory. However, as more awareness surrounds animal

testing, organizations such as the National Anti-Vivisection Society (NAVS) and

People for the Ethical Treatment of Animals (PETA) continue to advocate for

fewer or no animals to be used in testing. The Society for Toxicology discuss

that other options are becoming available, but animals will always be needed as

the last method of ensuring safety of certain toxins for humans. So a different

approach may be needed from what Finney (1964) suggested, assigning the same

number of animals to each dose group or treatment group.

One type of animal study is the developmental toxicity study. In these

studies pregnant females are randomly assigned to different doses, low to high,
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and fetuses are observed for an effect. Another approach could be to do testing

one litter at a time, by assigning a litter to a treatment and observing the

responses. If this cluster had the desired number of responses or more, you could

consider that a success; if not it could be considered a failure. Assign another

cluster to the treatment and observe the responses, assigning success or failure

based on the number of responses. This process would continue until you reach a

desired number of clusters with the number of responses or more of interest. So

for doses with a large number of expected responses, such as LD50 previously

discussed, fewer animals would be assigned because the desired number of

success could be observed with fewer animals needed. Each cluster would be

correlated, since each female would have offspring that respond similarly. The

success or failure of each cluster (i.e. whether or not they had the desired

number of responses) would be a Bernoulli random variable, and the total

number of clusters needed would follow the negative binomial distribution. This

process could be more time consuming, but if it reduced the number of animals

needed and did not sacrifice information, it could be very valuable. The

following discussion investigates this alternate design for estimation using

exchangeable binary data.

4.2 Conditional Probability

It is of interest to see how many clusters of size n are needed to observe t

clusters having r or more responses. Each cluster is examined, let

Ej =

 1 if # of responses ≥ r.

0 otherwise

Stop examining clusters when there are t litters with r or more successes.

Therefore,
∑Mt

j=1Ej = t. Where Mt is the total number of clusters needed to get

t successes. Since each cluster is independent, Mt would follow a negative

binomial distribution.
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Table 4.1 illustrates an example where n = 5 and r = 2. For cluster 1 there

are n = 5 observations with
∑n

k=1 xk = r = 2. Therefore that cluster is

considered a success, e1 = 1, since there were r = 2 or more responses. The same

can be seen of cluster 2, with a total of r = 3 responses, e2 = 1. Cluster 3 has

r = 1 responses which is not the desired 2 or more, so cluster 3 is considered a

failure, e3=0. This continues for each cluster j until there are Mt clusters where

the total successes,
∑Mt

j=1 ej = t, is t.

Table 4.1: Motivating Example
Litter (X1, X2, X3, X4, X5) E

1 (0, 1, 0, 0, 1) 1
2 (1, 1, 0, 0, 1) 1
3 (0, 0, 1, 0, 0) 0

. . . . . . . . .
Mt (1, 1, 1, 1, 0) 1∑mt

i=1Ei = t

Where (X1, ..., Xn) are exchangeable binary random variables within each

cluster and R =
∑n

i=1Xi. Then, R is an exchangeable binomial random variable

with r success in n trials. The probability of having r responses in a litter of size

n is

P (R = r) =

(
n

r

) n−r∑
j=0

(−1)j
(
n− r
j

)
λr+j (4.1)

as defined in Bowman and George (1995). Ei is a Bernoulli random variable with

probability of success pr,n

pr,n = P (Ri = r) + P (Ri = r + 1) + ...+ P (Ri = n)

=
n∑
k=r

(
n

k

) n−k∑
j=0

(−1)j
(
n− k
j

)
λk+j

.

(4.2)

As discussed earlier, Mt is the number of clusters needed to reach t

successes; a success is defined as a cluster having r or more responses. The

probability of having r or more responses was just given as pr,n. The the
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probability of Mt = mt is given by

P (Mt = mt|pr,n) =

(
mt − 1

t− 1

)
ptr,n(1− pr,n)mt−t. (4.3)

Let A0 be the number of litters with 0 responses, A1 be the number of

litters with 1 response, and so on up to An, the number of litters with n

responses. The total number of litters A0 +A1 + · · ·+An = Mt. Mt is a negative

binomial random variable. To use the multinomial distribution for the Ai’s, we

can condition on knowing the value of Mt, the total number of litters. Let P0 be

the probability of having 0 responses in a litter of size n, which is P (R = 0) as

defined in Equation 4.1. In the same manner,

P1 = P (R = 1) =
(
n
1

)∑n−1
j=0 (−1)j

(
n−1
j

)
λ1+j. Similarly define P2,...,Pn. Then,

conditional on Mt = mt, (A0, ..., An) follow a multinomial distribution with

parameters (mt, P0, P1, ..., Pn). Therefore,

P (A0 = a0, A1 = a1, ..., An = an|Mt = mt) =
mt!

a0!a1! . . . an!
P a0
0 . . . P an

n (4.4)

for
∑n

k=1 Pk = 1 and
∑n

k=1 ai = mt. The joint probability distribution of A and

Mt is

P (A|Mt = mt)P (Mt = mt) =

(
mt!

a0!a1! . . . an!
P a0
0 . . . P an

n

)((
mt − 1

t− 1

)
ptr,n(1− pr,n)mt−t

)
(4.5)

and the marginal of A is

∞∑
mt=1

(
mt!

a0!a1! . . . an!
P a0
0 . . . P an

n

)((
mt − 1

t− 1

)
ptr,n(1− pr,n)mt−t.

)
(4.6)

The conditional likelihood in (4.4) must be maximized subject to the constraint∑n
k=0 Pk = 1. The conditional maximum likelihood estimates of the Pi’s are

found by taking the partial derivatives, set equal to 0, and solving subject to the
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constraints listed above using LaGrange multipliers.

d`

dPi
=

d

dPi

[
log

mt!

a0!a1! · · · an!
+

n∑
i=0

ailogPi − λ(
n∑
i=0

Pi − 1)

]
.

Then, the conditional MLE for Pi is,

P̂i =
Ai
mt

(4.7)

where i = 0, ...n.

To find the maximum likelihood estimate of λ`, equation (4.2) is inverted.

Start with pn,n = λn, then find pn−1,n =
(
n
n−1

)
[λn−1 − λn] + λn. Substitute pn,n

into pn−1,n to get pn−1,n =
(
n
n−1

)
[λn−1 − λn] + pn,n and solve for λn−1.

λn−1 =
1(
n
n−1

) [pn−1,n − pn,n] + pn,n

Continue finding λn−2 by expanding pn−2,n,

pn−2,n =
(
n
n−2

)
[λn−2 − 2λn−1 + λn] + pn−1,n. Solve for λn−2, and substitute into

the equation λn−1 and λn. Simplify like terms to get

λn−2 =
1(
n
n−2

) [pn−2,n − pn−1,n] + 2

(
1(
n
n−1

) [pn−1,n − pn,n]

)
+ pn,n.

Find λn−3 in the same manner,

pn−3,n =
(
n
n−3

)
[λn−3 − 3λn−2 + 3λn−2 − λn] + pn−2,n. Solve for λn−3, substitute

into the equation λn−2, λn−1, and λn; then simplify.

λn−3 =
1(
n
n−3

) [pn−3,n − pn−2,n]+3

(
1(
n
n−2

) [pn−2,n − pn−1,n]

)
+3

(
1(
n
n−1

) [pn−1,n − pn,n]

)
+pn,n.

Examining λn−3, λn−2, and λn−1 the following equation can be created

λ` =
n−∑̀
j=0

(
n− `
j

)
1(
n
`+j

) [p`+j − p`+j+1] , (4.8)

where pn+1 = 0 since the sample size is n. By definition of equation (4.2),
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p0,n =
∑n

k=0 P (R = k), p1,n =
∑n

k=1 P (R = k),

p2,n =
∑n

k=2 P (R = k),...,pn,n =
∑n

k=n P (R = k). Then, P0 = p0,n − p1,n,

P1 = p1,n − p2,n, and so on up to Pn.

Then, λ` can be written

λ` =
n∑
j=0

(
n− `
j

)
1(
n
`+j

)P`+j (4.9)

which corresponds to the unconditional estimates of Bowman and George, 1995.

Using equations (4.7) and (4.9) the conditional MLE of λ` is given by

λ̂` =
n−∑̀
j=0

(
n− `
j

)
1(
n
`+j

)A`+j
mt

(4.10)

With our conditional MLE of λ` we can now find an estimate for the correlation

between litter-mates and estimate over-dispersion. Bowman and George (1995)

defined ρk, the correlation up to order k. Using this the correlation between two

litter-mates would be

ρ2 =
λ2 − λ21
λ1(1− λ1)

. (4.11)

Using our conditional likelihood estimates λ̂1 and λ̂2, the estimate for ρ2 is

ρ̂2 =
λ̂2 − λ̂21
λ̂1(1− λ̂1)

. (4.12)

The conditional variance of λ̂1, is given by

V ar(λ̂`|Mt = mt) =
n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 1

m2
t

V ar(A`+j) +
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) 1

m2
t

Cov(A`+j, A`+i)

=
n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 1

mt

P`+j(1− P`+j) +
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) 1

m2
t

(−mtP`+jP`+i).

(4.13)
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The estimated conditional variance of λ̂1 would then be

ˆV ar(λ̂`|Mt = mt) =
n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 1

m2
t

A`+j

(
1− A`+j

mt

)
+
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) 1

m3
t

(−A`+jA`+i).

(4.14)

4.3 Unconditional Expectation and Variance

The unconditional expectation of λ` is investigated for bias, and the

unconditional variance of λ` is derived for comparison with other unconditional

estimation procedures. The unconditional expectation of λ` is given by,

E(λ̂`) = E(E(λ̂`|Mt = mt))

= E

(
E

(
n−∑̀
j=0

(
n− `
j

)
1(
n
`+j

)A`+j
Mt

))

= E

(
n−∑̀
j=0

(
n− `
j

)
1(
n
`+j

)E(A`+j)

Mt

)

= E

(
n−∑̀
j=0

(
n− `
j

)
1(
n
`+j

)P`+j)

= E(λ`)

= λ`

.

(4.15)

This shows our estimator is an unbiased estimator.

The unconditional variance of λ̂` is found from

V ar(λ̂`) = E(V ar(λ̂`|Mt = mt)) + V ar(E(λ̂`|Mt = mt)).
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As shown, E(λ̂`|Mt = mt)) = λ`. Therefore,

V ar(λ̂`) = E(V ar(λ̂`|Mt = mt)) + V ar(E(λ̂`|Mt = mt))

= E

n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 1

M2
t

V ar(A`+j) +
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) 1

M2
t

Cov(A`+j, A`+i)

+ V ar(λ`)

= E

n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 [ 1

Mt

P`+j(1− P`+j)
]

+
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) 1

Mt

(−P`+jP`+i)

+ 0

=
n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 [E ( 1

Mt

)
P`+j(1− P`+j)

]
+

n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

)E ( 1

Mt

)
(−P`+jP`+i).

(4.16)

Using a Taylor series expansion, we can find an approximation for E( 1
Mt

).

Let f(x) = 1
x
; using Taylor series expansion to the second moment about x = a

we have

1

x
≈ 1

a
+

1

a2
(x− a) +

1

a3
(x− a)2.

Evaluate at a = E(x), then 1
x

becomes

1

x
≈ 1

E(x)
+

1

E(x)2
(x− E(x)) +

1

E(x)3
(x− E(x))2

Taking the Expectation of both sides we get

E

(
1

x

)
≈ E

(
1

E(x)
+

1

E(x)2
(x− E(x)) +

1

E(x)3
(x− E(x))2

)
≈ 1

E(x)
+

1

E(x)3
V ar(X).

(4.17)

For X ∼ NB(r, p), where p = P (success), E(X) = r
p

and V ar(X) = r
p2

. Thus we

get

E

(
1

X

)
≈ p

r
+
p

r2
.
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For Mt ∼ NB(t, pr,n), the E
(

1
Mt

)
≈ pr,n

t
+ pr,n

t2
. Therefore the V ar(λ̂`) becomes,

V ar(λ̂`) ≈
n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 (pr,nt +
pr,n
t2

)
P`+j(1− P`+j)

+
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) (pr,n
t

+
pr,n
t2

)
(−P`+jP`+i)

≈
(pr,n
t

+
pr,n
t2

)n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 [P`+j(1− P`+j)] +
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) (−P`+jP`+i)

 ,

(4.18)

and we can estimate this by

ˆV ar(λ̂`)

≈
∑n

i=`
Ai

mt

t
+

∑n
i=`

Ai

mt

t2

n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 A`+jmt

(1− A`+j
mt

) +
n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) (
−A`+j
mt

A`+i
mt

)

 .

≈
∑n

i=`
Ai

mt

t
+

∑n
i=`

Ai

mt

t2

n−∑̀
j=0

(
n−`
j

)2(
n
`+j

)2 A`+jmt

(1− A`+j
mt

) +
1

m2
t

n−`−1∑
j=0

n−∑̀
i=0
i 6=j

(
n−`
j

)(
n
`+j

) (n−`i )(
n
`+i

) (−A`+jA`+i)

 .

(4.19)

Below in Tables 4.2 to 4.7 are comparisons for the conditional standard

error of λ̂1 from sampling in the simulation study to the unconditional variance

(unconditional standard error) defined here. Values for t were chosen based on

the results of the simulation study; the simulation performed better when t and

r were higher than the expected number of responses. Also, since the folded

logistic model performed better overall, the folded logistic model is used here.
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Table 4.2: λ1 = 0.05, n = 5, E(R) = 0.25, r = 1

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
4 0.0608 0.0008 0.0289 0.0010 0.0323
5 0.0654 0.0007 0.0268 0.0009 0.0294
6 0.0676 0.0008 0.0289 0.0010 0.0312
7 0.0535 0.0004 0.0192 0.0004 0.0205
8 0.0617 0.0005 0.0227 0.0006 0.0241
9 0.0539 0.0003 0.0173 0.0003 0.0182
10 0.0767 0.0006 0.0239 0.0006 0.0251

Table 4.3: λ1 = 0.05, n = 10, E(R) = 0.5, r = 1

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
4 0.0476 0.0004 0.0197 0.0005 0.0220
5 0.0562 0.0007 0.0265 0.0008 0.0291
6 0.0409 0.0002 0.0125 0.0002 0.0134
7 0.0623 0.0006 0.0250 0.0007 0.0267
8 0.0460 0.0002 0.0156 0.0003 0.0165
9 0.0463 0.0003 0.0162 0.0003 0.0171
10 0.0637 0.0005 0.0229 0.0006 0.0241

Table 4.4: λ1 = 0.30, ,n = 5, E(R) = 1.5, r = 2

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
4 0.3622 0.0076 0.0873 0.0150 0.1224
5 0.2752 0.0054 0.0736 0.0147 0.1212
6 0.3471 0.0035 0.0592 0.0075 0.0867
7 0.3227 0.0035 0.0595 0.0065 0.0803
8 0.3378 0.0030 0.0545 0.0048 0.0693
9 0.3337 0.0041 0.0643 0.0076 0.0871
10 0.3136 0.0030 0.0547 0.0050 0.0709

Table 4.5: λ1 = 0.30, n = 10, E(R) = 3, r = 3

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
4 0.3774 0.0094 0.0968 0.0160 0.1265
5 0.2630 0.0026 0.0505 0.0069 0.0831
6 0.3323 0.0073 0.0855 0.0132 0.1151
7 0.2642 0.0022 0.0465 0.0052 0.0722
8 0.2938 0.0027 0.0520 0.0056 0.0751
9 0.3664 0.0042 0.0645 0.0078 0.0880
10 0.2932 0.0023 0.0475 0.0043 0.0653
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Table 4.6: λ1 = 0.85, n = 5, E(R) = 4.25, r = 5

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
5 0.8650 0.0047 0.0689 0.0095 0.0973
6 0.8774 0.0017 0.0411 0.0038 0.0619
7 0.8172 0.0067 0.0821 0.0123 0.1110
8 0.8318 0.0019 0.0435 0.0046 0.0677
9 0.8427 0.0030 0.0551 0.0066 0.0815
10 0.8795 0.0011 0.0331 0.0023 0.0475

Table 4.7: λ1 = 0.85, n = 10, E(R) = 8.5, r = 9

t mean(λ̂1) V ar(λ̂1|Mt = mt) se(λ̂1|Mt = mt) V ar(λ̂1) se(λ̂1)
9 0.8409 0.0056 0.0749 0.0075 0.0867
10 0.8921 0.0011 0.0326 0.0017 0.0407

As expected the unconditional standard error and variance are higher than

the conditional standard error and variance. The conditional standard error

decreases as t increases. The unconditional standard error does not consistently

decrease as t increases like the conditional standard error.
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Chapter 5

Simulation Study and Application

5.1 Simulation Study

To investigate the properties of the conditional estimators λ̂1, λ̂2, and ρ̂2. A

simulation study was conducted. The folded logistic model and power family

model were used to generate the λ’s to give a known value for comparison. For

the folded logistic model, described in George and Bowman (1995), the follow

function for λk is used.

λk(β) =
2

1 + (k + 1)β
(5.1)

where k ≥ 0 and β > 0. The power family model, described in Kuk (2004),

allows us to use the following as a different function for λk.

λk = pk
γ

(5.2)

with 0 ≤ p, γ ≤ 1. The data, as previously described, involves clusters,

(X1, ..., Xn), of binary random variables, and R =
∑n

i=1Xi is the sum of

exchangeable binary random variables. The probability of having r responses in

n exchangeable trials is given by P (R = r) =
(
n
r

)∑n−r
j=0 (−1)j

(
n−r
j

)
λr+j. Where

λr+j is generated from either the folded logistic model or the power family

model. The cumulative distribution function, F , is

F (x) =
x∑
r=0

P (R = r)
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.

The exchangeable responses within each cluster are generated by the

following scheme. A uniform random variable is generated. According to what

interval of the cumulative distribution function values, F (0), F (1), . . . , F (n), the

uniform random number, u, falls in, the value of the number of responses in a

litter of size n, is recorded. If 0 < u ≤ F (0), then r = 0; if F (0) < u ≤ F (1),

then r = 1 and so on. If r is greater than or equal to the fixed number of

responses of interest, then E = 1, as described in chapter 4, otherwise E = 0.

The process stops when
∑Mt

i=1Ei = t where t is the chosen number of clusters

with r or more responses.

In developmental toxicity studies it is typical to have low probability of

response at a low dose and high probability of response at a high dose. To

pattern results like a typical study, three cases for λ1 are investigated, Low :

λ1 = 0.05, Medium : λ1 = 0.30, and High : λ1 = 0.85. For each case, we want to

investigate different values of r and t. Based on the expected number of

responses, E(R) = nλ1, values for r are chosen. Values from 2, ..., 10 are

investigated for possible t values. Table 5.1 shows all combinations of parameters

used in the simulation study for both power family and folded logistic models.

Table 5.1: Table of parameter values investigated
Expected Total

λ1 n # responses r t # cases
0.05 5 0.25 1 2, . . . , 10 9
0.05 10 0.5 1 2, . . . , 10 9
0.30 5 1.5 1,2 2, . . . , 10 18
0.30 10 3 2,3,4 2, . . . , 10 27
0.85 5 4.25 4,5 2, . . . , 10 18
0.85 10 8.5 8,9 2, . . . , 10 18

For each of the 99 different scenarios, the following is done for 1000

iterations:

• Generate a data set of responses as described above until you get t litters

with at least r successes.
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• Once the data set is generated, re-sample from this data 1000 times. For

each iteration, λ̂1, λ̂2, and ρ̂2 are calculated. Let λ̂
(i)
1 and ρ̂

(i)
2 be the

estimates in the ith iteration, i = 1, . . . , 1000, where

λ̂` =
∑n−`

j=0

(
n−`
j

)
1

( n
`+j)

A`+j

mt
.

• mean(λ̂1) = mean(λ̂
(1)
1 , λ̂

(2)
1 , . . . , λ̂

(1000)
1 ) and

• se(λ̂1) =

√
V ar(λ̂

(1)
1 , λ̂

(2)
1 . . . , λ̂

(1000)
1 )

• Compare mean(λ̂1) to the true value of λ1 used to simulate the data.

• Let mean(ρ̂2) = mean(ρ̂
(1)
2 , . . . , ρ̂

(1000)
2 ) and

• se(ρ̂2) =

√
V ar(ρ̂

(1)
2 , . . . , ρ̂

(1000)
2 )

• Compare mean(ρ̂2) to the actual value of ρ2 for the simulated data.

5.1.1 Simulation Result

All the simulation results are listed at the end of section 5.1. Our estimator

λ̂1, with a 95% confidence interval, almost always contained the value of λ1. The

simulation code had more consistent results close to parameter values at n = 10

than n = 5 and when the number of responses were low, r = 1, 2, 3, 4. When λ1

was high, the value for t also needed to be high for better results. Overall, when

data was generated from the folded logistic model my estimate for λ1 performed

better than the estimates from the power family model. There does not seem to

be any consistent bias in estimating λ1 as t changes. When t is above the

expected value of R, our estimators, λ̂1 and ρ̂2, were closer to their parameter

values. In general the average number of clusters needed to reach t litters with at

least r successes increases as t increases, as expected. The distribution of Mt is

almost always right skewed, but is less so when t is higher values. The histograms

for Mt are roughly bell-shaped at λ1 = 0.30 using the power family model.

For the value of the correlation within clusters, ρ2, it is known to be

notoriously more difficult to get good consistent estimates, than for λ1. During

the simulation study, some iterations would result in all responses being the
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highest value, n, making the estimate for λ1 = 1. This, in turn, caused our

estimate for ρ̂2 to be NA or NAN because of division by 0. Since these

occurrences were few in a sequence of 1000 iterations, those were omitted so

values could be given for our estimate of ρ̂2.

5.1.1.1 Folded Logistic

Table 5.2 and Table 5.3 at the end of section 5.1 represent low probability of

response, when λ1 = 0.05. When n = 10, our estimator, λ̂1, is closer to the

parameter value of λ1, than when n = 5. The standard error for our estimator is

also lower at n = 10 than n = 5. And, the estimate for ρ2 is more consistent with

smaller standard error, than at n = 5. The average of Mt’s does not seem to

increase with t as we would expect when response probability is small. In

Figures 5.1 and 5.2, for λ1 = 0.05, histograms for Mt are skewed right, but are

more bell-shaped as t increases.

Tables 5.4 through 5.8 represent a middle probability of response, when

λ1 = 0.30. Again, when n = 10 the estimator seems to be more consistent at

estimating the value of the parameter λ1 with smaller standard error than when

n = 5. When r was higher than the expected value, the estimate for ρ2 seemed

to be better, and when n was higher the standard error of ρ2 was smaller.

Average values for Mt increase as t increases, as expected. Standard error for Mt

is smaller when values for the number of responses is smaller. Histograms when

λ1 = 0.30, Figures 5.3 through 5.7, are all right skewed, but less so when r is

higher than the E(R) for high values of t.

Tables 5.9 through 5.12 represent a high probability of response, when

λ1 = 0.85. When n = 10 our estimator λ̂1 is very close to the parameter value

with smaller standard error than n = 5. In most cases ρ2 is underestimated

whether n = 5 or n = 10 when λ1 is high. Average values for Mt again increase

as t increases, and standard error for Mt remains small and about the same for

all values of n and r. Histograms for Mt, Figures 5.8 through 5.11, are again

right skewed, but less so at n = 5 and r greater than E(R).
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5.1.1.2 Power Family

When λ1 = 0.05, Tables 5.13 and 5.14, estimates of ρ2 severely under

estimate the true parameter value for both cases n = 5, 10. The underestimation

is decreased when λ1 = 0.30 and r = 2 and r = 3. For both cases n = 5, 10,

estimates for λ1 are very close to the parameter value with small standard error.

The average of Mt’s does not seem to increase with t as we would expect when

response probability is small. Figures 5.12 and 5.13 show histograms for Mt

when λ1 = 0.05, they are again right skewed but less so when t is high.

When λ1 = 0.30 and n = 5, Tables 5.15 and 5.16, The estimates for λ1

underestimate the true parameter values at r = 1. However, at n = 5, r = 2,

estimates for λ1 are close to the parameter value. The standard errors for λ̂1 are

slightly higher when n = 5, r = 2. Estimates for ρ2 are underestimated at n = 5,

and standard errors for ρ2 are about the same for both cases of n = 5. Mt

increases as t increases for both cases when n = 5. The standard errors for Mt

are lower at r = 1 but increase with t when r = 2. When n increases to 10,

Tables 5.17 through 5.19 (λ1 = 0.30), estimates for λ1 are close to the parameter

value for all cases r = 2, 3, 4 and standard errors are all small and seem to

decrease with t. Estimates for ρ2 underestimate the true value and have about

the same standard error. Values for Mt increase as t increases but so does the

standard error. For figures 5.14 through 5.18, the histograms for Mt are almost

bell-shaped at high values for t.

When λ1 = 0.85, Tables 5.20 through 5.23, estimates for λ1 are better when

r is higher than E(R) for both n = 5, 10, and the standard error is small and

about the same for all cases. Estimates for ρ2 show no consistent bias. Average

values for Mt increase as t increases in all cases and the standard error stays

consistently small. Again in figures 5.19 through 5.22, the histograms for Mt are

right skewed but less so at high values of t.
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5.1.1.3 Folded Logistic compared to Power Family

At low values of λ1, λ1 = 0.05, the power family estimates of λ1 are closer to

the parameter value. The folded logistic model does a better job at estimating ρ2

when n = 10; otherwise, they both underestimate ρ2. When λ1 = 0.30, the

folded logistic model has estimates, λ̂1, very close to the parameter value and

closer estimates of ρ2 to the parameter value when n and r are high. The power

family does not perform as well an underestimates λ1 and ρ2 more often than the

folded logistic. At λ1 = 0.85, the folded logistic model again does better at high

values of n and r by have closer estimates of λ1 and ρ2 to the parameter values

with smaller standard error. The power family has high standard error estimates

for ρ̂2 and underestimates λ1 more often than the folded logistic model. As

stated earlier, overall the folded logistic model had more consistent estimates

that were closer to the stated parameter values.
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5.1.1.4 Tables of Results and Histograms of Mt = mt

Simulation Results Folded Logistic

Table 5.2: λ1 = 0.05,ρ2 = 0.0736,E(R) = 0.25,n = 5,r = 1

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.0798 0.0474 -0.0899 0.0603 6.9010 4.0089
3 0.0922 0.0529 0.0176 0.0879 11.0840 5.5273
4 0.0643 0.0328 0.1008 0.0617 22.9460 10.6915
5 0.1455 0.0470 -0.0822 0.0693 8.9980 2.6835
6 0.0594 0.0273 0.1515 0.1078 34.7910 12.8452
7 0.0498 0.0178 -0.0528 0.0203 31.4410 10.4045
8 0.0757 0.0280 0.1296 0.0833 34.9800 11.0419
9 0.0540 0.0165 -0.0574 0.0188 36.2310 10.3772
10 0.0476 0.0159 0.0971 0.0403 64.3290 18.4358
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Figure 5.1: λ1 = 0.05 ,E(R) = 0.25, n = 5, r = 1, t = 2, . . . , 10
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Table 5.3: λ1 = 0.05,ρ2 = 0.0736,E(R) = 0.5,n = 10,r = 1

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.0346 0.0290 0.0277 0.0461 13.1150 8.2835
3 0.0278 0.0158 -0.0289 0.0173 13.9680 7.0258
4 0.0387 0.0232 0.0588 0.0608 19.1550 8.4589
5 0.0574 0.0247 0.0749 0.0359 20.1430 7.7641
6 0.0593 0.0244 0.0325 0.0452 17.0370 5.7289
7 0.0486 0.0193 0.0345 0.0421 22.8770 7.0985
8 0.0475 0.0163 0.0270 0.0389 25.0330 7.0603
9 0.0487 0.0175 0.0691 0.0580 31.0620 8.8748
10 0.0379 0.0122 0.0608 0.0370 42.4820 11.9202
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Figure 5.2: λ1 = 0.05 ,E(R) = 0.5, n = 10, r = 1, t = 2, . . . , 10
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Table 5.4: λ1 = 0.30,ρ2 = 0.1441,E(R) = 1.5,n = 5,r = 1

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.1821 0.0905 -0.0529 0.1199 4.0710 2.1261
3 0.3188 0.1084 -0.0314 0.1423 4.0140 1.1922
4 0.4490 0.0440 -0.2225 0.0202 4.0000 0.0000
5 0.3610 0.1229 0.2337 0.1620 7.0660 1.6954
6 0.3048 0.1045 0.2899 0.2276 9.0050 2.0802
7 0.1978 0.0590 0.0232 0.0903 11.8980 3.0031
8 0.2240 0.0460 -0.0815 0.0577 11.0690 2.0441
9 0.3172 0.0644 -0.0016 0.1144 11.0360 1.6191
10 0.3834 0.0752 0.0507 0.0992 11.0580 1.1008
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Figure 5.3: λ1 = 0.30 ,E(R) = 1.5, n = 5, r = 1, t = 2, . . . , 10
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Table 5.5: λ1 = 0.30,ρ2 = 0.1441,E(R) = 1.5,n = 5,r = 2

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.3405 0.1306 0.0398 0.1591 6.9340 4.2225
3 0.2255 0.0657 -0.0678 0.0789 9.0400 4.4947
4 0.2412 0.0767 0.0847 0.0952 12.0390 5.0322
5 0.3245 0.1001 0.3257 0.1656 12.0760 4.0421
6 0.3201 0.0736 0.1675 0.1418 15.9010 5.2649
7 0.2401 0.0711 0.2036 0.1035 17.9900 5.4525
8 0.3323 0.0623 0.1369 0.0845 20.0590 5.3054
9 0.3519 0.0709 0.2232 0.1188 18.7900 4.6006
10 0.4121 0.0674 0.1254 0.0994 19.0490 4.3083
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Figure 5.4: λ1 = 0.30 ,E(R) = 1.5, n = 5, r = 2, t = 2, . . . , 10
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Table 5.6: λ1 = 0.30,ρ2 = 0.1441,E(R) = 3,n = 10,r = 2

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.1717 0.0570 -0.0294 0.0587 4.0670 2.0408
3 0.2365 0.0797 0.0403 0.0833 5.1640 1.8763
4 0.2744 0.0690 0.0066 0.0798 4.9620 1.0981
5 0.2369 0.0544 0.0045 0.0552 7.9810 2.2382
6 0.2391 0.0570 0.0895 0.0545 11.0260 3.0260
7 0.2555 0.0433 0.0208 0.0298 13.0420 3.3023
8 0.2942 0.0614 0.0633 0.1054 10.0650 1.6839
9 0.2774 0.0469 0.0266 0.0526 11.8680 1.9719
10 0.2774 0.0469 0.0266 0.0526 11.8680 1.9719
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Figure 5.5: λ1 = 0.30 ,E(R) = 3, n = 10, r = 2, t = 2, . . . , 10
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Table 5.7: λ1 = 0.30,ρ2 = 0.1441,E(R) = 3,n = 10,r = 3

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.3347 0.0821 -0.0194 0.0591 3.9780 1.9192
3 0.3179 0.1053 0.1596 0.1434 6.9750 3.1161
4 0.3588 0.0935 0.0814 0.1049 5.9100 1.6860
5 0.4424 0.0682 0.0089 0.0685 6.0380 1.0990
6 0.2894 0.0680 0.1249 0.0755 11.9290 3.4664
7 0.3435 0.0617 0.1058 0.0696 12.8920 3.4044
8 0.3211 0.0649 0.2321 0.1268 17.1070 4.1726
9 0.3607 0.0541 0.0892 0.0644 15.9140 3.4944
10 0.3184 0.0530 0.1382 0.0603 18.9700 4.1423
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Figure 5.6: λ1 = 0.30 ,E(R) = 3, n = 10, r = 3, t = 2, . . . , 10
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Table 5.8: λ1 = 0.30,ρ2 = 0.1441,E(R) = 3,n = 10,r = 4

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.4126 0.0451 -0.0927 0.0145 3.0040 1.2319
3 0.3392 0.0655 -0.0273 0.0511 5.0670 1.8730
4 0.4080 0.1095 0.2796 0.0991 9.9870 3.9177
5 0.3863 0.0817 0.0992 0.0940 7.8650 2.0888
6 0.3048 0.0665 0.1593 0.0643 16.1730 5.2219
7 0.3204 0.0502 0.0698 0.0423 17.8270 5.4583
8 0.3342 0.0560 0.1997 0.0897 23.8360 6.7172
9 0.3411 0.0453 0.0778 0.0519 22.7550 5.8463
10 0.2987 0.0376 0.1303 0.0763 35.6810 8.9923
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Figure 5.7: λ1 = 0.30 ,E(R) = 3, n = 10, r = 4, t = 2, . . . , 10
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Table 5.9: λ1 = 0.85,ρ2 = 0.3328,E(R) = 4.25,n = 5,r = 4

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.9029 0.0942 0.0880 0.0569 2.9840 1.1735
3 0.8395 0.1111 0.2259 0.1132 4.9460 1.8370
4 0.8265 0.1260 0.3302 0.2968 5.0040 1.1469
5 0.8703 0.0650 0.0408 0.0830 6.9810 1.6815
6 0.9248 0.0718 0.4271 0.0345 7.0050 1.0845
7 0.9221 0.0524 0.1691 0.0387 8.9420 1.5688
8 0.7687 0.0850 0.1891 0.2761 10.0220 1.6050
9 0.8273 0.0796 0.4452 0.1812 12.0290 1.9125
10 0.8357 0.0657 0.3151 0.1434 14.1060 2.3619
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Figure 5.8: λ1 = 0.85 ,E(R) = 4.25, n = 5, r = 4, t = 2, . . . , 10
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Table 5.10: λ1 = 0.85,ρ2 = 0.3328,E(R) = 4.25,n = 5,r = 5

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.8447 0.1050 0.0472 0.0755 4.0500 2.0755
3 0.8909 0.0637 -0.0282 0.0776 5.9610 2.5353
4 0.8070 0.1149 0.3765 0.1902 6.8660 2.2599
5 0.8992 0.0653 0.1411 0.0491 7.0420 1.70566
6 0.8902 0.0719 0.2937 0.1012 7.9540 1.5486
7 0.8286 0.0603 0.1453 0.0965 13.8200 3.5995
8 0.8286 0.0682 0.2639 0.1421 13.9850 3.2972
9 0.7872 0.0782 0.4801 0.2257 17.0280 3.7764
10 0.8203 0.0576 0.2303 0.1165 18.9730 4.1878
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Figure 5.9: λ1 = 0.85 ,E(R) = 4.25, n = 5, r = 5, t = 2, . . . , 10
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Table 5.11: λ1 = 0.85,ρ2 = 0.3328,E(R) = 8.5,n = 10,r = 8

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.8023 0.1140 0.0678 0.1167 3.0420 1.2969
3 0.8981 0.0727 0.0822 0.1123 3.9470 1.1382
4 0.8486 0.0603 0.0419 0.0682 5.9310 1.6921
5 0.8658 0.0559 0.0687 0.0664 7.0340 1.7081
6 0.8909 0.0525 0.1015 0.0737 7.0600 1.0870
7 0.8574 0.0956 0.5378 0.3574 8.9820 1.5768
8 0.8605 0.0480 0.1453 0.0680 11.8500 2.3093
9 0.8510 0.0680 0.3338 0.1697 12.0290 1.9749
10 0.8447 0.0597 0.2368 0.1676 13.0360 1.9821
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Figure 5.10: λ1 = 0.85 ,E(R) = 8.5, n = 10, r = 8, t = 2, . . . , 10
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Table 5.12: λ1 = 0.85,ρ2 = 0.3328,E(R) = 8.5,n = 10,r = 9

t mean(λ̂1) se(λ̂1) meanρ̂2 se(ρ̂2) mean(mt) se(mt)
2 0.7659 0.1748 0.3197 0.3022 2.9730 1.1513
3 0.9114 0.0564 0.0275 0.0738 4.0610 1.2020
4 0.9336 0.0639 0.2468 0.0366 5.0070 1.1376
5 0.9069 0.0524 0.0718 0.1046 6.0220 1.0801
6 0.8848 0.0467 0.0550 0.0739 7.9690 1.5958
7 0.8561 0.0753 0.2775 0.1653 9.0180 1.6341
8 0.8551 0.0596 0.2430 0.0747 11.9490 2.4618
9 0.8400 0.0598 0.2249 0.1537 13.0320 2.4583
10 0.8267 0.0798 0.5122 0.1691 13.9550 2.3350
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Figure 5.11: λ1 = 0.85 ,E(R) = 8.5, n = 10, r = 9, t = 2, . . . , 10
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Simulation Results Power Family γ = 0.50

Table 5.13: λ1 = 0.05, ρ2 = 0.2517, E(R) = 0.25, r = 1, n = 5

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.0569 0.0425 -0.0627 0.0522 10.8200 6.7847
3 0.0443 0.0264 -0.0472 0.0304 18.2090 9.8407
4 0.0568 0.0321 0.0354 0.0690 22.0780 10.0619
5 0.0332 0.0150 -0.0346 0.0165 35.7280 14.6006
6 0.0312 0.0137 -0.0324 0.0150 44.8530 17.0190
7 0.0505 0.0182 -0.0535 0.0209 31.0860 10.5149
8 0.0625 0.0196 -0.0672 0.0229 28.1110 8.8688
9 0.0453 0.0153 0.0009 0.0404 48.4490 14.6647
10 0.0594 0.0215 0.1409 0.1640 46.8250 12.5548

n=5,r=1,Power Family, t=2
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Figure 5.12: λ1 = 0.05 ,E(R) = 0.25, n = 5, r = 1, t = 2, . . . , 10
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Table 5.14: λ1 = 0.05, ρ2 = 0.2517, E(R) = 0.5, r = 1, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.0318 0.0211 -0.0333 0.0233 9.0570 5.3927
3 0.0822 0.0562 0.1036 0.1080 9.1600 4.3669
4 0.0425 0.0176 -0.0448 0.0196 11.0950 4.6493
5 0.0492 0.0231 0.0530 0.0480 18.8450 7.3723
6 0.0593 0.0282 0.0655 0.0850 16.8890 5.5141
7 0.0450 0.0128 -0.0473 0.0142 16.8280 4.7536
8 0.0486 0.0145 -0.0277 0.0211 19.8710 5.3728
9 0.0440 0.0119 -0.0462 0.0132 21.9230 5.7842
10 0.0395 0.0154 0.1018 0.0933 40.5650 11.1275
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Figure 5.13: λ1 = 0.05 ,E(R) = 0.5, n = 10, r = 1, t = 2, . . . , 10
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Table 5.15: λ1 = 0.30, ρ2 = 0.439, E(R) = 1.5, r = 1, n = 5

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.1508 0.0465 -0.1811 0.0640 2.9930 1.1977
3 0.1837 0.0694 -0.0936 0.0908 4.8850 1.7807
4 0.2118 0.0857 -0.0156 0.1409 6.0140 1.7677
5 0.1724 0.0261 -0.2095 0.0376 5.9500 1.0112
6 0.2864 0.0751 0.0205 0.0942 7.9820 1.6292
7 0.1777 0.0218 -0.2169 0.0318 8.0130 1.1100
8 0.4093 0.1163 0.3052 0.1609 9.0230 1.0685
9 0.3631 0.0958 0.2072 0.1705 9.9880 0.9924
10 0.2800 0.0775 0.1814 0.1781 13.0080 1.9758

n=5,r=1,Power Family, t=2
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Figure 5.14: λ1 = 0.30 ,E(R) = 1.5, n = 5, r = 1, t = 2, . . . , 10
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Table 5.16: λ1 = 0.30, ρ2 = 0.439, E(R) = 1.5, r = 2, n = 5

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.3713 0.1360 0.0900 0.1441 7.1930 4.2905
3 0.4663 0.1134 0.0792 0.0975 7.1490 3.1271
4 0.3330 0.0748 0.0549 0.0938 14.9070 6.4396
5 0.3956 0.1183 0.4922 0.1514 14.9580 5.7165
6 0.3467 0.0751 0.2016 0.1172 19.0440 6.3081
7 0.3932 0.0830 0.3403 0.1185 20.9210 6.4947
8 0.4087 0.0673 0.1884 0.0961 21.8380 6.2041
9 0.3164 0.0554 0.2644 0.0994 37.4790 10.9310
10 0.3093 0.0445 0.1455 0.0962 41.9250 11.2484

n=5,r=2,Power Family, t=2
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Figure 5.15: λ1 = 0.30 ,E(R) = 1.5, n = 5, r = 2, t = 2, . . . , 10
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Table 5.17: λ1 = 0.30, ρ2 = 0.439, E(R) = 3, r = 2, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.4470 0.1360 0.0644 0.1390 2.9720 1.2102
3 0.3850 0.1378 0.4279 0.1288 9.0040 4.0778
4 0.2601 0.0827 0.2465 0.1018 14.8670 6.2703
5 0.2967 0.0872 0.3725 0.0759 19.7930 7.9906
6 0.3055 0.0687 0.2040 0.0671 14.9660 4.5629
7 0.3405 0.0810 0.3778 0.0885 19.7200 6.0747
8 0.2931 0.0635 0.3528 0.0796 27.1090 7.9121
9 0.2794 0.0550 0.2884 0.0743 27.7910 7.5924
10 0.2546 0.0442 0.3439 0.0573 44.0270 11.9254

n=10,r=2,Power Family, t=2
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Figure 5.16: λ1 = 0.30 ,E(R) = 3, n = 10, r = 2, t = 2, . . . , 10
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Table 5.18: λ1 = 0.30, ρ2 = 0.439, E(R) = 3, r = 3, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.4411 0.1540 0.2462 0.1529 5.1300 2.7416
3 0.2762 0.1039 0.1993 0.0853 11.2440 5.8772
4 0.2287 0.0660 0.1460 0.0604 17.1420 7.6305
5 0.2445 0.0657 0.2275 0.0722 20.1240 7.7572
6 0.2533 0.0666 0.3480 0.1010 25.1920 9.0302
7 0.2488 0.0578 0.3248 0.0955 29.9050 9.6860
8 0.2489 0.0515 0.3268 0.0730 36.1960 11.1369
9 0.2384 0.0442 0.2796 0.0615 41.7960 12.1931
10 0.2168 0.0368 0.2200 0.0704 50.0560 14.4593

n=10,r=3,Power Family, t=2
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Figure 5.17: λ1 = 0.30 ,E(R) = 3, n = 10, r = 3, t = 2, . . . , 10
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Table 5.19: λ1 = 0.30, ρ2 = 0.439, E(R) = 3, r = 4, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.3984 0.1110 0.0184 0.1041 3.0560 1.2516
3 0.5265 0.1419 0.2308 0.1824 4.9880 1.8186
4 0.3508 0.1071 0.3077 0.0842 10.7690 4.3585
5 0.3327 0.0856 0.2404 0.1053 11.8460 3.9099
6 0.3451 0.0826 0.2834 0.1082 15.2640 4.9027
7 0.3655 0.0821 0.4490 0.0689 21.3500 6.5137
8 0.2648 0.0521 0.2322 0.0612 29.1830 8.8985
9 0.2641 0.0536 0.3217 0.0701 34.5440 10.2186
10 0.2681 0.0485 0.3115 0.0604 38.5040 10.7225
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Figure 5.18: λ1 = 0.30 ,E(R) = 3, n = 10, r = 4, t = 2, . . . , 10
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Table 5.20: λ1 = 0.85, ρ2 = 0.566, E(R) = 4.25, r = 4, n = 5

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.8149 0.1879 0.6061 0.0687 2.9380 1.1788
3 0.9209 0.0752 0.1297 0.0473 3.9930 1.1306
4 0.7474 0.1471 0.3741 0.4113 5.0260 1.1192
5 0.8031 0.1205 0.4241 0.3582 6.9130 1.6261
6 0.8382 0.0967 0.2497 0.2755 7.0420 1.1382
7 0.7554 0.1090 0.4224 0.2871 8.9500 1.5710
8 0.7795 0.1157 0.6437 0.3293 9.9600 1.5572
9 0.8448 0.0747 0.3516 0.1686 12.0230 2.0031
10 0.8037 0.0856 0.5208 0.2147 13.9070 2.3744
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Figure 5.19: λ1 = 0.85 ,E(R) = 4.25, n = 5, r = 4, t = 2, . . . , 10
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Table 5.21: λ1 = 0.85, ρ2 = 0.566, E(R) = 4.25, r = 5, n = 5

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.8480 0.1445 0.3092 0.0782 3.0600 1.2814
3 0.8261 0.0864 0.0736 0.1233 7.1630 3.2253
4 0.6886 0.1318 0.5286 0.2053 8.9020 3.3147
5 0.7189 0.1179 0.5096 0.2438 11.0710 3.5845
6 0.7705 0.0818 0.3362 0.2131 14.1940 4.3136
7 0.8558 0.0525 0.0736 0.0939 13.8360 3.6689
8 0.7899 0.0692 0.3245 0.1976 16.8640 4.1503
9 0.7570 0.0834 0.4892 0.1831 18.1000 4.1513
10 0.6158 0.0899 0.7102 0.1131 25.0470 6.2552
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Figure 5.20: λ1 = 0.85 ,E(R) = 4.25, n = 5, r = 5, t = 2, . . . , 10
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Table 5.22: λ1 = 0.85, ρ2 = 0.566, E(R) = 8.5, r = 8, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.9077 0.0951 0.1879 0.0523 2.9550 1.2484
3 0.7705 0.1859 0.5821 0.4520 4.0250 1.1531
4 0.8705 0.0638 0.0489 0.0816 5.0200 1.1467
5 0.8638 0.0911 0.2651 0.2433 6.0180 1.0931
6 0.7544 0.1151 0.5130 0.2507 9.0290 2.1323
7 0.8038 0.0941 0.4118 0.2584 10.1030 2.0906
8 0.7104 0.1280 0.7544 0.2475 11.0670 2.1069
9 0.8092 0.0965 0.6602 0.2122 11.9570 1.9491
10 0.8422 0.0833 0.4990 0.2781 12.0440 1.5801
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Figure 5.21: λ1 = 0.85 ,E(R) = 8.5, n = 10, r = 8, t = 2, . . . , 10
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Table 5.23: λ1 = 0.85, ρ2 = 0.566, E(R) = 8.5, r = 9, n = 10

t mean(λ̂1) se(λ̂1) mean(ρ̂2) se(ρ̂2) mean(mt) se(mt)
2 0.7212 0.1878 0.3945 0.3856 3.9640 2.0201
3 0.7394 0.1440 0.4196 0.3017 6.0520 2.4424
4 0.7546 0.1350 0.4952 0.2651 6.8810 2.2521
5 0.8348 0.1016 0.3650 0.2291 7.0170 1.6479
6 0.8372 0.0766 0.2484 0.1363 8.9530 2.1376
7 0.8626 0.0926 0.4415 0.3840 8.8980 1.5310
8 0.8790 0.0578 0.1891 0.1142 9.9940 1.5983
9 0.8397 0.0700 0.3473 0.1798 13.0450 2.4684
10 0.8281 0.0939 0.6698 0.3139 13.0460 2.0134
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Figure 5.22: λ1 = 0.85 ,E(R) = 3, n = 10, r = 9, t = 2, . . . , 10

58



5.2 Clinical Trial Application

Bowman and George (1995) discuss an application to a clinical trial that

compares two antibiotics for ear infections in children. Details of the study have

been given in Mandel et al. 1982. Tables 5.24 and 5.25 show the data for the

double-blind randomized clinical trial comparing cefaclor (CEF) and amoxicillian

(AMO). These antibiotics are used for the treatment of acute otitis media

(OME). Seventy five children have OME in both ears at the beginning of the

study, and are randomly assigned to a 14-day treatment of CEF or AMO. X1 is

defined to be 1 if the right ear is clear at the 14th day, 0 otherwise, and X2 is

similarly defined in terms of the left ear.

Table 5.24: # of ears cleared, CEF
0 1 2 Total
14 9 21 44

Table 5.25: # of ears cleared,AMO
0 1 2 Total
15 3 13 31

Without additional information, such as the effect of right ear- or left

ear-specific covariates on the severity of ear infection, it is reasonable to assume

X1 and X2 are exchangeable. For a child with bilateral OME infection, Mandel

et al. (1982) estimated the probability that a specific ear (left or right) was

infection free at 14 days to be 0.53. They also estimated the probability that this

ear was infection free given that the other ear had no OME at 14 days to be

0.86. From these estimates, we get P (X1 = 0, X2 = 0) = 0.456 and

P (X1 = 1, X2 = 0) = P (X1 = 0, X2 = 1) = 0.014, which not only indicate a high

degree of dependence between X1 and X2, but also support an assumption of

exchangeability between the two random variables. Therefore, in the analysis

that follows we assume the CEF and AMO treatment groups consist of

exchangeable pairs of binary observations.

There were a total of 44 children that were assigned CEF; 14 children had

r = 0 ears clear after the 14 day treatment; 9 children had r = 1 ear clear; and

21 children had both ears clear, r = 2. I sampled a response from the CEF

responses, if the response was 1 or 2 (r ≥ 1) then e = 1 as described earlier.
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Since there were 30 responses from the data set with one or more responses, I

sampled from the CEF data one at a time until there were 30 clusters of size 2

with at least 1 response. The results are posted in Table 5.26. My λ̂1 after 100

such simulations averaged 0.5721 with standard error of 0.0729. Bowman and

George (1995) estimated λ1 = 0.579 with standard error 0.066. The number of

clusters needed to get 30 clusters with one or more responses was 44.76 with

standard error of 5.1701 compared to the number of clusters in the data of 44. If

we lower the number of clusters from t = 30 to t = 26, because for 44 events with

probability of success λ̂ = 0.58 would be 0.58 ∗ 44 = 25.52, the estimated value of

λ1 after 100 simulations is 0.5807 with standard error 0.0784. The number of

clusters needed to get 26 clusters with one or more responses was 38.34 with

standard error 4.2217. This shows our estimate gives approximately the same

estimate for λ1 and approximately the same standard error with fewer clusters

needed.

For the AMO data, 31 children were assigned the treatment; 15 had r = 0, 3

had r = 1, and 13 had r = 2 responses. I sampled from the AMO responses, if

the responses was r ≥ 1 then e = 1. Since the data set had 16 responses of one

or more from 31 clusters, I sampled one at a time until I had t = 16 clusters with

r ≥ 1 responses. The results are posted in Table 5.27. My λ̂1 after 100 such

simulations averaged 0.4963 with standard error of 0.0902. Bowman and George

(1995) estimated λ1 = 0.486 with standard error 0.085. The average number of

clusters needed to get 16 clusters with one or more responses was 30.3 with

standard error of 5.9297 compared to the number of clusters in the data of 31.

To investigate the effect of lowering the number of clusters on our

conditional estimator for λ1, Tables 5.26 and 5.27 show how λ̂1 and it’s standard

error changes as the number of clusters decreased. Overall number of clusters

needed to reach t of them having r or more responses is also recorded with it’s

standard error.
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Table 5.26: Results of smaller cluster sizes, CEF treatment

t mean(λ̂1) se(λ̂1) mean(mt) se(mt)
30 0.5880 0.0654 44.0200 4.3992
26 0.5863 0.0696 38.1300 4.5185
24 0.5816 0.0727 35.7700 4.3620
22 0.5757 0.0753 32.8800 4.2218
20 0.5738 0.0793 30.0200 3.4786
18 0.5939 0.0830 26.3900 4.0098
16 0.5885 0.0884 23.3400 2.9889

Table 5.27: Results of smaller cluster sizes, AMO treatment

t mean(λ̂1) se(λ̂1) mean(mt) se(mt)
16 0.4852 0.0853 30.5600 5.0339
14 0.4761 0.0894 27.8100 6.1112
12 0.4928 0.0982 23.1900 5.3479
10 0.4844 0.1057 19.6700 4.6058

We can see that a small reduction of clusters did not affect the estimation of

λ1 or the standard error of λ̂1 for either treatment group. However, if reduced

too much, the standard error begins to increase. The overall number of clusters

needed also decreased without loss of information.

5.3 Conclusion

From the result of my research on an alternate design for estimating

exchangeable binary data, our estimator is unbiased and a reliable estimator to

estimate the probability of a response. It has the same or smaller standard error

than previous estimators. This new design shows that a reduction could be made

in the number of clusters needed to get the same results as previous methods.

The motivation for this research was finding new methods that reduce the

number of animals needed in developmental toxicity studies and finding

estimators with smaller standard error than previous methods. Evidence has

been shown that both of these could be possible by taking one cluster at a time,

and observing clusters until you have a certain number with the desired number

of responses (or more).
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Further work is to be done in comparing the simulation results with the

exchangeable binary data in Bowman and George (1995). The clinical data set

did a fraction of the comparison, and showed favorable results for the estimator

shown in this paper. Futher work needs to be done to see the full extent of the

capabilities for this method.

Further work will also be done to extend this estimator to be used with

unequal cluster sizes. As discussed, in actual developmental toxicity studies,

cluster sizes are not equal. Estimation for unequal cluster sizes of exchangeable

binary data can be extended to this situation. Then, if the number of clusters

needed is reduced, the motivation of this paper will in fact be reached.
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