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ABSTRACT  

Dulebenets, Maxim A. MS. The University of Memphis. August, 2012. 

Highway-Rail Grade Crossing Safety and Prioritizing Model Development. Major 

Professor: Dr. Mihalis M. Golias 

 

The United States Department of Transportation (USDOT) provides funding 

to state DOTs to implement highway-rail grade crossing improvement programs. 

These programs are suspected to develop particular safety improvement actions in 

order to decrease the number of accidents at highway-rail grade crossings. The current 

work is directed to consider various hazard index/accident prediction methodologies, 

carefully investigate hazard index/accident prediction methods, applied by Tennessee 

Department of Transportation (TDOT), develop a model to allocate available 

monetary resources for upgrades of highway-rail grade crossings in the State of 

Tennessee and maximize the total benefits in terms of accident and severity reduction.  
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1. INTRODUCTION 

Under title 23, United States Code, Section 130 (hereafter referred to as 

“Section 130”), the United States Department of Transportation (USDOT) provides 

funding assistance to state departments of transportation to implement highway-rail 

grade crossing improvement programs.  These programs are dedicated to reducing 

crashes at highway-rail grade crossings through safety infrastructure improvements. 

State departments of transportation (DOT) are required to meet specific reporting 

criteria under the Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A 

Legacy for Users (SAFETEA-LU) to assess the progress and effectiveness of 

implementing highway-rail crossing programs. More specifically under Section 130 

requirements, state departments of transportation should compile and analyze data 

(e.g., crash data, traffic data, physical characteristic, etc.) that will allow informed 

decisions to prioritize highway-rail grade crossing improvements. Programs to 

prioritize improvements, performed at the discretion of the state DOT, are encouraged 

to include evaluation of data compilation and analysis methods to ensure 

comprehensive and efficient programs (Ogden, 2007). 

According to USDOT, prioritization of grade crossings for improvement is 

based on several factors. A significant and integral portion of prioritization programs 

is the identification of hazard or collision potential associated with a crossing. There 

are a variety of formulae developed for ranking rail-highway grade crossing hazard 

indices or collision prediction. Hazard indices rank crossings in relative terms of risk, 

hence the larger the calculated index the more hazardous a crossing; whereas collision 

prediction formulae compute predicted collision frequency at the crossing. In addition 

to hazard index or collision prediction, consideration of additional factors to prioritize 



2 

 

crossing improvements include but are not limited to: cost, site inspection, exposure 

(number of persons using a crossing), crossing use by school buses, pedestrians, 

bicyclists, or vehicles carrying hazardous material. 

Efforts to enhance prioritization programs, as previously stated, have led to 

investigation into the efficiency of current methods employed by state DOT’s to index 

hazard or predict collisions (see Elzohairy & Benekohal, 2000; Faghri & Demetsky, 

1986; Ogden, 2007). The structure of the these reports was to: a) compile current 

accident prediction methods (referred to as methods or models within this review) 

used by state departments of transportation through literature review and DOT 

surveys, b) evaluate the effectiveness of current hazard/accident prediction formulae 

and comparatively assess the methods using statistical analysis tools, and c) make 

recommendations on accident prediction methods for use by their state DOT based 

upon the findings. Summary of the literature evaluating the effectiveness of currently 

used hazard indices and collision prediction methods are presented in the next section. 

The scope of the current work also includes investigation of accident 

prediction/hazard index models, currently used by different states, applying of those 

models to all at grade public highway-railroad crossings of Tennessee. Besides, all 

considered models were compared with US DOT Accident Prediction Model. 

Using the accident prediction model, employed by TDOT and described 

carefully in the chapter 3, two different approaches will be developed, such as Sorting 

Algorithm (SA) and Mathematical Model (MM), in order to properly allocate 

monetary resources and to achieve the maximum possible increasing of safety at 

highway-grade crossings. Both solution methods were compared in the computational 

results’ section. All necessary conclusions and recommendations along with the scope 

of future research are provided as well. 
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2. LITERATURE REVIEW 

Statistical Analyses of Existing Hazard Indices and Collision Prediction Methods 

In this section literature is summarized that, as previously mentioned, 

compared the performance of current methods used by DOT’s to prioritize grade 

crossings. Three comprehensive studies are discussed in this section. These reports 

presented comprehensive statistical analyses of factors influence on accident 

prediction and method performance as well as evaluated the efficacy of current DOT 

methods prediction capability. Comparative analyses of these reports and conclusions 

which can be drawn are also presented in the next three subsections. 

State of Virginia 

A study performed under the Virginia Highway & Transportation Research 

Council identified current collision prediction and hazard indexing models used 

nationally, and evaluated the representative models’ ability to use available data in 

predicting hazard potential, and recommended methods for future use by the Rail and 

Public Transportation Division to predict accident potential at highway-rail grade 

crossings (Faghri & Demetsky, 1986). The report identified 13 nationally recognized 

models (shown in Table 1), which are currently or have previously been employed 

with success by multiple state DOTs for the prediction of hazard/accident potential at 

highway-rail grade crossings as of March 1986.   

 

 

 

 



4 

 

Table 1  

Nationally Recognized Hazard Prediction Models 

Coleman-Stewart Oregon 

Peabody-Dimmick North Dakota Rating System 

Mississippi Idaho 

New Hampshire Utah 

Ohio City of Detroit 

Wisconsin DOT (USDOT) 

Costa Contra County 

(California) 

 

Source: Faghri and Demetsky (1986) 

 

In addition to the review of the current methods, the report presented a survey 

of state departments of transportation current methodology employed to predict 

hazard/accidents at highway-rail grade crossings. Survey respondents from 45 states 

provided the method, and length of time these methods have been employed. Survey 

results, are shown in Figure 1. The survey showed roughly 32% of the states employ 

unique individual formulae, and another 30% use the DOT Formula (also identified as 

USDOT Formula within this report). According to the survey, about 22% used either 

the New Hampshire or modified version and about 8% Peabody-Dimmick Methods or 

a modified version of the original method that is particular to that states’ criteria. The 

method employed by each state is largely dependent on data availability and key 

factors used as predictor variables for the particular method. As part of the survey, the 

study identified the factors considered in reported methods. Table 2 presents the 

survey responses to the factors used in the prediction models by the states surveyed. 

Survey results showed that all 13 models used by 43 of the 45 states consider 

vehicular and train daily volume as a prediction factor within the model’s formulae. In 

addition to vehicular and train volumes were existing crossing protection (i.e., cross 

bucks, flashing lights, gates, etc.) and number of tracks. The collision prediction or 
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hazard index method of choice is inherently dependent upon the availability of data 

and the factors that the prediction formulae require. 

 

 

Figure 1 Utilization of Models to Predict Hazard/Accidents by State in 1986 

Source: Faghri and Demetsky (1986) 

 

Of the 13 recognized methods (shown in Table 1), currently used or previously 

used with success, five methods were tested and evaluated, as part of the study, to 

determine the methods prediction ability to that of observed accident data. The 

selection was based upon the available documentation of each method’s development, 

testing, verification, and application. The five formulae selected for evaluation 

(shown in Table 3) were categorized into two basic groups (relative and absolute) 

based on each method’s empirical formulae used for calculating hazard at highway-

rail grade crossings (Faghri & Demetsky, 1986). The relative category group 

produced a measure of relative hazard (index of risk of hazard) for a variety of 

crossings which is used to rank crossings. The absolute category produces an 

expected number of accidents over a certain period of time, and the number of 
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prevented accidents that may be observed if improvements are made. The latter 

method produces an expected number of accidents and the reduction of the number of 

accidents at any crossing.  

 

Table 2  

Factors Considered in  the Existing Formulae 

Factor Considered 

Number of Formulae 

Containing the Factor 

(n=13) 

Number of States Using 

the Factor in their 

Formulae (n=45) 

Vehicles per day 13 43 

Trains per day 13 43 

Existing protection 10 37 

Sight distance 7 14 

Train Speed 6 13 

Number of tracks 9 22 

Highway vehicular speed 5 22 

Accident records 5 23 

Condition or type of 

crossing 
3 20 

Condition of approaches 3 6 

Type of train 3 5 

Approach gradient 2 6 

Angle of crossing 2 5 

Pedestrian hazard 2 1 

Distribution of vehicular 

and/or train volumes 

throughout the day 

3 14 

Time Crossing is blocked 1 1 

Darkness 1 1 

Number of traffic lanes 2 15 

School buses and/or carriers 

of hazardous materials 
0 5 

Source: Faghri and Demetsky (1986) 
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Table 3 

Methods Selected for Evaluation and Testing 

Relative Formulae Absolute Formulae 

New Hampshire DOT 

 Peabody-Dimmick 

 NCHRP No. 50 (Virginia’s Method: the current applied method 

by the conducting organization at that time) 

 Coleman-Stewart 

Source: Faghri and Demetsky (1986) 

 

The primary statistical analysis tool used by researchers for this study was the 

power factor. A statistical chi-square test was performed for the four absolute 

methods to determine a goodness of fit using 1,536 crossings. Ancillary and 

significance statistical tests were performed to determine if sight distance and school 

bus traffic would affect results when included in hazard/accident prediction methods. 

Results of the chi-square test on the four absolute models revealed that the DOT 

formula produced the closest fit to the actual number of accidents at all crossings. The 

power factor analysis showed that the DOT model outperformed the other four 

absolute models, and suggested that inclusion of the DOT factors for percentiles of 

hazard would significantly increase the DOT formulae performance. The results also 

showed that the effects of sight distance and school bus traffic are not statistically 

significant when considering the influence on hazard/accident prediction formula. The 

report recommends consideration of the severity potential that school buses may 

present over typical crossing accidents be taken into consideration during final site 

evaluations. This report’s findings recommended that use of the DOT hazard 

prediction model be employed in lieu of the NCHRP No. 50 that was in use at the 

time. In addition the report recommended the DOT resource allocation model could 

be used if the Virginia DOT saw the criteria that model uses to prioritize crossings 

applicable. This report, although dated, did provide accurate evaluation and 
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comparison of the current or previously employed formula used to rank crossings, by 

using a large crossing sample size and applicable statistical methods.  

State of Illinois 

A research report prepared by the Illinois Transportation Research Center in 

cooperation with the Illinois DOT evaluated the effectiveness of the Expected 

Accident Frequency (EAF) formula used by the State of Illinois at the time, reviewed 

the hazard index and accident prediction formulae from other states, and made 

recommendations of further use of the EAF or adoption of an alternative approach, 

while compiling information about rail-bicycle and rail-pedestrian stand-alone 

crossings (Elzohairy & Benekohal, 2000). The researchers conducted a survey of state 

DOTs methodology and policies for accident prediction models or hazard indexing 

formulae used to prioritize highway-rail grade crossings. The survey elicited 

responses from 31 states. Results of the survey included: a) no formal methodology, 

b) hazard index/accident prediction formula, c) top crossings listed by the US DOT 

rating system, and d) top 20 crossings from FRA list (Elzohairy & Benekohal, 2000). 

The report summarized two sets of variables which are used in hazard index or 

accident prediction formulae, threshold limits used to reduce the number of crossings 

included for further consideration, and other criteria considered by state DOTs in their 

process (shown in Table 4). 
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Table 4  

Variables in Exisitng Hazard Index/Accident Prediction Formulae 

Variable in Formulae 
Thresholds used by other 

DOTs 

Other criteria in addition 

to formula 

Daily average train 

movement by type and 

length 

Highest hazard rating 

funding allows 

Adjacent land use and 

development 

Speed of each type of train One crash every ten years Political considerations 

Number of school bus 

passengers 

No firm minimum, but 

ADT > 1,000 vpd 

Near-miss reports from 

railroad 

Average daily train traffic 

(day/night, switch/through) 

Project must be in top 1/3 

of Index 

Heavily used truck/bus 

route 

Driveways and streets 

intersections near crossing 

New Hampshire Index > 

4,000 

Age and condition of 

equipment 

Crash history (Number of 

crashes in n years) 

USDOT predicted 

accidents (PA) > 0.075 

Restricted sight distance 

Approach grade 3 crashes within 5 years  

Number of blind quadrants One crash every nine 

years 

 

Angle of intersection   

Curvature of the roadway   

Surface type   

Heavy truck traffic   

Factor for hazardous 

materials 

  

Average daily traffic   

Average daily school bus 

traffic 

  

Number of tracks   

Number of lanes   

Type of warning device   

Type of area   

Posted speed limit   

Source: Elzohairy and Benekohal (2000) 

 

The criteria used to prioritize crossings for improvements according to survey 

respondents included: a) higher hazard index/predicted accident, b) benefit/cost 

analysis, c) site review of vehicle types (school bus, mass transit), d) engineering 

judgment and crossing geometry, e) public concern/complaint, f) service condition, 

and g) sight distance (Elzohairy & Benekohal, 2000). The report included a literature 
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review identifying existing accident prediction/hazard index formula. The report goes 

further to state that when prediction formulae are used in consideration of cost-

effective allocations of improvement funds, absolute models present the most support 

for resource allocation decisions as opposed to hazard index rankings (Elzohairy & 

Benekohal, 2000). The literature review presented by Elzohairy and Benekohal (2000) 

identified 6 accident prediction models and 5 hazard indexing models (shown in table 

5).  

 

Table 5  

Existing Methods Identified in Literature 

Accident Prediction Formulae Hazard Index Formulae 
Peabody-Dimmick Illinois Commerce Commission 
Oregon Highway Commission Mississippi Formula 
NCHRP Report 50 The Oregon Method 
Coleman-Stewart Model New Hampshire Formula 
TSC Model Contra Costa County (California) 
DOT Accident Prediction Formula  
Source: Elzohairy and Benekohal (2000) 
 

 

The report provides a comprehensive statistical analysis of the variables that 

may contribute to crash occurrence presented in two categories: a) population-based 

rates, and b) traffic-based rates (Elzohairy & Benekohal, 2000).  The results of the 

statistical analysis showed the relationship between population and crash rates is best 

described by a polynomial function. The general trend of that function was described 

such that crash rates will increase as the population per crossing increases. This 

relationship was determined to be significant when applied to the average number of 

accidents per county, a given number of crossings and population. The population-

based rates did not directly reflect the traffic volume, and the traffic-based rates were 

employed to overcome this deficiency (Elzohairy & Benekohal, 2000). The 

correlation between average number of crashes per year and other traffic-based 
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parameters (e.g., average daily traffic, number of total trains, number of tracks, etc.) 

were investigated using linear and nonlinear regression analysis for the following 

models: EAF, USDOT, Connecticut Hazard Index Formula, New Hampshire Index 

used by Michigan, and the California Hazard Index Formula. Figure 2 below shows 

the frequency of different formulae utilization by state in 2000. 

 

 

Figure 2 Utilization of Models to Predict Hazard/Accidents by State in 2000 

Source: Elzohairy and Benekohal (2000) 

The survey showed around 48% of the states employ unique individual 

formulae, and another 26% use the USDOT Formula. According to the survey, about 

13% used the New Hampshire method and about 3% NCHRP Report 50 method. Ten 

percent of states didn’t provide any information for this survey. 

The report analyzed the efficacy of the EAF formula and other hazard 

index/accident prediction formulae using an inventory of 6,423 crossings throughout 

the State of Illinois. The suggested model for establishing a priority list, developed by 

Elzohairy and Benekohal (2000) was the Illinois Hazard Index (IHI). 
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The report presented step-wise regression analyses to determine what 

relationships exist between accident frequency and contributing factors. The 

dependent variable (number of accidents in five years) was compared with the 

following factors to determine their potential as predictors: 

 Average daily traffic (ADT) 

 Number of lanes (NOL) 

 Number of main tracks (NMT) 

 Number of day time trains (NDTT) 

 Number of nighttime trains (NNTT) 

 Number of total trains (NTT) 

 Number of day switch trains (NDST) 

 Number of night switch trains NNST) 

 Maximum timetable speed (MTS) 

 Sight distance (SD) 

 Other multiplicative variables: ADT x NTT, ADT x NDTT, NOL x NMT 

Results of the analysis showed that a regression relation exists between the 

dependent variable and the following predictors: ADT, NNTT, ADT x NTT, ADT x 

NDTT and NOL x NMT. 

The report employed ancillary and significance statistical analysis of the 

effects of other factors on the IHI model including: time of day, type of area, and type 

of warning device. Results showed that these factors (i.e., time of day, area, and 

warning device), when separated into A separate formulae to consider each factor’s 

impact on collision prediction solely, did not outperform models which employed 

these factors in one formula simultaneously (Elzohairy & Benekohal, 2000). 
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The researchers conclude that the EAF formula should be replaced with the 

models developed within this report, the several variations of the IHI, which more 

accurately identified locations that need safety improvements. The recommended IHI 

can potentially be applied to a crossing in any type of area (urban/rural), any with any 

type of warning device. The report recommended further investigation into the use of 

models with separate formulae for factors such as type of area (specifically to 

consider highway functional class) is needed. The report also states that data from 

selected sites should be used to compare reliability in selecting crossings in need of 

improvement (Elzohairy & Benekohal, 2000). 

State of Missouri 

A research report conducted by the University of Missouri-Columbia/Rolla in 

cooperation with the Missouri DOT Research, Development, and Technology 

Division identified models used by different states to prioritize highway-rail grade 

crossing improvements, evaluate and rank the models based on expert panel review, 

and recommend a replacement of the existing Exposure Index (EI) model that was 

currently used by the Missouri DOT (Qureshi et al., 2003). The report evaluated the 

following seven models: USDOT Accident Prediction Formula, California’s Hazard 

Rating Formula, Connecticut’s Hazard Rating Formula, Modified New Hampshire 

Formula, Kansas Design Hazard Rating Formula, Missouri’s Exposure Index 

Formula, and Illinois modified IHI (developed within the previous research report).  

The report developed a modified EI method to include in evaluation and analysis.  

The report included expert panel results for highway-rail grade crossing objectives, 

key variables, and eight criteria to evaluate models (Qureshi et al., 2003). Table 6 lists 

the results of the expert panel. 
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The evaluation of each model was performed by developing a baseline ranking 

of 6 crossings by Missouri DOT staff. The baseline rankings, used as a reference point 

to compare the performance of the models investigated, were developed for the list of 

crossing by the expert panel compiled under the report. The accuracy of the model 

was determined by comparing ranking of crossings to that of the baseline developed 

by the expert panel (Qureshi et al., 2003). Table 7 presents the results of the 

evaluation of the eight aforementioned models. 

 

Table 6  

Expert Panel Results for Model Evaluation 

Objectives Variables Criteria for Evaluation 

Safety (should improve 

safety) 

Annual Daily Traffic Accuracy of the model 

Weighting Factors 

(account for importance in 

calculating number of 

accidents of hazard index) 

Approach Sight Distance 

vs. recommended Sight 

Distance 

Number of difficult 

variables 

 

Data elements available in 

crossing inventories 

databases 

Stopping Sight Distance 

vs. Recommended Sight 

Distance 

Explanation ability 

 

Crash rate = 0 Speed of train Number of key variables 

Accurately predict 

accident frequency 

Number of passenger trains Inclusion of crossing type 

Explainable and definable Speed of highway traffic 

 

Number of unavailable 

data variables 

Priority Total number of trains Number of total variables 

Should suggest crossing 

treatments 

Clearance time for motorist 

to clear crossing 

Inclusion of weighting 

factors 

Cover FHWA 

requirements 

  

Source: Qureshi et al. (2003) 

 

Results of the report (shown in table 7) reveal that the EI model which was 

used by Missouri DOT at the time of the study could be replaced with a more accurate 

model. As shown in table 7, the EI model used by Missouri DOT at the time was 



15 

 

outperformed in terms of ranking crossings when compared to baseline rankings for 

application to both passive and active controlled grade crossings. The report 

recommended that investigation into the applicability of the Kansas Design Hazard 

rating formula showed potential to replace the existing Missouri DOT method. 

Further research was deemed necessary to determine the application of the Kansas 

Model with larger sample sizes for evaluation. The report identifies concern for the 

consideration of data variables necessary and available resources for additional data 

collection and maintenance in inventory databases to employ the Kansas Model 

(Qureshi et al., 2003). 

 

Table 7  

Summary of Evaluation Results 

Crossing Control Type Model by Ranking 

 

 

 

Passive 

1. California’ Hazard Index 

2. IHI 

3. Modified New Hampshire Formula 

4. US DOT Accident Prediction Formula 

5. Kansas’s Design Hazard Rating 

6. Connecticut’s Hazard Index  

7. Modified EI 

8. EI 

 

 

 

Active 

1. IHI 

2. Kansas’s Design Hazard Rating 

3. Connecticut’s Hazard Index  

4. EI  

5. Modified EI  

6. US DOT Accident Prediction Formula 

7. Modified New Hampshire Formulas 

8. California’ Hazard Index 

Source: Qureshi et al. (2003) 

 

The reports reviewed in the previous section identified nationally recognized 

methods and presented statistical analysis for the comparison of the models presented. 

The recommendations for employment of models for state DOTs, although not 
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reaching the same conclusion, show the rationale for choosing specific methodology 

based upon model accuracy, available data, and model formulation for accident 

prediction/hazard indexing. The reports reviewed provide guidance into adopting a 

new or improve a current method of accident prediction/hazard indexing methods. 

Each of the reports results, although not reaching the same conclusion, clearly define 

the methodology and process for their investigation and recommendations for the 

state DOT based on the pertinent criteria for that particular investigation. For 

example, as shown in many states, sight distance is intrinsic and directly correlative to 

accident rates, although no mathematical evidence supports this relationship. The 

remainder of this report presents a review of the literature related to measuring 

railroad crossing safety and countermeasure effects published in scientific journals.  

Scientific Literature Review 

While there is a significant amount of literature on the broader topic of 

accident prediction models and their consistency, little attention has paid to accident 

prediction and risk measurement in railroad crossings in the literature. Austin and 

Carson (2002) note the shortcomings of the four mentioned methods (Peabody 

Dimmick Formula, New Hampshire Index, NCHRP Hazard Index, USDOT Accident 

Prediction formula) and point out the need for a consistent accident prediction 

method. In particular, it is emphasized that the existing models focus on a restricted 

set of factors effective on railroad crossing accidents and ignore important safety 

factors.  

Austin and Carson (2002) discuss three possible methods that can be used as 

an accident prediction method: multiple linear regression, Poisson regression, and 

Negative Binomial regression. Belle and Farr (1975) use multiple regression to 

examine the factors affecting accident rates in 1,140 railroad crossings in Florida. As 
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noted by Austin and Carson (2002) as well, multiple linear regression is discussed to 

be inappropriate for accident prediction models due to inability of capturing negative 

correlations and heteroscedasticity issues (see, e.g., Joshua & Garber, 1990; Jovanis & 

Chang, 1986; Miaou & Lum, 1993). While Poisson regression may overcome these 

drawbacks of the multiple linear regression, it requires that the probability distribution 

of the number of accidents has equal expectation and variance values. Austin and 

Carson (2002), however, show that the test data gathered from the FRA’s Office of 

Safety highway-rail crossing inventory does not meet this requirement (in particular, 

overdispersion is observed, i.e., the variance of the number of accidents is relatively 

high compared to the expectation of the number of accidents in the data used); thus, 

they utilize the negative binomial regression in their analyses. Their results conclude 

not only how significantly but also to what extent different traffic, roadway, and 

crossing characteristics influence railroad crossing accidents.  

Lee, Park, and Nam (2005) also discuss compatibility of distinct statistical 

tools for accident prediction in railroad crossings. They use data from 100 railroad 

crossings in Korea for the period of September 2001 to April 2002. Analysis of this 

data suggests that the Poisson regression is more compatible than the negative 

binomial regression. Furthermore, they utilize zero-inflated Poisson regression, a 

modification of the Poisson regression to overcome the case when too many zeros are 

observed in the data than a regular Poisson process would predict. Similar to Austin 

and Carson (2002), Lee et al. (2005) use their proposed method to discuss how 

significantly different traffic, roadway, and crossing characteristics affect railroad 

crossing accidents.  

Oh, Washington, and Nam (2006) study railroad crossing accident prediction 

methods for a data set collected from 162 crossings in Korea between years 1998 and 
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2002. Altering from Austin and Carson (2002) and Lee et al. (2005), they use a 

gamma model for the statistical analysis. Particularly, the reason for using the gamma 

model was due to the presence of underdispersion in the data (i.e., the variance of the 

number of accidents is relatively low compared to the expectation of the number of 

accidents in data collected). The gamma model is then used to discuss the significance 

of the effects of different traffic, roadway, and crossing characteristics on crossing 

accidents.  

While the previously discussed studies focused on estimating the number of 

accidents, Hu, Li, and Lee (2010) and McCollister and Pflaum (2007) studied 

prediction methods for severity of railroad crossing accidents. McCollister and 

Pflaum (2007) proposed a logit model, which is commonly used for estimating 

accident severities (see, e.g., Donnel & Connor, 1996; Kweon & Kockelman, 2003; 

Shankar & Mannering, 1996), to report the factors affecting the injuries and fatalities 

in the accidents along with the accidents using data from FRA’s Office of Safety 

highway-rail crossing inventory. Hu et al. (2010) analyzed a data set of railroad 

crossing accidents in Taiwan from 1995 to 1997 using a generalized logit model. 

Their study revealed the significantly effective factors in severity of railroad crossing 

accidents.  

While the different studies use distinct statistical tools for accident prediction 

in railroad crossings, the goals are two-fold: develop a statistically sound method to 

estimate the accident rate at a given railroad crossing and reveal the factors 

significantly affecting this rate. The estimated rate can be used in resource allocation 

for upgrading railroad crossings, while the factors effecting accident rates can be used 

in developing railroad crossing specific preemptive practices, which are referred to as 

countermeasures. As noted by Washington and Oh (2007), there may be a set of 
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preemptive practices for a specific railroad crossing. In that case, accurately 

predicting the success of countermeasures in reducing the risk, which can be 

considered as the ultimate goal of crossing upgrades, is important for maximization of 

risk reduction through effective allocation of the limited resources.  

Washington and Oh (2007) document 18 countermeasures that are intended to 

increase safety at railroad crossings. These countermeasures are gathered from an 

extensive review of the literature. One may refer to Washington and Oh (2007) for 

definition of these countermeasures and the studies focusing on each of these 

countermeasures individually. They proposed a Bayesian data fusion method to 

estimate the expected performance of each countermeasure. Saccomanno, Young-Jin 

Park, and Fu (2007) develop a similar Bayesian data fusion method to predict 

effectiveness of countermeasures regarding the characteristics of a crossing.  

Yan, Richards, and Su (2010) uses a hierarchical tree-based regression method 

to estimate the number of accidents at a given set of railroad crossings, which were 

upgraded from cross-only bucks to stop signs, to analyze the effectiveness of stop-

signs as a countermeasure. Furthermore, Yan et al. (2010) analyzed the factors 

influencing the effectiveness of stop signs at crossings. Rudin-Brown, Lenné, Edquist, 

and Navarro (2011) focus on the effectiveness of traffic lights and boom-barrier 

controls in reducing railroad crossing accidents. They use a driver simulator on 25 

drivers to demonstrate how traffic lights and boom-barrier controls may reduce 

possible accidents at crossings due to driver behaviors.  

Rudin-Brown et al. (2011) considered different kinds of traffic devices in 

order to improve safety at road-rail level crossings. They investigated perception of 

25 fully-licensed drivers aged between 20 and 50 years, using a driving simulator, for 

two active level crossing traffic control devices (such as flashing lights with boom 
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barriers and standard traffic lights) and passive control devices (stop signs). Results 

showed that the less number of violations were observed at active level crossings than 

those controlled by stop signs. It was indicated, that the majority (72%) of drivers 

reported preferring flashing lights to traffic lights. Nevertheless, the installation of 

traffic lights at real-world level crossings would not be likely to offer safety benefits 

over and above those provided already by flashing lights with boom barriers. It was 

concluded that it was necessary to continue upgrading of rail crossing with active 

traffic control devices to increase the safety.  

Wullems (2011) considered the issue of the low-cost level crossing warning 

devices (LCLCWDs) adoptions at rail crossings. The author stated that the risk along 

the network could be reduced by combination of low-cost and conventional level 

crossing interventions, similar to what was done in the road environment. The paper 

indicated that before application of LCLCWDs it was necessary to conduct a rigorous 

risk assessments and cost-benefit analyses for these devices. The strategy for 

progressing research and development of LCLCWDs and recommendations how the 

Cooperative Research Centre (CRC) for Rail Innovation can apply it were provided in 

the article as well.  

Wigglesworth (2001) conducted a study of 85 consecutive railway crossing 

deaths, connected with flashing light signals. The results showed that flashing light 

signals gave inadequate stimulus at busy urban crossings, but many drivers behaved 

similarly at both active and passive rural crossings. The author proposed to use 

different kinds of signs for various rail crossings. For metropolitans and urban 

crossings it was suggested to use boom barriers instead of flashing lights. Passive rail 

crossings usually have small traffic volumes and it makes difficult to measure the 

effectiveness of countermeasures. The paper concludes that it was necessary to 
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conduct before and after studies at rail crossings to evaluate the reliability of warning 

signs. Along with low-cost treatments, surrogate measures should be implemented. 

Conclusion 

From the reviewed literature the most commonly used prediction models, in 

practice, are the Peabody Dimmick Formula, New Hampshire Index, NCHRP Hazard 

Index, and USDOT Accident Prediction formula. The Peabody Dimmick Formula 

gives an estimated number of accidents in a five year period considering the average 

annual daily traffic, average daily train traffic, and a predetermined protection 

coefficient. Nevertheless, as noted by Austin and Carson (2002), it lacks validity as 

the data used to develop the formula was sampled from only crossings in rural 

regions, and the predefined protection coefficient cannot capture the recent 

advancements in protection methods at the railroad crossings. Similar to the Peabody 

Dimmick Formula, the New Hampshire Index utilizes the average annual daily traffic, 

average daily train traffic, and a protection factor to determine a hazard index. A large 

value of the hazard index implies a greater risk at the railroad crossing. The New 

Hampshire Index is modified by different states in various ways to include distinct 

roadway characteristics such as number of lanes, sight distance, vertical sight 

distance, crossing characteristics such as surface type, width of the crossing, approach 

angle, and detailed traffic characteristics such as fast and slow train traffic, hazardous 

material traffic, school bus traffic, train speeds, highway speeds, etc. These 

modifications lead to several accident prediction formulae, which result in different 

significance levels as discussed by Faghri and Demetsky (1986).  

Furthermore, these variations of the use of the index created concern in its 

accuracy (Oh et al., 2006). The NCHRP index estimates collision potential using the 

daily traffic, train traffic, and a protection coefficient, which is defined separately for 
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urban and rural areas. The main flaw of the aforementioned methods is that they 

consider three basic factors to be the drivers of railroad crossing accidents; roadway 

traffic, train traffic, and protection level at the crossing. Developed using the national 

railroad crossing accident data of years 1981 through 1986, the USDOT formula 

includes a variety of crossing characteristics such as maximum speed, highway lanes, 

highway speed, and highway paved factor in accident prediction. These crossing 

characteristics are discussed to be significantly related to crossing accidents based on 

the 1981-1986 data. USDOT formula is discussed to be an improved prediction 

method compared to the previous methods as it account for more explanatory factors 

effecting railroad crossing safety. Nevertheless, as noted by Austin and Carson 

(2002), the USDOT formula has shortcomings in weighting in contribution of 

different safety factors in estimating accident rates as well as inaccuracies in formulae 

updating. A number of alternative to these methods, found in the scientific literature, 

may address some of these issues but are data intensive and their application requires 

significant effort (data, modeling, dissemination) making their use restrictive by state 

DOTs due to insufficient resources and/or marginal benefits. 

 

 

 

 

 

 

 

 

 



23 

 

3. FRA PROCEDURE REVIEW AND EVALUATION 

This review discusses the USDOT accident prediction model, accident 

severity calculation, resource allocation procedure, and GradeDec software utility. 

The accident prediction model, which is comprised of three formulae, was developed 

to assist individual states in maintaining requirements under Federal-Aid Policy 

Guidelines (FAPG). The accident prediction model is one portion of the US DOT 

resource allocation procedure that is intended to predict, in absolute terms, the 

likelihood of a collision over a period of time at a crossing. Additional equations 

within the US DOT model are used to predict the likelihood of fatalities and injuries. 

In order to provide assistance in grade crossing investment decision making processes 

the FRA developed a highway-rail grade crossing investment analysis tool 

GradeDec.NET (GradeDec). GradeDec gives the possibility to compare rail grade 

crossings improvement alternatives, designed to mitigate highway-rail grade crossing 

collision risk and other components of user costs. The following section of review 

discusses the accident prediction formulae that are included in that model. 

US DOT Highway Rail Grade Crossing Methods 

As a general description, the US DOT accident prediction model combines 

three independent equations to produce an accident prediction value. The three 

equations were developed to include as much information possible in determining the 

accident risk for a highway rail grade crossing. The first equation, also denoted as the 

basic formula, equates an initial hazard ranking for a crossing based upon the 

crossing’s physical and operational characteristics. The second equation uses average 

historical accident rates over a period of time to determine an accident prediction 

value. This procedure uses the assumption that future collisions will be the same as 

previous accident occurrences. The third equation employs a normalizing constant, 
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which is adjusted periodically, such that the procedure adheres to current accident 

trends. The result of these three equations is a final collision prediction that considers 

crossing conditions, historical accident data, and current accident trends to produce a 

reliable accident prediction value, ranking highway rail grade crossing risk, and in 

turn offering a comparative medium for crossing improvements based upon the 

potential for risk reduction. The remainder of this chapter details the three equation 

development, data factors, and processes. 

Accident Prediction 

The basic formula as stated previously produces an initial accident prediction 

per year based upon the physical and operational characteristics of each crossing. The 

technique used to develop the basic equation involved applying multiple non-linear 

regression to crossing inventories and accident data contained in the FRA Railroad 

Accident/Incident Reporting System (RAIRS). The equation can be expressed as a 

series of factors from crossing characteristics that are maintained within the crossing 

inventory. The basic equation is shown below 

 

where: 

a = initial collision prediction, collisions per year at the crossing  

K = formula constant  

EI = factor for exposure index based on product of highway and train traffic  

MT = factor for number of main tracks 

DT = factor for number of through trains per day during daylight  

HP = factor for highway paved (yes or no)  

MS = factor for maximum timetable speed  

HT = factor for highway type  
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HL = factor for number of highway lanes 

The basic equation is developed for three g categories based upon traffic 

control devices present at the crossing: passive, flashing and lights, and automatic 

gates as shown in Figure 3. 

 

. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 Basic Equation Accident Prediction for Crossing Characteristic Factors 

Source:   Railroad-Highway Grade Crossing Handbook, Revised Second Edition. 

(2007). Washington, DC: US DOT, FHWA. 
 

The factors listed in Figure 3 can be equated and tabulated based upon known 

crossing characteristics. The tabulated values are used to predict collisions based upon 

particular characteristics for a crossing. The tabulated values for the three categories 

are presented in Appendix A. 

The final collision prediction formula is shown below 
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B = second collision prediction, collisions per year at the crossing 

a = initial collision prediction from basic formula, collisions per year at the 

crossing  

N/T = collision history prediction, collisions per year, where N is the number 

of observed collisions in T years at the crossing 

 

The final collisions prediction, B, can be tabulated based upon known crossing 

factors and values for initial prediction, a, and historical collision rates, N/T presented 

in Appendix B. The use of all obtainable historical collision data will provide the 

most accurate prediction results. Collision data collected prior to warning device 

infrastructure improvements should not be included in prediction calculations. 

Historical data older than five years will have minimal improvement on collision 

prediction accuracy. 

Final collision prediction, A, applies normalizing constants to incorporate 

current trends in collisions at rail-highway grade crossings. Originally these 

normalizing constants are developed by periodically setting the sum of the predicted 

accidents, for each category separately, of the top 20% most hazardous crossings 

exactly equal to the number of accidents which occurred in a recent period for the top 

20% of that group. Periodic updates of US DOT normalizing constants since 

inception of the procedure are presented in Table 8 below. 
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Table 8  

Accident Prediction and Resource Allocation Procedure Normalizing Constants 
 

 
 

Source: Federal Railroad Administration ACPD Constants 2010. US Department of 

Transportation, FRA. 

http://www.fra.dot.gov/downloads/safety/ACPDConstants2010.pdf 

 

 

According to reporting for the most recently developed constants, the 

normalizing constants were calculated by making the sum of calculated accident for 

calendar years 2004-2008 equal to the sum of the observed accidents that occurred in 

2009 at the same crossings. The process is performed for each of the three categories 

of crossings to account for the trends in collisions in recent history. The current trend 

for collisions, as depicted by the most recent set of normalizing constants, is 

downward; which according to available crash data is representative of conditions. 

The final collision prediction results from the US DOT accident prediction 

formulae can be incorporated into accident severity calculations to consider 

probabilities for fatal and injury accidents or into the resource allocation procedure to 

evaluate improvement alternatives which are described in the following sections. 

Accident Severity 

Additional equations within the U.S. DOT model are used to predict the 

likelihood of fatalities and injuries. The probability of a fatal accident given an 

accident, P(FA|A), is expressed as: 
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where: 

CF = formula constant = 695 

MS = factor for maximum timetable train speed 

TT = factor for through trains per day 

TS = factor for switch trains per day 

UR = factor for urban or rural crossing 

The probability of an injury accident given an accident is: 

 

where: 

P(FA|A) = probability of a fatal accident, given an accident  

CI = formula constant = 4.280 

MS = factor for maximum timetable train speed  

TK = factor for number of tracks  

UR = factor for urban or rural crossing 

The equations for calculating values of the factors for the fatal accident 

probability formula and the injury accident probability formula are listed in Figures 4 

and 5. To simplify use of the formulae, the values of the factors have been tabulated 

for typical values of crossing characteristics and are given in Figures 6 and 7 for the 

fatal accident and injury accident probability formulae. 

 

 



29 

 

                 
 

Figure 4 Equations for Crossing Characteristic Factors for U.S. DOT Fatal Accident 

Probability Formula 

Source:   Railroad-Highway Grade Crossing Handbook, Revised Second Edition. 

(2007). Washington DC: US DOT, FHWA.  
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Figure 5 Equations for Crossing Characteristic Factors for U.S. DOT Injury 

Accident Probability Formula 

Source:   Railroad-Highway Grade Crossing Handbook, Revised Second 

Edition.(2007). Washington DC: US DOT, FHWA. 

 

Resource Allocation Procedure 

Along with various economic analyses procedures, in order to improve safety 

at railroad-highway crossings, the US.DOT developed a resource allocation 

procedure. It assists state railway authorities to find those rail crossings which need to 

be repaired first, and to most effectively separate available funds across multiple 

highway-rail grade crossings. 

The resource allocation procedure is directed to suggest various types of 

crossing traffic control improvements with multiple degrees of risk reduction and cost 

for implementation.  

The procedure provides traffic control improvement alternatives for the 

following: 

 For single track passive crossings two upgrade options exist: 
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flashing lights or gates; 

 For multiple-track passive crossings, the model allows only the 

gate option to be considered in accordance with the Federal-Aid Policy 

Guide;  

 For flashing light crossings, the only improvement option is 

gates;  

 

 
Figure 6 Factor Values for U.S. DOT Fatal Accident Probability Formula 

Source:   Railroad-Highway Grade Crossing Handbook, Revised Second Edition. 

(2007). Washington DC: US DOT, FHWA. 
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Figure 7 Factor Values for U.S. DOT Injury Accident Probability Formula 

Source:   Railroad-Highway Grade Crossing Handbook, Revised Second Edition. 

(2007). Washington DC: US DOT, FHWA. 

 

The resource allocation procedure does not include improvement alternatives, 

such as: illumination, crossing surface improvements, removing of visual 

obstructions, train direction security improvements, etc. The initial data for the 

procedure includes the following contents: the number of predicted collisions; the 

safety effectiveness of flashing lights and automatic gates; cost of improvements; the 

available budget. 

The US DOT, California Public Utilities Commission (CPUC), and William J. 

Hedley each completed safety effectiveness studies for the equipment used in the 

resource allocation procedure. Various effectiveness factors have been developed to 

evaluate signal improvements applicable for the procedure as shown in Table 9. 

These effectiveness factors represent the overall percentage in rail crossing collision 
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reduction, taking place after application of the proposed improvements. 

 

Table 9  

Effectiveness of Active Crossing Warning Devices 

 
 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: US Department of Transportation, Federal Highway 

Administration. 

 

As it as mentioned before, the model requires the information about the 

improvement alternatives cost. At this stage, life-cycle costs of the devices (both 

installation and maintenance costs) should be presented. Cost data for the resource 

allocation procedure should be provided for each of the following items: 

 Passive devices to flashing lights; 

 Passive devices to automatic gates; 

 Flashing lights to gates; 

It is necessary to indicate the reasons during the process of cost assignment for 

a particular project, taking into consideration average costs for all projects. To 

estimate the cost effectiveness a special resource allocation algorithm, which would 

be described below, should be used. The amount of funds available for application of 

a particular cross signal projects is the fourth step for the resource allocation 

procedure. The resource allocation procedure hierarchy, shown in Figure 8, 

incorporates all steps which were described in detail above. 

The resource allocation algorithm should be implemented for any proposed 
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signal improvements. The main characteristics of this algorithm are Ej (the 

effectiveness of installing a proposed warning device at a crossing with a lower class 

warning device) and Cj (the corresponding cost of the proposed warning device). As 

shown in Table 10, j = 1 for flashing lights installed at the passive crossing; j = 2 for 

gates installed at the passive crossing; and j = 3 for gates installed at the crossing with 

flashing lights. 

 

Table 10  

Effectiveness/Cost Symbol Matrix 

 
Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: US Department of Transportation, Federal Highway 

Administration. 
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Figure 8 Resource Allocation Procedure 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: US Department of Transportation, Federal Highway 

Administration. 

 

Most of all, the resource allocation procedure evaluates possible 

improvements for both passive and flashing light traffic control devices. An example 

presented by Ogden, 2007: If a single-track passive crossing, i, is considered, it could 

be upgraded with either flashing lights, with an effectiveness of E1, or gates, with an 

effectiveness of E2. The number of predicted collisions at crossing i is Ai. Therefore, 

the reduced accidents per year are AiE1 for the flashing light option and AiE2 for the 

gate option. The corresponding costs for these two improvements are C1 and C2. The 

accident reduction/cost ratios for these improvements are AiE1/ C1 for flashing lights 

and AiE2/C2 for gates. The rate of increase in accident reduction versus costs that 

result from changing an initial decision to install flashing lights with a decision to 

install gates at crossing i is referred to as the incremental accident reduction/cost ratio 

and is equal to: 

Ai  (E2  – E1) / (C2  – C1) 
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If a passive multiple-track crossing, i, is considered, the only improvement 

option allowable would be installation of gates, with an effectiveness of E2, a cost of 

C2, and an accident reduction/cost ratio of AiE2/C2. If crossing i was originally a 

flashing light crossing, the only improvement option available would be installation of 

gates, with an effectiveness of E3, a cost of C3, and an accident reduction/cost ratio of 

AiE3/C3. 

The individual accident reduction/cost ratios associated with these 

improvements are selected by the algorithm to produce the maximum accident 

reduction that can be obtained for a predetermined total cost. This total cost is the sum 

of an integral number of equipment costs (C1, C2, and C3). The total maximum 

accident reduction is the sum of the individual accident reductions of the form AE. 

The resource allocation procedure is directed to identify high-hazard 

crossings. To collect the necessary data and check for accuracy the input data and 

substantiation of each recommendation a field diagnostic team should investigate 

considered crossings. A sample of a worksheet for conducting this procedure is 

presented in Appendix C. This worksheet also includes a method for proper 

evaluating and revising the results, given by the computer model. 

Federal Railroad Administration GradeDec Software 

In order to provide assistance in grade crossing investment decision making 

processes the FRA developed a highway-rail grade crossing investment analysis tool 

GradeDec.NET (GradeDec). This software includes a full set of standard benefit-cost 

metrics for a rail corridor, a region, or an individual grade crossing. GradeDec gives 

the possibility to compare rail grade crossings improvement alternatives, designed to 

mitigate highway-rail grade crossing collision risk and other components of user 

costs, including: highway delay and queuing, air quality, and vehicle operating costs. 
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The online application can is available via the FRA's Website 

(http://safety.fhwa.dot.gov/xings/com_roaduser/07010/sec05.htm). 

The software helps states’ railway authorities develop the most effective (cost) 

and beneficial (risk reduction) grade crossing investment strategies. It helps to predict 

the development of the improvement project from the early stages of its application to 

the final steps. Most of all, the model output can be computed by using a certain range 

of the model inputs. It gives the opportunity to see the difference in the sets of project 

and to choose the most applicable of the considered conditions. GradeDec employs a 

corridor approach when analyzing the decrease in collision risk, which was developed 

as part of the Transportation Equity Act for the 21
st
 Century's Next-Generation High-

Speed Rail Program. This approach is one of the most effective ways to reduce the 

overall capital costs involved in constructing facilities for high-speed passenger rail 

service (at speeds between 111 and 125 mph), where grade crossing hazards and 

mitigation measures can be a major cost factor. 

Accident Prediction Models Used by Different States 

Tennessee Department of Transportation (TDOT) currently uses FRA (US 

DOT) accident prediction model, carefully described above, to estimate the number of 

accident at highway-rail at grade crossings within the state. Based on calculated 

number of accidents and resource allocation procedure, the prioritizing of rail 

crossings is conducted. The main aim of TDOT is to achieve the maximum total 

reduction of accidents with respect to available monetary resources. At this point it 

will be useful to make investigation on accident prediction methods, implemented by 

other states, and compare them with US DOT, using the data from TRIMS database 

for all public at grade rail crossings. The following accident prediction models were 

mentioned in the literature review section (previously investigated by Virginia, 
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Illinois and Missouri states): Florida Department of Transportation Accident 

Prediction Model, Missouri’s Exposure Index Formula, Modified New Hampshire 

formula, Kansas’s Design Hazard Rating Formula, California’s Hazard Rating 

Formula, Connecticut’s Hazard Rating Formula, Illinois’s Modified Expected 

Accident Frequency Formula, Peabody-Dimmick Formula, New Hamphire Formula. 

Some approaches cannot be applied for Tennessee rail crossings (Florida Department 

of Transportation Accident Prediction Model, Missouri’s Exposure Index Formula, 

Modified New Hampshire formula, Kansas’s Design Hazard Rating Formula), 

because they consider the effect of site distance. The information about site distance is 

not provided neither by TRIMS or FRA Inventory databases. If this data is collected, 

all accident prediction models could be implemented for all Tennessee highway-rail at 

grade crossings. The rest of discussed accident prediction models will be applied and 

the results will be presented. 

California’s Hazard Rating Formula 

The State of California uses the hazard rating formula, which includes four 

factors: number of vehicles, number of trains, crossing protection type and the crash 

history as input to the model. The difference with US DOT model is that California 

Hazard Rating Formula uses a 10 – year accident history. The formula doesn’t 

estimate the number of accident at each rail crossing, but it calculates the hazard 

index, which helps to rank crossings by the possibility of accident to occur. The 

highest priority should be assigned to the crossing with greater value of hazard index. 

The following equation is used to calculate California’s Hazard Index: 

 

where CaHIF - California’s Hazard Index value; 
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V = number of vehicles; 

T = number of trains; 

PF – protection factor (see table 11); 

AH =crash history (the total number of accident in the last 10 years). 

 

Table 11  

Protection Factor Values for California’s Hazard Rating Formula 

Devices PF 

Stop sign or Cross buck 1.0 

Flashing lights 0.33 

Gates 0.13 

 

 

Connecticut’s Hazard Rating Formula 

The State of Connecticut uses the hazard rating formula, which is relatively 

similar to California Hazard Rating Formula. It also incorporates four various factors: 

annual average daily traffic, number of trains per day, crossing protection type and the 

crash history as input to the model. The main difference is that Connecticut considers 

the accident history for the last 5 years. The formula doesn’t estimate the number of 

accident at each rail crossing, but it calculates the hazard index, which helps to rank 

crossings by the possibility of accident to occur. The highest priority should be 

assigned to the crossing with greater value of hazard index. The following equation is 

used for Connecticut’s Hazard Rating Formula: 

 

 

 

where CoHIF = Connecticut’s Hazard Index value; 
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AADT = annual average daily traffic; 

T = number of trains per day; 

PF – protection factor (see table 12); 

A =crash history (the total number of accident in the last 5 years). 

 

Table 12  

Protection Factor Values for Connecticut’s Hazard Rating Formula 

Devices PF 

Stop sign or Cross buck 1.25 

Flashing lights 0.25 

Gates 0.01 

 

 

Illinois’s Modified Expected Accident Frequency Formula 

The literature review section contains description of the study, conducted by 

the State of Illinois, which was directed to evaluate the existing accident prediction 

models (see Elzohairy & Benekohal, 2000). The authors also made a multiple non-

linear regression analysis in order to find those variable (highway and rail crossing 

characteristics), which bring greater contribution to the final value of the accident 

prediction/hazard index. As a result of investigation the following formula has been 

developed (called Illinois’s Modified Expected Accident Frequency Formula): 

 

 

where IHI = Illinois’s Modified Expected Accident Frequency value; 

A = ln (ADT * NTT); 

ADT = average daily traffic; 
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NTT = number of total trains per day; 

B = MTS = maximum timetable speed, mph; 

C = (NMT + NOOT) = number of the main tracks + the number of the other 

tracks; 

D = NOL = number of highway lanes; 

N = average number of crashes per year; 

PF = protection factor (35.57 – for gates; 68.97 - for flashing lights; 86.39 – 

for passive). 

The formula doesn’t estimate the number of accident at each rail crossing, but 

it calculates the hazard index, which helps to rank crossings by the possibility of 

accident to occur.  

New Hamphire Hazard Index Formula 

New Hamphire Hazard Index Formula is used by several states of the country. 

Some states conducted additional research on accident prediction, using this model, 

and introduced supplementary variables, such as Train speed, Highway speed, Sight 

distance, Crossing angle,  Crossing width, Type of tracks, Surface type, Population, 

Number of buses, Number of school buses, Number of tracks, Surface condition, 

Nearby intersection, Functional class of highway, Vertical alignment, Horizontal 

alignment, Number of hazardous material trucks,  Number of passengers, Number of 

accidents. As it was mentioned before Modified New Hampshire Formula cannot be 

applied for Tennessee rail crossings because of the lack of information. Nevertheless, 

the scope of this work included implementation of original New Hamphire Hazard 

Index Formula for Tennessee rail crossings. The formula doesn’t estimate the number 

of accident at each rail crossing, but it calculates the hazard index, which helps to 

rank crossings by the possibility of accident to occur. The highest priority should be 
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assigned to the crossing with greater value of hazard index. The following equation is 

used for the original New Hamphire Hazard Index Formula: 

NHHI = V * T * PF 

where NHHI = New Hamphire Hazard Index value; 

V = annual average daily traffic; 

T = average train daily traffic; 

PF = protection factor (0.1 – for gates; 0.6 – for flashing lights; 1.0 – for signs 

only). 

Peabody-Dimmick Formula 

Peabody-Dimmick Accident Prediction Formula has been developed in 1941 

as a result of research, conducted for 3,563 rural crossings in 29 states. This formula 

is used to determine the expected number of accidents in five years. The following 

equation describes the Peabody-Dimmick Accident Prediction Model: 

PDF = K + 1.28 * (V
0.170

) * (T
0.151

)/P
0.171 

where PDF = the expected number of accidents in 5 years; 

V = annual average daily traffic factor; 

T = average train daily traffic factor; 

P = protection coefficient; 

K = additional parameter. 

The procedure of number of accidents calculations suggests the using of 

various charts and graphs (see Figures 9 – 12). To simplify the process for each curve 

a corresponding trendline has been found (in order to get a mathematical relationship 

between variables). The approximation of all curves is presented at Figures 13 – 15).  
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Figure 9 Relationship between Highway Traffic and Accident Factor 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: U.S. Department of Transportation, Federal Highway 

Administration. 

 

Figure 10 Relationship between Warning Device and Accident Factor 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: U.S. Department of Transportation, Federal Highway 

Administration. 
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Figure 11 Relationship between Railroad Traffic and Accident Factor 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: U.S. Department of Transportation, Federal Highway 

Administration. 

 

 

Figure 12 Relationship between K-factor and Unbalanced Accident Prediction 

Source: Railroad-Highway Grade Crossing Handbook, Second Edition. (1986). 

Washington, DC: U.S. Department of Transportation, Federal Highway 

Administration. 
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Figure 13 Relationship between Highway Traffic and V-Factor 

 

 

Figure 14 Relationship between Railroad Traffic and T-Factor 

 



46 

 

 

Figure 15 Relationship between K-factor and Unbalanced Accident Prediction 

 

Comparison of FRA (US DOT) Accident Prediction Model with Models, Applied 

by Other States 

The scope of the current work included comparison of US DOT accident 

prediction model with California’s Hazard Rating Formula, Connecticut’s Hazard 

Rating Formula, Illinois’s Modified Expected Accident Frequency Formula, Peabody-

Dimmick Formula and New Hamphire Formula. The main aim was to find the 

difference between models and figure out which one gives the results, close to US 

DOT. The analysis has been divided in two parts: comparison of approaches for 

passive rail crossing and comparison of approaches for active crossings. Some 

highway-rail at grade crossings were eliminated because of NaN values for accident 

prediction/hazard index (for example, Illinois’s Modified Expected Accident 

Frequency Formula has the variable, which is equal to the natural logarithm of 
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product ADT and NTT; there are many rail crossings in TRIMS database (around 

400), which have either zero ADT or NTT). Thus, removing of NaNs will make the 

analysis and comparison of models more accurate.  

The total number of passive crossings, taken for comparison, comprised 805. 

All rail crossings were sorted based on the accident prediction/hazard index from the 

highest value to the lowest and labeled with rank. The highest priority was assigned to 

the crossing with greater value of accident prediction/hazard index, as recommended 

by numerous studies. After that, the absolute difference between ranks, suggested by 

US DOT Accident Prediction Formula and those, proposed by considered models, 

were calculated in order to see how ranks vary. Average absolute difference in ranks 

with US DOT Accident Prediction Formula has been computed for each accident 

prediction/hazard index model. All calculations are provided in Appendix E. Final 

results for passive highway-railroad at grade crossings are presented at the Figure 16. 
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Figure 16 The Absolute Difference in Ranks with US DOT for Passive Crossings 

 

Note: 

ΔPDF – the absolute difference in ranks, suggested by US DOT Accident 

Prediction Formula and  Peabody-Dimmick Accident Prediction Formula; 

ΔNHHI - the absolute difference in ranks, suggested by US DOT Accident 

Prediction Formula and New Hamphire Hazard Index Formula; 

ΔIHI - the absolute difference in ranks, suggested by US DOT Accident 

Prediction Formula and Illinois’s Modified Expected Accident Frequency Formula; 

ΔCoHRF - the absolute difference in ranks, suggested by US DOT Accident 

Prediction Formula and Connecticut’s Hazard Rating Formula; 

ΔCaHRF - the absolute difference in ranks, suggested by US DOT Accident 

Prediction Formula and California’s Hazard Rating Formula; 

From the analysis of Tennessee at grade public passive rail crossings we can 
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conclude, that Illinois’s Modified Expected Accident Frequency Formula has the 

lowest average absolute difference in ranks with US DOT Accident Prediction 

Formula (162.7 ranks). New Hamphire Hazard Index Formula showed relatively good 

results (the difference comprised only 166.4 ranks). The highest average absolute 

difference in ranks with US DOT Accident Prediction Formula is obtained by 

California’s Hazard Rating Formula (according to Figure 16 - 205.4 ranks).  

Similar procedure has been performed for active crossings. The total number 

of considered crossings, taken for comparison, comprised 1511. All rail crossings 

were sorted based on the accident prediction/hazard index from the highest value to 

the lowest and labeled with rank. The highest priority was assigned to the crossing 

with greater value of accident prediction/hazard index, as recommended by numerous 

studies. After that, the absolute difference between ranks, suggested by US DOT 

Accident Prediction Formula and those, proposed by considered models, were 

calculated in order to see how ranks vary. Average difference in ranks with US DOT 

Accident Prediction Formula has been computed for each accident prediction/hazard 

index model. All calculations and necessary details are provided in Appendix E. Final 

results for active highway-railroad at grade crossings are presented at the Figure 17. 
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Figure 17 The Absolute Difference in Ranks with US DOT for Active Crossings 

 

From the first analysis of Tennessee at grade public active rail crossings we 

can conclude that Illinois’s Modified Expected Accident Frequency Formula has the 

lowest average absolute difference in ranks with US DOT Accident Prediction 

Formula (only 290.8 ranks). New Hamphire Hazard Index Formula showed relatively 

good results (the difference comprised only 300.5 ranks). The highest average 

absolute difference in ranks with US DOT Accident Prediction Formula is obtained 

by California’s Hazard Rating Formula (according to Figure 17 - 345.1 ranks). 

The scope of the current work also included supplemental comparison of 

accident prediction/hazard index models to confirm the initial assumption that 

Illinois’s Modified Expected Accident Frequency Formula gives the closest results to 

US DOT Accident Prediction Formula. All highway-rail crossings (both passive and 

active categories) have been separated for 10 groups (10% of all crossings for each 
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group). The objective was to estimate the percentage of rail crossings, suggested by 

US DOT Accident Prediction Formula and considered accident prediction/hazard 

index models for upgrading, which belongs to the same group. The average absolute 

difference in ranks US DOT Accident Prediction Formula can be lower for a certain 

accident prediction/hazard index model, but set of rail crossings, proposed for safety 

improvement could be significantly different from the set of rail crossings, suggested 

by US DOT Accident Prediction Formula. The results of this analysis are presented at 

the Figure 18 for passive crossings and at the Figure 19 for active crossings. Figures 

20 and 21 show the cumulative percentage of common active and passive crossings. 

 

 

Figure 18 The Percentage of Common Passive Rail Crossings with US DOT for Each 

Group 
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Figure 19 The Percentage of Common Active Rail Crossings with US DOT for Each 

Group 

 

Consider the first group of rail crossings, which presents 10% of the most 

hazardous Tennessee highway-railroad public at grade crossings, proposed by various 

accident prediction/hazard index models for upgrading. The highest percentage of 

common passive crossings has been observed for Connecticut’s Hazard Rating 

Formula (48.8%). Illinois’s Modified Expected Accident Frequency Formula and 

New Hamphire Hazard Index Formula showed the same results (47.5% of common 

passive crossings). The lowest percentage of common passive crossings has been 

obtained by California’s Hazard Rating Formula (30.0%). As for active rail crossings, 

the highest percentage has been demonstrated again by Connecticut’s Hazard Rating 

Formula (68.7%). New Hamphire Hazard Index Formula has 65.3% of common 

active rail crossings for the first group. Illinois’s Modified Expected Accident 

Frequency Formula has 54.7% of common active rail crossings for the first group. 

The lowest percentage of common active crossings has been obtained again by 

California’s Hazard Rating Formula (24.7%). 
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Figure 20 The Cumulative Percentage of Common Passive Rail Crossings with US 

DOT for Each Group 

 

 

 

Figure 21 The Cumulative Percentage of Common Active Rail Crossings with US 

DOT for Each Group 
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Thus, from the analysis of groups for percentage of common active and 

passive crossings, we cannot state, that Modified Expected Accident Frequency 

Formula gives the closest results to US DOT Accident Prediction Formula (it has the 

same percentage of the common passive crossings with New Hamphire Hazard Index 

Formula for the first group, but lower percentage of the common active crossings).       

In this case it is necessary to conduct additional test. The first group of 10% of 

the most hazardous highway-rail crossings has been considered. The analysis 

consisted in the following. The average absolute difference of a certain accident 

prediction/hazard index model in ranks with US DOT Accident Prediction Formula 

has been estimated only for those rail crossings, which were proposed for safety 

improvement by US DOT Accident Prediction Formula (this test combined the first 

two investigations). Other values of absolute difference were rejected. The results of 

this test are presented at the Figure 22 for passive crossings and at the Figure 23 for 

active crossings. 

From the last test we can state that Illinois’s Modified Expected Accident 

Frequency Formula and New Hamphire Hazard Index Formula showed almost the 

same weighted average difference in ranks with US DOT Accident Prediction 

Formula for passive rail crossings (8.8 percent and 8.7 percent correspondingly), 

which is lower in comparison with other models. But the weighted average difference 

in ranks of Illinois’s Modified Expected Accident Frequency Formula with US DOT 

Accident Prediction Formula (10.4 percent) is considerably lower for active rail 

crossings than for New Hamphire Hazard Index Formula (34.1 percent). 
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Figure 22 The Average Weighted Difference with US DOT for the First Group of 

Passive Crossings 

 

 

 
Figure 23 The Average Weighted Difference with US DOT for the First Group of 

Active Crossings 

 

 



56 

 

From the first analysis of Tennessee at grade public rail crossings we can 

conclude that Illinois’s Modified Expected Accident Frequency Formula has the 

lowest average absolute difference in ranks with US DOT Accident Prediction 

Formula (only 162.7 ranks for passive and 290.8 ranks for active crossings). New 

Hamphire Hazard Index Formula showed relatively good results (the difference 

comprised only 166.4 ranks for passive and 300.5 ranks for active crossings). The 

highest average absolute difference in ranks with US DOT Accident Prediction 

Formula is obtained by California’s Hazard Rating Formula. From the second analysis 

we can conclude that Illinois’s Modified Expected Accident Frequency Formula and 

New Hamphire Hazard Index Formula showed the same results (47.5% of common 

passive crossings) for passive crossings. But New Hamphire Hazard Index Formula 

has 65.3% of common active rail crossings for the first group, while Illinois’s 

Modified Expected Accident Frequency Formula has only 54.7% of common active 

rail crossings for the first group. From the last analysis we can state that Illinois’s 

Modified Expected Accident Frequency Formula and New Hamphire Hazard Index 

Formula showed almost the same weighted average difference in ranks with US DOT 

Accident Prediction Formula for passive rail crossings (8.8% and 8.7% 

correspondingly), which is lower in comparison with other models. But the weighted 

average difference in ranks of Illinois’s Modified Expected Accident Frequency 

Formula with US DOT Accident Prediction Formula (10.4%) is considerably lower 

for active rail crossings than for New Hamphire Hazard Index Formula (34.1%). 

For the final conclusion, we can state that for both passive and active 

highway-rail at crossings Illinois’s Modified Expected Accident Frequency Formula 

gives the closest results to US DOT Accident Prediction Formula. New Hamphire 

Hazard Index Formula showed relatively close results. It was also observed that 
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California’s Hazard Rating Formula gives the greatest variance in ranks with US DOT 

Accident Prediction Formula for passive and active public rail crossings.  

Conclusion 

The review presented herein provides useful information as to how current 

methods are employed to comparatively analyze highway-rail grade crossing projects 

for funding. The current approaches show the factors that are considered nowadays 

for improvement projects, such as risk reduction, project cost, and the relationship 

between risk reduction effectiveness and cost. Existing methods do present 

shortcomings associated to accurate datasets, minimal validation of method results, 

and reduced accuracy creating additional manual and mathematical effort to conclude 

processes. Current approaches provide a platform to advance the accepted state-of-

practice and develop future efforts.  

The methods, with modification to consider the goals of TDOT, could prove to 

be useful for additional highway-rail grade crossing program decision making. Future 

development should address the shortcomings of the current state-of-practice in 

addition to consideration of the outcomes and goals anticipated from the advancement 

of resource allocation or funding decision making methods. Comparison of US DOT 

Accident Prediction Model, currently used by the State of Tennessee, with accident 

prediction/hazard index models, employed by other states, shows that the closest 

results are obtained by Illinois’s Modified Expected Accident Frequency Formula. At 

this point it can be recommended to start implementation of Illinois’s Modified 

Expected Accident Frequency Formula for Tennessee rail crossings and to check its 

accuracy over a certain time period (several years). 
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4.  MODEL DEVELOPMENT 

As it was mentioned earlier, the main objective of the current study is to 

develop the model, which allocates available monetary resources between highway-

rail grade crossings of the Tennessee State (information is given by TRIMS database) 

and maximizes the total benefits in terms of accident and severity reduction. Two 

different approaches were created, such as Sorting Algorithm (SA) and Mathematical 

Model (MM). 

Sorting Algorithm (SA) 

The first methodology works as follows. First of all, all data, necessary for 

accident prediction calculations, is collected from TRIMS and FRA Accident/Injury 

databases. Based on physical and operational characteristics of each crossing the 

initial accident prediction value is estimated. Using the information about accidents in 

past 5 years from FRA Accident/Injury database the final accident prediction value is 

computed. After the normalized accident prediction value is calculated for each 

crossing as multiplication of the final accident prediction by normalizing constant. In 

the current work the normalizing constants from 2010 were used.  

The objective aims to provide investments for countermeasures 

implementation at those crossings, which will bring the maximum accident reduction. 

Most of all, severity of accidents was considered for each crossing. Severity of 

accident was separated by three categories: 

 Fatality accident; 

 Injury accident; 

 Property damage accident; 

To measure the difference between severity categories, the cost of accident has 

been introduced and applied in calculations (see Table 13). 
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Table 13  

Cost of Accident by Severity Category 

Type of accident Cost of accident, US dollars 
Fatality accident 30,000 
Injury accident 20,000 
Property damage accident 10,000 

 

As it was mentioned before, according to Railroad-Highway Grade Crossing 

Handbook (2007), there are three possible traffic control improvement alternatives in 

the resource allocation procedure: from passive to flashing lights, from passive to 

gates, from flashing lights to gates. Effectiveness of each countermeasure and cost are 

provided below in Table 14. 

 

Table 14  

Characteristics of Different Countermeasure Types 

Type of countermeasure Effectiveness Cost, US dollars 
Passive to flashing lights 0.70 30,000 
Passive to gates 0.83 150,000 
Flashing lights to gates 0.69 150,000 

 

The sorting procedure has been performed based on three benefit options: 

 e/c ratios; 

 a*e/c ratios; 

 s*e/c ratios; 

Computational results of Sorting Algorithm and comparison with another 

solution approach are presented in the next section. 

Mathematical Model (MM) 

The second approach was developed in order to compare it with SA heuristic 

and find out which one gives better results in terms of accident reduction. Sometimes 

heuristics provide solutions, which are considerably different from optimal and are 
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not implemented because of inefficiency. The formulation of model is provided 

below. 

SETS 

 Set of countermeasures 

 Set of highway-rail grade crossings 

 

DECISION VARIABLES 

 

=1 if countermeasure i is implemented at rail 

crossing j and zero otherwise 

 

AUXILIARY VARIABLES 

 
=1 if countermeasure i can be potentially 

implemented at rail crossing j and zero otherwise 

 

PARAMETERS 

 
accident prediction value at rail crossing  j  

 cost of countermeasure i 

 effectiveness of countermeasure i 

 fatal accident prediction value at rail crossing  j 

 injury accident prediction value at rail crossing  j 

 property damage accident prediction value at rail 

crossing  j 

 budget available 

 cost of fatal accident 

 cost of injury accident 

 cost of property damage accident 

 

 

 

OBJECTIVES 

 
 

(1) 

 
(2) 
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SUBJECT TO:  

 
 

(3) 

 
 

(4) 

 
 

(5) 

 

The first objective is directed to maximize the total accident reduction. The 

second objective aims to maximize the total weighted accident reduction by severity 

category. Constraint 3 ensures that the total cost of all implemented countermeasures 

at chosen rail crossings will not exceed the budget available. Constraint 4 states that 

no more than one countermeasure i can be applied at rail crossing j. Constraint 5 

indicates that countermeasure i can be implemented only at potentially considered rail 

crossing j. 

As for parameters, accident prediction value at rail crossing j (a(j)) was taken 

from TRIMS database for each crossing. Cost ( ) and effectiveness ( ) of each 

countermeasure i were taken from Railroad-Highway Grade Crossing Handbook, 

2007 (see Table 14). It was assumed that total investments for safety improvements at 

highway-rail crossings (C) comprised $2,500,000. Fatal, injury and property damage 

accident prediction values at rail crossing j were estimated using equations, provided 

by GradeDec software. Cost of each type of accident (w1, w2, w3) is presented in Table 

13. 

Auxiliary binary variable  has been introduced to indicate could be a 

particular countermeasure i be implemented at rail crossing j or not. There are specific 

restrictions, established by FRA, for certain countermeasures: 
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1) If the rail crossing is passive and number of trucks is equal to 1, it is 

possible to upgrade crossing to flashing lights and gates; 

2) If the rail crossing is passive and number of trucks is more than 1, only 

gates can be implemented; 

3) To upgrade rail crossing with flashing lights only gates can be considered 

as improvement; 

4) Rail crossings with gates are not subject to upgrading; 

A decision variable  shows each rail crossing and suggested 

countermeasure, which should be applied in order to satisfy objectives 1 and 2. 

Computational results for all at-grade rail crossings from TRIMS database are 

presented in the next section. 
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5. COMPUTATIONAL RESULTS 

Both solution approaches, Sorting Algorithm (SA) and Mathematical Model 

(MM), were applied for all at-grade rail public crossings of Tennessee State, provided 

by TRIMS database. The overall number of rail crossings in TRIMS database 

comprises 5716, the total number of at-grade public crossings is 2873. The main 

assumptions, constants and parameters for SA and MM were described in the chapter 

4. 

Sorting Algorithm 

The first approach (SA) has been created using Matlab 7.0. Three different 

sorting procedures were implemented: 

1) Sorting based on e/c ratio; 

2) Sorting based on a*e/c ratio; 

3) Sorting based on s*e/c ratio; 

It was observed that all three sorting procedures suggest to make 

improvements for 83 passive rail crossings and upgrade them to flashing lights with 

the total budget usage of $2,490,000 (among $2,500,000 available). It was observed 

that none of sorting methods offered upgrading of passive rail crossings to gates and 

flashing lights crossings to gates. Table 15 represents the total accident and severity 

reduction for each sorting option.  
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Table 15  

Results Provided by Sorting Algorithm 

SA based on e/c SA based on e/c 

TotalCost a*e s*e TotalCost a*(1-e) s*(1-e) 

2490000 2.360948 34153.4 2490000 1.011835 14637.17 

SA based on ae/c SA based on ae/c 

TotalCost a*e s*e TotalCost a*(1-e) s*(1-e) 

2490000 8.854448 128595.5 2490000 3.794764 55112.34 

SA based on se/c SA based on se/c 

TotalCost a*e s*e TotalCost a*(1-e) s*(1-e) 

2490000 8.822772 129100 2490000 3.781188 55328.56 
 

 

It can be concluded that sorting based on e/c ratio is not efficient, because it 

gives considerably lower values of accident reduction and severity reduction as well. 

Sorting based on a*e /c ratio shows considerably higher accident and severity 

reduction than sorting based on e/c ratio, slightly higher accident reduction than 

sorting based on s*e/c ratio, and lower severity reduction than sorting based on s*e/c 

ratio. Most of all, it is necessary to point out that cost of accident by severity was 

taken randomly. It was assumed that one fatality accident is equal to 2 injury 

accidents and 3 property damage accidents (see section 4). To make more accurate 

calculations in terms of severity additional information should be provided by TDOT. 

And after it will be possible to judge which sorting procedure gives the best results. 

Mathematical Model 

Solution of the model (see the formulation in the section 4) has been 

performed using GAMS 23.8.2. SA approach demonstrated inefficiency of e/c ratio 

consideration. Thus, the first objective of MM is directed to maximize the total 

accident reduction with restriction of the budget available. The second objective aims 

to maximize the total weighted accident reduction by severity category.  
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The total budget usage for the first and second objectives comprised 

$2,490,000 (among $2,500,000 available), which is similar to the amount of 

investments, provided by SA. But countermeasures, proposed by MM, were different 

in comparison with SA. Solution of the first objective suggests making improvements 

for 68 passive rail crossings with upgrading them to flashing lights, and 3 flashing 

lights rail crossings with upgrading them to gates. Solution of the second objective 

suggests making improvements for 73 passive rail crossings with upgrading them to 

flashing lights, and 2 flashing lights rail crossings with upgrading them to gates. 

Similar to Sorting Algorithm, MM doesn’t offer upgrading of passive rail crossings to 

gates. Table 16 represents the total accident and severity reduction for each objective.  

 

Table 16  

Results Provided by Mathematical Model 

MM based on a*e/c MM based on a*e/c 

TotalCost a*e s*e TotalCost a*(1-e) s*(1-e) 

2490000 9.212 132484.0 2490000 3.98 57210.54 

MM based on s*e/c MM based on s*e/c 

TotalCost a*e s*e TotalCost a*(1-e) s*(1-e) 

2490000 9.183 132888.9 2490000 3.959 57264.75 
 

 

It can be concluded that MM based on a*e /c ratio shows slightly higher 

accident reduction than MM based on s*e/c ratio, and lower severity reduction than 

MM based on s*e/c ratio (which is similar to results obtained by SA). In this case it is 

necessary to underline again, that additional data, related to the cost of accident by 

severity, should be provided by TDOT to achieve more accurate results. In general, 

GAMS showed good results and computational time, solving the first objective of the 

model in 0.047 sec and the second objective in 0.093 sec for 2873 rail crossings. 
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Comparison of Methodologies 

As it was mentioned earlier, SA and MM propose different ways of monetary 

resources allocation. SA based on a*e /c ratio shows, that improvements should be 

provided at 83 passive rail crossings to flashing lights. MM based on a*e /c ratio 

suggests to make improvements for 73 passive rail crossings with upgrading them to 

flashing lights, and 2 flashing lights rail crossings with upgrading them to gates. SA 

based on s*e /c ratio shows, that improvements should be provided at 83 passive rail 

crossings to flashing lights (similar to SA based on a*e /c ratio, but the list of 

recommended rail crossings for upgrading is different). MM based on a*e /c ratio 

suggests to make improvements for 68 passive rail crossings with upgrading them to 

flashing lights, and 3 flashing lights rail crossings with upgrading them to gates. In 

order to find which methodology is better corresponding accident reduction and 

weighted accident reduction by severity values should be compared. Accident 

reduction (a*e) and weighted accident reduction (s*e) by severity for SA and MM 

based on different benefit options are presented at Figures 24-27. The number of 

accidents after proposed countermeasures implementation (a*(1-e) and s*(1-e)) is 

presented at Figures 28-31. 
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Figure 24 Comparison of SA and MM Based on a*e/c Ratio and a*e Value 

 

 

Figure 25 Comparison of SA and MM Based on a*e/c Ratio and s*e Value 
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Figure 26 Comparison of SA and MM Based on s*e/c Ratio and a*e Value 

 

 

Figure 27 Comparison of SA and MM Based on s*e/c Ratio and s*e Value 
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Figure 28 Comparison of SA and MM Based on a*e/c Ratio and a*(1-e) Value 

 

 

 

Figure 29 Comparison of SA and MM Based on a*e/c Ratio and s*(1-e) Value 
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Figure 30 Comparison of SA and MM Based on s*e/c Ratio and a*(1-e) Value 

 

 

Figure 31 Comparison of SA and MM Based on s*e/c Ratio and s*(1-e) Value 

 

Analyzing Figures 24-31, it can be concluded that Mathematical Model 

outperformed results of Sorting Algorithm based on a*e/c and s*e/ratios for both 

accident reduction and weighted accident reduction by severity. It was also observed 
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that the overall number of accidents was higher for Mathematical Model than for 

Sorting Algorithm after countermeasures implementation. This fact means that 

Mathematical Model proposes more hazardous rail crossings for safety improvement 

and gives the greater accident reduction and weighted accident reduction by severity 

values. It is necessary to point out, the cost of countermeasures is subject to change 

and this fact should be considered before application of the model. 

Sensitivity of the Models 

For a given input data with budget available of $2,500,000 the Mathematical 

Model (MM) outperformed the Sorting Algorithm (SA). But we cannot state in 

general that MM is better than SA before checking both models for different values of 

budget available (sensitivity of models). Changing of constraints values makes a 

significant influence at the model. In the current work budget range from $200,000 up 

to $$4,200,000 was considered. For a particular value of budget a*e, a*(1-e), s*e, 

s*(1-e) were calculated applying MM and SA. The results are presented in Tables 17 - 

20 and Figures 32 - 39. 
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Table 17  

Sensitivity of SA Based on a*e/c 

SA based on a*e/c 

TotalCost a*e a*(1-e) s*e s*(1-e) 

180000 1.294988 0.554995 18519.23 7936.811 

390000 2.226838 0.954359 31498.35 13499.29 

570000 2.970597 1.273113 42122.87 18052.66 

780000 3.751651 1.60785 53724.11 23024.62 

1170000 5.075771 2.17533 73260.94 31397.55 

1470000 6.025503 2.582358 87138.94 37345.26 

1770000 6.914407 2.963317 100546.9 43091.53 

2070000 7.751079 3.321891 112850.3 48364.42 

2490000 8.854448 3.794764 128595.5 55112.34 

2790000 9.604151 4.116065 139132.8 59628.33 

3090000 10.32911 4.426761 149727.8 64169.04 

3480000 11.23738 4.816021 162479.2 69633.94 

3780000 11.92326 5.117131 171802.6 73720.8 

4170000 12.77739 5.483186 183877.2 78895.66 

   

Table 18  

Sensitivity of SA Based on s*e/c 

SA based on s*e/c 

TotalCost a*e a*(1-e) s*e s*(1-e) 

180000 1.294988 0.554995 18519.23 7936.811 

390000 2.210237 0.947244 31719.13 13593.91 

570000 2.966126 1.271197 42259.96 18111.41 

780000 3.747696 1.606156 53779.23 23048.24 

1170000 5.055337 2.166573 73553.33 31522.86 

1470000 6.013405 2.577174 87549.52 37521.22 

1770000 6.88244 2.949617 100748.2 43177.8 

2070000 7.736612 3.315691 113111.4 48476.3 

2490000 8.822772 3.781188 129100 55328.56 

2790000 9.562801 4.098343 139983.6 59992.98 

3090000 10.29075 4.41032 150295 64412.13 

3480000 11.19352 4.797221 163188.3 69937.86 

3780000 11.87502 5.089292 172734.1 74028.91 

4170000 12.71411 5.448905 184487.2 79065.95 
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Table 19  

Sensitivity of MM Based on a*e/c 

MM based on a*e/c 

TotalCost a*e a*(1-e) s*e s*(1-e) 

180000 1.295 0.555 18519.23 7936.811 

390000 2.227 0.954 31498.35 13499.29 

570000 2.894 1.24 41387.39 17737.45 

780000 3.819 1.65 54226.91 23418.12 

1170000 5.192 2.238 74369.68 32050.74 

1470000 6.204 2.682 88347.29 38175.47 

1770000 7.154 3.089 102225.3 44123.19 

2070000 8.043 3.47 115633.3 49869.46 

2490000 9.212 3.98 132484 57210.54 

2790000 10.015 4.332 143906.5 62225.75 

3090000 10.794 4.666 155234.2 67080.47 

3480000 11.764 5.082 169012.1 72985.27 

3780000 12.481 5.389 179277.7 77384.83 

4170000 13.386 5.784 191519.5 82722.45 

 

Table 20  

Sensitivity of MM Based on s*e/c 

MM based on s*e/c 

TotalCost a*e a*(1-e) s*e s*(1-e) 

180000 1.295 0.555 18519.23 7936.811 

390000 2.21 0.947 31719.13 13593.91 

570000 2.954 1.266 42197.54 18084.66 

780000 3.819 1.65 54226.91 23418.12 

1170000 5.191 2.237 74806.03 32237.74 

1470000 6.15 2.649 89238.46 38423.07 

1770000 7.076 3.045 102861.5 44261.51 

2070000 8.011 3.457 115834.6 49955.73 

2490000 9.183 3.959 132888.9 57264.75 

2790000 9.995 4.324 144441.3 62454.95 

3090000 10.762 4.653 155738.7 67296.69 

3480000 11.716 5.061 169756.1 73304.15 

3780000 12.441 5.372 179980.3 77685.96 

4170000 13.34 5.757 192723.8 83147.42 
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Figure 32 Values of a*e Based on a*e/c Sorting 

 

 
Figure 33 Values of a*(1-e) Based on a*e/c Sorting 
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Figure 34 Values of s*e Based on a*e/c Sorting 

 

 
Figure 35 Values of s*(1-e) Based on a*e/c Sorting 

 



76 

 

 
Figure 36 Values of a*e Based on s*e/c Sorting 

 

 

Figure 37 Values of a*(1-e) Based on s*e/c Sorting 
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Figure 38 Values of s*e Based on s*e/c Sorting 

 

 
Figure 39 Values of s*(1-e) Based on s*e/c Sorting 
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From the conducted analysis we can conclude that for all indicators (a*e 

values, which represent the total accident reduction; s*e values, which represent the 

total weighted accident reduction by severity category; a*(1-e) values, which 

represent the total number of accidents left after suggested countermeasures 

implementation; s*(1-e) values, which represent the total number of weighted 

accidents by severity category left after suggested countermeasures implementation) 

MM outperformed SA for the budget available, ranging from $200,000 up to 

$$4,200,000. Thus, MM proposes safety improvements, which result in greater 

reduction of the total number accidents and the total number of weighted accidents by 

severity category as well. The difference between MM and SA for a*e and s*e values 

increase as the budget available enlarges. Most of all, MM suggests implementation 

of countermeasures at more hazardous highway-railway public crossings (which is 

shown by the greater a*(1-e) values and s*(1-e) values for the greater reduction of the 

total number accidents and the total number of weighted accidents by severity 

category) in comparison with SA. The difference between MM and SA for a*(1-e) 

and s*(1-e) values increase as the budget available enlarges. 

So, the Mathematical Model (MM) outperforms the Sorting Algorithm (SA) 

based on sensitivity analysis and it is recommended for the further usage in order to 

allocate the available monetary resources between highway-railroad public at grade 

Tennessee crossings to apply the Mathematical Model (MM). 

The Logit Model for Accident Prediction by Severity Category 

The main aim of the current work is the development of highway-railroad at 

grade crossings prioritizing model. The model should identify those rail crossings 

which will result in the maximum benefit in terms of accident reduction/weighted 
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accident reduction by severity category after certain countermeasures implementation 

for the given budget. Severity of accidents was separated by three categories: 

 Fatality accident; 

 Injury accident; 

 Property damage accident; 

To estimate the weighted accident prediction by severity category, it is 

necessary to calculate the number of predicted fatality, injury and property damage 

accidents. Equations, proposed by GradeDec software, were used for this purpose. In 

the section of literature review the paper, written by Hu et al. (2009), was mentioned. 

The authors use the Logit model to predict the number of accidents by severity 

category. In this case it will be useful to apply the Logit model and compare results 

with output of the GradeDec model. 

Hu et al. (2009) define a generalized logit as 

 

where x – set of highway-railroad crossing characteristics; 

j – set of severity categories; 

πj – the probability of accident j to happen; 

π0 – the probability of a “pivot“ accident to happen; 

Set of highway-railroad crossing characteristics included the same parameters, 

which are used by GradeDec model: maximum time table trains peed, miles per hour; 

through trains per day; switch trains per day; binary variable, if crossing is urban, 

Urban = 1,else Urban = 0; number of the main rail road tracks. As it was mentioned 

before set of severity categories contains fatality, injury and property damage 

accidents. 
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Hu et al. (2009) propose to form a logit as a linear predictor 

 

where α and β – coefficients of the multinomial logistic regression. 

To find the relationship between number of each severity category and 

variables, describing highway-railroad crossing characteristics, the multinomial 

logistic regression analysis has been conducted using Matlab 7.0. The accident history 

for the last 10 years data has been uploaded from FRA accident/injury database to 

compute the actual number of fatality, injury and property damage accidents for each 

public at grade crossing of TN State. The results are presented in the Table 21. The 

relationship between predictors and response variables turned out to be: 

Logit (PDO) = 29.95249 - 0.12046*X1 - 0.03353*X2 - 0.39736*X3 - 

19.1145*X4 - 0.71761*X5; 

Logit (Injury) = 27.43512 - 0.10406*X1 - 0.20236*X2 - 0.47232*X3 - 

20.4985*X4 + 1.606862*X5, 

where X1 – maximum time table train speed, miles per hour;  

X2 – through trains per day;  

X3 – switch trains per day;  

X4 - binary variable, if crossing is urban, Urban=1, else Urban=0;  

X5 – number of the main rail road tracks. 
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Table 21  

The FRA 2010 Accident Data by Severity Category 

Actual number of accidents (FRA 2010) 

№ cross.\Acc. Type Fatalities Injuries PDO 

1 2 0 0 

2 1 0 0 

3 1 0 0 

4 1 0 0 

5 1 0 0 

6 1 0 0 

7 1 0 0 

8 1 0 0 

9 1 0 0 

10 1 0 0 

11 0 1 0 

12 1 0 0 

13 1 0 0 

14 1 0 0 

15 1 0 0 

16 1 0 0 

17 1 0 0 

18 1 0 0 

19 1 0 0 

20 0 1 0 

21 1 0 0 

22 0 0 1 

23 1 0 0 

24 0 1 0 

25 1 0 0 

26 1 0 0 

27 0 1 0 

28 1 0 0 

29 1 0 0 

30 1 0 0 

31 1 0 0 

32 1 0 0 

33 1 0 0 
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Fatality accident has been taken as a “pivot” accident. The probability of the 

accident by severity category for the given crossing can be calculated as (see Hu et al. 

2009): 

 

This formula has been applied for each highway-railroad at grade crossing to 

find the probability of fatality, injury and property damage accidents to happen. To 

find the actual number of accidents by severity, proposed by the Logit model, the 

accident prediction values for each crossing (given by TRIMS database) were 

multiplied by corresponding probability of the considered category. The results of 

computations are presented in Table 22. 

Comparison of the Logit and GradeDec Models 

Table 22 and Figure 40 show the predicted number of accidents by severity 

category, using the Logit model and the GradeDec model for those at grade public 

highway-railroad crossings, at which accidents have been observed in 2010 according 

to FRA accident/injury database.  
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Figure 40 Comparison of the Logit and GradeDec Models 
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Table 22  

Comparison of the Logit and GradeDec Models 

Results of Logit Model Results of GradeDec 

PDO Injuries Fatalities Fatalities Injuries PDO 

0,180243 0,015249 0,000334 0,007771 0,063427 0,124629 

0,051122 0,006792 0,005512 0,006168 0,020492 0,036766 

0,116204 0,030117 0,004032 0,013628 0,048815 0,087912 

0,055405 0,007011 0,010470 0,005158 0,021754 0,045974 

0,066708 0,008222 0,010701 0,008065 0,027192 0,050374 

0,065680 0,006775 0,000428 0,005170 0,024078 0,043635 

0,060986 0,012779 0,000018 0,001044 0,016525 0,056213 

0,049133 0,000746 0,000035 0,000657 0,010573 0,038684 

0,051482 0,000782 0,000037 0,000688 0,011079 0,040534 

0,020873 0,004374 0,000006 0,000357 0,005656 0,019239 

0,153394 0,117042 0,000000 0,014428 0,094376 0,161632 

0,086199 0,054250 0,000000 0,011854 0,054018 0,074577 

0,101667 0,001920 0,011017 0,012571 0,039385 0,062647 

0,154151 0,031259 0,000036 0,002107 0,039531 0,143810 

0,044302 0,010785 0,000006 0,000857 0,013244 0,040992 

0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 

0,173383 0,014185 0,000000 0,003771 0,054145 0,129653 

0,338566 0,035591 0,004721 0,024344 0,118153 0,236382 

0,001516 0,000178 0,000000 0,000126 0,000654 0,000914 

0,051464 0,009957 0,000078 0,001774 0,016131 0,043595 

0,260047 0,027337 0,003626 0,018698 0,090751 0,181561 

0,128149 0,012292 0,011640 0,013348 0,048510 0,090222 

0,025253 0,003944 0,000969 0,002838 0,009991 0,017337 

0,042689 0,008162 0,000083 0,001932 0,014376 0,034625 

0,114525 0,001946 0,000008 0,001991 0,029995 0,084493 

0,152498 0,025575 0,001399 0,006128 0,047157 0,126187 

0,129523 0,006735 0,011477 0,015787 0,050118 0,081831 

0,005649 0,000135 0,000000 0,000090 0,001390 0,004303 

0,223782 0,002320 0,000427 0,001445 0,039409 0,185676 

0,055277 0,006359 0,000395 0,000785 0,012749 0,048496 

0,114425 0,016385 0,008292 0,014283 0,046243 0,078576 

0,085565 0,017174 0,005798 0,010928 0,035715 0,061894 

0,162573 0,014815 0,013638 0,012947 0,058003 0,120078 

3,32243 0,51119 0,10518 0,2217396 1,16364 2,55344 
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It can be concluded that the Logit model gives lower number of fatalities, 

approximately the same number of injuries (slightly lower) and higher number of 

property damage accidents in comparison with the GradeDec model. Nevertheless, the 

coefficients of determination (which represent the accuracy of model and how well it 

fits), were relatively low for the Logit model: for PDO accidents – 0.274, for injury 

accidents – 0.109, for fatalities – 0.026.  In order to make a correct evaluation of each 

model output additional research, connected with site investigation at each highway-

railroad at grade crossing, should be conducted. After that it is possible to state which 

model is better and needs to be applied. In the current work the GradeDec model 

(which is used commonly used within the country) has been implemented for 

estimation of accidents by severity category, as it is recommended by US DOT.  
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6. CONCLUSIONS 

According to Section 130 the United States Department of Transportation 

(USDOT) provides funding assistance to state departments of transportation to 

implement highway-rail grade crossing improvement programs. These programs are 

suspect to develop particular safety improvement actions in order to decrease the 

number of accidents at highway-rail grade crossings. The current work was dedicated 

to allocate available monetary resources between highway-rail grade crossings of the 

Tennessee State (information is given by TRIMS database) and maximize the total 

benefits in terms of accident and severity reduction. The scope of work included the 

literature review with description of hazard index/accident prediction methodologies, 

widely used by various DOTs; careful investigation of the accident prediction method, 

applied by TDOT; development of the model to satisfy the established goals and 

computational results, demonstrated benefits and negative sites of both models. 

Comparison of US DOT Accident Prediction Model, currently used by the 

State of Tennessee, with accident prediction/hazard index models, employed by other 

states, shows that the closest results are obtained by Illinois’s Modified Expected 

Accident Frequency Formula. At this point it can be recommended to start 

implementation of Illinois’s Modified Expected Accident Frequency Formula for 

Tennessee rail crossings and to check its accuracy over a certain time period (several 

years).  

The scope of the conducted work also included application of the Logit model 

for accident prediction by severity category. It was observed that the Logit model 

gave lower number of fatalities, approximately the same number of injuries (slightly 

lower) and higher number of property damage accidents in comparison with the 
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GradeDec model. Additional research should be provided at that point to evaluate 

which model is better for highway-railroad public crossings of Tennessee State. 

It was concluded that Mathematical Model was more efficient than Sorting 

Algorithm, because MM provided greater accident reduction and weighted accident 

reduction by severity. In comparison with SA, MM proposed safety improvements not 

only from passive rail crossings to flashing lights, but also upgrading of flashing 

lights rail crossings to gates. Nevertheless, it is necessary to specify the main aim of 

investments: to reduce the overall number of accidents or to decrease the number of 

fatalities, injuries and property damage accidents, taking into consideration that the 

cost of fatality is greater than the cost of injury and the cost of injury is greater than 

the cost of property damage accident. For the first case it is better to use MM with the 

first objective. For the second case it is better to use MM with the second objective. 

GAMS showed a good computational time for 2873 rail crossings. 

Besides, there are several issues, which should be considered in the future 

research. The cost of accident was set based on assumption, that one fatality is equal 

to 2 injuries of 3 property damage accidents. The nature of relationship between those 

severity categories could be more complex. This question should be addressed by 

TDOT before application of the proposed model. Most of all, cost of countermeasures 

was taken from Railroad-Highway Grade Crossing Handbook (2007), which are 

subject to change to higher values. The resource allocation procedure can be extended 

and new countermeasures may be introduced. But in this case additional information 

should be provided by TDOT. It is recommended to check the sensitivity of the 

model, using larger size of input data (e.g., consider public at-grade highway-rail 

crossings of other states). 
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For the final conclusion, Mathematical Model, developed in the current work, 

can be used as a powerful tool to solve a relatively complex problem of monetary 

resources allocation between highway-rail crossings to maximize the safety and to 

follow specific requirements, established by the United States Department of 

Transportation.  
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APPENDICES 

Appendix A 

US DOT Accident Prediction Factor Values for Crossings with Different 

Warning Devices 

US DOT Accident Prediction Factor Values for Crossings with Passive Warning 

Devices
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US DOT Accident Prediction Factor Values for Crossings with Flashing Light 

Warning Devices 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

US DOT Accident Prediction Factor Values for Crossings with Gate Warning 

Devices 
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Appendix B 

US DOT Final Accident Prediction from Initial Prediction and Accident History 

US DOT Final Accident Prediction from Initial Prediction and Accident History (1 

year of accident data (T = 1)) 
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US DOT Final Accident Prediction from Initial Prediction and Accident History (2 

years of accident data (T = 2)) 
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US DOT Final Accident Prediction from Initial Prediction and Accident History (3 

years of accident data (T = 3)) 
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US DOT Final Accident Prediction from Initial Prediction and Accident History (4 

years of accident data (T = 4)) 
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US DOT Final Accident Prediction from Initial Prediction and Accident History (5 

years of accident data (T = 5)) 
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Appendix C 

Resource Allocation Procedure Field Verification Worksheet 
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