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ABSTRACT

Tang, Quan. M.S. The University of Memphis. May, 2013. A Systematic
Comparison of MLE and Bayesian Estimation for MPT Models. Major Professor:
Xiangen Hu, Ph.D.

As a family of statistical models for categorical data, multinomial processing

tree (MPT) models have become popular in cognitive psychology over the course

of the past two decades. Classic estimation methods, such as maximum

likelihood estimation (MLE) and model fit test (G2 test), have been applied to MPT

models widely. Recent development of Bayesian inference suggests a theoretical

alternative for model estimation, though its practical implementation was limited

due to the difficulties of computation and sampling capacity of the computers. In

this thesis, I apply Bayesian inference to MPT models, develop the programs that

implement Bayesian inference for MPT models, and conduct systematic

comparisons between the two approaches in terms of their parameter estimation

and model evaluation.
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Chapter 1

Introduction

Multinomial processing tree (MPT) models have been widely used in cognitive

psychology, especially in human memory studies (Batchelder and Riefer 1999;

Erdfelder et al. 2009) as both a theoretical model and statistical model. In this part

of the paper, I will introduce (1) some background information about MPT models

and source monitoring research, and (2) statistical methods that can be applied to

MPT model analyses, including classic and Bayesian estimations. I will try to

introduce these theories and methods through some simple examples. In addition,

I will present the reasons for comparing classic estimation to Bayesian estimation.

1.1 Multinomial Processing Tree (MPT) Models and Source Monitoring

Multinomial processing tree (MPT) models are a family of statistical models for

serial and discrete data. Formally, MPT models can be regarded as a special

family of models in the more general class of parameterized multinomial or

product-multinomial models (Stahl and Meiser 2009). MPT models are versatile

and may be applied into fields such as cognitive science, medical science, and

social science. Though MPT models share basic common features, they (1) are

hierarchical and in a tree structure, (2) describe a set of serial processes, and (3)

are used to analyze categorical data and may be tailored to different forms

according to plausible theories or hypotheses. As a consequence, the

development of MPT models has been closely intertwined with the development

of paradigms and theories in cognitive psychology.

A typical application of MPT models in cognitive psychology is applying a

group of MPT models for source monitoring. Source monitoring research is

derived from the interest in human source memories. People remember

information from two basic sources: (1) Information perceived from external

sources (stimuli), and (2) information generated by internal processes such as
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reasoning, imagination, and thought. And people may remember, forget, or mix

these memories (Johnson and Raye 1981). There is a common phenomenon that

most people may have experienced; we heard a story from a friend and forgot

who told this story, then we share the story back to this friend with interest. Even

worse, we may add something to the story by ourselves unconsciously.

To study different kinds of memories, Johnson and Raye (1981) proposed the

concept of “reality monitoring.” Reality monitoring refers to the process of

distinguishing the memory of a past perception from the memory of past

imagination. As an extension of the reality monitoring, the concept of “source

monitoring” was proposed by Johnson and her colleagues (Johnson, Foley, and

Leach 1988; Johnson, Hashtroudi, and Lindsay 1993; Johnson and Raye 1981).

Compared with reality monitoring which focuses on discriminating memories of

internally generated information from memories of externally perceived

information, source monitoring refers to discriminating different types of internal or

external sources, namely, internal source monitoring or external source

monitoring (Johnson, Foley, and Leach 1988). For instance, external source

monitoring is interested in discriminating between two externally perceived

sources such as statements made by person A or by person B, while internal

source monitoring concentrates on discriminating between the memories of what

one thought from what one said. Hence source monitoring is derived and

generalized from reality monitoring.

After the concepts of reality monitoring and source monitoring were

introduced, quite a number of source monitoring experiments were conducted to

test different cognitive models or to measure cognitive capacities of different

populations. For example, Harvey (1985) studied how different normal and

mentally disordered subjects are able to discriminate their own thoughts and

information from external sources. Saegert, Hamayan, and Ahmar (1975) tested if
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source memory for language is dependent on the nature of the memory task

itself. And Rose, King, and Perez (1975) examined whether the phenomenon of

accurate source memory for language could be found at complex cognitive levels.

In a typical source monitoring experiment, subjects study items from two or

more different sources (Johnson, Hashtroudi, and Lindsay 1993). For example,

pictures of the items as source A and the names of the items as source B. After

these items have been studied, a memory test is given in which the subjects are

asked to indicate which source (source A, B or a new source) the test items

belong to. Data from a group of subjects can be described by the frequency table

as in Table 1, where fij is the counts of j-type response to i-type source. The row

Table 1
Data matrix of a typical source monitoring experiment. Rows represent
presentation during learning, columns denote the response of the participants,
the cells contain raw frequencies

Participants’ response
Actual source during “Source A” “Source B” “New”
learning
Source A fAA fAB fAN
Source B fBA fBB fBN
New fNA fNB fNN

marginal frequency fi. = Σfij is the total number of i-type source items on the

memory test, and i, j = A,B,C. In early studies on source monitoring, some ad

hoc statistical approaches were adapted for separating the discriminability of the

source from the overall detectability of old items (such as Kruskal-Wallis gamma

score, identification-of-origin scores, and hit and false-alarm rates for source

identification, see Batchelder and Riefer, 1990, for details). The discriminability

here means the ability to discriminate the specific old source from other old
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sources after an item has been detected as an old item in the source memory

test. And the detectability means the ability to detect an old source item in the test.

The most frequently used method for the data analysis is to compute three

measures for each subject as shown in equations 1, 2 and 3: hits (H), indicating

the rate at which the subject can detect old items correctly; false alarms (F),

indicating the rate at which the subject incorrectly reports a distracter item as an

old item; and identification-of-origin scores (I), referring to the rate at which the

subject discriminates the exact source from all the responded old sources. The

equations of these three rates are shown as follow in terms of the frequencies

presented in Table 1.

H =
(fAA + fAB) + (fBA + fBB)

fA. + fB.
(1)

F =
fNA + fNB

fN.
(2)

I =
fAA + fBB

(fAA + fAB) + (fBA + fBB)
(3)

However, about ten years after the concept of source monitoring had been

proposed and a multitude of studies had been done, Batchelder and Riefer (1990)

noted that there was not a generally accepted measure of the quantities reported

in the source-monitoring experiments. In other words, there was not any

substantive model to analyze the data of the contingency table obtained from the

source-monitoring experiments (see Table 1). For example, the generally used

model depicted in equation 1, 2, and 3 fail to look into the internal cognitive

processes such that they cannot distinguish whether the subject really recognizes

the exact old source or answers correctly by guessing, when the subject reports

an exact old source (e.g., report source A as source A). Therefore, Batchelder

and Riefer proposed MPT models for source monitoring experiments as a
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substantively quantitative measurement tool for the memory retrieving processes

during source monitoring experiment tasks.

Because the response frequencies in source monitoring experiments can be

considered as multinomially distributed, it is assumed there are finite numbers of

observable categories, C1, C2, ...., CJ , and there are N total observations. Then nj

is defined as the number of observations in Cj, and D = (n1, ..., nj, ..., nJ) is

defined as the data vector of observations for the model. The joint distribution of

the data D can be represented by the general multinomial model

P (D; p1, ..., pJ) = n!
J∏
j=1

p
nj

j

nj!
, (4)

where pj is the probability that an observation falls into Cj if the data

observations are mutually independent and identically distributed (i.i.d.), and

n =
∑J

j=1 nj . The general model has the parameter space

Gj =
{
p = (p1, ..., pJ)|0 ≤ pj ≤ 1,

∑J
j=1 pj = 1

}
. In addition, a substantive MPT

model assigns a parameter to each cognitive event that represents the probability

of that event occurring. These events are organized hierarchically according to

psychological assumptions or theories, from the very first node to the last, in a

tree structure.

Every information source has an MPT model that represents the processing

steps (by the parameters) and the categories of the subject’s responses. For

example, for source A, the first parameter (DA) in the model is assumed to

represent the probability of detecting this source as an old source. Because the

detection probabilities for different sources may vary, DB may be different from

DA. The next step after detection is discrimination with the parameter di as its

probability if the subject successfully detects old items, or bias with the parameter

b otherwise.
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If the subject can detect and discriminate an old item successfully, the

response is absolutely correct and this response falls in the cell fAA for source A

and in the cell fBB for source B in Table 1. If the subject fails in the detecting or

discriminating steps, he or she may guess. And if the subject is “lucky” enough, he

or she is still be able to report correctly (e.g., first, correctly guess that the item is

an old item and, secondly, correctly guess its type).

This set of MPT models is called one high threshold (1HTH) model; because

in this set of MPT models, only the trees for “old” source items have detection and

discrimination steps, and the tree for “new” source items (distractors) does not

have detection and discrimination steps. In contrast, the new items (distractors)

are assumed either to be responded to as old items by bias or as new items

without bias.

Figure 1 presents the structure of MPT models for source monitoring and the

meaning of their parameters. There are 7 parameters in this set of models, with 6

degrees of freedom (3× 3 data table with 3 fixed marginal frequencies). Hence,

this 7-parameter model is over saturated, and the parameters cannot be uniquely

estimated, due to the insufficient degree of freedom in the data, unless we

eliminate at least one parameter (e.g., we may equate a parameter with another).

Figure 2 shows the 6 sub-models. In 6a, 6b and 6c submodels, two parameters

are merged into one, based on the hypothesis that the detection rates, the

discrimination rates, or the guessing rates of the two sources are equal,

respectively. Likewise, 5-parameter submodels combine another pair of

parameters. This paradigm provides 7 submodels corresponding to different

psychological hypotheses that allow us to test the fit of each sub-model.

The MPT models for source monitoring (Batchelder and Riefer 1990) use

graphical representation to illustrate the plausible cognitive procedure in the

source monitoring test and explicitly separate the frequencies (including those in
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Figure 1
The seven-parameter, joint multinomial model for source monitoring. (D1 =
detectability of the Source A items; D2 = detectability of the Source B items; d1 =
source discriminability for the Source A items; d2 = source discriminability for the
Source B items; a = guessing that a detected but nondiscriminated item belongs
to Source A; b = bias for responding “old” to a nondetected item; g = guessing that
a nondetected item belongs to Source A.)

the same cell in the data table) to hierarchically organized origins. For example,

as introduced previously, equation 3 cannot separate real discrimination from

guessing. When considering the difference between real discrimination and

guessing, fAA in equation 3 can be rewritten as:

fAA((D1d1) +D1(1− d1)a+ (1−D1)bg). Similarly, fBB, fAB and fBA in equation 3

cannot separate frequencies from plausibly different origins while MPT models

separate these origins into different branches. The MPT models provide an

approach to measuring the cognitive processes in source monitoring tasks and

testing hypotheses of different submodels under various situations, and they have

been applied to source monitoring analyses more and more.

1.2 Statistical Theories of MPT Models

In addition to a substantive model for human memory, the MPT model is also a

statistical model for categorical observations. I will provide some background

about the statistical theories related to MPT model parameter estimation and

hypothesis testing.
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Figure 2
Nested Hierarchy for The Eight Versions of The Multinomial Model Depicted in
Figure 1

Let us consider the following case in which two coins are flipped for one trial

each and the final result is recorded. There are 4 observed categories: 2 heads

(HH), 2 tails (TT) and 1 head followed by 1 tail (HT), or 1 tail followed by 1 head

(TH). The category frequencies are represented by D = (n1, n2, n3, n4), and the

probabilities of these outcomes are represented by b1, b2, b3, and b4 respectively.

The parameter vector is denoted by Θ = (Θ1, . . .Θs . . .ΘS) ∈ Ω, where Ω is the

parameter space, and Θs = (θs1, . . . , θsk . . . , θsKs) refers to the Ks parameters in a

group (under a same parent node), indicating the probability of the outcomes of

each event. In the coin-flipping example, due to the binomial outcomes of each

event, there are two parameters (e.g., p and 1− p) in a group, and only one is

independent. Note that from now on the notations above are for all the

coin-flipping examples, unless explicitly indicated. Figure 3 illustrates this

procedure. The frequencies of the final results follow a multinomial distribution

with 4 categories and the probabilities of these outcomes are:
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Figure 3
The coin-flipping trials. p = the probability that coin 1 gets a head, q = the
probability that coin 2 gets a head if coin 1 gets a head, r = the probability that
coin 2 gets a head if coin 1 gets a tail.

b1 = pq, (5)

b2 = p(1− q), (6)

b3 = (1− p)r, (7)

b4 = (1− p)(1− r). (8)

To estimate the parameters in the model in Figure 3, we can use the model’s

likelihood function and plug in the branch probabilities:

L(Θ;D) =
n!

n1!n2!n3!n4!
bn1

1 b
n2
2 b

n3
3 b

n4
4 , (9)

L(Θ;D) =
n!

n1!n2!n3!n4!
(pq)n1 (p(1− q))n2 ((1− p)r)n3 ((1− p)(1− r))n4

=
n!

n1!n2!n3!n4!
p(n1+n2)(1− p)(n3+n4)qn1(1− q)n2rn3(1− r)n4 . (10)

The likelihood function indicates the likelihood of obtaining the observed data,

given the model. Hence the estimates of the parameters that maximize L(Θ;D)

guarantee the maximum likelihood of obtaining the observed data. This estimation
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method is called maximum likelihood estimation (MLE), which is the most popular

approach to parameter estimation. For equation 10, the MLEs of p, q, r are the

simultaneous solutions of three equations such that:

∂(L(Θ;D))

∂p
=
∂(L(Θ;D))

∂q
=
∂(L(Θ;D))

∂r
= 0, (11)

and
∂2(L(Θ;D))

∂p2
< 0

∂2(L(Θ;D))

∂q2
< 0

∂2(L(Θ;D))

∂r2
< 0.

(12)

In practice, it is often more convenient to work with the logarithm of the

likelihood function, called the log-likelihood. For example, in equation 11, we can

obtain p by:

∂(lnL(Θ;D))

∂p
= 0,

n1 + n2

p
− n3 + n4

1− p
= 0,

p =
n1 + n2

n1 + n2 + n3 + n4

.

(13)

However, MLE may encounter difficulties when the likelihood is not an explicit

form in which all the branch probabilities can be separated (e.g., in equation 9 and

10). Let us consider the coin-flipping example again, and suppose that for some

reason we only observe the final result without the order of the events. In other

words, we do not know a head is first or a tail is first if the result is a head with a

tail. Under this circumstance, the frequency of HT (n2) is combined with that of TH

(n3). This means a complete form of the likelihood function does not exist, such

that the parameters p, q, r cannot be uniquely estimated.

10



An intuitive method to solve this problem is to assign an initial value to each

parameter, which can be random, and use these initial parameter values to

compute the expected frequency of each branch to “separate” the frequencies of

HT from TH. In the coin-flipping example, if we assign p(0) as the initial value of p

and q(0) as the initial value of q, then the expected branch frequencies of HT and

TH are:

n
(0)
2 = (n2 + n3)

b2

b2 + b3

= (n2 + n3)
p(0)(1− q(0))

p(0)(1− q(0)) + r(0)(1− p(0)),
(14)

n
(0)
3 = (n2 + n3)− n(0)

2 . (15)

However, even after assigning initial values to all the parameters and writing

the expected frequencies, we can only uniquely estimate at most two independent

parameters because the data set only has 2 degrees of freedom ( 3 observed

categories with fixed total frequency). So if we assume the second coin-flipping

trial is independent from the first trial, q and r can be set equal, and the equation

14 will be:

n
(0)
2 = (n2 + n3)

b2

b2 + b3

= (n2 + n3)
p(0)(1− q(0))

p(0)(1− q(0)) + q(0)(1− p(0)).
(16)

By using this “complete” information we can write the likelihood function as in

equation 10 and find the parameter values that maximize this expected likelihood

function. Note this estimate is not the final estimate because it is based on the

expected frequencies derived from any initial parameter values. Hence, we use

the estimate to compute the expected frequency of each result again and find a

new estimate that maximizes the new likelihood and do this iteration over and

over again until the estimates tend to converge. This method is called the
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Expectation-Maximization (EM) algorithm, which is proposed as an intuitive way

to recursively find maximum likelihood estimates of the parameters in models

when their likelihood cannot be obtained directly due to incomplete data or latent

variables. The step that computes the expected frequencies is the E step, and it is

followed by the M step in which the expected “complete” likelihood function is

maximized (see equation 17 for incomplete likelihood and equation 18) for

expected “complete” likelihood).

L(Θ;D) =
n!

n1! (n2 + n3)!n4!
(b1)n1 (b2 + b3)(n2+n3) (b4)n4 , (17)

LC(Θ(0);D(0)) =
n!

n1!n
(0)
2 !n

(0)
3 !n4!

(
b

(0)
1

)n1
(
b

(0)
2

)n(0)
2
(
b

(0)
3

)n(0)
3
(
b

(0)
4

)n4

. (18)

EM algorithm was systematically introduced and generalized by Dempster,

Laird, and Rubin (1977). This algorithm was originally developed as a general

approach to iterative computation of maximum-likelihood estimates in models

consisting of incomplete data. The name “EM” comes from its combination of an

expectation step (“E” step), followed by a maximization step (“M” step). The EM

algorithm requires an initial value for each parameter for the first E step that

computes the expectation of the “missing” value and uses these expected values

to write the “complete” likelihood (or log-likelihood) function for all the parameters,

and then computes the parameter values that maximize this likelihood. After the

first iteration, the newly obtained parameter values will be used in the next

iteration of the “E” step, followed by the next of the “M” step. This is an iterative

computation that will not terminate unless the difference (Euclidean distance) of

the values of the parameter vector in two iterations is less than a certain criterion,

say 10−20 (the convergence criterion). Suppose L(Θ;D, z) is a likelihood function

where Θ is the parameter vector, D is the observed data, and z represents the
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unobserved latent data or missing values. The MLE of L(Θ;D, z) is determined by

the likelihood of the observed data L(Θ;D). The MLE can be obtained by

applying the EM algorithm as follows:

E step computes the expected value of the “missing” data under the current

estimate of the parameter vector Θ(t) and writes the “complete” log likelihood

function Q(Θ|Θ(t)), based on the observed data and the computed expectations of

the “missing” data:

Q(Θ|Θ(t);D) = EZ|D,Θ(t) [log L(Θ;D,Z)]. (19)

M step finds the parameter vector Θ(t+1) maximizing the expected value

obtained in the E step:

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)). (20)

After comparing the Θ(t+1) and Θ(t), the algorithm will use the Θ(t+1) in the next

E step, if the difference of these two parameter vectors is greater than the error

criterion. Otherwise, the algorithm terminates.

The MLE methods interpret data and estimate parameters from the

perspective of classic statistics in which the sample data points are considered as

independent and identically distributed (i.i.d). However, this may not be true.

Again, in the coin-flipping example, if the estimated values of p, q, and r represent

our belief in the probability that an event occurs, this belief may be impacted by

previous knowledge or prior belief. This indicates that our belief in the probability

may not be a constant but may vary as a variable. Based on this assumption, the

probability of a parameter should be determined by the prior knowledge and, of

course, the data. The statistical inference that takes into account prior information
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is called the Bayesian inference. The Bayesian inference is derived from the

concept of Bayesian probability, the basic idea of which is that any given

probability should be a conditional probability (posterior probability), impacted by

the prior probability. Therefore information obtained is connected with prior

information and will influence the prediction. Bayesian inference can be

considered as an alternative perspective for research. The two most important

differences between Bayesian and traditional Frequentists’ perspectives are (1)

whether prior knowledge about the studied objects is involved, and (2) whether

the estimate of a parameter is a fixed value or a distribution (Carlin and Louis

2009). In Bayesian probability theory, given observed data and a hypothesis, the

posterior probability is proportional to the product of the likelihood function and

the prior probability. The likelihood function represents the information from the

data and the model, while the prior specifies the hypothesis before the data was

observed:

P (Θ|D) =
P (D|Θ) Pr(Θ)

Pr(D)
, (21)

where Θ is a parameter vector and D is the data. Pr(Θ) is the prior probability

of Θ, and P (D|Θ) is the conditional probability of observing the data given Θ,

namely, P (D|Θ) is the likelihood. P (D) is the marginal probability of D, and finally

P (Θ|D) is the posterior probability of Θ. The meaning of P (Θ|D) is the probability

that the hypothesis is true, given the data and the previous belief about Θ (the

prior). So equation (21) can be rewritten as:

P (Θ|D) =
P (D|Θ) Pr(Θ)∑
Pr(D|θi)Pr(θi)

, (22)

where θi is every single possible value of Θ if the distribution of Θ is discrete, or

14



P (Θ|D) =
P (D|Θ) Pr(Θ)∫

Ω
Pr(D|Θ̃)Pr(Θ̃)dΘ̃

, (23)

where Ω is the parameter space, if the distribution of Θ is continuous (Hoff

2009). Therefore, the most important components of the Bayesian formula are the

prior distribution and the likelihood function. Again, consider the coin-flipping

example introduced previously. Here, the Bayesian inference for the posterior of

the parameter vector is: P (Θ|D) = P (D|Θ) Pr(Θ)∫
Ω Pr(D|Θ̃)Pr(Θ̃)dΘ̃

, and P (D|Θ) here is the

likelihood function L(Θ;D) as given in equation (9), and Pr(Θ) is a prior

distribution of the independent parameter vector Θ = (p, q, r) assigned by the

researcher (say, use a beta distribution BΘ(αΘ, βΘ), as shown in Figure 4).

Figure 4
Beta distribution. B(α, β) has two parameters α and β.
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Finally,
∫

Ω
Pr(D|Θ̃)Pr(Θ̃)dΘ̃ is the integration of the probabilities of the

observed data given the range of the parameter vector (which, here, is from 0 to

1). Therefore, the Bayesian inference equation for the coin-flipping example is:

P (Θ|D) =
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ)∫

Ω
bn1

1 b
n2
2 b

n3
3 b

n4
4 BΘ(αΘ, βΘ) dΘ

. (24)

where Be(α, β; θi), i = 1, 2, 3 is defined in equation 25:

Be(α, β; θi) =
1

B(α, β)
θα−1
i (1− θi)β−1

=
θα−1
i (1− θi)β−1∫ 1

0
uα−1(1− u)β−1du

. (25)

If we plug in equations (5)–(8),

P (Θ|D) =
p(n1+n2)(1− p)(n3+n4)qn1(1− q)n2rn3(1− r)n4∫ 1

0

∫ 1

0

∫ 1

0
p(n1+n2)(1− p)(n3+n4)qn1(1− q)n2rn3(1− r)n4

Be(α1, β1)Be(α2, β2)Be(α3, β3)

Be(α1, β1)Be(α2, β2)Be(α3, β3)dpdqdr
, (26)

and after simplifying equation (26), we have:
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P (Θ|D) =
1

B(α1, β1)

pn1+n2+α1−1(1− p)n3+n4+β1−1

Be(n1 + n2 + α1, n3 + n4 + β1)

1

B(α2, β2)

qn1+α2−1(1− q)n2+β2−1

Be(n1 + α2, n2 + β2)
(27)

1

B(α3, β3)

rn3+α3−1(1− r)n4+β3−1

Be(n3 + α3, n4 + β3)

=
B(α′1 − 1, β′1 − 1)Be(α′1 − 1, β′1 − 1)

B(α1, β1)Be(α′1, β
′
1)

B(α′2 − 1, β′2 − 1)Be(α′2 − 1, β′2 − 1)

B(α2, β2)Be(α′2, β
′
2)

B(α′3 − 1, β′3 − 1)Be(α′3 − 1, β′3 − 1)

B(α3, β3)Be(α′3, β
′
3)

, (28)

where α′1 = n1 + n2 + α1, β′1 = n3 + n4 + β1, α′2 = n1 + α2, β′2 = n2 + β2,

α′3 = n3 + α3, β′3 = n4 + β3. These equations indicate the posterior distribution of

the parameters is still in the beta distribution family when the prior distribution is

conjugate with the likelihood function, and they also illustrate how prior

information impacts the posterior distribution.

Although the equation of Bayesian inference is simple, the real computation

may be quite difficult because of the integration in the equation, especially when

there are many parameters, or there are latent variables and incomplete data.

Therefore, the researchers developed an approximation method named Marchov

chain Monte Carlo (MCMC), which is implemented through specific algorithms,

such as the Gibbs sampler and the Metropolis algorithm (Hoff 2009) to obtain the

approximation of the posterior distribution. (I will introduce the details of how

posterior distribution is approximated in section 7.) However, in previous decades,

the use of the Bayesian approach was limited due to the insufficient computation

power of computers.
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Nowadays, computation power has been greatly improved, which makes it

possible to estimate parameters and select models using the Bayesian method.

Since the Bayesian inference provides a completely different context in which to

think about statistics, and we can interpret the data in a quite different way, it is

meaningful to compare it with classic statistical approaches. There have been a

lot of theoretical papers that focus on the comparison of Bayesian and classic

inferences (Carlin and Louis 2009). In this study I propose to conduct the

comparison specifically on MPT models, because (1) there has not been a study

that applies Bayesian inference to MPT model analyses, and (2) there has not

been a study that systematically compares the similarities, differences, and

advantages/disadvantages of Bayesian and classic inference for MPT models. To

conduct a concrete comparison of these two approaches and illustrate the

application of Bayesian methods in psychological research, I introduce a typical

memory experiment and related model test.
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Chapter 2

Analyses

Following the theoretical introduction of the classic and the Bayesian inferences, I

will conduct comparisons between these two inferences. To do that, I will use the

specified forms of the MPT models in source monitoring experiments. Then I will

introduce how I implement the model estimations on a computer. Finally, I will

compare the estimation results from point estimates to their advantages and

disadvantages, respectively.

2.1 Mathematical Representation of MPT Models

Hu and Batchelder (1994) developed the following mathematical expressions

to represent the MPT models. Let C1, ..., Cj, ..., CJ denote the observable

categories, and B1j, ..., Bij, ..., BIjj denote the collection of branches whose

ending nodes belong to category Cj. In the MPT models for source monitoring

(see Figure 1), Cj represents the probability of a categorical response such as A,

B or N; Bij represents the probability of a branch in the model such as the first

branch of answering A. Denote the parameters in a group (under a same parent

node) by Θs = (θs1, . . . , θsk . . . , θsKs) ∈ Ωs =
{

[0, 1]S|
∑Ks

k=1 θsk = 1
}

, and there are

S groups, namely Θ = (Θ1, . . .Θs, . . .ΘS) ∈ Ω = {
∏S

s=1 Ωs}, where Ω is the

parameter space, Ks is the number of the parameters nested in the sth group, and

0 ≤ θsk ≤ 1. To estimate the parameters, the first step is to write the mathematical

form for the MPT models. In the MPT models, the most basic unit is the link

probability Lijl = (Lij1, ..., Lijl, ..., LijLij
), where l = (1, ..., lij..., Lij) is the lth link on

the branch Bij. A link in the MPT models represents the transition probability from

one cognitive step to the next. The links then form the branch probability Bij that

is the probability from the root node to an ending node of the tree. For example, in

the MPT models for source monitoring, the first link in the tree A can be

represented as L111 = D1, and Bij can be written as the product of the links on
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this branch, such as B11 = D1d1. To use a generalized form and facilitate

computing, we can present any link probability as the product of all the

parameters with their powers:

Lijl =
S∏
s=1

(
Ks∏
k=1

θ
αijlsk

sk

)
, (29)

Ks∑
k=1

θsk = 1, (30)

where the αijlsk is the summation over links of non-negative integer exponents

on θsk. For instance, in the MPT models for source monitoring, the choices of

each step are binary, which means there is only one independent parameter

under every parent (θs and 1− θs). Thus, we obtain the link probability

Lijl =
∏S

s=1 θs(1− θs). Specifically, for example, the first link under the root node of

the tree A can be written as

L111 = D1
1(1−D1)0d0

1(1−d1)0a0(1−a)0b0(1−b)0g0(1−g)0D0
2(1−D2)0d0

2(1−d2)0 = D1.

Likewise, we can write a generalized form of the branch probabilities:

pij(Θ) = Pr(Bij; Θ) = cij

S∏
s=1

(
Ks∏
k=1

θ
αijsk

sk

)
, (31)

αijsk =

Lij∑
l=1

αijlsk, (32)

where pij(Θ) is the ith branch probability in the jth category within a tree, and

cij is the product of positive constants on the links in the event that some

parameters are set as constants. The use of αijsk here is to represent the

parameters that repeatedly appear on a branch. For example, in the previous
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coin-flipping example, if the parameters p = q, then the power α for p is 2 on B11

because B11 = p2. Researchers have discussed that the possibility of the constant

cij can arise from the restrictions on some parameters set by the model’s

hypothesis (Hu and Batchelder 1994; Batchelder and Riefer 1986). In the MPT

models, for example, the first branch answering A in the tree A has the probability

B11 = D1
1(1−D1)0d1

1(1−d1)0a0(1−a)0b0(1−b)0g0(1−g)0D0
2(1−D2)0d0

2(1−d2)0 = D1d1.

At last, the category probability is the summation of the probabilities of the

branches going to the same observable response category. For instance, the

probability of answering source A as A is D1d1 +D1(1− d1)a+ (1−D1)bg. Also,

this summation can be written in a generalized form as in equation (31)

pj(Θ) = Pr(Cj; Θ) =

Ij∑
i=1

[
cij

S∏
s=1

(
Ks∏
k=1

θ
αijsk

sk

)]
, (33)

where
J∑
j=1

pj(Θ) = 1

for all Θ ∈ Ω. The equations above depict the probability mass functions (PMF)

of the MPT models, and the likelihood functions can be obtained from the PMF.

2.2 Likelihood Functions of MPT Models

The previous chapter introduces two inference approaches (classic and

Bayesian) used to estimate parameters and demonstrates the importance of the

likelihood function, which is obtained from the observed data and the MPT

probability function. As a concrete example, suppose we have a 3× 3 data table in

which the frequencies are n1, n2, n3, n4, n5, n6, n7, n8, n9, and their summation is N.

The likelihood function for this data given the model is:

L = N !
pn1

1 p
n2
2 p

n3
3 p

n4
4 p

n5
5 p

n6
6 p

n7
7 p

n8
8 p

n9
9

n1!n2!n3!n4!n5!n6!n7!n8!n9!
.
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Therefore, given the frequency of observations in a category is nj, the likelihood

function for the MPT models is:

L(Θ; < nj >
J
j=1) = N !

J∏
j=1

[pj(Θ)]nj

nj!
, (34)

where pj(Θ) are given by equation 33, and N is the total number of the

observations.

Because of the difficulty of directly obtaining the maximum likelihood estimates

(MLEs) when there exist incomplete information (we only know the combined

frequency of each category but not each branch), an indirect method such as an

iterative algorithm must be recruited. If one had the “missing” branch frequencies

mij (although this is impossible in real experiments),

D =<< mij >
Ij
i=1>

J
j=1,

then the likelihood function with complete data is:

L(Θ; D) = N !
J∏
j=1

Ij∏
i=1

[pij(Θ)]mij

mij!
, (35)

where pij(Θ) is given in equation 31. Moreover, Dempster, Laird, and Rubin

(1977) proved that a cycle of the EM does not decrease the likelihood function.

This implies that the EM algorithm may be an applicable approach for searching

maximum value (at least local maxima) of equation 34.

2.3 The EM Algorithm for MPT Models

As introduced previously, for MPT models, the E step is to get the conditional

expected frequency of each branch (mij) given the value of Θ and the observed
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category frequency nj. For example, the expected frequency for the first branch

(answering A in tree A) at the first step is

m
(1)
11 = n1

D
(0)
1 d

(0)
1

D
(0)
1 d

(0)
1 +D

(0)
1 (1− d(0)

1 )a(0) + (1−D(0)
1 )b(0)g(0)

,

where D(0)
1 denotes the initial value of D1, and so on. The equation for the E

step of the MPT models is:

mij(Θ) = E(Mij|nj; Θ) =
njpij(Θ)

pj(Θ)
, (36)

where Mij is the random variable denoting the counts in branch Bij, and pij(Θ)

and pj(Θ) are given by equation 31 and equation 33, respectively.

The M step, after the E step, obtains the values of Θ that maximize the

likelihood function L(Θ; < nj >
J
j=1) that is based on the expected frequencies

computed in the last E step. In MPT models for source monitoring, for example,

D
(1)
1 =

m
(1)
11 +m

(1)
21 +m

(1)
12

m
(1)
11 +m

(1)
21 +m

(1)
12 +m

(1)
31 +m

(1)
22 +m

(1)
13

m
(1)
ij denotes the first-round expected frequencies of the branches on tree A.

The equation for the M step of the MPT models is:

θ̂sk =

∑J
j=1

∑Ij
i=1 mijαijsk∑J

j=1

∑Ij
i=1

∑Ks

k=1 mijαijsk
. (37)
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To write this EM algorithm as the form in which Θ(n+1) is presented as a

function of Θ(n), we have:

θ
(n+1)
sk =

∑J
j=1

∑Ij
i=1m

(n)
ij αijsk∑J

j=1

∑Ij
i=1

∑Ks

k=1m
(n)
ij αijsk

(38)

In the MPT models for source monitoring experiments, the cognitive steps are

binary, and each parameter group only has one independent parameter, so we

can simplify the indices in equation 38 as:

θ(n+1)
s =

∑J
j=1

∑Ij
i=1m

(n)
ij αijs∑J

j=1

∑Ij
i=1

∑S=2
s=1 m

(n)
ij αijs

(39)

Specifically, the EM algorithm proceeds as follows:

Start with any initial value Θ(0) ∈ Ω;

For (n = 0, ..., N), repeat:

Step 1: Compute the expected frequencies of each branch m(n)
ij , n = 0 in the

first iteration;

Step 2: Find the values of Θ(n+1) that maximize the expected likelihood

function (see equation 35);

Step 3: Compare the difference of Θ(n+1) and Θ(n), and return to step 1 if the

difference is not less than the criterion (e.g., 10−10).

This E and M iteration will be running over and over again, until the difference

(Euclidean distance) of two estimates is less than the criterion, which is said to be

convergent. To ensure that the EM algorithm for MPT models can finally obtain a

unique estimate of Θ, which implies the result will converge, (Hu and Batchelder

1994) proved that provided any initial value Θ
(0)
s , the EM algorithm is a convergent
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procedure for MPT models, although this is not a general character of the EM

algorithm.

2.4 The Bayesian Inference and Its Algorithm for MPT Models

According to the Bayesian rule (see equation 23), we start with an initial

probability distribution for the parameter vector Θ, which is called prior distribution

Pr(Θ) and use the prior and the likelihood to obtain their univariate posteriors or

joint multivariate posterior.

Assuming we have no prior information about the Θ, a non-informative prior

can be employed. Here I apply a B(1, 1) prior to each of the parameters, which is

subjective but based on a commonly used rule when the parameter is a

probability (Karabatsos 2006).

Therefore, we can rewrite equation 23 as:

P (Θ|D) = P (D|Θ)× Pr(Θ)

Pr(D)
=

P (D|Θ) Pr(Θ)∫
Ω
P (D|Θ̃)Pr(Θ̃)dΘ̃

, (40)

where P (D|Θ) is the likelihood function of the MPT models, and Pr(D) is the

marginal likelihood. In other words, Pr(D) is the probability distribution of obtaining

data set D regardless of the value of Θ. Hence equation 40 can be rewritten as:

P (Θ|D) ∝ P (D|Θ)Pr(Θ), (41)

which means the posterior is proportional to the likelihood times the prior.

Specifically, in MPT models for source monitoring, if a non-informative prior

beta(1,1) is assigned, equation 41 can be written as P (Θ|D) ∝ L(D; Θ)B(1, 1),

where L(D; Θ) is the likelihood function given in equation 34.
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However, when the combination of the prior and the likelihood is complex due

to their forms or the numbers of parameters, the calculation of the multiple

univariate posteriors and multivariate posterior may be difficult or impossible. To

overcome the computation difficulty, we can generate random sample values of

the parameters from their (candidate) posterior distributions; all of these posterior

statistics of interest can be approximated to an arbitrary degree of precision using

the Monte Carlo approximation method (Hoff 2009). Because the process of

generating the random samples is a Marchov chain process, this approximation is

called Marchov chain Monte Carlo (MCMC) (Hoff 2009).

To implement the MCMC computing, there are two main algorithms, the

Metroplis (or Metropolis-Hasting) algorithm and the Gibbs sampler. The

Metropolis algorithm is a rejection algorithm that can be applied to arbitrary prior

distributions. The original Metropolis algorithm originated because, although the

joint posterior is too complicated to sample from (because we probably cannot

find a familiar distribution that exactly fits the posterior), it is possible to sample

from a candidate-generating distribution q(Θ∗|Θ(t−1)) that has the same parameter

space for Θ and can satisfy q(Θ∗|Θ(t−1)) = q(Θ(t−1)|Θ∗) (which denotes the

transition probability from Θ(t−1) to Θ∗ equals to its reverse transition probability).

Whether we accept a sample point Θ∗ depends on whether Θ∗ increases the

density of the joint posterior distribution when compared to the previous density. If

it does, we accept this point for the posterior. Otherwise, we accept this point by

the ratio of its density divided by that of the previous point or keep Θ(t−1).

Suppose our goal is to draw samples from some distribution p(Θ), where

p(Θ) = f(Θ)/K, f(Θ) is the posterior, and K is the normalizing constant that may

not be known or be very difficult to compute. The Metropolis algorithm proceeds

as follows:

Start with any initial value Θ0 satisfying f(Θ0) > 0;
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For (t = 1, ..., T ), repeat:

Step 1: Using current Θ value, sample a candidate point Θ∗ from a

candidate-generating (or say proposal) distribution q(Θ) that satisfies

q(Θ1,Θ2) = q(Θ2,Θ1);

Step 2: Given the candidate point Θ∗, calculate the ratio of the density of p(Θ)

at Θ∗ and current Θt−1,

α = p(Θ∗)
p(Θt−1)

= f(Θ∗)
f(Θt−1)

(because we are considering the ratio of p(Θ) under two different values, the

normalizing constant K cancels out);

Step 3: If the ratio is α ≥ 1, accept the candidate point (set Θt = Θ∗).

Otherwise, either accept Θ∗ with the probability α or reject with the probability

1− α;

The first few hundred iterations are the burn-in period, which find the

stationary distribution of the posterior. After enough burn-in period (say, k steps),

the chain approaches its stationary distribution and samples from the vector

(Θk+1, . . . ,Θk+n), which are samples from p(x).

The Metropolis-Hasting algorithm generalized the original Metropolis algorithm

and does not require the condition q(Θ1,Θ2) = q(Θ2,Θ1) of the proposal

distribution. Therefore, the ratio α in step 2 becomes α = f(Θ∗)q(Θ∗,Θt−1)
f(Θt−1)q(Θt−1,Θ∗)

, where

q(Θi,Θj) = Pr(Θi → Θj).

The Gibbs sampler is typically used for conjugate priors or other priors in

which the marginal (conditional) distribution can be easily computed. The Gibbs

sampler is a technique for generating random variables from the marginal

distribution directly, in situations where the conditional distributions of each

parameter can be acquired when all the others are fixed. This algorithm does not

have to calculate the density, which is difficult to compute in complex cases.

Rather than compute or approximate a (marginal) distribution directly, the Gibbs
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sampler allows us to effectively generate a sample sequence from this distribution

without requiring its density. The Gibbs sampler can be considered as a special

case of the Metropolis-Hasting algorithm, and the acceptance rate α is always 1

because we are always sampling from the real conditional posteriors instead of a

proposal distribution, so it is much easier and more efficient. If the likelihood has

only one parameter, which means the posterior has only one parameter, we can

draw the samples directly to depict the posterior distribution given the data. In

more complicated cases, such as the coin-flipping case, for example, the

parameters in the posterior distribution (see equation 26) cannot be drawn

simultaneously. In this case, we can start from a random set of initial values for

the parameters, except the first parameter (such as q(0), r(0)). This step is to fix all

the other parameters in the posterior except the first one, and then the computer

may sample a value from the posterior, indicated by p(1), and then use this newly

sampled p(1) as the value of p to generate the values for q and r. Note the newest

drawn parameter values will be used in the posterior for the next sampling right

away. Additionally, to avoid the influence of the initial values, the first several

hundred rounds are usually ignored (as burn-in period), and the subsequent

samples will form the posterior distributions of the parameters. Though the Gibbs

sampler is efficient and simple, it may encounter difficulties when the prior is not

conjugate with the likelihood, which leads to the situation where the Gibbs

sampler cannot find a proper distribution from which to draw samples.

Since our models are binary for every parameter, and we recruit a beta

distribution, which is conjugate to binomial distribution, as the prior, we can use

the Gibbs sampler algorithm. Suppose we have k parameters, Θ = (θ1, ..., θk)
′, in

our model. Like with the EM algorithm, we assume that the samples are generated

from each of the complete conditional distributions {p(θi|θj 6=i, y), i = 1, ..., k} in

the model, and the samples might be available directly or indirectly. In either case,
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the collection of full conditional distributions can uniquely determine the joint

posterior distributions {p(θi|y), i = 1, ..., k}. So, given an arbitrary set of the initial

values {θ(0)
2 , ..., θ

(0)
k }, the Gibbs sampler algorithm proceeds as follows:

For (t = 1, ..., T ), repeat:

Step 1: Draw θ
(t)
1 from p

(
θ1|θ(t−1)

2 , θ
(t−1)
3 , ..., θ

(t−1)
k , y

)
Step 2: Draw θ

(t)
2 from p

(
θ2|θ(t)

1 , θ
(t−1)
3 , ..., θ

(t−1)
k , y

)
...

Step k: Draw θ
(t)
k from p

(
θk|θ(t)

1 , θ
(t)
2 , ..., θ

(t)
k−1, y

)
.

The k-tuple obtained at iteration t, {θ(t)
1 , ..., θ

(t)
k } will converge to the true joint

posterior distribution p (θ1, ..., θk|y).

2.5 Programs for Implementation of The Two Algorithms

To implement the EM and Bayesian algorithms on the computer, an operative

program is needed. After MPT models for source monitoring were proposed,

useful implementing software packages such as GPT.exe (Hu and Philips 1999),

AppleTree for Mac (Rothkegel 1999), HMMTree (Stahl and Klauer 2007), and

multiTree (Moshagen 2010) were developed.

However, a new program for MPT model analyses is needed, because (1)

none of the former programs can implement Bayesian analysis for MPT models

due to limitations of the algorithms (such as algorithms for random sampling) and

of the computer hardware, and (2) because there is a trend towards more and

more statisticians collaborating and sharing the statistical tools developed by

themselves in an open source developing environment. Therefore, I chose R

(http://www.r-project.org/) as the platform for implementing Bayesian inference in

the proposed projects in my thesis.
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2.5.1 Model Representation and Implementation in R Environment

The model information, including the tree structure, parameter definition, and

data sets, is restored in an Extensible Markup Language (XML) file. Also we

developed a software package GPT-R to parse all the information in the XML file

to R. The appendix details how the model information is stored and the

functionality of the GPT-R package.

After parsed into R, the original tree is transformed to a power table. In

addition, the observed frequencies are also transformed into a frequency table.

Figure 5 shows the frequency table in which the frequency of each category and

tree is shown on the diagonal. In this table, the first three numbers on the diagonal

are the frequencies of response category A, B and N in the first source tree, and

the second three numbers and last three numbers represent the observed

frequencies in the source tree B and N (new items), respectively.

Figure 5
Observed Frequency Table

For MLE estimation, we implement EM parameter estimation,

equating-parameter hypothesis tests, and model goodness-of-fit tests. For

Bayesian estimation, we implement parameter estimation via MCMC

approximation (Metropolis algorithm), hypothesis tests, and model evaluation via
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Bayesian information criterion (BIC), which I will introduce in the subsequent

section.

2.5.2 Bayesian Parameter Estimation in WinBUGS

Although the Metroplis and Metropolis-Hasting algorithm implemented in R

can cope with arbitrary prior, it is not easy to get a full description of the posterior

sampling. So I also wrote a code for the WinBUGs

(http://www.mrc-bsu.cam.ac.uk/bugs/) version, to obtain the full description of the

posterior distribution including its mean, standard deviation, and median, as well

as density and history trace plots, etc. The BUGS (Bayesian inference Using

Gibbs Sampling) project is concerned with flexible software for the Bayesian

analysis of complex statistical models using Markov chain Monte Carlo (MCMC)

methods, and the WinBUGS is its Windows version. WinBUGS can be called from

R with the R2WinBUGS package. Although this version can provide

comprehensive description on the parameter posterior distributions, the Gibbs

sampler algorithm recruited here may be incapable when coping with

non-conjugate priors, as introduced previously.

2.6 Comparison Using Empirical Data

In this thesis, I use the empirical data sets in a collection of published research

papers that recruit MPT models for source monitoring. The comparisons include

(1) point estimates, (2) model evaluation methods, 3) estimates based on

cumulative data, and 4) inference approaches.

2.6.1 Empirical Data Sets

Batchelder and Riefer (1990) classic paper of MPT models contains twelve 3

× 3 data sets from four experiments. Three are from Johnson, Foley, and Leach

(1988) experiments (Table 2), five are from Harvey (1985) experiments (Table 3),

two are from Saegert, Hamayan, and Ahmar (1975) experiments (Table 4), and
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the final two are from Rose, King, and Perez (1975) experiments (Table 5), for a

total of twelve 3 × 3 tables. I use these data sets to implement MLE and Bayesian

point estimates and make a basic comparison.

Table 2
Empirical 3× 3 Data Tables

L(a)-I(s) L(a)-I(b) L(a)-I(a)
response response response

Source item L I N L I N L I N
Listen 87 8 25 74 16 45 63 13 29
Imagine 14 95 11 23 76 36 46 36 23
New 35 4 201 28 17 225 19 13 178
Note. Data are from Johnson, Foley, and Leach (1988) Experiments. Ex-
perimental conditions are as follows: L(a)-I(s) = listen to A, imagine in sub-
ject’s voice; L(a)-I(b) = listen to A, imagine in B’s voice; and L(a)-I(a) =
listen to A, imagine in A’s voice. L= listen; I = imagine; N = new.

Table 3
Empirical 3× 3 Data Tables

Manic subjects Schizophrenic subjects Normal
NTD TD NTD TD subjects

Source S T N S T N S T N S T N S T N
Say 22 27 31 43 6 31 13 21 46 44 10 26 23 22 35
Think 7 54 19 20 15 45 4 42 34 32 8 40 9 45 26
New 4 26 50 5 9 66 6 20 54 24 7 49 7 10 63
Note. Data are from Harvey (1985) experiments. NTD = non-thought dis-
ordered; TD = thought disordered; responses are as follows: S = say; T =
think; N = new.

2.6.2 Point Estimation Results and Comparison

Batchelder and Riefer (1990) tested the sub models with 6 parameters (6C), 5

parameters (5C) and 4 parameters (Figure 2) using the EM algorithm.

Correspondingly, I test these sub models using Bayesian approach and report the
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results in the tables with their EM counterparts. The first sub model is 6C, in which

there are 6 parameters: D1, D2, d1, d2, b, g. In this model, the probability of

guessing that a detected but nondiscriminated item belongs to Source A is

assumed to be equal to the probability of guessing that a nondetected item

belongs to Source A. This hypothesis assumes that subjects guess that an item

belongs to Source A at the same rate whether the item is detected as an old item

or not. In this case, the parameters a and g in the 7-parameter saturated model

are set as equal and represented as g. Because the estimates of Bayesian

approach for the parameters are their distributions rather than single probabilities,

I use the posterior mean (Karabatsos 2006) as the estimator of the posterior. I

sampled 20,000 times, in which the first 500 are set as burn-in, ensuring that the

Table 4
Empirical 3× 3 Data Tables

Sentence group Word group
response response

Source Item E F N E F N
English 184 75 173 152 19 45
French 77 187 168 21 143 52
New 58 75 155 26 19 99
Note. Data are from Saegert, Hamayan, and
Ahmar (1975) experiments. E = English; F =
French; N = new.

Table 5
Empirical 3× 3 Data Tables

Related sentences Unrelated sentences
response response

Source Item E S N E S N
English 164 46 30 181 39 20
Spanish 46 158 36 47 173 20
New 111 107 262 102 85 293
Note. Data are from Rose, King, and Perez (1975)
experiments. E = English; S = Spanish; N = new.
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final estimates are not influenced by them. The parameter estimates of the EM

algorithm and Bayesian methods for MPT models are shown in Table 6.

Table 6
Parameter Estimates

EM/(Bayesian) estimation
Condition D1 D2 d1 d2 b g
L(a)-I(s) .75 .89 .19 .87 .16 .90

(.74) (.88) (.36) (.86) (.17) (.87)
L(a)-I(b) .60 .68 .59 .68 .17 .62

(.59) (.67) (.56) (.66) (.17) (.62)
L(a)-I(a) .67 .74 .62 .06 .15 .59

(.67) (.73) (.53) (.15) (.16) (.63)
Note. D1 = detectability of the listen items; D2 =
detectability of the imagine items; d1 = source dis-
criminability for the listen items; d2 = source discrim-
inability for the imagine items; b = bias for responding
“old”; g = guessing that the item was a listen item;
L(a)-I(s) = listen to A, imagine in subject’s voice;
L(a)-I(b) = listen to A, imagine in B’s voice; L(a)-I(a)
= listen to A, imagine in A’s voice.

From Table 6 we derive some intuitive sense about the estimates of the two

methods. Most estimates of the corresponding parameters are similar, but most of

the Bayesian estimates are more centralized than that of EM. For instance, the

Bayesian estimates in this table do not have extremely large (greater than .90) or

small values (less than .10); they are closer to .5 when compared with those in

EM estimates (see the red-colored pairs in Table 6). This may result from the fact

that the estimator recruited in the Bayesian estimation is the posterior mean,

which is the average of all the estimates, whereas the estimator used in the EM is

the peak point of the likelihood function that is more likely to generate extreme

values. The estimator used in the Bayesian approach may have an advantage in

some unusual situations. For example, the frequencies on the diagonal of the data

table (e.g., response of source A as “A”) are generally higher than off-diagonal
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frequencies (e.g., response of source A as “B”). However, if the frequencies on

the diagonal are lower than their off-diagonal counterparts, the Bayesian

estimation can give a much more reasonable estimation than the EM does. In

Table 7, data are modified according to Table 2 (condition L(a)-I(s)) by switching

some frequencies on-diagonal or off-diagonal such that the frequencies on the

table diagonal are lower than they usually should be. Given this mimic data (which

Table 7
A Mimic 3× 3 Data Table with Low Diagonal Frequencies

Response
Source Item L I N
Listen 8 87 25
Imagine 95 14 11
New 201 35 4
Note. L = Listen; I = Imag-
ine; N = new.

is unusual but theoretically possible, e.g., the subjects did not follow the

instructions, which may result in the failure of MPT model assumptions), the EM

algorithm will push some estimates to the boundary (which is 0) to satisfy the

MLE, compared with Bayesian estimation. Table 8 shows the estimates of the EM

and the Bayesian approach.

Moreover, the model with the parameters estimated using the EM algorithm in

Table 6 cannot be tested by the goodness-of-fit (G2) test when the model is

saturated. However, Bayesian information criterion (BIC) (Carlin and Louis 2009)

can be used as the criterion to test the model fit in this case. The BIC is a criterion

for model selection across a class of parametric models with different numbers of

parameters. It is similar to Akaike’s information criterion (AIC) (Akaike 1973;

Karabatsos 2006) in equation (42), but the penalty for additional parameters is

stronger than that of the AIC.
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Table 8
Parameter Estimates for The Mimic Data in Table 7

EM/(Bayesian) estimation
Condition D1 D2 d1 d2 b g
L(a)-I(s) 0 0 0 .87 .91 .69

(.03) (.08) (.36) (.26) (.91) (.69)
Note. D1 = detectability of the listen items; D2 =
detectability of the imagine items; d1 = source dis-
criminability for the listen items; d2 = source discrim-
inability for the imagine items; b = bias for respond-
ing “old”; g = guessing that the item was a listen item;
L(a)-I(s) = listen to A, imagine in subject’s voice.

AIC ≡ −2 ln Lmax + 2k , (42)

and

BIC ≡ −2 ln Lmax + k ln N , (43)

where Lmax is the maximum likelihood achievable by the model, k is the

number of parameters in the model, and N is the number of data points in the

experiment. In many cases, informal likelihood or penalized likelihood criteria may

be feasible. Log-likelihood summaries are easy to estimate using posterior

samples {θ(g), g = 1, ..., G}, since we may think of l ≡ logL(θ) as a parametric

function of interest, and subsequently compute

l̂ ≡ E[ln L(θ)|y] ≈ 1

G

G∑
g=1

ln L(θ(g)). (44)

BIC is used here as an overall measure of model fit to be compared across

models. Unlike G2 for goodness-of-fit, the BIC is not a criterion that can have a

36



generic standard for determining whether or not a model can be accepted, but a

relative criterion for comparing across models with different parameters to

determine which model better fits the given data. In general, the model fit is better

when the BIC is smaller because the BIC value is conversely related to both the

likelihood and the penalty term.

Next, Table 9 shows the EM and Bayesian parameter estimates and

goodness-of-fit test of Harvey (1985) experiment data, given sub model 5C.

Table 9
Parameter Estimates

EM/(Bayesian) estimation
Group D1 D2 d b g G2(1)/(BIC)
Manic NTD .39 .62 .51 .37 .17 0.50

(.36) (.59) (.55) (.39) (.18) (58.07)
Manic TD .53 .29 .43 .18 .69 9.94*

(.51) (.25) (.51) (.21) (.67) (66.39)
Schizophrenic NTD .11 .36 .87 .34 .21 0.25

(.16) (.37) (.67) (.32) (.21) (57.05)
Schizophrenic TD .47 .18 .03 .39 .80 0.18

(.44) (.15) (.23) (.40) (.79) (57.71)
Normal .44 .59 .42 .21 .30 1.20

(.42) (.57) (.44) (.23) (.31) (59.01)
Note. D1 = detectability of the listen items; D2 = detectability of the
imagine items; d = source discriminability; b = bias for responding
“old”; g = guessing that the item was a listen item; L(a)-I(s) = listen
to A, imagine in subject’s voice; L(a)-I(b) = listen to A, imagine in
B’s voice; L(a)-I(a) = listen to A, imagine in A’s voice.
* p < .01.

In addition, the parameter estimates for Saegert, Hamayan, and Ahmar (1975)

experiments are shown in Table 10.

Batchelder and Riefer finally tested the experiment offered by Rose, King, and

Perez (1975), and the parameter estimates of EM algorithm and Bayesian

approach are presented in Table 11.
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2.6.3 Comparison Based on Cumulative Data

Another feature that differentiates Bayesian inference from MLE is the use of

cumulative data. Classic methods usually pool the data of similar experiments

across different times, stimuli, and subjects to obtain a larger sample size and

greater statistical power. However, this approach may cause some potential

problems if the populations vary significantly (e.g., the variances are

heterogeneous), which violates the basic assumption that variables are

distributed independently and identically. This potential problem also occurs when

the stimuli in different experiments are not really identical. Therefore, classic

methods of data combination are based on the assumptions that the stimuli,

Table 10
Parameter Estimates

EM/(Bayesian) estimation
Condition D d b g G2(2)/(BIC)
Sentence group .27 .95 .46 .48 1.55

(.29) (.86) (.45) (.48) (69.53)
Word group .67 .88 .31 .56 .82

(.67) (.87) (.32) (.56) (60.03)
Note. D = item detectability; d = source discriminability;
b = bias for responding “old”; g = guessing that the item
was in English.

Table 11
Parameter Estimates

EM/(Bayesian) estimation
Condition D d b g G2(2)/(BIC)
Related sentences .75 .64 .45 .51 0.64

(.74) (.64) (.46) (.51) (65.75)
Unrelated sentences .86 .65 .39 .55 0.0003

(.86) (.65) (.39) (.54) (63.99)
Note. D = item detectability; d = source discriminability;
b = bias for responding “old”; g = guessing that the item
was in English.
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subjects, and other experimental conditions are similar, such that the parameters

in the models used in different experiments are theoretically equal. Meanwhile,

Bayesian inference uses the posterior obtained in similar data to update the

estimates of the parameters in subsequent experiments.

In practice, one can hardly find identical experiments if we strictly consider the

equivalence of the subjects, stimuli, and other factors such as instructions in the

experiments. Therefore, I use cumulative data from different experimental

conditions with broader assumptions.

Sahakyan and Delaney (2005) studied how directed forgetting affects

subsequent learning. In a typical directed forgetting study, participants are

presented with two word lists to study. Between administration of the two lists, the

experimenter instructs half of the participants to forget the first list and the

remaining half of the participants to keep remembering the words. After studying

the second list, participants are asked to recall all the items, including any items

they were earlier instructed to forget (if applicable). Table 12 shows the data

collected in the experiment, and Table 13 shows the MLE and Bayesian estimates

for these data sets.

Table 12
Group 3× 3 Data Tables

Short lists (16 - 22) Long lists (30 - 36)
Group List 1 List 2 New List 1 List 2 New
Forget
List 1 151 95 58 178 197 153
List 2 19 224 61 54 379 95
New 28 35 545 38 66 952
Remember
List 1 170 60 74 240 154 134
List 2 36 197 71 99 254 175
New 46 29 533 106 104 846
Note. Forget group is instructed to forget list 1 after
learning. Remember group is instructed to remember list
1 after learning.
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Table 13
Parameter Estimates for The Data in Table 12

EM/(Bayesian) estimation
Condition D1 D2 d1 d2 a=g b
Forget & Short .79 .78 .31 .85 .44 .10

(.78) (.77) (.30) (.84) (.45) (.10)
Remember & Short .72 .73 .34 .78 .61 .12

(.72) (.73) (.33) (.77) (.61) (.13)
Forget & Long .68 .80 .18 .67 .37 .10

(.68) (.80) (.18) (.66) (.36) (.10)
Remember & Long .68 .59 .23 .51 .50 .20

(.68) (.58) (.23) (.50) (.50) (.20)
Note. D1 = detectability of list 1 items; D2 = detectability of
list 2 items; d1 = source discriminability for list 1 items; d2 =
source discriminability for list 2 items; b = bias for responding
“old”; g = guessing that the item was a list 1 item.

The estimates of MLE and Bayesian approaches in Table 13 are quite similar

in four conditions. Now, the pooled data (i.e., the forget and remember conditions

are combined) is used for the MLE estimation and the cumulative data (i.e., the

forget condition followed by the remember condition) for the Bayesian estimation.

The pooled data set is shown in Table 14.

Table 14
Combined Forget Condition and Remember Condition Data from Table 12
Group List 1 List 2 New
Short
List 1 321 155 132
List 2 55 421 132
New 74 64 1078
Long
List 1 418 351 287
List 2 153 633 270
New 144 170 1798
Note. Short lists contain 16 - 22
words. Long lists contain 30 - 36
words.
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Given that the Bayesian inference uses the posterior of the previous inference

as the prior of the latter inference, it is necessary to find the explicit mathematical

form of the posterior of the previous inference. The MCMC approximation gives

the approximated mean and standard deviation of the beta posterior. According to

the properties of beta distributions, we have:

m = E[θ] =
α

α + β
, (45)

and

V = S2[θ] = V ar[θ] =
αβ

(α + β)2(α + β + 1)
. (46)

Hence we have

α =
m2(1−m)

V
−m, (47)

and

β =
m(1−m)2

V
+m− 1. (48)

Therefore, the beta posterior can be fully specified from equation (45) and

equation (46). As an example, the computation of α and β of the posteriors for the

“remember-short” condition is shown in Figure 6.

Figure 6
Computation of α And β of The Posterior for The“Forget-long” Condition. This
Posterior Acts as The Prior of The “Remember-long” Condition.
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Table 15
Parameter Estimates for The Data in Table 14

EM/(Bayesian) estimation
Condition D1 D2 d1 d2 a = g b
Short .76 .76 .31 .81 .54 .11

(.76) (.75) (.38) (.78) (.56) (.11)
Long .68 .70 .17 .61 .46 .15

(.68) (.59) (.18) (.52) (.52) (.20)
Note. D1 = detectability of list 1 items; D2 = de-
tectability of list 2 items; d1 = source discriminability
for list 1 items; d2 = source discriminability for list 2
items; b = bias for responding “old”; g = guessing that
the item was a list 1 item.

The MLE and Bayesian estimates for the data sets that combine (pooled or

cumulative) forget and remember conditions are shown in Table 15. It should be

noted that most of the estimates are still quite close, and the Bayesian estimates

tend to be more centralized. This result shows that Bayesian and MLE estimations

are not significantly different when they are based on the same information.

However, it is possible that the informative prior misleads the estimation when

it is specified incorrectly. Sahakyan and Delaney (2005) find that learning short

and long word lists may yield different discrimination rates (d1). Therefore, it is

inappropriate to use the posterior of d1 in the short word list as the prior of the

long word list. To test the effect of the inappropriate prior, the pooled data (i.e., the

short and long lists are combined) was used for the MLE estimation and the

cumulative data (i.e., the short list followed by the long list) for the Bayesian

estimation. The pooled data set is shown in Table 16. The estimates are shown in

Table 17. As discussed in the previous section, the Bayesian estimates are

usually more centralized than MLE estimates due to different estimators they

recruit. In this example, however, the Bayesian estimates of d1 tend to be closer to

0. Apparently, the cumulative estimate should fall into the range of the estimates

of the two separate data sets. However, the Bayesian estimates in Table 17 are
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not greater than the smaller estimate of the separate estimates. This fact indicates

that the inference based on the informative prior may not be appropriate.

Table 16
Combined Short List and Long List Data from Table 12
Group List 1 List 2 New
Forget
List 1 329 73 66
List 2 292 603 101
New 211 156 1497
Remember
List 1 410 135 152
List 2 214 451 133
New 208 246 1379
Note. Forget group is instructed
to forget list 1 after learning. Re-
member group is instructed to re-
member list 1 after learning.

2.6.4 Comparison of Inferences

In the previous section, the comparison of the EM and Bayesian estimates is

presented in terms of equating parameters and testing the model fit. Additionally,

the Bayesian approach has an alternative feature for testing hypotheses.

Table 17
Parameter Estimates for The Data in Table 16

EM/(Bayesian) estimation
Condition D1 D2 d1 d2 a = g b
Forget .72 .79 .23 .75 .40 .10

(.72) (.79) (.18) (.74) (.39) (.10)
Remember .70 .64 .28 .62 .53 .17

(.68) (.59) (.18) (.53) (.52) (.20)
Note. D1 = detectability of list 1 items; D2 = de-
tectability of list 2 items; d1 = source discriminability
for list 1 items; d2 = source discriminability for list 2
items; b = bias for responding “old”; g = guessing that
the item was a list 1 item.

43



In Bayesian hypotheses testing, one can set an additional parameter, which is

the difference between the two parameters that we intend to test. For example, in

the 6C model case, one can set a new parameter as d = d1 − d2 to test the

difference between d1 and d2, instead of set d = d1 = d2 to test 5C sub model.

From Figure 7(a) and 7(b), it is evident that the difference between d1 and d2

satisfies the 95% Bayesian confidence interval (two-tailed). Hence, the 5C sub

model that equates d1 and d2 will not fit the data as well.

This method of testing sub model hypotheses provides an approach not only to

testing model fit, but also to distinguishing the difference between two parameters.

Hence, this method is better than classic hypothesis testing, because in classic

model hypothesis testing, the parameters are equated and may lose potential

information by merging parameters. Depicting the distribution of the parameter

difference provides a full description of the relation between parameters.

(a) Posterior of d = d1 − d2

(b) Statistics of d = d1 − d2

Figure 7
Bayesian Estimates of The Parameters

44



2.7 Discussion

In the previous section, I have compared the EM and the Bayesian approaches

by estimating MPT models in source monitoring experiments as examples.

As two different theoretical contexts, the most important differences between

classic frequentism and Bayesianism are (1) whether or not the “subjective” prior

information should be involved in the data analysis, and (2) the logic of reasoning,

namely whether we assume that we have given (or fixed) parameters which are to

be estimated using the data in the experiments (or the data), or the parameters

follow distributions that need to be continuously updated via the new data (Carlin

and Louis 2009). This basic difference leads to other distinctions. For instance, all

frequentist assumptions and tests are based on the precondition that the

observations are independently and identically distributed (i.i.d) following a certain

distribution (with fixed parameters). However, the Bayesian approach does not

rely on this condition. Instead, the Bayesian approach believes that every subject

has his or her own item response distributions in terms of different items. This

approach allows us to have various beliefs (priors) from person to person.

Furthermore, the Bayesian approach believes that not only can individuals have

different priors, but that the population is dynamic due to the variability of its

members, and it varies as a certain distribution with higher dimensional

parameters. Moreover, rather than an absolute conclusion given in frequentism

(accept H0 or reject) with an α, the Bayesian approach offers us the more

reasonable conclusion that we have some probability to accept or reject a

hypothesis. Last but not least, the logic of the Bayesian inference is to maximize

P (θ|D) while MLE is to maximize P (D|θ).

Resulting from the theoretical differences of classic statistical methods and the

Bayesian inference, the two estimations have essential differences that (1) the

Bayesian estimation is cumulative, which means the beta priors I use for further
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similar analyses may be the posteriors I obtained from current estimation, rather

than the non-informative prior. Therefore, the estimates of the Bayesian approach

change more dramatically than the estimates of the EM approach, and (2) the

Bayesian estimates are actually distributions instead of point estimates in the EM.

Bayesian estimates may also change when different estimators are chosen.

Figure 8 shows the posterior distribution of parameter D1 (Figure 8(a)) and its

trace of the estimates (Figure 8(b)), as well as other statistical descriptions of the

posterior of D1 (Figure 8(c)). Furthermore, the Bayesian approach can detect

(a) Posterior of D1

(b) Trace of D1 esti-
mates

(c) Statistics of D1

Figure 8
Detailed Bayesian Estimates of The Parameters

individual differences with respect to subjects and source items, which is

neglected in classic frequentism due to its basic preassumption of i.i.d. This

analysis cannot be performed at present due to the fact that only group data were

available in the original articles. However, this issue can be addressed by
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conducting Monte Carlo simulations of the models. Meanwhile, this issue

indicates the importance of keeping original data and response items.

Although these two approaches are contradictory in terms of theoretical basis,

there are some remarkable similarities with respect to their reasoning and

scenarios. First, the information used in two estimations is all from the likelihood

function (because I used a non-informative prior). Therefore, the point estimates

for most parameters are very close, even though some are not (probably because

the EM is trying to find the mode of the likelihood while the estimator recruited in

the Bayesian approach is the posterior mean). In addition, as a typical method

used in classic statistics coping with incomplete data, the iterative process of the

EM algorithm can be considered as a Markov process as well, because it satisfies

the definition of a Markov chain that the status next step is only determined by its

previous step. This fact indicates that when the estimate becomes convergent, it

will be completely independent from the parameters’ initial values. This scenario

is quite similar with that used in the Metropolis algorithm when approximating the

Bayesian posterior. Lastly, the EM algorithm is also applied to the Bayesian

inference to find the maximum posteriori (MAP) estimate, which is the mode of the

posterior distribution (Carlin and Louis 2009).
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