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ABSTRACT 

 Govindaraju, Sirisha Devi. Ph.D. The University of Memphis. August 2012. 

Influence of Fluid-Structure Interaction on Wall Shear Stress in a Stented Coronary 

Artery Model. Major Professor: John I. Hochstein 

Previous studies indicate that the likelihood of rate of restenosis following 

installation of a bare metal stent to treat coronary artery disease is related to the 

magnitude of the wall shear stress in the artery. The current study seeks to understand if 

including fluid-structure interaction (FSI) in a computational model of a stented coronary 

artery significantly influences the predicted wall shear stress on exposed patches of the 

artery. As a secondary result, it also determines influence of FSI on the magnitude of 

WSS on the surface of the stent. COMSOL Multiphysics was the computational tool 

selected for this study. It was carried out using rigid (no-FSI) and compliant wall (FSI) 

models comprising of a straight user-defined coronary artery, blood domain and a 

realistic stent. The arterial wall and stent were modeled as linear elastic materials while 

the blood was represented by an incompressible Newtonian fluid. Blood flow was 

assumed to be laminar and its boundary conditions were derived from published 

physiological waveforms. A periodic Womersley velocity profile was prescribed as the 

inflow boundary condition and a periodic pressure was prescribed as the outflow 

condition. Quasi-stationary analyses were carried out on both the rigid and compliant-

wall models at different times. A mesh convergence study led to a mesh-independent 

model.  On comparing the FSI and no-FSI models, it was concluded that the influence of 

FSI was prominent on the stent surface and in the distal region of the geometric model. 

Although differences between model predictions of wall shear stress varied throughout 

the period of the waveform, the ranges of difference depend on the axial location along 
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the artery: 10-20% in the proximal region, 17-55% in the distal region, 10-35% within the 

stent openings, and 16-58% on the stent surfaces.   
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1.  BACKGROUND AND MOTIVATION 

The human circulatory system consists of three main components viz., blood, blood 

vessels and the heart. 

1.1 Blood: its properties and assumptions for computational modeling  

Blood is a suspension of cells in a liquid known as plasma. Plasma is made up of 90 wt. 

% water , 7 wt. % plasma protein, 1 wt. % inorganic substances and 1wt. % other organic 

substances. See Figure (1.1). Suspended in the plasma are erythrocytes or red cells, white 

cells of various categories (neutrophils, basophils, eosinophil, lymphocyte, monocyte 

etc.), and platelets [21]. Erythrocytes occupy about 50% of the blood volume and their 

normal count is about 5 million per mm
3
. They are small, disk-shaped, about 7 m in 

diameter and 2.8 m in thickness. White cells occupy less than 0.17% of total cellular 

volume and they range in number from ~5000 to ~8000 per mm
3
. Platelets occupy less 

than 0.125% of cellular volume and are about 250000 – 300000 in number per cubic mm. 

Platelets are much smaller than white cells and are about 2.5 m in diameter [21]. 

Two of the most important fluid properties used in the computational modeling of 

blood flow are density and viscosity. The density of blood is 1050 to 1055 kg/m
3 

[71]. 

For shear rates (gradient of velocity vector) > 100 s
-1

, the viscosity of human blood 

ranges from 0.003 Pa-s to 0.004 Pa-s at 37

C [67]. Blood viscosity is lower for tubes with 

diameter less than 1mm [67], [74]. Viscosity values for shear rates < 100 s
-1

 increase 

tremendously and range anywhere between 0.01 Pa-s to 0.15 Pa-s [21]. At extremely low 

shear rates, the viscosity values are much larger than 0.15 Pa-s. As the temperature 

decreases, viscosity increases  
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Figure 1.1: Plasma, red blood cells, platelets, and a form of white blood cells that flow in 

a blood vessel [34] 

At high shear rates (>100 sec
-1

), blood behaves as a Newtonian fluid [21]; that is, 

shear stress,, is directly proportional to the shear rate, , with the proportionality 

constant being the coefficient of viscosity,. At shear rates < 100 s
-1

, blood behaves like a 

non-Newtonian fluid [21], [67], [74]. Hematocrit, which is the ratio of red cells to the 

total volume of blood [67], also influences the relationship between shear stress and shear 

rate. Higher hematocrit levels are associated with higher viscosity and departure from 

Newtonian behavior. 

When the diameter of the blood vessel is large compared to the size of the red 

blood cells, it is considered a large blood vessel. Coronary arteries are considered large 

blood vessels. When analyzing blood flow in large blood vessels, blood is considered as a 

homogeneous fluid [71], [21]. For such analyses, hematocrit and its influence on the 

Newtonian/non-Newtonian behavior of blood are not relevant. When analyzing capillary 

blood vessels, which are about the same size as red blood cells, ranging from 4 to 10 m, 
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blood can be considered as a non-homogenous fluid and the flow can be considered as 

the flow of blood in micro-vessels [21].Under physiological conditions, blood may be 

considered as an incompressible fluid [21]. Also, blood flow is laminar in all blood 

vessels except the ascending aorta, pulmonary artery, and terminal great veins [43], [67]. 

Before discovering the unsteady nature of arterial blood flow, the physical law that 

governs the flow was approximated by considering a simple model of a straight, rigid, 

and cylindrical pipe with steady, incompressible, laminar flow through it. Such a model is 

described by Poiseuille’s law [67], [71]. The velocity profile describing a Poiseuille flow 

can be derived as shown below. Let the radius of a pipe described above be R whose x-

axis (in cylindrical coordinates) coincides with the axis of the cylinder. If 1p and 2p are 

the pressures at the inlet and outlet of the pipe, l is the length of the pipe, then, the 

pressure gradient driving the fluid is given by 1 2p p dp

l dx


  .  

The laws governing the steady, incompressible, laminar flow are given by the continuity 

and the Navier-Stokes equations as shown below (in cylindrical coordinates):  

 

 

 

 1 1
0

rv w u

r r r x

  
  

     (1.1) 

 

 

 
2 2 2

2 2 2 2

1 1
x

u u u w u p u u u u
u v f

t x r r x x r r r r
   

 

          
          

           
  (1.2) 
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2

2 2 2

2 2 2 2 2 2

1 1 2
r

v v v w v w
u v

t x r r r

p v v v v v w
f

r x r r r r r r

 


 
 

    
     

    

      
       
      

  (1.3) 

In the above equations, u, v, and w are the velocities along the x, r and   directions, 

respectively. Also, u, v, and w are functions of x, r, t. xf and rf are the body forces 

(gravitational forces) in the x and r-directions. /p x  and /p r  are the components of 

the pressure gradient in the x- and r-directions respectively. 

Assuming: 

 Steady flow i.e.,   0
t





 

 No external forces are acting on the pipe ( 0xf   and 0rf  ) 

 Flow is fully developed (no velocity changes in axial direction,  0
u

u r
x


 


) 

 Flow is axisymmetric i.e., 0
u







  

 No swirling of flow  0w   

From the above assumptions, Equation(1.1), which is the continuity equation, reduces to   

 

 

 

    

 
0 0

rv
or v

r


 

    (1.4) 
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Equation (1.4) and the assumptions reduce Equation (1.3) to 

   
0

p

r


 
    (1.5) 

This shows that pressure is constant across a section of the pipe. Hence pressure varies 

only with the x-direction and time.  

Using all of the above assumptions, Equation (1.2) results in 

2

2

1 1
0

p u u

x r r r



 

   
    

      (1.6) 

2

1 2

2

1 1 p pu u p

r r r x l



  

    
    

   
 

2

1 2

2

1 p pu u

r r r l

 
  

 
 

1 21 p pu
r

r r r l

  
  

  
 

1 2p pu
r r

r r l

  
  

    

Integrating twice with respect to (w.r.t) r gives 
2

1 2
1 2( ) ln ,

4

p p r
u r c r c

l


      (1.7) 

 

 

where 1c and 2c are constants of integration evaluated by the boundary conditions 

( ) 0u R  and (0)u finite  

As 0,ln( )r r  . Hence if 1(0) 0u finite c    
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2

1 2
2( ) 0

4

p p R
u R c

l


  

 

 
 

Hence, Equation (1.7) becomes  

2

21 2( ) 1
4

p p r
u r R

l R

   
      

  (1.8) 

 

 

 

However, blood flow in arteries is unsteady [71]. Since Poiseuille’s law is only 

applicable to an incompressible, laminar and steady flow through a straight, rigid, and 

cylindrical pipe, it should not be applied to the unsteady blood flow. See Chapter 1, 

Section 1.3 for more details on how to model the unsteady blood flow. 

1.2 Blood vessels: types and assumptions for computational modeling of arterial wall  

Blood vessels are the conduits through which blood flows. Arteries, arterioles, capillaries, 

venules, and veins constitute the different types of blood vessels [103]. See Figure (1.2) 

Arteries are blood vessels that carry blood away from the heart. The aorta is the largest 

artery in the body and it branches into smaller arteries [116]. The right coronary artery 

(RCA) and the left coronary artery (LCA) are two of the major blood vessels that branch 

off from the aorta. They carry blood that supplies oxygen and nutrients to the heart. See 

Figure (1.3).  
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Figure 1.2: Structure of blood vessel [26] 

 

 

 

 

Figure 1.3: Aorta and coronary arteries [35]  
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The aorta has an internal diameter of about 25 mm and a wall of 2 mm thickness [74]. 

The smaller arteries coming off of the aorta have internal diameters ranging from 2 mm 

to 6 mm [26]. In vivo studies on arterial wall thickness show that the arterial wall 

thickness is about 8% of the luminal diameter [45], [71]. In adults, at its origin, the 

luminal diameter of the main stem of the LCA and the RCA are in the range of             

1.5-5.5 mm, with a mean of 4.0 mm and 3.2 mm, respectively. Before the LCA 

bifurcates, anatomically it has been found to be about 1 to 26 mm long (average 13.5 

mm) but, angiographically, it has been found to be 7.5 mm to 20.5 mm long  (average of 

12.8 mm).The dominant RCA is about 12-14 cm long [57]. 

The arterial wall consists of three layers; the intima, the media and the adventitia [74]. 

See Figure (1.4). The outermost layer is the tunica externa or the tunica adventitia, and is 

composed of connective tissue. The middle layer is the tunica media, or media and is 

made up of smooth muscle cells and elastic tissue. Tunica intima or intima is the 

innermost layer. The interior of this layer is lined up by endothelial cells. This thin layer 

of endothelial cells that forms an interface between the blood and the intima is known as 

the endothelium [108].  
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Figure 1.4 Anatomy of the arterial wall [99] 

Arterioles are blood vessels that transfer blood from small arteries to the capillaries. 

Their wall thickness is about 6 m and the average inner diameter is 30 m. Arterioles, 

along with capillaries and venules, make up the microcirculation system of the body. 

Capillaries, which are the smallest blood vessels in the body, permit the exchange of 

materials (oxygen, carbon dioxide, sugars, etc) between cells in the tissues and the blood. 

They range from 5 m to 10 m in diameter and are about 10 billion in number. Their 

walls are about 0.5 m thick. Venules which are slightly smaller than arterioles, function 

in the exchange of materials and they transfer blood from capillaries to veins. Their 

average diameter is about 20 m and they are about one-sixth as thick as the arterioles 

[26] 

Veins carry deoxygenated blood from the body into the heart.  The diameter of veins 

is about the same as that of arteries but their wall thickness is half that of arteries. Veins 

are about 0.5 mm thick and their inner diameter is about 5 mm. Venae cavae are the 

endothelium 
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largest veins, with a diameter bigger than that of the aorta. They are about 30 mm in 

diameter and are 1.5 mm thick. The anatomy of veins is similar to that of the arteries 

[26]. 

A material that resists measurable volume changes when subjected to tensile or 

compressive load is known as an incompressible material [2]. Under physiological loads, 

arterial wall resists measureable volume changes [74]. Hence, in computational models, it 

is treated as an incompressible [7], [23], [53], [74] and homogenized solid (within each 

layer) [23]. Hooke’s law is not a good representation of the stress-strain relationship for 

an arterial wall [21]. The mechanical properties of arteries depend on the properties of the 

individual constituents (collagen, elastic, and smooth muscle fibers), their geometric 

configuration (structure), and interaction [23], [74]. The way the arterial wall constituents 

are arranged varies along the arterial tree [21]. Arterial wall is anisotropic [38], [40]. 

The articles published by Kalita and Schaefar [40] and Holzapfel et al. [31] 

provide a history of arterial wall modeling, and the several constitutive equations used to 

model the arterial wall. Prendergast et al [79] and Holzapfel et al [32] describe an 

isotropic hyperelastic material model and a layer-specific, heterogenous arterial material 

model, respectively. A hyperelastic material model that is suited for representing the 

anisotropic elastic properties of the advential and intimal layers of the arterial walls is 

described by Gasser et al. [23]. With the help of the data published by Holzapfel et al 

[32], Zahedmanesh and Lally [124] define a third-order Ogden hyperelastic material 

model to represent the artery.  

In the geometric models of artery, the applicability of shell models to arteries is 

discussed in Kalita [41]. 
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1.3 The heart and the cardiac cycle 

The heart is a muscular organ that pumps blood through the blood vessels. It is enclosed 

within a membranous sac called the pericardium and is centrally located in the chest 

cavity. It is about the size of a fist, with a mass of ~300-350 grams (in males) and 250-

300 grams (in females) [26]. 

The cardiac cycle refers to the sequence of events that occurs between two 

consecutive heartbeats [104], [1]. In this cycle, the diastole phase is when the heart fills 

with blood and the systole phase is when the heart pumps out blood. The rhythmic 

contraction and expansion of the artery at each heartbeat is known as a pulse [16]. Since a 

pulse is periodic, the pressure gradient, velocity, and flow rate associated with the blood 

flow are periodic in nature [121]. The blood pressure varies throughout the cardiac cycle 

and is pulsatile in most arteries [48]. Hence, blood flow is unsteady, periodic, and 

pulsatile. It can be seen from Figure (1.5) that the pressure and velocity waveforms in 

different human arteries have different pulsatile waveforms. Mills et al [66] states that 

these waveforms were recorded from a patient with ischaemic heart disease, with the 

exception of traces from the right renal and the right common iliac artery.  
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Figure 1.5: Pressure and velocity waveforms in different human arteries [66] 

The influence of pulsatile pressure on arterial flow has been described in several 

studies. The study performed by McDonald [60] in the femoral artery of a dog concludes 

that the arterial flow oscillates in the same way as the pulsatile pressure but with a phase 

lag that varies throughout the flow cycle. The physical law governing the unsteady, 

pulsatile blood flow can be derived by modeling laminar blood flow through a straight, 

rigid, and cylindrical pipe. Blood is assumed to behave as a Newtonian, viscous and 

incompressible fluid. The details of this derivation are given in Appendix C. Since this 

derivation was first described by Womersley [121], the velocity expression obtained is 
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known as the Womersley velocity profile and is given by (See Appendix C, Equation 

C.20) 
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where,  ,u r t  is the time-dependent velocity of the flow, 

r is the coordinate in the radial direction, 

R is the radius of the rigid, straight cylinder, 

            /h r R    (1.10) 
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The periodic pulsatile pressure gradient across the pipe is represented by a Fourier 

series and
 

 n x is the Fourier coefficient used in this series.  
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M=N/2, (See Appendix B) 

            
2

T


    (1.13) 

T is the time period of the flow,  is the angular frequency (pulse frequency) of 

the flow, and   is the kinematic viscosity of the fluid. 

If the periodic pressure gradient across the pipe is not known, then Equation (1.9) cannot 

be used. If, however, the velocity waveform at the inlet to the artery is known from in 
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vivo measurements, then the velocity profile of the flow can be calculated using 

Equation(1.14). More details on this are given in Appendix C. 
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where  ,u r t , r, R, h, n , n, M, T,  ,  are as defined earlier, and  nq r  and 0q are 

Fourier coefficients of the flow rate expression computed using the in vivo inlet velocity 

waveform.  

The arterial radius, R, and the pulse frequency, , are be related to each other by a 

non-dimensional parameter known as the Womersley parameter,  [27]. From 

Equation(1.12), when n = 1,  is given by R



. may be interpreted as the ratio of 

oscillatory inertial forces to viscous forces [48], [121]. When 1  , the frequency of 

pulse is low and viscous forces dominate, enabling the flow to develop [48], [119]. 

Hence, velocity profiles are parabolic in shape and the change in flow oscillates almost in 

phase with the change in pressure. Such a flow can be approximated by Poiseuille’s law 

[125], which is applicable only to steady flows. When 10  , the pulse frequency is 

large. Hence, the inertial forces dominate, leading to a velocity profile that is flat or plug-

like. In this case, the mean flow lags the pressure gradient by 90

 and Poiseuille’s law is 

not valid [48], [119]. 
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The Womersley velocity profile is derived assuming that the arterial wall is rigid. 

However, several studies with compliant walls (like those by Torii et al. [91] and  

Zeng et al. [128]) use the Womersley assumption for their analysis. Womersley also 

assumes that the pulse wave velocity is negligible. This approximation holds as long as 

the maximum velocity of the blood is a small fraction of the wave velocity [121]. 

1.4 Diseases of the heart: atheromatous plaques, atherosclerosis, and stenosis 

The most common heart diseases are coronary heart disease, cardiomyopathy, 

cardiovascular disease, ischaemic heart disease, congestive heart failure, hypertensive 

heart disease, inflammatory heart disease, and valvular heart disease [112]. Coronary 

heart disease refers to narrowing of coronary arteries, thus preventing adequate blood 

supply to the cardiac muscle and tissues [112], [61]. Even though coronary heart disease 

can occur due to a spasm in the coronary blood vessels leading to its constriction, it is 

most commonly equated with coronary artery disease (CAD) [55], [112]. CAD also leads 

to failure of circulation in the coronary arteries. It occurs due to atherosclerosis within the 

walls of coronary arteries.  

An atheroma (plural: atheromata) is an accumulation and swelling in the walls of 

the arteries. In the context of heart or arteries, atheromata are commonly referred to as 

atheromatous plaques or, simply plaques [100]. Plaque is made up of cholesterol-rich 

foam cells covered by a fibrous cap made of connective tissue which is thicker and less 

cellular than the intima. Plaques can be classified into stable and unstable types [15], 

[109]. Stable plaques have a firm fibrous cap. They usually progress in size and results in 

thickening of arteries, leading to a condition known as atherosclerosis. Unstable plaques 

have a thin fibrous cap with a soft lipid pool underlying the cap and they are prone to 
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ruptures [118]. When an unstable plaque ruptures, it induces a clotting reaction or 

thrombus (blood clot) formation [15], [101]. Once formed, the blood clot and the contents 

of the ruptured plaque will either occlude the arteries immediately or they will eventually 

flow downstream and occlude the smaller arteries, leading to thromboembolism. 

Thromboembolism is the event of thrombus formation in the artery and it leads to 

clogging of the capillaries that are far from the site of thrombus formation [107], [117]. 

Most commonly, soft plaque ruptures result in an immediate heart attack [15], [101]. The 

process of plaque development within an individual is called atherogenesis [101]. Over 

time, the plaque becomes so thick that it blocks the blood flow in the arteries. This 

abnormal narrowing of a blood vessel is known as stenosis [9], [115]. 

1.5 Treatment of CAD: coronary angioplasty, stenting and coronary artery bypass 

grafting  

Depending on the severity of the disease, medications and life style changes may be used 

to treat CAD. In advanced cases, however, other aggressive treatments, such as stand-

alone percutaneous coronary intervention (PCI), PCI followed by coronary stent 

implantation, and coronary artery bypass surgery, become necessary [37]. 

This kind of interventional cardiology dates back to 1711 when Stephen Hales 

carried out a cardiac catheterization on a living horse. In 1929, the first documented 

human cardiac catheterization was performed by Dr. Werner Forssmann. Until the 1950s, 

catheterization involved an open cut down procedure in which the soft tissues 

surrounding the artery or vein were dissected followed by a puncture in the artery or the 

vein (Sones technique). The percutaneous approach was developed by Sven-Ivar 

Seldinger in 1953. The concept of transluminal angioplasty was described by Charles 
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Dotter and Melvin Judkins in 1964. Andreas Gruentzig carried out the first successful 

human percutaneous transluminal coronary angioplasty in 1977 [29], [96].  

Percutaneous coronary intervention (PCI) or percutaneous transluminal coronary 

angioplasty (PCTA) is also known as coronary angioplasty [97]. In a percutaneous 

approach, the access to the inner organs or other tissues is done via needle-puncture of 

the skin, rather than by using an "open" cut-down approach of the tissues around the 

artery. It is called transluminal because the guide wire of the balloon catheter is passed 

across the lumen of the blood vessel [113]. During a stand-alone PCI, an empty and 

collapsed balloon on a guide wire known as catheter is passed into the narrowed blood 

vessel or blocked coronary artery. This process of inserting a catheter is known as 

catheterization. Once in place, the balloon is inflated to push the plaque outward against 

the wall of the artery. This opens the blocked or narrowed coronary arteries and restores 

the flow of blood. Then the balloon is deflated and withdrawn [98].  

About 5-10% of cases that undergo PCI report acute vessel closure while 30-50% 

cases report late lumen narrowing known as in-segment restenosis [95]. In-segment 

restenosis is the gradual reduction or renarrowing of the lumen circumference. 60-70% of 

the in-segment restenosis is caused by arterial remodeling and 30-40% is caused by 

neointimal hyperplasia (NIH) [95]. Remodeling can be defined by changes in the size of 

the vessel wall, intima [82], while NIH is the formation of a new (neo) or thickened layer 

of the intima [65]. NIH is also referred as intimal hyperplasia (IH) or neointimal 

proliferation (NIP). 

To prevent in-segment restenosis, a small mesh tube (endovascular scaffolding 

device) called a stent is placed in the artery to keep it open after the procedure. This 
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process of inserting a stent in the coronary artery is known as coronary stenting (See 

Figure 1.6). The stent is crimped over the collapsed balloon and is inserted in the artery 

using a catheter. The balloon is expanded then deflated and removed. As the balloon 

expands, the stent expands and stays in the coronary artery even after the balloon is 

deflated and removed [96]. The stent supports the lumen of the artery and helps it keep 

open. See Section 1.6 for a brief classification of coronary stents.  

Coronary artery bypass grafting (CABG) is an alternative treatment to coronary 

angioplasty. In this procedure, the arteries with stenoses are bypassed by grafting vessels 

from elsewhere in the body. Usually, CABG is recommended for patients who have 

narrowed blood vessels at many locations [105]. Coronary angioplasty is less invasive 

and costs less than CABG [113]; however, there is a lack of consensus on the issue of 

difference between the clinical outcomes of stenting and bypass.  

 

 

 

 

Figure 1.6: Angioplasty and coronary stents [36] 
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1.6 Classification of coronary stents  

In 1986, the first coronary stent was implanted in humans by Jacques Puel and Ulrich 

Sigwart [29], [84]. Based on the material used for stent fabrication, coronary stents can 

be broadly classified into two categories,   

 Balloon-expandable: They are made from materials that can be plastically deformed 

by the inflation of a balloon. These are manufactured in their crimped form [68], [85]. 

The first commercially available stent was a balloon-expandable stent called the 

Palmaz–Schatz stent [29], [68], [84]. The ideal material used to fabricate a balloon 

expandable-stent should be easily deformable at balloon pressures, that is, it should 

have low yield strength and high elastic modulus to reduce the stent recoil. 316L 

stainless steel is most commonly used for fabricating balloon-expandable stents as it 

is highly corrosion resistant and possesses all of the above qualities. Some examples 

of balloon expandable stents are the Johnson and Johnson ‘Palmaz-Schatz’, the 

Cordis ‘Crossflex’, and the Medtronic ‘Wiktor’[68], [85]. See Figure (1.7). 

 

 

 

  

(a)Braided ‘wall stent’  (b)Knitted ‘Strecker stent 

’   

(c)Coiled ‘Intracoil stent’  (d)Palmaz-Schatz tube stent 

Figure: 1.7: Coronary artery stents [54], [75] 
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 Self-expandable: They are manufactured in their actual size and shape and are 

compressed by a sheath. Once the stent is in place, the sheath is withdrawn and the 

stent self-expands to the manufactured diameter [68], [85]. The first stent that was 

implanted by Puel and Sigwart was a self-expanding wall stent [29], [84]. Materials 

used for self-expanding stents should withstand large elastic strains. Nitinol, a nickel-

titanium alloy, is the most widely used material for self-expanding stents. The 

Schneider ‘Wall stent’, Cook ‘Z Stent’, and the Boston Scientific Corporation (BSC) 

‘Wall stent’ are some examples of self-expanding stents [85]. Self-expanding stents 

are not very common today because they have a tendency to expand in the weeks 

after deployment leading to larger growth of neointima. They also substantially 

shorten upon expanding and their small cell size limits their application in side-

branches [68]. 

Apart from the above classification which is based on the mechanism of deployment, 

coronary stents can also be classified based on other criteria [85]. 

 Forms of material used in stent fabrication 

Stents can be made from sheet metal, round or flat wire, or tubing. Some examples of 

tube stents made from sheet metal are the BSC/Medinol ‘NIR’, the Navius ‘ZR1’, and 

the Cook ‘GRII’. The BSC ‘Strecker’ and the Medtronic AVE S7 stents are examples 

of wire form of stents. The Palmaz-Schatz stent is a tube stent made from a steel tube 

[68]. The tube stents made from sheet metal have to be rolled up to a tubular shape 

after the pattern is created. Then the stent is either welded or locked using special 

mechanical features. 
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 Stent manufacturing/fabricating method  

If a stent is fabricated from a “wire-form of material”, then wire-forming techniques, 

such as coiling, braiding or knitting are used to finish the process. All coil stents are 

self-expanding and are made of Nitinol [85]. Other fabrication methods include laser 

cutting and photochemical etching.  

 Stent geometry 

Based on geometry, the earlier designs of stents were classified as slotted-tube or coil 

geometry stents. However, Stoeckel et al. [85] classified stent geometry as helical 

spiral, woven, individual rings, or sequential rings. The stents with sequential ring 

geometry comprise of a series of expandable z-shaped structural elements, known as 

struts, joined by connecting elements known as bridges, hinges, connectors, or nodes. 

Figure (1.8) explains the terms ‘strut’, ‘bridge’ and ‘inflection point’. The stents can  

 

 

   

 Figure: 1.8: 2D stent geometry showing the struts,bridge connections and 

inflection points [4] 

be made to be more flexible by adding a flex-connector between two consecutive 

struts. These flex-connectors can be U-, V-, S- or N-shaped. Figure 1.9(a) shows an 

NIR stent that has a ‘V’ shaped flex-connector. 

valley 

peak 
Strut 

Inflection points 

Bridges/Hinges or nodes 
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Based on the bridge connections, sequential ring stents can be sub-classified into 

regular connection, periodic connection, and peak-peak or peak-valley connection. 

Morton et al.[68] refers to sequential stents as modular stents. If all the inflection 

points of two consecutive struts are connected by bridging elements then, such a 

design is known as closed-cell design. Figure 1.9(a) shows a closed-cell NIR stent. If 

some or all the inflection points of two consecutive struts are not connected, then it is 

an open-cell design. The unconnected struts in an open-cell design add to the 

longitudinal flexibility of that stent. Figure 1.9 (b) shows an open cell design, where 

two successive struts are connected by only one peak-peak connection. 

 

 

  

(a) NIR stent    (b) AVE S7 stent  

Figure 1.9: Closed-cell and open-cell stent designs [85] 

 Coatings:  

The first licensed coronary artery stents were bare metal stents (BMS). They have no 

coating (material or drug) on their surface [102]. Restenosis (renarrowing of arteries 

in the stented-region) and ST are two major complications that can arise due to 

implantation of BMSs. See Chapter 1, Section 1.7 for more details. Coated stents 
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were introduced to overcome these complications [55]. There are several types of 

coated stents, namely:  

 Coated, drug-free BMSs: In these stents, a drug-free coating is deposited on the 

stent surface either to increase its visibility (in X-rays etc) or biocompatibility 

[28]. Iridium oxide, gold, platinum, or tantalum are some examples of these 

coatings [85].  

 Drug-eluting stents (DESs): These consist of two components viz., the metal stent 

and the drug with or without a polymer. Heparin (anticoagulant) or an anti-

inflamatory, anti-migratory, and anti-proliferative drug such as paclitaxel, 

sirolimus, zotarolimus, everolimus, biolimus, dexamethoasone [55]. 

 Biodegradable stents: Even though DES reduced the rates of restenosis and ST, the 

risk of late-ST and very late ST, several risks remained when a DES is used, two 

being myocardial infraction and death [55], [106]. Biodegradable stents were 

developed to overcome these risks. These stents are absorbed over a period of time 

and there is no permanent implant, thus preventing the need for a prolonged 

antiplatelet therapy [63]. These stents, however have several drawbacks, such as the 

stent not being easy to visualize fluoroscopically, and faster resorption rates that may 

lead to undesirable remodeling [55]. ‘Absorb’ is the first approved biodegradable 

stent. As of January 2011, it is available to a few institutions in Europe. By the end of 

2012, it is expected to be available throughout Europe [39]. 

  



24 

 

1.7 Motivation for research (hypothesis) and objective of the current study 

A 2011 fact sheet from the World Health Organization states that cardiovascular disease 

is the number one cause of death globally, accounting for 17.3 million deaths, in 2008, 

with 42% of these deaths being caused by CAD [122]. 

Among the blood vessels, coronary arteries are the most susceptible to 

atherosclerosis [17]. The treatment options for a coronary artery disease are listed in 

Chapter 1, Section 1.5. Since the late 1990s, most coronary angioplasties include 

placement of a stent in the artery [96]. Chapter 1, Section 1.6 which includes the 

classification of stents, states that the two major complications that can arise due to the 

implantation of a BMS are stent thrombosis (ST) and restenosis [55]. 

ST is the formation of a thrombus (blood clot) on the stent [64]. ST are classified 

as acute ST, sub-acute ST, late ST and very late ST according to the criteria listed in 

Table 1.1. One of the factors that seem to be responsible for ST is the inhibition of the 

growth of a new endothelial layer over the stent surface. ST typically leads to sudden 

death [106]. 

It is important to understand the differences between ST and thrombosis. ST 

occurs after the stent implantation and thrombosis occurs before stent implantation (See 

Chapter 1, Section 1.4). Thrombosis can also occur immediately after a balloon 

angioplasty. The balloon expansion inside the narrowed coronary artery can cause 

vascular wall damage in locations where the balloon contacts the wall. This vascular wall 

injury can trigger an inflammatory response, resulting in the formation of a thrombus at 

the site of damage. This will eventually lead to renarrowing of the artery [114].   
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Table 1.1: Classification and criteria of ST [83] 

 Classification Criteria 

1.  Acute ST 0-24 hours after stent implantation 

2.  Sub-acute ST 24 hours-30 days after stent implantation 

3.  Late ST 30 days-1 year after stent implantation 

4.  Very late ST  1 y after the stent implantation 

 

 

 

Earlier studies show that restenosis develops in 20-35% cases that undergo PCI 

followed by BMS implantation [95], [114]. In the current study, in-stent restenosis 

(which is renarrowing of arteries in the stented region) is referred to as restenosis. In-

segment restenosis which usually occurs after a PCI procedure (with or without stent 

implants), is the term used to represent renarrowing in the arterial region (If a stent is 

present, then this term refers to the renarrowing that occurs on either side of the stent but 

not in the stented region). See Section 1.5 for in-segment restenosis. Restenosis is largely 

due to NIH [95]. Intimal thickening (IT) is the thickening of intima due to plaque 

formation and this is a natural process that is not a consequence of PCI or stent 

implantation. NIH, however, is due to the rapid proliferation and migration of smooth 

muscle cells in response to inflammation resulting from the injury to the endothelium due 

to the stent deployment [44], [55]. Low wall shear stress (< 0.5Pa) is believed to be 

favorable for plaque accumulation and NIH [50]. Oscillations in the direction of the wall 

shear stress seem to increase the potential for NIH [47]. Also, at WSS < 0.5 Pa, 

endothelial cells are circular in shape. This coupled with the blood stagnation regions 

usually seen in regions with low WSS leads to increased accumulation of particles to the 

artery wall as a result of increased residence time and increased permeability of the 

endothelial layer [69].  
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Below is a summary of the factors that contribute to NIH:  

 Proliferation and migration of smooth muscle cells [44], [55] 

 Stent strut interactions with the vessel wall [81] 

 Post deployment arterial geometry dictated by stent design independent of arterial 

wall injury [22] 

 Low and oscillatory wall shear stress, WSS (oscillations in the direction of WSS) 

[47], [51]. 

 Elevated Wall shear stress gradient (WSSG) [51] 

 Residual plaque burden after coronary stent implantation [78] 

Factors that contribute to restenosis are: 

 NIH [95] 

 Smaller arteries with reference diameter < 3.0 mm [6] 

 Mechanical stretch of the arterial wall (arterial wall injury) during the stent 

deployment activates the protein kinease Akt pathway which, inturn, plays an 

important role in cell survival, proliferation, and migration, leading to restenosis 

[129] 

 Gender of patient [55] 

 Diabetes and multiple stent implantation [42] 

 Stent coating [30] 
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Figure 1.10: Factors leading to stenosis and restenosis.  

The starting point for the flow chart shown in Figure (1.10) is: (1) Low and oscillating 

WSS. This flow chart highlights that low and oscillating WSS is involved in the 

development of both stenosis and restenosis. Hence, WSS is an important parameter to 

observe in hemodynamic studies. The literature does not present results from which it can 

be concluded that fluid-structure interaction (FSI) does, or does not, significantly 

influence computational predictions of WSS in a stented coronary artery.  Including FSI, 

especially 2-way FSI, produces models that require substantially more computational 

resources to model this flow.  Therefore, the current study seeks to determine the 
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influence of FSI on computational prediction of WSS in a stented coronary artery. Since 

BMSs are still an option for patients who cannot tolerate the coated or biodegradable 

stents [62], a geometric model of a BMS was used. 
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2.  LITERATURE REVIEW ON STENTS 

This chapter presents some literature studies on stents. These studies confirm the relation 

between NIH/restenosis and some of the hemodynamic factors such as low wall shear 

stress (WSS), high wall shear stress gradient (WSSG), stent geometry/stent structure, 

coating on stent surface, implantation of multiple stents, and smaller final lumen diameter 

(after the procedure). 

2.1 In vivo and In vitro studies 

Most of the in vivo studies compare the performance of different commercially available 

stent designs and how these designs influence the extent of restenosis. Kastrati et al.[42] 

carried out a study on patients with coronary stents and concluded that diabetes, multiple 

stents, and small final minimal lumen diameter are strong predictors of restenosis. To 

evaluate the influence of stent design and stent coating on restenosis, Hoffmann et al [30] 

performed angiographic and intravascular ultrasound (IVUS) studies on patients who 

were implanted with six different stents, namely Multi-Link stents, InFlow stents, InFlow 

gold coated stents, Palmaz-Schatz stents, NIR steel stents and NIR gold-coated stents. 

The conclusion of this study agreed with the conclusion of a few other studies that the 

restenosis is higher with gold-coated stents. Mauri et al.[59] assessed the effects of stent 

length and lesion length on coronary restenosis using angiographic follow-up studies 

from patients who were implanted with BMSs. They found that the longer excess stent 

length (stent length in excess of lesion length), higher the risk of restenosis.  

A large number of in vitro studies have been carried out to analyze blood flow 

and a significant number of these studies evaluated the influence of WSS on intimal 

thickening (IT) and NIH. There are, however, other hemodynamic parameters such as 
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WSSG and oscillatory shear index (OSI) that are likely to influence NIH [44], [47], [49], 

[69]. (See Chapter 2, Section 2.3 for more details about these parameters).  

Zarins et al.[127] and Ku et al. [47] carried out studies in models of human carotid 

bifurcation. Both of them used Laser Doppler Anemometer system to measure their flow 

velocity and they concluded (independently) that IT occurs in regions of low WSS. 

Zarins et al also stated that regions with moderate to high shear stress, where flow 

remains unidirectional and axially aligned, are relatively spared of IT. Ku et al. who 

found strong correlations between IT and the inverse of maximum wall shear stress, 

inverse of mean wall shear stress and oscillatory shear index (OSI), also reported that 

marked oscillations (evaluated by OSI) in the direction of wall shear may increase plaque 

formation. The experiments performed by Rogers et al [81] on the iliac artery of rabbits 

using four different stent designs concluded that the interactions of the stent struts with 

the vessel wall influences the NIH to a greater extent as compared to the arterial 

enlargement or stent surface material. Computer-assisted digital planimetry was used to 

determine the cross-sectional area of neointima. 

In vitro studies are usually complemented with computational or numerical 

analysis. In some of these in vitro studies, the experimental studies were used for 

validating the numerical/computational analysis but, in most of them, a part of the 

analysis was carried out by the experiments (such as extraction of data for geometry to be 

used in the computational analysis and physiological waveform extraction) and the rest 

was completed using Computational Fluid Dynamics (CFD). See Chapter 2, Section 2.1.1 

and 2.2 for some of these studies.  
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2.1.1 Combined numerical and in vitro studies in stented arteries 

Mates et al [58] carried out experimental studies on a dynamic model of the coronary 

circulation which simulated both time-varying supply pressure and peripheral resistance. 

A mathematical model was developed based on the results from the experimental study. 

The experimental studies were carried out with and without stenotic lesions. In the case 

where the stenotic lesion was present, it was assumed to be isolated. Mates et al. 

concluded that at normal heart rates, the flow is quasi-steady i.e., the dynamic effects are 

minimal. Their experimental model, however, did not include elasticity of the arteries. 

They also speculated that at higher heart rates, the dynamic effects may become 

important.  

2.2 Computational studies in stented arteries 

Experimental analysis of arteries is difficult especially when dealing with coronary 

arteries because they are only 2-4 mm in diameter. Fortunately, the advances in 

computational technology and resources make it possible to create more accurate and 

realistic computational models of arteries. Also, computational analysis help 

parameterize the studies i.e., with minimal effort and, time, several studies can be carried 

out on arteries that vary in size, properties etc. The computational studies of arteries can 

be broadly classified as one-dimensional (1D), two-dimensional (2D) and three 

dimensional (3D). Based on the arterial wall model, the 2D and the 3D studies can be 

further characterized as rigid wall studies or compliant wall studies. Since the current 

study is carried out using a 3D geometry, only the 3D studies are reviewed here.  
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2.2.1 Rigid wall studies 

Perktold et al. [76] simulated the 3D pulsatile flow field in a model of the left anterior 

descending (LAD) coronary artery bifurcation. They assumed that the arterial walls are 

rigid. Since their experimental values were in good agreement with the computational 

study. The results confirm the presence of flow separation and strong secondary motion 

in LAD. They also stated that the WSS is influenced by the vessel curvature. Taylor et al. 

[89], described a finite element framework for analyzing blood flow in arteries.  They 

carried out rigid-wall analysis on the carotid artery bifurcation and the abdominal aorta.  

Myers et al [70], carried out steady and unsteady flow analysis in a model of 3D 

human RCA. They concluded that it is important to replicate patient-specific geometry 

and the influence of inlet velocity waveform is limited to the inlet region when 

computing the time-averaged WSS. They also stated that branch flows are not very 

important in predicting WSS in the main branch of RCA. Carlier et al [8] performed 

experiments in the iliac arteries of rabbits. The objective of their study was to determine 

the relationship between WSS and NIH formation in stents by increasing the WSS locally 

with a flow divider. The study used a combination of angiographic and 3D computational 

analyses. The results showed that placing a flow divider in the stent locally increases the 

magnitude of WSS, leading to a reduction in restenosis.  

LaDisa et al. [52] carried out 3D computational studies in a stented model of the 

canine left anterior descending coronary artery. Arterial geometry was based on in vivo 

measurements. Stent geometry was similar to the Palmaz Schatz stent. Meshes were 

generated using a custom-generated algorithm in MATLAB and the computational 

analysis was carried out using CFD-ACE (finite volume representation). Even though 
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realistic blood flow waveforms were recorded, steady flow boundary conditions were 

imposed using the maximum and minimum velocity of the realistic flow waveforms. 

LaDisa et al. concluded that the presence of a stent alters the near wall-velocity and the 

magnitude of the minimum WSS (up to 77%) as compared to an unstented vessel. They 

also found that the lower WSS regions were more pronounced at the outlet. Another rigid 

wall 3D computational study by LaDisa et al [49] related the stent design and deployment 

ratio to the magnitude of WSS associated with NIH. In yet another rigid wall study, 

LaDisa et al. [51] found that NIH was localized to regions of low WSS and acute 

elevations in the spatial WSS gradients(WSSGs). These analyses were carried out in a 3D 

model of a stented- iliac artery (of rabbits). MATLAB and CFD-ACE were used to 

perform the CFD analysis. LaDisa et al have carried out several rigid, steady and time-

dependent, 3D computational studies on arteries beyond those cited herein.  

Balossino et al.[3] examined the influence of stent design on local hemodynamics 

in stented coronary arteries. Their 3D computational model included artery, blood, 

plaque, and four different models of stents. Once the deformed configurations of the 

artery, plaque, and stent were obtained, the fluid walls were assumed to be rigid. ANSYS 

and FLUENT were used to perform this analysis. Physiological time-dependent 

waveforms were adopted from the literature reports. This study confirmed the link 

between stent geometry and hemodynamic factors that influence restenosis. Dehlaghi et 

al. [14] investigated the WSS in a stented coronary artery using 3D CFD. Their studies, 

employing a rigid wall model, concluded that the strut spacing, strut profile and number 

of struts influence the WSS. Duraiswamy et al. [18] compared near-wall hemodynamic 

parameters for four stented artery models. Simulations were carried out in a flat (but 3D) 
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rectangular stented vessel with rigid wall assumptions and pulsatile flow conditions. Four 

different stent designs were compared. WSS, WSSG, and flow separation parameters 

were reported. Among the four stents, Bx Velocity and NIR stents were concluded to be 

hemodynamically favorable.   

Zarandi et al [126] evaluated the non-Newtonian hemodynamics and shear stress 

distribution in a 3D model of a healthy and a stented coronary artery bifurcation using 

COMSOL. They concluded that the stent produces local flow disturbances and regions of 

low and non-uniform shear stress. Hsiao et al. [33] carried out parametric stent models in 

a search for the design parameter(s) that most strongly influence the hemodynamic 

behavior. The parametric designs were built by varying the stent dimensions from -30% 

to +30% of the original stent dimension. ABAQUS was used for the stent model and its 

analysis while FLUENT was used to analyze the steady, non-Newtonian, laminar, 

incompressible blood flow. The arterial wall was assumed to be fixed. In this model, the 

stent interactions with the angioplastic balloon and the arterial wall were not considered.  

Vavourakis et al. [93], and Taylor et al. [89] state that the rigid wall assumption is 

reasonable in large arteries because there is only a 5-10% change in the arterial vessel 

diameter during the cardiac cycle and this change in diameter further decreases in a 

diseased artery. However, the literature studies listed in Chapter 2, Sections 2.2.2 and 

2.2.3 indicate that it is important to consider fluid-structure interactions when modeling 

blood flows in arteries. A large number of the compliant wall studies were carried out in 

3D, with either a user-created geometric model or a patient-specific model that is 

recreated using CT/MRI images of the patient.  
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2.2.2 Compliant artery studies with FSI and its influence on WSS  

Full fluid-structure interaction (FSI) is the process in which the presence of a flow elicits 

a response from a solid in contact with the fluid, which in turn influences the flow. [110]. 

Flow-induced vibration of structures is a well-known example of this interaction. The 

need to include FSI in a computational model for some cardiovascular problems is 

obvious because it is intrinsic in the behavior of the physiology under investigation (e.g., 

aortic aneurysms, heart valves) [91]. There are a few FSI studies that deal with blood 

flow in arteries [77], [90], [128], [91]. 

Perktold and Rappitsch [77] conducted a 3D, time-dependent analysis of a carotid 

artery bifurcation. They used published physiological waveforms as boundary conditions 

An incompressible non-Newtonian flow model was combined with a thin shell arterial 

wall model to simulate the flow of interest. The model accounts for the interaction 

between blood and artery; however, the load on the interface only included the pressure 

force. The forces exerted by the viscous stresses were ignored. The finite element code, 

ABAQUS, was used for the wall model.  It was concluded that including the compliant 

wall decreased the WSS by 25% as compared to the rigid wall model. 

Torii et al [90] developed a simulation tool that modeled cardiovascular FSIs. 

With this tool, they analyzed a patient-specific model (of the internal carotid artery) 

subjected to pulsatile flow boundary conditions obtained from in vivo measurements. The 

arterial domain was fixed at the upstream and downstream ends of the computational 

domain and represented by an elastic model. They concluded that the distribution of WSS 

on the compliant arterial walls is significantly different from that on the rigid arterial 

walls. 
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Zeng et al [128] created a computational model of a branchless RCA, the 

geometry of which was derived from imaging techniques. Physiological flow boundary 

conditions were used. They concluded that arterial wall compliance influences the WSS 

in the distal region of RCA and the proximal region is unaffected. They also indicate that 

their results have to be evaluated in conjunction with the outflow to the myocardium 

through the branches of RCA. Imaging techniques were used to derive the arterial 

geometry and deformation while an inhouse finite element code was used for the flow 

analysis.  

Torri et al. [91] compared FSI and rigid-wall models of a human RCA and 

concluded that even though the difference in the maximum time averaged wall shear 

stress (TAWSS) and oscillatory shear stress (OSI) were insignificant(4.5% and 2.7% 

respectively) in both the models, the differences in instantaneous WSS profiles were 

noticeable especially in the distal region of the artery. Their model, which consisted of an 

arterial wall with 62% stenosis, was reconstructed using patient-specific CT images. The 

boundary conditions to the flow field were based on in vivo measurements. A time-

dependent velocity was specified as the inlet boundary condition and a time dependent 

pressure was specified at the outflow boundary. A 9-parameter Mooney-Rivlin 

hyperelastic material model was used to represent the arterial wall but it is unclear what 

material model was used to represent the stenosis.  

2.2.3 Compliant artery studies with FSI (but not related to WSS)  

There also a number of computational FSI studies that evaluate variables other than 

WSS; for example, conditions for wall collapse and plaque rupture.  
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Tang et al. studied 3D, stenosed, thin-walled [88] and thick-walled [86] arterial 

models with FSI for blood flow in carotid arteries. Steady flow was assumed and the 

boundary conditions used are not patient-specific. The ADINA finite element package 

was used for these studies. Both of these models were directed towards quantifying 

possible wall collapse conditions and flow characteristics which may be related to artery 

collapse. Tang et al [87] analyzed steady flow and wall compression in stenotic arteries 

using a 3D thick wall model with FSI and concluded that severe stenosis causes 

conditions that may be related to artery compression, plaque rupture, platelet activation 

and thrombus formation. Gay et al. [24] modeled the interactions between blood flow and 

a stent using the immersed finite element method. Their 3D model does not include 

arterial wall interactions with the blood flow. It does, however include 3D modeling of 

the stent-balloon expansion system. Using this model, they studied the flow patterns 

during the stent deployment, and its deformation and stress deformation. 

Li et al [56] conducted FSI studies in stenosed arteries. Li et al developed a model 

that includes FSI, a turbulence model, and realistic boundary conditions. They used a 

combination of 2D and 3D analysis. The flow modeling was done in 3D using FLUENT, 

the solid model was represented by a 2D geometry and was analyzed using ABAQUS. 

MATLAB was used to couple the results from the models. The arterial wall was modeled 

as a linear elastic material. The study, however, focused on factors contributing to plaque 

rupture. Wu et al [123] whose 3D computational models included the artery, stent, 

balloon and plaque, simulated the interactions between stent and arterial wall in curved 

and straight arterial vessels. Final lumen area, tissue prolapse (between stent struts) and 

stress distribution were compared between the straight and curved wall models.   
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2.3 Hemodynamic parameters that influence the occurrence of NIH and restenosis 

The following WSS-based hemodynamic parameters play a role in NIH/restenosis [44], 

[69]:   

 Wall shear stress (WSS) 

Shear stress is a tensor within the flow field and it is given by  
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where  is the shear stress tensor,  is the dynamic viscosity, and   is the shear rate 

tensor. The magnitude of shear tress tensor is given by Equation (2.2) [52]. The 

details on how to compute the magnitude of a tensor are in references [94] and [120].  
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WSS is given by 

 
WSS    

  (2.3) 
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 Time-averaged wall shear stress (TAWSS) 

On a surface or an edge, the shear stress tensor reduces to a vector given by 
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where each component of the vector is the sum of the elements of a row of the stress 

tensor (x the first row, y the second and z the third) .The stress tensor is given by 

Equation (2.1). TAWSS is given by: 
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 Wall shear stress gradient (WSSG) 

Endothelial cells align themselves with the mean flow direction which corresponds to 

the local direction of the TAWSS. The resultant WSSG tensor in the local coordinates 

is given by  
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where ‘m’ is the temporal mean WSS direction, ‘n’ is tangential to the surface and 

normal to ‘m’, and ‘l’ is the surface normal direction. The components of ‘l’ are not 
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of importance to the endothelial cells because it is the tangential forces that influence 

them.  

Hence, when it comes to evaluating endothelial cell function, Equation (2.6) is 

reduced to  
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generate intracellular tension and have been determined to be the 

dominant influence on IT or NIH [44]. Therefore, the literature generally presents 

values for WSSG computed from: 
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where m is the shear stress in the m-direction and n is the shear stress in the n-

direction. 

 Oscillatory shear index (OSI) 

“Cyclic departure of the wall shear stress vector from its predominant axial alignment 

indicates flow disruption over time and is known as the oscillatory shear index (OSI) 

[44]. OSI represents a measure of the shear stress acting on the luminal surface due to 

either “crossflow” or reversing flow velocity components occurring during pulsatile 

flow” [47].  
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OSI is given by  
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where  is the shear stress vector and T is the time period. 

Niemann et al [72] define OSI as  
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where x, y, and z are the magnitudes of shear stress in the x, y, and z directions. 

OSI ranges between 0 and 0.5. Zero OSI signifies a total unidirectional WSS and OSI 

of 0.5 describes a purely unsteady and oscillatory flow [73].  

 

The objective of the current study is to determine the influence of FSI on the 

magnitude of WSS. Note, however, that since each of the other aforementioned 

parameters is related to WSS and literature studies confirm their relation to restenosis and 

NIH, some of these parameters were evaluated in the current study. See Chapter 4 for the 

results.  
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2.4 Numerical methods used in the FSI studies of stents 

The FSI models used in studies of coronary arteries can be either one-way or two-way 

coupled. When a FSI study is one-way coupled it means that either the fluid flow 

influences the solid, or the solid displacement influences the fluid flow, but not both. In a 

two-way coupling, each domain influences the other. To the best of my knowledge, the 

following FSI studies are yet to be conducted: 

 A FSI study with two-way coupling that includes plaque, artery, blood, cardiac 

muscle, and stent in the analysis 

 A FSI study with two-way coupling that includes coronary artery, blood, and stent 

(like the current study).  

The two approaches to solve a one-way or two-way coupled FSI problem are [93]: 

 Solving the equations describing the fluid motion and the solid wall motion separately 

in a segregated manner, using two different solvers, and then using the results from 

one domain as updated boundary conditions for the other domain. This is known as 

the partitioned approach [110] 

 Solving the equations describing the fluid motion and the solid wall motion 

simultaneously in a fully-coupled model. This is also known as the monolithic 

approach [110] 

The Arbitrary-Lagrangian-Eulerian (ALE) algorithm is the most widely used 

numerical method for the fully coupled FSI approach. This method is computationally 

very intensive. Other methods used to solve FSI problems include the immersed 

boundary method, transpiration techniques based on linearization principles, and the 

coupled-momentum method [93]. The current study is conducted using COMSOL 
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Multiphysics software which uses ALE formulation. Hence some details about ALE 

formulation are given in the next section. 

2.4.1 ALE formulation/algorithm in COMSOL 

The physics of a problem determines the partial differential equations (PDEs) that are 

solved in a finite element model. These equations are formulated either in the material 

coordinate system or the spatial coordinate system. When a material coordinate system is 

used, then it is known as the Lagrangian formulation and when a spatial coordinate 

system is used, it is known as the Eulerian formulation. The ALE method, which is a 

combination of the Lagrangian and Eulerian formulations, allows moving boundaries i.e., 

it has a moving mesh [12]. See [10] for more details about COMSOL’s ALE formulation.  

In the COMSOL ALE formulation, the representation of the solid domain (artery 

and stent) is in material coordinates and the fluid domain (blood) is represented by the 

spatial coordinates. These coordinates are related to each other by  

 ( , ) ( , ),x x X t X u X t     (2.11) 

where x is the spatial coordinate, X is the material coordinate, and u is the displacement 

vector in the x-direction pointing from the reference position to the current position. The 

relationships between y,z and Y,Z are similar to Equation (2.11) (the displacement vector 

is replaced by v(Y,t) and w(Z,t) for y and z, respectively). Along with the equations for 

the physics, the mesh deformation on the domains with free deformation (see [10]) is 

determined by one of three equations and it called “smoothing”. For the current study, a 

hyperelastic smoothing method has been used because it works better for FSI problems 

[12]. The important thing to note here is that in order for an FSI simulation to run 
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successfully, COMSOL solves two different kinds of PDEs. One set represents the 

physics of the model (see Chapter 3, Section 3.5) and the other set of represents the mesh 

movement. For more details on the equations that determine the mesh movement, see 

[12].  

2.5 An ideal finite element model for realistic blood flow 

Based on the literature review and the conclusions of the current study (see Chapter 5), a 

finite element model that includes all of the following features is likely to represent a 

more realistic blood flow in diseased, coronary arteries. However, depending on the 

objective of a study not all of these features may be necessary.  

1. Realistic patient-specific arterial geometry and boundary conditions for blood 

flow 

2. Arterial model that considers the incompressibility of arterial wall, tissue 

anisotropy, residual stresses, heterogeneity and layered structure of artery  

3. Non-homogenous plaque represented by a material model   

4. Realistic stent geometry 

5. Coronary artery movement and the presence of cardiac muscle 

6. Stent-balloon assembly model (and interactions between them) 

7. Initial stresses present in the arterial wall 

8. FSI between blood, artery and stent 
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3.  FINITE ELEMENT MODEL 

The objective of the current study was to evaluate the need for modeling fluid structure 

interactions (FSI) in the computational analyses of stented coronary arteries. Modeling 

fully-coupled FSI interactions significantly increases the computational resources 

required to simulate flow of interest as compared to a rigid wall model.  It is therefore 

desirable to determine if the additional complexity and effort produces a significant 

difference in prediction of parameters of physiological interest.  

Due to finite computational resources and the limited availability of realistic data, 

the current study only includes the following features in the computational model: 

1. Realistic boundary conditions for the blood flow 

2. Realistic stent (BMS) geometry  

3. Linear elastic material model for the arteries 

4. Flow was modeled in a healthy coronary artery i.e., no plaque model 

5. Straight tube geometry i.e., no patient-specific geometry 

6. FSI in blood, artery and stent 

3.1 Computational tool: COMSOL Multiphysics 

COMSOL Multiphysics was chosen as the computational tool for this study because it is 

capable of modeling multiple physical phenomena simultaneously. It can simultaneously 

model physics involving fluid mechanics, solid mechanics, chemical reactions etc. Using 

COMSOL, it should be possible to extend the current study of a bare metal stent to 

include simulation of a drug-elution stent. Apart from this, COMSOL is capable of 

creating reasonably complex geometries and has a built-in meshing tool unlike a few 

other Computational Fluid Dynamics (CFD) software that need an external mesh 
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generating software. COMSOL also has a large variety of solvers and off-the-shelf 

modules like the FSI module. These off-the-shelf modules save time in setting up the 

model because they comprise of all the equations required to model the physics. For 

example, the FSI module: 

 identifies the fluid-solid interface automatically. This is very helpful with 

complex geometries.  

 has in-built equations  

o for load applied at the fluid-solid interface, 

o that enable the solid to deform based on the force applied by the fluid 

o that deform the fluid mesh to conform with the solid wall displacement  

3.2 Geometric model and symmetry  

The region of blood flow (blood domain) is represented by a cylinder that is 10mm long 

and has a cross-sectional area of 6.26 sq.mm (2.82 mm diameter). The artery is modeled 

as a hollow cylinder with an internal diameter of 2.82 mm and a wall thickness that is 8% 

of the lumen diameter. The stent model and its dimensions were obtained from a journal 

paper [25]. In the current model, the stent is 2 mm long and has struts that are 0.008 cm 

thick. The full geometric model and an enlarged view of the stent model are shown in 

Figures 3.1 and 3.3. Figure 3.2 shows a view of the geometric model with the stent 

inside. The cylinder has no features that depend on azimuthal position.  The stent 

geometry is regular, repeating in axial and azimuthal directions. The computational 

resources required for the simulation have been greatly reduced by reducing the full-

cylinder model to an extruded pie-sector model (Figure 3.4) with an included angle of 36 

degrees with symmetry conditions imposed on both faces of the pie-slice.   
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Figure 3.1 

Full geometric model 

Figure 3.2 

View of geometric model with stent 

 

 

 

 

Figure 3.3 

Stent model (enlarged view) 

 

 

 

 

Figure 3.4: Model used in current study 
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3.3 Material properties 

In the current study, blood is modeled as an incompressible, homogenous, and Newtonian 

fluid with a density () of 1050 kg/m
3
 and a dynamic viscosity () of 0.0035 Pa-s. The 

arterial wall is represented as a homogenous, incompressible, linear elastic material with 

an elastic modulus (E) of 10
6
 Pa, a Poisson’s ratio () of 0.45, and a density () of 1060 

kg/m
3
. Chapter 1 provides the references for these numbers. All the studies are carried 

out using the material properties of a 316L stainless steel stent. Below are the properties 

used to model the stent material. 

 

 

Table 3.1: Material properties of stent 

 Density 

[kg/m
3
] 

Elastic modulus 

[GPa] 

Poisson’s 

ratio 

316L stainless steel 8000 200 0.30 

 

 

 

The blood flow is assumed to be laminar. Although the velocity and pressure boundary 

conditions are periodic in time, a quasi-steady model that does not include time-

dependent terms in the modeling equations for either the solid or flow domains serves as 

the basis for the computational simulation. Therefore, instead of reporting data at selected 

times from a single transient simulation, the data presented is from a sequence of 

stationary solutions in which each has boundary condition values appropriate for that 

time. From a physical point-of-view, this neglects the influence of inertia for this 

simulation.  

 



49 

 

3.4 Finite element grid (mesh) 

One of the basic steps in a finite element analysis is to divide the model into a finite 

number of elements. This process which is known as discretization reduces the original 

model to a collection of linear, quadratic, or higher order elements. The order of the 

elements is selected by the user. See Chapter 2, Section 3.7 for more details. 

A mesh convergence study was conducted using five meshes viz., M1, M4, M5, 

M6 and M8. The mesh resolution increases with increasing mesh number.  The meshes 

consist of wedge and tetrahedral elements.  

 

.   
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(a) M1 

 

(b) M5 

 

(c) M6 

Figure 3.5: Mesh distribution (full view) 
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Table 3.2: Details of finite element mesh 

Meshes Distribution No. of elements DOF 

M1 5x2 – 2w 52,203 105,510 

M4 5x4 – 2w 113,317 251,971 

M5 8x4 – 3w 168,892 357,389 

M6 10x4 – 3w 199,048 427,692 

M8 14x4 – 4w 298,842 624,826 

 

 

 

Table 3.2 gives the number of elements and the degrees of freedom (DOF) in each mesh. 

Figure (3.5) shows M1, M5 and M6 mesh configurations listed in this table. The mesh 

configuration of M4 is similar to that of mesh, M5 (See Figure 3.5); however, the number 

of elements in M5 are more than the number of elements in M4. Similarly M8 and M6 

have similar configurations but M8 has more number of elements. The numbers under the 

column with heading “distribution” indicate the distribution between the struts along a 

line through the center of the diamond shaped opening formed by the stent struts. For 

example, in Table 3.2, Column2, Row 5 reads “14x4 – 4w”. This means that there are 14 

elements (either structured or unstructured) between the tips of the diamond, 4 elements 

across the strut thickness (radial) and 4 elements along strut width (axial). Figure (3.6) 

shows the geometric representation of the terms strut thickness (radial) and strut width 

(axial). Figure (3.7) shows the above discussed element “distribution” (14 elements, 5 

elements, 4 elements) for mesh M8. 
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Figure 3.6: Single strut showing the terms strut thickness (radial) and strut width (axial)  

  

Strut thickness (radial) 

Strut width (axial) 
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Figure 3.7: Mesh 8 

 

4 elements  

5 elements 

Orthographic view (in xy plane, -ve z) 

Looking at geometry from top 
14 elements 
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(a) On the entire fluid-solid interface 

  

(b) Enlarged view of M6 at the interface  (c) Enlarged view of M8 at the interface 

Figure (3.8) Mesh configuration on fluid-solid interface  

Figure (3.8a) shows the mesh on the fluid-solid interface for mesh, M8. Figures (3.8b) 

and (3.8c) show an enlarged view of this interface mesh for meshes, M6 and M8 

respectively. Even though the current geometry has four struts, Figures (3.8b) and (3.8c) 

show the interface mesh only for two struts (for clarity). The interface mesh distribution 

in and around the remaining two struts is similar to what is shown in these figures.  
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3.5 Partial differential equations (PDE) solved 

Since the blood flow is assumed to be steady, incompressible, homogenous and 

Newtonian, the fluid flow equation that is being solved by COMSOL [12] is given by 

Equation(3.1). 

 
   2 ,fluid fluidu u pI S F     

  (3.1) 

where ufluid is the vector velocity. 

I is the 3x3 identity matrix. S is the strain rate tensor and it is given by  

 
 

1

2

T

fluid fluidS u u  
  (3.2) 

If u, v, and, w are the velocity in the x, y, and z directions, then S in matrix form is 

expressed as shown in Equation (3.3) 
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In Equation (3.3),  is the shear stress and  

 
22 fluid fluidS u u        

  (3.4) 

Using the above expressions, Equation (3.1) reduces to  

 
2

fluid fluid fluidu u p u F      
  (3.5) 

F is the volume force vector and it includes forces like gravity. In FSI models, “F” is the 

force exerted on the solid boundary by the fluid. The magnitude of this force is the same 

as the reaction force on the fluid but opposite in direction [13]. This force is already 

included in COMSOL’s off-the-shelf FSI module and should not be considered as a new 

boundary condition. The reaction force on the fluid (incompressible) due to F is         

given by f 

 
 ,f n pI    

  (3.6) 

where n is the outward normal on the boundary, P is the pressure, I is the identity matrix, 

 is the shear stress. However, since the Navier-Stokes equations are solved in the spatial 

frame while the solid mechanics interfaces are defined in the material frame, this force 

needs to be transformed [13]. Hence the final expression of F becomes 

 ,
dv

F f
dV

    (3.7) 
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where dv and dV are the mesh element scale factors for the spatial and material frames 

respectively. The mesh element scale factor is used for mapping between the local and 

global coordinates. For more information on the mesh element scale factor, see reference 

[12]. Also, since FSI involves a moving mesh, the fluid velocity in Equation (3.6) is 

replaced by the wall velocity,  

 
,solid

fluid wall

u
u u

t


 

   (3.8) 

where solidu is the displacement of the solid.  

Equation (3.1) has two unknowns, which are the blood velocity, u, and the pressure, p. 

Continuity provides the second equation to be satisfied. For an incompressible, steady 

flow, it reduces to  

 
0fluidu 

  (3.9) 

The pressure and velocity boundary conditions that are used to solve Equation (3.1) are 

discussed in Chapter 3, Section 3.6. In this equation, the coefficients of the partial 

differential terms are not constant but they are the dependent variables. Hence, the 

equation is classified as nonlinear.  

The equation that is used to solve the unknowns in the solid domain (artery and 

stent) is based on the principle of virtual work. It states that the sum of the virtual work 

from internal strains is equal to work from the external loads [13]. For the current study, 

the simplified form is given by  
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 vF 
  (3.10) 

Since the normal and shear strain variables depended on the displacement variables, 

using the above principle the displacements are evaluated. 

3.6 Boundary conditions 

The boundary conditions used for the blood, stent and artery are shown in Figure (3.9) 

 

 

 

 

Figure 3.9: Boundary conditions used in the current study (for FSI sub-study) 

 Physiological velocity and pressure waveforms are used as the inlet and outlet 

boundary conditions of the blood domain. These waveforms are periodic and were 

published by Torii et al [91]. The data corresponding to the waveforms were recorded 

during a PCI procedure in the RCA of a patient with severe stenosis [91]. Figure (3.10a) 

shows the velocity waveform at the centerline of the inlet to the RCA and Figure (3.10b) 

shows the pressure waveform at the outlet of the RCA. This pressure is assumed to be 

constant across the cross-section of the outlet.   
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(a) Pressure waveform at the outlet of an RCA (b)Velocity waveform at the centerline of  

               the inlet of an RCA 

 

Figure 3.10: Physiological waveforms [91] 

 

 

 

The waveform in Figure (3.10a) represents a patient-specific unsteady pulsatile 

velocity. However, since it is recorded only at the center of the inlet to the RCA, the data 

cannot be directly used as the inlet boundary condition. The Womersley velocity equation 

is commonly used to represent an unsteady, pulsatile blood flow (See Chapter 1, Section 

1.3). Since the pressure gradient along the artery is not known, the Womersley velocity 

equation has to be modified so that it is independent of the pressure gradient. See 

Appendix C for details on this derivation. The Womersley velocity equation (independent 

of pressure gradient) is given by Equation (3.11) 
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where   

 ,u r t  is the time-dependent velocity of the flow 

r is the coordinate in the radial direction, 

R is the radius of the rigid, straight cylinder, 

/h r R    (3.12) 

23
2 3

2

n
n n

i n n
i R

R

 
 

 
       (3.13) 

 1,2,3, .    / 2   n M where M N See Appendix B     (3.14) 

2

T


     (3.15) 

T is the time period of the flow,  

 is the angular frequency (pulse frequency) of the flow 

  is the kinematic viscosity of the fluid. 

In Equation (3.11) ,  nq r  and 0q are Fourier coefficients computed using the data from 

Figure 3.10(a). 

 

 Since the pressure waveform shown in Figure 3.10(b) is periodic, it can be 

represented as a Fourier series (See Appendix B for details) given by 

 
       0

1 1

( , ) 2 cos 2 sin
M M

p pn pn

n n

p x t a a x n t b x n t 
 

   
  (3.16) 
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where   is the angular frequency and is given by Equation(3.16), 0pa , pna pnb  are 

Fourier coefficients that are computed using the data from Figure 3.10(b). The values and 

details on how the Fourier coefficients (  nq r , 0q , 0pa , pna pnb ) are evaluated is 

described in Appendix B. It is important to note that the expression for the inlet velocity 

boundary condition (Equation (3.11)) is a function of the inlet radius, r because:  

(a) Since the current analysis involves a moving mesh (See Chapter 2, Section 2.4.1), the 

radius “r” changes with time. Sometimes, the radius, r is larger than the initially 

prescribed lumen radius (R). If r>R, then the velocity computed form the equation at 

the inlet to the blood domain becomes negative and this changes the direction of flow 

leading to convergence issues. To prevent this from happening, the inlet boundary 

condition is modified as: 

 
        0_ , * , *u inlet r t r R u r t r R u   

  (3.17) 

where 0 0u   and  ,u r t  is given by Equation (3.11) 

(b) The current analysis is carried out using the Cartesian coordinates. However, the 

Womersley velocity profile was derived using the cylindrical coordinate system (See 

Appendix  C). In order to transform the cylindrical coordinates to the Cartesian 

coordinates, the radial coordinate, ‘r’ in Equation (3.11) is replaced by 

 
2 2 ,r Y Z    (3.18) 

where Y and Z are the Cartesian material coordinates. ‘r’ can also be defined as  
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2 2 ,r y z 

  (3.19) 

where y and z are the spatial coordinates. In Equation (3.11),’r’ represents the inner 

radius of the artery in the original geometry (before deformation). Since COMSOL is 

used for the current study, Equation (3.18) is used to transform the cylindrical 

coordinates to Cartesian coordinates because in COMSOL, Y and Z are independent 

material coordinates that relate to the original geometry. Coordinates y and z are 

spatial coordinates that depend on the moving mesh and, as a result, they are also 

solution-dependent and, hence, cannot be used [12]. The relation between the 

material and spatial coordinates is given by Equation(2.11) in Chapter 2. 

(c) In COMSOL, the Dirichlet boundary conditions have constraints (restrictions) 

imposed upon the dependent variables. By default, these constraints are bidirectional 

constraints. Depending on the physics involved, however, these can be changed to 

unidirectional constraints. In the current study, the inlet velocity boundary condition 

given by Equation (3.11) is a normal inflow velocity (and it is also a Dirichlet 

boundary condition) that involves moving mesh coordinates. For such a condition, it 

is recommended (by COMSOL) to use a unidirectional constraint [12]. Using 

bidirectional constraints results in applying the boundary conditions to the moving 

mesh equations which is not desirable for the current study. 

The outlet boundary condition is specified as a “pressure, no-viscous-stress” boundary 

condition and it is given by  

 
 , ,p p x t

  (3.20) 
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where  ,p x t  is given by Equation (3.16). The “pressure, no-viscous-stress” boundary 

condition is similar to the pressure boundary condition except that it is more stable. For 

the current study, the pressure, no-viscous boundary conditions resolved some of the 

convergence issues.  

To summarize, the inlet and outlet boundary conditions are as follows:  

 Inlet boundary condition: 

o Normal velocity boundary condition 

o Unidirectional constraints 

o Equation(3.17). 

 Outlet boundary condition: 

o Pressure, no-viscous-stress boundary condition 

o Equation (3.16) and bidirectional constraints (default option)  

Due to the symmetry in the geometry of blood, stent and artery about the x-axis, 

symmetry boundary conditions are used to reduce the computational domain from a full 

cylinder to an extruded pie-sector that is 10 times smaller. In COMSOL, the symmetry 

boundary conditions for the solid domains (artery and stent) ensure that the boundary is 

free in plane and fixed in the out of plane direction (normal displacement is zero) while 

for the fluid domain, the symmetry boundary condition prescribes no penetration and 

vanishing shear stresses.  
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The equations of the symmetry boundary condition for the fluid are given below [12] 

 
0fluidu n 

  (3.21) 

 
  0pI n   

  (3.22) 

A roller boundary condition is used on the front and rear faces of the artery. This prevents 

axial motion of the artery (but does not restrain the radial motion) i.e., the displacement 

normal to the surface with the roller boundary condition is zero. By constraining the 

artery axially, it is being assumed that the arterial model being investigated is a part of an 

artery/circulation system.  

 In the current study, the outer radius of the stent geometry is equal to the inner 

radius of the arterial wall. As a result, COMSOL assumes that the stent is always in 

contact with the arterial wall even when the arterial wall expands due to the blood flow. 

This is a reasonable assumption because realistically, after the implantation, the stent is 

not expected to move. Also, as mentioned in Chapter 3, Section 3.1, the off-the-shelf FSI 

module automatically applies the boundary load at the fluid-solid interface. The details 

and the expression used by COMSOL to compute this boundary load are given in Chapter 

3, Section 3.5. 

 The displacement of the fluid mesh (prescribed mesh displacement boundary 

condition) in the xy-plane is constrained in the z-direction; i.e., it does not move in the 

axial direction. The fluid mesh (prescribed mesh displacement) is also constrained on the 

inclined plane in a direction normal to the plane. These two prescribed mesh 
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displacements on the fluid mesh enable the fluid to follow the solid as it displaces 

(expands or contracts radially). The “free deformation” setting of mesh that determines 

the equations used for the mesh movement is of the hyperelastic smoothing type. In this 

study, any other smoothing type resulted in convergence issues. More details and the 

equations related to the moving mesh and smoothing types, are given in [12]. 

3.6.1 Inlet boundary condition: Womersley velocity vs steady, parabolic velocity  

In the current study, the Womersley number is 1.9. It is computed as follows:  

 

 

 

2 /1
0.00141 ~ 1.9

0.0035 /1050
R





 

  (3.23) 

If the Womersley number is less than 1, the inlet velocity profile can be approximated by 

a parabolic velocity profile (See Chapter 1, Section 1.3). However, from Figure (3.11), it 

can be seen that the pulsatile component of the Womersley velocity profile is significant 

and cannot be ignored. At t = 0.15 s (this is where the inlet velocity is the maximum), the 

average percentage difference between the Womersley velocity and the steady parabolic 

velocity is about 40%. Moreover, considering the pulsatile velocity makes the flow more 

realistic. Figure (3.11) was plotted by evaluating Equation (3.11) at different values of r 

and t.  
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Figure 3.11: Plot of Womersley velocity as a function of radius (at the inlet face to the 

geometry) 

3.7 Finite element method  

As mentioned in Chapter 3, Section 3.4, the first step in a finite element analysis is to 

discretize the physical domain. Upon discretization, linear, quadratic or higher order 

elements are used to represent the geometry and an approximate solution is computed for 

the dependent variables using interpolation functions. For example, consider the 

dependent variable, velocity (u), which can be approximated as follows: 

 1
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j j
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u U 
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  (3.24) 
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where jU are the values of u at each node of an element. jU is also called as the solution 

vector. j  is the approximate function that is usually represented by a polynomial and 

these are derived using the interpolation theory [80]. Hence the name interpolation 

functions. When the approximate functions are expressed in terms of the local 

coordinates, they are known as shape functions [11]. It is assumed that the dependent 

variables are continuous. It is these shape functions that determine the order of the 

element (linear, quadratic etc.). More details about the shape functions and the finite 

element method are found in references [11], [80]. The current study uses linear order 

elements in both the fluid and the solid domains. The fluid domain uses P1+P1 elements 

(first order interpolation function to approximate velocity and pressure and the solid 

domain uses linear elements to approximate the displacement. See [10] for a more 

detailed description. 

Given the PDE, boundary conditions, and the interpolation functions, COMSOL 

solves the problem by converting the PDE to a weak form. “A weak form of a differential 

equation is defined to be a weighted-integral statement of a differential equation in which 

the differentiation is transferred from the dependent variable to the weight function such 

that all natural boundary conditions of the problem are also included in the integral 

statement”[80]. More details about the weak form can be found in [11]. COMSOL uses 

the Galerkin method to discretize the weak form PDE. In order to handle numerical 

instabilities, COMSOL uses the streamline and crosswind diffusion methods. For details 

see the [11].  
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3.8 Research problem and COMSOL solver details 

In order to achieve the objective of the current study, two different sub-studies are carried 

out viz., FSI sub-study and no-FSI sub-study. The FSI sub-study was built using the 

boundary conditions shown in Figure (3.9) and the no-FSI sub-study was built using the 

boundary conditions shown in Figure (3.12). The differences between the finite element 

models that use these studies are listed in Table (3.3). 

 

 

Table 3.3: Important differences between FSI and no-FSI models 

  FSI No-FSI 

1.  Force acting on the 

fluid-solid interface 

Force is included 

and it given by 

Equation (3.7)  

No force is acting on the 

wall. Equation (3.7) is not 

included.  

    

2.  Mesh Moving Fixed 

    

3.  Domains used in the 

analysis 

Artery, stent and 

blood 

Blood (artery and stent are a 

part of the geometry but 

there is no physics assigned 

to them) 

    

4.  Equations 

representing the 

physics 

(3.5), (3.7),(3.9)

(3.10), (2.11) 

(3.5), (3.9) 

    

5.  Equation at the 

interface (FSI) or 

wall (no-FSI) 

(3.7) u = 0 (no slip) 

    

6.  Boundary conditions Figure (3.9) Figure (3.12) 

 

 

 

Discretization of the domain of interest using finite elements converts the weak 

form of the equations modeling the solid and flow domains into a large system of 

nonlinear algebraic equations. To state the COMSOL solution algorithm briefly, first an 

initial estimate of the solution is used to linearize the system.  The linearized system is 
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then solved using a user-selected linear solver (see below). COMSOL then uses “an 

affine invariant form of the damped Newton method” to solve the nonlinear system [11]. 

For more details see [11] 

 

 

 
 

Figure 3.12: Boundary conditions used in the current study (for no-FSI sub-study) 

In COMSOL, linear solvers can be divided into two categories which are: direct 

solvers and iterative solvers. Since the current study uses a direct solver (and not iterative 

solver) for both FSI and no-FSI sub-studies, some details about the direct solver are given 

below. For details about the COMSOL iterative solver, see [11]. The direct solver uses an 

LU factorization to solve for the unknown variable. L stands for lower and U stands for 

upper triangular matrix of the coefficient matrix. For example, when solving for a system 

of the form Ax=B [11] , the direct solver uses LU factorization on the coefficient matrix 

A and computes the unknown (dependent variables), ‘x’. COMSOL has three different 

direct solver algorithms, and they are the MUltifrontal Massively Parallel sparse direct 

solver (MUMPS), the PARDISO solver, and the Sparse Object Oriented Linear 
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Equations Solver (SPOOLES). The current study uses the MUMPS solver because as in 

COMSOL version 4.2a, it is recommended to run MUMPS when running a simulation in 

distributed mode (with cluster or parallel processors).  

A solver can use a fully coupled approach or a segregated approach. In a fully 

coupled approach, the fluid and the solid equations are solved simultaneously instead of 

sequentially (See Chapter 2, Section 2.4). In the no-FSI sub-study, using a fully coupled 

approach means that the fluid velocity and pressure are solved simultaneously. In a 

segregated approach the fluid and the solid equations are solved sequentially. A fully 

coupled approach helps when the physics are strongly coupled. Both the FSI and the no-

FSI sub-studies used a fully coupled approach. 

On a different note, the time-dependent solver in COMSOL uses two kinds of 

implicit solvers which are the Generalized-alpha and backward differentiation formula 

(BDF) solvers. More details about these methods can be located in [11].  

The skeleton of the research problem is shown in Figure (3.13) 
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Figure 3.13: Summary of research problem 

In COMSOL, when the relative error, E, is below a specified relative tolerance, 

the solution is said to be converged. The relative error is computed on the solution vector 

(i.e., the dependent variable matrix that is being solved for in the equations). The relative 

error is computed as the weighted Euclidean norm given as [11]: 
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  (3.25) 

where  

 
 max ,i i iW U S

  (3.26) 
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N is the number of degrees of freedom (DOF). iS is a scale factor that solver determines 

on the basis of the scaling method (automatic, manual, initial value based and none). For 

the current study this scaling method is chosen as automatic. See [11] for more details 

about these methods. In the current study, the relative tolerance is set to 0.001. More 

details about the basis for selecting this relative tolerance are presented in Chapter 4, 

Section 4.4.  

The current study is a quasi-stationary study (See Chapter 3, Section 3.3) which 

means that the equations are solved for steady flow but the boundary conditions are time-

dependent and the simulation is run for 16 different times during the period of the 

boundary conditions: t = 0, 0.06, 0.07, 0.14, 0.15, 0.20, 0.37, 0.40, 0.44, 0.49, 0.50, 

0.57,0.70,0.86,0.96,1s. These times correspond to the time when the maximum velocity, 

minimum velocity, maximum pressure, minimum pressure occur locally in the 

waveforms shown in Figures 3.10 (a) and (b). The results of the two sub-studies are 

presented in the next chapter. 
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4.  RESULTS AND DISCUSSION 

The current study comprises of two sub-studies which are the FSI sub-study and the no-

FSI sub-study (See Chapter 3, Section 3.8, for more details on the sub-studies). The data 

was extracted at 16 different times (for both the sub-studies).However, only the results 

presented in Chapter 4, Section 4.9 use the data corresponding to all the 16 times. Most 

of the other results presented in this chapter use the data corresponding to one or all of 

the following four specific times which are t = 0.06 s, 0.15 s, 0.44 s, 0.96 s. These four 

specific times were selected because the inflow velocity and outflow pressure waveforms 

(Figure 3.10(a) and (b)) show that the: 

 global maximum velocity occurs at  t = 0.15 s  

 global minimum velocity occurs at t = 0.44 s. This also corresponds to the global 

maximum pressure 

 global minimum pressure occurs at t = 0.06 s.  

The fourth point (t = 0.96 s) is selected because the velocity profile changes abruptly at 

this time. Wall shear stress (WSS), Wall shear stress gradient (WSSG), Oscillatory shear 

index (OSI), and Time-averaged wall shear stress (TAWSS) are the four parameters of 

interest. Chapter 2, Section 2.3 lists a few journal papers that correlate these parameters 

with the occurrence of restenosis and NIH.  

Below are the expressions that are used to compute these parameters:  

 WSS:  Equation (4.1) is used to compute the WSS,  

 ,    (4.1) 
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where  is the magnitude of the shear rate tensor given by Equation (4.2) and  is the 

dynamic viscosity. See Chapter 2, Section 2.3 for more details.  
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Since the objective of this computational study is to show how the FSI influences the 

magnitude of WSS, there are many sub-studies carried out on this (WSS) parameter. 

These WSS results are presented in Sections 4.1 to 4.6. 

 WSSG: From Chapter 2, Section 2.3, the expression for the WSSG is given by 

 

2 2

,m nWSSG
m n

     
    

       (4.3) 

where m and n are the shear stress in the ‘m’ (local coordinate in the direction of the 

WSS) and ‘n’ directions (‘n’ is normal to the ‘m’ direction and it is the local 

coordinate in the tangential direction to the surface containing ‘m’ and ‘n’ 

coordinates). Using Equation(4.3), an unsuccessful attempt was made to compute the 

WSSG on the edge shown in Figure (4.1). The attempt was not successful because it 

was difficult to determine the magnitude of WSS in the local coordinates.  
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 TAWSS: The expression for TAWSS is given by  
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  (4.4) 

      where x, y, and z are the magnitudes of shear stress in the x, y, and z directions. See 

below for more details on how to compute this expression. 

 OSI: The expression for OSI is given by Equation (4.5) 
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  (4.5) 

Equations (4.4) and, (4.5) are deduced from Equations(2.5), (2.10) in Chapter 2, 

Section 2.3. In the current study, n = 15. As mentioned at the beginning of this 

chapter, the data was extracted at 16 different times (including t = 0 and t = 1 s, both 

of which represent the same data points in the periodic inlet velocity and outlet 

pressure waveforms). Hence n = 15. It is important to note that the Equations (4.4) 

and (4.5) are actually defined for a time-dependent problem. Since the current study 

is a quasi-stationary study, the magnitude of WSS is evaluated at discrete times. 

Hence, the integral symbol in Equations(4.4) and (4.5) is replaced by the summation 

symbol. In order to compute the TAWSS, the values of x, y, and z at each of the 16 

different times are extracted from COMSOL.  
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Below is a brief summary of the sub-studies that have been carried out to achieve the 

objective of the current study. The results of other small studies that were completed in 

the process of achieving this objective are also presented in this chapter: 

 Mesh convergence study for the FSI and no-FSI cases 

 Comparison of WSS for the FSI and no-FSI sub-studies using the finest mesh 

 Tolerance selection criteria for the current study 

 Magnitude of TAWSS and OSI for FSI and no-FSI sub-studies 

4.1 Mesh Convergence Study 

For both FSI and no-FSI sub-studies, mesh convergence was evaluated using the five 

meshes described in Chapter 3, Section 3.4. Magnitude of WSS was used to evaluate the 

mesh convergence. The WSS data were extracted along a selected edge (edge highlighted 

in blue in Figures 4.1 (a) and (b)). Sections 4.1.1 and 4.1.2 present the results of the mesh 

convergence study for the FSI and no-FSI sub-studies, respectively. In the results, the 

abbreviations ‘ebe’ and‘s’ stand for edge-by-edge and stent. The edge-by-edge indicates 

that the data was collected one line segment at a time. In other words, the edge shown in 

Figure 4.1 (a) and (b) is made up of 23 line segments (or 23 entities). At any given 

instance, the x-coordinates and WSS data were collected for one entity at a time. Then 

the data for each entity were sorted in ascending order (of the x-coordinate) before 

combining it with the adjacent entity. A table was created with the sorted data 

corresponding to all 23 entities that make up the edge (highlighted in blue in Figure 

4.1(a)) and this table was used to plot all the figures. This methodology was followed 

because extracting the data in one-step for the entire highlighted edge resulted in some 

data plotting issues due to the presence of duplicate nodes (See Section 4.5 for details). 
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(a) View 1    (b) View 2 

Figure 4.1: Edge used for mesh convergence 

4.1.1 Mesh Convergence Study (FSI)  

Figures 4.2 (a), (b), (c) and (d) show the WSS computed along the entire edge while the 

Figures 4.3 (a), (b), (c) and (d) show the results near the strut region (for clarity 

purposes). Both these sets of figures are plotted using the data from the FSI sub-study and 

the data were extracted at the edge shown in Figure (4.1). The Figures (a), (b), (c) and (d) 

correspond to the four different times t = 0.06 s, 0.15 s, 0.44 s and 0.96 s. Figures 4.4(a) 

and 4.4(b) show the enlarged view of the mesh convergence study at t = 0.44 s. The 

‘green line’ in the plots is the 2D projection of the edge shown in Figure (4.1). 
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(a)WSS at t = 0.06 s    (b) WSS at t = 0.15 s 

 

 
(c)WSS at t = 0.44 s    (d) WSS at t = 0.96 s 

Figures 4.2: Mesh convergence study on WSS, FSI, quasi-stationary 
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(a)WSS at t = 0.06 s    (b) WSS at t = 0.15 s 

 

 
(c)WSS at t = 0.44 s    (d) WSS at t = 0.96 s 

 

Figures 4.3: Mesh convergence study on WSS near struts, FSI, quasi-stationary 
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(a) WSS on the entire edge 

 

(b)WSS near the struts  

Figures 4.4: Mesh convergence study on WSS, FSI, quasi-stationary, t = 0.44 s (enlarged 

view) 
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The results of this mesh convergence study show that the regions between the 

struts are reaching mesh independence while the regions before and after the strut are 

clearly mesh independent. Although it would be desirable to test an even finer mesh in 

the neighborhood of the stent, available computational resources are not capable of 

supporting that simulation. Further, it was observed that in many instances the small 

changes in WSS (between the struts) accompanying mesh refinements were oscillating in 

magnitude providing further confidence in the convergence of the mesh study.  Hence the 

finest mesh, M8, is used for evaluating the results in all the studies. 

4.1.2 Mesh Convergence Study (no-FSI) 

Figures 4.5 (a), (b), (c) and (d) show the WSS computed along the entire edge while the 

Figures 4.6 (a), (b), (c) and (d) show the results near the strut region (for clarity 

purposes). The data used to plot these results were extracted at the edge shown in Figure 

(4.1) and they are from the no-FSI sub-study. The Figures (a), (b), (c) and (d) correspond 

to the four different times t = 0.06 s, 0.15 s, 0.44 s and 0.96 s. Figures 4.7(a) and (b) show 

the enlarged view of the mesh convergence study for the no-FSI case at t = 0.44 s.  
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(a)WSS at t = 0.06 s    (b) WSS at t = 0.15 s 

 

 
(c)WSS at t = 0.44 s    (d) WSS at t = 0.96 s 

Figures 4.5: Mesh convergence study on WSS, no-FSI, quasi-stationary 
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(a)WSS at t = 0.06 s    (b) WSS at t = 0.15 s 

 

 
(c)WSS at t = 0.44 s    (d) WSS at t = 0.96 s 

Figures 4.6: Mesh convergence study on WSS near struts, no-FSI, quasi-stationary 
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(a)WSS on the entire edge 

 

(b)WSS near the struts 

Figures 4.7: Mesh convergence study on WSS, no-FSI, quasi-stationary, t = 0.44 s 
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The results of this mesh convergence study show that the regions between the 

struts are reaching mesh independence while the regions before and after the strut are 

clearly mesh independent. Although it would be desirable to test an even finer mesh in 

the neighborhood of the stent, available computational resources are not capable of 

supporting that simulation.  Further, it was observed that in many instances the small 

changes in WSS accompanying mesh refinements were oscillating in magnitude 

providing further confidence in the convergence of the mesh study.  Hence the finest 

mesh, M8, is used for evaluating the results in all the studies. 

4.2 FSI versus no-FSI 

All the data in this section were computed using the finest mesh, M8, and the results 

presented here were extracted from the edge shown in Figure 4.1(a) and (b). This study 

compares the WSS for the FSI and the no-FSI sub-studies. Figures 4.8 (a), (b), (c) and (d) 

show the results on the entire edge while the Figures 4.9 (a), (b), (c) and (d) show the 

results near the strut region (for clarity purposes). The Figures (a), (b), (c) and (d) 

correspond to the four different times t = 0.06 s, 0.15 s, 0.44 s and 0.96 s. Figures 4.10(a) 

and (b) show the enlarged view of the WSS for the FSI and no-FSI results at  0.44 s.  

It can be observed that in the region away from the struts, the magnitude of the 

WSS for the FSI sub-study is lower than the magnitude of the WSS for the no-FSI sub-

study (See Figure (4.8)). This can be explained by the wall compliance of the FSI sub-

study. As the pressure in the blood domain increases, the radius of the vessel also 

increases. Consequently, the velocity decreases resulting in a lower WSS compared to the 

WSS from the no-FSI sub-study (which has no wall compliance). Figure (4.8) also shows 

that the magnitude of WSS (from FSI sub-study) increases and decreases rapidly just 
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before the stent region. On the stent surface, the WSS magnitude is higher for the FSI 

sub-study. In the region between the struts (where restenosis occurs), the results of the 

two sub-studies are close to each other (See Figure (4.9)). The shape of the WSS curves 

on the stent, in between the struts, in the proximal and in the distal regions of the 

geometric model is similar for the FSI and no-FSI sub-studies. The primary area of 

interest in the current study is the region between the struts because this is where the 

restenosis occurs. Hence, some more WSS studies were carried out in this region. 
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(a)WSS at t = 0.06 s   (b)WSS at t = 0.15 s 

 

 
(c)WSS at t = 0.44 s    (d)WSS at t = 0.96 s 

Figure (4.8): WSS for the FSI vs no-FSI, quasi-stationary 
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(a)WSS at t = 0.06 s    (b) WSS at t = 0.15 s 

 

 

(c)WSS at t = 0.44 s    (d) WSS at t = 0.96 s 

Figure 4.9: WSS for FSI vs no-FSI, quasi-stationary 
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(a) WSS on the entire edge 

 

(b)WSS near the struts 

Figure 4.10: WSS for FSI vs no-FSI, quasi-stationary t = 0.44 s (enlarged view)  
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Figures 4.11(a), (b), (c) and (d) show the percentage error in the WSS as a 

function of the x-coordinate. The percentage error is computed as %error =abs (WSSFSI-

WSSNFSI)/WSSFSI and is presented for simulations at times t = 0.06 s, 0.15 s, 0.44 s and 

0.96 s. On the edge shown in Figure 4.1(a) and (b), the error analysis was carried out only 

at those regions where the artery is exposed to the blood flow (no percentage error was 

computed on the stent surface. The percentage error was not computed on the stent 

because NIH is related to the magnitude of WSS on the arterial wall (and not due to the 

magnitude of WSS on the stent wall). Please note that the x-coordinate used in Figure 

(4.11) corresponds to the x-coordinate of the edge (in Figure 4.1 (a) and (b)) from the FSI 

sub-study. The FSI sub-study includes wall compliance. As a result, the x-coordinate of 

the FSI sub-study is slightly different from the x-coordinate for the no-FSI sub-study. 

Since the magnitude of difference in x-coordinates is in the order of 10
-5

, the error 

introduced should be negligible for the purposes of the present study.  

Figure (4.11) demonstrates that between the struts and in the distal region of the 

geometric model, the results of the FSI sub-study are noticeably different from the no-FSI 

sub-study. In between the struts, the percentage error between the FSI and no-FSI sub-

studies varies from 1% to 50% depending on the velocity and pressure magnitude (i.e. 

based on the time ‘t’ when the results are evaluated). 
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(a)Percentage error at t = 0.06 s   (b) Percentage error at t = 0.15 s 

 

  

(c) Percentage error at t = 0.44 s  (d) Percentage error at t = 0.96 s 

Figures 4.11: Percentage error in WSS for FSI vs no-FSI, quasi-stationary 
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4.3 FSI versus no-FSI (edge vs other locations) 

In this study, the WSS computed on the 3 edges (shown in Figure 4.12) is compared with 

the WSS obtained along the line segments shown in Figure (4.12) and (4.13). This study 

was carried out for both the FSI and no-FSI sub-studies. Mesh, M8 is used for this 

analysis and the results are presented at times, t = 0.06, 0.15, 0.44 and 0.96 s. The line 

segments (8 different line segments) which are located in between the struts (on the 

artery-blood interface) were selected to be parallel to the axial direction. Four line 

segments make an angle of 12

 with the y-axis. The other set of line segments (four more) 

are also parallel to the x-axis but they make an angle of 20 with the y-axis. Figures 

(4.12) and (4.13) show the locations of these line segments. Figure (4.13) presents the 

view of the blood domain when looking at it from the inflow side (the arterial domain is 

not shown). The red dots in this figure represent the line segments of interest. Figure 

(4.12) shows the stent and line segments (artery and blood are not shown for clarity 

purposes). Also, the stent in Figure (4.12) is presented at an angle that is not aligned with 

the axis. This particular view was chosen because it gives a better view of the location of 

the line segments.   

On each of these 8 line segments, the user has defined five locations where the 

values of the WSS are to be computed. Hence there are 40 points (5 points per line 

segment and there are 8 line segments) where the WSS is computed. These user-defined 

coordinates are represented by the black dots (points) on the red lines shown in Figure 

(4.14). The line segments (2 out of 8), user-defined points and the nearest nodal locations 

in the first strut are shown in Figure (4.14). The location of these entities is similar in the 

remaining struts.  
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Figure 4.12: Edges and line segments used in Section 4.3 

 

 

 

 

Figure 4.13: Edges and line segments used in Section 4.3: a different view 
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Figure 4.14: Location of the first and second minimum distances from the line segments 

of interest (in the first strut of the stent) 

In Figure (4.14), the WSS is being computed on the line segments shown in red. These 

red line segments account for two out of the eight line segments shown in Figure (4.12). 

The points shown adjacent to the line segments were the closest nodal locations (nodes 

from mesh) where COMSOL computes the WSS. The values of WSS at these closest 

nodal points were used to approximate the values of WSS at the user-defined points on 

the line segment i.e., the WSS values from the two closest nodal points to the user-

defined point (on the line segment) were extracted and their average was computed. This 

average was determined as the value of the WSS at the user-defined point on the line 

segment. For example, consider the points A, A1 and A2. A is a user-defined point with 

A 
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coordinates A (0.004162, 0.001378188, 0.000293155). The coordinates of A1 and A2 are 

extracted from COMSOL and they are A1 (0.004153428273940, 0.001381155367075, 

0.000283945219938) and A2 (0.004170723498887, 0.001377511235767, 

0.000309267141546). A1 and A2 are the two closest nodal points to A where COMSOL 

computes the values of WSS. The WSS at A is approximated by taking the average of the 

WSS extracted at nodes A1 and A2. This procedure is repeated for all 40 points. It can be 

seen that for 80% of the points, the two closest nodal locations to the user-defined points 

(on the line segments) lie on either side of the line segment. However for 2 points, B and 

C, the closest locations lie on the same side of the line segment. It is assumed that the 

error introduced by this approximation is negligible because the distance between the 

user defined points and the nodal points varies in the order of 10
-3

.  

 All the results in this section are extracted on mesh M8. Figures 4.15 (b), (c), (d) 

and (e), 4.16(b), (c),(d) and (e) present the variation of WSS with the x-coordinate for the 

FSI and no-FSI sub-studies at times t = 0.06 s, 0.15 s, 0.44 s, and 0.96 s. The data for 

these results were extracted at the edges and line segments shown in Figures 4.15(a) and 

4.16(a). Figures 4.17(b), (c), (d) and (e) compared to the WSS values for the FSI and no-

FSI sub-studies at the four different times listed above.  
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(a) 

 

 

 

  
(b)WSS at t = 0.06 s     (c)WSS at t = 0.15 s 

 

 

 

  
(d)WSS at t = 0.44 s     (e) WSS at t = 0.96 s 

 

 

 

Figure 4.15: WSS at the edge vs line segments, FSI (near struts), quasi-stationary  

Line segment 

(8 locations) 

3 edges  
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(a) 

 

 

 

  
(b)WSS at t = 0.06 s     (c)WSS at t = 0.15 s 

 

 

 

   
(d)WSS at t = 0.44 s     (e)WSS at t = 0.96 s 

 

 

 

Figure 4.16: WSS at the edge vs line segments, no-FSI (near struts), quasi-stationary   

Line segment 

(8 locations) 

3 edges  
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The magnitude of the WSS for the FSI sub-study is comparable to that from the 

no-FSI sub-study at: (i) each of the 3 edges; and (ii) each of the line segments located at 

20 (See Figure (4.17). The difference in the magnitude of WSS between the two sub-

studies; however is relatively higher at each of the line segments located at 12. It is 

important to note that the magnitude of WSS between the struts: 

 is always less than 0.5Pa for both the FSI and no-FSI studies (See Figure (4.17)).  

 for the FSI sub-study is almost always greater than the magnitude of WSS obtained 

from the no-FSI sub-study. 

Below are some additional details that were observed from Figure 4.17.These details are 

not related directly to the stated objective of this study. In Figure 4.17(b), at the 20 line 

segments, the maximum magnitude of WSS inside the first strut is around 0.08Pa but the 

maximum magnitude of WSS inside the subsequent struts is about 0.06Pa, 0.07Pa, 

0.06Pa. Similarly in Figure 4.17(e), the maximum magnitude of WSS inside each of the 

struts on the 12 line segments changes between 0.18 and 0.1Pa. This shows that the 

WSS does change with repetition of the local strut geometry. Some literature studies [3] 

use single stent elements. The above results indicate that it may be important to have 

more than one strut in a simulation. It can also be seen that: (1) inside the strut region, the 

WSS is lowest near the strut walls and it reaches a maximum value in between any two 

struts. (2) the shape of the WSS curves in between the struts is similar for the FSI and no-

FSI sub-studies. 

 Also, note that the scale of WSS at time, t = 0.15 s and t = 0.96 s is three times the 

scale of WSS at t = 0.06 s and t = 0.44s, respectively. See Figure 4.17.  
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(a) 

 

 

 

  
(b)WSS at t = 0.06 s     (c)WSS at t = 0.15 s 

 

 

 

   
(d)WSS at t = 0.44 s     (e)WSS at t = 0.96 s 

 

 

 

Figure 4.17: WSS, edge vs line segments, FSI vs no-FSI (near struts), quasi-stationary  

Line segment 

(8 locations) 

3 edges  
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Figures 4.18(a), (b), (c) and (d) which show the percentage error between the FSI and no-

FSI sub-studies at the locations shown in Figure (4.12), were computed at t = 0.06 s,  

0.15 s, 0.44 s, and 0.96 s. These figures demonstrate that, between the struts, the 

percentage error between the FSI and no-FSI sub-studies varies from 1% to 50% 

depending on the velocity and pressure magnitude (i.e. based on the time‘t’ when the 

results are evaluated). 
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(a) 

 

 

 

  
(b)Percentage error at t = 0.06 s    (c) Percentage error at t = 0.15 s 

 

 

 

   
(d) Percentage error at t = 0.44 s   (e) Percentage error at t = 0.96 s 

 

 

 

Figure 4.18: Percentage error in WSS between FSI and no-FSI, at the edge and line 

segments, quasi-stationary   

Line segment 

(8 locations) 

3 edges  
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4.4 Tolerance selection for the FSI and no-FSI sub-studies 

This section presents the WSS results obtained by changing the tolerance criterion for 

convergence. The WSS (using mesh M8) was obtained for each sub-study for two 

different values of tolerance, which are 0.001 and 0.000001. These WSS values were 

computed at the edge shown in Figure (4.1).  

In both the sub-studies, the percentage difference between the WSS for the two 

tolerances is negligible (for all the 16 times studied). The WSS values obtained for FSI 

sub-study with these two tolerances are shown in Figure 4.19(a) while the WSS values 

obtained for the no-FSI sub-study with the two tolerances are shown in Figure 4.19(b). 

Both these figures show a plot of the WSS as a function of x-coordinate at time,               

t = 0.44 s. It can be concluded from these figures that the WSS values are the same for 

both the tolerances. Hence, a tolerance criterion of 0.001 was used for all the analyses as 

it reduced the total run time to obtain a converged solution.  
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(a) FSI at t = 0.44 s 

 

(b) no-FSI at t = 0.44 s 

Figure 4.19: WSS values with tolerance of 0.001 and 0.000001 for the FSI and no-FSI 

sub-studies.  
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4.5 FSI and no-FSI sub-studies: Presence of duplicate nodes at a given location 

The data plotted in Figure 4.20 (b) were extracted at the strut shown in Figure 4.20 (a). 

Figure 4.20(b) is a plot of the WSS as a function of the x-coordinate for mesh, M8, at 

time, t = 0.44 s, for the FSI sub-study. It shows that at each of the following nodes with 

coordinates A1 (0.00416999, 0.00133), B1 (0.004249994, 0.00133) and C1 (0.00417003, 

0.00141), there exists a duplicate node represented by A2, B2, and C2. Even though the 

nodal coordinates are the same (duplicate), the values of WSS at the duplicate nodes were 

different. For example, at one such duplicate node with coordinates A1 (0.00416999, 

0.00133), it can be seen that the WSS has two values which are 0.66Pa and 1.89 Pa. On 

further observation, multiple values of WSS at a given node have been observed at all the 

corner nodes in the geometric model. This happens because when COMSOL computes 

the dependent variables (eg: velocity, pressure), it assumes they are continuous. 

However, WSS is a derived value. It is not a dependent variable that is computed by 

COMSOL. It is computed from the solution by approximating the gradient of the 

velocity. So when the WSS values are computed at the corner nodes, the element on one 

side of the corner node produces one estimate for the WSS value and the element on the 

other side of the corner node produces a different value for the WSS. As a result, two 

different values of WSS are reported for a single location. 
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(a) 

 

 

(b) 

Figure 4.20: Presence of duplicate nodes in the analyses 
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Apart from the corner nodes, this duplicate node behavior was observed at the 

locations where two adjacent elements of a single strut join. Figure (4.21) helps in 

understanding the term ‘elements of strut’ and the ‘location where they join’. In Figure 

4.20(b), coordinate (0.004249994, 0.00133) is one such location where two adjacent 

elements of a strut join. There are two values of WSS even at this node. Note, however, 

these values are very close to each other (1.37Pa and 1.32Pa) and the error introduced is 

negligible. These multiple values of WSS at a given node were observed even with the 

no-FSI sub-study. The conclusion of this study is that the values of WSS obtained at the 

corners are highly questionable. 

 

 

 

 

Figure 4.21: Elements of strut 

4.6 FSI and no-FSI sub-studies: Surface plot of WSS 

This section presents the WSS distribution at the fluid-solid interface for the FSI and no-

FSI sub-studies. The results presented here are evaluated on mesh M8 at, t = 0.06, 0.15 s, 

0.44 s, 0.96 s. This surface plot distribution of WSS is presented in Figures starting from 

Elements of strut 

Two elements 

of strut joining 
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(4.22) to (4.25). In these figures, the (a)’s corresponds to the FSI sub-study and the (b)’s 

correspond to the no-FSI sub-study. 

 
(a)WSS for FSI at t = 0.06 s 

 
(b)WSS for no-FSI at t = 0.06 s 

Figure 4.22: Surface plot of WSS, FSI and no-FSI, t = 0.06 s
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(a)WSS for FSI at t = 0.15 s 

 

(b)WSS for no-FSI at t = 0.15 s 

Figure 4.23: Surface plot of WSS, FSI and no-FSI, t = 0.15 s  
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(a)WSS for FSI at t = 0.44 s 

 

(b)WSS for no-FSI at t = 0.44 s 

Figure 4.24: Surface plot of WSS, FSI and no-FSI, t = 0.44 s 
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(a)WSS for FSI at t = 0.96 s 

 
(b)WSS for no-FSI at t = 0.96 s 

Figure 4.25: Surface plot of WSS, FSI and no-FSI, t = 0.96 s 
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The surface plots of the WSS show that the WSS between the struts is lower than 

the WSS at the proximal and distal ends (See Figures (4.22), (4.23), (4.24) and (4.25)). 

This is true for both the FSI and no-FSI sub-studies. Also, the magnitude of WSS 

between the struts is less than 0.5Pa for both the sub-studies at all the four times (t = 

0.06s, 0.15 s, 0.44 s, 0.96 s).  

 Figure (4.26) shows the WSS distribution on the fluid-solid interface only in the 

locations where the magnitude of WSS < 0.5 Pa at times t = 0.06s, 0.15 s, 0.44 s, 0.96 s. 

This distribution is shown for both FSI and no-FSI sub-studies. In Figure (4.26), if there 

are regions on the fluid-solid interface where the magnitude of WSS > 0.5 Pa, then those 

regions are represented in white (color). At t = 0.06 s, both the FSI and no-FSI sub-

studies show that in the region between the struts, the magnitude of WSS < 0.5 Pa. See 

Figure 4.26(a) and (b) The same figure also shows that the distal and proximal regions of 

the geometric model have WSS whose magnitude is < 0.5Pa. The presence of low WSS 

(< 0.5 Pa) in the proximal and distal regions of the geometric model, along with the 

location between the struts is also seen at, t = 0. 44 s (See Figure 4.26 (e) and (f)).  At 

times, t = 0.15 s and t = 0.96 s, the low WSS (< 0.5 Pa) is observed only in the region 

between the struts (Figures 4.26 (c), (d), (g) and (h)).  

 Previous studies associate low WSS ( < 0.5 Pa) with plaque accumulation and 

restenosis. Based on the information presented in Figure (4.26), it is likely that the 

current geometric model is predisposed to IT/plaque accumulation. Since, the current 

geometry is a user-defined geometry, this conclusion is not very critical. Given the 

conclusion about the geometry being predisposed to plaque accumulation, the current 

model can be proposed as a tool to predict regions of low WSS/IT/NIH.   
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(a)WSS for FSI, t = 0.06 s 

 
(b) WSS for no-FSI, t = 0.06 s 

 
(c)WSS for FSI, t = 0.15 s 

 
(d)WSS for no-FSI, t = 0.15 s 

 
(e)WSS for FSI, t = 0.44 s 

 
(f)WSS for no-FSI, t = 0.44 s 

 
   (g)WSS for FSI, t = 0.96 s 

 
(h)WSS for no-FSI, t = 0.96 s 

 

Figure 4.26: WSS distribution on fluid-solid interface: locations where WSS < 0.5 Pa 

0



113 

 

4.7 FSI and no-FSI sub-study: Velocity distribution and total displacement 

The volumetric plots of the velocity distribution in the flow field and the total 

displacement in the arterial wall are presented in this section. These results are obtained 

from mesh M8 at times t = 0.06 s, 0.15 s, 0.44 s and 0.96 s for both the FSI and no-FSI 

sub-studies. Figures 4.27(a) and (b), 4.28(a) and (b), 4.29(a) and (b), 4.30(a) and (b) show 

the volumetric plots for the FSI and no-FSI sub-studies at the above mentioned times. 

In the above mentioned figures, the results corresponding to the FSI sub-study 

show that the location of maximum velocity is always below the strut region. The 

location of the maximum velocity in the no-FSI sub-study varies between the inlet face 

and the region below the strut. Figure 4.29(a) shows that the maximum displacement 

(1.99e-4 m) in the arterial wall occurs at t = 0. 44 s. 
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(a)Velocity distribution and total displacement of arterial wall for FSI at t = 0.06 s 

 
(b)Velocity distribution for no-FSI at t = 0.06 s 

Figure 4.27: Volumetric plot, FSI and no-FSI, t = 0.06 s
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(a)Velocity distribution and total displacement of arterial wall for FSI at t = 0.15 s 

 
(b)Velocity distribution for no-FSI at t = 0.15 s 

Figure 4.28: Volumetric plot, FSI and no-FSI, t = 0.15 s
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(b)Velocity distribution and total displacement of arterial wall for FSI at t = 0.44 s 

 
(b)Velocity distribution for no-FSI at t = 0.44 s 

Figure 4.29: Volumetric plot, FSI and no-FSI, t = 0.44 s
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(a)Velocity distribution and total displacement of arterial wall for FSI at t = 0.96 s 

 
(b)Velocity distribution for no-FSI at t = 0.96 s 

Figure 4.30: Volumetric plot, FSI and no-FSI, t = 0.96 s   
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4.8 FSI and no-FSI sub-studies: Recirculation regions 

Figures 4.33 (a) and (b) show the streamlines on the surface circled in Figure (4.31) while 

Figure 4.34 (a) and (b) show the streamlines on the surface highlighted in Figure (4.32). 

All the streamline plots are evaluated at time, t = 0.44 s. The surface shown in Figure 

(4.32) is at an angle of 12 to the horizontal.  All of these streamline plots are plotted 

using the data evaluated on mesh M8.The results shown in Figures 4.33 (a), 4.34(a) and 

4.33(b), 4.34(b) correspond to the FSI and no-FSI sub-studies, respectively.  

The streamline plots are shown to highlight the recirculation regions near the 

struts. These regions indicate flow reversal/change of direction in flow. This flow feature 

was not revealed in the preceding displays of simulation results. In a 1D flow, the WSS 

values are negative when the flow reverses (recirculation region). However, the flow in 

the current study is three dimensional (3D) and the magnitude of WSS (which is a tensor 

in 3D) is computed using Equation(4.1). The magnitude of shear stress in Equation (4.1) 

is always positive. In such a scenario, the recirculation regions can be located by plotting 

the streamlines of the velocity field or by computing the oscillatory shear index (OSI). 

The expression used to compute OSI is time-dependent (See Equation (4.5)). Hence, it 

can only be computed for time-dependent studies or for stationary studies that are carried 

out at different times (like the current study). 

Figures (4.33) and (4.34) are plotted on two different surfaces. Hence the location 

of recirculation regions is different in these set of figures. Also, when compared to Figure 

4.33(b), the region with high-velocity (represented by red color in the figures) extends to 

a region much closer to the stents in Figure 4.33(a). The same behavior is observed in 

Figures 4.34 (a) and (b). This implies that the velocity gradient in the stent region will be 
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higher in Figures 4.33(a) and 4.34(a) (both these figures correspond to the FSI sub-

study). Consequently, the WSS in the stent region also will be high. This result agrees 

with the results obtained from WSS evaluation (See Figure 4.9). Figure (4.9) shows that 

the magnitude of WSS from the FSI sub-study is higher on the stents when compared to 

the WSS magnitude from the no-FSI sub-study. 

 

 

 

 

Figure 4.31: Surface used for the streamline plot 

 

 

 

 

Figure 4.32: Inclined surface used for the streamline plot  

Streamline plot shown in 

Figure (4.34) is plotted on 

the red surface (but is 

restricted to the stent region 

enclosed by the circle) 
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(a) FSI 

 

(b) no-FSI 

Figure 4.33: Velocity field streamlines on surface shown in Figure (4.31), t = 0.44 s
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(a)FSI 

 

(b) no-FSI 

Figure 4.34: Velocity field streamlines on surface shown in Figure (4.32), t = 0.44 s   
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4.9 FSI and no-FSI sub-studies: TAWSS and OSI 

This section compares the magnitude and behavior of TAWSS and OSI for the FSI and 

no-FSI sub-studies. Figure 4.35(a) shows the TAWSS evaluated along the entire edge 

shown in Figure (4.1) and Figure 4.35(b) shows the TAWSS near the strut region. . 

Similarly, Figure 4.36(a) shows the OSI on the entire edge and the Figure 4.36(b) shows 

the OSI near the strut region. The TAWSS and the OSI plots are plotted using the data 

extracted at all the 15 times (on meshM8). 

From the TAWSS distribution, it can be concluded that the influence of FSI is 

more prominent in the region of the stent and in the distal region of the geometric model. 

Torri et al [91] concluded that the influence of FSI on TAWSS and OSI are insignificant 

in a stenosed coronary artery. As mentioned in Chapter 2, Section 2.3, the OSI is high 

when the direction of WSS changes. The magnitude of OSI is about 0.1 in the stent 

region (See Figure (4.36)). This indicates that there is some change in the direction of 

WSS near the stent region but it is not significant enough to cause an unsteady and 

oscillatory flow. In the proximal and distal regions, the OSI is close to zero. Figure (4.36) 

shows that the magnitude of OSI for the FSI and no-FSI sub-studies is only minimally 

different.  
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(a)TAWSS on the entire edge 

 

(b)TAWSS near the struts 

 

 

 

Figure 4.35: Comparison of TAWSS for FSI vs no-FSI, quasi-stationary 
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(a)OSI on the entire edge 

 

(b)OSI near the struts 

Figure 4.36: Comparison of OSI for FSI and no-FSI, quasi-stationary  
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4.10 Comparison to other published results 

In general, a finite element model is validated by building a physical model of the 

simulation, performing the necessary experiments, and then comparing the results of the 

finite element model with those obtained from the experiment. However, considering that 

the current study involves coronary arteries and the resources are not available for an 

experimental study, it is not possible to follow this process. In such situations, confidence 

in the results of the finite element model can still be obtained by comparing them with 

results from a published clinical study or by comparing them with results obtained from 

other finite element studies.  

In the current study, the magnitude of WSS between the struts is always lower 

than 0.5 Pa. See Chapter 4, Sections 4.1, 4.2, 4.3, and 4.6 for these results. This indicates 

that the likelihood of restenosis is high in this region. The relationship between restenosis 

and magnitude of WSS is described in Chapter 1. Gay and Zhang [25] carried out a finite 

element study (2D rigid wall) using a similar stent design. The results from their study 

indicate that the stented region poses higher risk for restenosis. Also, the profile of WSS 

between the struts in the study carried out by Gay and Zhang [25] is similar to the profile 

of WSS between the struts in the current study. Hence, the current study is in agreement 

with the study carried out by Gay and Zhang  

Figure(4.11) shows that the percentage error in the WSS magnitude between the 

FSI and no FSI sub-studies is higher within the stent and in the distal region of the 

geometric model when compared with the proximal region of the geometric model. This 

result partially agrees with the results of Torii et al [91] and Zeng et al [128]. Both these 

papers state that the influence of FSI is more pronounced in the distal region of the artery.  
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4.11 Limitations of the current study 

The current study uses linear order elements due to limitations on the available 

computational resources. The mesh convergence studies (Chapter 4, Sections 4.1.1 and 

4.1.2) show that the current solutions are mesh independent. However, reconfirming the 

mesh convergence by using second order elements would establish the accuracy of the 

current study in a definite manner.  

The current study used a quasi-steady simulation:  stationary equations solved 

with a sequence of time-dependent values for the boundary conditions to approximate a 

truly transient analysis.  This assumption is to be verified by running a time-dependent 

analysis with the current model. Also, it is important to re-evaluate the OSI using the 

time-dependent analysis. See Chapter 2, Section 2.1.1 for a previous study carried out by 

Mates et al. that discusses quasi-steady analysis.  

Coronary arteries undergo motion because they are attached to the myocardium 

and this motion may be related to the susceptibility to atherosclerosis [17]. The current 

study ignores this movement of the coronary artery. Wentzel et al [95] concludes that the 

shear rates are only minimally influenced due to the movement of coronary arteries 

provided the frequency of movement is  1 Hz. Torii et al [91] state that as long as the 

parameter of interest is TAWSS, this motion is not important but it may undervalue other 

hemodynamic parameters. Hence, the decision of whether to include the movement of the 

coronary artery is dependent on the objective of the study and the parameter of interest. 

Since the frequency of the current study is 1Hz, the movement of the artery may not be 

relevant to the current study. This, however, can only be confirmed by modeling the 

movement of coronary artery. 
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In Chapter 4, Section 4.5, it is acknowledged that the values of WSS obtained at 

the duplicate nodes are highly questionable. This is because COMSOL which is a finite 

element method, assumes continuity of dependent variables viz., velocity and pressure for 

the fluid domain. On the other hand, WSS is evaluated as the gradient of the velocity. 

Between any two elements (of the mesh), COMSOL does not enforce continuity on the 

gradient of a velocity. 

It is assumed that the arterial wall is elastic. Chapter 1 lists some literature studies 

that discuss different non-linear material models that can be used to represent the arterial 

wall. In order to increase the accuracy of the arterial wall model, the representation 

should reflect that it is truly incompressible ( = 0.5), and it should consider tissue 

anisotropy, residual stresses, heterogeneity, and the layered structure of the artery. 

Including any of these features in the simulation will almost certainly increase the 

computational resources required for the simulation.  

The artery is assumed to be straight with a circular cross-section. Literature shows 

that curvature plays an important role for RCA hemodynamics [70]. Myers et al [70] also 

show that it is important to use patient-specific data. The current study does not use 

patient-specific geometry as it was not available. 

The current study is carried out in a healthy, stented, coronary artery and there is 

no material model representing the plaque or the cardiac muscle. Modeling the cardiac 

muscle may reduce the extent of arterial wall displacement and increase the chances of 

convergence when representing the artery with a hyperelastic material model. 

Unfortunately, this could not be evaluated due to restricted computational resources. 

Most of the literature suggests that the flow in coronary arteries is laminar but 
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considering the extent to which plaque blocks the artery (not necessarily coronary artery), 

it is possible for the flow to become turbulent [43]. 

The current study does not model the balloon expansion of the stent. Hence, it 

does not account for the change in arterial wall stresses induced by the vascular injury 

from the expansion of the stent-balloon assembly.  Chapter 2, Section 2.5 lists some more 

parameters, which when included in a computational model of the coronary artery, are 

likely to increase the accuracy of the model. Depending on the objective of the study, 

however, including all of these parameters may or may not be essential. 

Literature reports that there are some additional boundary conditions which, when 

not included, are likely to influence the results of an FSI study. Two of these are 

recovering zero-pressure-state arterial geometry and, accounting for wave propagation in 

flexible vessels. 

Vavourakis et al. [93] modeled coupled FSI hemodynamics by recovering the 

zero-pressure-state corrected arterial geometry. Based on Bols et al. [5], recovering  

zero-pressure-state geometry means including initial stresses that are present in the 

arterial wall when the MRI/CT images are captured to record the patient-specific arterial 

geometry. Vavourakis et al. analyzed a patient-specific, healthy carotid bifurcation both 

by recovering and by not recovering the zero-pressure state. The outcome of the study 

indicates that using the image-based arterial geometry without recovering the zero-

pressure geometry results in unrealistic wall deformation and underestimation of the 

WSS. 

Formaggia et al. [20] accounts for the wave propagation phenomenon in flexible 

blood vessels by coupling the 2D or 3D fluid-structure flow problem with a reduced 1D 
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flow model. The coupling represents the interaction of a carotid bifurcation with the rest 

of the cardiovascular system.  
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5.  CONCLUSIONS 

The following conclusions are drawn by analyzing the data extracted from the 

computational simulations presented in the preceding chapters. 

1. At each of the four times during the cycle of the prescribed periodic flow boundary 

conditions that were examined in detail, t = 0.06 s, t = 0.15 s, 0.44 s and 0.96 s, the 

average percentage error in WSS incurred by omission of the FSI model varies 

between : 

a.  10-20% in the proximal region of the geometric model 

b. 17-55% in the distal region of the geometric model 

c. 10-35% in the region between the struts 

d.  16-58% on the stent surface 

It is concluded that the influence of FSI is more significant on the stent surface and in 

the distal region of the geometric model. See Table 5.1 for a brief summary of the 

above conclusions. 

2. If the overall objective of a study is to determine the range of the magnitude of WSS 

i.e., if the objective is to determine whether the WSS is < 0.5 Pa, then the results of 

the current study suggest that accounting for the FSI only minimally alters the 

magnitude of WSS. For example, in Figure (4.17), the magnitude of WSS in the 

region between the struts is < 0.5 Pa for both the sub-studies. Hence both the studies 

are pointing out that the chances of restenosis are high (restenosis occurs in regions of 

low and oscillatory shear stress. The oscillations also play an important role.). Given 

the boundary conditions of the current study, it can be concluded that the extent to 
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which FSI influences the magnitude of WSS is minimal when looking at the range of 

magnitude of WSS.  

 

 

 

Table 5.1: Brief summary of conclusions 

 Parameter Results 

1.  WSS at edge  

 a. Proximal region of geometric model WSSnoFSI > WSSFSI  

 b. Distal region of geometric model WSSnoFSI > WSSFSI 

 c. On the stent surface WSSFSI > WSSnoFSI  

 d. Between the struts WSSFSI  WSSnoFSI  

   

2.  WSS at other locations  

 a. Between the struts WSSFSI > WSSnoFSI  

(except at a few locations) 

   

3.  Maximum centerline velocity FSI > no-FSI 

   

4.  OSI at the edge OSIFSI  OSIno-FSI 

   

5.  TAWSS at the edge  

 a. Proximal region of geometric model TAWSSnoFSI > TAWSSFSI  

 b. Distal region of geometric model TAWSSnoFSI > TAWSSFSI 

 c. Between the struts TAWSSFSI  TAWSSnoFSI  

 d. On the stent surface TAWSSFSI > TAWSSnoFSI  

 

 

 

3. It is doubtful that modeling a single instance of the repeated stent geometry is 

adequate for a reliable simulation of flow in a stented coronary artery. 

4. Incorporation of physiological waveforms, actual stent geometry, a realistic, patient-

specific artery geometry, a plaque model, and a layer-specific material model of the 

arterial wall would provide a more accurate evaluation of the performance of a 

specific stent placement in a patient.  
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5.1 Recommendations for future study  

 Conduct full transient simulations to verify the validity of quasi-steady simulations 

 If the objective of a study is to estimate the range of magnitude of WSS (< 0.5 Pa or  

> 0.5 Pa), then using a two-way FSI model may be too computationally intensive. For 

such situations, a one-way FSI model may be acceptable.  

 Implement better arterial wall model by using a non-linear homogenous material 

model. Once this model converges, increase the accuracy of the model by using a 

multi-layer and or/anisotropic arterial material model. 

 Perform non-Newtonian simulations to determine the influence of Newtonian 

assumption on parameters of interest. 

 Reevaluate the current study with different stent geometry.  

 Include the balloon expansion and plaque models. 

 Implement other material models for stent like bilinear elasto-plastic material model. 

 Incorporate a contact model between the stent and the artery to study the von-Mises 

stresses induced in the artery due to different stent materials like Nitinol and Cobalt-

Chromium alloy. 

 Validate the geometric model using experiments. 

 Evolve the current geometry model into a patient specific pre-operative tool. 

o Create 3D patient-specific geometry and waveforms obtained by scanning the 

patient. 

o Incorporate most or all of the elements from the ideal finite element model 

(See Section 2.5). 
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o Run the 3D computational model and predict specific outcome for each 

patient. 
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APPENDIX A.  FOURIER SERIES REPRESENTATION OF A GENERIC FUNCTION 

f(t)   

Based on Fourier series theorem, any periodic function     f t T f t  , can be 

approximated by a Fourier series [46], [111] given by 
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Therefore, 
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The above derivation proves that if 
n nC C  , then ( )f t  is real and vice versa. 

Note: 

 nC  can be replaced by , , ,n n n np u q  etc 

  f t  can be replaced by any periodic function      , , , , ,
p

p x t u r t Q t
x




  

 

 

  



149 

 

APPENDIX B.  FOURIER COEFFICIENTS apn AND bpn OF A PERIODIC PRESSURE 

WAVEFORM 

Consider a straight pipe whose centerline axis coincides with the x-axis of the cylindrical 

coordinate system. Let the pressure along the centerline (or axis) of the pipe be periodic 

with a period T given by 
2

T




 
 

 
. If this periodic pressure is represented as  p t , 

then, using Fourier series theorem, the pressure can be expressed as:   
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Pressure is a function of x and t only ([92], See Appendix C also for details). 

For  ,p x t  to be real, impose    n np x p x  , then Equation (B.1) becomes 
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and 0pa , pna and pnb are evaluated by using the following expressions:  
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In Equation (B.2), the details on how  
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a a x n t b x n t 


   is shown in Appendix A.  

If an analytic expression for the periodic pressure is not available, then it is determined 

from experimental measurements by using a Fourier series approximation as described 

below. 

 

From the experimental measurements, the periodic pressure values are known at N 

equally spaced points. Considering that the period of the pressure gradient is T, then the 

length of each interval is given by 
T

N
. If intt represents the length of each interval, then 

int

T
t

N
    (B.6) 

If kt and kp  represent the time and the experimental measurements of the pressure 

gradient at the end of each interval, then the value of kt at the end of each interval is 

given by  

intk

T
t k t k

N
   , k=0,1,2….N-1  (B.7) 
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From Equation (B.2),        0

1 1

( , ) 2 cos 2 sin ,
M M

p pn pn

n n

p x t a a x n t b x n t 
 

     (B.8) 

where 
2

T


   (B.9) 

and M=N/2 

If the analytic function of the periodic pressure  ,p x t  is not available, then the following 

approximation can be used to find the Fourier coefficients:  

1

0

0

1 N

p k

k

a p
N





   (B.10) 

   
1

0

1
cos

N

pn k k

k

a x p n t
N






   (B.11) 

   
1

0

1
sin

N

pn k k

k

b x p n t
N






   (B.12) 

If T is the period of the function  f t and there are N points in this period where the 

pressure is known, then, N coefficients can be determined. These N coefficients are given 

by 
 0 1 /2 1 2 /2 1

, ,..... , , ,....p p pN p p p N
a a a b b b


. 0 /2Nb and b are zero. The above procedure can be 

used to compute the Fourier coefficients of the periodic pressure waveform shown in 

Figure (B.1) 
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Figure B.1 – Periodic pressure waveform obtained from experimental results 

 

 

 

Let p(x,t) be the pressure waveform shown in Figure (B.1). The data corresponding to 

this waveform was extracted using a digitizing software, Engauge Digitizer [19]. The 

period of the above waveform, T = 1 s [91], was divided into 48 intervals i.e., N 

equally spaced ordinates.  

1 [s]T    (B.13) 

1
 [ ]f Hz

T
  (B.14) 

2  [ / ] 2 1 6.2832 [ / ]f rad s rad s       (B.15) 

48N   (B.16) 

int

1
0.0208[ ]

48

T
t s

N
     (B.17) 
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intk

T
t k t k

N
   , 0,1,2,3.......47k   (B.18) 

kt  is the time coordinate at k = 0,1,2,….47. The data that were extracted from Figure 

(B.1) with the help of the digitizing software were linearly interpolated to obtain the 

pressure ( kp ) values corresponding to the time ( kt ) values. Using Equations (B.10), 

(B.11) and (B.12), Fourier coefficients for p(x,t) were computed. These are shown in 

Table (B.1). 

 

 

Table (B.1): Fourier coefficients for the pressure waveform shown in Figure (B.1) 

n ap0 ap bp

0 104.1708

1 -15.3580 8.0815

2 -1.1588 -7.1872

3 2.4370 0.1338

4 0.0246 -0.2356

5 0.9446 0.5125

6 -0.4836 0.4411

7 0.0173 0.0861

8 -0.5482 -0.0478

9 0.2699 -0.4775

10 0.0124 0.1269

11 0.2565 -0.0011

12 -0.2930 0.3539

13 -0.1317 -0.2071

14 -0.1204 -0.0478

15 0.1590 -0.2412

16 0.0952 0.1642

17 0.0495 0.0229

18 -0.0897 0.1449

19 -0.0754 -0.0783

20 -0.0014 -0.0286

21 -0.0089 -0.0192

22 -0.0074 0.0135

23 -0.0258 -0.0396

24 0.0673 0.0000  

 

 



154 

 

Equation (B.8) and the Fourier coefficients from Table (B.1) were used to obtain an 

expression for p(t).  

 

Figure (B.2) shows a comparison of the pressure waveform p(x,t) that was recreated 

using the digitized data obtained from Figure (B.1) to the pressure waveform that was 

obtained using the Fourier series. It can be observed that the: 

 Plot of the digitized pressure data is similar to the waveform shown in Figure 

(B.1) 

 Pressure expression obtained from the Fourier series yields a waveform that 

closely resembles the one obtained from the digitized data. 
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Figure B.2 – Comparison of the pressure waveform p(x,t) that was recreated using the 

digitized data obtained from Figure (B.1) to the pressure waveform that was obtained 

using the Fourier series 
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The Fourier coefficients vna  and vnb  of a periodic velocity waveform 

A periodic velocity waveform can be approximated by a Fourier series as:  

    ( , ) ,
M

in t

n

n M

v r t u r e 



   (B.19) 

  where 
2

T


   (B.20) 

and M = N/2 

     n vn vnu r a r ib r   for 0n   and for  ,v r t  to be real, impose    n nu r u r  . 

Appendix C explains why the above velocity is a function of r and t only. 

Then Equation (B.19) becomes 

         0

1 1

( , ) 2 cos 2 sin
M M M

in t

n v vn vn

n M n n

v r t u r e a a r n t b r n t  
  

        (B.21) 

In Equation (B.21), the details on how  
M

in t

n

n M

u r e 



   reduces to 

       0

1 1

2 cos 2 sin
M M

v vn vn

n n

a a r n t b r n t 
 

    is shown in Appendix A.  

If the analytic function of the periodic velocity  ,v r t  is not available, then the following 

approximation can be used to find the Fourier coefficients:  

1

0

0

1 N

v k

k

a v
N


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   (B.22) 
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   (B.24) 
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The values of T , f ,  , N , intt , and kt  are the same as the ones that are used for 

computing Fourier coefficients pna  and pnb  of the periodic pressure waveform. The data 

that were extracted from Figure (B.3) with the help of the digitizing software were 

linearly interpolated to obtain the velocity ( kv ) values corresponding to the time ( kt ) 

values. Equations (B.22), (B.23) and (B.24) were used to compute the Fourier 

coefficients of the periodic velocity waveform shown in Figure (B.3). The coefficients 

are shown in Table (B.2) 

 

 

 

 

Figure B.3 – Periodic maximum velocity waveform obtained from experimental results 
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Table (B.2): Fourier coefficients for the velocity waveform shown in Figure (B.3) 

n av0 av bv

0 0.2610

1 0.0005 0.0254

2 -0.0253 0.0189

3 -0.0114 -0.0292

4 -0.0049 -0.0110

5 -0.0033 -0.0249

6 0.0083 -0.0128

7 0.0029 -0.0069

8 0.0049 -0.0028

9 -0.0023 0.0049

10 -0.0035 -0.0028

11 -0.0042 0.0002

12 -0.0022 -0.0050

13 0.0011 -0.0003

14 -0.0013 -0.0004

15 0.0002 0.0028

16 -0.0029 0.0013

17 -0.0007 0.0007

18 -0.0018 0.0002

19 0.0006 -0.0007

20 0.0006 0.0003

21 0.0009 -0.0001

22 0.0007 0.0004

23 0.0004 0.0002

24 0.0000 0.0000  

 

 

 

Equation (B.21) and the Fourier coefficients from Table (B.2) were used to obtain an 

expression for v(t). Figure (B.4) shows a comparison of the velocity waveform v(r,t) 

that was recreated using the digitized data obtained from Figure (B.3) to the velocity 

waveform that was obtained using the Fourier series. It can be observed that the: 

 Plot of the digitized velocity data is similar to the waveform shown in Figure 

(B.3) 

 Velocity expression obtained from the Fourier series yields a waveform that 

closely resembles the one obtained from the digitized data. 
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Figure B.4 – Comparison of the velocity waveform v(r,t) that was recreated using the 

digitized data obtained from Figure (B.3) to the velocity waveform that was obtained 

using the Fourier series 

 

 

 

Velocity shown in Figure (B.4) is the spatial maximum velocity. Assuming that 

velocity profile is parabolic, the flow rate can be estimated. Even though this 

assumption contradicts the Womersley velocity profile, previous studies in this area 

suggest that this is the best approximation available. Hence  

   max

1
, ,

2
Q r t u r t A  (B.25) 

   
1

2

N N
in t in t

n n

n N n N

q r e u r e A 

 

   

Comparing coefficients of in te   on both sides of the above equation gives

   
1

2
n nq r u r A  
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        
1

2
qn qn vn vna r ib r a r ib r A    

Hence    
2

qn vn

A
a r a r  and    

2
qn vn

A
b r b r  

The Fourier coefficients computed using these expressions are shown in Table (B.3) 

 

 

 

Table (B.3): Fourier coefficients for the flow rate computed from velocity waveform 

shown in Figure (B.4) 

n aq0 aq bq

0 8.15E-07

1 1.40E-09 7.92E-08

2 -7.91E-08 5.91E-08

3 -3.56E-08 -9.12E-08

4 -1.52E-08 -3.45E-08

5 -1.03E-08 -7.78E-08

6 2.60E-08 -3.99E-08

7 8.92E-09 -2.15E-08

8 1.54E-08 -8.81E-09

9 -7.02E-09 1.53E-08

10 -1.09E-08 -8.76E-09

11 -1.32E-08 5.29E-10

12 -6.72E-09 -1.57E-08

13 3.53E-09 -9.39E-10

14 -4.06E-09 -1.12E-09

15 6.14E-10 8.80E-09

16 -9.17E-09 4.17E-09

17 -2.10E-09 2.05E-09

18 -5.52E-09 7.30E-10

19 1.89E-09 -2.29E-09

20 1.86E-09 1.09E-09

21 2.85E-09 -3.00E-10

22 2.22E-09 1.12E-09

23 1.28E-09 5.04E-10

24 -1.95E-11 -1.34E-22  
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APPENDIX C.  VELOCITY PROFILE FOR A PULSATILE WAVE IN A STRAIGHT 

PIPE OF CIRCULAR SECTION 

Consider a Newtonian, viscous, and incompressible fluid having density , and dynamic 

viscosity , flowing in a straight pipe of circular section of length l, and radius R. 

Assume that the centerline of the pipe coincides with the x-axis of the cylindrical 

coordinates. For a steady flow, if 1p and 2p are the pressures at the inlet and outlet of the 

pipe, then the pressure gradient driving the fluid is given by 1 2p p dp

l dx


  . 

In this case, the continuity equation and the Navier-Stokes equation are given by: 

 

 

 1 1
0

rv w u

r r r x

  
  

  
 (C.1) 

2 2 2

2 2 2 2

1 1
x

u u u w u p u u u u
u v f

t x r r x x r r r r
   

 

          
          

           
 (C.2) 

2

2 2 2

2 2 2 2 2 2

1 1 2
,r

v v v w v w
u v

t x r r r

p v v v v v w
f

r x r r r r r r

 


 
 

    
     

    

      
       
      

 (C.3) 

 

 

where  

 u, v, and w are the velocities along the x, r, and  directions, respectively,  

 u, v, and w are functions of x, r, t 

 xf and rf are the body forces (gravitational forces) in the x and r-directions.  

 
p

x




and 

p

r




are the components of the pressure gradient in the x- and  

r-directions, respectively. 
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Assuming: 

 No external forces are acting on the pipe ( 0xf   and 0rf  ) 

 Flow is fully developed i.e., no change of velocity in the axial direction,  

 0 ,
u

u r t
x


 


, 

 Flow is axisymmetric i.e., 0
u







  

 No swirling of flow  0w   

From the above assumptions, Equation(C.1) which is the continuity equation, becomes  

 
0 0

rv
v

r


  


 (C.4) 

Considering the assumptions and Equation (C.4), Equation (C.3) reduces to: 

0
p

r


 


 (C.5) 

Equation (C.5) shows that pressure is constant across a section of the pipe. Hence, 

pressure varies only with the x-direction and time.  

Considering the above assumptions and equations, Equation (C.2) becomes 

2

2

1 1u p u u

t x r r r



 

    
    

    
 (C.6) 

For an unsteady flow, with a periodic pulsatile pressure gradient waveform, the gradient 

can be expressed as a sum of sine and cosine functions (Fourier series. See Appendix A 

for more details). Let T be the period of the pressure wave given by
2

T




 
 

 
.  
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Then,  

  ,
M

in t

n

n M

p
x e

x





 


  (C.7) 

where      n n nx a x ib x    ,  for 0n   

 n x  is the Fourier coefficient representing the pressure differential across the pipe. 

From Equation (C.5), it was determined that pressure differential varies only with the x-

direction and time. Hence  n x  is independent of r but is dependent on x. 

For 
p

x




to be real, impose    n nx x    (See Appendix A for proof ) 

Since the pressure is periodic, the velocity waveform is also periodic. Hence the solution 

to Equation (C.6) can be of the form  

   ,
M

in t

n

n M

u r t u r e 



   (C.8) 

where      n vn vnu r a r ib r  ,  for 0n   

For   ,u r t to be real, impose    n nu r u r   (See Appendix A for proof) 

Differentiating Equation (C.8) w.r.t r, 
 M

n in t

n M

u ru
e

r r








 
  (C.9) 

Differentiating Equation (C.9) w.r.t r, 
 22

2 2

M
n in t

n M
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r r




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  (C.10) 

From Equation (C.8),  
M

in t

n

n M

u
u r in e

t








  (C.11) 
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Substituting Equations (C.7), (C.9), (C.10) and (C.11) in Equation (C.6) which is: 
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If 
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 , then the above equation becomes 
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Comparing Fourier coefficients corresponding to in te  , leads to  
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When n = 0, Equation (C.12) becomes 
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0 0 0

2

1
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 (C.13) 

Equation (C.13) is the classic Poiseuille flow equation.  
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Solving Equation (C.13) which is, 
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Integrating again w.r.t r leads to  
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where 1K and 2K are constants. 

 

 

 

When 0n  , from Equation (C.12) 
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u r

r r r



 

 
   

 
 

   
 

 2 3

2

1n n n

n

u r u r xi n
u r

r r r



 

 
   

 
 (C.15) 

Considering the homogenous part of the above equation, 

   
 

2 3

2

1
0

n n

n

u r u r i n
u r

r r r





 
  

 
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   
 

2 3
2 2

2
0

n n

n

u r u r i n
r r r u r

r r





 
  

 
 

   
   

2
22

2
0,

n n

n n

u r u r
r r r u r

r r


 
  

 
 (C.16) 

where n  such that 
3

2

n

i n



  

Equation (C.16) is similar to a Bessel equation of order zero.  

Bessel equation of order   is given by  
2

2 2 2

2
0

d y dy
x x x y

dx dx
    . The solution of 

this equation is given by      3 4y x K J x K Y x   . The solution of Equation (C.16) 

which is      3 0 4 0 ,n n nh
u r K J r K Y r    is obtained by comparing Equation (C.16) 

with the Bessel equation. 3K and 4K are constants and  n h
u r denotes the homogenous 

solution of the equation. 

Let the particular solution of Equation (C.15) be a constant, 5K . Substituting this in 

Equation (C.15) gives 

 3

5

n xi n
K



 
   

 
5 3

n x
K

i n




   

The complete solution of Equation (C.15) is obtained by combining the homogenous and 

the particular solution and it is given by 

     
 

3 0 4 0 3

n

n n n

x
u r K J r K Y r

i n


 


    (C.17)  
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Combining Equations (C.14) and particular solution, K, the expression for   nu r n  is 

given by 

 
 

   
 0 2

1 2 3 0 4 0 3
ln

4

n

n n n

x x
u r r K r K K J r K Y r

i n

 
 

 
        (C.18) 

Equation (C.8) can also be written as  

       0

0

,
M M

in t in t

n n

n M n M
n

u r t u r e u r u r e 

 


   
 

Substituting Equations (C.14) and (C.17) in the above equation gives  

     
 20

1 2 3 0 4 0 3

0

, ln ,
4

M
n in t

n n

n M
n

x
u r t r K r K K J r K Y r e

i n


 

 


 
       

 
  

where 1K , 2K , 3K and 4K are constants determined by the boundary conditions. One such 

boundary condition is that the velocity at the centerline must be finite: 

  
1

0

4
0

0 because limln( )

0 because lim ( )

r

o n
r

K r
u r

K Y r





 
   

 

 

Hence    
 20

2 3 0 3

0

,
4

M
n in t

n

n M
n

x
u r t r K K J r e

i n




 


 
     

 
  (C.19) 

The boundary condition at the wall,  r R  known as the no-slip condition requires that 

the velocity be zero. When r = R, Equation (C.19) becomes 

  
 20

2 3 0 3

0

( , ) 0
4

M
n in t

n

n M
n

x
u r R t R K K J R e

i n




 


 
       

 
  

Comparing constant terms and coefficients of 
in te 

gives  
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 20
2 0

4
R K




    and  

 
3 0 3

0
n

n

x
K J R

i n





   

Hence 20
2

4
K R




 and 

 

 3 3

0

1n

n

x
K

i n J R



 
  

Substituting 2K  and 3K  into Equation (C.19) obtains 

  
     

 

 0 02 20

3 3

0
0

,
4 4

M
n n n in t

n M n
n

x x J r x
u r t r R e

i n J R i n

   

    


 
      

 
  

  
   

 

2
020

2 3

0
0

, 1 1
4

M
n n in t

n M n
n

x J rr
u r t R e

R i n J R

 

  


  
        

   
  

   
   

 
02 20

0
0

, 1 1 ,
4

M
n n in t

n M n
n

x J r
u r t R h e

in J R

 

  


 
     

 
  (C.20) 

 

 

 

where  

/h r R  

     n n nx a x ib x     

3
2

n

i n



  

For simplicity, let 

2
2 3

2

n
n

n
R i

R


 


    
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Suppose that the flow rate, Q, is given in terms of Fourier series, then 

 

 

   , ,
M

in t

n

n M

Q r t q r e 



   (C.21) 

where      n qn qnq r a r ib r  ,  for 0n   

For  ,Q r t to be real, impose    n nq r q r   (See Appendix A for proof) 

By definition,  

   
0

, , 2

R

Q r t u r t r dr   

   
   

 
02 20

00
0

, 1 1 2
4

R M
n n in t

n M n
n

x J r
Q r t R h e r dr

in J R

 


  


 
        

  
 

  

 
   

 
02 20

00
0

2 1 2
4

R M
n n in t

n M n
n

x J r
R r r dr e r dr

in J R

 
 

  


 
     

 
  

   

 

4
02 20

000
0

1 2
4 2

R
RM

n nin t

n M n
n

x J rr
R r e r dr

in J R

  
 

  


  
       

   
   

   

 

4
040

00
0

1 2
4 2

RM
n nin t

n M n
n

x J rR
R e r dr

in J R

  
 

  


  
       

   
   

From properties of Bessel functions  
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Hence  
 
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But, from Fourier series expansion,    ,
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Comparing constants and coefficients of in te 
 leads to  
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Using these expressions in Equation (C.20), which is 
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results in 

   
 
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  
   

  (C.22) 

where      n qn qnq r a r ib r   and      n qn qnq r a r ib r  . 

Equation (C.22) can be re-written as      20
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where  
 

 
 

 
 

0

0

2

1

0

1

2
1

n

nn

n

n

n n

J r

J Rq r
U r

R J R

R J R





 

 

 
 

 
 
 

 

 

Hence from Equations (C.8) and (C.23), 
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For  ,u r t to be real, it was imposed that    n nu r u r  . This will be the case if

   n nU r U r  . For this to be true, the following conditions are to be satisfied: 

i.    n nq r q r  , 

ii.    0 0n nJ r J r  ,    1 1n nJ r J r   and    0 0n n n nJ R J R     . 

For  ,Q r t to be real, it was imposed that    n nq r q r  . Note that
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    
 . Hence, 0J  and 1J  have real power series in powers 
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of their arguments. Also, both  0 nJ r  and  1n nJ R   have series expansions in even 

powers of nr  and ,nR  respectively. Hence    0 0n nJ r J r   and    1 1n nJ r J r  . 

Therefore, for (ii) to be true, it is sufficient to show that    
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. 

Since both the conditions (i) and (ii) are satisfied,    n nU r U r   and  ,u r t  given by 

Equation (C.23) is real. 

Hence, Equation (C.23) becomes,  
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Substituting above expression in Equation (C.24) leads to  
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 (See Appendix A for proof) 
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where 
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/ ,h r R  

and 

3
2

n

i n



  

 

 

Note that:  

i  is known as the Womersley number and is given by R





  

ii For low frequencies, 0 0    .Also, when 0 0n    . Hence for low 

frequencies, the solution to Equation (C.12) is given by Equation (C.14). After 

using the boundary conditions to evaluate the constants, this equation reduces to 

 
 

 0 2 2

0 1 ,
4

x
u r R q




   which is a parabola. Hence, the pipe flow problem 

with a pulsatile pressure waveform behaves as a pipe flow with steady flow (i.e., 

Poiseuille flow problem) for low frequencies.  
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