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Abstract 

 A new methodology is presented for molecular phylogenetic analysis addressing a 

fundamental problem in biology, namely the reconstruction of the Tree of Life (TOL). Here, 

phylogenies are based on patterns of hybridization similarity in their DNA. Furthermore, 

phylogenies are based on a set of universal biomarkers (so-called nxh chips) chosen a priori, 

independently of the target group of organisms. Therefore, this methodology enables analyses of 

groups with biologically distant organisms, and hence could be scaled to obtain a universal tree 

of life. Unlike conventional molecular methods, it produces a hypothesis in a single run, without 

optimizing across numerous hypotheses for consensus. Prototype hypotheses for the top two and 

three layers of the standard bio-taxonomy are presented in detail. The hypotheses agree with the 

biological Ground Truth in over 70% of the relationships. Higher quality nxh chips are likely to 

produce better hypotheses, but are more difficult to design.
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Introduction 

The Field of Phylogenetics  

A question that nearly every one eventually asks oneself about life is – where did I come 

from? Well, one might think, our existence originated from our parents, but then the question 

becomes, where did they come from? One of the main concerns in phylogenetics is to answer the 

final question, where did life come from? These questions can be traced back to the arrival of 

Homo sapiens, long  before Darwin’s theory of evolution came into the scene. The scientific 

branch of biology that addresses these questions is phylogenetics. 

An excursion into phylogenetics requires some basic background  in biology. DNA 

(deoxyribonucleic acid) can be regarded as a macromolecule that stores genetic information 

about an organism in the form of a blueprint that is transcribed in order to perform protein 

synthesis, which is the primary constituent material of all the organisms in the biome (Watson & 

Crick, 1953). In its simplest form, DNA can be defined as a string containing sequences of 

nucleotides represented by A, C, G, and T. (Watson & Crick, 1953)  first described the double 

helical structure of these molecules and, since then, DNA has been established as the blueprint of 

life. It is transformed inside living cells by a transcription process into an intermediate molecule 

RNA (ribonucleic acid),  as a single stranded molecule that consists of sequence of nucleotides 

represented by A, C, G, and U. This is responsible of carrying the genomic information to the 

biological machinery (ribosomes) that  translate it into proteins that make up every actual 

biological organism on planet earth (Crick, 1970). Francis Crick introduced this concept in 1958 

(Crick, 1958), today known as the Central Dogma of molecular biology, and argued that the role 



	 2 

of these genetic materials (DNA and RNA) is to regulate the synthesis of protein, rather than 

active participation. Furthermore, he put forward the idea that the Central Dogma is the process 

responsible for transmission of genetic information in three normal flows: a) Information can be 

transferred from DNA to DNA (DNA replication), b) information transmission from DNA to 

mRNA (transcription) and c) from mRNA to the site of protein synthesis (translation) (Crick, 

1958; Crick 1970). The new organism reproduces via its own DNA, possibly with some changes 

(caused by mutations, for example), and the process starts all over. Although not considered a 

universal process today, the Central Dogma remains largely accepted as a primary mechanism 

for biological function. 

The history of this type of attempts to explain evolution can be traced back to the period 

where Darwin proposed the theory of evolution. Darwin argued that growth in population would 

give rise to struggles among species for existence because of limited resources. Only those who 

were able to adapt would survive; many organisms would fail to survive to an age of 

reproduction. Hence, in order to survive, evolution is inevitable. Evolutionary theory is 

commonly accepted today as the most likely explanation for  the variety of living organisms in 

existence today (herein referred to as the biome), all arising from some ancient and unknown 

common ancestor (Sober, 2009).  

Since the time Darwin proposed his theory of evolution (Darwin, 1859), biologists have 

been hard at work trying  to reconstruct the exact sequence of evolutionary changes that gave rise 

to today’s biome, usually referred as the true Tree of Life (TOL), which will be referred to as the 

Gold Standard  below. All organisms in the biome are organized in the form of a phylogenetic 

tree (Nei and Kumar, 2000). All these efforts constitute the field of phylogenetics today. 
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Figure 1. Classification of the three domains in the Tree of Life showing the top three 
layers of the biome.  The predominant view in biology is that this tree currently reflects the 
most likely hypothesis about the evolutionary relationships among the organisms. 
According to Darwin Theory of  Natural Selection, chains of evolutionary events would 
have eventually caused multiple differentiations from a primeval form of life that led to 
today’s diversity on earth.  
 

Fundamental Problems in Phylogenetics 

The fundamental problem in phylogenetics is thus to get a fairly accurate sense of what 

evolutionary changes caused the common ancestor to diversify over the course of evolutionary 

time to give rise to the entire biome present today. The ideal approach would be to jump in a 

time machine, go back to the past, and record the course of changes that occurred over time 

going forward. In the absence of such a thing, our only option is to resort to fossil records or 

other available evidence (such as living descendants) in order to reconstruct a hypothetical 

version of the TOL, referred to herein as a phylogeny. But, these records are necessarily 

fragmentary at best, and frequently inaccessible. Thus, in practice, the fundamental problem of 
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phylogenetics becomes, how to formulate a hypothesis that can estimate the true phylogeny 

of the TOL (the Gold Standard) and provide some solid evidence to assess the reliability of 

the formulated hypothesis.  

Biologists have been working to formulate such hypotheses and evidence since Darwin’s 

times over 150 years ago. The major methods currently in use will be summarized in Chapter 2. 

An ongoing project called the Open Tree of Life (Hinchliff et al., 2015) (OTL) is a systematic 

integrative effort to patch together a comprehensive phylogeny from a variety of partial 

phylogenies formulated by a number of biologists in many projects through a variety of methods. 

This phylogeny will be used as reference for the assessment of the quality of the phylogenies 

produced in this thesis, and will be referred to as the Ground Truth hypothesis. 

Bioinformatic Approaches to Molecular Phylogenetics		

In the last two decades, major advances in computer science and biotechnology have 

revealed that the basic carriers of genetic information (such as DNA and RNA) hide a number of 

relevant secrets about the TOL that can be unearthed by computational analyses. The goal of this 

project is thus to introduce a new universal technique for phylogenetic analyses based on  

genomic sequences alone, and provide an assessment of its biological significance using the 

Ground Truth (in lieu of the inaccessible Gold Standard) as a reference.  
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Major Concepts in Phylogenetics 

Current Methods for Phylogenetic Inference in Biology 

To formulate an accurate phylogenetic hypothesis, biologists originally used apparent 

morphological features to group organisms into groups (clades) that presumably followed a 

longer common path of evolution before differentiation into species, according to the Central 

Dogma. However, in most of the cases, this approach does not yield consistent phylogenies, and 

may even be misleading. For example: bats were considered as part of the clade of birds due to 

their wings and their ability to fly, but not very related to mammals. Eventually, many such 

controversial phylogenies were created.  

Since the discovery of DNA as the blueprint of life (Watson & Crick, 1953), molecular 

methods have proven to be more reliable and have become a preferred method for construction 

of phylogenies. One of the major advantages of these methods is that it enables the use of DNA 

as means of comparison among organisms. Furthermore, evolution, in an organism, can now be 

defined as the pattern of changes in DNA, at the nucleotide level. Due to the presence of these 

patterns, the use of mathematical and computational models to compare DNA sequences of 

several organisms has become possible and productive. Unlike morphological features, long 

sequences of nucleotides in DNA are expected to contain a huge amount of phylogenetic 

information, although extracting it requires extensive and profound analytical work. Therefore, 

molecular methods are believed to be capable of addressing some of the deficiencies in the 

traditional approach mentioned above (Nei and Kumar, 2000).  However, recent developments in 

the field of phylogenetics show that standalone use of molecular methods is not sufficient for 

reliable reconstruction of a phylogeny. Current research attempts to combine molecular data with 
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fossil records, for example, produces better phylogenies by combining biomarkers, such as 

cytochrome c oxidase subunit I (COI) or ribosomal rRNA (16S rRNA),  with molecular clocks 

recalibrated using fossil records (Burridge, et al, 2017).  This thesis can also be regarded as a 

probe into the power of molecular (or more specifically, genomic) methods alone for 

phylogenetic reconstruction. To that end, it is necessary to  summarize the molecular methods 

currently in use in phylogenetics in the remaining of this section.  These methods are usually 

implemented and available in software suites, with PAUP being one of the preferred methods 

and used in this thesis for comparison in evaluation. 

Maximum Parsimony 

In phylogenetics, the principle of parsimony states that among all possible trees 

describing the phylogenetic relationship between Operational Taxonomic Units (OTUs) (Sokal 

and Sneath, 1963),  the phylogeny requiring the minimum number of evolutionary changes is a 

more likely hypothesis. Therefore, the most parsimonious phylogeny should be closest to the 

Gold Standard. To actually apply this principle, it is necessary to define the parsimony length of 

a phylogenetic tree. The parsimony length can be defined as the sum of the Hamming distances 

of sequences labeling endpoints of edges in the tree (Kim and Warnow, 1999).  Originally this 

method was used for analyzing phylogenetic relationship among organisms using their 

morphological features;  later on, this method was modified to analyze molecular data as well. 

However, the validation of the phylogenies in this thesis will, naturally, include phylogenies 

based on molecular data only. 

Currently, several tools are available that use the molecular data (selected DNA 

biomarker sequences available in the organisms of interest, usually highly conserved) in order to 

infer phylogenetic relationship among a group of organisms. But all of these tools require an 
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alignment of the biomarkers used. A distinction between informative and noninformative sites in 

the alignment must be obtained to proceed further.  For a site to be informative,  at least two 

different kinds of nucleotides must be present in at least two OTUs (Nei and Kumar, 2000).  

Then, for each possible tree for these OTUs, the total number of changes is calculated across all 

informative sites. The tree with the minimum number of changes among all the possible trees is 

selected. The process is illustrated in Figure 2 for four OTUs.  

  

Figure 2. Parsimonious phylogenetic Inference at the molecular level with four organisms  
according to (Varvio, 2011). In biology, parsimony is the principle that favors the simple 
and most straightforward explanation of any biological phenomenon among valid 
competing explanations. In order to reconstruct a phylogeny using Maximum Parsimony 
(MP), the sequences for the group of organisms are aligned first. Next, informative and 
noninformative sites are distinguished, and the total number of changes occurring across 
all the informative sites in the group is calculated. The tree with the minimum number of 
changes across all informative sites is a tree of maximum parsimony. 

For a small number of taxa, it is possible to perform an exhaustive search for MP trees. 

However, as the number of taxa increases, this method becomes infeasible and only heuristic 

methods can actually find reasonable estimates of phylogenetic hypothesis to estimate the Gold 

Standard. For example, for 4 OTUs, there are only 3 possible unrooted bifurcating trees, but even 

for just 10 OTUs, the number of possible unrooted bifurcating trees is 2,027,025. In general, for 
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n OTUs, there are (2n-5)! / [(n-3)!2(n-3)] possible unrooted bifurcating trees (Cho, 2012). When n 

is less than 10, one can use so-called branch-and-bound search methods; however, when n 

becomes greater than 10, heuristic search is a must (Nei and Kumar, 2000).  

Many MP trees are possible for a single group of organisms, especially under uncertain 

evidence in the sequences. That is why biologists rather tend to combine a number of hypotheses 

into a single composite tree, which is called a consensus tree. Most commonly used consensus 

trees are strict-rule based, but good trees can also be obtained by a majority consensus, where a 

relationship is preserved if and only if a fraction of the trees (e.g., 85%) exhibit it. In a strict 

consensus tree, any conflicting branching patterns for a set of OTUs among all the candidate 

trees are resolved by creating a multifurcating branching pattern. In a p% majority based 

consensus tree, a branching pattern present in at least a fraction p/100 of the trees is adopted (Nei 

and Kumar, 2000). Generally, a majority rule-based consensus trees of 70% or above are 

considered to be reliable. 

Although this method is a more sophisticated way of making phylogenetic inferences, 

there are situations when it tends to yield incorrect trees. The theoretical foundation of this 

method specifies that the lesser the number of evolutionary changes in a group of organisms, the 

more accurate the phylogeny is. This amounts to the assumption that there are no backward and 

parallel substitutions at each nucleotide site and the number of nucleotides in each sequence is 

sufficiently large to come to a conclusion. However, in practice, the nucleotides are pruned to 

backward and parallel substitutions and often the number of nucleotides in each sequence is 

small (Nei and Kumar, 2000). In this situation, the trees obtained using this method tend to be 

incorrect. 
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Maximum Likelihood 

Maximum likelihood is a method used in statistics to estimate the parameters in a 

statistical model, given a set of observations, by finding the values for the parameters that 

maximizes the probability of obtaining the observations  (Myung, 2003). The main concern in 

phylogenetic inference for a set of species using ML is to find all the phylogenetic trees for the 

biomarkers, but the problem is, too many possible trees render the calculation impossible in 

practice. The method of maximum likelihood selects the tree (model) that is more likely to 

generate the sequences of the given set of species (Kim and Warnow, 1999). This is made 

possible by Bayes’s Theorem in probability, here given by  

P(Model|Data) = P(Model and Data)/P(Data) = P(Data|Model)P(Model)/P(Data) 

 

Figure 3. Maximum Likelihood (ML) estimation of a phylogeny. For a given set of 
biomarkers, the true phylogeny shows the actual sequence of differentiation events that 
resulted in these sequences. A priori, many trees are conceivable for the given set. ML 
selects a tree that is most likely to produce the given set of sequences.  
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Phylogenetic inference using ML makes several assumptions (Kosiol, Bofkin and 

Whelan, 2005) as follows:  

1. Branches of the evolutionary tree evolve independently; 

2. Evolution at particular sites in the sequence alignment is dependent on the current state 

only, not on the past states of evolution; 

3. Reasonable topology estimates lead to reasonable parameter estimates; 

4.  Sites in sequence alignments change at the same overall rate; 

5. The evolutionary process changes the same way going forward and backwards; 

6. The rate with which transition mutations (change from a purine nucleotide to another 

purine or from a pyrimidine to another pyrimidine, i. e. A<-> G or C<->T) occur is 

relative to transversion mutations (change from a purine nucleotide to pyrimidine or vice 

versa, i.e. A<->T or G<->C) in DNA.  

Like with the MP method, the computation of the likelihood of the sequences from the entire 

possible tree becomes infeasible as the number of taxa grows, even modestly. Therefore, 

effective use of ML requires the use of heuristics, such as hill climbing search (see Figure 4), 

hierarchical clustering, and Monte Carlo search (see Figure 5).   

Hill Climbing 

Hill climbing is a local search algorithm in numerical analysis, where an arbitrary 

solution is chosen for a problem and attempts are made by incrementally replacing an element in 

the solution with a neighbor to improve the estimate of the maximum value of a function 

(Russell and Modern, 2003), such as the likelihood of generating the given sequences. 
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Figure 4. Hill Climbing Search of Maximum Likelihood phylogenies for a given set of 
sequences according to (Russell and Modern, 2003). If the x-axis represents all the possible 
tree topologies for a given set of sequences and the y-axis gives their likelihood, the ML tree 
that maximizes likelihood of generating the sequences is the ML tree. However, although it 
is theoretically possible to enumerate all the possible trees and compute their likelihood for 
the sequences exactly, it is very difficult in practice to enumerate a super-exponential 
number of possible topologies to realize the maximum value tree. In order to estimate it, 
one can pick a random initial tree and recursively use a current tree Tj to find a similar 
topology Tj+1 to improve the estimate if it has higher likelihood. The process is repeated for 
a certain number of iterations or until improvements in likelihood become negligible, 
evidence that they might be close to a maximum. There is a risk that the method gets 
trapped in a local maximum and will not yield a good approximation in one try, so the 
approach is repeated a number of times. 

 

Monte Carlo 

In this search technique, repeated random samples (with replacement) are taken in order 

to estimate the solution of a problem. 
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Figure 5. Monte Carlo Search of Maximum Likelihood phylogenies for a given set of 
organisms according to (Suzuki et al, 2004). In this approach, a sufficiently large sample is 
drawn from the population of all possible tree topologies for the set in order to get a close 
estimate of one with maximum probability of producing the original sequences. The tree 
with largest such likelihood in the sample is selected as an estimate for the true maximum. 

	
Unweighted Pair Group Method with Arithmetic Mean (Distance Method)  

This is a bottom-up clustering method.  This method requires a distance matrix between 

each pair of organisms. The algorithm is illustrated in Figure 6. At each step,  two closest nodes 

are grouped into one higher-level cluster joint by an intermediate node. The distance matrix is 

then updated with the new distance between all the remaining nodes from the new intermediate 

node. This process is repeated iteratively until only one cluster remains. 
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Figure 6. An example of the construction of a phylogeny using the Unweighted Pair Group 
Method with Arithmetic Mean (UPGMA) according to (“UPGMA”,  accessed 2017). This 
process starts with each node as an individual cluster. Then the two clusters closest to each 
other are joined together forming a larger cluster, joined by an intermediate node. The two 
subclusters are assumed to be equidistant from the intermediate node joining them. Then, 
the distances from the intermediate node are calculated for all the remaining clusters in the 
space and the distance matrix is updated.  The process is repeated until a phylogeny is 
obtained that groups together all the leaves into a higher cluster with one root node. 

This method assumes that evolution occurs at constant rate, i.e. that all the leaves are 

equidistant from the common ancestor. On this assumption, a rooted tree can be obtained 

because it is easy to infer the root of the tree, particularly when gene frequency data are available 

for phylogenetic reconstruction. This method produces reasonably good trees compared with 

other distance methods (Nei and Kumar, 2000). 
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Neighbor Joining 

Neighbor Joining (NJ) is also a distance method based on bottom-up (agglomerative) 

clustering technique. It groups two nodes into a cluster that are farther apart from the rest of the 

nodes. Naruya Saitou and Masatoshi Nei proposed this method in 1987 (Nei and Kumar, 2000). 

The process of constructing phylogenies by this method is illustrated in Figure 7. 

 The construction of a tree begins with a star tree on the assumption that there is no 

clustering of taxa (Nei and Kumar, 2000). At each iterative step, this method tries to minimize 

the sum of the lengths of all the branches in the current topology. In order to do so, a Q-matrix is 

calculated which stores the distance values between each pair of taxa (i, j) reflecting their 

proximity to remaining taxa, as shown in Figure 7. An intermediate node u joins the pair of taxa 

(a, b), which has lowest Q-value. Then, distances d(u, a) and d(u, b) are computed. This will lead 

to an update in the distance matrix, which now includes the distance from u to each of the 

remaining leaves. The process is repeated until the sum of the lengths of all the branches of the 

tree can no longer be reduced. 
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Figure 7. An example showing the construction of phylogeny using Neighbor Joining (NJ) 
Method, according to (“Neighbor Joining”, accessed 2017). This is another distance-matrix 
method where two clusters that are closer to each other than to other clusters are joined 
into a single cluster. The method starts with star-like phylogenetic relationship among 
organisms. Based on a distance-matrix, a Q-matrix is calculated that illustrates how close 
two organisms are to each other given the context of the remaining organisms.  An 
intermediate node joins the two organisms, which have lowest Q-value. The distances from 
the intermediate node to the remaining organisms are re-calculated and the distance 
matrix is updated. The process is repeated iteratively, until a single node remains. 

This method is mainly used for DNA and protein sequences. It is very fast by comparison 

to Maximum Likelihood and Maximum Parsimony methods, as only a small proportion of all 
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possible topologies are considered (Saitu and Nei, 1987). When the given input distance matrix 

is correct, this method is expected to produce a reliable phylogeny. 

Drawbacks of Conventional Methods 

There are several problems with the conventional methods discussed above. First, they all 

require a multiple sequence alignment to construct a phylogeny. For smaller sequences, like 

COIs, that might not be the problem, but  as the length of biomarker sequences increases, even 

for a modest number of organisms, getting the alignment may become computationally taxing 

and increasingly infeasible. Second, the order in which the biomarkers are given also impacts the 

resultant phylogeny, as the alignment will be different than when the same set of organisms are 

arranged differently. An important point to note here is that, due to higher dependencies in the 

alignment, the phylogeny for a subset of organisms in one batch may differ from that obtained 

when they are in another batch.  

Another major disadvantage is that, as the group of organisms of interest changes, the 

biomarker usually has to change because it has to be available in all organisms in the target 

group. Biologists believe that only changes in highly conserved genes truly cause significant 

evolutionary steps. As a result, phylogenies based on those conserved genes are considered to be 

a better approximation of the Gold Standard. However, selecting different genes leads to 

different phylogenies and it is very difficult to find such conserved genes in all organisms 

(Garzon and Wong, 2011). Hence, a specialized choice of biomarkers is made depending on the 

group of organisms under study. The fundamental problem of phylogenetics would then have to 

remain unresolved for the TOL at large. 

 



	 17 

Metrics for Similarity Assessment of Phylogenies 

Due to the availability of several methods to reconstruct phylogenies, an analysis must be 

done to select the most accurate phylogeny. Generally, biologists perform a comprehensive 

qualitative analysis of the resulting phylogenies to vet their biological accuracy and consistency 

with other evidence in biology. However, these analyses are hugely affected by knowledge and 

preferences of the researcher performing the analyses. Because of this lack of common ground in 

qualitative analysis, quantitative objective metrics are needed to compare phylogenetic trees. 

Two of the most commonly used metrics are the Robinson-Foulds and the Path-distance indices. 

They were used to validate the phylogenies obtained in this research. 

The Robinson-Foulds  (RF) distance is a widely used measure of (dis)similarity between 

trees that is based on the characteristics of the trees without performing any edit operations  (Lin 

et al., 2012). The algorithm to compute the RF index between any two trees is shown in Figure 8. 

Removing an edge in a phylogenetic tree disconnects the tree and creates a partition of the 

leaves. A set Pi  containing all the possible partitions present in tree Ti, can be computed. In order 

to compute the RF index between trees T1 and T2, first, P1 and P2  are computed and the total 

numbers of P1[i] ∈ T1 but not in T2 and the total number of P2[j] ∈ T2 but not in T1 are obtained. 

Finally, the RF index equals the weighted average of these two numbers. Methods available in 

the R phangorn package were used in order to compute normalized RF index between any two 

trees. 
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Figure 8. Calculation of the Robinson-Foulds (RF) index between two phylogenies T1 and 
T2 quantifying their degrees of similarity (Robinson and Foulds, 1981). A partition, P1[1] 
is created in T1 when deleting an arc (branch). The set containing all possible partitions of 
T2, P2 is searched for the presence of P1[1]. The process is repeated for all possible 
branches in P1 and the total number of partitions in P1 that do not have a matching 
partition in P2 is determined. The process is repeated to find total number of partitions in 
P2 that do not exist in P1. The average of these two numbers is the RF degree of similarity 
between the two phylogenies T1 and T2.  

The major advantage of this index is that it measures the dissimilarities between any two 

trees as given, based on their own characteristics, without performing any edit operations (Lin, et 

al, 2012). Since for any tree with n nodes, only n – 3 nontrivial bipartitions are possible, when 

there is n number of species, the maximum possible value of an RF index between any two trees 

is 2n – 6 (Robinson and Foulds, 1981; Steel and Penny, 1993). So, it is easy to quantify 

dissimilarities using the RF index. However, the change in the RF index can be unpredictable. 
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For example: on the one hand, the RF index might not be able to make fair discrimination 

between dissimilar tree topologies, but on the other, moving a leaf at the end of a tree to the other 

end might create a tree with maximum possible RF index to the original tree.  

Because of its lack of robustness,  the Path distance (PD) index was also used in this 

thesis. This index translates trees into higher dimensional vectors to represent the (dis)similarity 

between them in terms of their Euclidean distance (Steel and Penny, 1993). The algorithm for 

computing PD indices is shown in Figure 9. For any pair of trees, T1 and T2, the distance 

between all the possible pair of leaves (j, k)  (in some fixed order) determines the tree uniquely 

and can be computed initially. Then, vectors d(1) and d(2) formed after arranging previously 

computed d(i, j, k) where, i  = 1 or 2, identify the trees. Now, after translating T1 and T2 into d(1) 

and d(2) respectively, the PD index equals the Euclidean distance between them. In this thesis, 

for the sake of comparison on a common scale, all the PD indices were normalized by dividing 

each index with maximum value of all possible indices in the batch. 
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Figure 9. Calculation of the Path-distance (PD) index between phylogenies T1 and T2 as an 
alternative way to compute their degree of similarity (Steel and Penny, 1993).  T1 and T2 
are translated into vectors d(1) and d(2) by arranging the distances between all possible 
pairs of leaves in T1 and T2 (labeled with the given sequences) in a fixed order, 
respectively. Such vector determines the trees uniquely. The PD index between T1 and T2 
is defined as the Euclidean distance between the vectors d(1) and d(2). 

PD indices have several features that evidence that they are useful while performing 

phylogenetic analysis. They require less computation time, which makes it desirable while 

comparing large trees (Steel and Penny, 1993). It might be more suitable while comparing 

dissimilar trees. However, in the course of this research, it was observed that most of the PD 

indices cluster closely together, giving a smaller range of. So, the choice of better estimate by 

comparison to the Ground Truth could not be made solely on PD indices.  
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Genomic Methods for Phylogenetic Inference 

Next Generation Microarrays (nxh chips)  

DNA – the blue print of life – plays a major role in determining morphological and 

metabolic behaviors of an organism, along with the kind of diseases that organism is prone to 

suffer from. For example: researchers believe that mutations in the genes BRCA1 and BRCA2 

causes as many as 60 percent of all cases of hereditary breast and ovarian cancers in female 

Homo sapiens. But, researchers also found over 800 different mutations in BRCA1 alone (Cook-

Deagon, et al, 2010). This clearly shows that huge amounts of information are being stored in 

DNA, which can be captured, processed, manipulated and analyzed in order to make any 

assessment about any organism and their relationships. 

As a result, microarrays were developed as a tool to capture and mine large-scale 

genomic data. They are planar substrates such as glass, mica, plastic or silicon, where DNA 

strands  are affixed to allow specific bindings of bio-samples collected from an organism 

(Schena, 2003). During the early 1990s, the first microarray experiments were performed using 

complementary DNA (cDNA) affixed to the microarrays. The length of a typical cDNA is 500-

2500 base pairs and they are widely used in gene expression assays (Schena, 2003). Since 1990s, 

microarrays have been refined and today have become most commonly used powerful tools to 

capture and mine genomic and metabolomic information.  The information gathered by these 

tools has wide applications in the fields of biology, medicine, health and scientific research. 

Biologists refer to probes to indicate the biosample as shown in Figure 10 (Right) and 

target to indicate the microscopic element fixed on the microarray as shown in Figure 10 (Left). 

In this thesis, the terms “probe” and “target” are used with the reversed meaning. 
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Figure 10. Microarrays are a standard technology in biological applications. Genes of 
interest are affixed to a solid surface, such as glass or mica. Target sequences (usually RNA 
or cDNA) are collected from the organism under study. These DNA strands are tagged 
using fluorophores (Nagl, et al, 2005) and poured on the chip. After some relaxation time to 
allow for hybridization to reach equilibrium, a fluorescent readout can be collected in a 
picture.  

Despite the advantages offered by microarrays, the analysis relying on these data gives 

results that are hardly reproducible because of the high uncertainty of hybridization of targets to 

probes if such is present. No constraints are implemented in these chips to minimize cross-

hybridization between probes. As a result, the results are not accurate and hence unreliable due 

to the lack of reproducibility of results, as argued in (Garzon and Mainali, 2017). 

A second disadvantage of microarrays is that they might miss target strands if they do not 

hybridize to any probe, and thus miss signals that could yield useful information. For example, 

probes are arranged on the chip without giving any consideration to the fact that they might 

hybridize with themselves. If that happens, then the tagged targets will not have any chance to 

hybridize with the probes, resulting in missed signals. 

These drawbacks of conventional microarrays have been addressed in a number of works 

(Garzon & Mainali, 2017; Garzon & Bobba, 2012) with the introduction of next generation 

microarrays, where none of the probes hybridize with each other or themselves. The problem of 

finding such large set of DNA oligonucleotides  is known as the Codeword Design problem 

(Garzon, 2012; Garzon and Bobba, 2012) and has been proven to be very hard (technically, NP-
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complete - see Garzon and Bobba, 2012) to solve in full generality. A solution  is called a 

noncrosshybridizing (nxh) set and they would be extremely useful in the design of a next 

generation microarray. The size and composition of such nxh sets is therefore very difficult to 

establish because they ultimately rely on the structure of Gibbs Energy landscapes that govern 

structural properties of hybridization between oligonucleotides. But the good news is that this 

problem can be translated into a geometric sphere-packing problem by mapping oligos with high 

hybridization affinity into neighboring points in a geometric lattice in the familiar Euclidean 

space (Garzon and Bobba, 2012).  

To address this problem, a new model was proposed, the hybridization distance (h-

distance), that quantifies the possibility of two oligos x and y hybridizing with each other 

(Garzon, 2012; Garzon et al, 2012). In this model, the sphere-packing problem can be 

approximately solved in the DNA spaces of small oligonucleotides. An example of computation 

of h-distance between two oligos x and y, where x = agc and y = tgg, is shown in Figure 11. The 

h-distance model is an effective approximation of the Gibbs Energy that regulates hybridization 

in DNA. A decision made for hybridization between two strands obtained by the h-distance 

method agrees with a decision based on the Gibb’s Energy Nearest Neighbor model over 80% of 

the time (Garzon and Bobba, 2012). The only price to pay here is h-distance does not distinguish 

between an oligo and its Watson-Crick complement. The term pmer (for poligomer) will be used 

to refer to such pairs of a strand and its complement, which may be identical in the case of a 

Watson-Crick palindrome. With that approximation, the h-distance can now be treated like an 

ordinary distance function (similar to ordinary distance) and used to quantify the amount of noise 

inherent in a microarray design (Garzon and Mainali, 2017; Garzon & Bobba, 2012). 
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Figure 11. Computation of the h-distance between two oligos x and y of a common length n. 
x and reversed yR are aligned in all possible frame-shifts (here five) and the number of 
complementary matches for each frameshift is counted. The h-measure for x and y is the 
defect (difference) to the length n of the maximum of these values. The same procedure is 
repeated to find the h-measure between x and its WC complement y’. The h-distance 
between x and y is the minimum of these two h-measures h(x, y) and h(x, y’)  (Garzon et al., 
1997; Garzon and Bobba, 2012; Garzon, 2012). 

Reliability Analysis and Design of nxh chips  

The design of a next generation nxh chip is based on judicious selection of probes. First 

of all, a threshold τ for hybridization by h-distance is selected. Then, a judicious selection of 

probes is made in such a way that all of these probes are separated from one another with the 

minimal distance τ so that they will not hybridize with each other or themselves (the nxh 

property). A good chip design (basis) should also have sufficiently many of probes in it so that 

each target shred would get chance to hybridize with at least one probe. Furthermore, all targets 

will hybridize to at most one probe. This becomes true for an nxh chip design with hybridization 

threshold τ/2 because, as shown in Figure 12 (Right), if a shred z has h-distance less than τ/2 for 

two of the probes i and j, then it cannot hybridize with two different probes, due to the triangle 

inequality and the minimal separation τ in h-distance between any pair of probes. 

Such a design can be implemented with standard microarrays technology, where a 

physical chip would consists of a number of spots corresponding to the oligos in an nxh set.   

Each spot consists of two bundles, one containing a fixed number of copies of an nxh oligo probe 
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and the other same number of copies of its Watson-Crick complement, separated by the minimal 

distance τ, so that they will not be able to hybridize, as illustrated in Figure 12 (Left).  

 

Figure 12. Noncrosshybridizing (nxh) chip design (left) in (Garzon and Mainali, 2017). The 
chip design consists of a number of spots in 1-1 correspondence with a so-called basis set of 
nxh oligos. All the pairs of the basis oligos in the chip are at h-distance at least τ from each 
other.  Each spot consists of a fixed number of copies of a basis elements and same number 
of copies of their Watson-Crick complements, laid at a fixed distance to prevent cross-
hybridization. A target shred z is assumed to be able to hybridize with a probe if and only if 
its h-distance to the probe is less than τ/2. Due to triangle inequality (inherent in the metric 
property of h), copies of a random z cannot hybridize with two of them (right). Thus, the 
nxh chip minimizes the amount of noise, thus addressing a problem in standard micro-
array technology (Garzon and Mainali, 2017).  

With this chip design (basis) in hand, we can now capture genomic information about any 

organism from any biomarker in a so-called digital signature. The marker will be shredded using 

some standard technology, such as sonication or cleavage (Sambrook and Russell, 2006).  Unlike 

conventional microarrays, probes in the chip will be tagged using fluorophores (Nagl, et al, 

2005), because we want to eliminate the noise caused by target shreds that could hybridize with 

them when poured to the chip. Then, all the shreds are poured on the chip containing the probes. 

After allowing sufficient relaxation time for hybridization to occur, we obtain the readout for the 

digital signature for that particular organism. The procedure is illustrated in Figure 13. 
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Figure 13. Calculation of the digital signature of an organism using a representative 
sequence in (Garzon and Mainali, 2017). A sequence of an organism is shredded using 
sonication. Unlike conventional microarrays, the probes in the chip are tagged using a 
fluorophore (Nagl, et al, 2005). The shreds containing tagged probes are poured to the chip. 
A signature can be collected in a photograph (readout), as with standard microarrays. 

In order to quantify the quality of this chip, a random experiment can be performed. The 

sample space for the experiment contains all possible pmers with the length same as the length of 

probes in the basis. The experiment selects a pmer from the sample space at random. All the 

pmers are selected with uniform probability. The random variable X used in this quantification is 

the total number of probes that a random pmer sticks to. Now, the quality of any basis can be 

expressed in terms of two metrics, namely, the expected value of X and the expected value of the 

random variable Y counting the number of bits required to represent the values of the random 

variable, which is called the Shannon Entropy. Ideally, a basis would show a random variable 

with values constantly (or at least its expected value is) equal to 1, and its Shannon Entropy is 

equal to 0. The quality profile of several bases is shown in Figure 15. 
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Figure 14. Reliability analysis of nxh chip based on two metrics of reliability, namely the 
expected value and Shannon Entropy of the random variable X that counts the number of 
probes in a basis (x-axis) that a pmer selected at random could stick to, shown in the y-axis 
for five nxh bases, as given in (Garzon and Mainali, 2017). The sample space consists of all 
the possible pmers of a common length equal to the length of the probes in the basis. The 
Expected value of X can be used to quantify the amount of noise on the chip. Ideally, we 
would like this random variable to be constant of value 1 (no ambiguity in the 
hybridization process for a noise-free chip). Alternatively, the Shannon Entropy (defined as 
the expected value of number of bits required to represent the values of X) could be used to 
quantify the degree of uncertainty with which a target shred sticks to a single probe. This 
value should equal 0 for an ideal chip design.  

Even having such as perfect basis, the possibility remains that a majority of the pmers 

stick to only one probe in the basis. Ideally, we want equal amounts of signal being captured at 

each probe on the chip, when the same amount of all the possible probes are poured to a chip, 

i.e.,  random pmers hybridize evenly to all probes, and the signature obtained is not biased 

towards any probe in the basis. As shown in Figure 14 and Figure 15, 4mP3-3at2.1 is a perfect 

basis but the signature of pmers is slightly biased towards third probe. A separate experiment 

was performed, which is not described in this thesis, in order to quantify the impact of this bias. 

However, no significant impact of biased signals was observed for phylogenetic reconstruction 

using the bases in Figure 16 during that experiment. 
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Figure 15. Distribution of pmers likelihood of hybridization across the probes in a basis, as 
given in (Garzon and Mainali, 2017). Ideally, one would desire an unbiased chip design, i.e., 
one where the likelihood is uniform for all the pmers if they were poured onto the chip in 
equal concentration as shown in the third row for each basis. Here, the signature of all the 
4pmers on perfect basis, 4mPolar3-3 is slightly biased towards the third probe. 

In order to further test the quality of the nxh chips, we ran a control experiment in which 

random signatures were obtained from a chip (say, due to a careless choice of probes on the 

chip). For that purpose, an R program was used to generate random signatures (satisfying similar 

constraints to signatures generated from a random set of probes) for the 13 organisms in sample 

1. The phylogenetic trees based on Euclidean distance, Angle and Composite of Euclidean 

distance and Angle (Ang1000) between the signatures were produced using the ape (Paradis et 

al, 2004) and phangorn (Schliep, 2010) packages available in R (they were the same packages 

used in the computations below). Then, based on the RF indices and PD indices, those 

phylogenetic trees were compared against phylogenies on nxh chips. The process was repeated 

32 times. On average, it was observed that phylogenies on the nxh chip are significantly closer to 

the Ground Truth than the phylogenies on random signatures, as shown in Figure 16. To further 

investigate the statistical significance of these differences, two z-tests were performed with the 

research hypotheses “the average of the RF (PD) indices on random set of signatures is greater 

than that on nxh chips”. The null hypotheses were formulated as the negation of the research 

hypotheses. Sufficient evidence was not found in those indices to reject the null hypothesis, 
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except only when the similarity metric used to obtain the phylogenies was the Angle between 

signatures. Moreover, the phylogenies based on Angle were found not to be biologically 

meaningful, so they are not analyzed further qualitatively in this thesis. In conclusion, the 

phylogenies based on Euclidean distance and Ang1000 metrics were statistically significantly 

better than the phylogenies based on random set of signatures, according to RF and PD indices. 

 

Figure 16. Quantitative assessment based on RF and PD indices, of phylogenies on nxh 
chips, by comparing the indices of phylogenies on random set of signatures to the Ground 
Truth. The phylogenies based on nxh chips are statistically significantly closer, on average 
index, to the biological Ground truth than the phylogenies based on random set of 
signatures, even more so using the RF index than the PD index, according to a z-test 
comparing the means of the two sets of phylogenies for sample 1. 

 The bases that were used to capture genomic information as the digital signatures of 18 
organisms from sample 1, 39 organisms from sample 2 and 17 bacteria from sample 3 are given 
as: 
 
Table 1. Nxh chip designs used to obtain digital signatures  
 

Name Length of the probes Number of Probes � 

3mE3-2at1.1 3 3 1.1 
3mE4b-2at1.1 3 4 1.1 
3mE4-2at1.1 3 4 1.1 
4mP3-3at2.1 4 3 2.1 
4m15-2at1.1 4 15 1.1 
5mP6-3at2.1 5 6 2.1 

5mP10-2at2.1 5 10 2.1 
8mP10-4at4.1 8 10 4.1 
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Assessment of quality of the phylogenetic hypothesis 

 Multiple sequence alignments for COIs of organisms in sample 1 were obtained using 

Clustal Omega (McWilliam, 2013).  Since the software PAUP package (Swofford, 2002) is the 

most commonly used by biologists for phylogenetic analyses, it was downloaded from 

phylosolutions.com/paup-test  and then used (with default parameters) in order to generate 

phylogenies based on strict consensus majority consensus by Maximum Parsimony and 

Maximum likelihood, based on the Decision Theoretic Framework (DT) (Darriba, et al, 2012; 

Fungiflora & Gascuel, 2003). These hypotheses were used to assess the biological significance 

of the difference of the nxh chip based hypotheses from the Ground Truth. 

 Since the proposed methodology does not integrate molecular clocks, the quantitative 

analyses (using indices described in Chapter 2) of these hypotheses are solely based on the 

phylogenetic relationship between organisms excluding branch length in the hypotheses. In 

addition, qualitative analyses of the nxh chip based phylogenies were performed and are 

presented in Chapter 4. Biologists have defined the phylogenetic relationship among organisms 

based on the complexity of life, meaning that the organisms sharing the same degree of 

complexity of life should be closely related. The qualitative analyses of these nxh chip based 

phylogenies were primarily based on how accurately the phylogenetic relationships reflected 

what biologists generally accept about the development of life, particular concerning the 

biological complexity of the organisms involved. 

Table 2. Nomenclature of representative sequences for phylogenetic reconstruction 

Notation Meaning 

6Ks18 18 organisms from major 6 Kingdoms from Table 3 
6Ks15 15 organisms from major 6 Kingdoms extracted from Table 3 
6Ks13 13 organisms from major 6 Kingdoms extracted from Table 3 
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Table	2.	(Continued)	
	

Notation	 Meaning	
6Ks39 39 organisms from major 6 Kingdoms from Table 4 
COIs Sequences for Cytochrome c oxidase subunit 1 
M+COIs Sequences for Mitochondrial genome and COIs 
MORF+COIs Coding Sequences on Mitochondrial genome and COI sequences 
ORFs Coding Sequences on nuclear genome 
bac5All Sequences for whole genome of 17 bacteria in sample 3 in Table 5 
bac517 17 organisms of the kingdom Bacteria shown in Table 5 for sample 3  
Ang1000 The phylogeny based on composite (1000*Angle +  

Euclidean distance) between signatures of organisms as metric of 
similarity 

Euc The phylogeny based on Euclidean distance between signatures of 
organisms as metric of similarity 

Ang The phylogeny based on Angle between signatures of organisms as 
metric of similarity 

Ward Ward algorithm used for hierarchical clustering to compute phylogeny 
 

Data Collection and Preprocessing 

The data collection was performed in two phases. In the first phase, Cytochrome C 

Oxidase subunit I (COI)s, Mitochondrial genomes (when the sequences were available), Coding 

Sequences (ORFs) on Mitochondrial genome and the whole genome (when the sequences were 

available) were downloaded from NCBI, the National center for Biotechnology Information 

(Wheeler et al, 2007), and BOLD, the Barcode of Life Data System (Hebert et al., 2003) for the 

organisms shown in Table 3. The distribution of species across biological taxonomy at top two 

layers for sample 1 is shown in Figure 17. In addition, sequences for , Coding Sequences (ORFs) 

on Mitochondrial genome and Cytochrome Oxidase subunit I (COI)s were downloaded from 

NCBI (Wheeler et al, 2007) and BOLD database (Hebert et al., 2003) in Table 4. Finally, in the 

third phase, sequences for whole genome of 17 bacteria in Table 5 were collected as sample 3 

from NCBI (Wheeler et al, 2007). 
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Table 3. Sample 1 (to Phylum level, downloaded from NCBI and BOLD Database, 2017) 

Kingdom Phylum Organism Notation 

Animalia 

Arthropoda Anopheles gambiae AnimArthAno 
Arthropoda Drosophila pseudoobscura AnimArthDro 
Arthropoda Locusta migratoria AnimArthLoc 
Chordates Homo sapiens AnimChorHom 
Chordates Mus musculus AnimChorMus 
Cnidaria Hydra vulgaris AnimCniHyd 

Fungi 
Ascomycota Saccharomyces castellii FungAscoSac 

Basidiomycota Schizophyllum commune FungBasiSch 
Mucorales Rhizopus oryzae FungMucoRhi 

Plantae 
Magnoliophyta Brassica napsus PlanMagnBra 

Streptophyta Arabidopsis thaliana PlanStrepAra 
Streptophyta Zea mays PlanStrepZea 

Protista Euglenozoa Euglena gracilis ProtEuglEug 

Archaebacteria 
Euryarchaeota Halobacterium salinarum ArchEuryHalB 
Euryarchaeota Haloquadratum walsbyi ArchEuryHalQ 
Euryarchaeota Natrinema pellirubrum ArchEuryNat 

Eubacteria Proteobacteria Escherichia coli EubacProtEsc 
Proteobacteria Photobacterium profundum EubacProtPho 

 
Table 4. Sample 2 (to Phylum and Class level, downloaded from NCBI and BOLD Database, 
2017) 
 

Kingdom Phylum/Class Species Notation 

Animalia  Artropoda/arachnida Mesobuthus martensii AnimArtAraMesM 
Animalia  Artropoda/insecta Anopheles gambiae  AnimArtInsAnoG 
Animalia  Artropoda/insecta Apis mellifera  AnimArtInsApiM 
Animalia  Artropoda/insecta Drosophila melanogaster AnimArtInsDroM 
Animalia  Artropoda/insecta Drosophila pseudoobscura AnimArtInsDroP 
Animalia  Artropoda/insecta Locusta migratoria AnimArtInsLocM 
Animalia  Artropoda/insecta Zeugodacus cucurbitae AnimArtInsZeuC 
Animalia  Artropoda/Merostomata Limulus polyphemus AnimArtMerLimP 
Animalia  Chordata/aves Gallus gallus AnimChoAveGalG 
Animalia  Chordata/aves Egretta garzetta AnimChoAveEgrG 
Animalia  Chordata/aves Columba livia AnimChoAveColL 
Animalia  Chordata/mammalia Homo sapiens AnimChoMamHomS 
Animalia  Chordata/mammalia Mus musculus AnimChoMamMusM 
Animalia  Chordata/mammalia Pan troglodytes AnimChoMamPanT 
Animalia  Chordata/mammalia Sus scrofa (pig) AnimChoMamSusS 
Animalia  Chordata/Sauropsida Malaclemys terrapin  AnimChoSauMalT 
Animalia  Chordata/Sauropsida Python bivittatus AnimChoSauPytB 
Animalia  Chordata/Sauropsida Alligator mississippiensis AnimChoSauAllM 
Animalia  Cnidaria/Hydrozoa Hydra vulgaris AnimCniHydHydV 
Fungi Ascomycota/ Saccharomycotina Saccharomyces cerevisiae FungAscSacSacC 
Fungi Ascomycota/ Saccharomycotina Candida albicans FungAscSacCanA 
Plantae Bryophyta/ Bryopsida Physcomitrella patens PlanBryBryPhyP 

	
	



	 33 

	
Table	4.	(Continued)	
	

Kingdom	 Phylum/Class	 Species	 Notation	
Plantae Magnoliophyta/Liliopsida Zea mays PlanMagLilZeaM 
Plantae Magnoliophyta/Liliopsida  Oryza sativa PlanMagLilOryS 
Plantae Magnoliophyta/ Magnoliopsida Arabidopsis thaliana PlanMagMagAraT 
Plantae Magnoliophyta/ Magnoliopsida Brassica napsus PlanMagMagBraN 
Plantae Magnoliophyta/ Magnoliopsida Beta vulgaris PlanMagMagBetV 
Archae Euryarchaeota/Halobacteria Haloquadratum walsbyi ArchEurHalHalW 
Archae Euryarchaeota/Halobacteria Haloarcula hispanica ArchEurHalHalH 
Archae Euryarchaeota/Halobacteria Halarchaeum 

acidiphilum 
ArchEurHalHalA 

Eubacteria Chlamydiae/ Chlamydiales Chlamydia trachomatis EubacChlChlChlT 
Eubacteria Chlamydiae/ Chlamydiales Chlamydia psittaci EubacChlChlChlP 
Eubacteria Chlamydiae/ Parachlamydiales Parachlamydia 

acanthamoebae 
EubacChlParParA 

Eubacteria Firmicutes/Bacilli Staphylococcus aureus EubacFirBacStaA 
Eubacteria Proteobacteria/ 

Gammaproteobacteria 
Salmonella enterica EubacProGamSalE 

Eubacteria Proteobacteria/ 
Gammaproteobacteria 

Acinetobacter 
baumannii 

EubacProGamAciB 

Eubacteria Proteobacteria/ 
Gammaproteobacteria 

Klebsiella pneumoniae EubacProGamKleP 

Eubacteria Proteobacteria/ 
Gammaproteobacteria 

Pseudomonas 
aeruginosa 

EubacProGamPseA 

 
Table 5. Sample 3 (to Genus level, downloaded from NCBI and BOLD Database, 2016) 
 

Name Notation 

Escherichia coli CFT073 E.coliCFT073 
Escherichia coli K12 E.coliK12 

Escherichia coli O15-7-H7 VT2 Sakai E.coliO15-7-H7 
Neisseria gonorrhoeae FA1090 Neis.gonorrhoeae 
Neisseria meningitidis FAM18 Neis.meningitidis 
Pseudomonas fluorescens Pf-5 Pseu.fluorescens 
Pseudomonas entomophila L48 Pseu.entomophila 
Pseudomonas aeruginosa PA01 Pseu.aeruginosa 

Rickettsia felis URRWXCal2 Rick.felis 
Rickettsia conorii Malish 7 Rick.conorii 

Salmonella enterica Paratyphi ATCC9150 Sal.entericaP 
Salmonella typhimurium LT2 SGSC1412 Sal.typhimurium 

Salmonella enterica Choleraes Plasmid 50 Sal.entericaC 
Shigella boydii Sb227 Shig.boydii 
Yersinia pestis KIM Yers.pestisK 

Yersinia pestis Antiqua Yers.pestisA 
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After collecting the sequences, they were preprocessed. Each sequence in all the samples 

was cleansed to remove nonDNA symbols (such as fasta annotations) present in the sequences, 

shredded into fragments of length n equal to the length of the probes on the nxh chips, and 

finally, pmer counts were obtained using Perl code. A pmer count represents the frequency of all 

possible n-mer oligos and their Watson-Crick complement in a sequence. 

 
Figure 17. Distribution of species per taxon in top three levels of the taxonomy for 
organisms in samples 1 and 2, for the sequences in the far right. The width of each 
rectangle is proportional to the number of species in the taxa belonging to the kingdom, 
phylum or class, as indicated in each taxon. 
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Results 

The preprocessed sequences were analyzed to obtain phylogenies. Firstly, the pmer 

counts were used to obtain signatures for the organisms using Perl software. Then, R code was 

used to obtain visualizations for digital signatures as well as dendrograms based on different 

metrics of similarity between these signatures. Three simple metrics were used, namely Angle, 

Euclidean distance, and composites of Angle and Euclidean distance (Ang1000) between the  

digital signature vectors. Other more sophisticated metrics such as Contrast (Garzon & Wong, 

2011) were also computed for similarity metrics between these signatures. However, the analyses 

showed that most of the phylogenies based on Contrast metric were caterpillar trees, so they are 

not discussed below.  

These phylogenies obtained by the h-distance were then compared against the OTL 

Ground Truth. Both qualitative and quantitative analyses were performed. Quantitative analysis 

was performed using modules available in the ape (Paradis et al, 2004) and phangorn (Schliep, 

2010) packages in R on the RF and PD indices. These analyses were performed at three levels – 

Phylum across kingdoms, Class across phyla and genera in a given kingdom (bacteria). The 

heatmaps show digital signatures alongside the phylogenies on nxh chips for samples 1 and 2 (in 

subsection discussing qualitative analyses) to give a sense of what the signatures would look like 

when sequences are processed. (The raw counts shown in the heatmaps have been slightly 

altered throughout in order to preserve intellectual property of the sequences used as probes in 

the nxh bases. However, the color codes in the heatmaps are accurate and these numbers are 

close enough to give an good idea about the actual order of magnitude of the number of shreds 

that would stick to the probes on the nxh chips). 
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Phylogenetic Analysis at Phylum level 

The phylogenies obtained using h-distance were compared against the Ground Truth 

extracted from Open Tree of Life (Hinchliff et al., 2015) at the phylum level for sample 1. The 

findings of quantitative and qualitative assessments are shown next.  

Quantitative Assessment of the Phylogenies 

Most of the time, the findings from quantitative analyses turned out to be in fairly close 

agreement with qualitative analyses obtained by conventional methods in biology on the same 

choice of the biomarker(s), the sequences and the metric(s) for phylogeny construction. As shown 

in Figure 18, COIs do not appear to be a good universal biomarker for phylogenetic reconstruc-

tion, according to the RF index of similarity. However, PD indices show that some of the 

phylogenies based on these sequences are of comparable quality to the customary phylogenies 

produced from PAUP based on COIs. 

 

Figure 18. Quantitative assessments, based on RF and PD indices, of the phylogenies on 
nxh chip for 18 organisms in sample 1 based on COIs. PD indices show that some of these 
phylogenies are statistically just as good as phylogenies generated from PAUP, the 
conventional method used by biologists. 
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However, the assessment shown in Figure 19 shows that, on average, accuracy increases 

(i.e., indices decrease) when M+COIs were used instead of COIs for phylogenetic inference. RF 

indices on nxh chip-based phylogenies were still higher than those on PAUP based phylogenies, 

however, PD indices on nxh chip-based phylogenies were significantly lower than those on 

PAUP based phylogenies. In order to determine the statistical significance of this difference on 

PD index, a t-test was performed. The alternative hypothesis used for the test was “The means of 

PD indices on phylogenies from PAUP and those on nxh chips are equal.” The null hypothesis 

was the negation of the research hypothesis. As a result, the test showed that the null hypothesis 

was rejected. Therefore the differences are statistically significant. 

 

Figure 19. Quantitative assessments, based on RF and PD indices, of the phylogenies on 
nxh chip for 18 organisms in sample 1 based on M+COIs. RF indices show that few 
phylogenies on nxh chips are comparable to those from PAUP. However, PD indices show 
that on average, the phylogenies on nxh chips are statistically significantly closer, on 
average index, to biological Ground truth than the phylogenies from PAUP, according to a 
t-test performed on comparison of the means of the two samples. On the other hand these 
phylogenies are comparatively closer to the Ground Truth (lower indices) than those based 
on COIs (Fig. 18.) 

In turn, significant improvement was observed in both the RF and PD indices between 

the Ground Truth and phylogenies on nxh chips when M+COIs markers were replaced with the 



	 38 

combination of signatures from ORFs of full Mitochondrial sequences and COIs, as shown in 

Figure 20. In addition, statistically similar results were obtained when MORF+COIs were 

replaced with nuclear ORFs. Although the PD indices increased slightly, there was small 

variation between the indices on nxh chip-based phylogenies as shown in Figure 21. A similar 

one-sided t-test was performed to determine statistical significance of the differences of averages 

on PD indices between phylogenies on nxh chips and those from PAUP on both of the dataset 

i.e., MORF+COIs and ORFs. The alternative hypothesis used for the test was “The difference 

between the means in PD indices on phylogenies from PAUP and those on nxh chips is 

positive.” The null hypothesis was the negation of the alternative hypothesis. As a result, the test 

showed now that there is sufficient evidence to reject the null hypothesis. 

 

Figure 20. Quantitative assessments, based on RF and PD indices, of the phylogenies 
obtained by the h-distance method for 15 organisms in sample 1 based on MORF+COIs. 
PD indices show that the phylogenies on nxh chips are statistically significantly closer, on 
average index, to biological Ground truth than the phylogenies from PAUP, according to a 
t-test performed on comparison of the means of the two samples. On the other hand, RF 
indices show that phylogenies from PAUP are better than those on nxh chips even though 
some of them become comparable to the former ones. However, phylogenies on nxh chips 
based on MORF+COIs are significantly closer to the Ground Truth than those based on 
M+COIs in Fig. 19. 
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Figure 21. Quantitative assessments, based on RF and PD indices of the phylogenies on nxh 
chips for 13 organisms in sample 1 based on ORFs. RF indices show most of these 
phylogenies are statistically just as good as phylogenies using PAUP. However PD indices 
show that the phylogenies on nxh chips are statistically significantly closer, on average 
index, to the Ground truth than the phylogenies from PAUP, according to a t-test 
performed on comparison of the means of the two samples. 

The question arises as to how significant these values may be for the accuracy of the 

phylogenies in terms of phylogenetic relationships. In order to answer that question, a few 

changes were made to the Ground Truth tree and new indices were computed between the 

Ground Truth and the altered Ground Truth. The process was repeated 14 times. From Figure 22, 

it is evident that PD indices between the Ground Truth and the phylogenies on nxh chips-based 

on MORF+COIs were comparable to indices between the Ground Truth and the altered Ground 

Truth when one or two changes are made to the Ground Truth tree. Therefore, the difference is 

due to a failure to capture only very few genetic links between the target organisms. 
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Figure 22. Assessment of the biological significance of the index differences in Figure 20 
based on RF and PD indices. RF and PD indices were computed for systematic 
modifications of the Ground Truth (mGTs, top figure) and the phylogenies on nxh chips 
for 15 organisms in sample 1 based on MORF+COIs in Figure 20 (bottom figure). This 
chart shows that the score difference amounts to only one or two branches out of 9 
branches in the Ground Truth phylogeny. That puts the accuracy of the h-distance method 
above the 85% range in terms of accuracy in branches of the Ground Truth. 

Qualitative Assessment of the Phylogenies 

The phylogenies based on COIs were also compared against the Ground Truth more 

qualitatively from the biological standpoint. In Figure 23 and Figure 24 phylogenies on nxh 

chips 4mP3-3at2.1 and 8mP10-4at4.1 using Ang1000 and Euclidean distance for similarity 
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metrics were compared against the Ground Truth. From Figures 23 and 24, it is evident that 

COIs were not suitable biomarkers to perform phylogenetic analyses when organisms were too 

diverse from one another. In Figure 23, even though most of the organisms in Animalia are 

shown to be in same clade, misclassifications such as Archae and Eubacteria being grouped with 

plants and animals are very critical. The situation is same with the phylogeny on basis 8mP10-

4at4.1 in Figure 24. 

	
Figure 23. Left: Assessment of the phylogeny on nxh chip 4mP3-3at2.1, based on COIs for 
organisms in sample 1, using similarity by Ang1000. Right: Ground Truth for the same 
sample 1. Even though most of the Animalia are grouped together, this phylogeny shows 
some serious misclassifications, as Fungi and Plantae are grouped together, and Archae 
and Eubacteria are separated from their clade and grouped with Animalia and Plantae. 
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Figure 24.	Left: Assessment of the phylogeny on nxh chip 8mP10-4at4.1, based on COI for 
organisms in sample 1, and using Euclidean distance for similarity metric. Right: Ground 
Truth for the same sample 1. Like phylogeny on nxh chip in Figure 23, this phylogeny 
shows some serious misclassification; for example, Archae and Eubacteria are grouped with 
Animalia and Fungi. 

The findings from this analysis raise an important question: are COIs too short for their 

signatures to capture enough information for phylogenetic reconstruction? In order to answer that 

question, the sequences for all the organisms, except organisms in kingdoms Eubacteria and 

Archae, were replaced by whole mitochondrial genomes. The analysis in Figures 25 and 26 show 

that the result got much better when M+COIs were used. The phylogenies are now grouping 

more biologically similar organisms together than the phylogenies with COIs. However, the 

inability of clustering algorithm to make clear distinction between Animalia, Fungi and Protist 

was still problematic to ignore from the biological standpoint. 
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Figure 25. Left: Assessment of the phylogeny obtained on nxh chip 3mE4-2at1.1, based on 
M+COIs for organisms in sample 1, using Ang1000 for similarity metric. Right: Ground 
Truth for the same sample 1. Qualitatively, more accurate hypothesis can be gained using 
M+COIs than using COIs. 

	

Figure 26. Left: Assessment of the phylogeny on nxh basis 4mP3-3at2.1, based on M+COIs 
for organisms in sample 1, and using Euclidean distance for similarity metric. Right: 
Ground Truth for the same sample 1. Qualitatively, more accurate hypothesis can be 
gained using M+COIs than using COIs using this similarity metric as well. 
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 In an attempt to get better results, the coding sequences of mitochondrial genome and 

COIs were used to obtain signatures for 15 organisms in sample 1. Then, phylogenies based on 

those signatures were produced. As shown in Figures 27 and 28, phylogenies on bases 8mP10-

4at4.1 and 4mP3-3at2.1 using Euclidean distance and Ang1000 for similarity metrics were 

compared against the Ground Truth. Although we could still experience a few misclassifications 

at the phylum level such as Fungi were split, the trees showed a clear distinction between 

organisms when coding sequences are used instead of whole genomes. Qualitatively, the 

feasibility of both hypotheses on Figures 27 and 28 appear to be the same. 

	
Figure 27. Left: Assessment of the phylogeny on nxh chip 8mP10-4at4.1, based on 
MORF+COIs for organisms in sample 1, and using Euclidean distance for similarity 
metric. Right: Ground Truth for the same sample 1. From this assessment, it is evident that 
introns in whole mitochondrial genomes can create noise in digital signatures for 
phylogenetics. 
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Figure 28. Left: Assessment of the phylogeny on nxh chip 4mP3-3at2.1, based on 
MORF+COIs sequences for organisms in sample 1, and using Ang1000 as for similarity 
metric. Right: Ground Truth for the same sample 1. From this assessment, it appears that 
introns in whole mitochondrial genome were creating noise in the signatures. Furthermore, 
this phylogeny seems to be depicting a similar evolutionary trend as depicted by the 
phylogeny on chip 8mP10-4at4.1 in Figure 27. 

In conclusion, it can be said that the introns present in full genome were likely 

introducing noise in the signatures that lead to misclassification and trees with shorter tips. If so, 

phylogenies based on coding sequences in the whole nuclear genome should be better than those 

based on the whole genome. The problem is that preprocessing whole genomes in silico to obtain 

signatures of these organisms were expected to be computationally challenging for organisms 

such as Homo sapiens, Brassica napsus and many more. Nevertheless, this methodology indeed 

allowed phylogenies based on coding sequences in whole nuclear genome to be computed and 

compared against the Ground Truth. 

As shown in Figures 29 and 30, some serious misclassifications occurred in phylogenies 

based on the bases 3mE4-2at1.1 with Ang1000 and 8mP10-4at4.1 with Euclidean distance for 

similarity metric, such as placing Mus musculus and Archae in the same clade. To be fair, there 
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were peculiarities  present in the sequences. For example, only one mitochondrial genome was 

available for Protist, so this sequence was used in all analyses; sequences for some of the 

organisms contained long sequence of nonDNA characters; and,  not all the organisms have 

mitochondria/nucleus. Therefore the question remains unanswered whether the error is due to the 

lack of evidence in the biomarkers, or is a shortcoming inherent to this methodology.   

	
Figure 29. Left: Assessment of the phylogeny on nxh chip 3mE4-2at1.1, based on ORFs for 
organisms in sample 1, and using Ang1000 for similarity metric. Right: Ground Truth for 
the same sample 1. The phylogeny on the nxh chip shows some serious misclassification of 
grouping Animalia with Archae and separating two Fungi. 
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Figure 30. Left: Assessment of the phylogeny on nxh chip 8mP10-4at4.1, based on ORFs 
for organisms in sample 1, using Euclidean distance for similarity metric. Right: Ground 
Truth for the same sample 1. The phylogeny on the nxh chip shows some serious 
misclassifications, such as grouping one species of Archae and one species of Animalia in 
the same branch. 

Phylogenetic Analysis at Class level 

The phylogenies obtained using h-distance method were compared against the Ground 

Truth, the Ground Truth extracted from Open Tree of Life (Hinchliff et al., 2015) at the class 

level. The findings of quantitative and qualitative assessments are shown next. 

Quantitative Assessment of the Phylogenies 

When analyzed quantitatively at class level, both indices are significantly larger than the 

phylogenies at phylum level in Figure 20. The inclusion of more phylogenetic links for 

comparison was responsible for this change. However, both indices had much better agreement 

across various bases and metrics between signatures to produce phylogenies closer to the Ground 

Truth, as shown in Figure 31. On one hand, PD indices indicate phylogenies based on the basis 

4mP3-3at2.1, using either Ang1000 or Euclidean distance for similarity metric, were 
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significantly closer to the Ground Truth. On the other, RF indices show that all the phylogenies 

on all nxh chips are comparable to the Ground Truth, except for phylogeny on 8mP10-4at4.1 

using Angle for similarity metric. 

	
	

Figure 31.	Quantitative assessment phylogenies on nxh chips, based on the RF and PD 
indices, for 39 organisms in sample 2 based on MORF+COIs. Both indices are significantly 
larger than in phylogenies at the phylum level in Figure 20. However, PD indices show that 
phylogenies on the nxh chip 4mP3-3at2.1 using either Ang1000 or Euclidean distance for 
similarity metric are significantly closer to the Ground Truth. On the other hand, RF 
indices show that the phylogenies on all nxh chips are comparable to the Ground Truth, 
except for phylogeny on 8mP10-4at4.1 using Angle for similarity metric. 

Qualitative Assessment of the Phylogenies 

 The better phylogenies according to indices as shown in Figure 31 were analyzed 

qualitatively, with respect to the complexity of life as used by most of biologists. As shown in 

Figure 32 and Figure 33, most of the phylogenetic relationships represented in the Ground Truth 

were reproduced at the class level in phylogenies on nxh chips. There were some concerns such 

as Fungi being split and variously grouped with plants and animals and species in the Sauropsida 

class were separated as shown in Figure 32. The organisms in the Sauropsida class were grouped 
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together in the phylogeny on the  nxh chip shown in Figure 33; however, Fungi and Hydra were 

still separated from their clade. 

	
Figure 32.	Left: Assessment of the phylogeny on nxh chip 4mP3-3at2.1, based on 
MORF+COIs for organisms in sample 2, and using Ang1000 for similarity metric. Right: 
Ground Truth for the same sample 2. Almost all the phylogenetic relationships were 
reproduced, except for a couple of misclassifications where organisms in the class 
Sauropsida and phylum Fungi were separated from their clades. 
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Figure 33. Left: Assessment of the phylogeny on nxh chip 3mE4-2at1.1, based on 
MORF+COIs for organisms in sample 2, and using Ang1000 for similarity metric. Right: 
Ground Truth for the same sample 2. In contrast to phylogeny on the nxh chip 4mP3-
3at2.1 in Figure 32, all the organisms in the class Sauropsida were grouped together. 
However, organisms such as Fungi and Hydra were separated from their clade. 

Phylogenetic Analysis at Genus level in Bacteria  

 The sequences of whole genomes for 17 bacterial organisms as shown in Table 5 for 

sample 3 were downloaded from NCBI (Wheeler et al, 2007). The 16S rRNA phylogeny 

generated by the CSRS method (Garzon and Wong, 2011) was considered as the Ground Truth 

for these 17 bacteria. The findings of quantitative and qualitative assessments are shown in the 

following two sections. 
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Quantitative Assessment of the Phylogenies 
 
  The quantitative assessment for h-distance based phylogenies for 17 bacteria using 

whole genome is shown in Figure 34. All the phylogenies produced using different metrics but 

the same basis were statistically identical. Furthermore, both indices show that phylogenies on 

the basis 4m15-2at1.1 are closest to the Ground Truth. Apart from those phylogenies, both 

indices indicate that phylogenies on the bases 5mP10-2at2.1 and 5mP6-3at2.1 appear closer to 

the Ground Truth.  

	
Figure 34. Quantitative assessment of phylogenies on nxh chips, based on the RF and PD 
indices, for 17 bacteria in sample 3 based on whole genome. Both indices show that 
phylogenies on the basis 4m15-2at1.1 are closest to the Ground Truth. Additionally, both 
indices also indicate that phylogenies on bases 5mP10-2at2.1 and 5mP6-3at2.1 are also 
statistically closer to the Ground Truth, regardless of the similarity metric used. 

Qualitative Assessment of the Phylogenies 
 
 Qualitative assessment was also done for the phylogenies that appeared to be closer to the 

Ground Truth by the indices in Figure 34 according to the quantitative analysis. When the whole 

genome was used to construct the phylogenies for 17 bacteria in sample 3, bases 4m15-2at1.1 

and 5mP6-3at2.1 produced phylogenies closer to the Ground Truth in (Garzon and Wong, 2011), 

as shown in Figure 35 and Figure 36.  The phylogenies on 4m15-2at1.1 and 5mP6-3at2.1, 
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exactly reproduced the phylogenetic relationship in the Ground Truth at the genus level, except 

for a minor difference in the position of one species of Salmonella. However, the position of this 

species seems to be contradictory even in the Ground Truth. By contrast, as shown in Figure 33, 

the phylogeny on 5mP6-3at2.1 clustered all the species in the same genus closer, even all the 

species of Salmonella are in one branch. This phylogeny  thus seems to be more convincing than 

the phylogeny shown in the Ground Truth. 

	
	

Figure 35. Left: Qualitative assessment of the phylogenies on the nxh chip 4m15-2at1.1 for 
17 bacteria in sample 3 based on whole genome sequences using Ang1000 for similarity 
metric Right: The Ground Truth for the same sample is a 16S rRNA tree generated by the 
CSRS method presented in (Garzon and Wong, 2011). The phylogeny on chip 4m15-2at1.1 
exactly reproduced the phylogenetic relationship at the genus level in the Ground Truth, 
except for a minor difference in the position of one species of Salmonella. 
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Figure 36.	Left: Qualitative assessment of the phylogenies on the nxh chip 5mP6-3at2.1 for 
17 bacteria in sample 3 based on whole genome. Using Ang1000 and Euclidean for 
similarity metric results in the same phylogeny. Right: The Ground Truth for the same 
sample 3 is again the 16S rRNA tree generated by the CSRS method in (Garzon and Wong, 
2011). The phylogenies on chip 5mP6-3at2.1 exactly reproduce all the phylogenetic 
relationships at the genus level in the Ground Truth, with a minor difference in the 
position of one species of Salmonella. However, this difference led to the grouping of all 
species in Salmonella in the same branch, which is biologically more convincing than the 
Ground Truth.
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Conclusions and Future Work 

Biological Significance of the Genomic Methods 

Constructing a universal tree of life that could cover the entire biome has been a major 

goal for many biologists since Darwin proposed his theory of evolution. All attempts in that 

direction point towards the fundamental question in phylogenetics: where did all the organisms 

at the current biome come from?  A reasonable approach to address the issue would be to 

formulate a phylogenetic hypothesis to estimate the true evolutionary TOL, with some 

supporting evidence. Biologists have been working over 100 years to formulate such hypothesis. 

The Open Tree of Life (Hinchliff, et al, 2015) is a most representative and systematic integrated 

hypothesis of such comprehensive efforts. This phylogeny was considered as the Ground Truth 

to serve the goal of phylogeny evaluation in this thesis.  

A new methodology was introduced that produces such hypotheses as estimations of the 

Ground Truth in biology that bear strong supporting evidence of their validity. This method is 

based on the selection of a universal set of biomarkers (basis), meaning that a change in the 

target set of organisms will not require a change in the markers. This approach makes possible 

the construction of a universal tree of life ab initio, and possibly encompassing the entire biome. 

Furthermore, unlike the conventional molecular methods, multiple sequence alignments for 

phylogeny reconstruction are no longer required. This advantage completely removes 

dependency of a phylogenetic hypothesis on the order of sequence alignments, which 

presumably, leads to the construction of more accurate and stable phylogenies. In addition, 

signatures using longer sequences, even of whole genomes, can now be computed, meaning 

more genomic information can now be used for better phylogenetic hypothesis formulation. 
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However, it was observed that ORF sequences may produce better phylogenies than full 

sequences including introns.  

Using this methodology, specific phylogenetic hypotheses are proposed in this thesis and 

both quantitative and qualitative assessments were made to investigate their biological 

significance by comparing those hypotheses against the biological Ground Truth.  In the first 

pass, sequences such as COIs, mitochondrial genomes, ORFs on mitochondrial genomes and 

nuclear genomes were used to devise the phylogenetic hypotheses for organisms in sample 1. 

Phylogenies on bases 3mE4-2at1.1 and 8mP10-4at4.1 are closer to the Ground Truth based on 

ORFs sequences using Ang1000 and Euclidean distance for similarity metrics. In a second pass, 

sequences for ORFs on mitochondrial genome for organisms in sample 2 were analyzed to 

produce hypotheses at the class level. The nxh chips 3mE4-2at1.1 and 4mP3-3at2.1 produced 

better estimates using the Ang1000 for similarity metric. Finally, in a third pass, whole genomes 

of 17 bacteria in sample 3 were analyzed to produce hypotheses at the genus level. For bacterial 

phylogenies, the selection of similarity metric did not affect the quality of the estimation with 

respect to the Ground Truth. Bases 4m15-2at1.1 and 5mP3-6at2.1 produced good hypotheses. It 

is likely that larger nxh bases based on longer markers (such as 12- and 16-mers) may produce 

more accurate phylogenies. However, finding these bases is a difficult NP-complete problem 

(Garzon, 2012; Garzon and Bobba, 2012). It is also likely that when better quality sequences are 

homogenously available and not mixed with other sequences (e.g., MORFs with COIs), this 

methodology gives more accurate estimates of the Ground Truth. 

Future Work 

 The major question that arises after investigating all the findings is how powerful this 

methodology is to estimate the Gold Standard to the maximum degree of accuracy.  It is a fact in 
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this thesis that this methodology has so far failed to reconstruct the exact Ground truth 

hypothesis that biologists consider to be their most accurate estimate of the Gold Standard. 

However, most of the phylogenetic links reproduced the Ground Truth at phylum (around 66%), 

class level (around 70%) and genus level (over 90%) to a high percentage of accuracy in the 

branches. As mentioned in the Introduction, it is well known that molecular data alone cannot 

possibly fully reconstruct phylogenetic relationships simply because these are impacted by other 

factors (such as mutations, environment, geography) having a significant influence on the 

evolution of an organism. From this standpoint, it is then remarkable that this methodology is 

capable of inferring genetic relationships on genomic data alone that have been obtained by 

combination of many other (including nonmolecular) means.  

A second question concerns implementation. Although technology is available to 

implement the proposed methodology, there remain experimental challenges to its translation to 

a wet lab to see how effective these models become when applied massively to the entire biome 

in real life.  Hence, a major question is, after selecting a suitable hybridization threshold τ, how 

can we enforce this τ on real DNA chips operating in vitro? Another major challenge is target 

shredding. In silico, we can obtain perfect shredding, but in practice,  technologies such as 

sonication and cleaving will not produce all the shreds of equal desirable uniform length in vitro. 

Given the theoretical foundation behind this work and the dynamics of actual hybridization in 

vitro, it is conceivable that this methodology might just prove robust enough in the wet lab to 

some variability in the length of the shreds.  
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