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Abstract 

Johnson, Amy Marcelle. PhD. The University of Memphis. May, 2011. Integration 

scaffolding in hypermedia learning. Major Professors: Roger Azevedo and Art Graesser.  

 

This dissertation project used 80 undergraduate students to examine the effectiveness of 

three forms of facilitation in hypermedia learning with text and diagrams about the 

human circulatory system: 1) signaling key terms, 2) prompted referencing of 

diagrammatic representations, and 3) integration scaffolding which provided facilitation 

in locating corresponding components within diagrams. These three experimental 

manipulations were compared to a control condition in which learners used the same 

hypermedia learning environment, without any facilitative feature in coordinating 

between text and diagrams. Two measures captured differences in learning: 1) a multiple 

choice pretest and posttest of declarative and conceptual knowledge and 2) a diagram 

interpretation task requiring learners to use diagrams to explain their understanding of the 

circulatory system. Eye-tracking measures and concurrent think-aloud protocols were 

collected during the 20-minute learning sessions to provide process measures of students' 

learning and a self-report cognitive load measure was administered immediately after the 

learning session. Results indicated that the integration scaffolding condition led to higher 

posttest scores on the multiple choice measure, but no significant differences were 

detected for the diagram interpretation task. Eye-tracking results demonstrated that the 

integration scaffolding condition had a higher number of and a higher total duration of 

fixations on relevant areas within the diagrams. The relevant areas represent 

diagrammatic representations corresponding to the textual referents within the 

accompanying text. Additionally, these learners spent a significantly larger proportion of 

their time inspecting diagrams looking at the relevant areas of the diagrams and a 
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significantly larger proportion of these learners' fixations were on relevant areas. 

Analyses of learners' self-regulated learning processes, based on concurrent think-aloud 

protocols, indicated that the integration scaffolding condition also generated more correct 

summarizations than the remaining groups. The self-report cognitive load measure failed 

to reveal any differences among the learning conditions. Taken together, these results 

provide support for models of text-picture integration (Mayer, 2005; Schnotz, 2005) and, 

to some extent, Cognitive Load Theory. Further, the experiment suggests that directing 

learners' attention to corresponding elements within text and diagrams can be an effective 

technique for facilitating the process of text-picture integration.
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Chapter 1 

Introduction 

Traditional and computer-based learning environments use multiple external 

representations (MERs) of information, including text, diagrams, animations, videos, 

simulations, graphs, and formulaic representations. It is often assumed that two is better 

than one when it comes to external representations promoting learning. However, 

research has shown this is not always the case (Canham & Hegarty, 2010; Chandler & 

Sweller, 1991; Goldman, 2003; Mayer & Gallini, 1990; Rouet, 2009; Schnotz & Bannert, 

2003; Van Meter, Firetto, & Higley, 2007). Therefore, researchers attempt to determine 

what conditions lead to greater learning and more sophisticated internal representations 

with MERs and why these are helpful.  

The ubiquity of learning environments with MERs motivates the need to discover 

optimal learning conditions for promoting the successful integration of textual and 

pictorial information. If learners fail to effectively integrate textual information with 

pictorial information when using learning environments with both types of external 

representations, then little learning can occur because the internal representations (i.e., 

memory codes, mental models) constructed by the learner  will be inadequate. 

Furthermore, techniques capable of facilitating the integration process must be grounded 

upon theoretical and empirical bases that clarify the underlying cognitive processing that 

occurs during integration. Therefore, it is important to investigate the ways in which 

learners attain deep understanding through successful integration of text and diagrams 

and to fine-tune the methods to promote effective integration. 

Researchers in cognitive psychology, educational psychology, education, and 

instructional design have already investigated for at least two decades how learners 
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integrate the disparate sources of information, including MERs, to form coherent internal 

representations (Ayres, 2006; Chandler & Sweller, 1991; Kalyuga, Chandler, & Sweller, 

1999; Kester, Kirschner, & van Merrienboer, 2005; Mayer, 2008; Mayer & Gallini, 1990; 

Moreno & Mayer, 1999; Scheiter, Gerjets, & Catrambone, 2006; Schnotz & Bannert, 

2003; Seufert, Schutze, & Brunken, 2009). Theoretical models provide researchers with 

the scientific predictions necessary to develop successful manipulations and to track 

correlational relationships that naturally evolve while using MERs.  

Empirical studies on text-picture integration have tested the efficacy of particular 

manipulations in promoting student learning, using various educational and professional 

domains (e.g., mathematics, engineering, biology, engineering, medicine) and diverse 

target populations (e.g., college, high school, middle school students).Computerized 

learning materials  have typically been used in these investigations, as is the case in this 

dissertation.   However, much of the previous research has been conducted within the 

context of multimedia learning, wherein learners have little or no control over the pace 

and sequence of instructional material (see Mayer, 2009). Comparatively  little is known 

about how the principles derived from multimedia studies apply to non-linear, multi-

representational hypermedia learning environments in which learners have to make 

decisions about which content to access, how to sequence the content, and which 

strategies to use to process the information (cf., Ainsworth, 2008; Hegarty, Narayanan, & 

Freitas, 2002; Tabbers, Martens, & van Merreinboer, 2001).  I define multimedia as any 

learning environment (comprised of textual and pictorial information) that does not allow 

learners to determine their own sequence of instructional material.  In contrast, 

hypermedia is any (multi-representational) learning environment which does allow the 
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learner to choose his/her own sequence of instructional material to peruse.  Some 

multimedia environments also do not permit learners self-pacing because the amount of 

time that the learner is exposed to each stimulus is predetermined (see Niederhauser, 

2008). Nevertheless, learning environments which predefine the sequence of instruction, 

but allow self-pacing, are also defined here as multimedia. 

This dissertation attempts to identify effective method(s) of facilitating the 

internal mental integration of verbal and pictorial information from external  textual and 

pictorial representations when learners attempt to acquire  sophisticated mental models of 

the human circulatory system. Mental models are defined broadly as individuals‘ internal 

representations of the operation of a physical system, such as the human circulatory 

system (Gentner & Stevens, 1983; Johnson-Laird, 1983). A mental model comprises 

information about relative spatial configurations of components within a system, the 

functions of the components, and relationships which exist between these components. 

The information contained within a mental model is used by the individual to run mental 

simulations of the operation of the system during the course of  solving problems or 

making inferences concerning causes or effects of various states of the system (Hegarty, 

1992). An individual‘s mental model may not be complete and accurate, but is actively 

constructed on the basis of the tasks and external information sources from the 

environment (Norman, 1983). Although the dissertation focuses on the processing of 

textual and pictorial representations, mental models are often also constructed or 

modified on the basis of other modalities and on physical interactions with real-world 

systems. In text-picture integration, learners‘ mental models are assumed to be 
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constructed using incoming textual and pictorial information in the manner described by 

Mayer (2005) and Schnotz (2005).  

The experiment conducted in this dissertation is principally aimed at exploring the 

potential enhancement of the use of diagrammatic
1
 representations while learning with 

textual representations, but the project also investigates the impact of the learning 

conditions on learners‘ use of the text itself. As described in more detail later, earlier 

research on text-picture integration indicates that when verbal information is spatially 

distant from the pictorial information on the display, learning is negatively impacted 

because of a  split-attention effect. Split-attention refers to the visual switching learners  

enact when presented with text and picture as spatially separated entities. According to 

the two major theoretical models of text and picture integration, in order for learners to 

mentally integrate verbal and pictorial information with some success, the verbal and 

pictorial information must be simultaneously active in working memory (Mayer, 2005; 

Schnotz, 2005). The split-attention effect is assumed to arise from the inability to retain 

both types of incoming information in working memory when the two representations are 

presented spatially distant from each other. Previous investigations have revealed that one 

way to alleviate the split-attention effect is by guiding attention to corresponding 

information within verbal and pictorial representations, using connecting lines (Huk & 

Steinke, 2007; Seufert & Brunken, 2006), color coding (Kalyuga et al., 1999; Ozcelik, 

Karakus, Kursun, & Cagiltay, 2009), color changes (Jamet, Gavota, & Quaireau, 2008), 

                                                           
 

1
 Diagrammatic representations (or diagrams), which are utilized in the proposed 

experiment, are a specific class of pictorial representations. Within diagrams, abstract 

representations of elements are used, rather than literal reproductions of the systems (as 

in photographs).  
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arrows (Moreno et al., 2010), or agent gestures (Moreno, Reisslein, & Ozogul, 2010).. 

The experiment in the current proposal considers one form of attention guidance between 

text and diagrammatic representations, highlighting pictorial information corresponding 

to the current textual representation.   

The dissertation begins with a description of the theoretical background 

surrounding the broad topic of text and picture integration. Next, the issue of split-

attention is presented and the various methods of overcoming this difficulty are 

discussed. The aim of the current project and the details concerning methodology are 

introduced next. The results of the dissertation are presented, followed by a discussion of 

the interpretations of these results and implications for theory, methodology, and 

education. 

Theoretical Perspectives 

 The two dominant models of the integration of verbal and pictorial information 

are Mayer‘s (2005) Cognitive Theory of Multimedia Learning (CTML) and Schnotz‘s 

(2005) Integrated Model of Text and Picture Comprehension (ITPC). Both models hold 

that humans have separate channels for visual and auditory information (Paivio, 1986), 

each with a limited capacity for active cognitive processing (Baddeley, 1986; 2000; 

Sweller & Chandler, 1991).  Also, both assume that  learners actively select appropriate 

information, organize that information into coherent internal representations, and 

integrate verbal and pictorial information into long term memory. This section describes 

both theories because their assumptions form the bases of much of the research on 

learning with text and diagram. 

Mayer’s Cognitive Theory of Multimedia Learning. In Mayer‘s model (2005), 

incoming information from a multimedia presentation first enters sensory memory 
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associated with a particular modality (Mayer, 2005; p. 37).  Words can enter sensory 

memory either through the eyes (visual modality) or the ears (auditory modality), 

depending on the presentation mode. Pictures necessarily enter sensory memory through 

the eyes, a point which is disputed in Schnotz's model (2005).  Next, those words and 

images from sensory memory that are deemed important by the learner, either 

consciously or unconsciously, are selected to enter working memory.  The two processes 

related to this step within the model are selecting relevant words and selecting relevant 

images. Due to limited processing capacity, only those words and images that the learner 

attends to and selects for further processing are represented in working memory. The 

decision of which pieces of information are relevant to the task and necessary to 

understand the content is made by the central executive (Baddeley, 1986) that adopts 

metacognitive strategies. The central executive is responsible for allocating limited 

cognitive resources to selection, organization, and integration of important words and 

images.  

Working memory (WM) operates at two distinct levels: 1) raw information 

entering WM from the senses and 2) constructed knowledge in WM.  The raw 

information in working memory is comprised of words selected from auditory sensory 

memory and images selected from visual sensory memory.  After selected words and 

images enter working memory, the working memory system organizes the selected words 

into a verbal model and the selected images into a pictorial model.  The two processes 

related to this step in the model are organizing selected words and organizing selected 

images. Mayer suggests that multimedia learning involves construction of at least one of 

five types of mental models: process, comparison, generalization, enumeration, or 
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classification. Process structures include explanations of how something works through 

cause-and-effect chains. Comparisons include lists of comparisons between two or more 

elements. Generalization structures define hierarchical relationships between a main idea 

and its supporting statements. Enumeration structures are simply comprised of lists of 

items. Classification structures define hierarchical relationships between superordinate 

and subordinate categories of elements. In the final step of text-picture integration, the 

verbal and pictorial internal representations are integrated with one another and with prior 

knowledge (integrating words and images).  Prior knowledge relevant to the learning 

material must be activated (active in working memory) from long-term memory in order 

for the new information to be integrated into long-term memory. This final step of 

integration uses both verbal and visual working memory. Connections are made between 

elements and relationships in the two (i.e., verbal and visual) mental models and between 

those two models and prior knowledge. According to Mayer, the integration process is 

the most cognitively demanding stage in multimedia learning because  it requires the 

learner to be aware of the underlying structure that represents the verbal and pictorial 

mental models. 

Schnotz’s Integrated Model of Text and Picture Comprehension. Both 

Mayer‘s and Schnotz‘s models assume dual-channel processing, limited capacity for both 

channels, and active construction of one‘s own understanding. However, Schnotz‘s 

model includes some important differences (Schnotz, 2005; p. 57).  First, Schnotz 

establishes a clear distinction between representations that  serve a descriptive function 

and those which serve a depictive function. Descriptive representations are those which 

include arbitrary symbols and thus have a semantic relationship to, but not an iconic 
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similarity to, that which they represent. Depictive representations are those which are 

composed of icons and thus have some structural similarity to their referent. Schnotz thus 

distinguishes his model through two representational channels: a verbal or descriptive 

channel, and a pictorial or depictive channel. Information within the descriptive channel 

is processed using symbol processing whereas information in the depictive channel is 

processed using structure-mapping processes. Schnotz does not make the connection (as 

Mayer does) between sensory modality and representational format. For example, text 

does not necessarily have to be read through the eyes (e.g., blind readers). More 

commonly, descriptive and depictive information can be sensed through either the eyes or 

the ears, without the need for conversion to the alternate processing channel, as is 

required in Mayer‘s theory.  Next, whereas Mayer suggests that printed text is shifted to 

the sound base in working memory through mental articulation of the visually-presented 

words, Schnotz proposes that words sensed through the eyes (and forwarded to visual 

working memory) proceed through the verbal channel to be organized into propositional 

representations. Additionally, Mayer claims that two mental models are constructed, a 

verbal mental model and a pictorial mental model, each of which can have one or more of 

the five knowledge structures introduced above. Schnotz claims that only one mental 

model is ever constructed, using internal mental representations from both the verbal and 

pictorial channel. This mental model is constructed on the basis of verbal information 

from auditive working memory, pictorial information from auditive working memory, 

propositional representations of the verbal information, and existing knowledge structures 

(cognitive schemata) within long-term memory.  
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Although both models supply broad depictions of cognitive processing elements 

(i.e., selection, organization, integration), unfortunately details are not provided about 

specific processes underlying the integration process. Schnotz does state that top-down 

processing guides the selection of relevant information to be organized into propositional 

representations and mental models.  Because of the lack of clarity regarding the 

underlying processes influencing integration, testable hypotheses to support one model 

over the other are unavailable. Therefore, the purpose of the proposed experiment is not 

to provide evidence for one theory or the other. Instead, the assumptions from both 

models represent the bases for the development of the experimental conditions. The two 

critical assumptions underlying the experiment concern limited processing capacity 

within the two representational channels and the necessity to have verbal and pictorial 

information active simultaneously in working memory for integration to occur. The next 

section describes cognitive load theory, which addresses the limited capacity assumption 

directly. 

Cognitive Load Theory. Many researchers exploring learning with text and 

diagrams endorse  cognitive load theory (CLT; Paas, Renkl, & Sweller, 2003; Schnotz & 

Kurschner, 2007; Sweller, 1988; Sweller & Chandler, 1991; Sweller, Van Merrienboer, 

& Paas, 1998) to explain the findings regarding facilitation or inhibition effects from  

various experimental manipulations. Within Mayer‘s (2005) and Schnotz‘s (2005) 

models, the limited capacity assumption is compatible with  CLT. According to CLT, 

every instructional (and non-instructional) condition places a certain burden (load) on 

working memory capacity. This load is subdivided into three distinct types: 1) intrinsic 
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cognitive load; 2) extraneous cognitive load; and 3) germane cognitive load (germane 

load was added to the theoretical conceptualization in Sweller et al., 1998).  

Intrinsic cognitive load can be thought of as the natural demand imposed by the 

material (e.g., physics, body systems) per se. According to Sweller et al. (1998), this kind 

of cognitive load depends on the amount of ‗element interactivity‘ in a particular task. 

Some learning tasks, such as learning new symbols for objects or actions, have low 

element interactivity, and thus low intrinsic cognitive load. Other learning tasks, such as 

learning a mental model underlying a scientific process, have higher element 

interactivity, and thus require more elements to be held in working memory 

simultaneously, thereby increasing intrinsic cognitive load.  

Extraneous cognitive load is that demand placed on the cognitive system as a 

result of the format of instruction, rather than the task itself. For example, including 

topically related but unimportant information diverts attention and cognitive resources 

from essential information, leading to greater extraneous load (Mayer, Heiser, & Lonn, 

2001). In certain situations, extraneous load might enhance task performance, but will not 

promote learning (Chandler & Sweller, 1991; Sweller et al., 1998), thus it is considered 

not essential to learning and has the potential to detract from learning. Those who are 

responsible for instructional design have some amount of control over the amount of 

extraneous cognitive load imposed by their learning materials and should attempt to 

remove any unnecessary features or aspects of the learning environment that might 

increase this load, at the expense of relevant cognitive processing for the learning task. 

Often, though, the constraints of the learner‘s cognitive system are not considered when 

designing instructional material, which frequently occurs when materials are  constructed 
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from intuitive design principles. These intuitions can lead to an overcrowded multimedia 

presentation, that overloads cognitive capacity (Mayer, 2005; Sweller et al., 1998). A 

common concern in the design of instructional materials is the possibility of creating 

situations that may cause split-attention (Chandler & Sweller, 1991; Cierniak, Scheiter, & 

Gerjets, 2009; Sweller, Chandler, Tierney, & Cooper, 1990) or the need to visually 

switch between one information source and another (e.g., text and diagram).  

Germane cognitive load refers to the conscious effort made on the part of the 

learner to use appropriate cognitive processes in an attempt to construct internal 

representations of the material (Sweller et al., 1998). Although germane cognitive load 

can be increased in environments where extraneous cognitive load is lowered, one should 

not think of these two constructs as necessarily negatively correlated, since a learning 

environment can be low in both extraneous cognitive load and germane cognitive load. 

Sweller et al. (1998) emphasize that in addition to creating instructional materials that 

reduce extraneous cognitive load, designers should also attempt to include features which 

will direct learners to these appropriate cognitive processes during learning, thereby 

increasing germane cognitive load. 

It is assumed and well supported that working memory capacity is limited, so the 

originators and proponents of CLT advocate reducing extraneous (that is, unessential) 

cognitive load that is imposed by instructional materials in order to free up resources for 

germane (that is, essential) processing to be maximized (Sweller et al., 1998). More 

recently, CLT has endorsed attempting not only to reduce extraneous cognitive load, but 

also to increase germane cognitive load, provided that the learner does not become 

overloaded (Sweller, 2005).  
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Theoretical perspectives summarized. The researchers offering these theoretical 

viewpoints have assisted in laying the groundwork for those interested in how learners 

process text and diagrams. Mayer (2005) and Schnotz (2005) have both described the 

macro-level cognitive processes involved in the integration of text and diagrams. 

Learners select information from textual representations and diagrammatic 

representations which they consider important through top-down processes (i.e., using 

prior domain knowledge) and bottom-up processes (i.e., selecting perceptually salient 

information). Next, they organize the information contained in textual representations 

into a verbal mental model and the information contained in pictorial representations into 

a pictorial mental model. Finally, the learners integrate the internal verbal and pictorial 

representations into a coherent mental model containing both descriptive (verbal) and 

depictive (pictorial) information.  

Cognitive load theory (Paas et al., 2003; Schnotz & Kurschner, 2007; Sweller, 

1988; Sweller & Chandler, 1991; Sweller et al., 1998) provides a theoretical framework 

underlying instructional design practices that takes into account the constraints of our 

cognitive system. Through consideration of how learning materials contribute to intrinsic, 

extraneous, and germane cognitive load, researchers have investigated the overall impact 

of these three types of load to learning outcomes, on-line cognitive processing, and 

subjective experiences of mental effort during task performance.  

Split-Attention 

Mayer and colleagues have developed several principles regarding the reduction 

of extraneous cognitive load in multimedia research (see Mayer, 2008, 2009). The split-

attention effect, also referred to as the spatial contiguity effect, demonstrates that two 

sources of information (e.g., text and diagram) are processed better when presented in 
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close spatial proximity to one another. This effect has been extremely well documented 

and replicated in many conditions (Austin, 2009; Chandler & Sweller, 1991; Cierniak et 

al., 2009; Mayer, Steinhoff, Bower, & Mars, 1995; Moreno & Mayer, 1999). Ginns 

(2006) reviewed research on the split-attention effect and temporal contiguity effect 

conducted up to 2004. In his review of 37 findings regarding split-attention, he found a 

mean effect size of 0.72 (Cohen‘s d). The traditional explanation for the split-attention 

effect is that split-source format leads to the necessity to retain verbal or pictorial 

information in working memory while searching the accompanying representation for 

relevant information. This necessity leads to an increase in extraneous cognitive load. 

Cierniak et al. (2009) tested this explanation (termed the extraneous load hypothesis) 

against the germane load hypothesis, which assumes that the decrease in extraneous 

cognitive load which occurs in integrated formats is also associated with an increase in 

germane processes. Thus, overall cognitive load should be the same for both formats, but 

learning will be greater for integrated formats. Results from their experiment supported 

the second explanation, as secondary task performance (Brunken, Steinbacher, Plass, & 

Leutner, 2002) was not hindered by split-source format, but subjective ratings of 

extraneous cognitive load were higher for the split-source when compared to the 

integrated format. Previous works also showed equivalent secondary task performance, 

but improved learning outcomes, for integrated formats when compared to split-source 

format (Kester, Kirschner, & van Merrienboer, 2005; Tabbers, Martens, & van 

Merrienboer, 2004). These results suggest that the benefit of integrated formats is not 

simply due to a decrease in extraneous load, but also is contributed to by an increase in 

germane processes related to building coherent internal representations .  
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Overall, results from research on split-attention indicate that the integration of 

textual information into the diagrammatic representation usually leads to greater learning 

outcomes and lower subjective ratings of extraneous cognitive load. An exception occurs 

when one representation is redundant with the other (Chandler & Sweller, 1991). In this 

situation, integrated format can, in fact, impede learning by forcing the learner to process 

an unnecessary source of information. Although these investigations have established that 

learning can be positively impacted through physical integration of verbal and pictorial 

information, when verbal information is lengthy or when the diagram used is extremely 

complicated, the physical integration of text and graphics might not always be possible. 

Accordingly, other researchers have investigated an alternative method of avoiding the 

negative effects of split-attention. Previous investigations that have examined attention 

guidance techniques to overcome split-attention are summarized next. 

Attention Guidance 

Attention guidance techniques involve directing learners to relevant (or 

corresponding) portions of pictorial representations during learning with text 

(Bartholome & Bromme, 2009; Berthold & Renkl, 2009; Huk & Steinke, 2007; Jamet et 

al., 2008; Jeung, Chandler, & Sweller, 1997; Kalguya et al., 1999; Seufert, 2003; Seufert 

& Brunken, 2006). Recall that theories concerning text-picture integration assume that 

for successful internal integration of verbal and pictorial information to occur, the 

necessary related verbal and pictorial information must be simultaneously active in 

working memory. When search processes for related information within two 

representations prolong the interval between reading about a component and inspecting 

visual information depicting the component within a diagram, the likelihood that the 

verbal and pictorial information are concurrently active in working memory is reduced. 
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By directing learners‘ attention to the corresponding elements within textual and pictorial 

representations, attention guidance techniques attempt to reduce the need for visual 

search in switches between verbal and pictorial representations, thereby alleviating the 

split-attention effect. 

Kalyuga et al. (1999; Experiment 2) demonstrated a beneficial effect of a ‗color-

coding‘ technique, in which referents to the diagram in the text were highlighted in 

identical colors in both text and diagram. The authors found that learners in the color-

coding group performed significantly better (compared to a control condition) on 

multiple choice measures of learning about function of the light circuit. They attribute the 

finding to the impact of the color-coding technique in reducing search time necessary for 

locating corresponding elements in text and diagram, resulting in reduction of extraneous 

cognitive load and  ultimately freeing up cognitive resources for germane processing of 

the materials. However, it cannot be ascertained by this experimental design whether the 

beneficial effect of color coding is due to reduced search time, as hypothesized by the 

authors. It is also possible that the color coding served as a signaling device to the 

learners, indicating important key terms within the text and diagram, which led to the 

observed learning benefits (cf. Mautone & Mayer, 2001). A more recent investigation of 

the color coding effect, which utilized eye-tracking data during learning (Ozcelik et al., 

2009), sheds more conclusive light on the hypothesized cause of the finding. 

Ozcelik et al.  (2009) offered two competing hypotheses for the demonstrated 

color-coding effect. First, the superiority of color-coded format could be due to learners‘ 

ability to locate corresponding information within the text and diagram more easily when 

corresponding elements are color-coded. This is the hypothesis originally proposed by 
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Kalyuga et al. (1999). If this hypothesis is valid, then search time for corresponding 

elements within diagram during reading should be shorter in the color-coded format than 

in the conventional format. The alternate hypothesis was that the color-coding effect 

could be driven through directing attention and elaboration to salient information, or 

color-coded information in text and diagrams. If this hypothesis is correct, then total 

fixation time on colored elements contained in text and diagrams would be expected to be 

higher in the color-coded format, compared to the conventional format. The authors used 

eye-tracking methodology to capture data about eye-fixations on text and diagram using 

the two presentation formats. Results replicated the beneficial impact of color-coding 

with a new domain, neurobiology. Eye-tracking results indicated that learners in the 

color-coding group had reduced search time in locating corresponding items between text 

and diagrams and also had longer average fixation time on the color-coded elements. 

Total fixation time on color-coded elements did not differ between the conditions. 

Therefore, the results supported the first hypothesis that color-coding facilitates learners‘ 

ability to locate corresponding elements between text and diagram.  The results did not 

support the second  hypothesis that the color-coding directs attention to the color-coded 

elements in general.  

Seufert and Brunken (2006) conducted an experiment to investigate how 

hyperlinks between two forms of representations (e.g., text and pictorial representation) 

can aid learners in integrating the information from both. The experiment was a 2 

(surface level help) x 2 (deep structure level help) design, resulting in four conditions: 1) 

no help, 2) surface level help only (SLH), 3) deep level help only (DLH), and both SLH 

and DLH. Surface level help consisted of marking the text with hyperlinks, which when 
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clicked, would produce arrows pointing out corresponding components within the 

accompanying diagram. Deep level help consisted of verbal descriptions of how the two 

representations related to one another, which was placed directly below both 

representations. Results from the experiment demonstrated a significant interaction 

between the types of help, indicating that learners with surface level help, without deep 

level help, experienced higher levels of subjective (self-report) cognitive load during the 

learning task. However, there were no significant differences on learning outcome 

measures among any of the groups. The authors claim that the surface level help did not 

support the learners because the types of representations used in the study were more 

complex (i.e., two texts, two graphs, one table, and one chemical formula) than those 

used in a previous study that did reveal benefits for hyperlinking texts to diagrams 

(Brünken, Seufert, & Zander, 2005; reported in Seufert et al., 2007). It is difficult to 

determine, without access to the materials from both investigations, whether the disparate 

findings resulting from the two studies derive from the differing level of diagram 

complexity. Their results could be attributed to low power within their  2x2 between-

subjects design (88 participants total). 

The results from the studies on the impact of attention guidance factors provide 

somewhat unclear conclusions. It appears that in certain contexts, directing learners 

attention to corresponding elements in diagrammatic representations accompanying texts 

does lead to greater learning outcomes, but in others this factor does not have a beneficial 

impact (e.g., Seufert & Brunken, 2006). Results are still inconclusive regarding the 

potential beneficial impact of attention guidance within hypermedia learning, especially 

concerning which learning contexts are facilitated by this method of support and why this 
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guidance sometimes leads to increased learning. Due to the conflicting evidence 

concerning the advantages of attention guidance methods, an experiment was devised to 

identify a successful attention guidance technique, referred to as integration scaffolding. 

Goals of the Dissertation Experiment 

The purpose of the dissertation experiment was to provide clarification on 

theoretical and empirical issues still outstanding in the literature on text-picture 

integration. First, various methods to alleviate the split-attention effect have been tested 

in separate experiments, but they have never been tested alongside one another in a direct 

comparison. This experiment afforded the opportunity to determine which form of 

assistance in coordinating spatially-separated text and diagram provides the greatest 

benefit, or if any of these methods actually diminish  learning outcomes. Second,  few 

experiments investigating attention guidance methods have employed eye-tracking 

methodology.  This methodology has the potential to elucidate the process of text-picture 

integration and to test hypotheses concerning the underlying reasons behind demonstrated 

effects (e.g., reduced visual search time, added attention on salient elements). Third, the 

experiment included collection and analysis of self-regulated learning processes from 

concurrent think-aloud protocols. This method can assist in providing data on the specific 

individual cognitive processes used during the integration process. Fourth, although many 

multimedia principles, such as the split-attention (or spatial contiguity) effect, have been 

demonstrated in a multitude of studies, questions have been raised about the 

generalizability of such findings to hypermedia environments and  even self-paced 

multimedia environments (Gerjets, Scheiter, Opfermann, Hesse, & Eysink, 2009; 

Tabbers, Martens, & van Merrienboer, 2004). Researchers in the field have doubts about 

extending the conclusions from multimedia studies to contexts in which learners have full 
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control over the pace and sequence of instructional materials. This experiment was 

designed to resolve this outstanding issue  because the environment  involved hypermedia 

. In summary, the experiment uniquely contributes to research on text-picture integration 

through comparing multiple manipulations, employing eye-tracking and think-aloud 

methodology, and utilizing a hypermedia learning environment. In the following chapter, 

the details of the experiment are introduced, including the goals, research design, and 

methodology. 

The specific aim of the project was to identify a beneficial method for facilitating 

the integration process when learning with textual (written) and pictorial information. 

One method of circumventing the split-attention effect and reducing extraneous load 

consists of prompting textual and pictorial coordination (prompted referencing). In 

prompted referencing, instructions to the learner to mentally relate text and diagram  aim 

to promote the process of building connections between textual and pictorial 

representations (Bodemer & Faust, 2006). However, results from this set of experiments 

suggested that learners, especially those with low prior knowledge, demonstrate difficulty 

in successfully relating the two representations when prompted to do so. Mayer and 

colleagues have also reported evidence for the beneficial impact of signaling learners to 

attend to particular information (Harp & Mayer, 1998; Mautone & Mayer, 2001) within 

texts and diagrams.  

In an earlier investigation, an attention guidance technique, called integration 

scaffolding, was used to make explicit the connections between text and diagrams. The 

results from this experiment indicated that the integration scaffolding technique led to 

greater learning outcomes (Witherspoon & Azevedo, 2008). However, it was unclear 
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whether this effect was due to directing attention to relevant portions of the diagram, 

directing attention to relevant portions of the text (i.e., simply a signaling effect), or 

inducing the coordination of text and diagram (i.e., a prompted referencing effect). The 

reported experiment aimed to disambiguate which aspect of the integration scaffolding 

manipulation led to increased learning outcomes. 

Given the results from previous research on attention guidance methods, it is still 

unclear which instructional design manipulation would prove most effective in reducing 

extraneous load and facilitating learning with text and diagrams. Furthermore, none of the 

previous work exploring prompted referencing, integration scaffolding, or signaling 

effects on the comprehension of text and graphics has been applied within the context of 

hypermedia, as opposed to multimedia (see Gerjets et al., 2009). The current experiment 

compared three forms of facilitation of hypermedia learning (prompted referencing, 

integration scaffolding, and signaling key terms) against a control condition which 

provided no aids for coordinating text and diagram. The four learning conditions 

manipulated in this experiment were as follows: 

1)  A Control group learned about the human circulatory system using a hypermedia 

environment comprising 12 total pages of text and diagrams. 

2)  An Integration scaffolding group used the same hypermedia environment to learn 

about the circulatory system. At 35 points within the text, integration scaffolding 

hyperlinks were used to encourage the visual inspection of diagrams at these points and 

to reduce search time within the diagrams for corresponding elements. 
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3)  A Key terms group used the same hypermedia environment to learn about the 

circulatory system. The same terms which were scaffolded in the integration scaffolding 

condition were highlighted to direct attention to critical terms within the text. 

4)  A Prompted referencing group used the same hypermedia environment to learn about 

the circulatory system. At the same points which were scaffolded or highlighted in the 

previous two conditions, textual prompts were inserted which instructed the learner to 

reference the diagram. These prompts were intended to encourage the visual inspection of 

diagrams at these points.  

Hypotheses 

It was predicted that the integration scaffolding condition would reduce search 

time for and promote the identification of corresponding elements within text and 

diagram, as has been demonstrated in previous attention guidance investigations (Ozcelik 

et al.,  2009). According to the theoretical models of text-picture integration, 

simultaneous activation of textual information and pictorial information is necessary for 

successful integration to occur, ultimately resulting in a cohesive mental model of both 

verbal and pictorial information (Mayer, 2005; Schnotz, 2005). As described earlier, my 

definition of a cohesive mental model is one from which inferences concerning the 

operating of the physical system can be made. Accordingly, the reduced search time, and 

therefore simultaneous activation of verbal and pictorial information, from the integration 

scaffolding condition should lead to better performance on learning outcomes. 

Additionally, the integration scaffolding condition should reduce extraneous cognitive 

load, thereby freeing cognitive resources for germane processing. Although the prompted 

referencing condition provides learners with no support in locating corresponding 
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information within text and diagram, the instruction to reference the diagram at several 

points within the text was predicted to lead to more frequent inspection of the diagram 

during learning, when compared to the control and key terms conditions. Finally, the key 

terms condition will provide the learners with guidance in processing conceptually 

important terms within the textual representations (Mautone & Mayer, 2001). Based upon 

these assumptions, the following hypotheses were offered for the experiment:  

 1)  The integration scaffolding condition will lead to the highest learning 

outcomes and lowest subjective cognitive load ratings. 

 2)  The key terms conditions and the prompted referencing condition will lead to 

higher learning outcomes and lower subjective cognitive load ratings, when compared to 

the control condition. 

 3)  The integration scaffolding condition and the prompted referencing condition 

will both lead to shorter delays between fixations on scaffolded terms and fixations on the 

corresponding areas within diagrammatic representations. The integration scaffolding 

condition will have the shortest delays. 

 4)  The integration scaffolding condition will lead to a greater number of 

fixations, higher total fixation duration, higher proportion of fixations, and higher 

proportion fixation duration on relevant areas within the diagrams. 

 5)  The integration scaffolding condition will lead to a greater frequency of self-

regulated learning monitoring and strategy use during the learning session. No specific 

hypotheses were made for individual learning strategies or monitoring processes. 



 

23 

Chapter 2 

Method 

Participants 

 Eighty (N = 80) undergraduate students were recruited using the psychology 

subject pool available at The University of Memphis.  The students in the subject pool 

were enrolled in introductory psychology courses and received class credit for 

participating in an experiment of their choice. Participants' mean age was 20 years (range: 

18-44; SD = 3.53, and their mean GPA was 2.91. Fifty-seven of the participants (71.3%) 

were female. Only 14 of the participants (17.5%) reported having taken a college-level 

biology course prior to the experiment and only nine participants (11.3%) reported 

having work experience in biological fields. The majority of participants in the 

experiment (47; 58.8%) were college freshmen, 22 (27.5%) were sophomores, six (7.5%) 

were juniors, and 5 (6.3%) were seniors. Participants demonstrated relatively low 

knowledge of the human circulatory system, with a mean pretest score on the multiple 

choice measure of 48% (SD = 15%). 

Research Design 

This study experimentally manipulated the presence of and the type of facilitative 

interface element intended to enhance learners‘ use of text and diagram. The experiment 

is a mixed-factorial design with four levels of the between-subjects factor (experimental 

condition: control, integration scaffolding, key terms and prompted referencing) and two 

levels of the within-subjects factor (testing time with pretest and posttest). Participants in 
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all learning conditions viewed up to 12 total pairs of text and diagram
1
 within a non-

linear self-paced hypermedia learning environment created using Adobe Dreamweaver 

CS4 (Adobe, 2008) and displayed in Internet Explorer (Microsoft, 2010).  

There were multiple dependent product and process measures of learning: 1) 

pretest and posttest scores on learning measures, 2) several measures of eye-tracking data 

collected during the learning task; 3) a post-task self-report measure of subjective 

cognitive load experienced during the task; and 4) measures of self-regulatory behavior 

coded from think-aloud protocols collected during the learning task (Azevedo, Moos, 

Johnson, & Chauncey, 2010; Ericsson, 2006; Ericsson & Simon, 1993). The effectiveness 

of the learning conditions was established through quantitative analysis of two separate 

learning outcome measures. One measure was primarily aimed at capturing the level of 

learners‘ conceptual understanding (i.e., mental models) of the human circulatory system 

through analysis of the verbalizations regarding the structure, behavior, and function of 

the human circulatory system (Hmelo-Silver & Pfeffer, 2004) and the flow of blood 

throughout the body. Manual coding of the qualitative information provided within the 

first measure allowed quantitative analyses to be conducted. The second measure is 

primarily directed toward capturing the level of learners‘ declarative and conceptual 

knowledge through multiple choice items.  Differences in learning outcomes were 

determined using ANCOVA analyses, with pretest scores as covariates. 

                                                           
 

 
1
 Participants can view up to the total 12 pages of text and diagram contained within a 

hypermedia learning environment, described in more detail within the section hypermedia 

learning environment 
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Experimental conditions. All participants were randomly assigned to one of the 

four experimental learning conditions, each employing the same researcher-developed 

hypermedia learning environment described in detail in the next section.  

In the Control condition, all participants viewed the hypermedia learning 

environment without any facilitating features within the texts or diagrams (see Figure 1).  

 

 
Figure 1. Screenshot of the control condition. 

 

In the Integration Scaffolding condition, participants viewed the identical text and 

diagrams used in the control condition, with the addition of 35 integration scaffolding 

hyperlinks within the 12 texts. The integration scaffolding hyperlinks consist of important 

terms (e.g., ‗arteries‘, ‗human heart‘) which are highlighted in blue and underlined within 

the text.  When the mouse hovers over these links, the system highlights the 

corresponding area(s) of the diagram for as long as the learner‘s mouse hovers over a 

term. For example, when a learner hovers over the term ‗human heart‘ while reading 
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about this component, the heart is highlighted within the accompanying diagram (see 

Figure 2 for this example).  

 

 
Figure 2. Screenshot of the integration scaffolding condition. Demonstrates the 

integration scaffold for the human heart. 

 

In the Key Terms condition, participants viewed the identical text and diagrams used in 

the previously described conditions, and the same terms (35 total) that comprise 

integration scaffolds in the integration scaffolding condition.  The 35 terms are 

highlighted in blue and underlined (see Figure 3).  However, when learners hover over 

the terms in this condition, no component is highlighted within the accompanying 

diagram. Finally, in the Prompted Referencing condition, participants viewed the 

identical learning environment employed in the control condition, with the addition of 

prompts to reference the accompanying diagram. Textual prompts to reference the 
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diagram (35 total) appear immediately following the terms which comprise ‗integration 

scaffolds‘ and ‗key terms‘ from the two previous conditions (see Figure 4).  

 

 
Figure 3. Screenshot of the key terms condition. 

 

 
Figure 4. Screenshot of the prompted referencing condition 
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Apparatus  

All participants were seated approximately 64 cm in front of the Tobii T60 eye-

tracker (Tobii T60, 2009) throughout the learning task. This system allows researchers to 

easily determine looking behavior to a high degree of accuracy (0.5 degrees) and high 

temporal resolution (60 Hz), while compensating for head movements. It is a non-

intrusive device because participants do not need to use a bite-bar or detect tracking 

sensors (the tracking device is built in to the monitor). 

Materials  

The materials employed in the experiment included paper and pencil materials 

collected before and after the learning session and the four versions of the researcher-

developed hypermedia learning environment used during the learning session. 

Paper and pencil materials. The paper and pencil materials included a 

participant questionnaire, domain knowledge pretest and posttest, and a cognitive load 

self-report measure (Cierniak et al., 2009; Paas & van Merrienboer, 1994). The 

participant questionnaire elicited personal demographics and relevant individual 

differences, including age, gender, level of education, number of biology courses taken, 

and relevant work experience in health/medicine.   

The domain knowledge pretest and posttest were identical (except order of two 

versions of the multiple choice questions was randomized from pretest to posttest) and 

included both of the following measures: (a) a diagram interpretation task (see Appendix 

B) in which think-aloud protocols were collected on the participants‘ explanation of their 

understanding of the circulatory system using the three diagrams from the hypermedia 

learning environment, and (b) a 24-item four-foil multiple choice test (See Appendix C) 

with both conceptual questions (e.g., What would occur if the mitral valve stopped 
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working?) as well as declarative questions (e.g., What are the three types of blood 

vessels?).  

It was hypothesized that the integration scaffolding condition would positively 

impact learning gains demonstrated through both learning measures. Because the 

integration scaffolding method was expected to result in more complete and accurate 

internal representations (i.e., mental models) of the human circulatory system, each type 

of knowledge is expected to be promoted through the manipulation. Learners' 

understanding of the structure, the function of each component, the underlying 

mechanisms behind those functions, and the flow of blood throughout the body should be 

demonstrated through their performance on the diagram interpretation task. The multiple 

choice measure also provided information about learners' declarative knowledge and 

conceptual understanding of the human circulatory system. No specific hypotheses were 

offered concerning differential impact of integration scaffolding on different types of 

internal knowledge representations.  

Administration of the diagram interpretation task involved presenting the 

participant with all three diagrams (in color) used in the learning modules and instructing 

them: 

On the following page are three diagrams of the circulatory system. Use 

these three diagrams in any way you would like to describe your 

understanding of the circulatory system. You can draw on any of the 

diagrams that you would like to during this task, using the pens provided. 

PLEASE TELL ME EVERYTHING YOU CAN ABOUT THE 

CIRCULATORY SYSTEM.   Be sure to include all the parts and their 
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purpose, explain how they work both individually and together, and also 

explain how they contribute to the healthy functioning of the body. If you 

want to talk about a particular component of the system, you can either 

write the name of that component on the sheet or just point to it with your 

pen while referring to it. 

 Before beginning the diagram interpretation task, participants were given a blue, a 

red, and a black pen to draw on the provided diagrams in any way they like. The 

participants were also instructed that they could choose to explain their understanding 

using any one, two, or all of the diagrams provided (See Appendix B). Each participant‘s 

use of the provided diagrams was video recorded from a bird‘s eye view camera above 

the sheet of paper (see Figure 5), and the participants‘ verbalizations were audio recorded 

for later scoring. 

 

 

Figure 5. Diagram interpretation task video camera vantage point 



 

31 

  

 The cognitive load self-report measure is a six-point Likert-type scale constructed 

following previous work on measuring cognitive load experienced by learners (Cierniak 

et al., 2009; Paas & van Merrienboer, 1994) and includes three questions pertaining to 

three separate cognitive load constructs (extraneous, intrinsic, and germane cognitive 

load) from the cognitive load theoretical and empirical work previously published 

(Sweller, 1988; Sweller & Chandler, 1991; Sweller et al., 1998). A single question was 

intended to provide a distinct measure for each of the three types of cognitive load: 1) 

How difficult was it for you to learn with the material? (extraneous cognitive load); 2) 

How difficult was the learning material for you? (intrinsic cognitive load); and 3) How 

much did you concentrate during learning? (germane cognitive load). Participants 

respond to each item by circling the statement that best characterizes their subjective 

experience during the learning session from 1 (not at all) to 6 (extremely). Appendix D 

shows the cognitive load self-report measure. 

Hypermedia learning environment. The hypermedia learning environment 

contains a total of 12 pages of researcher-developed text (1,712 words) and diagrams (3 

diagrams) about the human circulatory system (Flesch-Kincaid reading level: 10.4). The 

environment is displayed in a web browser window and was created using Adobe 

Dreamweaver CS4 (Adobe, 2008). The 12 pages of hypermedia learning content are 

subdivided into three sections of four pages each: global, intermediate, and local text and 

diagrams. On each of the four pages within each of the three sections, the diagram related 

to the topic remains the same, but the text differs from page to page, resulting in 12 

unique texts and 3 unique diagrams (see Appendix A). The global level texts and diagram 
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relate to the structure, behavior, and function of the entire circulatory system, including 

the essential functions of the human circulatory system, the major components of the 

circulatory system and how blood flows throughout the entire body.  The intermediate 

level texts and diagram relate to the structure, behavior, and function of the heart and 

lungs within the circulatory system, including the essential functions of the heart and 

lungs, the major components of these two organs, and how blood flows throughout them. 

The local level texts and diagram relate to the structure, behavior, and function of the 

arteries, veins, and capillaries; the essential functions of the capillaries, how oxygen and 

carbon dioxide are exchanged across the capillary walls, and the flow of blood from heart 

to capillaries (within the lungs and within the body tissue) and back to the heart are each 

discussed. 

Learners navigated within the learning environment by using hyperlinks located 

in the top pane of the window, labeled as the table of contents (see Figure 1). The 

hyperlinks were divided into the three sections, labeled ‗circulatory system‘ (global 

level), ‗heart and lungs‘ (intermediate level), and ‗exchange of gases‘ (local level). Users 

were free navigate to any page of the learning environment at any point within the 

learning session and could allocate study time as they chose to each page of content. 

Upon selecting and clicking on a hyperlink, the text and diagram associated with that 

page displayed simultaneously in the two panes below the navigation hyperlinks. Equal 

learning environment real estate was devoted to textual and diagrammatic representations 

(although 'white space' is not equivalent due to varying text lengths and diagram sizes). 

Each participant learned using his or her respective experimental version of the 
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hypermedia learning environment. Among the conditions, the learning environment 

differed only in the ways described in the research design section. 

Procedure  

Each participant was run individually through the experiment. On entering the 

lab, each participant was given as much time as necessary to fill out the informed consent 

form, followed by as much time as necessary to fill out the participant questionnaire (see 

Appendix E for flow diagram of experimental procedure). Next, a concurrent think-aloud 

practice task was used to acclimate all participants to the think-aloud procedure.  Each 

participant was instructed:  ―Before we turn to the real experiment, we will start with a 

couple of practice problems. I want you to think aloud while you do these problems,‖ and 

was administered two multiplication problems to practice the think-aloud procedure
2
. The 

participant was then read the instructions for and given up to five minutes to complete the 

diagram interpretation pretest (see Appendix B). Before beginning the diagram 

interpretation task, the participant was told that it was not necessary to utilize the entire 

five minutes for the task. The participants were told to alert the experimenter whenever 

they felt they had stated everything they knew about the human circulatory system. Next, 

the participant was given up to 10 minutes to complete the multiple choice pretest (see 

Appendix C). Before beginning the multiple choice test, the experimenter read the 

instructions aloud for the participant. Each participant's time to complete the diagram 

interpretation task and time to complete the multiple choice task was recorded by the 

experimenter. 

                                                           
 

 
2
Participants need not answer the think-aloud practice problems correctly.  
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Following the pretest, the experimenter calibrated the eye-tracker to the 

participant using a standard calibration program provided by the Tobii Studio software 

suite (Tobii Studio
TM

, 2009). This calibration process involves requesting the participant 

to visually pursue a red dot around the visual display and fixate upon the center of the dot 

whenever it stops anywhere within the visual display. The calibration employs nine 

fixation points in order to attain tight calibration for each participant. Following this 

calibration task, the software provides the experimenter with a calibration accuracy visual 

display. According to these results, if the experimenter felt that calibration was not 

successful, another calibration was conducted. The final calibration accuracy was saved 

by the experimenter, to ensure accurate calibration for each participant. Participants were 

instructed that they were free to move their head throughout the learning task, but that 

their posture should remain stable. In order for accurate eye-tracking results, participants' 

distance from the monitor needed to remain about 64 cm. 

After calibrating the eye-tracker, the experimenter read the learning task 

instructions to the participant.  In addition to general learning task instructions on the 

learning environment and the task itself, participants were given condition-specific 

instructions for the four experimental conditions (see Appendix F).The learning task 

instructions were read aloud by the experimenter and the participant also had access to 

the typed instructions, located on a copy stand to the left of the computer monitor, 

throughout the learning task.  The participant was told that he or she could take notes 

during the learning session but that these notes would not be provided to them during the 

posttest. The participant was then given 20 minutes to learn about the human circulatory 

system using the hypermedia learning environment. Throughout the learning session, the 
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participant‘s eye movements were recorded using the Tobii eye-tracker and Tobii Studio 

software package (Tobii Studio
TM

, 2009; Tobii T60, 2009). Additionally, the participant‘s 

verbalizations and behavior were video recorded for later coding and analyses of self-

regulated learning behavior. During the learning session, if a participant's posture 

changed significantly (i.e., leaning in closely to the monitor or slouching back in the 

chair), the experimenter provided a prompt to return to the initial posture. Also, if 

learners were quiet for more than a few seconds, the experimenter provided a prompt to 

continue thinking aloud.  

Immediately after the twenty minutes elapsed
3
, each participant completed the 

cognitive load self-report measure. The participant was then given up to 15 minutes 

(allotted in the same manner as the pretest) to complete the diagram interpretation 

posttest and multiple choice posttest, without access to any of the notes taken during the 

learning session or the learning environment.  Finally, the participant was debriefed by 

the experimenter. Appendix G presents the  Institutional Review Board approval for the 

study. 

Coding and Scoring  

The following section describes the methods used to score and derive the various 

product measures of learning and process measures of eye-tracking and self-regulated 

learning from the experiment. The product measures (diagram interpretation task and 

                                                           
 

 
3
To control for time on task, every participant was given exactly 20 minutes in the 

hypermedia learning environment. If the learner completed reading all content before the 20 

minutes expires, he or she will be instructed to continue until the 20 minutes is elapsed. If the 

learner did not complete reading all content within the 20 minutes, he or she was not given 

additional time. 
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multiple choice test) are presented first, followed by a description of the calculation of 

eye-tracking measures and the coding of SRL data. 

Domain knowledge measures. The diagram interpretation (DI) task was video 

recorded, transcribed and scored by assigning points for idea units provided by the 

student with respect to information from four categories of knowledge. Three of these 

categories are based on the structure, behavior, function framework (see Hmelo-Silver & 

Pfeffer, 2004). The following four categories were used in scoring the diagram 

interpretation task:  

 1) structure statements in which learners indicate the location (through pointing 

or labeling on the sheet) of any component of the system or describe the structure of any 

component (e.g., ―The heart is here [pointing]‖; "The heart has four chambers"); 

 2) function statements in which learners indicate the function of a given 

component (e.g., ―The heart pumps blood around the body‖; "The arteries carry blood 

away from the heart");  

 3) behavior statements in which learners indicate the underlying mechanism(s) 

involved in the functioning of a given component (e.g., ―The red blood cells pick up the 

oxygen in the lungs at the air sacs through diffusion‖; "The valves stop blood from 

flowing backward by closing after blood flows through"); and  

 4) flow statements in which learners indicate the flow of blood through the system 

(e.g., ―Blood flows from the right atrium to the right ventricle‖; "Blood flows from the 

pulmonary arteries to the lungs").  
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For the DI task, each participant was awarded up to two points for each unique
4
 

correct idea unit generated (e.g., ―Veins carry blood toward the heart‖) during this task. 

An idea unit is defined as one piece of explicit information related to one of the four 

types of information (which concerns the circulatory system
5
). Each statement has the 

potential to include all correct information, some correct and some incorrect information, 

or all incorrect information. A previous investigation showed that participants often 

provide correct and incorrect information within one distinct statement (Witherspoon & 

Azevedo, 2008). For example, in the previous statement, "Blood flows from the right 

atrium to the right ventricle," a partially correct verbalization would be "Blood flows 

from the right atrium to the left ventricle." The learner has demonstrated that he/she 

understands that blood flows from atria to ventricles, but does not know which ventricle 

the blood flows into from the right atrium. A statement containing relevant information 

was assigned two points if all information was correct and covered the concept 

sufficiently, one point if some information was correct, and zero points if none of the 

information was correct (see Appendix H for scoring rubric and examples). Also, points 

were awarded for correct diagram additions (e.g., drawing a directional arrow in the 

correct direction of blood flow or writing correct label for a component) which were not 

addressed verbally by the participant. These additional points were awarded on the basis 

of video analysis, when observations were made of correct pen traces of the diagram. 

Learners' non-verbal diagram additions were scored in exactly the same way as the 

                                                           
 

 
4
 Restatements of the same idea were not counted toward a participant's score on the DI 

task. 

 

 
5
 Statements not related to the circulatory system were not coded. 
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verbalizations. Drawing directional arrows indicating the flow of blood was awarded 

points toward the flow score, whereas labeling components within the diagrams was 

awarded points toward the structure score. An earlier investigation utilizing the same 

learning measure revealed that these were the only types of information provided by 

learners through writing on the diagrams provided during the task (Witherspoon & 

Azevedo, 2008). All points awarded through coding the diagram interpretation tasks was 

summed within the four categories and each participant received a pretest and posttest 

score for each of the four categories of information. Additionally, each participant 

received an incorrect pretest and posttest score for each of the four categories.  

Due to errors in recording or transferring video recordings to the computer, four 

posttest videos were lost and one pretest video was lost. Therefore, 75 participants' 

diagram interpretation tasks were available for transcription, coding, and analysis. The 75 

pretest transcriptions comprised 81 pages (M = 1.08 pages per participant; range: one to 

three pages) and 10,961 words (M = 146.15 words; range: 4 to 806 words). The 75 

posttest transcriptions comprised 93 pages (M = 1.24 pages; range: one to three pages) 

and 15,410 words (M = 205.47 words; range: 16 to 617 words). The mean time taken to 

complete the diagram interpretation task at pretest was 1 minute and 53 seconds (range: 

31 seconds to 5 minutes). The mean time taken to complete the diagram interpretation 

task at posttest was two minutes and 38 seconds (range: 42 seconds to 5 minutes). 

The multiple choice (MC) pretest and posttest was scored by awarding one point 

for each correct answer selected by the participant. None of the participants' data for the 

multiple choice task was lost, so analyses on the multiple choice measure include all 80 

participants. The mean time taken to complete the multiple choice test at pretest was 7.4 
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minutes (range: 4 to 10 minutes). The mean time taken to complete the multiple choice 

test at posttest was 6.4 minutes (range: 3 to 9 minutes). 

Using these coding and scoring procedures for the domain knowledge tests 

resulted in nine unique scores (DI-structure, DI-function, DI-behavior, DI-flow, DI-

incorrect structure, DI-incorrect function, DI-incorrect behavior, DI-incorrect flow, and 

MC) for pretest and nine unique scores for posttest. Additionally, a total correct DI task 

score and a total incorrect DI task score was calculated by adding the scores for each of 

the four categories.  

Eye-tracking. An analysis of eye-tracking data is expected to provide insights  

into the process of effectual and ineffectual coordination between text and diagram. 

Effectual coordination is characterized as inspecting corresponding information within 

the text and diagram in a relatively brief manner. According to the theoretical models of 

text-picture integration, in order for successful integration of textual and pictorial 

information to occur, the two types of representations must be simultaneously active 

within working memory. Thus, effectual coordination requires short latency periods 

between fixations on textual and fixations on corresponding diagrammatic 

representations. Consequently, ineffectual coordination is defined as the inability to 

locate the corresponding elements between text and diagram promptly or the failure to 

locate the corresponding elements at all. 

The Tobii Studio software package allows the researcher to define various areas 

of interest (AOIs) within the visual display for any stimulus presented during 

experimentation. Within each page of content, several AOIs are defined. First, the text as 

a whole and the diagram as a whole comprise two distinct AOIs for which the software 
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provides indices of eye-gaze. Next, each textual representation and pictorial 

representation of the scaffolded terms within the content are defined as individual AOIs. 

Raw measures of visual attention to the various AOIs are provided by the software 

package, including fixation count and total fixation durations. These two metrics are used 

in deriving various measures of effectual and ineffectual coordination described above. 

Total fixations and total fixation duration on diagrams is computed by totaling across all 

12 pages of content. To calculate relevant
6
 fixations and fixation duration, the 

number/duration of fixations on any relevant area in the diagram is totaled across all 12 

pages. Proportion scores are derived for relevant fixations and fixation durations by 

dividing these measures by total fixations/fixation duration on the diagram. A description 

and illustrative example of each of the measures is provided in Appendix I.  

Before obtaining the eye-tracking metrics, the author watched the videos provided 

by the eye-tracking software. The purpose was to determine that eye-tracking results for 

the participants were valid. The author viewed the videos, listening to the verbalizations 

from the participants and observing the eye-tracking accuracy through the fixation points 

provided through the video analysis. The author determined that much of the eye-tracking 

data was not valid. Only 8 out of the 20 participants from the integration scaffolding 

condition and eight out of the 20 participants from the prompted referencing condition 

had valid eye-tracking data. Thus, in order to include an equal sample size for all four 

conditions, a random selection process was used to select eight participants from the 

                                                           
 

 
6
 A relevant area of the diagram is defined as any area corresponding to a component 

which is mentioned (and thus, scaffolded in the experimental conditions) within that page‘s 

textual representation. 
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remaining two conditions. All eye-tracking analyses reported are for the resulting 32 

participants (eight from each experimental condition).  

Self-regulated learning processes. The think-aloud protocols (Azevedo et al, 

2010; Ericsson, 2006; Ericsson & Simon, 1993) collected during the participants‘ 

learning session with the computer learning environment were analyzed to determine the 

participants‘ use of SRL processes. Azevedo, Cromley, and Seibert (2004) developed a 

coding scheme for SRL processes which has been fine-tuned to be used in other studies 

(e.g., Azevedo, Greene, & Moos, 2007; Azevedo, Moos, Greene, Winters, & Cromley, 

2008) and this modified coding scheme was used to code participants‘ verbalizations in 

the proposed experiment (see Appendix J). This coding scheme is based on several recent 

theoretical models of SRL (Pintrich, 2000; Winne, 2001; Winne & Hadwin, 1998, 2008; 

Winne & Perry, 2000; Zimmerman, 2000; 2008).  

Pintrich‘s four-phase process model of SRL informs the coding scheme‘s five 

classes of variables:  planning, monitoring, strategy use, handling task difficulty and 

demands, and interest. Within these five categories, the coding scheme includes 39 SRL 

processes which previous experiments demonstrate are used by participants in various 

conditions (Azevedo et al., 2004; Azevedo & Cromley, 2004; Azevedo, Cromley, Moos, 

Greene, & Winters, in press; Azevedo, Cromley, Winters, Moos, & Greene, 2005; Moos 

& Azevedo, 2006; Winters & Azevedo, 2005; ). Planning processes include sub-goal 

setting, planning, prior knowledge activation, recycling goals in working memory, and 

time and effort planning.  Monitoring processes include content evaluation (+ or -), 

feeling of knowing (+ or -), expectation of adequacy of content (+ or -), evaluation of 

content as answer to goal, judgment of learning (+ or -), monitoring progress toward goal, 
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monitoring use of strategies, self-question, and time monitoring.  Several of the 

monitoring processes are accompanied by valence which indicates whether the evaluation 

of content or cognitive states is positive or negative. For example, judgment of learning 

positive (+) is used to express there is an understanding, whereas judgment of learning 

negative (-) expresses that there is not an understanding. Strategy use includes 

coordination of information sources, drawing, using inferences (+ or -), knowledge 

elaboration, memorizing, using mnemonics, previewing, re-reading, reviewing notes, 

summarizing (+ or -), and taking notes.  In addition to the typical learner use of 

coordination of informational sources, in which learners engage in purposeful 

coordinated use of multiple representations (i.e., text and diagram), the coding scheme for 

this experiment included a scaffolded coordination of informational sources, which was 

coded each time a participant used one of the integration scaffolds provided to the 

integration condition or referenced the diagram when instructed in the prompted 

referencing condition. This variable was used partially as a manipulation check on the 

experimental condition. Handling task difficulty and demands processes include task 

difficulty judgments and help seeking behavior. Motivation variables include positive and 

negative statements of interest and positive and negative statements of affect. The No 

Code variable was coded whenever a statement provided by the participant could not be 

coded according to the coding scheme because it lacked enough context or was 

unintelligible. 

Student verbalizations during the learning sessions were collected using the think-

aloud methodology (Azevedo et al., 2010; Ericsson, 2006; Ericsson & Simon, 1993) and 

the audio recordings were transcribed by the author for coding.  Any statement provided 
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by the participant including more than two meaningful words (e.g., not ‗um‘ or ‗ok‘) that 

were not part of the learning context was segmented according to our coding scheme. 

Each participant‘s transcription was coded using one of the SRL variables for each 

segment.  Following the initial coding, the SRL processes coded for each segment were 

also collapsed into one of the five categories of processes (Planning, Monitoring, 

Strategy use, Handling task difficulty and demands, and Interest) according to the 

aforementioned category association.   

The 32 participants that  were used in the eye-tracking analyses were also used for 

the think-aloud analyses. The transcriptions from these 32 participants resulted in a total 

of 314 pages (M = 9.8 pages per participant; range: six to 16 pages), with a total of 

66,741 words (M = 2,085.6 words). All participants took exactly 20 minutes to complete 

the learning session. 
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Chapter 3 

Results 

 The results from this experiment are reported in two major sections. The product 

measures (multiple choice test and diagram interpretation task) are reported first, 

followed by the process measures (eye-tracking, self-regulated learning processes, and 

cognitive load self-report measure).  

Product Measures 

 Multiple choice measure. In order to determine differences in learners' 

conceptual and declarative knowledge of the human circulatory system at posttest, an 

analysis of covariance (ANCOVA) was conducted, using experimental condition as the 

independent variable, pretest as the covariate, and posttest score as the dependent 

variable. The results from this analysis indicated a marginally significant effect of 

experimental condition on posttest scores, when controlling for pretest scores, F(3, 75) = 

2.43, p = .072, ηp
2 
= .09. The assumption of homogeneity of regression slopes underlying 

the ANCOVA model was met; the interaction between pretest score and experimental 

condition was not significant, F(3, 72) = 1.06, p = .11. Estimated marginal means are 

reported in Table 1, along with descriptive statistics on the pretest and posttest scores.  

 

Table 1 

Adjusted Means for Multiple Choice Posttest Scores, by Experimental Condition 

 

Adjusted Mean Pretest Posttest 

 

 (SE = 2.9%) M SD M SD 

Control 61.6% 46.3% 11.9% 60.0% 17.5% 

Key Terms 60.2% 47.9% 19.5% 59.8% 17.7% 

Prompted Referencing 60.4% 51.9% 17.1% 62.9% 17.7% 

Integration Scaffolding 69.6% 47.9% 10.9% 69.2% 14.5% 
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Pairwise comparisons indicated that the integration scaffolding condition significantly 

outperformed the key terms condition (p = .02) and the prompted referencing condition (p 

= .03). Additionally, the adjusted posttest score for the integration scaffolding condition 

was marginally higher than for the control condition (p = .053). None of the remaining 

comparisons indicated significant differences. 

 Diagram interpretation task. To determine differences among the experimental 

conditions in participants' knowledge of the structure, function, behavior, and flow of the 

human circulatory system, a series of analysis of covariance (ANCOVAs) was run, using 

experimental condition as the independent variable, each pretest score for the four 

categories of knowledge (structure, function, behavior, and flow) as well as the total 

score as the covariate, and the corresponding posttest score as the dependent variable. For 

each of these tests, the assumption of homogeneity of regression slopes was met.  

 For the overall score on the diagram interpretation task (the sum of the structure, 

function, behavior, and flow categories), there was not a significant effect of 

experimental condition on the posttest score, after accounting for pretest score, F(3,70) = 

0.50, p = .69. There was also no significant effect of experimental condition on the 

posttest score for any of the four categories of knowledge. Adjusted means, standard 

errors, F values, and significance levels for the test on each category of knowledge are 

reported in Table 2. Descriptive statistics for the pretest and posttest diagram 

interpretation task scores are reported in Table 3. 
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Table 2 

Adjusted Means for Diagram Interpretation Task Posttest Scores, by Experimental 

Condition and Knowledge Category 

  

Control  

(N = 18)   

Key Terms  

(N = 17)   

Prompted 

Referencing  

(N = 20)   

Integration 

Scaffolding  

(N = 20) 

 

Category M SE   M SE   M SE   M SE F (sig) 

Overall Score 14.44 8.47 

 

17.71 11.68 

 

14.35 8.85 

 

16.70 8.21 0.50 (.69) 

Structure 7.75 0.96 

 

10.17 1.01 

 

6.80 0.91 

 

8.43 0.91 2.11 (.11) 

Function 3.64 0.60 

 

2.90 0.62 

 

3.59 0.57 

 

3.82 0.57 0.45 (.72) 

Behavior 0.54 0.18 

 

0.20 0.18 

 

0.36 0.17 

 

0.34 0.17 0.62 (.61) 

Flow 3.57 1.05   3.24 1.07   3.58 1.00   4.21 0.99 0.16 (.92) 

Overall 

Incorrect Score 1.03 0.32 

 

1.20 0.33 

 

1.18 0.30 

 

1.17 0.30 0.55 (.98) 

 

Table 3 

Descriptive Statistics for Diagram Interpretation Task, by Experimental Condition and 

Knowledge Category 

  

Control  

(N = 18)   

Key Terms  

(N = 17)   

Prompted 

Referencing  

(N = 20)   

Integration 

Scaffolding  

(N = 20) 

 

Category M SD   M SD   M SD   M SD Range 

Overall Pretest 

Score 4.61 2.70 

 

7.59 11.83 

 

5.75 8.85 

 

5.75 6.16 0 - 49 

Pretest Structure 2.44 1.89 

 

5.06 6.92 

 

2.55 4.02 

 

2.85 1.93 0 - 25 

Pretest Function 2.11 1.97 

 

1.88 3.53 

 

1.70 2.23 

 

1.95 2.28 0 - 15 

Pretest Behavior 0.00 0.00 

 

0.06 0.24 

 

0.20 0.62 

 

0.05 0.22 0 - 2 

Pretest Flow 0.06 0.24 

 

0.59 1.97 

 

1.30 3.21 

 

0.90 3.06 0 - 13 

Overall Pretest 

Incorrect Score 0.17 0.51 

 

0.71 1.10 

 

0.45 0.60 

 

0.40 0.94 0 - 4 

Overall Posttest 

Score 14.4 8.47 

 

17.71 11.68 

 

14.35 8.85 

 

16.70 8.21 2 - 53 

Posttest Structure 7.22 3.57 

 

11.53 7.10 

 

6.35 4.00 

 

8.20 4.87 0 - 34 

Posttest Function 3.78 3.56 

 

2.88 2.62 

 

3.45 2.56 

 

3.85 3.27 0 - 14 

Posttest Behavior 0.44 0.98 

 

0.18 0.39 

 

0.50 1.05 

 

0.30 0.73 0 - 4 

Posttest Flow 3.00 4.86 

 

3.12 4.54 

 

4.05 5.09 

 

4.35 4.89 0 - 16 

Overall Posttest 

Incorrect Score 0.83 1.15 

 

1.41 1.70 

 

1.20 1.44 

 

1.15 1.60 0 - 6 
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 To further test if the experimental conditions led to differences in participants' 

knowledge of the human circulatory system, the incorrect statements provided by 

participants were also analyzed. An analysis of covariance, using experimental condition 

as independent variable, total incorrect pretest score as covariate, and total incorrect 

posttest score as dependent variable was conducted.  Results indicated that there was not 

a significant effect of experimental condition on incorrect knowledge of the human 

circulatory system at posttest, after controlling for pretest score, F(3, 70) = 0.06, p = .98. 

Adjusted means, standard errors, F values, and significance levels are reported in Table 2 

Process Measures 

 Eye-tracking. As described in the coding and scoring section, several measures 

of eye-tracking were computed based on the fixation data provided by the eye-tracker. 

Each of these measures was analyzed using an ANOVA, with the experimental condition 

as the independent variable. The means and standard deviations of each eye-tracking 

measure are reported in Table 4.  

 

Table 4 

 

Descriptive Statistics for Eye-tracking Measures for Each Experimental Condition 

 

  Experimental Condition 

 
Control 

 
Key Terms 

 

Prompted 

Referencing  

Integration 

Scaffolding 

Eye-tracking Measures M SD   M SD   M SD   M SD 

Relevant Diagram 

Fixation Length 
9.3 10.8 

 
20.0 15.6 

 
32.1 35.2 

 
47.0 31.7 

Total Diagram 

Fixation Length 
93.0 79.6 

 
169.0 73.3 

 
168.5 154.7 

 
202.1 114.9 

Relevant Diagram 

Fixation Count 
23.5 23.4 

 
37.4 22.8 

 
42.3 36.9 

 
78.5 50.1 

Total Diagram 

Fixation Count 
255.8 215.4 

 
401.8 171.1 

 
341.0 260.9 

 
408.6 210.0 
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Table 4 (continued) 

 

Descriptive Statistics for Eye-tracking Measures for Each Experimental Condition 

 
  Experimental Condition 

 
Control 

 
Key Terms 

 

Prompted 

Referencing  

Integration 

Scaffolding 

Eye-tracking Measures M SD   M SD   M SD   M SD 

Proportion fixation 

time on Diagram 
0.078 0.066 

 
0.141 0.061 

 
0.140 0.129 

 
0.168 0.096 

Relevant Diagram 

Fixation Length 

Proportion 

0.095 0.030 
 

0.108 0.058 
 

0.195 0.091 
 

0.212 0.066 

Relevant Diagram 

Fixation Count 

Proportion 

0.099 0.036   0.088 0.037   0.136 0.064   0.181 0.071 

 

Results indicated a significant effect of experimental condition on the time spent fixating 

on relevant portions of the diagrams (relevant diagram fixation length), F(3, 28) = 3.23, p 

= .04. Post-hoc comparisons showed that participants in the integration scaffolding 

condition had significantly longer total fixation times on relevant portions of the 

diagrams than the control group (p = .006), and the key terms group (p = .04). None of 

the remaining comparisons were significant for the relevant diagram fixation length 

measure. There was no significant difference among the groups on the total time spent 

fixating on the diagrams (total diagram fixation length), F (3, 28) = 1.40, p = .26.  

 Eye-tracking results further indicated that experimental condition had a 

significant effect on the total fixations on relevant parts of the diagrams (relevant diagram 

fixation count), F(3, 28) = 3.56, p = .03. Post-hoc comparisons showed that participants 

in the integration scaffolding condition had significantly more fixations on relevant parts 

of the diagram than the control group (p = .004), the key terms group (p = .03), and the 

prompted referencing group (p = .048). None of the remaining comparisons were 



 

49 

significant for the relevant diagram fixation count measure. There was no significant 

difference in total the number of fixations on the diagram (total diagram fixation count), 

F(3, 28) = 0.86, p = .48.  

 In addition to the raw measures of eye-tracking, proportional measures were 

computed, to determine if the experimental conditions had an impact on the distribution 

of looking behavior within the diagrams. If a given experimental condition has a positive 

impact on ability to locate relevant information, then the proportion of time or proportion 

of fixations on relevant (vs. irrelevant) areas of the diagrams should be higher for this 

condition. Indeed, experimental condition had a significant effect on the proportion of 

time participants spent looking at relevant areas of the diagram (relevant diagram length 

proportion), F(3, 28) = 6.66, p = .002. Post-hoc comparisons indicated that participants in 

the integration scaffolding condition spent a greater proportion of their time inspecting 

diagrams on relevant areas, compared to the control group (p = .001) and compared to the 

key terms (p = .004). Additionally, the prompted referencing group spent a greater 

proportion of their time on relevant areas, compared to the control group (p = .005) and 

compared to the key terms group (p = .01). Both the integration scaffolding condition and 

the prompted referencing condition spent about 20% of the time that they were fixating 

on the diagram looking at relevant portions of the diagram, about twice the proportion for 

the other two conditions. None of the remaining comparisons were significant for the 

relevant diagram length proportion measure. Results also indicated that experimental 

condition had a significant effect on the proportion of relevant fixations on diagrams 

(relevant diagram count proportion), F(3, 28) = 4.72, p = .009. Post-hoc comparisons 

indicated that the participants in the integration scaffolding condition had a greater 



 

50 

proportion of fixations on relevant areas, compared to the control group (p = .006) and 

compared to the key terms condition (p = .002). None of the remaining comparisons were 

significant for the relevant diagram count proportion measure.   

 An identical set of analyses, using the entire sample of participants was conducted 

to ascertain that the results obtained with the subset of accurate eye-tracking data points 

were not due to a selection bias. The pattern of results using this inclusive data set were 

identical to the pattern found using the subset. One exception was that participants in the 

prompted referencing condition had a significantly greater proportion of fixations on the 

relevant areas, compared to the control group (p = .02). The results from these additional 

analyses confirm that the results obtained with only the accurate eye-tracking participants 

were not due to a selection bias for those participants who followed posture instructions. 

 Self-regulated learning processes. A one-sample t-test was conducted, using 

only the integration scaffolding condition, to determine that the experimental 

manipulation had its intended effect, leading participants to utilize the integration 

scaffolds provided. The one-sample t-test was used to ascertain that the frequency of 

observation for the SCOIS variable (scaffolded coordination of information sources) was 

significantly greater than zero. This analysis indicated that these participants did indeed 

utilize the integration scaffolds provided, t (7) = 4.735, p = .002. The initial frequency 

analysis of the SCOIS variable indicated that the integration scaffolding condition used 

the integration scaffolds more often than the prompted referencing condition, followed 

instructions to reference the diagram (MIS = 14.75; MPR = 5.00). An independent samples 

t-test was conducted to determine if this difference was statistically significant. The 

results of this analysis indicated that the integration scaffolding condition did utilize the 
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integration scaffolds more often than the prompted referencing condition followed the 

prompts to reference the diagram, t (14) = 2.35, p = .03, Cohen's d = 1.17. 

 An initial frequency analysis of the SRL processes indicated that there were no 

observations of six of the SRL processes (negative evaluation of adequacy of content 

[EAC-], evaluate content as answer to goal [ECAG], drawing [DRAW], help seeking 

behavior [HSB], positive affect [AFF+], and negative affect [AFF-]). Due to lack of 

observations for these variables, they are not displayed in the frequency table and were 

not analyzed for differences among groups. The remaining 32 SRL processes (see 

Appendix J) were analyzed using analysis of variance (ANOVA) to determine if the 

experimental conditions had a significant effect on learners' use of self-regulatory 

processes.  

 Due to the number of tests run on the SRL processes, the bonferroni correction 

procedure was applied, resulting in significance level of α = .0016 (.05/32). A significant 

effect of experimental condition was found for only one SRL process, correct 

summarization, F (3, 28) = 6.83, p = .001. Table 5 presents raw frequencies and mean 

deployment of each individual process and each class of SRL processes. Post-hoc 

comparisons indicated that participants in the integration scaffolding condition verbalized 

significantly more correct summarizations than the control condition (p < .001), than the 

key terms condition (p = .02), and than the prompted referencing condition (p = .002). 

None of the remaining comparisons were statistically significant. Although the ANOVA 

for correct summarization indicated that the integration scaffolding condition deployed 

this process more often, the distribution of SRL processes across participants is often 

non-normal. Thus, a non-parametric test, such as the chi-square test, may be more
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Table 5 

 

Descriptive Statistics for SRL Classes and Processes, by Experimental Condition 

  Experimental Condition 

SRL Class and 
Control 

(N = 8)  

Key Terms 

(N = 8)  

Prompted Referencing 

(N = 8)  

Integration Scaffolding 

(N = 8) 

Process 
Raw 

Frequency 
M   

Raw 

Frequency 
M   

Raw 

Frequency 
M   

Raw 

Frequency 
M 

Planning 7.00 .88 
 

20.00 2.50 
 

30.00 3.75 
 

18.00 2.25 

Prior Knowledge Activation 7.00 .88 
 

17.00 2.13 
 

24.00 3.00 
 

10.00 1.25 

Planning .00 .00 
 

.00 .00 
 

.00 .00 
 

1.00 .13 

Recycle Goal in Working Memory .00 .00 
 

.00 .00 
 

1.00 .13 
 

.00 .00 

Sub-Goal .00 .00 
 

2.00 .25 
 

.00 .00 
 

7.00 .88 

Time and Effort Planning .00 .00 
 

1.00 .13 
 

5.00 .63 
 

.00 .00 

Monitoring 38.00 4.75 
 

40.00 5.00 
 

90.00 11.25 
 

25.00 3.13 

Content Evaluation (-) 3.00 .38 
 

5.00 .63 
 

15.00 1.88 
 

1.00 .13 

Content Evaluation (+) .00 .00 
 

2.00 .25 
 

1.00 .13 
 

1.00 .13 

Evaluate Adequacy of Content (+) 1.00 .13 
 

3.00 .38 
 

3.00 .38 
 

.00 .00 

Feeling of Knowing (-) 5.00 .63 
 

.00 .00 
 

6.00 .75 
 

5.00 .63 

Feeling of Knowing (+) 11.00 1.38 
 

7.00 .88 
 

19.00 2.38 
 

6.00 .75 

Judgment of Learning (-) 2.00 .25 
 

8.00 1.00 
 

10.00 1.25 
 

6.00 .75 

Judgment of Learning (+) 5.00 .63 
 

6.00 .75 
 

16.00 2.00 
 

4.00 .50 

Monitoring Progress Toward Goal .00 .00 
 

1.00 .13 
 

.00 .00 
 

.00 .00 

Monitoring Use of Strategies 1.00 .13 
 

1.00 .13 
 

9.00 1.13 
 

.00 .00 

Self-Question 5.00 .63 
 

5.00 .63 
 

4.00 .50 
 

2.00 .25 

Time Monitoring 5.00 .63 
 

2.00 .25 
 

7.00 .88 
 

.00 .00 

Learning Strategies 255.00 31.88 
 

405.00 50.63 
 

374.00 46.75 
 

397.00 49.63 

Coordination of Information Sources 32.00 4.00 
 

113.00 14.13 
 

70.00 8.75 
 

35.00 4.38 

Incorrect Inference 1.00 .13 
 

1.00 .13 
 

.00 .00 
 

3.00 .38 

Correct Inference 6.00 .75 
 

8.00 1.00 
 

5.00 .63 
 

7.00 .88 
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Table 5 (continued) 

 

Descriptive Statistics for SRL Classes and Processes, by Experimental Condition 

  Experimental Condition 

SRL Class and 
Control 
(N = 8)  

Key Terms 
(N = 8)  

Prompted Referencing 
(N = 8)  

Integration Scaffolding 
(N = 8) 

Variable 
Raw 

Frequency 
M   

Raw 
Frequency 

M   
Raw 

Frequency 
M   

Raw 
Frequency 

M 

Knowledge Elaboration 1.00 .13 
 

13.00 1.63 
 

4.00 .50 
 

6.00 .75 

Memorization 16.00 2.00 
 

19.00 2.38 
 

3.00 .38 
 

3.00 .38 

Mnemonic .00 .00 
 

1.00 .13 
 

.00 .00 
 

.00 .00 

Preview 60.00 7.50 
 

63.00 7.88 
 

70.00 8.75 
 

34.00 4.25 

Read Notes 3.00 .38 
 

1.00 .13 
 

2.00 .25 
 

2.00 .25 

Re-read 74.00 9.25 
 

59.00 7.38 
 

57.00 7.13 
 

22.00 2.75 

Scaffolded Coordination of Information 

Sources 
.00 .00 

 
.00 .00 

 
40.00 5.00 

 
118.00 14.75 

Incorrect Summarization 4.00 .50 
 

3.00 .38 
 

6.00 .75 
 

4.00 .50 

Correct Summarization 21.00 2.63 
 

59.00 7.38 
 

39.00 4.88 
 

118.00 14.75 

Take Notes 37.00 4.63 
 

65.00 8.13 
 

78.00 9.75 
 

45.00 5.63 

Handling Task Difficulty and Demands 3.00 .38 
 

.00 .00 
 

1.00 .13 
 

.00 .00 

Task Difficulty Statement 3.00 .38 
 

.00 .00 
 

1.00 .13 
 

.00 .00 

Motivation 1.00 .13 
 

5.00 .63 
 

10.00 1.25 
 

3.00 .38 

Negative Interest Statement 1.00 .13 
 

2.00 .25 
 

1.00 .13 
 

.00 .00 

Positive Interest Statement .00 .00 
 

3.00 .38 
 

9.00 1.13 
 

3.00 .38 

No Code 48.00 6.00 
 

40.00 5.00 
 

76.00 9.50 
 

29.00 3.63 
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appropriate in this scenario (see Azevedo et al., 2008). As such, the median deployment 

of correct summarization was determined and each participant was dummy coded as 

at/above or below the median (median = 6). The results of the chi-square test indicated 

that the distribution of participants above or below the median differed, given the 

experimental condition, χ
2
 (3, N = 32) = 10.42, p = .02, ϕ = .57. A greater number of 

integration scaffolding condition participants (n = 8) were above the median, compared to 

the control condition (n = 2). Table 6 presents the cross-tabulation of frequencies for 

experimental condition by the two levels (at/above vs. below median) of the positive 

summarization variable. 

 

Table 6 

Number of Participants At/Above or Below the Median, by Experimental Condition 

  Experimental Condition 

 

Control 

(N = 8) 

Key Terms 

(N = 8) 

Prompted 

Referencing 

(N = 8) 

Integration 

Scaffolding 

(N = 8) 

Below median 6 4 5 0 

At/Above median 2 4 3 8 

  

  

 In addition to the analyses on the individual SRL processes, analyses were 

conducted on the classes of SRL processes. For these analyses, a series of ANOVAs were 

conducted, using experimental condition as the independent variable, and frequency of 

deployment of each class of SRL (planning, monitoring, learning strategies, handling 

task difficulty and demands, and motivation) as the dependent variable. A marginally 

significant effect of experimental condition was found for one class of SRL processes, 

namely learning strategies, F (3, 28) = 2.80, p = .058. Post-hoc analyses indicated that the 
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integration scaffolding condition deployed significantly more learning strategies than the 

control condition (p = .02). Additionally, the key terms condition deployed significantly 

more learning strategies than the control condition (p = .02). 

 Cognitive load measure. A series of analysis of variance (ANOVAs) were 

conducted on the self-reported cognitive load from the cognitive load measure to 

determine if the experimental condition had a significant effect on learners' perception of 

the cognitive load imposed by the learning materials (Cierniak et al., 2009; Paas & van 

Merrienboer, 1994). Each type of cognitive load (extraneous, intrinsic, and germane) and 

the total reported cognitive load was used as a dependent variable in an ANOVA with the 

experimental condition as the independent variable. Results indicated no significant 

effect of experimental condition on total cognitive load, F(3, 76) = 0.21, p = .89. 

Additionally, there was no significant effect of experimental condition on intrinsic, F (3, 

76) = 0.32, p = .81, extraneous, F (3, 76) = 0.39, p = .76, or germane cognitive load, F (3, 

76) = 0.30, p = .82. Table 7 presents descriptive statistics on the cognitive load measure. 

 

Table 7 

Descriptive Statistics for Cognitive Load Measure, by Experimental Condition 

  Experimental Condition 

 

Control 

 

Key Terms 

 

Prompted 

Referencing 

 

Integration 

Scaffolding 

Type of 

Cognitive 

Load 

M SD   M SD   M SD   M SD 

Intrinsic 2.35 1.04 

 

2.55 1.32 

 

2.30 1.30 

 

2.60 0.99 

Extraneous 2.15 1.23 

 

1.95 0.76 

 

2.30 1.08 

 

2.20 1.11 

Germane 4.35 1.04 

 

4.35 0.88 

 

4.10 1.25 

 

4.40 1.19 

Total 8.85 1.79   8.85 1.81   8.70 2.75   9.20 1.77 
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Chapter 4 

Discussion 

 This goal of this experiment was to answer two primary questions. First, what 

form of support is optimal to assist learners in integrating information from a textual 

representation with information from a diagrammatic representation? Second, why does 

this form of support promote learning? The experiment also had one secondary question: 

Do the forms of support previously shown to be beneficial to those learning with 

multimedia learning environments also aid learners who use hypermedia learning 

environments? The following discussion interprets the results of the reported experiment, 

with an emphasis on what implications can be drawn from the results toward theory, 

education, and methodological issues.  

What form of support is optimal to assist learners in integrating information from a 

textual representation with information from a diagrammatic representation? 

 The results from the learning outcome measures indicated that the integration 

scaffolding condition assisted learners in gaining conceptual and declarative knowledge 

about the human circulatory system. The integration scaffolding condition significantly 

outperformed all three remaining conditions on the multiple choice posttest measure of 

circulatory system knowledge. This suggests that the scaffolds directed attention to 

corresponding elements of the diagram in a just-in-time fashion and that process 

facilitated the construction of coherent internal mental representations of the instructional 

content. The remaining three conditions did not differ from one another in adjusted 

posttest scores. This indicates that learning is not promoted through signaling important 
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key terms or through prompting learners to reference the diagram at the same points as 

were scaffolded by the integration scaffolds.  

 Previous empirical work has shown that signaling text elements can be beneficial 

to learners in selecting relevant information from a textual representation and lead to 

better recall of these relevant elements (Mautone & Mayer, 2001). It should be noted that 

the signals used in Mautone and Mayer's (2001) study did not signal the structural 

components depicted in the animations, but rather signaled the words which conveyed 

spatial comparisons, such as 'longer' or 'shaped differently'. It may be that simply 

signaling key terms (the structural components which are depicted in the accompanying 

diagram) does not assist learners in understanding the organizational structure of the text, 

and therefore, does not benefit learning outcomes. Descriptively, the key terms condition 

coordinated text and diagram more (See Table 4) than any experimental conditions. 

However, I will discuss later an explanation as to why this high amount of visual 

switching between text and diagram was not beneficial to these learners.    

 Results from the experiment indicated that those in the prompted referencing 

condition did not learn more about the human circulatory system than those in the control 

condition. An explanation may be provided through inspection of the amount of 

adherence to the visual prompts in this condition. On average, participants in the 

prompted referencing condition visually inspected the diagram, when prompted, only five 

times throughout the learning session. Considering that there are 35 prompts in the 

learning materials, this means that the prompted referencing condition participants, on 

average, followed the prompts 14% of the time (5/35). If instructions to adhere to the 

prompts were more firm, these participants may have inspected the diagram more often 
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and benefited from this condition. On the other hand, it may be that the addition of 

irrelevant text (i.e. inserting 'Reference Diagram Now') in the textual representation 

detracts attention from relevant text, if only momentarily. The addition of instructions 

within the learning content may increase extraneous cognitive load and reduce available 

cognitive resources for the learning task.  

 The results from the diagram interpretation task were disappointing. The non-

significant findings provide no information as to how the different manipulations might 

influence learners' knowledge of the structure, function, behavior, and flow of the 

circulatory system. This unfortunate finding may be due to instructions which are not 

completely clear in conveying the purpose of the diagram interpretation task (see 

instructions on page 29). Although the participants were instructed to explain everything 

they knew about the human circulatory system, including the parts, how they work 

together, and how they contribute to the healthy functioning of the body, the learners may 

still have been unclear as to what kind of information was most important to provide. 

Most participants seemed to focus on providing names for the various components within 

the diagrams, spending little time describing the function or behavior of those 

components and little time on describing the flow of blood through the system. More 

explicit instructions as to what kinds of information are being tested in the task might 

assist researchers in obtaining more informative results. Additionally, the low prior 

knowledge of the participants, as evidenced through a mean pretest score of 48% on the 

multiple choice measure, might account for the inability of these students to verbalize 

more sophisticated knowledge at posttest. However, participants' knowledge of the 

structure, function, behavior, and flow of the circulatory system did increase from pretest 
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to posttest. Their posttest scores were, on average, nearly three times as high as at pretest 

(see Table 3). 

 Educational implications. So far, we have determined that the integration 

scaffolding technique leads to better learning outcomes compared to a control condition, 

compared to a signaled condition, and compared to a condition which prompts learners to 

reference the diagram at these same points. Educationally, these results imply that 

students learn better from hypermedia learning environments which include attention 

guidance mechanisms such as the one employed in this study (i.e., integration 

scaffolding). Previous work on the split-attention problem has used integrative displays, 

in which textual information is integrated into the diagrammatic representation, to reduce 

the physical space between a textual representation of a concept and its corresponding 

diagrammatic representation (Chandler & Sweller, 1991; Moreno & Mayer, 1999). The 

assumption underlying the integrative approach is that through making verbal and 

pictorial information spatially contiguous, one can  reduce the need to retain verbal 

information (from the textual representation) in mind while visually searching the 

diagrammatic representation for the corresponding pictorial representation (Cierniak et 

al., 2009; Tarmizi & Sweller, 1988). However, this form of integration may not be 

feasible with long expository texts in the absence of animations. If one does choose to use 

integrative animations, the creation of such animations for multiple domains such as 

biology, engineering, and mathematics is costly and requires that the creators understand 

instructional design principles. Additionally, wide-spread dissemination of these 

animations assumes that the schools have capacity to view the created animations on their 

hardware. A simpler way to reduce the latency between reading about a component and 
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viewing the corresponding pictorial representation is through the integration scaffolds 

used in this experiment. This method has shown to be effective in increasing learning 

outcomes. The next major question is why? 

Why does integration scaffolding promote learning? 

  To answer the question of why the integration scaffolding technique led to better 

learning outcomes, we turn to the process data collected in the experiment. The eye-

tracking measures, the SRL process analyses, and the cognitive load measure were used 

in the experiment to allow us to determine why benefits to learning occurred. The answer 

to this question should be theoretical relevant to Mayer's model (2005), Schnotz's model 

(2005), and the Cognitive Load Theory (Sweller et al., 1998). Each process measure will 

be discussed individually and the implications of all three will be discussed at the end of 

this section. 

 Eye-tracking. The results from the eye-tracking measures indicated that the 

participants in the integration scaffolding condition inspected relevant areas of the 

diagram more often and for a longer total period of time (summed across fixations) than 

the control group and the key terms group. Additionally, the participants in the 

integration scaffolding condition inspected relevant areas of the diagram more often than 

the prompted referencing condition. It should be noted that there was no significant effect 

of experimental condition on the total fixations on or total fixation time on the diagram as 

a whole. This means that no experimental condition spent more or less time inspecting 

the diagrams, but the differences were only in where  within the diagrams the participants 

were looking. The integration scaffolding condition spent more time and more fixations 

on the relevant areas, as would be expected through the integration support provided, in 

highlighting corresponding pictorial representations to the current verbal representation. 
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This finding suggests that the reason that the learners in the integration scaffolding 

condition had higher learning outcomes was because they were better able to locate 

corresponding information within the diagram, given the current verbal information they 

were reading.  

 In order to determine whether the learners in the integration scaffolding condition 

were better able to locate the relevant information, proportional eye-tracking measures 

were calculated. The proportional relevant fixation length variable represents the amount 

of time spent looking at relevant areas, divided by the total diagram fixation time. The 

resulting proportion gives us the proportion of the time spent inspecting diagrams which 

was devoted to inspecting relevant areas. According to the results, the integration 

scaffolding condition spent a significantly larger proportion of the time ooking at relevant 

areas to that particular page of content. The the integration scaffolding condition spent a 

significantly lower proportion of the time they were inspecting diagrams looking at 

irrelevant areas to that particular page of content. The implication is that the integration 

scaffolding manipulation led to reduced search time for corresponding elements in the 

diagrams. However, search time was not actually measured in the current report, a point 

discussed in the future directions section.  

 Taking the eye-tracking findings together, they suggest that the underlying reason 

behind the observed learning benefits for the integration scaffolding condition, at least in 

part, is due to the scaffolds' ability to guide learners' attention to relevant areas of the 

diagrammatic representations and reduce search time for the corresponding elements. The 

assistance provided by the integration scaffolds likely reduces extraneous cognitive load 

imposed by the learning materials, especially when the diagrams are as complex as the 
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intermediate level diagram depicting the heart and lungs. This reduction in extraneous 

cognitive load frees up resources for germane processing for schema construction and 

automation. The germane processing component will be discussed in the next section on 

the conclusions from the SRL processes analysis. 

 Self-regulated learning processes. The results from the SRL process analyses 

indicated that the integration scaffolding condition verbalized more correct 

summarizations of the learning content, compared to all remaining conditions. This 

finding can be related to the germane processing component of the Cognitive Load 

Theory (Sweller et al., 1998). The earlier analysis of the eye-tracking data led us to 

assume that extraneous cognitive load was reduced through the integration scaffolding 

condition. These free resources seem to have been allocated toward germane processing 

in the form of constructing summaries of the learning content. Not only did the learners 

engage in summarization, but the summaries were correct more often than incorrect. The 

distribution of incorrect summaries across the experimental conditions was equivalent. 

However, the integration scaffolding condition generated over twice as many correct 

summarizations than the next closest learning condition, key terms. The integration 

scaffolding condition verbalized nearly six times as many correct summarizations as the 

control condition. Unfortunately, the only SRL process which was more frequent in the 

integration scaffolding condition was correct summarization. One would also expect that 

these germane processes would relate to more sophisticated learning strategies such as 

making inferences and  elaborating with prior knowledge. However, the small sample 

size for this analysis (N = 32) may not provide enough statistical power to obtain 

significant results. Additionally, the low prior knowledge demonstrated by low pretest 
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multiple choice scores suggests that the learners in the experiment may not have had 

sufficient prerequisite knowledge to engage in these more sophisticated learning 

strategies. 

 The results from the analysis of SRL processes suggest that the integration 

scaffolds reduce search time and therefore reduce extraneous load; this reduced 

extraneous load frees resources for germane processes such as summarization. 

Unfortunately, the results from the cognitive load measure do not support the assumption 

that cognitive load is affected by the experimental conditions and the methodology used 

to measure cognitive load does not afford the opportunity to capture fluctuations in load 

across the learning session.  

 Cognitive load measure. The results from the cognitive load measure were quite 

disappointing. There were no significant differences among the groups on any of the 

types of cognitive load (extraneous, intrinsic, or germane), nor on total reported cognitive 

load. The measure itself may not be discriminating enough among these three types of 

cognitive load. The questions related to intrinsic and extraneous cognitive load (intrinsic: 

How difficult was the learning material for you?; extraneous: How difficult was it for you 

to learn with the material?) are very similar and may not allow participants to distinguish 

that they are actually asking two different things. In fact, the correlation between these 

two items was quite high, r = .62, p < .001. Additionally, the germane cognitive load 

question (How much did you concentrate during learning?) did not significantly correlate 

with multiple choice posttest scores, r = .08, p = .51, as would be expected (Cierniak et 

al., 2009). The original construction of these items was in German and they were 

translated to English for a scientific publication. Perhaps something was lost in 
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translation? Limitations to the use of the self-report cognitive load measure are discussed 

further in the limitation section. 

 Theoretical implications. The results from the eye-tracking and SRL measures 

provide support to Mayer's model (2005) and Schnotz's model (2005) of text-picture 

integration. Under both of these models, one assumption is that successful integration 

requires that verbal information and pictorial information be simultaneously active in 

working memory. The eye-tracking results suggest that the integration scaffolding 

condition had shorter search times for corresponding elements in the diagram. This can 

be extended to conclude that the scaffolds reduce search time, thereby allowing the 

corresponding verbal and pictorial information to be simultaneously active. Ultimately, 

this results in a facilitation of the  construction of internal mental representations and 

better learning outcomes. The SRL results suggest that the integration scaffolding 

condition engaged in more appropriate organization of information, leading to the better 

capacity to correctly summarize the learning content.  

 The results of the experiment provide somewhat supportive evidence of the 

Cognitive Load Theory (Sweller et al., 1998). Although there were no differences in 

reported cognitive load among the experimental conditions, the integration scaffolding 

condition was constructed in hopes of reducing extraneous load and the eye-tracking 

results suggest that extraneous load was, indeed, lowered by this condition. An 

explanation for the high frequency of observation of coordinating informational sources 

in the key terms condition can be attributed to cognitive load theory. Although this 

condition may have led to greater (although not statistically significant) visual switching 

between text and diagram, because the search for corresponding elements in the diagram 
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was not supported through any attention guidance feature (as in the integration scaffolds), 

these learners likely spent a significant amount of time trying to locate relevant 

information in the diagrams, and may have, in fact, given up trying to locate the 

corresponding components. This search time likely imposed a greater extraneous 

cognitive load, leading to the inability of this condition to promote better learning 

outcomes. These learners may have wasted precious moments in the learning session 

struggling to find the corresponding components in the diagram, thereby reducing time 

and cognitive resources available for germane processing.  

 Methodological implications. The experiment demonstrated that the cognitive 

load self-report measure employed was not successful at differentiating among successful 

learners and unsuccessful learners (per the lack of correlation between germane load self-

report and posttest scores). This suggests that this measure may not be appropriate for 

discriminating among the three types of cognitive load. More deliberate construction of 

self-report cognitive load measures should be undertaken, and multiple items 

representing the three constructs should be devised. Until such time, more objective 

measures, such as dual-task (Paas, Tuovinen, Tabbers, van Gerven, 2003), might be more 

appropriate for capturing total cognitive load imposed but the learning environment. 

Additionally, the dual-task methodology would be more effective in capturing 

fluctuations of cognitive load throughout the learning task. 

 The experiment did support the use of eye-tracking methodology to uncover 

underlying reasons behind observed multimedia or hypermedia effects. The results 

provided sound grounds for making conclusions about the mechanism behind the 

integration scaffolding effect evidenced in the experiment. Other multimedia and 
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hypermedia experiments should also employ eye-tracking methodology to determine why 

observed effects occur. One drawback to the use of the particular eye-tracker employed in 

this experiment is that, unless the participants keep their posture stable, much of the data 

will be invalid.  

 The experiment supports the use of think-aloud protocols to capture learners' 

online cognitive processing with multimedia and hypermedia environments (see Azevedo 

et al., 2010 for a review). Although only one SRL process was found to differ among the 

groups, this finding was critical in making the argument that the integration scaffolding 

condition frees resources for germane processing.  

 The disappointing results from the diagram interpretation task may indicate the 

need to construct more directive instructions for the participants. Although this measure 

was successfully applied in an earlier investigation (Witherspoon & Azevedo, 2008), 

considering that the multiple choice measure was able to capture differences among the 

conditions, the diagram interpretation task failed to discriminate among differing 

amounts of knowledge in the four categories represented. In future studies employing this 

measure, care should be taken to develop adequate instructions and pilot testing of the 

measure should be conducted. 

Limitations 

 Several limitations to the experiment have already been introduced. For example, 

the cognitive load measure employed seems inadequate in discriminating among 

successful and unsuccessful learners. A better cognitive load measure may be objective 

measures such as dual-task methodology. A major limitation to the experiment was the 

inability to demonstrate differences among the conditions in reported cognitive load. 

According to cognitive load theory, as expertise in a domain increases, intrinsic cognitive 
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load will decrease due to learners' ability to chunk information into meaningful units and 

activate and make use of these chunks in a more efficient manner (Sweller et al., 1998). 

Unfortunately, because the cognitive load measure was administered at the end of the 

learning session, fluctuations in learners' cognitive load (self-reported or otherwise) could 

not be captured. Evidence for such fluctuations may be captured through the use of dual-

task methodology, rather than self-report measures. A major limitation to self-report 

measures in general is the susceptibility of such measures to response bias. More 

specifically, cognitive load self-report measures may be subject to bias due to unreliable 

responses provided by the participant (Brunken, Plass, & Leutner, 2003). Learners are 

notoriously inaccurate when reporting metacognitive processes, often overestimating 

understanding of instructional content (Hacker, Dunlosky, & Graesser, 2009; Nelson & 

Dunlosky, 1991; Theide & Dunlosky, 1994). As previously discussed, the diagram 

interpretation task also did not prove sensitive in determining differences in the 

knowledge of the structure, function, behavior, or flow of the human circulatory system. 

More explicit instructions may alleviate this problem in the future.  

 Another limitation of the investigation is that the analysis on the SRL processes 

was undertaken only on a subset of the data available. Results may differ if all videos are 

transcribed and coded, possibly leading to the ability to identify more SRL processes 

which were promoted by the integration scaffolding. Additionally, inter-rater reliability 

could not be obtained because the coding of SRL processes was performed only by the 

author. 

 Although the theoretical basis and conclusions drawn from the experiment relate 

to the accuracy and completeness of learners' mental models, a unique mental model 
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measure was not employed. The diagram interpretation task was used following the 

assumption that when learners' mental models of the circulatory system are more 

complete and accurate, they will be better equipped to produce correct statements on the 

structure, function, behavior, and flow of the system. However, this measure was not 

sensitive to differences in knowledge more broadly, so differences in learner mental 

models were not detected using the diagram interpretation task. 

 Generalizability. Due to the scope of the project, the population employed in this 

experiment was drawn entirely from the undergraduate population at The University of 

Memphis. As with most experimental research programs, generalizability to the greater 

population can be called into question.  The selection of exclusively college enrollees, the 

low prior knowledge of the participants, and the large percentage of female participants 

(71%) limits any attempt to make general claims for other populations. The campus is in 

an urban setting in the Southeastern United States, so findings also might not generalize 

to rural or suburban settings or to other regions of the United States. 

 The learning session that the learners engaged in was relatively short  compared 

with more realistic study sessions that students would undertake in classroom settings. It 

is yet to be determined whether the positive impact of integration scaffolds would extend 

to situations where students are using the learning materials for hours at a time. However, 

one strength of the design of this experiment is that it utilized hypermedia rather than the 

multimedia learning materials investigated by other researchers. Hypermedia is a more 

ecologically valid  learning context, where students on their own are free to navigate to 

any instructional content piece at any time.  
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Future Directions 

 More work is necessary to capitalize on the potential of the existing data from the 

experiment. First, the eye-tracking data provided by the eye-tracker software (Tobii 

Studio
TM

, 2009) affords the researcher the opportunity to undertake more sophisticated 

fixation trajectory analyses. For example, one measure yet to be obtained is the search 

time measure. This measure would represent the amount of time elapsed from fixation on 

a textual representation (e.g., 'mitral valve') to fixation on its corresponding pictorial 

representation (i.e., the depiction of the mitral valve in the diagram). This measure should 

directly isolate that time which elapses while fixating anywhere within the diagram, thus 

eliminating the chance that the search time would be inflated by additional reading time 

within the text. Another measure might capture the coupling between the fixations on 

textual representations and the corresponding pictorial representations in the diagram. 

How often do fixations on the text about component A result in fixations on the depiction 

of component A? Do learners also inspect surrounding components (Hegarty & Just, 

1993)?  

 Next, more analyses can be conducted  on the think-aloud protocols in order to 

determine if other SRL processes are influenced by the experimental conditions.  

 It may be the case that some representations require assistance to learners in 

locating corresponding elements whereas others do not necessarily need to be scaffolded. 

For example, in the first page of the instructional content, one element which is 

scaffolded is the human heart. Almost all college students should know where the heart is 

located in the human body, so scaffolding may be unnecessary at this point. Determining 

the appropriate level of scaffolding is an endeavor which requires more investigation. 

The individual items on the multiple choice pretest and posttest could be mapped to the 
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page of content where instructional content needed to answer that item appears. In this 

way, one could determine for which pages of content it is more essential to include 

attention guidance techniques. For example, one might predict that the pages which 

describe and depict the flow of blood through the heart, lungs, and body would require 

more support than a page that  is merely talking about the functions of the circulatory 

system as a whole. In the latter case, it may not be necessary to even view the 

accompanying diagram to understand that the circulatory system is responsible for 

carrying blood and oxygen to all parts of the body. 

 Conclusions 

This dissertation provides evidence for the effectiveness of integration scaffolding 

in facilitating learners' ability to integrate information from textual and pictorial 

representations. The success of integration scaffolding is brought about through guiding 

learners' attention to relevant areas in the diagrammatic representation. This promising 

finding suggests that alternative methods of circumventing the split-attention problem in 

hypermedia environments should include a mechanism for directing attention to 

corresponding elements within text and diagrams. The results support the two major 

models of text-picture integration (Mayer, 2005; Schnotz, 2005) as well as Cognitive 

Load Theory (Sweller et al., 1998). Within learning materials that utilize typed text and 

diagrams, learners' need to process verbal and pictorial information simultaneously in 

working memory can be supported through attention guidance features such as 

integration scaffolding.
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Appendix A: Texts and Diagrams from Hypermedia Learning Environment 

Global Level Texts and Diagram 

1) Introduction 
The circulatory system is made up of three major parts: the heart, blood vessels 
(arteries, veins, and capillaries), and blood. The heart is the muscle that pumps blood 
around the body through tubes called blood vessels. The heart, blood, and blood vessels 
work together to carry oxygen from the lungs to all the other tissues in the body and, in 
turn, carry waste products, predominantly carbon dioxide, back to the lungs where they 
are released into the air. 

The human heart is shaped like an upside-down pear and is located slightly to the left of 
center inside the chest cavity. About the size of a closed fist, the heart is made of muscle 
tissue that contracts rhythmically to propel blood to all parts of the body. The muscle 
rests only for a fraction of a second between beats. The heart must beat ceaselessly 
because the body’s tissues—especially the brain and the heart itself—depend on a 
constant supply of oxygen and nutrients delivered by the flowing blood. If the heart 
stops pumping blood for more than a few minutes, death will result.  

2) Blood Vessels & Blood Cells 
There are three types of blood vessels: arteries, veins, and capillaries. Arteries carry 
blood away from the heart. Veins carry blood toward the heart. Capillaries are the tiny 
tubes connecting the arteries and the veins where oxygen and nutrients can move from 
the blood into body organs, and where wastes from body organs move into the blood.  

There are also three major types of blood cells: red blood cells, white blood cells, and 
platelets. All three are carried through blood vessels in a liquid called plasma. Red blood 
cells make up the majority of the cells in the blood and are responsible for carrying 
oxygen to the tissues of the body and then carbon dioxide away. White blood cells play 
a vital role in the body’s immune system—the primary defense mechanism against 
invading bacteria, viruses, fungi, and parasites. They often accomplish this goal through 
direct attack, which usually involves identifying the invading organism as foreign, 
attaching to it, and then destroying it. The smallest cells in the blood are the platelets, 
which are designed for a single purpose—to begin the process of coagulation, or 
forming a clot, whenever a blood vessel is broken.  

3) Two Circulatory Systems 
The blood in the circulatory system moves around the body and through the heart in a 
continuous cycle. There are two loops that are connected like a figure 8. These two 
loops are named the systemic circulation and the pulmonary circulation. The systemic 
circulation carries oxygenated blood from the heart to all the tissues in the body except 
the lungs and returns deoxygenated blood carrying waste products, such as carbon 
dioxide, back to the heart. The pulmonary circulation carries this spent blood from the 
heart to the lungs. In the lungs, the blood releases its carbon dioxide and absorbs 
oxygen. The oxygenated blood then returns to the heart before transferring to the 
systemic circulation. 
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4) Systemic & Pulmonary Circulation 
Systemic circulation begins when oxygenated blood is pumped from the heart, through 
the aorta to the arteries (such as the femoral artery) in the body. These arteries become 
smaller, eventually forming the capillaries, where oxygen is transferred to the tissues of 
the body. At the same time, carbon dioxide from the tissues enters the blood in the 
capillaries. This deoxygenated blood then goes from the capillaries to the veins (such as 
the femoral vein) in the body and returns to the heart through the superior and inferior 
vena cava. Then pulmonary circulation begins. 

Pulmonary circulation carries the deoxygenated blood from the heart to the lungs 
through the pulmonary arteries. In the lungs, the blood picks up oxygen and drops off 
carbon dioxide. The oxygenated blood then returns to the heart through the pulmonary 
veins and is pumped from the heart, beginning systemic circulation once again. 
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Intermediate Level Texts and Diagram 

1) Components of the Heart 
The human heart is divided into four chambers: the right atrium, the right ventricle, the 
left atrium, and the left ventricle. The walls of these chambers are made of a special 
muscle called myocardium, which squeezes to pump blood throughout the body. The 
heart also has four valves, which are responsible for keeping blood from flowing 
backward within the heart. Two valves are located between the atria and ventricles: the 
tricuspid valve and mitral valve. The other two valves are located between the ventricles 
and the arteries: the pulmonary valve and the aortic valve.  

2) Cycle of Blood Flow 1 
Blood moves through the heart and body in a cycle. If we start at the right side of the 
heart, the cycle begins when: 

1) Blood from the body comes into the heart from the two largest veins in the body, the 
inferior vena cava and the superior vena cava. This blood is not carrying oxygen because 
it just dropped off oxygen in the body’s organs and muscles. This “oxygen-poor” 
(deoxygenated) blood flows from both of the vena cavas into the right atrium. 

2) Once the right atrium is full of blood, the atrium squeezes and pushes blood through 
the tricuspid valve into the right ventricle.  

3) The tricuspid valve then closes to keep blood from leaking back into the right atrium. 

4) Once the right ventricle is full of blood, the ventricle squeezes, and pushes blood 
through the pulmonary valve into the pulmonary arteries (pulmonary means “lungs”.) 

5) Then the pulmonary valve closes to keep blood from leaking back into the right 
ventricle.  

3) Cycle of Blood Flow 2 
6) The blood moves through the pulmonary arteries to the lungs to pick up the oxygen 
that we breathe in. One of the pulmonary arteries goes to the left lung and the other 
pulmonary artery goes to the right lung. 

7) In the lungs, the main pulmonary arteries split into many tiny arteries throughout the 
lungs. The arteries become smaller, eventually forming the capillaries. The oxygen in the 
lungs moves through the capillary walls into the blood where it is picked up by red blood 
cells. In the same way, carbon dioxide leaves the blood and is breathed out of the lungs. 

8) This oxygenated blood heads back to the heart in both right and left pulmonary veins.  

9) The pulmonary veins then carry the blood into the left atrium of the heart.  
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10) Once the left atrium is full of blood, the atrium squeezes and pushes blood through 
the mitral valve into the left ventricle. 

4) Cycle of Blood Flow 3 
11) The mitral valve then closes to keep blood from leaking back into the left atrium.  

12) Once the left ventricle is full of blood, the ventricle squeezes very hard, and pushes 
blood through the aortic valve into the aorta. The aorta, which takes blood to all parts of 
the body, is the largest artery in the body.   

13) The aortic valve then closes to keep blood from leaking back into the left ventricle.  

14) The aorta splits into many tiny arteries throughout the body. These arteries grow 
smaller until they become capillaries. Once blood is in the capillaries, the red blood cells 
release the oxygen they have carried from the lungs, and the oxygen moves through the 
capillary walls and into the organs and muscles that need it. Carbon dioxide, from the 
muscles and tissues, moves in the opposite direction – into the blood to be carried back 
to the lungs as waste.  

15) This deoxygenated blood heads back to the heart in veins. These veins from all over 
the body join up with the superior and inferior vena cava, and the cycle begins again. 
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Intermediate Level Texts and Diagram 

1) Diffusion 
The exchange of gases (oxygen and carbon dioxide) is driven by diffusion, which is the 
movement of molecules from a highly concentrated area to a lower concentrated area. 
This exchange occurs at the capillary level both in the tissues within the body as well as 
in the lungs. Capillaries are tiny tubes that connect the arteries to the veins. They are 
the smallest of blood vessels and can only be seen by microscope. Ten capillaries lying 
side by side are thinner than a single human hair. The walls of capillaries are very thin 
and gases and liquids from the blood and body can move across the walls easily. 

2) Oxygen & Carbon Dioxide Exchange 
In the blood, each red blood cell has a molecule of hemoglobin, which is a special 
molecule that holds oxygen. In the lungs, oxygen enters the blood by crossing the 
capillary walls and carbon dioxide leaves the blood through the same process. In 
contrast, when blood is delivered to the capillaries within the tissues in the rest of the 
body, oxygen leaves the blood by crossing the capillary walls and carbon dioxide enters 
the blood. This is why we refer to blood traveling from the lungs to the tissues of the 
body as oxygenated, and blood traveling from the tissues to the lungs as deoxygenated. 

3) Gas Exchange at Tissue 
Our body’s cells use oxygen and nutrients to create energy. This process is called 
metabolism. Metabolism produces water and carbon dioxide as by-products. The 
circulatory system works to deliver oxygen and nutrients to cells and to carry away 
waste products such as carbon dioxide. At the tissue level within the body, capillaries 
running throughout the tissues deliver the oxygen and nutrients to the cells. After blood 
has left the left side of the heart, it travels in arteries to these capillaries, where oxygen 
molecules diffuse across the capillary walls to the tissues and carbon dioxide molecules 
diffuse in the opposite direction into the blood. After delivering the oxygen and 
nutrients to the body’s tissues, the deoxygenated blood returns (in veins) to the heart 
and then lungs, where carbon dioxide is expelled from the body. 

4) Gas Exchange in Lungs 
The gas exchange that occurs in the lungs is referred to as pulmonary gas exchange. This 
is accomplished at the alveoli (air sacs) in the lungs. Blood moves to the capillaries in the 
lungs through pulmonary arteries. Oxygen moves from the alveoli (high oxygen 
concentration) to the blood (lower oxygen concentration, due to the continuous 
consumption of oxygen in the body). Air entering the lungs contains about 21 percent 
oxygen and 0.04 percent carbon dioxide. Air leaving the lungs contains about 14 percent 
oxygen and about 4.4 percent carbon dioxide. Once the blood has been oxygenated in 
the lungs, it then returns to the left side of the heart through the pulmonary veins. 
These veins are one of few exceptions to the rule that oxygenated blood travels in 
arteries. 
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Appendix B: Diagram Interpretation Task 

Circulatory System Diagram Task 

 

On the following page are three diagrams of the circulatory system. Use these 

three diagrams in any way you would like to describe your understanding of the 

circulatory system. You can draw on any of the diagrams that you would like to during 

this task, using the pens provided. PLEASE TELL ME EVERYTHING YOU CAN 

ABOUT THE CIRCULATORY SYSTEM. Be sure to include all the parts and their 

purpose, explain how they work both individually and together, and also explain how 

they contribute to the healthy functioning of the body. If you want to talk about a 

particular component of the system, you can either write the name of that component on 

the sheet or just point to it with your pen while referring to it. 
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Appendix C: Multiple Choice Test 

CIRCULATORY SYSTEM MULTIPLE CHOICE TEST 

INSTRUCTIONS: CIRCLE THE RESPONSE THAT BEST ANSWERS THE QUESTIONS.   
CHOOSE ONE AND ONLY ONE ANSWER FOR EACH QUESTION. 

(24 POINTS) 
 

1. What is one of the main purposes of the human heart? 

A. The source of oxygen for blood 

B. Cleans blood of waste products 

C. Allows us to feel emotions 

D. Moves blood around the body 

 

2. Where does blood travel? 

A. Only between the heart and the brain 

B. Only inside the heart 

C. Around our body, but not our heart 

D. Around our whole body 

 

3. After blood flows into the right ventricle, it goes through the ________ valve into the ________. 

A. Pulmonary…pulmonary veins 

B. Aortic…aorta 

C. Aortic…arteries  

D. Pulmonary…pulmonary arteries 

 

4. What is one of the main purposes of the human circulatory system? 

A. Gives oxygen and nutrients to parts of the body 

B. Allows us to breathe 

C. Makes hormones 

D. Breaks down nutrients into smaller components 

 

5. After blood flows into the left ventricle, it goes through the ________ valve into the ________. 

A. Mitral…right atrium 

B. Tricuspid…left atrium 

C. Pulmonary…aorta 

D. Aortic…aorta 

 

6. Choose the BEST description of blood movement: 

A. Blood travels by moving freely through the spaces (interstitial fluid) between all body 

cells 

B. Blood travels in tubes around the body 

C. Blood travels by moving through cells in the body 

D. Blood travels by moving through veins, arteries, and capillaries in the body 
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7. What are the three types of blood vessels? 

A. Heart, lungs, brain 

B. Superior vena cava, inferior vena cava, and aorta 

C. Arteries, veins, capillaries 

D. Small, medium, large 

 

8. Circle the statement that is most true: 

A. Blood picks up oxygen in the lungs 

B. Blood picks up oxygen in the veins 

C. Blood picks up oxygen in the heart 

D. Blood does not pick up oxygen 

 

9. After blood flows into the tissues of the body (except the lungs), it goes to the 

________. 

A. Arteries 

B. Veins  

C. Left ventricle 

D. Left atrium 

 

10. Circle the statement that you think is MOST true about the circulatory system: 

A. There is only one system of circulation that takes blood all around our body in 

one big loop 

B. There are two separate systems of circulation, one which travels on the right 

side of the body, and one which travels on the left side of the body 

C. There are three systems of circulation, one which takes blood to the brain and 

upper body, one which takes blood to the heart and middle body, and one 

which takes blood to the lower body 

D. There are two separate systems of circulation, one which goes from the heart to 

the body and then back to the heart, and one which goes from the heart to the 

lungs and back to the heart 
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Please use the accompanying diagram to answer the next two questions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11. When blood leaves the “C” part of the heart, it: 

A. Goes out to the body then to “A” 

B. Goes out to the lungs, then back to “B” 

C. Goes to the “A” part of the heart 

D. Goes to the “D” part of the heart 

 

12. The path of blood through the heart and body is BEST represented by: 

A. A CB D  Body  A … repeats 

B. A  B  D  C  Body  Lungs  A … repeats 

C. A  C  Lungs  B  D  Body  A … repeats 

D. C  D  B  A  Body  Lungs  C … repeats 
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13. Blood flowing in the pulmonary veins is heading to which body part? 

A. Heart 

B. Liver 

C. Lungs 

D. Kidneys 

 

14.  Blood enters the heart through the ________. 

A. Aorta 

B. Superior and inferior vena cava 

C. Arteries 

D. Pulmonary valve 

 

15. What would occur if the mitral valve stopped working? 

A. The left atrium would not be able to fill with blood and would therefore not be 

able to squeeze and push blood into the left ventricle 

B. The left atrium would be able to squeeze blood into the left ventricle, but the 

blood would leak back into the left atrium, and the left ventricle would not be 

able to squeeze and push blood into the aorta 

C. The left ventricle would be able to fill with blood, and would be able to squeeze 

the blood into the aorta, but the left atrium would not be able to fill with blood 

D. The left ventricle would not be able to fill with blood and would therefore not 

be able to squeeze and push blood into the left atrium 

 

16. Circle the path that BEST represents how the blood moves throughout the body: 

A. Body  Heart  Body  Heart  Body … repeats 

B. Body  Heart  Lungs  Heart  Body … repeats 

C. Body  Lungs  Heart  Body … repeats 

D. Body  Heart  Lungs  Body  … repeats 

 

17. Hemoglobin carries ________ from the lungs to take to the cells in the body. It then 

reverses its function and picks up ________ to take to the lungs. 

A. Carbon dioxide…oxygen 

B. Carbon dioxide…nitrogen 

C. Oxygen…carbon dioxide 

D. Oxygen…nitrogen 

 

18. After blood flows into the aorta, it goes to the ________. 

A. Arteries 

B. Veins 

C. Right ventricle 

D. Right atrium 
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19. After blood flows into the left atrium, it goes through the ________ valve into the ________. 

A. Mitral, right atrium 

B. Mitral, left ventricle 

C. Tricuspid, right atrium 

D. Tricuspid, left ventricle 

 

20. What is the ultimate purpose for delivering oxygen and nutrients to the parts of the body? 

A. The body’s cells use the oxygen and nutrients to create hormones 

B. The body’s cells use the oxygen and nutrients for metabolism 

C. The body’s cells use the oxygen and nutrients to reduce carbon dioxide levels 

D. The body’s cells use the oxygen and nutrients to create more oxygen 

 

21. Blood flowing in the pulmonary arteries is heading to which body part? 

A. Heart 

B. Liver 

C. Lungs 

D. Kidneys 

 

22. What is the process that allows oxygen and nutrients to cross the capillary walls? 

A. Convection 

B. Metabolism 

C. Oxidation 

D. Diffusion 

 

23. After blood flows into the right atrium, it goes through the ________ valve into the 

________. 

A. Mitral, right ventricle 

B. Tricuspid, right ventricle 

C. Mitral, left ventricle 

D. Tricuspid, left ventricle  

 

24. What is the body part within the lungs which contains oxygen to be delivered to the 

capillaries? 

A. Alveoli 

B. Ventricles 

C. Hemoglobin 

D. Atria 
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Appendix D: Subjective Cognitive Load Measure (adapted from Cierniak, Scheiter, &Gerjets, 2009) 

Answer the following questions by circling the option which best describes your learning session. 

 

How difficult was the learning material for you? 

 

1 – Not at all       2 – Just a little bit       3 – somewhat       4 – pretty much       5 – very       6 - extremely 

 

How difficult was it for you to learn with the material? 

 

1 – Not at all       2 – Just a little bit       3 – somewhat       4 – pretty much       5 – very       6 - extremely 

 

How much did you concentrate during learning? 

 

1 – Not at all       2 – Just a little bit       3 – somewhat       4 – pretty much       5 – very       6 - extremely 
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Appendix E: Experimental Procedure 
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Appendix F: Learning Task Instructions 

Instructions for control condition: 

You are being presented with a computer-based learning environment, which contains 

textual information and static diagrams of the circulatory system. We are trying to learn 

more about how students learn from computer-based learning environments. Your task 

is to learn all you can about the human circulatory system in 20 minutes. Make sure 

you learn about the different parts and their purpose, how they work both individually 

and together, and how they support the human body. In order for us to understand 

how you learn about the circulatory system, we also ask you to “think aloud” 

continuously while you are learning in this environment. Say everything you are thinking 

and doing. I’ll be here in case anything goes wrong with the computer or the equipment. 

In this computer-based learning environments are texts and diagrams about the 

circulatory system. Please read the text and inspect the diagrams in whichever way 

you see fit.Please remember that it is very important to say everything that you are 

thinking and doing while you are working on this task. 

 

Instructions for integration scaffolding condition: 

You are being presented with a computer-based learning environment, which contains 

textual information and static diagrams of the circulatory system. We are trying to learn 

more about how students learn from computer-based learning environments. Your task 

is to learn all you can about the human circulatory system in 20 minutes. Make sure 

you learn about the different parts and their purpose, how they work both individually 

and together, and how they support the human body. In order for us to understand 

how you learn about the circulatory system, we also ask you to “think aloud” 

continuously while you are learning in this environment. Say everything you are thinking 

and doing. I’ll be here in case anything goes wrong with the computer or the equipment. 

In this computer-based learning environment are texts and diagrams about the 

circulatory system. Certain words appear in blue, underlined. These words, when 

scrolled over, will highlight certain parts of the diagram relevant to what you are 

reading (For as long as your mouse is over these words). While you are reading the 

text, you can mouse over each underlined term and inspect the diagram. Please 

remember that it is very important to say everything that you are thinking and doing 

while you are working on this task. 
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Instructions for key terms condition: 

You are being presented with a computer-based learning environment, which contains 

textual information and static diagrams of the circulatory system. We are trying to learn 

more about how students learn from computer-based learning environments. Your task 

is to learn all you can about the human circulatory system in 20 minutes. Make sure 

you learn about the different parts and their purpose, how they work both individually 

and together, and how they support the human body. In order for us to understand 

how you learn about the circulatory system, we also ask you to “think aloud” 

continuously while you are learning in this environment. Say everything you are thinking 

and doing. I’ll be here in case anything goes wrong with the computer or the equipment. 

In this computer-based learning environment are texts and diagrams about the 

circulatory system.  Certain words appear in blue, underlined. These highlighted words 

indicate particularly important key terms within the text. Please remember that it is 

very important to say everything that you are thinking and doing while you are working 

on this task. 

 

Instructions for prompted referencing condition: 

You are being presented with a computer-based learning environment, which contains 

textual information and static diagrams of the circulatory system. We are trying to learn 

more about how students learn from computer-based learning environments. Your task 

is to learn all you can about the human circulatory system in 20 minutes. Make sure 

you learn about the different parts and their purpose, how they work both individually 

and together, and how they support the human body. In order for us to understand 

how you learn about the circulatory system, we also ask you to “think aloud” 

continuously while you are learning in this environment. Say everything you are thinking 

and doing. I’ll be here in case anything goes wrong with the computer or the equipment. 

In this computer-based learning environment are texts and diagrams about the 

circulatory system.  At certain points within the text, you will see instructions to 

reference (look at) the diagram. While you are reading the text, you can inspect the 

diagram at these points within the text. Please remember that it is very important to 

say everything that you are thinking and doing while you are working on this task. 
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Appendix G: IRB Approval Page 
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Appendix H: Diagram Interpretation Scoring Rubric 

Any statements directly referring to the circulatory system will be coded according to the 
following categories. Two points (2) will be assigned if the statement is completely correct, one 
point (1) will be assigned if the statement is partially correct (e.g. identifying the right atrium as 
the left atrium), and a zero (0) will be assigned if the statement is completely incorrect. 
 
Structure: Participant indicates (through pointing or writing label on test) the correct location of 
one of the components of the system, or describes the structural organization of components of 
the system. 
Ex. These are the pulmonary veins. 
And it has the heart and the arteries running out of it. 
The heart has four chambers. 
 
Function: Participant states (or writes) the purpose of a particular structure within the system 
Note: Function statements will often also indicate the location, but since this is a deeper level of 
explanation than location statements, it will only be coded as ‘function’ 
Ex. [the lungs] which supply the blood with oxygen 
And then you also have in the heart, various valves that actually prevent blood from travelling 
backwards. 
 
Behavior: Participant states the underlying mechanism responsible for the functioning of the 
component. 
Note: Again, behavior statements might include reference to either the location or function of 
the component, but these will only be coded as ‘behavior’ statements as this is the deepest level 
of explanation. 
Ex. And how they’re diffusing the nutrients, they uh, diffuse in and out of the capillary walls. Cuz 
the capillary walls are thin. 
 
Flow: Participant states the path of blood/food flow through the system. 
Note: Flow statements are often accompanied by gestures indicating location of components, 
but only ‘flow’ is coded in these circumstances. 
Ex. /The heart pumps blood through the arteries/And they travel, the blood travels throughout 
your whole body/And then it returns back to the heart/ - 3 separate flow statements 
Um, these two over here, these are the veins, which lead to the heart. 
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Appendix I: Descriptions and examples of eye-tracking measures 

Measure Formula 
Example 

(see figures in table on next page) 

Measures of search time/attention to 
irrelevant diagrammatic information 

  Average search time for relevant 
information 

Σ (# seconds searching)/# of relevant components 
viewed  

Irrelevant diagram fixation duration 
Σ (diagram fixation durations) - Σ (relevant diagram 
fixation durations)  

1184 - 651 = 533 

Proportional irrelevant diagram 
fixation duration 

Irrelevant diagram fixation duration/ Σ (diagram 
fixation durations) 

533/1184 = 0.45 

Irrelevant diagram fixation count 
Σ (diagram fixations) - Σ (relevant diagram 
fixations)  

2960 - 1628 = 1332 

Proportional irrelevant diagram 
fixation count 

Irrelevant diagram fixation count / Σ (diagram 
fixations) 

1332/2960 = 0.45 

Measures of attention to relevant diagram 
information   

Relevant diagram fixation duration Σ (relevant diagram fixation durations) 651 

Proportional relevant diagram fixation 
duration 

Relevant diagram fixation duration/ Σ (diagram 
fixation durations) 

651/1184 = 0.55 

Relevant diagram fixation count Σ (relevant diagram fixations)  1628 

Proportional relevant diagram fixation 
count 

Relevant diagram fixation count / Σ (diagram 
fixations) 

1628/2960 = 0.55 
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  Page   

 
1 2 3 4 5 6 7 8 9 10 11 12 Total 

Total diagram fixations (n) 79 105 98 309 452 132 453 224 210 467 88 343 2960 

Total diagram fixation duration (secs) 32 42 39 124 181 53 181 90 84 187 35 137 1184 

Relevant diagram fixations (n) 24 0 44 260 450 30 43 132 10 232 80 323 1628 

Relevant diagram fixation duration (secs) 10 0 18 104 180 12 17 53 4 93 32 129 651 

Irrelevant diagram fixations (n) 55 105 54 49 2 102 410 92 200 235 8 20 1332 

Irrelevant diagram fixation duration (secs) 22 42 21 20 1 41 164 37 80 94 3 8 533 
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Appendix J 

 
Classes, Descriptions, and Examples of the Variables Used to Code Learners‘ Self-Regulatory Behavior 

(Based on Azevedo, Cromley, & Seibert 2004) 

 

Variable 

[Abbreviation] 

Description
1
 Student Example  

Planning 

Planning 

[PLAN] 

Stating two or more learning 

goals  

 "First, I want to learn about the different parts 

of the heart, and then the blood vessels." 

Prior Knowledge 

Activation  

[PKA] 

Searching memory for relevant 

prior knowledge either before 

beginning performance of a task 

or during task performance 

 

―Gamma globulin is composed of tens of 

thousands of unique antibody molecules.  I 

think they, um, they are like part of the 

immune system.‖ 

Recycle Goal in 

Working Memory 

[RGWM] 

Restating the goal (e.g., question 

or parts of a question) in working 

memory 

 

 ―I need to learn about all the parts and their 

purposes…‖ 

 

Sub-Goal 

[SG] 

Articulating a specific sub-goal 

that is relevant to the experiment-

provided overall goal 

 

―I want to learn more about plasma. I‘m going 

to click on that.‖ 

Time and effort 

planning  

[TEP] 

 

Attempts to intentionally control 

behavior 

―I‘m skipping over that section since 45 

minutes is too short to get into all the details.‖ 

 

Monitoring 

Content Evaluation  

[CE] (+ or -) 

Stating that just-seen text, 

diagram, or video is either 

relevant (or irrelevant) 

 

[Learner reads about red blood cells] ―This is 

just was I was looking for.‖ 

Expectation of 

adequacy of content 

[EAC] (+ or -) 

Expecting that a certain content 

(e.g., section of text, diagram, 

video) will be adequate (or 

inadequate) given the current 

goal 

―I‘m going to actually look on the picture 

because that will help me understand‖ 

 

Evaluate content as 

answer to goal 

[ECAG] 

 

Statement that what was just read 

and/or seen meets a goal or sub-

goal 

[Learner reads text]… ―So I think that‘s the 

answer to this question.‖ 

Feeling of Knowing  

[FOK] (+ or -) 

Stating that there is an awareness 

of having (or having not) read or 

learned something in the past and 

having some understanding of it  

―Oh, I already read that.‖ 

                                                           
 

 
1
 All codes refer to what was recorded from the think-aloud protocols and video analysis 
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Variable 

[Abbreviation] 

Description Student Example  

Judgment of 

Learning  

[JOL] (+ or -) 

Indicating that there is (or is not) 

an understanding of what was 

just read/seen 

―Okay, this makes sense.‖ 

Monitor Progress 

Toward Goals 

[MPTG] 

 

Assessing whether previously-set 

goal has been met 

―Those were our goals..I accomplished them.‖  

 

Monitor Use of 

Strategies 

[MUS] 

Commenting on usefulness of 

strategy 

―Yeah, drawing really helped me understand 

how blood flow throughout the heart.‖ 

Self-questioning 

[SQ] 

Posing a question and rereading 

to improve understanding of the 

content 

Learner spends time reading text and then 

states, ―What do I know from this?‖ and 

reviews the same content. 

 

Time Monitoring 

[TM] 

 

Referring to the number of 

minutes remaining 

―There are a few seconds left‖ 

Strategy Use   

Coordination of 

Information Sources 

[COIS] 

 

Coordinating multiple 

representations (e.g., drawing 

and notes) 

 

―I‘m going to put that [text] together with the 

diagram.‖ 

 

Scaffolded 

Coordination of 

Information Sources 

[SCOIS] 

Coordinating multiple 

representations using integration 

scaffolding interface element or 

following prompt to reference 

diagram 

―Goes through the mitral valve.. 

Which is there.‖ 

Draw 

[DRAW] 

Making a drawing or diagram to 

assist in learning 

 

 "…I'm trying to draw the diagram as best as 

possible." 

 

Inferences           

[INF] (+ or -) 

Drawing a conclusion based on 

two or more pieces of 

information that were read within 

the same paragraph in the 

learning materials. 

―Hypertension is elevated blood pressure, 

develops when the blood- body’s blood vessels 

narrow, causing the heart to pump harder,  

Which I‘m guessing could cause a heart 

attack.‖ 

Knowledge 

Elaboration 

[KE] 

Elaborating on what was just 

read, seen, or heard with prior 

knowledge 

―Heat dissipates through the skin, effectively 

lowering the  temperature. Like a car radiator.‖ 

Memorization 

[MEM] 

Memorizing text, diagram, etc. 

 

 ―I‘m going to try to memorize this picture.‖ 

Mnemonic 

[MNEM] 

Using a verbal or visual memory 

technique to remember content 

―Arteries—A for away.‖ 

Preview 

[PREV] 

Learner reads headings or 

subheadings either in text or 

headings of diagrams/video 

―Systemic circulation, pulmonary circulation, 

additional functions, blood pressure…‖ 

Re-reading 

[RR] 

Re-reading a section of the 

learning environment. 

 ―I‘m reading this again.‖ 
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Variable 

[Abbreviation] 

Description Student Example  

Review Notes 

[RN] 

Reviewing notes 

 

―Let me read over these notes now.‖  

Summarization 

[SUM] (+ or -) 

Verbally restating what was just 

read, inspected, or heard in the 

environment  

 "This says that white blood cells are involved 

in destroying foreign bodies." 

 

Taking Notes 

[TN] 

 

Writing down information   ―I‘m going to write that under heart.‖ 

 

Task Difficulty and 

Demands 

  

Help Seeking 

Behavior 

[HSB] 

Seeking assistance regarding 

either the adequacy of their 

understanding or their learning 

behavior, regardless of whether 

the instructions indicate that the 

experimenter/tutor will provide 

assistance 

―Do you want me to give a more detailed 

answer?‖ 

 

Task Difficulty 

[TD] 

Indicating one of the following: 

(1) the task is either easy or 

difficult, (2) the questions are 

either simple or difficult, (3) 

using the hypermedia 

environment is more difficult 

than using a book 

 "This is harder than reading a book." 

 

Motivation 
 

  

Interest statement  

[INT] (+ or -) 

Indicating a certain level of 

interest in the task or in the 

content domain of the task 

―This stuff is interesting.‖ 

Affect statement  

[AFF] (+ or -) 

Indicating a certain valence of 

affect in regards to the task or 

content of the task 

―That makes me sad.‖ 

No Code              

[NC] 

Learner provides little revealing 

information about cognitive 

processing in a statement 

―Um, yeah, let‘s see.‖ 
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