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Abstract 

Dowell, Nia Marcia Maria. Ph.D. The University of Memphis. May/2017. A 
computational linguistic analysis of learners’ discourse in computer-mediated group 
learning environments. Major Professor: Dr. Arthur C. Graesser  
 
Communication, collaboration and the social co-construction of knowledge are now 

considered critical 21st century skills and have taken a principal role in recent theoretical 

and technological developments in education research. The overall objective of this 

dissertation was to investigate collaborative learning to gain insight on why some groups 

are more successful than others. In such discussions, group members naturally assume 

different roles. These roles emerge through participants’ interactions without any prior 

instruction or assignment. Different combinations of these roles can produce 

characteristically different group outcomes, being either less or more productive towards 

collective goals. However, there has been little research on how to automatically identify 

these roles and fuse the quality of the process of collaborative interactions with the 

learning outcome. 

 A major goal of this dissertation is to develop a group communication analysis 

(GCA) framework, a novel methodology that applies automated computational linguistic 

techniques to the sequential interactions of online group communication. The GCA 

involves computing six distinct measures of participant discourse interaction and 

behavioral patterns and then clustering participants based on their profiles across these 

measures. The GCA was applied to several large collaborative learning datasets, and 

identified roles that exhibit distinct patterns in behavioral engagement style (i.e., active or 

passive, leading or following), contribution characteristics (i.e., providing new 

information or echoing given material), and social orientation. Through bootstrapping 
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and replication analysis, the roles were found to generalize both within and across 

different collaborative interaction datasets, indicating that these roles are robust 

constructs. A multilevel analysis shows that the social roles are predictive of success, 

both for individual team members and for the overall group. Furthermore, the presence of 

specific roles within a team produce characteristically different outcomes; leading to 

specific hypotheses as to optimal group composition. 

Ideally, the developed analytical tools and findings of this dissertation will 

contribute to our understanding of how individuals learn together as a group and thereby 

advance the learning and discourse sciences. More broadly, GCA provides a framework 

to explore the intra- and inter-personal patterns indicative of the participants’ roles and 

the sociocognitive processes related to successful collaboration.  

Keywords: big data, collaborative learning, computational linguistics, educational 

data mining, learning analytics, sequential analysis, sociocognitive processes, student 

roles  
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A Computational Linguistic Analysis of Learners’ Discourse in Computer-Mediated 
Group Learning Environments 

 
The required scope and depth of literacy skills are rapidly increasing as we shift 

from an industrial economy toward a more global, knowledge-based, innovation-centered 

economy and society (Araya & Peters, 2010; Devine, Clayton, Philips, Dunford, & 

Melner, 1999). This shift has placed a high demand on learners who are faced with more 

complex technologies, social systems, and information. Communication, collaboration 

and the social co-construction of knowledge are now considered critical 21st century 

skills and have taken a principal role in recent theoretical and technological developments 

in education research (Binkley et al., 2011; Care, Scoular, & Griffin, 2016; Dede, 2009, 

2015; Griffin, Care, & McGaw, 2012; OECD, 2013; Rosen & Rimor, 2012).  

The importance of collaborative skills is reflected in the evolution of higher 

education where, over the past decades, the focus of learning has been evolving from 

traditional, highly individualistic processes and products to more interactive learning in 

groups and social networks (Binkley et al., 2011; Dede, 2009; Voogt, Erstad, Dede, & 

Mishra, 2013). For instance, technology-enriched collaborative environments have 

become pervasive in both formal and informal educational contexts (Greenhow, Robelia, 

& Hughes, 2009). This is evident in emerging educational trends towards computer-

mediated collaborative learning environments, intelligent tutoring systems (ITSs), and 

most recently massive open online courses (MOOCs) (Siemens, Gasevic, & Dawson, 

2015). These educational technologies, when leveraged appropriately, have the potential 

to develop the cognitive and social competencies that groups of learners need for 

successful performance and group interactions (Dede, 2014; Graesser et al., 2016; 

Jenkins, Clinton, Purushotma, Robison, & Weigel, 2006; Rosen & Mosharraf, 2015; 
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Shaffer, 2006; Shaffer et al., 2009; Voogt et al., 2013). 

However, despite the potential success of collaborative interactions, research and 

practice suggests circumstances where they are not consistently effective  (Barron, 2003; 

Dillenbourg, Baker, Blaye, & O’Malley, 1996; Liu, von Davier, Kyllonen, & Zapata-

Rivera, 2015; Sawyer, 2014). For example, there can be large variations in performance 

between groups that appear to have no difference in composition and assigned tasks 

(Barron, 2000). It has become quite evident that successful collaboration involves more 

than simply combining individuals with relevant knowledge together ( Kirschner & 

Erkens, 2013; Stahl, Law, Cress, & Ludvigsen, 2014), because that approach does not 

guarantee that team members will work together (Hughes, 1998), coordinate their 

activities (Erkens, Prangsma, & Jaspers, 2006), participate in critical  discussions 

(Weinberger & Fischer, 2006) or lead to positive outcomes (Mäkitalo, Weinberger, 

Häkkinen, Järvelä, & Fischer, 2005; van Bruggen, Kirschner, & Jochems, 2002; van 

Drie, van Boxtel, Jaspers, & Kanselaar, 2005). Consequently, a deeper understanding of 

the factors that make up successful collaboration is needed in order to develop methods 

for assessing and improving collaborative learning outcomes and processes (Van den 

Bossche, Gijselaers, Segers, & Kirschner, 2006).  

This dissertation has two main objectives that attempt to address these issues. The 

first is to investigate learners’ language, discourse and conversation patterns and the 

individual roles that learners take on during collaborative learning interactions. Towards 

this effort, I have designed a framework called group communication analysis (GCA) by 

combining computational linguistic techniques with sequential interaction analyses of 

group communication. The GCA captures relevant sociocognitive processes that 
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characterize the social roles students occupy in group interactions. Tracking the 

communication dynamics during learners’ ongoing group interactions can reveal 

important patterns about how individual learners and group processes emerge and unfold 

over time. The second goal of this dissertation is to use the initial findings on language, 

discourse, and group dynamics to explore how the individual-level roles and overall 

group compositions influence both student and group performance during collaborative 

interactions. The concepts, methods, and research ideas presented in this research are at 

the intersection of collaborative learning, discourse processes, educational data mining, 

and learning analytics. This interdisciplinary research approach will hopefully provide 

insights and help redefine the nature of collaborative learning research in the context of 

big data (Dede, 2015). Specifically, the current research conducted analyses on two large, 

collaborative learning datasets (Traditional CSCL learner N = 854, group N = 184; 

SMOC learner N = 1,713, group N = 3,297), and one collaborative problem solving data 

set (Land Science learner N = 38; group N = 630). 

This dissertation is organized into 10 main sections. Chapter 2 presents an 

overview of group interaction theory and research. An overview of the current research is 

provided in chapter 3. Chapter 4 provides the theoretical motivation for the GCA, 

including a detailed description of the technical details involved in the construction of the 

GCA. The methodological details of the dissertation are presented in chapter 5. Chapters 

6 and 7 cover the theoretical background and statistical analyses involved in detecting 

student roles. In chapter 8, we explore how the identified roles are related to both student 

and group learning. Chapter 9 explores whether the roles are a product of trait-based 

characteristics of students or emergent properties of group interactions. Finally, Chapter 
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10 provides a broader discussion, including a discussion of the limitations and 

methodological, theoretical, practical implications of this research. 
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Chapter 2: Learning in Groups: Theory and Research 

The study of group learning began long before studies of collaborative learning, 

collaborative problem solving, and computer-supported collaborative learning (CSCL). 

Research on small group interactions has a long history that has stretched across multiple 

fields that include contributions from psychology, sociology, education, philosophy, 

computer science, mathematics, and business management (Dillenbourg, 1999; Hesse, 

Care, Buder, Sassenberg, & Griffin, 2015; Letsky, 2008; OECD, 2013; Eduardo Salas, 

Cooke, & Rosen, 2008; Sawyer, 2014). More than three decades of research has dissected 

the social and discourse interactions in collaborations, following the assumption that 

knowledge is constructed together in a social context (Sawyer, 2014). Social interaction 

with learning and performance orientations have been explored, for example, in studies 

on cooperation (Johnson & Johnson, 2014), team effectiveness (Cooke, Gorman, Myers, 

& Duran, 2013; Fiore et al., 2010; Foltz & Martin, 2009; Kozlowski, 2015), peer and 

group learning (O’Donnell, 2006), group cognition (Stahl, 2006), and collaborative 

learning (Barron, 2003; Dillenbourg & Traum, 2006; F. Hesse et al., 2015; Howley, 

Mayfield, & Rosé, 2013; Liu et al., 2015; Roschelle & Teasley, 1995; Rosé et al., 2008; 

Sawyer, 2014; Shaffer et al., 2009; Von Davier & Halpin, 2013) .  

This dissertation focuses on collaborative learning. It is useful to follow 

Dillenbourg’s (1999) distinction between cooperative and collaborative learning when 

differentiating collaborative learning from earlier explorations of group learning. The 

frequently cited distinction between these approaches pertains to the division of labor, 

where the cooperative form of learning interaction is more focused on working together 

to create an end-product through the division of sub-tasks and responsibilities. 
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Collaboration, in contrast, involves participants sharing in the process of knowledge 

creation, and thus is characterized by direct interaction among individuals to produce a 

product and engage through discussions, negotiations, and accommodating others’ 

perspectives (Dillenbourg, Järvelä, & Fischer, 2009; Roschelle & Teasley, 1995). 

Collaborative learning is a special form of learning and interaction that affords 

opportunities for groups of students to combine cognitive resources and synchronously or 

asynchronously participate in tasks to accomplish shared learning goals (Sawyer, 2014; 

Slavin, 1995). Within the learning sciences, collaboration has been conceptualized as a 

“process by which individuals negotiate and share meaning relevant to the task at hand … 

Collaboration is a coordinated activity that is the result of a continued attempt to 

construct and maintain a shared conception of the problem” (Dillenbourg, 1999, p. 70; 

Roschelle & Teasley, 1995). Within these perspectives, the ideas of co-construction of 

knowledge and mutual engagement as well as coordination are highlighted (Dillenbourg 

et al., 2009; Jeong & Chi, 2006; Kirschner, Beers, Boshuizen, & Gijselaers, 2008; 

Roschelle, 1992). Collaborative learning groups can range from a pair of learners (called 

a dyad), to small groups (3-5 learners), to classroom learning (25-35 learners), and more 

recently large-scale online learning environments with hundreds or even thousands of 

students (McLaren, 2014, p. 3; Von Davier & Halpin, 2013).  

The initial research in the area of collaborative learning focused on whether and 

when collaborative learning is more effective than learning alone (Dillenbourg et al., 

1996; Roschelle & Teasley, 1995). In this context, the researchers typically focused on 

controlling several external independent variables, such as the size and composition of 

the group (e.g., gender, age, heterogeneity) and the nature of the task and the 
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communication media used for learning and interaction. However, these factors 

interacted in ways that made it difficult to establish causal links between the conditions 

and the effects of group collaboration. This resulted in a shift from focusing on the 

individual characteristics and external factors to directing research efforts toward 

understanding the interpersonal interactions that occur, the conditions under which they 

occur and the influence of these interactions (i.e., from the condition paradigm to the 

interactions paradigm; see Dillenbourg et al., 1996). The theoretical questions addressed 

in this dissertation fall under this interactions paradigm. The interactions paradigm has 

produced a significant number of cross-disciplinary theoretical perspectives and 

frameworks stemming from the literature in computer-supported collaborative learning 

(Barron, 2003; Dillenbourg & Traum, 2006; Hesse et al., 2014; Howley, Mayfield, & 

Rosé, 2013; Liu et al., 2015; Roschelle & Teasley, 1995; Rosé et al., 2008; Shaffer et al., 

2009; Stahl et al., 2014; Von Davier & Halpin, 2013), team effectiveness (Cooke et al., 

2013; Fiore et al., 2010; Foltz & Martin, 2009; Kozlowski, 2015), and the PISA 2015 

Collaborative Problem-Solving (CPS) Framework (Graesser, Forsyth, & Foltz, 2017; 

OECD, 2013). These frameworks document the individual, cognitive, and social 

processes and products that influence knowledge construction during group interactions, 

which provides a basis for the analysis of collaborative learning processes in the current 

dissertation. The social and cognitive processes involved in collaborative learning are 

manifested in the interactions between group members. That is, these processes can be 

inferred from the actions performed by the individual, and the communicative 

interactions with others. The following section reviews the role of language and discourse 

in the analysis of computer-mediated collaborative learning (CMCL) processes. 
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Language, Discourse and Communication  

Communication is one of the main factors that differentiates collaborative 

learning from individual learning (Dillenbourg & Traum, 2006; Fiore et al., 2010). 

Language and discourse can reveal information about both the structure of the group and 

the information flowing through the group. The structure of the group can indicate such 

things as individual participant roles, paths of information flow and levels of 

connectedness within and across groups. Thus, language, discourse, and communication 

can provide information about individual learner-level processes and overall group-level 

processes.  

The nature of the computer-mediated collaborative interaction platforms allows 

valuable learning dynamics and processes to be tracked at unprecedented resolution and 

scale. Specifically, the digital–based platform captures the high degree of learner–learner 

and learner–system interaction and hence generates a large amount of information usually 

maintained in the form of events aggregated in log files (Daradoumis, Martínez-Monés, 

& Xhafa, 2006). These digital traces left by learners are regarded as a goldmine that can 

offer powerful insights into the learning process. One of the richest sources of 

information about cognitive and social processes in collaborative groups is their 

language, discourse, and communication (Foltz, Lavoie, Oberbreckling, & Rosenstein, 

2007). Language refers to the words, syntax, and semantics of individual speech acts, 

whereas discourse addresses connections between speech acts within a turn and between 

turns. When communication is successful, there is shared knowledge (common ground) 

between or among students in a group. To help ground the discussion, an excerpt from a 
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collaborative interaction on personality disorders is presented in Table 1. The discussion 

is annotated to note theoretically interesting characteristics.  

In this excerpt, Student A (Line 1) initiates the conversation with a topic centering 

comment followed by a question. Two turns later (Line 3), Student C provides an 

acknowledgment and reaction to Student A thereby creating communicative common 

ground through the discourse connection of the speech acts between the turns. Student B 

adds to the discussion with an on-topic statement (Line 2) that introduces information 

about specific attributes and qualifiers of personality disorders. Additionally, the excerpt 

illustrates the dynamic nature of discourse (Mercer, 2008). Specifically, the dynamic 

property refers to the fact that conversations are not completely planned ahead of time but 

rather they emerge (Mercer, 2008). Learners’ contributions are contingent on what the 

other group members contribute, and as such, they do not know in advance what they will 

contribute (Mercer, 2008). This is illustrated as the interaction continues with statements 

(Lines 4-11) that emerge from the previous discourse and communication. Here we see 

Student D’s statement (Line 5: also, they have to have like unrealistic fantasies) is 

building on Student A’s previous statement (Line 4: and it also mentioned it can't be 

because of drug) by providing additional information not previously stated. That is, the 

previous contribution serves as a context for further discussion on personality disorders.  
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Table 1  

Sample Excerpt from a Collaborative Interaction on Personality Disorders 

Student Line Chat Contribution 
Student A 1 okay so certain characteristics: doesn't it have to be like a 

stable thing? <Question> 
Student B 2 I think the main thing about having a disorder is that its 

disruptive socially and/or makes the person a danger to 
himself or others <Statement> 

Student C 3 Yes <Acknowledgement> stable over time <Reaction > 
Student A 4 Yeah <Acknowledgement>, and it also mentioned it can't be 

because of drugs <Statement> 
Student D 5 also they have to have like unrealistic fantasies <Statement> 
Student E 6 Yeah <Acknowledgement> and not normal in their culture 

<Statement> 
Student B 7 no drugs or physical injury <Statement> 
Student D 8 begins in early adulthood or adolescence <Statement> 
Student A 9 I think that covers them? Haha <Question> 
Student D 10 ok, so arrogance doesn't just define it, they have to have 

most of these characteristics <Statement > 
Student D 11 yeah <Acknowledgement> I think we got them <Reaction > 

 

There have been several analytical approaches to exploring language, discourse 

and communication in CSCL. Table 2 shows a list of methods applied to evaluate aspects 

of CSCL. With regard to analytical approaches, scholars typically rely on human coding 

that use content analysis schemes or surface level communication features. For example, 

content analysis schemes that researchers frequently use are the interaction analysis 

model (IAM) (Gunawardena, Lowe, & Anderson, 1997) and multi-dimensional 

framework (Weinberger & Fischer, 2006). Surface level communication features focus 

on features such as the level of student participation, the number of logs made by each 

student, the number of messages belonging to each student, or the number of posts in 

each thread (for a review, see De Wever, Schellens, Valcke, & Van Keer, 2006; Lucas, 

Gunawardena, & Moreira, 2014). Table 3 shows an example of one of these popular 
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coding schemes, the IAM proposed by Gunawardena et al. in 1997, which is widely used 

to evaluate the level of knowledge construction during online discussions. 

Table 2 

Summary of Methods for Examining CSCL Discussions 

Method Description Strengths/weaknesses 
Participation 
measures 

Examines who has 
participated and how 
frequently. 

Participation is necessary for obvious reasons, 
but the mere posting of messages does not 
indicate that learning has taken place, nor does it 
indicate interrelatedness of messages in a 
dialogue. 

Content 
analysis 

Examines topics of 
discussion, often counting 
frequency of occurrence. 

An examination of content is good for 
determining major concerns of participants and 
focus (administrative, topical, social, 
technological). Content analyses can be 
reductionist in the codes and there is no widely 
accepted coding scheme. 

Structural 
analysis 

Examines structure of 
discussion (who talks to 
whom, who has power, 
patterns of message types); 
includes social network 
analysis and sequential 
analysis. 

These analyses are useful for noting dynamics 
amongst participants and types of messages. 
They are too structural and organized to truly 
capture content-based nuances, and can a bit 
reductionist (provides limited information) in 
terms of coding. 

Discourse 
analysis 

Interpretive qualitative 
analyses of the dialogue 
itself; includes conversation 
analysis and discourse 
analysis. 

These analyses address the context, complexity 
and interrelatedness of messages within a 
multiparty conversation. Requires close, detail-
oriented analysis and can be highly interpretive. 

Discourse 
processes 

Investigates the structures, 
patterns, mental 
representations, and processes 
that underlie written and 
spoken discourse. 

These analyses take a scientific approach to 
analyzing content (including interjudge 
reliability) and processes (such as state transition 
analyses). These analyses are objective and 
scalable, but can miss important nuances related 
to the context. 
 

Machine 
learning 
analysis 
 

Statistical techniques for 
identifying some aspect of 
text (parts of speech, syntax, 
named entities, sentiment, 
topic  

These analyses are objective and scalable, but 
can miss important details related to the content 
and context. Some components of language and 
discourse cannot be automated at this point in the 
science. 

 

 

 



	

	 12	

Table 3 

Coding Scheme for the Content Analysis of Knowledge Construction, Interaction 
Analysis Model (IAM) 

Phrase Description 
Sharing and comparing of information Presenting new information to team members; a 

statement of observation or opinion. 
 

The discovery and exploration of dissonance 
or inconsistency among ideas, concepts or 
statements 
 

Identifying areas of disagreement; asking and 
answering questions to clarify disagreement. 

Negotiation of meaning or co-construction of 
knowledge 

Negotiating meanings of terms and negotiation of 
the relative weight to be used for various 
agreements. 
 

Testing and modification of proposed 
synthesis or co-construction 

Testing the proposed new knowledge against 
existing cognitive schema, personal experience or 
other source. 
 

Agreement statement / applications of newly-
constructed meaning 

Summarizing agreements and meta-cognitive 
statements that show new knowledge 
construction. 
 

Content irrelevant to the learning task Content that is completely irrelevant to the 
learning discussion task. 

 

While there has been extensive knowledge gleaned from manual content analyses, 

manual methods are no longer a viable option with the increasing scale of educational 

data (Daradoumis et al., 2006). Attempts have been made to automate the content 

analysis of collaborative online discussions, namely TagHelper  (Dönmez, Rosé, 

Stegmann, Weinberger, & Fischer, 2005), its successor SIDE (Mayfield & Penstein-

Rosé, 2010), and the Automatic Classification of Online Discussions with Extracted 

Attributes framework (ACODEA) (Mu, Stegmann, Mayfield, Rosé, & Fischer, 2012). 

Nevertheless, there have been some important technical obstacles that still hinder the 

content analysis from being conducted in a fully automatic way using these methods. 

Additionally, content analysis based on CSCL coding, including manual and semi-
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automated approaches, has been criticized for relying on preconceived categories of 

behavior for the phenomenon of interest rather than seeking to discover those phenomena 

in their unique situations (Stahl, 2006; Stahl et al., 2014).  

Researchers have been incorporating other automated linguistic analysis, ranging 

from more shallow level word counts, to deeper level computational analyses. Shallow 

level approaches include dictionary-based methods that provide a simple glimpse of 

learners’ participation levels through the assessment of specific words. One popular tool 

in the category is Pennebaker’s Linguistic Inquiry and Word Count (LIWC) (Pennebaker, 

Booth, & Francis, 2007; Pennebaker, Boyd, Jordan, & Blackburn, 2015). In this 

approach, words in a language are scaled by human judges on several dozen 

psychologically meaningful categories, such as cognitive (e.g., cause, think, should, 

effect) and affective (e.g., happy, worried, hurt, nice) processes (Pennebaker et al., 2015; 

Pennebaker, Francis, & Booth, 2001; Tausczik & Pennebaker, 2010).  

Intermediate level automated text analysis methods go beyond classifying words 

on various categories and computing percentages of particular categories in a text. 

Intermediate level methods typically include shallow and intermediate natural language 

processing techniques, such as the computation of discourse cohesion and syntactic 

parsing. The automated text analysis tool, Coh-Metrix, would fall in this intermediate 

level category. Coh-Metrix is a theoretically grounded computational linguistics facility 

that analyzes texts on multiple levels of language and discourse (Graesser, McNamara, 

Louwerse, & Cai, 2004; McNamara, Graesser, McCarthy, & Cai, 2014): word 

abstractness, syntax, cohesion, genre (narrative versus informational), and formality of 

language (Graesser, McNamara, et al., 2014). Recently, Coh-Metrix has been applied in 
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the context of computer mediated collaborative learning  (Cade, Dowell, Graesser, 

Tausczik, & Pennebaker, 2014; Dowell et al., 2015; Dowell, Cade, Tausczik, 

Pennebaker, & Graesser, 2014; Dowell, & Graesser, 2015; Joksimović et al., under 

review, 2015; Yoo & Kim, 2014). A deep level analysis would perform deeper semantic 

and discourse analyses than systems like Coh-Metrix. Deeper analyses include binding 

pronouns to referents, semantic analyses that identify propositions and epistemic 

categories of propositions (e.g., assertion, refutation, hypothesis, opinion), and analysis of 

rhetorical patterns (argument, claim+evidence, problem+solution). Some of these 

intermediate computational linguistics approaches were incorporated into this 

dissertation. The following chapters provide an overview of the current research, the 

theoretical frameworks and sociocognitive processes that motivated the Group 

Communication Analysis measures as well as the technical details of their construction.  
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Chapter 3: Overview of Present Research 

The long-term vision of this research is to understand why some groups are more 

successful than others during collaborative learning. The more specific objectives of this 

dissertation are to investigate (a) how the learners’ language, discourse and conversation 

patterns might predict their individual roles (Captain, Drivers, Lurkers, Over-rider, Free-

rider, Ghost, Cooperative members, and Saboteurs) during collaborative learning 

interactions and (b) how individual student and group performance might be predicted by 

the analyses in (a). To achieve these two objectives, I designed the group communication 

analysis (GCA) approach by combining intermediate-level computational linguistic 

techniques with sequential interaction analyses of group communication (described in the 

following section). The GCA helps researchers identify the patterns associated with 

student roles. The GCA approach is theoretically guided by the previous psychological 

models of the discourse comprehension, learning, and CSCL literature (Barron, 2003; 

Dillenbourg & Traum, 2006; Hesse et al., 2015; Howley, et al., 2013; Liu et al., 2015; 

Roschelle & Teasley, 1995; Rosé et al., 2008; Sawyer, 2014; Shaffer et al., 2009; Von 

Davier & Halpin, 2013), research on team effectiveness (Cooke et al., 2013; Fiore et al., 

2010; Foltz & Martin, 2009; Kozlowski, 2015), and the PISA 2015 Collaborative 

Problem-Solving (CPS) Framework (Graesser et al., 2017; OECD, 2013).  

Machine learning techniques, such as clustering, classification, and generalization 

methods were leveraged to assess validity of the GCA. Advanced statistical techniques, 

such as cluster analysis and linear mixed-effects modeling, were used to assess the 

influence of learner roles on individual student performance and overall group 

performance. Combining these techniques and applying them to collaborative learning 
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communication data is expected to guide creation of predictive models of student roles 

and other sociocognitive processes (Salas, Goodwin, & Burke, 2008). The concepts, 

methods, and research ideas are located at the intersection of collaborative learning, 

discourse processing, educational data mining, and learning analytics.  

Research Questions 

1. Can individual roles be identified through learners’ communication and 

participation patterns during collaborative interactions in a particular context?  

2a. Do the patterns, if any, observed from research question 1 generalize 

meaningfully to unseen computer-mediated collaborative learning data within the same 

data set?  

2b. Do the patterns, if any, observed from research question 1 generalize 

meaningfully to other computer-mediated collaborative learning contexts?  

3a. How do learners’ communication patterns and individual roles influence 

individual learners’ performance? 

3b. How do learners’ communication patterns and individual roles influence 

overall group performance? 

4. Are learners’ social roles an emergent property of collaborative interactions?  
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Chapter 4: Group Communication Analysis 

Theoretical Motivation for the GCA Measures 

Social and cognitive processes are the fabric of collaborative learning. The 

ultimate goal for collaborative learning resides within the co-constructed knowledge that 

results from sharing information in groups for solving particular tasks (Alavi & Dufner, 

2004; Dillenbourg & Fischer, 2007). Learning as a social process is supported by several 

theoretical perspectives including the social cognitive theory (Bandura, 1994), social-

constructivist framework (Doise, 1990), socio-cultural framework (Vygotsky, 1978), 

group cognition models (Stahl, 2005), shared cognition theory (Lave & Wenger, 1991), 

and connectivism (Siemens, 2005). Research on the sociocognitive aspects of CSCL have 

noted some of the important mechanisms (e.g., social presence, explanation, negotiation, 

monitoring, grounding, and regulating) and processes (e.g., convergence, knowledge co-

construction, meaning-making) that facilitate successful collaborative interaction 

outcomes, such as knowledge co-construction (Dillenbourg et al., 2009). 

The Group Communication Analysis framework incorporates definitions and 

theoretical constructs that are based on research and best practices from several areas 

where group interaction and collaborative skills have been assessed. These areas include 

computer-supported cooperative work, team discourse analysis, knowledge sharing, 

individual problem solving, organizational psychology, and assessment in work contexts 

(e.g., military teams, corporate leadership). The framework further incorporates 

information from existing assessments that can inform the investigation of social roles, 

including the PISA 2015 CPS Assessment. Specifically, the current research draws on 

aspects of these theoretical frameworks to guide the design and analysis of students’ 
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cognitive and social processes that characterize the different roles in collaborative 

interactions. Despite differences in orientation between the disciplines where these 

frameworks have originated, the conversational behaviors that have been identified as 

valuable are quite similar. The following sections review the theoretical perspectives and 

sociocognitive processes that were the foundation the GCA framework and resulting 

metrics (i.e., Participation, Internal Cohesion, Social Impact, Newness and 

Communication Density). In the presentation of the theoretical principles and 

sociocognitive processes supporting the GCA metrics, empirical findings are presented 

whenever possible as illustrations and initial support.  

Participation. Participation is obviously a minimum requirement for 

collaborative interaction. It signifies a willingness and readiness of participants to 

externalize and share information and thoughts (Care et al., 2016; Hesse et al., 2015). 

Previous research has confirmed that participation, measured as interaction with peers 

and teachers, has a beneficial influence on perceived and actual learning, retention rates, 

learner satisfaction, social capital, and reflection (Hew, Cheung, & Ng, 2010; see 

Hrastinski, 2008 for a review). Within collaborative groups, individual students who 

withdraw their participation from group discussion or only minimally participate can 

undermine learning, either because of lost opportunities for collaboration or by provoking 

whole group disengagement (Van den Bossche et al., 2006). In CSCL research, typical 

measures of student participation include students’ given number of contributions 

(Lipponen, Rahikainen, Lallimo, & Hakkarainen, 2003), length of posts in online 

environments (Guzdial & Turns, 2000), or whether contributions are more social (i.e., 

off-task) rather than around content ideas (Stahl, 2000). More recently, Wise and 
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colleagues (2012) have argued that a more complete conception of participation in online 

discussions requires attention not only to learners’ overt activity in making posts, but also 

to the less public activity of interacting with the posts of others, which they have coined 

as “online listening behavior” (Wise, Speer, Marbouti, & Hsiao, 2012). Taken together, 

this research highlights how individual learners may vary in the amount, type, and quality 

of participation within a group. Therefore, participation is an important metric to 

characterize the social roles learners occupy during interactions. In the current research, 

participation is conceptualized as a necessary, but not sufficient, sociocognitive metric 

for characterizing learners’ social roles. 

Internal cohesion, responsiveness, & social impact. Simply placing students in 

groups does not guarantee collaboration or learning (Kreijns, Kirschner, & Jochems, 

2003). For collaboration to be effective, learners must participate in shared knowledge 

construction, have the ability to coordinate different perspectives, commit to joint goals, 

and evaluate together their collective activities (Akkerman et al., 2007; Beers, Boshuizen, 

Kirschner, & Gijselaers, 2007; Blumenfeld, Kempler, & Krajcik, 2006; Fiore & Schooler, 

2004; F. Kirschner, Paas, & Kirschner, 2009; Roschelle & Teasley, 1995). This raises an 

important question that has been reoccurring theme in the CSCL literature: What makes 

collaborative discourse productive for learning? (Stahl & Rosé, 2013). This question 

has been studied with a related focus and comparable results across several CSCL sub-

communities. Table 4 provides a description of the characteristics of discourse, with their 

associated names in the literature, that are assumed to be beneficial for collaborative 

interactions and learning.  
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Table 4 

Alignment of GCA Dimensions with Theoretical and Empirical Support 

GCA 
Dimensions 

Psychological 
& Discursive 

Processes 

Description/ Example 
Behavioral Makers 

Relevant Theoretical 
Frameworks & 

Constructs 

Empirical 
Evidence/ 

Theoretical 
Support 

Participation Engagement General level of 
participation of student, 
irrespective of whether this 
action is in any way 
coordinated with the efforts 
of other group members 

Activity theory; 
Social presence;  
Socio-constructivist 

Hesse et al., 
2015; 
Hrastinski, 
2008; Hew, 
Cheung, & Ng, 
2010; 
Kumpulainen & 
Mutanen, 1999 

Internal 
Cohesion 

Monitoring and 
reflecting  

Reflecting on the learning 
process to keep track of the 
conceptual understanding  

Common ground, 
self-regulation and 
metacognitive 
processes; Joint 
attention 

Chan, 2012; 
Zimmerman, 
2001; Barron, 
2000; OECD, 
2013;  

Responsivity Uptake and 
Transactivity 

The act of a participant 
taking traces of prior or 
ongoing action forward into 
an ongoing process of 
meaning-making 

Meaning-making; 
co-regulation; Co-
construction; Social 
coordination; 
Knowledge 
building; Common 
Ground; Knowledge 
convergence 

Berkowitz & 
Gibbs, 1983; 
Teasley, 1997; 
Hesse et al., 
2014; Suthers, 
2006; Volet et 
al. 2009 

Social Impact  Productive or 
popular 
communication 

When a participant’s 
contributions are perceived 
as important enough to 
warrant further discussion 
by other group members 
and thus be incorporated 
into the groups discourse  

Social coordination; 
Knowledge 
building; Common 
Ground; co-
construction; 

Volet et al. 
2009; Hesse et 
al., 2014; 
Suthers, 2006 

Newness Type of 
information 
shared  

Providing new unshared 
information or echoing 
previously stated 
information 

Monitoring; 
Information sharing 

Chi, 2009; Hesse 
et al., 2014; 
Mesmer-Magnus 
& Dechurch, 
2009 

Communication 
Density 

Concise 
communication 

The extent to which 
participants convey 
information in a concise 
manner 

Common ground; 
Effective 
communication 

Gorman et al. 
2003; 2004 
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Collaborative knowledge construction is understood as an unequivocally 

interpersonal and contextual phenomenon, but the role of an individual interacting with 

themselves should also be taken into account (Stahl, 2002). Successful collaboration 

requires that each individual monitor and reflect on their own knowledge and 

contributions to the group (Barron, 2000; OECD, 2013). This points to the importance of 

self-regulation in collaborative interactions (Chan, 2012; Zimmerman, 2001). Self-

regulation is described as an active, constructive process in which students set goals, and 

monitor and evaluate their cognition, affects, and behavior (Azevedo, Winters, & Moos, 

2004; Pintrich, 2000; Winne, 2013). During collaborative interactions, this is necessary 

for students to appropriately build on and integrate their own views with those of the 

group (Kreijns et al., 2003; OECD, 2013). The process of students engaging in self-

monitoring and reflection may be reflected in their internal cohesion. That is, a student’s 

current and previous contributions should be, to some extent, semantically related to each 

other, which might indicate integration and evolution in their thoughts through 

monitoring and reflecting (i.e., self-regulation). However, very high levels of internal 

cohesion might also suggest students are not building on and evolving their thoughts, but 

instead are reciting the same static view. 

Students must also monitor and build on the perspectives of their collaborative 

partners to achieve and maintain a shared understanding of the task and its solutions 

(Dillenbourg & Traum, 2006; Graesser et al., in press; Hmelo-Silver & Barrows, 2008; 

OECD, 2013; Stahl & Rosé, 2013). In the CSCL literature this shared understanding has 

been referred to as knowledge convergence, or common ground (Clark, 1996; Clark & 

Brennan, 1991; Fiore & Schooler, 2004; Roschelle, 1992).  It is achieved through 
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communication and interaction, such as building a shared representation of the meaning 

of the goal, coordinating efforts, understanding the abilities and viewpoints of group 

members, and mutual monitoring of progress towards the solution. These activities are 

supported in several collaborative learning perspectives (e.g., cognitive elaboration, Chi, 

2009; socio-cognitive conflict, Doise, 1990; Piaget, 1993; co-construction, Hatano, 1993; 

Van Boxtel, 2004) that stress different mechanisms that facilitate learning during group 

interactions (giving, receiving and using explanations, resolving conflicts, co-

construction). However, all these perspectives are in alignment on the idea that students’ 

elaborations on one another’s contributions support learning.  

This social level of awareness, monitoring, and regulatory processes fall under the 

umbrella of co-regulation. Volet, Summers, and Thurman (2009) proposed co-regulation 

as an extension of self-regulation to the group or collaborative context, wherein co-

regulation is described as individuals working together as multiple self-regulating agents 

socially monitoring and regulating each other’s learning. In a class-room study of 

collaborative learning using hypermedia, Azevedo et al. (2004) demonstrated that 

collaborative outcomes were related to the use of regulatory behaviors. In this process, 

the action of one student does not become a part of the group’s common activity until 

other collaborative partners react to it. If other group members do not react to a student’s 

contribution, this suggests the contribution was not seen as valuable by the other group 

members and would be an ‘ignored co-regulation attempt’ (Molenaar, Chiu, Sleegers, & 

Boxtel, 2011). Therefore, the concepts of transactivity and uptake (Table 4) in the CSCL 

literature are important in this context of co-regulation and active learning, in the sense 

that a student takes up another student’s contribution and continues it (Berkowitz & 
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Gibbs, 1983; D. Suthers, 2006; Teasley, 1997). Students can engage in higher or lower 

degrees of co-regulation through monitoring and coordinating. These processes will be 

represented in their discourse.  

Monitoring and regulatory processes are hopefully externalized during  

communication with other group members. We can capture the degree to which as 

student is monitoring and incorporating the information provided by their peers by 

examining the semantic relatedness between a student’s contribution and the previous 

contributions of their collabrative partners. This measure is called responsivness in the 

current research. For example, if a student’s contributions are, on average, only minimaly 

related to those of their peers, than we would say this student has low responsivity. 

Similarly, we can capture the extent to which a student’s contributions are seen as 

meaningful by the other members or worthy of further discussion (i.e. uptake) by 

measuring the semantic relatedness between a student’s contribution and the 

contributions that follow from their collabrative partners. This measure is called social 

impact in the current research. Students have high social impact to the extent that their 

contributions are often semantically related to the subsequent contributions from the 

other collabrative group members.  

In the collaborative learning literature, the results highlight the value of students 

clearly articulating arguments and ideas, elaborating this content, and making 

connections between contributions. For instance, Rosé and colleagues’ work has 

concentrated explicitly on properties like transactivity (Gweon, Jain, McDonough, Raj, & 

Rosé, 2013; Joshi & Rosé, 2007; Rosé et al., 2008), as well as the social aspects and 

conversation characteristics that facilitate the recognition of transactivity (Howley et al., 
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2011; Howley, Mayfield, & Rosé, 2013; Howley, Mayfield, Rosé, & Strijbos, 2013; 

Wen, Yang, & Rose, 2014). Their research adopts a sociocognitive view (Howley, 

Mayfield, Rosé, et al., 2013) that emphasizes the significance of publically articulating 

ideas and encouraging students to listen carefully to and build on one another’s ideas. 

Students engaging in this type of activity have the chance to notice discrepancies between 

their own mental model and those of other members of the group. The discussion 

provides opportunities to engage in productive cognitive conflict and knowledge 

construction (Howley, Mayfield, Rosé, et al., 2013). Additionally, students benefit 

socially and personally from the opportunity to take ownership over ideas and position 

themselves as valuable sources of knowledge within the collaborative group (Howley & 

Mayfield, 2011).  

Newness and communication density. For collaboration to be successful, 

learners must also engage in effective communication. One aspect of effective 

communication concerns information sharing within a group. A primary advantage of 

collaborative interactions and teams is that they provide the opportunity to expand the 

pool of available information, thereby enabling groups to reach higher quality solutions 

than could be reached by any one individual (Hesse et al., 2015; Mesmer-Magnus & 

Dechurch, 2009). However, despite the intuitive importance of effective information 

sharing, a consistent finding from this research is that groups predominantly discuss 

information that is shared (known to all participants) at the expense of information that is 

unshared (known to a single member) (Stasser & Titus, 1985; see Wittenbaum & Stasser, 

1996 for a review). This finding has been called bias information sharing or bias 

information pooling in the Collective Information-Sharing Paradigm. It shares some 
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similarities with the groupthink phenomena (Janis, 1983), which is the tendency for 

groups to drive for consensus that overrides critical appraisal of decision alternatives. The 

collective preference for redundant information can detrimentally affect the quality of the 

group interactions (Hesse et al., 2015) and decisions made within the group (Wittenbaum, 

Hollingshead, & Botero, 2004). However, collaborative interactions benefit when the 

members engage in the constructive discourse of inferring and sharing new information 

and integrating new information with existing prior knowledge during the interaction 

(Chi, 2009; Chi & Menekse, 2015).  

The distinction between given (old) information versus new information in 

discourse is a foundational distinction in theories of discourse processing (Haviland & 

Clark, 1974; Prince, 1981). Given information includes words, concepts, and ideas that 

have already been mentioned in the discourse, in this case a collaborative conversation; 

new information builds on the given information or launches a new thread of ideas. In the 

current research, the extent to which learners provide new information, compared to 

previously shared information, will be captured with a measure called newness.  

In addition to information sharing, the team performance literature also advocates 

for concise communication between group members (Gorman, Cooke, & Kiekel, 2004; 

Gorman, Foltz, Kiekel, Martin, & Cooke, 2003). In particular, the research suggests that 

for team communication to be optimally effective, information should be conveyed in a 

concise manner (Salas, Rosen, Burke, Nicholson, & Howse, 2007). This is one of the 

reasons more formal teams, like military units, typically adopt conventionalized 

terminology and standardized patterns of communication (Salas et al., 2007). It is 

suggested that this concise communication is possible when there is more common 
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ground within the team and the presence of shared mental models of the task and team 

interaction (Klein, Feltovich, Bradshaw, & Woods, 2005). The communication density 

measure used in the current research, was first introduced by Gorman et al. (2003) in 

team communication analysis to measure the extent to which a team conveys information 

in a concise manner. Specifically, the rate of meaningful discourse is defined by the ratio 

of meaningfulness to number of words spoken. Using this measure, we will be able to 

further characterize the social roles that learners take on during collaborative interactions.  

Taken together, we see that the sociocognitive processes involved in collaboration 

are internal to the individual but they are also manifested in the interactions with others in 

the group (Stahl, 2010). In particular, during group interactions, learners need to self-

regulate their own learning and contributions, and co-regulate the learning of others in the 

group. Reciprocally, the discourse of group members influences learners’ own 

monitoring and cognition (Chan, 2012; Järvelä, Hurme, & Järvelä, 2011). The social 

roles explored in this research are not necessarily reducible to processes of individual 

minds nor do they imply the existence of some sort of group mind. Rather, they are 

characterized by and emerge from the sequential interaction and weaving of semantic 

relations within a group discourse. The output of communication during collaborative 

interactions provides a window into the cognitive and social processes related to learners’ 

social roles. Thus, communication among the group members can be assessed to provide 

measures of participation, social impact, internal cohesion, responsiveness, newness, and 

communication density. The GCA framework will allow us to see how collaborative 

partners contribute to the dialogue and quality of the interaction in different ways, 

exhibiting more, or less internal cohesion, responsiveness, social impact, new 
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information, and communication density. The roles that students take on will be revealed 

through different combinations and distinct patterns in behavioral engagement style and 

contribution characteristics.  

Construction of Group Communication Analysis (GCA) and Group Performance 

Measure 

The discourse and communication analyses performed in this dissertation focus 

on capturing the intrapersonal and interpersonal collaborative interaction dynamics over 

time. To perform automated communication analyses, it is necessary to first distinguish 

the types of communication data that can be analyzed (Foltz & Martin, 2009). First, 

participation data describe the pattern of interactions among group members. This type of 

data includes who is talking, when they are talking, and how much. Second, the content 

focuses on what was actually contributed, including the content of the whole group 

discourse, individual student contributions, and the semantic relationships among the 

contributions between students. This involves taking semi-unstructured log file data, as 

depicted in Figure 1, and transforming it into a more meaningful representation by 

inferring the semantic relationship among student’s contributions in group interactions, as 

depicted in Figure 2. Through this process, we can quantify the sociocognitive processes 

taking place throughout an interaction. More specifically, the analytical process for the 

GCA in this dissertation has two main steps: (1) identifying measures of participation 

dynamics and (2) cohesion-based discourse analysis using an approach similar to lag 

sequential analysis. In addition to the GCA measures, the identification of covered topics 

is of particular interest for the current analyses because it affords assessment of the 

overall group performance that is independent of the individual student performance (i.e., 
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pre- and post-test scores). This section describes the technical details involved in the 

construction of both the GCA measure and the group performance measure (i.e., Topic 

Relevance).  

 

Figure 1. Depiction of semi-unstructured log file data that is a typical artifact of CSCL 

interactions. 
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Figure 2. Schematic representation of inferring the semantic relationship among students’ 

contributions in group interactions. The letters (i.e., A, B, C, D, E) on the vertical axis 

refer to students within a group interaction, and the numbers represent the sequential 

order of their discourse contributions. 

Participation measures. The chat logs of a group discussion can be thought of a 

sequence of individual contributions (i.e., verbal expressions within a conversational 

turn). In this sense, the boundaries of a contribution are defined by the nature of the 

technology that mediates the group discussion. A single contribution is a single message 

transmitted from a single user to other users by way of a messaging service, or a single 

posting by a single user to a discussion forum. There may be multiple speech acts within 

a single contribution, but these will be treated as a single contribution. Further, a single 

user may transmit further contributions immediately subsequent to their first, but these 

will be treated as separate contributions. So, the primary unit of analysis is a single 

contribution from a single user.  

Let 𝐶	represent the sequence of contributions, with 𝑐$ representing the tth 

contribution in the sequence. Let 𝐶 = 𝑛 denote the length of the sequence. Since 
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contributions represent turns in the discussion overtime, the variable 𝑡 will be used to 

index individual contributions and will also be referred to as “time”. The values of 𝑡 will 

range from 1 to 𝑛: 

𝑡 ∈ ℤ; 	1 ≤ 𝑡 ≤ 𝑛 (1) 

 Let 𝑃 be the set of participants in the discussion, of size 𝑘 = 𝑃 . Variables 𝑎 and 

𝑏 in the following will be used to refer to arbitrary members (participants) in this set. In 

order to identify the contributor (or participant) that originated each statement, we define 

the following participation function, as depicted in Equation 2: 

𝑝$ 𝑎 = 1, if 	contribution	𝑐$ was made by participant	𝑎 ∈ 𝑃
0, otherwise  (2) 

Using this participation function, it is relatively simple to define several useful 

descriptive measures of participation in the discussion. The number of contributions 

made by any participant is: 

𝑃4 = 𝑝$ 𝑎
5

$67
 (3) 

The sample mean participation of any participant is the relative proportion of their 

contributions out of the total: 

𝑝4 =
1
𝑛 𝑃4  (4) 

 
and the sample variance in that participation is: 
 

𝜎49 =
1

𝑛 − 1 (𝑝$ 𝑎 − 𝑝4)9
5

$67
 (5) 

 
The participation function for any participant, 𝑎, effectively defines a sequence, 𝑃4: 
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𝑃4 = 𝑝7 𝑎 , 𝑝9 𝑎 , 𝑝= 𝑎 , … , 𝑝5 𝑎  (6) 

of the same length, 𝑛, as the sequence of contributions 𝐶, which has the value 1 whenever 

participant 𝑎 originated the corresponding contribution in 𝐶, and 0 everywhere else. By 

the definition of contributions given above, each contribution 𝑐$ was originated by one 

and only one participant, so the participation function, 𝑝$, will take on a value of 1 for 

exactly 1 participant at each time 𝑡, and be 0 for all other participants. One can see that 

the product of participation for different participants at the same time must always be 0: 

𝑝$ 𝑎 ⋅ 𝑝$ 𝑏 = 0; 	𝑎 ≠ 𝑏 (7) 

We can, equivalently, represent the sequences of all participant as a 𝑘×𝑛 matrix, 𝑴, by 

stacking the 𝑘 participation sequences as rows, in any arbitrary ordering (such that 𝑖 is an 

index on participants). Under this representation, the (i,j)th entry of the matrix is:  

𝑴DE = 𝑝E 𝑎D ; 	𝑎D ∈ 𝑃 (8) 

It follows that the sum of each column would be exactly 1. Consequently, there is never 

any co-occurrence of contributions at any instance of time. Since each participation 

sequence is, in effect, a time series of participant contributions, our goal to characterize 

the interactions between participants is a problem of characterizing their corresponding 

participation time series. The field of time series analysis gives us tools that we can either 

use directly or adapt to our needs. Specifically, we can make use of the cross-correlation 

between any two participants 𝑎 and 𝑏: 

𝜌G 𝑎, 𝑏 =
1

(𝑛 − 1)𝜎4 ⋅ 𝜎H
𝑝$ 𝑎 ⋅ 𝑝$IG 𝑏 − 𝑛 ⋅ 𝑝4 ⋅ 𝑝H

5

$6GJ7
 (9) 

 
where the parameter 𝜏, defined in 10: 



	

	 32	

𝜏 ∈ ℤ; 	𝜏 ≥ 0 (10) 

is some fixed interval of time (or “lag”) between the initial contribution of 𝑏 and then 

some subsequent contribution of 𝑎. A lag-1 cross-correlation between two participants 

will give a measure of how frequently one participant contributes directly after the other 

participant. A lag-2 cross-correlation will give a measure of the responsiveness of the one 

participant after a single intervening contribution. It is, of course, possible and even likely 

that any two participants may have some contributions separated by any particular lag 𝜏, 

simply by chance. The cross-correlation function considers the correlations for all such 

lagged contributions and yields statistically significant values when such a pattern is 

consistent across the entire discussion. By plotting the values of a cross correlation at 

different values of 𝜏 (typically from 1 up to some reasonably large value), one can 

identify if there is any statistically significant time-dependent relationship between the 

variables being examined. Such cross-correlation plots are a common step in the 

qualitative exploration of time series data. By looking at these functions for all pairs of 

users, one can examine the overall responsiveness patterns for the entire group. 

Conversations, including collaborative discussions, commonly follow a 

statement-response structure, in which new statements can be in response to previous 

statements, and also trigger subsequent statements in response. The structure of different 

online communications and discussion systems provide different affordances to the 

analyst to attribute a specific contribution as a response to some prior contribution. 

Regardless of the structure of the system, participants may, in a single contribution, refer 

to concepts and content presented in multiple previous contributions, made throughout 

the conversation either by themselves or other group members. Thus, a single 
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contribution may be in response, to varying degrees, to many previous contributions, and 

it may in turn trigger, to varying degrees, multiple subsequent responses.  

A fine-grained measure of the similarity of participants’ contributions is needed to 

capture these multi-responsive and social impact dynamics that may be present in 

collaborative interactions. There are different techniques for calculating the semantic 

similarity between two contributions. Two popular methods are content word overlap and 

Latent Semantic Analysis (LSA). Both content word overlap and LSA have strengths and 

weaknesses that are outlined in previous publications (Hu, Cai, Wiemer-Hastings, 

Graesser, & McNamara, 2007), however, these methods typically produce comparable 

results. In this dissertation, similarity is measured using Latent Semantic Analysis (LSA). 

Latent semantic analysis. LSA represents the semantic and conceptual meanings 

of individual words, utterances, texts, and larger stretches of discourse based on the 

statistical regularities between words in a large corpus of natural language (Landauer, 

McNamara, Dennis, & Kintsch, 2007). The first step in LSA is to create a word-by-

document co-occurrence matrix, in which each row represents a unique word and each 

column represents a “document” (in practice this typically means a sentence, paragraph, 

or section of an actual document). The values of the matrix represent counts of how many 

occurrences there were of each word in each document. For example, if the word "dog" 

appears once each in documents 1 and 9 and twice in document 50, and is considered the 

first word in the dataset, then the value of 1 will be in cells (1,1) and (1,9), and the value 

of 2 in cell (1,50).  The occurrence matrix will then be weighted. Each row is weighted 

by a value indicating how important a word is. A row corresponding to a word that 

almost equally in all documents gets a very small weight, while a row corresponding to a 
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word that appear only in a few documents gets a high weight. Cells on each column are 

again weighted based on the number of times a word appear in the corresponding 

document. Words with higher frequency in the given document get a higher weight. The 

most widely used weighting methods are TFIDF and Log-Entropy. A principal 

components analysis (PCA) is then performed on the weighted matrix by means of 

singular-value decomposition (SVD) matrix factorization. PCA is a procedure that allows 

one to reduce the dimensionality of a set of data such that it minimizes distortions in the 

relationships of the data. In the context of LSA, PCA allows us to reduce the word-by-

document matrix to approximately 100-500 functional dimensions, which represent in 

compact form the most meaningful semantic relationships between words. The SVD 

procedure also yields a matrix which can be used to map the words from the original text 

corpus into vectors in a semantic space described by these semantic dimensions (i.e., 

LSA space).  

When building an appropriate LSA space, it is necessary to have a corpus that 

broadly covers the topics under investigation. The Touchstone Applied Science 

Associates (TASA) corpus is a good example of a comprehensive set of tens of thousands 

of texts across numerous subject areas and spanning a range of levels of complexity 

(grade levels), which is suitable for building a general semantic space. In some instances, 

however, researchers desire a more custom corpus covering a specific domain, which is 

the case in the current research. The source corpora used in this research are 

conversational transcripts of collaborative interactions, which are not large enough to 

construct an LSA space. Furthermore, these transcripts refer to ideas and concepts that 

are not explicitly described in the transcripts. To obtain an appropriate representation of 
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the semantic space we need to include external material that covers the topics of the 

conversations. One way to handle this problem is to enrich the source corpus with 

additional material that can provide appropriate background knowledge for key terms 

represented in the conversational transcripts (Cai, Li, Hu, & Graesser, 2016; Hu, Zhang, 

Lu, Park, & Zhou, 2009). The process begins with collecting a “seed” corpus of 

representative material (Cai, Burkett, Morgan, & Shaffer, 2011). In the current research, 

this included the chat transcripts for each data set, and the associated assigned reading 

material for students. This was done separately for each of the three datasets (described in 

the Methods section) to produce a custom domain specific seed corpus. This seed corpus 

is then scanned for key terms, which are used to scan the internet for documents (i.e., 

Wikipedia articles) on the topics mentioned in the seed corpus. The identified documents 

are used to create the expanded LSA space that is more comprehensive than the 

underlying transcripts on their own. The details of the extended LSA spaces for each of 

the corpora used in this research are presented in the Methods section.  

By translating text into numerical vectors, a researcher can then perform a number 

of mathematical operations to analyze and quantify the characteristics of the text. One 

key operation is to compute the semantic similarity between any two segments of text. In 

the context of interactive chat, the similarity contributions 𝑐D and 𝑐E, can be computed by 

first projecting them into the LSA space, yielding corresponding document vectors 𝑑D and 

𝑑E. The projection is done by matching each word or term that occurs in the contribution, 

and locating the normalized term-vector for that word (calculated by the SVD process). 

These vectors are added together to get a vector corresponding to the entire contribution. 

If any term does not occur in the LSA space, it is ignored, and so does not contribute to 
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the resulting vector. However, the construction of the space is such that this is very rare. 

Then, the cosine similarity of textual coherence (Dong, 2005), is computed on the 

document vectors 𝑑D and 𝑑E, as described in equation 11. The cosine similarity ranges 

from approximately 0 to 1, with identical contributions having a similarity score of 1 and 

completely non-overlapping contributions (no shared meaning) having a score of 0 or 

below.  

cos(𝑑D, 𝑑E) = 	
𝑑D ⋅ 	𝑑E

𝑑D 	
⋅ 𝑑E 		

	 

 

(11) 

The primary assumption of LSA is that there is some underlying or "latent" structure in 

the pattern of word usage across contexts (e.g., turns, paragraphs or sentences within 

texts), and that the SVD of the word-by-document frequencies will approximate this 

latent structure. The method produces a high-dimensional semantic space into which we 

can project participant contributions and measure the semantic similarity between them.  

Using this LSA representation, students’ contributions during collaborative 

interactions may be compared against each other in order to determine their semantic 

relatedness, and additionally, assessed for magnitude or salience within the high-

dimensional space (Gorman et al., 2003). When used to model discourse cohesion, LSA 

tracks the overlap and transitions of meaning as they are used to compute semantic 

similarity of adjacent text segments throughout the discourse.  

Using this semantic relatedness approach, the conceptual similarity score of any 

pair of contributions can be calculated as the cosine of the LSA document-vectors 

corresponding to each contribution. This works well as a measure of similarity between 

pairs of contributions. However, it must be aligned with the participation function in 
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order to get a measure of the relationship between those participants in the discussion. As 

has been demonstrated above, the participation function can be used to select pairs of 

contributions related to a specific participant-participant interaction, and will screen out 

all other pairs of interactions. We therefore define a semantic similarity function:  

𝑠DE(𝑎, 𝑏) = 𝑝D(𝑎) ⋅ 𝑝E(𝑏) ⋅ cos(𝑑D, 𝑑E) (12) 

This will be the semantic similarity for contributions 𝑐D and 𝑐E only when contribution 𝑐D 

was made by participant 𝑎, and 𝑐E was made by participant 𝑏; otherwise it is zero 

(because in this case either 𝑝D(𝑎) or 𝑝E(𝑏), or both, would be 0). This product will form 

the foundation of several novel measures to characterize different aspects of participant 

involvement in the group discussion: the general participation, responsivity, internal 

cohesion, and social impact. These measures, described below, will be aligned with 

Strijbos and De Laat (2010) conceptual framework to identify student roles.  

Participant to participant responsivity. This measure is similar in construction to 

the cross-correlation of the participation functions that was described earlier.  This 

measure captures how responsive one participant’s contributions are to another’s over the 

course the collaborative interactions. Participant to participant responsivity is defined by 

averaging the semantic similarity of the contributions of the one participant to the others 

when they are lagged by some fixed amount, τ, across all contributions: 

		𝑟G 𝑎, 𝑏 =
0, 𝑝G 𝑎, 𝑏 = 0

1
𝑝G 𝑎, 𝑏

𝑠$,$IG 𝑎, 𝑏
5

$6GJ7
, 𝑝G 𝑎, 𝑏 	≠ 0 

(13) 

It is normalized by the total number of τ-lagged contributions between the two 

participants, as expressed in equation 14. 



	

	 38	

𝑝G 𝑎, 𝑏 = 𝑝$ 𝑎 ⋅
5

$6GJ7
𝑝$IG(𝑏) (14) 

 

We refer to 𝑟G 𝑎, 𝑏  as the “responsivity of a to b at τ” or as the “τ-lagged responsivity of 

a to b”. The responsivity function measures the average semantic similarity of all τ-

lagged contributions between two participants. As such, it gives an insight into the degree 

to which one user may be responding to the comments of another.  

Responsivity is defined in a 3-dimensional space between pairs of participants 

and time. One dimension corresponds to the first participant (the respondent), whose 

contribution possibly responds to some part of a prior participant’s contribution. Another 

dimension involves the second participant (the initiator), whose prior contribution 

potentially triggered the respondent’s response. The last dimension is the time interval 

between the trigger and response, as measured by the number of intervening 

contributions.   

For a conversation with 𝑘 = 𝑃  participants, and given some arbitrary ordering of 

participants in 𝑃, we can see responsivity as a 𝑘×𝑘 matrix 𝑹𝝉, such that the element in 

row i, column j is given by the responsivity function 𝑟G(𝑖, 𝑗). We refer to this matrix as 

“𝜏-lagged responsivity”, or “responsivity at 𝜏”. The rows of the matrix represent the 

responding students, who we refer to as the respondents. The columns of the matrix 

represent the initiating students, referred to as the initiators. The responsivity at 1, or 

“immediate responsivity”, represents the propensity for respondents to respond to the 

content of the initiator’s immediately previous contribution. The propensity for 

respondents to comment on an initiator’s contribution after 1 intervening contribution is 

characterized by the 2-lagged responsivity matrix, and so on.  
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Responsivity at a single time-interval may not be very insightful on its own, as it 

represents a very narrow slice of interaction. By averaging over a wider window of 

contributions, we can get a broader sense of the interaction dynamics between the 

participants. We define responsivity across a time window as follows: 

𝑹𝒘 =
1
𝑤 𝑹𝝉

V

G67
 (15) 

 

This will be referred to this as “w-spanning responsivity” or “responsivity across w”. An 

individual entry in the matrix, 𝑟V(𝑎, 𝑏) is the “w-spanning responsivity of student a to b” 

or the “responsivity of student a to b across w”. These measures form a moving-average 

of responsivity across the entire dialogue. The window for the average consists of a 

trailing subset of contributions, starting with the most current and looking backwards 

over a maximum of w prior contributions. Characteristics of an individual participant can 

be obtained by averaging over their corresponding rows or columns of the w-spanning 

responsivity matrix, and by taking their corresponding entry in the diagonal of the matrix.  

Internal cohesion. Internal cohesion is the measure of how semantically similar a 

participant’s contributions are with their own previous contributions during the 

interaction. The participant’s “w-spanning internal cohesion” is characterized by the 

corresponding diagonal entry in the w-spanning responsivity matrix: 

𝑟V(𝑎, 𝑎) (16) 

Overall responsivity. Each row in the w-spanning responsivity matrix is a vector 

representing how the corresponding participant has responded to all others. In order to 

characterize how responsive a participant is to all other group members’ contributions 
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during the collaborative interactions, we take the mean of these row vectors (excluding 

the participant of interest): 

𝑟V 𝑎 =
1

𝑘 − 1 𝑟V(𝑎, 𝑖)
W

D67;DX4
 (17) 

 

This is referred to as the “w-spanning responsivity of a”, or just the “overall responsivity 

of a” for short. 

Social impact. Each column in the w-spanning responsivity matrix is a vector 

representing how contributions initiated by the corresponding participant have triggered 

follow-up responses. In a similar fashion to the overall responsivity described above, a 

measure of each individual participant’s social impact can be calculated by averaging 

over these column-vectors (excluding the participant of interest): 

𝚤V 𝑎 =
1

𝑘 − 1 𝑟V(𝑗, 𝑎)
W

E67;EX4
 (18) 

 

This is referred to as the “w-spanning impact of a”, or just the “social impact of a” 

for short. 

LSA Given-New. Participants’ contributions can vary in how much new versus 

given information they contain (Hempelman et al., 2005; McCarthy et al., 2012). Note, 

for the purposes of the current research, we were more interested in a measure of the 

amount of new information provided by participants. This is motivated by the fact the 

responsivity measures capture the social equivalent of “givenness”, which is more 

relevant in the contexts of group interactions. Establishing how much new information is 

provided in any given contribution can be meaningful to the dynamics of the 
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conversation, as well as to characterize the ways in which different participants 

contribute. Following the method of Hu et al., 2003, the given information at the time of 

contribution 𝑡 is a subspace of the LSA spanned by the document vectors of all previous 

contributions: 

𝐺$ = 𝑠𝑝𝑎𝑛 𝑑7, 𝑑9, … , 𝑑$I7  (19) 

The semantic content of the current contribution can then be divided into the portion 

already given by projecting the LSA document vector for the current contribution onto 

the subspace defined in equation 20. 

𝑔$ = 𝑃𝑟𝑜𝑗]^(𝑑$) (20) 

There is also the portion of semantic content that is new to the discourse by projecting the 

same document vector onto the orthogonal complement of the given subspace, as defined 

in 21. 

𝑛$ = 𝑃𝑟𝑜𝑗]^_(𝑑$) (21) 

This is the portion perpendicular to the given subspace. Of course, the semantic content 

of the contribution is completely partitioned by these projections, so: 

𝑑$ = 𝑔$ + 𝑛$ (22) 

In order to get a useful measure of the total amount of new semantic content provided in 

any given contribution, we take the relative proportion of the size of the given vector to 

the total content provided: 

𝑛 𝑐$ =
𝑛$

𝑛$ + 𝑔$
 (23) 
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This given-new value ranges between 0 (all given content, nothing new) to 1 (all new 

content).  

Newness. We can characterize the relative new content provided by each 

individual participant by averaging over the given-new score of their contributions: 

𝑁 𝑎 =
1
𝑃4

𝑝$(𝑎) ⋅
5

$67
	𝑛 𝑐$  (24) 

 

Communication Density. Another meaningful measure involves calculating the 

average amount of semantically meaningful information provided in a contribution. This 

measure was first established by Gorman et al. (2003) in their work examining team 

communication in a synthetic military aviation task. This measure differs from the 

Given-New measure in that it is entirely calculated from the contribution 𝑐D and its 

corresponding LSA vector, 𝑑D, and does not consider any prior contributions. The 

communication density is defined in 25.  

𝐷D =
𝑑D
𝑐D

 (25) 

 

 𝑑D  is the norm of the LSA vector and 𝑐D  is the length of the contribution in words. 

Thus, communication density gives the per-word amount of semantic meaning for any 

contribution. In order to characterize the communication density of a particular 

participant, we must calculate the average density over all of their contributions: 

𝐷 𝑎 =
𝑝$(𝑎) ⋅ 𝑑$5

$67

𝑝$(𝑎) ⋅ 𝑐$5
$67

 (26) 
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Topic Modeling 

 The cohesion-based discourse measures described above capture important 

intrapersonal and interpersonal dynamics, but an additional data mining technique is 

needed to capture the communicative themes of the collaborative interactions. The 

identification of covered topics is of particular interest for the current analyses because it 

affords an assessment of the overall group performance that is independent of the 

individual student performance (i.e., pretest and post-test scores). Latent Dirichlet 

allocation (LDA; Blei, Ng, & Jordan, 2003), more commonly known as “topic modeling” 

(Steyvers & Griffiths, 2007), is a method of deriving an underlying set of topics from an 

unlabeled dataset.  

Topic modeling allows researchers to discover the common themes in a large 

dataset and how pronounced those themes are in particular documents. In this 

dissertation, LDA topic models were used to provide an inference mechanism of 

underlying topic structures through a generative probabilistic process. This generative 

process delivers a distribution over topics for each document in the form of a proportion. 

This distribution can be used to find the topics most representative of the contents of that 

document. These distributions can also be considered as data for future analyses, as every 

document’s distribution describes the probability that that document belongs to a topic, 

thereby creating a document-topic “fingerprint”. For this dissertation, the topic model 

corpus for each of the three data sets (described in the Methods section) consisted of 

same extended corpora produced with the “seed method” described earlier (see the LSA 

section). The identified topics were inspected to see if any topics are considered “off-

task” (details of this are described more in the Methods section). Several topics were 
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classified as “off task” (see Methods section). Thus, the topics were divided into two 

groups, namely domain content relevant and irrelevant.  

Topic Relevance. The measure of group performance was operationalized as the 

amount of on-topic discussion. To develop a meaningful measure of relevant or “on-task” 

discussions, we begin with the set of all topics, 𝑄, constructed as described above. The 

topic score: 

𝑡d(𝑐$) (27) 

gives the proportion of contribution 𝑐$ that covers topic 𝑞 ∈ 𝑄. These proportions sum to 

1 for any contribution: 

𝑡d(𝑐$)
d∈f

= 1 (28) 

The set of all topics will be manually partitioned into two subsets, 𝑄′ and 𝑄°: 

𝑄 =	𝑄i ∪ 𝑄°;	𝑄i ∩ 𝑄° = ∅  (29) 

𝑄′ represents those topics considered “relevant” or “on-task” for the subject matter of the 

course, and 𝑄° consists of all other “off-task” topics (see Methods section). We can then 

construct a measure of the relative proportion of on-task material in each contribution by 

summing over the topic scores for topics in 𝑄′: 

𝑇i(𝑐$) = 𝑡d(𝑐$)
d∈fn

 (30) 

We can get a measure of the degree to which the entire group discussion was on or off-

task by averaging this across the entire discussion: 
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𝑇i =
1
𝑛 𝑇i(𝑐$)

5

$67
 (31) 

We can also construct per-participant measures by averaging over the contributions of 

each participant, as specified in 32. 

𝑇i 𝑎 =
1
𝑃4

𝑝$(𝑎) ⋅
5

$67
	𝑇′ 𝑐$  (32) 
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Chapter 5: Methods 

 The GCA was applied to three independent collaborative learning datasets.  The 

first is a traditional computer-supported collaborative learning dataset. The second is a 

synchronous massive online course (SMOC) dataset called UT2014 SMOC. The third is 

a collaborative learning and problem solving data set collected from serious simulation 

game called “Land Science”. The three datasets are described below. 

Traditional CSCL Dataset  
 

Participants. Participants were enrolled in an introductory-level psychology 

course taught in the Fall semester of 2011 at the University of Texas at Austin. While 854 

students participated in this course, some minor data loss occurred after removing outliers 

and those who failed to complete the outcome measures. The final sample consisted of 

840 students. Females made up 64.3% of this final sample. Within the population, 50.5% 

of the sample identified as Caucasian, 22.2% as Hispanic/Latino, 15.4% as Asian 

American, 4.4% as African American, and less than 1% identified as either Native 

American or Pacific Islander. 

Course Details and Procedure. Students were told that they would be 

participating in an assignment that involved a collaborative discussion on personality 

disorders and taking quizzes. Students were told that their assignment was to log into an 

online educational platform specific to the University at a specified time (Pennebaker, 

Gosling, & Ferrell, 2012), where they would take quizzes and interact via web chat with 

one to four random group members. Students were also instructed that, prior to logging 

onto the educational platform, they would have to read material on personality disorders. 

After logging into the system, students took a 10-item, multiple choice pretest quiz. This 
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quiz asked students to apply their knowledge of personality disorders to various scenarios 

and to draw conclusions based on the nature of the disorders.  

After completing the quiz, they were randomly assigned to other students who 

were waiting to engage in the chatroom portion of the task. When there were at least 2 

students and no more than 5 students (M = 4.59), individuals were directed to an instant 

messaging platform that was built into the educational platform. The group chat began as 

soon as someone typed the first message and lasted for 20 minutes. The chat window 

closed automatically after 20 minutes, at which time students took a second 10 multiple-

choice question quiz. Each student contributed 154.0 words on average (SD = 104.9) in 

19.5 sentences (SD = 12.5). As a group, discussions were about 714.8 words long (SD = 

235.7) and 90.6 sentences long (SD = 33.5).  

Group Performance Measure. The group performance was operationally 

defined as the proportion of topic-relevant discussion during the collaborative interaction, 

as described in Equation 31. As a reminder, the corpus used for the topic modeling was 

the same extended corpus (i.e., using the seed method described earlier) used for creating 

the custom LSA spaces (Cai et al., 2011).  

The topic modeling analysis revealed twenty topics, of which eight were 

determined to be relevant to the collaborative interaction task. Interjudge reliability was 

not used to determine the relevant topics. Instead, two approaches were used to determine 

the most relevant topics and validate a topic relevance measure for group performance. 

The first was the frequency of the topics discussed across all the groups and individual 

students, wherein more frequently discussed topics were viewed as more important. 

Second, correlations between the topics and student learning gains were used to help 
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validate the importance of the topic. Once the important topics were determined, an 

aggregate topic relevance score was computed by summing up the proportions for those 

topics. The top 10 words for the relevant topics are reported in Table 5. 

 
Table 5 
 
Top Ten Words Representing Eight Relevant Topics 

Number Psychological 
Disorders 

General 
Psychology Autism Anxiety 

Disorder 
1 Experience Association Child Percent 
2 Person Psychology Autism Anxiety 
3 Animal Test Syndrome Treat 
4 Schizophrenia Journal Autistic Occur 
5 Thought Process Parent Fear 
6 Study Addiction Movement Blood 
7 Bipolar Psychiatry Developmental Cell 
8 Disorder Alcohol Development Severe 
9 Mental OCD Attachment Pneumonia 
10 Many Library Disability Infection 

Number Trauma Psychotherapy Personality 
Disorder Health Care 

1 Injury Psychotherapy Personality Health 
2 Loss Technique Criterion Care 
3 Bone Therapist Diagnostic Nurse 
4 Speech Method ADH Hospital 
5 Head Counseling Statistical Physician 
6 Surgery Gun Trait Professional 
7 Sound Start Sir Education 
8 Sign Round DSM National 
9 Transsexual Intervention Difference Doctor 
10 Muscle Game DSM-IV Institute 

 
UT2014 SMOC Dataset 
 

Participants. Participants were 1,713 students enrolled in an online introductory-

level psychology course taught in the Fall semester of 2014 at the University of Texas at 

Austin. Throughout the course, students participated in a total of nine different computer-

mediated collaborative interactions on various introductory psychology topics. This 
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resulted in a total of 3,380 groups, with four to five students per group. However, 83 out 

of 3,380 chat groups were dropped because there was only one person, which was 2.45% 

of total dataset. 

Course Details and Procedure. The collaborative interactions took place in a 

large online introductory-level psychology course. The structure of the class followed a 

synchronous massive online course (SMOC) format. SMOCs are a design variant that is 

based on massive open online course (MOOCs) (Chauhan, 2015). MOOCs are normally 

open to the public and typically free. SMOCs are limited to a total of 10,000 students, 

including those enrolled at the university and across the world, and are available to all the 

participants at a registration fee of $550 (Chauhan, 2015). The course that was analyzed 

in this dissertation was the second SMOC ever launched. 

The course was a live-streamed online-course that required students to log in at 

specific times. Once students were logged into the university’s online educational 

platform, students were able to watch live lectures and instructional videos, take quizzes 

and exercises, and participate in collaborative discussion exercises. Students interacted in 

collaborative discussions via web chat with randomly assigned group members. Once put 

into groups, students were moved into a chat room and told they had exactly 10 min to 

discuss the readings or video. Chat sessions lasted 10 min, with the timer beginning at the 

first chat entry. At the end of the discussion, students individually took a 10-item, 

multiple choice quiz that asked students to apply their knowledge of the topic for that day 

(e.g., personality disorders) to various scenarios and to draw conclusions based on the 

nature of the disorders (see Appendix A for an example quiz). Throughout the course, 

students (N = 1,713) participated in a total of nine different computer-mediated 
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collaborative interactions on various introductory psychology topics (see Appendix B for 

details). In total, there were 3,380 groups, with four to five students per group. 

Land Science Dataset 

Participants. A total of 38 participants interacted in 19 collaborative problem 

solving simulation games. Each game consisted of multiple rooms, and each room 

involved multiple chat sessions. There was a total of 630 distinct chat sessions. Of the 38 

participants, n = 29 were student players, n = 13 were Mentors, n = 10 were Teachers, 

and n = 1 was a Non-Player Character (NPC). For the purposes of detecting the social 

roles of players, only the Players’ and Mentors chat’ were analyzed with the GCA. 

Details and Procedure. Land Science is an interactive urban-planning simulation 

with collaborative problem solving in an simulation environment (Bagley & Shaffer, 

2015; Shaffer, 2006; Shaffer & Graesser, 2010). The goal of the game is for students to 

think and act like STEM professionals. Players are assigned an in-game internship in 

which they act as land planners in a virtual city with the guidance of a mentor. During the 

game, players communicate with other members of their planning team, as well as with 

an adult mentor who sometimes role plays as a professional planning consultant.  

Data Summaries 

Table 6 provides the individual difference measures for each data set. Table 7 

reports the performance outcome assessment and GCA measures for each dataset. Table 

8 offers a description of the six GCA measures.  
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Table 6 

Demographic and Individual Difference Measures for Each Dataset 

Demographic Variables 
Traditional CSCL SMOC Land Science 

   
Sex Yes Yes No 
Age Yes Yes No 
Ethnicity Yes Yes No 
First language Yes Yes No 
Birth order Yes Yes No 
Years in college Yes Yes No 
Parents education Yes Yes No 
Computer literacy Yes Yes No 
Retaking course Yes Yes No 

Individual Differences    

Big five personality Yes Yes No 
Number of clicks total Yes No No 
Anxiety level Yes No No 
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Table 7 

Performance Assessment for Each Dataset 

Measure Description Traditional 
CSCL SMOC Land 

Science 
Benchmark quizzes 
(BM) 

Quiz given at the beginning 
of every class No Yes No 

Notebooks Graded assessment No No Yes 
Mid class 
questionnaires (MCQ) 

Quiz given after select CL 
interactions  No Yes No 

Pretest  Pre-interaction assessment Yes No No 
Posttest Post interaction assessment Yes No No 
Topic Relevance  Proportion of on-topic 

discussion for groups, as 
described in Equation 31 

Yes No No 

 

Table 8 

Collaborative Interaction Process Measures from the GCA 

Measure Description 
Participation  Mean participation of any participant is the relative 

proportion of their contributions out of the group total 
contributions  

Responsiveness Measure of how responsive a student’s contributions are to 
all other group members’ contributions  

Internal cohesion Measure of how semantically similar a student’s 
contributions are with their own previous contributions  

Social impact  Measure of how contributions initiated by the 
corresponding student have triggered follow-up responses  

Newness The amount of new information in a learner’s contribution  
Communication density The amount of semantically meaningful information  
 

Computing LSA Spaces 

Each dataset was used to generate a distinct LSA space used for calculating the GCA 

measures on that dataset. This ensures that each corpus of chat transcripts is given an 

appropriate semantic representation for the material being discussed. The principal 

difficulty in generating an LSA space from chat transcripts is that subjects and topics 
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referenced in natural conversations are not sufficiently defined to provide a 

comprehensive mapping of their semantic relationships. We take for granted that our 

conversational partners already have a well-developed understanding of a vast array of 

topics. For example, one may engage in a perfectly coherent conversation with a friend or 

colleague about careers, food, family or any number of other subjects, without ever 

needing to provide a comprehensive verbal description of any of these subjects. 

Therefore, we must supplement the chat transcripts with appropriate external documents 

in order to robustly represent the semantic space of subjects referenced in a conversation 

(Cai et al., 2011). To this end, we analyze the frequencies of terms used in the discussion 

in order to identify the most significant terms (keywords), and then query publicly 

available databases (i.e.,	Wikipedia) for documents on those topics. This process of 

scanning for keywords can be repeated with the newly added documents until a 

satisfactory number of documents has been obtained to generate a reasonable mapping of 

the semantic space. Finally, an LSA space of 300 dimensions was computed from each 

expanded corpus (as described in Chapter 4, above). Table 9 provides the descriptive 

information for the original chat corpora, the extended corpora, and LSA spaces for each 

data set.  



	

	 54	

Table 9 

Total Terms and Unique Terms for each Data Set, Expanded Corpus, and LSA Space 

Dataset 
Chat Transcripts Expanded Corpus LSA Space 

Total 
Terms 

Unique 
Terms 

Total 
Terms 

Unique 
Terms Unique Terms 

Traditional CSCL 130,946 6,010 2,703,978 91,613 32,297 

SMOC 457,639 14,207 8,024,354 149,188 56,609 

Land Science 401,652 9,932 1,981,589 73,702 25,417 

 

Spanning Window Calibration 

The size of the spanning window, w, can have significant effects on the GCA 

measures. We want to constrain the size of this window so as to capture the temporal 

dynamics of the conversation (a window as long as or longer than the entire conversation 

would just average everything together). However, very short windows may miss salient 

connections between remarks because they fall outside of the specified span. Certain 

students were such infrequent participants that small window lengths would make 

computing the w-spanning internal cohesion measure impossible, as all of their 

contributions were more than w turns apart. A window size of 20 was chosen as this was 

the shortest length that would allow for at least 95% of students, across all three datasets, 

to have at least 2 contributions inside the window. The remaining students (< 5%) had 

their internal cohesion measures trivially set to 0. 
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Chapter 6: Social Roles in Collaborative Interactions 

Prior Research on Student roles in Collaborative Interactions 

The role concept has been a fundamental construct for facilitating and evaluating 

group interactions (Dillenbourg, 1999; Hoadley, 2010; Jahnke, 2010; Marcos-Garcia, 

Martinez-Mones, & Dimitriadis, 2015; Sarmiento & Shumar, 2010; Smith Risser & 

Bottoms, 2014; Stahl et al., 2014; Strijbos & De Laat, 2010; Volet, Vauras, Salo, & 

Khosa, 2017). Roles have been defined more strictly as stated functions and/or 

responsibilities that guide individual behavior and behavioral patterns exemplified by 

individuals in social contexts (Hare, 1994; Volet et al., 2017). There are two perspectives 

on roles that appear in the literature, namely scripted roles and emergent roles. Scripted 

roles are prearranged to facilitate collaboration and maximize learning gains, whereas 

emerging roles develop spontaneously as a result of collaborative activity (Strijbos & 

Weinberger, 2010). This dissertation focuses on the emergent roles that students may take 

on and how those influence the learning process for individuals, and the group as a 

whole.  

Emergent roles develop over time throughout the course of collaborative 

interactions and presumably influence both the interactions and learning outcomes. While 

no universally accepted role taxonomies exist (Stewart, Fulmer, & Barrick, 2005; Volet 

et al., 2017), different typologies of roles have been introduced. One taxonomy was the 

Strijbos and De Laat (2010) framework of roles in small group interactions. This 

dissertation initially adopted this framework, but the taxonomy was revised after the data 

were analyzed and interpreted. The Strijbos-DeLaat framework distinguishes eight roles. 

Four of the roles are reserved for large group interactions: Pillar, Generator, Hanger-on 
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and Lurker. However, the remaining four are particularly relevant to small group 

interactions: Captain, Over-rider, Free-rider, and Ghost. The roles are differentiated along 

two dimensions that crosses orientation (individual, group) and effort (low, high). The 

first dimension of their framework consists of students’ orientation during collaborative 

learning. A student tends to be oriented towards individual goals (i.e., focus on “I”) or the 

group goals (i.e., focus on “We”). For instance, the participation by a Ghost is typically 

motivated by individual goals and what the student can learn from the group; a Free-rider 

is described as a student that specifically endorses the group’s goal, but participates as 

little as possible. The second dimension involves the effort that students devote to the 

collaboration. A Free-rider typically devotes a limited amount of effort in the group 

interaction and the student’s contributions are mostly product-oriented. The role of 

Captain, in contrast, is occupied by the more active and socially responsible learners. 

Captains, having a strong orientation towards the group, invest significant effort 

attempting to find and maintain group consensus, and facilitate the collaborative tasks. 

The four roles for small groups are illustrated Figure 3. 

   



	

	 57	

 

Figure 3. Strijbos and De Laat’s (2010) four student roles in small groups.  

Alignment of GCA with Theoretical Framework  

Strijbos and De Laat’s (2010) conceptual framework was used as an initial guide 

to begin exploring the roles students occupy in CSCL. While their model provided a 

starting point, there are some limitations in this conceptualization that suggested some 

additional categories. In particular, the conceptualization does not distinguish leaders 

from non-leaders who diligently collaborate to achieve group goals, nor does it identify 

saboteurs who attempt to dismantle the group from achieving group goals (see PISA 

framework, Graesser et al., 2017; OECD, 2013). Thus, the dissertation primarily 

considers the four Strijbos-DeLaat’s roles, but also considers the possibility of identifying 

other types of roles. 

 The current research is expected to provide methodological improvements in role 

identification. In previous research, manual content analysis methods have been used to 

evaluate the discourse and participation patterns associated with student roles, although 

there are some notable exceptions (Burkett, Keshtkar, Graesser, & Li, 2012; Foltz & 
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Martin, 2009; Keshtkar, Burkett, Graesser, & Li, 2012; Rosé et al., 2008). The automated 

metrics that make up the GCA allow us to understand how roles are constructed and 

maintained through the sociocognitive processes within an interaction. This is expected to 

provide a more objective and deeper exploration of the micro-level intrapersonal and 

interpersonal patterns associated with student roles. Moreover, a substantially larger 

corpus of data can be analyzed than when humans need to annotate the data. Although 

there are these advantages, it is important to acknowledge that some important 

characteristics of collaboration cannot be handled by current techniques in computational 

linguistics.    

There were also some modifications to Strijbos-DeLaat’s orientation and effort 

dimensions. The orientation dimension suggests a student is either oriented towards 

individual goals or the group goals. One way of measuring this is by observing the 

relative frequency of pronouns (e.g., ‘‘I” versus ‘‘We”), which are important identifiers 

of students’ orientations (Tuomela & Tuomela, 2005). However, pronouns are merely a 

surface level indicator of orientation and run the risk of incorrectly classifying what is 

semantically a collective responsibility statement (e.g., “I can provide the answer to 

question three from my notes”) as a selfish individual orientation (Hesse et al., 2015). 

Pronouns are removed as stop words in the LSA approach used in the current 

dissertation. Thus, instead of pronouns, GCA measures of responsiveness and internal 

cohesion are used as an indicator of students’ orientation during collaborative 

interactions. Students’ internal cohesion and responsiveness are presumably a stronger 

indication of their orientation. That is, these measures are independent of surface level 

features, and should capture deeper constructs related to their self-monitoring and 
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responding skills (Dehler, Bodemer, Buder, & Hesse, 2011; Hesse et al., 2014). The 

responsivity measure indicates a students’ ability or willingness to integrate contributions 

of collaborators into their own thoughts and actions (i.e., responsiveness). Additionally, it 

captures a student’s responsiveness with themselves (i.e., internal cohesion). 

The second dimension in the framework is effort, which is the determined by the 

amount of participation from a given student (Knowlton, 2005). Participation is the 

minimum requirement for collaborative interaction, but not all participation is beneficial. 

Students can exhibit high effort and have very little, or even negative, impact on the 

group. For instance, a student can be a “chatty Cathy” but if his or her contributions are 

completely off topic, it is unlikely that the talk will initiate further discussion from other 

students. Strijbos and De Laat (2010) point out “It should be noted that effort is not the 

same as impact, meaning that even a group member with few contributions can still be 

very influential. Nevertheless, effort is relatively easier to determine than impact.” The 

impact of student contributions on the group discourse seems to be an essential part of 

determining the roles students play in the group. Understanding participation of 

collaborators, and the roles or actions that they take to maintain participation of all group 

members, requires consideration of the actions that students take both in terms of the 

effort and impact of those contributions. The impact of students’ contribution(s) can be 

understood in terms of the social impact it has on the collaborative discourse. For 

instance, contributions with higher social impact would be those that stimulate other 

members to respond and that advance the conversation to achieve the group goals. The 

dissertation addresses this measuring the impact of students’ contributions during 

collaborative interactions. 
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The degree of rigid role behavior in the Strijbos-De Laat framework is expressed 

by the gray-scale coloring (see Figure 3). Specially, in the outer ring participants are 

strongly acting according to one of the proposed roles: Captain, Over-rider, Free-rider, or 

Ghost. However, those students that are not exemplifying particularly strong role 

behavior may still be captured in the middle ring. The four student roles are described 

briefly below and operationalized in Table 10 along dimensions of participation, 

responsiveness, internal cohesion, social impact, newness, and communication density. It 

should be noted that Table 10 illustrates the initial hypotheses based on Strijbos and De 

Laat (2010) conceptual framework. However, this dissertation extends Strijbos and De 

Laat (2010) framework with several new interaction dimensions, which will likely reveal 

additional social roles during collaborative interactions. In line with this, more intricate 

interactions and tradeoffs between these dimensions were expected. For instance, a 

learner who is responsive and has high newness will likely have high social impact that 

moves the conversation forward. However, the same learner might not exhibit much 

internal cohesion because there may be a tension between these aspects of collaboration.    

• Captain. The Captain role is occupied by students who exhibit self-regulatory and 

social-regulatory skills. Learners with high social impact, responsivity, and active 

engagement in the discussion would be categorized as a Captain.  

• Over-rider. An Over-rider would show high social impact, internal cohesion, and 

participation, but low responsivity to other group members. This is because the 

Over-rider is concerned with pushing his/her own agenda and is more product-

oriented than collaborative process-oriented.  
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• Free-rider. A Free-rider would have high internal cohesion, but low scores for 

social impact and responsivity. The team member is either disengaged from the 

discussion or not making comments that others feel are relevant.  

• Ghost. A Ghost has low engagement with the group and is also low on social 

impact, responsivity and internal cohesion. A Ghost’s contributions are a 

reflection of the learner’s own interests and problems, but are not connected to the 

group task so any newness would be irrelevant.   

 
Table 10  
 
Hypothesized Relationships Between Communication Profiles and Student Roles Based 
on Strijbos and De Laat (2010) Conceptual Framework 

 Captain Over-rider Free-rider Ghost 

Participation High High Low Low 

Responsiveness High Low Low Low 

Internal Cohesion Low High High High 

Social Impact High High Low Low 

Newness High Low Low High 

Communication Density High High Low Low 
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Chapter 7: Detecting Social Roles  

The following analyses focus on addressing the main questions raised in the 

Overview of Present Research chapter three. The implementation of these methods and 

statistical analyses were performed under R Studio version 3.3.0. All associated code is 

available on GitHub (www.github.com/ND-disertation) to support the reproducibility of 

this work and open science principals. 

The analysis starts with the Traditional CSCL dataset, which was immediately 

partitioned into subgroups for training (84%) and testing (16%) data. Descriptive 

statistics for the GCA measures from the training data are presented in Table 11.  

Table 11  

Descriptive Statistics for GCA Measures 

Measure Minimum   Median M SD Maximum 

Participation -0.26 -0.01 0.00 0.10 0.35 
Social Impact 0.00 0.18 0.18 0.05 0.43 
Overall Responsivity 0.00 0.18 0.18 0.05 0.50 
Internal Cohesion -0.06 0.18 0.18 0.09 0.58 
Newness 0.00 0.48 0.78 1.25 18.09 
Communication Density 0.00 0.21 0.34 0.51 6.45 
Note. Mean (M). Standard deviation (SD) 

The data were normalized and centered to prepare them for analysis. Specifically, 

the normalization procedure involved Winsorising the data based on each variable’s 

upper and lower percentile. Density and pairwise scatter plots for the GCA variables is 

reported in Appendix C. A cluster analysis approach was adopted to discover 

communication patterns associated with specific learner roles during collaborative 

interactions (i.e., Research Question 1). Cluster analysis is a common educational data 
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mining technique that involves identifying subgroups or profiles of individuals within the 

larger population who share similar patterns on a set of variables (Baker, 2010). Cluster 

analysis has been applied in previous studies of social roles (Risser & Bottoms, 2014) 

and has proven useful in building an understanding of learners’ behaviors in many digital 

environments more broadly (Mirriahi, Liaqat, Dawson, & Gašević, 2016; Valle & Duffy, 

2007; Wise et al., 2012). Prior to clustering, collinearity was assessed using Pearson 

correlations and multicollinearity was assessed through inflation factor (VIF) statistics. 

Table 12 shows the Pearson correlations between the group communication variables 

ranged from r = -0.10 to 0.90. The rule-of-thumb is not to use variables correlated at 

|𝑟| ≥ 0.7. The VIF values for the group communication variables ranged from 1.65 to 

7.34. A rule of thumb states that there is evidence of multicollinearity if VIF > 10 (Fox & 

Weisberg, 2010). The VIF results support the view that multicollinearity was not an 

issue. However, there was evidence of moderate collinearity between two variables, 

newness and communication density. Therefore, the impact of collinearity on the cluster 

patterns is evaluated further below. 

Table 12 

Pearson Correlations Coefficients for GCA 

Measure Participation Social 
Impact Responsivity Internal 

Cohesion Newness 

Social Impact 0.07     
Overall Responsivity -0.01 0.69***    
Internal Cohesion 0.21*** 0.57*** 0.52***   
Newness 0.64*** 0.07 -0.03 0.10**  
Communication Density 0.56*** -0.10*** -0.19*** -0.06 0.90*** 
Note: *** p < .001, ** p < .01, * p < .05. 
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Cluster Tendency 

 The first step in the clustering process is to assess the cluster tendency (Han, Pei, 

& Kamber, 2011). Cluster tendency assessment determines whether a given dataset has a 

non-random structure, which may lead to meaningful clusters. This is a particularly 

important in the context of unsupervised machine learning because clustering methods 

will return clusters even if the data does not contain any inherent clusters. The Hopkins 

statistic is most common method for testing the intrinsic ability of a data to be clustered 

(Han et al., 2011). The Hopkins statistic is a spatial statistic that tests the spatial 

randomness of data as distributed in space. The values of the Hopkins statistic (H) ranges 

from 0 to 1. It tests the null hypothesis that the data are uniformly distributed and thus 

contains no meaningful clusters. When a dataset is random, implying a lack of underlying 

structure, the value of H is about .5 or greater. However, when the data exhibit some 

inherent clustering the H is closer to 0 (Han et. al., 2011, p. 486). In the current project, 

the Hopkins statistic was implemented, using the R library clustertend (YiLan & RuTong, 

2015), to evaluate the cluster tendency for the Traditional CSCL data set prior to 

conducting the actual cluster analyses. A random uniform simulated dataset was 

generated with the same dimension as the Traditional CSCL dataset to serve as an 

illustrative baseline comparison. As expected the random dataset did not exhibit any 

meaningful clusters, H = .51. However, the Traditional CSCL dataset did show evidence 

of clustering, H = .11, which is well below the threshold of H > .5.  

Determining the Number of Clusters 

 The next step in the cluster analysis is to determine the number of cluster to be 

used in the analysis. There are several methods suggested in the literature for determining 
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the optimal number of clusters (Han et al., 2011). A basic idea in cluster analysis methods 

is to delimitate clusters such that the total intra-cluster variation or total within-cluster 

sum of square (wss) is minimized (Kaufman & Rousseeuw, 2005). In general, as the 

number of clusters increases, the wss should decrease because clusters are smaller. In the 

current research, both visual approaches such as the ‘Elbow’ method, and a group of 

other statistical approaches were explored. The Elbow method is a useful visual way to 

choose the appropriate number of clusters. The Elbow method involves plotting the wss 

against a series of sequential cluster levels. The most appropriate cluster solution is 

defined as the solution at which the reduction in wss slows considerably. This produces 

an “elbow” in the plot of wss against cluster solutions. To identify the appropriate 

number of clusters in the Traditional CSCL data set the wss was compared with the 

number of clusters ranging from 1 to 10. By plotting the number of clusters against the 

within-groups sum of squares for the group communication variables (Figure 4) it is 

possible to not only quantitatively, but also visually identify a representative number of 

clusters. Figure 4 shows that similar values of the within-groups sum of squares appear 

for values of k greater than four, therefore indicating that four seems to be an appropriate 

value for the number of clusters to consider. This is in line with on Strijbos and De Laat 

(2010) conceptual model of student roles. 
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Figure 4. Number of clusters solutions against within-groups sum of squares for 

Traditional CSCL data set GCA variables. Here we see the proposed number of clusters 

is 4. 

The disadvantage of elbow and similar methods (i.e., average silhouette method) 

is that they provide only a visual impression of clustering without quantitatively 

measuring the inflection point of the elbow.  As mentioned earlier, several indices have 

been proposed in the literature for determining the optimal number of clusters (Han et al., 

2011). Thus, a more precise and comprehensive evaluation would involve exploring the 

best clustering scheme from the different results obtained by varying all combinations of 

number of clusters, distance measures (e.g., Manhattan distance for k-medoids, Euclidean 

distances for k-centroids) and clustering methods. The NbClust package provides 26 

indices for determining the relevant number of clusters (Charrad, Ghazzali, Boiteau, & 

Niknafs, 2014). It is beyond the scope of this project to specify each index, but they are 

described comprehensively in the original paper of Charrad et al. (2014). An important 
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advantage of NbClust is that researchers can simultaneously compute multiple indices 

and determine the number of clusters using a majority rule. The majority rule is based on 

the evaluation of the cluster size proposed across the 26 indices with the final suggested 

number of clusters based on the majority. In the current project, the optimal number of 

clusters was explored for two clustering partitioning approaches, Partitioning Around 

Medoids (PAM) and Partitioning Around Centroids (K-means). Figures 5 and 6 reveal 

that the optimal number of clusters, according to the majority rule, is 2 for the PAM 

approach and 6 for the K-means approach. However, the total within-cluster sum of 

squares (wss) suggested a four-cluster solution. Based on this discrepancy, three models 

(i.e., the two-, four- and six-cluster solutions) were constructed and compared.  

 

Figure 5. Frequency for recommended number of clusters using PAM, ranging from 2 to 

10, using 26 criteria provided by the NbClust package. Here we see 9 of the 26 indices 

proposed 2 as the optimal number of clusters in the Traditional CSCL dataset.   
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Figure 6. Frequency for recommended number of clusters using K-means, ranging from 2 

to 10, using 26 criteria provided by the NbClust package. Here we see 8 of the 26 indices 

proposed 6 as the optimal number of clusters in the Traditional CSCL dataset.   

Partitioning Clustering Analysis (Unsupervised Analysis) 

Partitioning based clustering methods include two major categories, namely k-

means and k-medoids. While several partitioning methods were explored in the current 

dissertation (including PAM, fuzzy, hierarchical, density, hybrid k-means and regular k-

means clustering), PAM and k-means provided the most stable clusters. Thus, the PAM 

and k-means methods were used to group learners with similar group communication 

profiles into clusters. Three separate cluster analyses were performed to assess the degree 

to which the data resembled a two-, four- or six-cluster solution. A first step in 

interpreting the clusters involves inspecting the cluster centroids for k-means, or medoids 
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for PAM, as this sheds light on whether the segments are conceptually distinguishable. 

Centroids are representative objects, or in this context learners, of a cluster whose 

average dissimilarity to all the other learners in the cluster is minimal. Centroids are 

conceptually similar to means. In contrast to the centroids used in the k-means algorithm, 

the medoids from PAM are represented by actual data points that best characterize the 

cluster. The medoids for the two cluster PAM solution, and centroids for the four- and 

six-cluster k-means solution are presented below in Figures 7-9, respectively.  

As discussed earlier, there was evidence of moderate collinearity between two 

variables, newness and communication density. The potential harm of collinearity in 

cluster analysis is that is can change the observed pattern of the clusters. The impact of 

collinearity was evaluated in the current research by running the cluster analyses with and 

without the communication density measure to ensure the same cluster pattern was 

observed. This evaluation showed that collinearity was not impacting the cluster pattern 

for the two-, four-, or six-cluster models. Specifically, the same cluster pattern was 

observed across the variables when the cluster analysis was conducted without the 

communication density measure (see Appendix D, Appendix E, and Appendix F).  
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Figure 7. Medoids for the two-cluster solution across the GCA variables. 

 
	

 
Figure 8. Centroids for the four-cluster solution across the GCA variables. 
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Figure 9. Centroids for the six-cluster solution across the GCA variables. 
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hereafter in this dissertation it will be labeled the Lurker role. Lurkers have been defined 

differently in the literature, ranging from non-participators to minimal participators 

(Nonnecke & Preece, 2000; Preece, Nonnecke, & Andrews, 2004). The distinction 

between a Ghost and a Lurker is not clear in the literature, which appears to use these 

terms interchangeably, although Strijbos and De Laat do make a distinction based on 

group size. Two reasons motivated operationalizing this pattern as a Lurker, rather than 

the Ghost, in the current research; First, the GCA methodology would not be able to 

detect an individual that did not participate at all (because there would not be a log file 

for those students), which suggests the learners in these clusters did contribute at least 

minimally. Second, past research has labeled the Ghost and Lurker roles predominantly 

based on the amount of contributions a student makes, although the GCA captures 

participation as well as the sociocognitive characteristics of those contributions. The 

pattern depicted for these clusters does not suggest these students have no social impact, 

or were completely unresponsive to others. Rather it suggests that these students 

expressed less compared to other group members. Lurking behavior sometimes involves 

some level of engagement but at other times little engagement so it is associated with 

both positive and negative outcomes in the literature (Preece et al., 2004). Therefore, 

Lurker appeared to be the most appropriate label for this cluster.  

Similar patterns were also observed between cluster 2 in the two-cluster model, 

cluster 1 in the four-cluster model, and cluster 2 in the six-cluster model. The learners in 

these clusters are among the highest participators; they exhibit high social impact, 

responsiveness, and internal cohesion, but coupled with the lowest newness and 

communication density. Learners in these clusters are investing a high degree of effort in 
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the collaborative discussion and display self-regulatory and social-regulatory skills. This 

pattern is labeled the Driver in the current research. While the two-cluster model makes 

sense conceptually, the simplicity of the segmentation is less meaningful from a practical 

and theoretical standpoint.  

The four and six cluster solutions provide more detail by further distinguishing 

the mid-range students. For instance, cluster 3 in the four-cluster model and cluster 1 in 

the six-cluster model are characterized by learners who have the highest participation. 

However, when they contribute, their discourse is more in response to themselves than 

other team members (i.e., higher internal cohesion than responsiveness or social impact), 

and do not warrant further discussion from the group members or provide new 

information (i.e., low social impact and newness). These individuals would be similar to 

the Over-riders described in Strijbos and De Laats’ (2010) framework, who exhibit strong 

individual learning goals and try to push the group members into adopting their agenda. 

In contrast to the Driver role, Over-riders have a higher degree of internal cohesion 

compared to social impact or responsiveness, which signals the Over-rider is more 

concerned with the personal gain than the collaboration or social climate.  

Cluster 2 in the four-cluster model and cluster 6 in the six-cluster model are also 

quite similar. Here we see learners with low participation, but when they do contribute, 

they attend to other learners’ contributions and provide meaningful information that 

furthers the discussion (i.e., high internal cohesion, overall responsiveness, and social 

impact). This pattern is similar to a student that is engaged in the collaborative interaction 

and is called a Task-Leader	role in this research. It is interesting to note that these 

students are not among the highest participators, but their discourse signals a social 
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positioning that is conducive to a productive exchange within the collaborative 

interaction.  

Cluster 3 and 5 in the six-cluster model (Figure 9) produced two additional 

patterns not observed in the other cluster models. Learners occupying cluster 5 exhibited 

high internal cohesion, but low scores on all the other group communication measures. 

This cluster is labeled as Social Detached, because the pattern appears to capture students 

who are not productively engaged with their collaborative peers, but instead focused on 

themselves. Cluster 3 is characterized by learners who have the lowest participation. 

However, when they do contribute it appears to build, at least minimally, on previously 

contributed ideas and move the collaborative discourse forward (i.e., higher social impact 

and responsiveness). This cluster is labeled as the Follower. Overall, all three cluster 

models appear, at least visually, to produce theoretically meaningful student groupings. 

In the next phase of the analysis the quality and validity of the cluster solutions is 

evaluated.  

Clustering Evaluation and Validation 

 The literature proposes several cluster validation indexes that quantify the quality 

of a clustering (Hennig, Meila, Murtagh, & Rocci, 2015). In principle, these measures 

provide a fair comparison of clustering and aid researchers in determining whether a 

particular clustering of the data is better than an alternative clustering (Taniar, 2006). 

There are three main types of cluster validation measures and approaches available: 

internal, stability, and external. Internal criteria evaluate the extent to which the 

clustering “fits” the data set based on the actual data used for clustering. In the current 

dissertation three commonly reported internal validity measures  (Silhouette, Dunns 
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index, and Connectivity) were explored using the R package clValid (Brock, Pihur, Datta, 

& Datta, 2008). Silhouette analysis measures how well an observation is clustered and it 

estimates the average distance between clusters (Rousseeuw, 1987). Silhouette widths 

indicate how discriminant the clusters chosen are by providing values that range from -1, 

indicating that observations are likely placed in the wrong cluster to 1, indicating clusters 

perfectly separate the data and no better (competing) ways to cluster can be found. 

Dunn’s index (D) evaluates the quality of clusters by computing a ratio between the inter-

cluster distance (i.e., between cluster separation) and intra-cluster diameter (i.e., within-

cluster compactness). Larger values of D suggest good clusters, and a D larger than 1 

indicates compact separated clusters (Dunn, 1974). The Connectivity measure captures 

the extent to which observations are placed in the same cluster as their nearest neighbors 

(Handl, Knowles, & Kell, 2005). The connectivity has a value between zero and ∞ and 

should be minimized. These internal stability measures for the two-, four-, and six-cluster 

solutions are reported in Table 13. As can be seen from Table 13, the two-cluster solution 

had the highest internal validity across the three measures, followed by the four-cluster 

solution. The two-cluster model was substantially better for the Connectivity measure. 

However, for the Dunn Index and Silhouette measures, the two-cluster model was only 

marginally better than the other cluster solutions. For instance, we see the two-cluster 

solution, compared to the four-cluster solution, is only .2 higher for the Silhouette 

measure, and .01 higher for the Dunn Index. 



	

	 76	

Table 13  

Internal Validity Measures for the Two, Four, and Six Cluster Solutions 

Internal Validity 
Measures 

Two-Cluster 
Model 

Four-Cluster 
Model 

Six-Cluster 
Model 

Index Range/ 
Preference 

Silhouette .33 .30 .31 Zero to one/ 
Higher 

Dunn Index .07 .06 .05 Zero to ∞/ 
Higher 

Connectivity 87.72 196.01 249.55 Zero to ∞/ 
Lower 

 

Stability is another important aspect of cluster validity. Stability means that a 

meaningful valid cluster should remain intact (i.e., not disappear easily) if the data set is 

changed in a non-essential way (Hennig, 2007). While there are different conceptions of 

what constitutes a “non-essential change” of a data set, a common method employed is 

the leave-one-column out. The stability measures compare the results from clustering 

based on the full data set to clustering based on removing each column, one at a time 

(Brock et al., 2008; Datta & Datta, 2003). In the current data set this corresponds to the 

removal of one of the GCA variables at a time. The stability measures are the average 

proportion of non-overlap (APN), the average distance (AD), the average distance 

between means (ADM), and the figure of merit (FOM). The APN measures the average 

proportion of observations not placed in the same cluster by clustering based on the full 

data and clustering based on the data with a single column removed. The AD measure 

computes the average distance between observations placed in the same cluster by 

clustering based on the full data and clustering based on the data with a single column 

removal. The ADM measure computes the average distance between cluster centers for 

observations placed in the same cluster by clustering based on the full data and clustering 
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based on the data with a single column removed. The FOM measures the average intra-

cluster variance of the observations in the deleted column, where the clustering is based 

on the remaining (undeleted) samples. This estimates the mean error using predictions 

based on the cluster averages (Brock et al., 2008). In all cases the average is taken over 

all the deleted columns, and all measures should be minimized. As seen in Table 14, the 

stability scores for the two-, four-, and six-cluster solutions are quite similar, with the 

two-, and four-cluster solution being, on average, only slightly more stable than the six-

cluster model. The results from the internal validity and stability inspection showed, on 

average, only minimal differences between the cluster solutions. However, the two-

cluster solution only categorized learners as high and low across the GCA variables (see 

Figure 7). This simple dichotomous grouping is less meaningful for identifying more 

intricate conversational patterns of students’ social roles. Therefore, the four-cluster and 

six-cluster solutions were chosen in moving forward. In subsequent analyses. 

Table 14  

Stability Validity Measures for the Two, Four, and Six Cluster Solutions 

Stability Measures Two-Cluster 
Model 

Four-Cluster 
Model 

Six-Cluster 
Model 

Index 
Range 

Average proportion of 
non-overlap (APN) 
 

.14 .18 .22 Zero to one 

Average Distance (AD) 1.31 1.07 .97 Zero to ∞ 
Average Distance 
between means (ADM) 
 

.23 .26 .31 Zero to ∞ 

Figure of merit (FOM) .40 .38 .37 Zero to ∞ 
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Cluster Coherence 

It is important to evaluate the coherence of the clusters from a statistical analysis 

of the GCA variables involved in their partitioning. Consequently, the four- and six-

cluster models were further evaluated to determine whether learners in the cluster groups 

significantly differed from each other on the six GCA variables. The multivariate 

skewness and kurtosis were investigated using the R package MVN (Korkmaz, 

Goksuluk, & Zararsiz, 2015) which produces the chi-square Q-Q plot (see Appendix G) 

and a test statistic Henze-Zirkler (HZ) which assesses whether the dataset follows an 

expected multivariate normal distribution. The results indicated the GCA variables did 

not follow a normal distribution, HZ = 5.06, p < .05. Therefore, a permutational 

MANOVA (or nonparametric MANOVA) was used to test the effect of the four and six-

cluster models on the GCA variables. The permutational MANOVA, implemented in the 

Adonis routine of the VEGAN package in R (Oksanen et al., 2016), is a robust alternative 

to both parametric MANOVA and to ordination methods for describing how variation is 

attributed to different experimental treatments or, in this case, cluster partitions 

(Anderson, 2001). The Adonis test showed a significant main effect of cluster for the 

four-cluster model, F (3,714) = 392.21, p < .001, and six-cluster model, F 

(5,712) = 350.86, p < .001. These results support the models’ formation and ability to 

organize learners based on differences in their collaborative communication profiles.  

The analyses proceeded with ANOVAs followed by Tukey’s post hoc 

comparisons to characterize learners’ patterns by identifying significant differences in 

participants’ scores on the six GCA variables between the clusters. Levene’s Test of 

Equality of Error Variances was violated for all the GCA variables so a more stringent 
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alpha level (p < .01) was used when  identifying significant differences for these 

variables (Tabachnick & Fidell, 2007, p. 86). The ANOVA main effect F-values along 

with the means and standard deviations for the GCA variables across each cluster are 

reported in Table 15 for the four-cluster model, and Table 16 for the six-cluster model. 

The ANOVA revealed significant differences among clusters for all of the six GCA 

variables at the p < .0001 level for both the four and six-cluster models. Tukey’s HSD 

post hoc comparisons for the four and six-cluster models are presented in Table 17 and 

Table 18, respectively. As seen in Table 17 and Table 18, the post hoc comparisons 

confirmed that the observed differences in GCA profiles across the clusters were, for the 

majority, significantly distinct in both models. In the next phase of the analysis, the four 

and six-cluster models were further examined to determine external validity 

Table 15 
 
Four-cluster Model Means and Standard Deviations for the 6 GCA Variables  

GCA Measures 

Cluster 1: 
Driver 
n = 154 

Cluster 2: 
Task-Leader 

n = 182 

Cluster 3: 
Over-rider 

n = 171 

Cluster 4: 
Lurker 
n = 211 F-value 

M(SD)  M(SD) M(SD) M(SD) 
Participation 0.57(0.26) -0.49(0.3) 0.57(0.29) -0.64(0.27) 440.30*** 
Social Impact 0.55(0.3) 0.52(0.35) -0.47(0.31) -0.48(0.38) 282.70*** 
Overall 
Responsivity 0.40(0.39) 0.44(0.37) -0.45(0.32) -0.39(0.44) 173.80*** 

Internal 
Cohesion 0.42(0.31) 0.31(0.47) -0.21(0.41) -0.47(0.41) 130.90*** 

Newness -0.11(0.14) -0.29(0.13) -0.12(0.14) -0.3(0.14) 27.09*** 
Communication 
Density -0.14(0.16) -0.3(0.13) -0.1(0.14) -0.26(0.15) 25.06*** 

Note: ANOVA df = 3,714; *** p < .0001 
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Table 16 
 
Six-cluster Model Means and Standard Deviations for the Six GCA Variables  

GCA Measures 

Cluster 1: 
Over-
rider 

n = 143 

Cluster 2: 
Driver 
n = 153 

Cluster 3: 
Follower 

n = 88 

Cluster 
4: 

Lurker 
n = 117 

Cluster 5: 
Detached 

n = 91 

Cluster 6: 
Task-

Leader 
n = 126 

F-value 

M(SD)  M(SD) M(SD) M(SD) M(SD) M(SD) 

Participation 0.64  
(0.23) 

0.60  
(0.24) 

-0.66 
(0.28) 

-0.63 
(0.27) 

-0.37 
(0.36) 

-0.44 
(0.32) 285.70*** 

Social Impact -0.50 
(0.31) 

0.51 
 (0.33) 

0.15 
(0.47) 

-0.66 
(0.23) 

-0.29 
(0.39) 

0.63 
(0.25) 200.50*** 

Overall 
Responsivity 

-0.48 
(0.31) 

0.38  
(0.38) 

0.21 
(0.46) 

-0.61 
(0.24) 

-0.28 
(0.36) 

0.56 
(0.28) 157.70*** 

Internal 
Cohesion 

-0.30 
(0.37) 

0.39 
 (0.31) 

-0.59 
(0.21) 

-0.65 
(0.17) 

0.29 
(0.31) 

0.55 
(0.23) 210.30*** 

Newness -0.12 
(0.14) 

-0.10 
(0.14) 

-0.31 
(0.14) 

-0.30 
(0.13) 

-0.25 
(0.15) 

-0.28 
(0.12) 15.83*** 

Communication 
Density 

-0.09 
(0.14) 

-0.13 
(0.16) 

-0.29 
(0.15) 

-0.26 
(0.15) 

-0.23 
(0.16) 

-0.31 
(0.12) 15.01*** 

Note: ANOVA df = 5,712; *** p < .0001 
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Table 17 

Tukey-HSD P-Values for the Pairwise Comparisons for the GCA Measures Across the 
Four-Cluster Solution  

Four-
Cluster 
Comparison 

GCA Variables 

  Participation Social 
Impact 

Overall 
Responsivity 

Internal 
Cohesion Newness Communication 

Density 

2 vs. 1 p < .001 p = .98 p = .69 p = .97 p < .001 p < .001 

3 vs. 1 p = .22 p < 
.001 p < .001 p < .001 p = .65 p < .05 

4 vs. 1 p < .001 p < 
.001 p < .001 p < .001 p < .001 p < .001 

3 vs. 2 p < .001 p < 
.001 p < .001 p < .001 p < .001 p = .04 

4 vs. 2 p < .001 p < 
.001 p < .001 p < .001 p = .99 p = .85 

4 vs. 3 p < .001 p = .15 p = .81 p < .001 p < .001 p < .001 
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Table 18 

Tukey-HSD P-Values for the Pairwise Comparisons for the GCA Measures Across the 
Six-Cluster Solution  

Six-Cluster 
Comparison GCA Variables 

 Participation Social 
Impact 

Overall 
Responsivity 

Internal 
Cohesion Newness Communication 

Density 
2 vs. 1 p = .04 p < .001 p < .001 p < .001 p = .83 p = .06 
3 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001 
4 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001 
5 vs. 1 p < .001 p = .008 p = .05 p < .001 p < .001 p < .001 
6 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001 
3 vs. 2 p < .001 p < .001 p = .66 p < .001 p < .001 p < .01 
4 vs. 2 p < .001 p < .001 p < .001 p < .001 p < .001 p < .01 
5 vs. 2 p < .001 p < .001 p < .001 p = .58 p < .05 p < .001 
6 vs. 2 p < .001 p = .07 p < .001 p < .001 p < .001 p < .001 
4 vs. 3 p = .93 p < .001 p < .001 p =.99 p = 1.00 p = .99 
5 vs. 3 p < .001 p < .001 p < .001 p < .001 p = .56 p = .50 
6 vs. 3 p < .001 p < .001 p < .001 p < .001 p = .99 p = 1.00 
5 vs. 4 p < .001 p < .001 p < .001 p < .001 p = .61 p = .78 
6 vs. 4 p < .001 p < .001 p < .001 p < .001 p = 1.00 p = .98 
6 vs. 5 p = .99 p < .001 p < .001 p < .001 p = .72 p = .37 

 

Model Generalizability  

Internal generalizability. When performing unsupervised cluster analyses, it is 

important to know whether the cluster results generalize (e.g., Research Question 2a). In 

the current dissertation, a bootstrapping and replication methodology approach was 

adopted to see if the observed clusters generalize meaningfully to unseen data (Dalton, 

Ballarin, & Brun, 2009; Everitt, Landau, Leese, & Stahl, 2011). First, the internal 

generalizability was evaluated for the four- and six-cluster models from the Traditional 

CSCL dataset. Specifically, a bootstrapping approach was used to assess the prediction 
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strength of the training data, and then a replication model was used to evaluate whether 

the training data cluster centers can predict the ones in the testing data. If the four- and 

six-cluster structure found using k-means clustering is appropriate for the Traditional 

CSCL data, then the prediction for the test dataset, and a clustering solution created 

independently for the test dataset, should match closely. 

The prediction strength of the training data was explored using the clusterboot 

function in the R package fpc (Hennig, 2015). This approach uses a bootstrap resampling 

scheme to evaluate the prediction strength of a given cluster. The algorithm uses the 

Jaccard coefficient, a similarity measure between sets. The Jaccard similarity between 

two sets Y and X is the ratio of the number of elements in the intersection of Y and X 

over the number of elements in the union of Y and X. The cluster prediction strength and 

stability of each cluster in the original four and six-cluster models is the mean value of its 

Jaccard coefficient over all the bootstrap iterations. As a rule of thumb, clusters with a 

value less than 0.6 should be considered unstable. Values between 0.6 and 0.75 indicate 

that the cluster is measuring a pattern in the data, but there is not high certainty about 

which points should be clustered together. Clusters with values above about 0.85 can be 

considered highly stable and have high prediction strength (Zumel, Mount, & Porzak, 

2014). The prediction strength of the Traditional CSCL training data was evaluated using 

100 bootstrap resampling iterations.  

The final cluster pattern produced by the 100 bootstrap resampling iterations for 

the four and six-cluster model are reported in Figure 10 and Figure 11, respectively. As 

seen in the figures, the observed pattern for both models was identical to the original k-

means four and six-cluster models, albeit with a different ordering of the clusters. The 
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ordering of clusters in the k-means algorithm is arbitrary so the pattern of the GCA 

variables within each cluster is of most importance. The Jaccard's similarity values 

showed very strong prediction for all four clusters in the four-cluster model with .92, .93, 

.94, and .95, for clusters 1-4, respectively. Similar results were also observed for the six-

cluster models’ Jaccard's similarity values with .96, .95, .91, .96, .91, and .96 for clusters 

1-6, respectively 

 

Figure 10. This figure shows the final four-cluster pattern produced by the 100 bootstrap 
resampling iterations Traditional CSCL training data, which was identical to the original 
k-means four-cluster model pattern depicted in Figure 8. 
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Figure 11. This figure shows the final six-cluster pattern produced by the 100 bootstrap 
resampling iterations Traditional CSCL training data, which was identical to the original 
k-means six-cluster model pattern depicted in Figure 9. 
 

The next analyses focus on evaluating the generalizability of the observed clusters 

in the training data to the testing data. First, four- and six-cluster k-means analyses were 

performed on the held out Traditional CSCL test data (N= 136). Descriptive statistics for 

the GCA variables are reported below in Table 19. The centroids for the four- and six-

cluster k-means solution for the Traditional CSCL test data are illustrated in Figure 12 

and Figure 13, respectively. The observed pattern of the four- and six-cluster solution for 

the testing data appears, at least visually, similar to the one observed on the training data.  
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Table 19  

Descriptive Statistics for GCA Measures in the Traditional CSCL Testing Data Set 

Measure Minimum   Median M SD Maximum 

Participation -0.23 -0.01 0.00 0.10 0.30 
Social Impact -0.01 0.18 0.18 0.05 0.33 
Overall Responsivity 0.00 0.18 0.18 0.05 0.41 
Internal Cohesion 0.00 0.20 0.19 0.11 1.00 
Newness 0.05 0.49 0.72 1.06 11.04 
Communication Density 0.01 0.21 0.32 0.49 5.23 
Note. Mean (M); Standard deviation (SD); N = 136. 

Figure 12. Traditional CSCL testing data centroids for the four-cluster solution across the 

GCA variables. 
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Figure 13. Traditional CSCL testing data centroids for the six-cluster solution across the 

GCA variables. 

The next analyses focus on quantifying the observed overlap between the testing 

and training cluster analyses. Specifically, the cluster centers from the training data set 

were used to predict the clusters in the test data for both the four- and six-cluster models. 

This analysis was performed using the cl_predict function in the R clue package (Hornik 

& Böhm, 2016). Cross-tabulation of the predicted and actual cluster assignments for the 

Traditional CSCL testing data set are reported in Table 20 for the four-cluster model, and 

Table 21 for the six-cluster model. The rows in both tables correspond to the clusters 

specified by the k-means clustering on the testing data and the columns correspond to the 

predicted cluster membership by the training data. In a perfect prediction, large values 

would lie along the diagonal, with zeroes off the diagonal; that would indicate that all 

samples that belong to cluster 1 were predicted by the training data as belonging to 

cluster 1, and so forth. The form of this table can give you considerable insight into 
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which clusters are reliably predicted. It can also show which groups are likely to be 

confused and which types of misclassification are more common than others. However, 

in this case we observed an almost perfect prediction in both the four and six-cluster 

model, with few exceptions.   

Table 20  

Cross-tabulation of the Predicted and Actual Cluster Assignments for the Four-Cluster 
Model on Traditional CSCL Testing Data Set 

Testing 
Clusters Training Predicted Clusters 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Cluster 1 35 0 0 0 

Cluster 2 1 29 0 0 

Cluster 3 0 2 33 5 

Cluster 4  0 0 1 30 
 

Table 21 

Cross-tabulation of the Predicted and Actual Cluster Assignments for the Six-Cluster 
Model on Traditional CSCL Testing Data Set 

Testing Clusters Training Predicted Clusters 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Cluster 1 32 0 0 0 0 0 
Cluster 2 2 29 0 0 0 0 
Cluster 3 0 0 15 2 1 0 
Cluster 4 0 0 0 18 0 0 
Cluster 5 4 0 0 1 13 0 
Cluster 6 0 0 0 0 0 19 
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Two measures were used to evaluate the predictive accuracy of the four and six-

cluster models on the Traditional CSCL training clusters: Adjusted Rand Index (ARI) and 

a measure of effect size (Cramer V) for the cluster cross-tabulation. ARI computes the 

proportion, of the total of 5
9  object pairs, that agree; that is, are either (i) in the same 

cluster according to partition 1 and the same cluster according to partition 2 or (ii) in 

different clusters according to 1 and in different clusters according to 2. The ARI 

addresses some of the limitations of the original rand index by providing a conservative 

measure which penalizes for any randomness in the overlap (Hubert & Arabie, 1985). 

The ARI was calculated between: (a) the test data clustering membership and (b) the 

predicted cluster membership given by the training data. The predictive accuracy of the 

training data is considered good if it is highly similar to the actual testing data cluster 

membership. The degree of association between the membership assignments of the 

predicted and actual cluster solutions was ARI = 0.83 for the four-cluster model, and ARI 

= 0.84 for the six-cluster model. ARI values range from 0 to 1, with higher index values 

indicating more agreement between sets. The measure of effect size for the cross-

tabulation revealed Cramer V = 0.92 for both models, which is considered very strong 

association (Kotrlik, Williams, & Jabor, 2011). Given these results, the four- and six-

cluster solutions were judged to be robust and well supported by the data. 

A similar replication approach was adopted to evaluate the generalizability within 

the SMOC and Land Science data sets. Descriptive statistics for the GCA measures in the 

SMOC training (N = 9,463)/ testing (N = 2,378) and Land Science training (N = 2,837)/ 

testing (N = 695) data sets are presented in Table 22. First, a four- and six-cluster model 

was constructed on the SMOC and Land Science training data sets. The pattern of the 
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four- and six-cluster models are depicted in Figure 14 and Figure 15 for the SMOC 

training data set, and Figure 16 and Figure 17 for the Land Science training data set.  

Table 22  

Descriptive Statistics for GCA Measures in the SMOC & Land Science Training and 
Testing Data Sets 

Measure Min   Med M SD Max 

SMOC  
Data sets Train Test Train Test Train Test Train Test Train Test 

Participation -0.44 -0.49 0.00 0.00 0.00 0.00 0.11 0.11 0.45 0.42 
Social Impact -0.14 -0.05 0.15 0.15 0.16 0.16 0.10 0.10 1.00 1.00 
Overall 
Responsivity -0.30 -0.04 0.15 0.15 0.16 0.16 0.11 0.11 1.00 1.00 
Internal 
Cohesion -0.43 -0.17 0.12 0.12 0.13 0.14 0.12 0.12 1.00 1.00 
Newness 0.00 0.00 0.65 0.65 0.84 0.83 0.83 0.76 17.39 7.73 
Communication 
Density 0.00 0.00 0.19 0.19 0.26 0.26 0.30 0.26 10.56 3.32 
Land Science  
Data sets  

 
 

 
 

 
 

 
 

 

Participation -0.50 -0.49 -0.01 -0.03 0.00 0.00 0.14 0.15 0.78 0.49 
Social Impact -0.10 -0.05 0.12 0.12 0.13 0.12 0.09 0.08 0.90 0.74 
Overall 
Responsivity -0.12 -0.04 0.11 0.11 0.13 0.12 0.10 0.09 1.00 1.00 
Internal 
Cohesion -0.21 -0.17 0.11 0.11 0.13 0.12 0.13 0.12 1.00 1.00 
Newness 0.00 0.00 0.60 0.59 1.10 1.11 2.33 2.15 70.27 27.39 
Communication 
Density 0.00 0.00 0.18 0.18 0.38 0.36 0.94 0.72 31.27 10.45 
Note. Mean (M). Standard deviation (SD). 
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Figure 14. SMOC training data centroids for the four-cluster solution across the GCA 
variables. 
 
 

Figure 15. SMOC training data centroids for the six-cluster solution across the GCA 

variables. 
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Figure 16. Land Science training data centroids for the four-cluster solution across the 
GCA variables. 

 

 
Figure 17. Land Science training data centroids for the six-cluster solution across the 
GCA variables. 
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The analysis proceeded by evaluating the internal generalizability for the SMOC 

and Land Science data sets separately. This analysis was performed by using the clusters 

centers from the SMOC and Land Science training data sets to predict the clusters in the 

test data for both the four- and six-cluster model. These analyses were also performed 

using the cl_predict function in the R clue package (Hornik & Böhm, 2016). Cross-

tabulation of the predicted and actual cluster assignments for the SMOC and Land 

Science testing data set are reported in Table 23 and Table 24 for the four-cluster model, 

and Tables 25 and Table 26 for the six-cluster model, respectively. We see from these 

tables that there appears to be more agreement for the predicted cluster assignments in the 

six-cluster models, than the four-cluster models for both datasets. We can quantify the 

agreement using the ARI and Cramer V provided by the flexclust package. A comparison 

of the ARI and Cramer V measures for the four- and six-cluster model is presented in 

Table 27. Again, the ARI values range from 0 to 1, with higher index values indicating 

more agreement between sets. As seen in Table 27, the six-cluster model exhibited 

slightly higher predictive agreement between the training and testing data cluster 

assignments when compared to the four-cluster model. Further, the Cramer V measure 

revealed a slightly stronger effect size for the six-cluster model cross-tabulation (see 

Table 27). Taken together, the four and six-cluster solutions were judged to be supported 

by both the SMOC and Land Science collaborative interaction data, with the six-cluster 

model being only minimally better.  
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Table 23  

Cross-tabulation of the Four-Cluster Model Predicted and Actual Cluster Assignments 
for the SMOC Testing Data Set  

Testing 
Clusters  Predicted Clusters 

 Cluster 1 Cluster 2  Cluster 3 Cluster 4 

Cluster 1 586 29 0 0 
Cluster 2 4 636 0 74 
Cluster 3 7 0 484 10 
Cluster 4  3 24 14 507 

 

Table 24 

Cross-tabulation of the Four-Cluster Model Predicted and Actual Cluster Assignments 
for the Land Science Testing Data Set  

Testing 
Clusters  Predicted Clusters 

 Cluster 1 Cluster 2 Cluster 3  Cluster 4  

Cluster 1 198 7 3 1 
Cluster 2 0 142 9 2 
Cluster 3 49 0 180 1 
Cluster 4  0 0 2 101 
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Table 25 

Cross-tabulation of the Six-Cluster Model Predicted and Actual Cluster Assignments for 
the SMOC Testing Data Set  

Testing Clusters Predicted Clusters 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 
3 Cluster 5 

Cluster 1 517 17 4 0 1 15 
Cluster 2 0 469 14 0 0 0 
Cluster 3 0 5 475 1 0 10 
Cluster 4 1 0 1 208 0 4 
Cluster 5 0 0 6 6 198 0 
Cluster 6 1 0 0 3 7 415 
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Table 26 

Cross-tabulation of the Six-Cluster Model Predicted and Actual Cluster Assignments for 
the Land Science Testing Data Set  

Testing Clusters Predicted Clusters 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 
3 Cluster 5 

Cluster 1 137 0 0 0 1 1 
Cluster 2 0 90 3 9 4 0 
Cluster 3 1 12 81 0 0 0 
Cluster 4 11 0 2 106 0 0 
Cluster 5 0 0 0 0 98 0 
Cluster 6 0 0 0 0 1 138 

Table 27  

Internal Generalization ARI and Cramer V Results for the Computed Cross-Tabulation 
Tables for Four and Six-Cluster Models on SMOC and Land Science Data sets 

Model 
SMOC  Land Science  

ARI Cramer V ARI Cramer V 

Four-Cluster Model .82 .91 .72 .89 

Six-Cluster Model .90 .95 .86 .92 
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External generalizability. The practice of predictive modeling defines the 

process of developing a model in a way that we can understand and quantify the model’s 

prediction accuracy on future, yet-to-be-seen data (Kuhn & Johnson, 2013). The previous 

analyses provided confidence in the four and six-cluster models’ ability to generalize to 

unseen data within the same data set. However, the ultimate goal is to evaluate how well 

the identified student roles (i.e., clusters) are representative of interaction patterns across 

various types of collaborative interactions. This step is critical because the robustness and 

accuracy of the models across data sets will determine the usefulness of the GCA for 

broader research applications. Thus, the next analyses assess the generalizability of these 

clusters across the three collaborative interaction data sets (i.e., Research Question 2b). 

Specifically, the clusters centers from each data set were used to predict the clusters in 

the other training data sets, wherein all possible combinations were evaluated. Again, two 

measures were used to evaluate the predictive accuracy of clusters: ARI, and a measure 

of effect size, Cramer V, for their cross-tabulation. Table 28 shows the ARI and Cramer 

V results for the computed cross-tabulation evaluations of the four- and six-cluster 

models. The columns in Table 28 correspond to the predictor data set, while the rows 

correspond to the predicted data set. 

 The first item to take away from Table 28 is that, for the four-cluster model, the 

Land Science data set had the lowest predictive accuracy when both predicting the cluster 

assignments in the other two data sets and being predicted by them. However, the 

predictive accuracy among the Traditional CSCL and SMOC data sets appears to be 

similar, with the SMOC data set showing only slightly higher accuracy when predicting 

Traditional CSCL. 
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Table 28 shows the SMOC four-cluster model had the highest agreement 

predicting the cluster assignments in the Traditional CSCL and Land Science data sets, 

but the observed agreement was only slightly better than the Traditional CSCL. However, 

Land Science had the lowest agreement predicting clusters in the other two data sets, and 

the lowest accuracy at being predicted. These results suggest the four-cluster model does 

generalize to more similar collaborative interactions, but does not generalize as well to 

the collaborative problem solving Land Science interactions. For the six-cluster model, 

we see the SMOC data set has the lowest agreement predicting clusters in the Traditional 

CSCL and Land Science. However, Land Science had the highest agreement with 

predicting the Traditional CSCL, and was on par with the Traditional CSCL when 

predicting the SMOC dataset. 

Table 28  

ARI and Cramer V Results for Each of the Four and Six-Cluster Model Computed Cross-
Tabulation Tables 

Model W3 Training  SMOC 
Training 

Land Science 
Training 

Four-Cluster Model ARI Cramer 
V ARI Cramer 

V ARI Cramer 
V 

W3 Training Data -- -- .73 .86 .47 .67 

SMOC Training Data .70 .83 -- -- .49 .66 
Land Science Training 
Data .45 .63 .51 .69 -- -- 

Six-Cluster Model       

W3 Training Data -- -- .66 .89 .76 .86 

SMOC Training Data .70 .78 -- -- .69 .79 
Land Science Training 
Data .69 .83 .66 .78 -- -- 

Note. -- indicates previously reported internal generalization evaluations, which are not 
reported here to avoid redundancy. 
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Discussion 

This chapter focused on addressing some of the main question raised in this 

dissertation. Specifically, we explored the extent to which characteristics of collaborative 

interaction discourse, as captured with the GCA, diagnostically reveal the social roles 

students occupy, and if the observed patterns generalize meaningfully. The findings 

present some practical, methodological, and conceptual implications for the educational 

data mining and learning analytics communities. First, as a methodological contribution, 

we have highlighted the rich contextual information captured by the GCA was able to 

identify distinct interaction patterns representative of the various roles students occupy in 

collaborative interactions. The automated natural language metrics that make up the GCA 

allow us to understand how roles are constructed and maintained through the 

sociocognitive processes within an interaction. Thus, this methodological contribution is 

expected to provide a more objective, domain independent, and deeper exploration of the 

micro-level intrapersonal and interpersonal patterns associated with student roles. 

Moreover, as a practical contribution, a substantially larger corpus of data can be 

analyzed with the GCA than when humans are required to annotate the data. 

The current research extended Strijbos and De Laat’s (2010) framework with 

several new interaction dimensions. Interestingly, the GCA measures revealed behavioral 

and communication patterns of the social roles that do not entirely overlap with those 

observed in Strijbos and De Laat’s (2010) framework. The identification of these 

additional roles might serve as a conceptual contribution for research focusing on 

understanding the social roles within multi-party communication.  

For instance, only one role, the Over-rider, appeared to overlap in in the four and 
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six-cluster model for the Traditional CSCL data set. However, the other roles in both 

models did not appear to align with the labels suggested Strijbos and De Laat’s (2010) 

framework. This finding could be a product of the micro-level intrapersonal and 

interpersonal dynamics captured with the GCA measures. 

 The identified social roles (i.e., clusters) underwent stringent evaluation and 

validation assessments: internal criteria, stability and cluster coherence. In principle, 

these measures provide a fair comparison of clustering and aid researchers in determining 

whether a particular clustering of the data is better than an alternative clustering (Taniar, 

2006). Internal criteria measures evaluated the extent to which the clustering “fits” the 

data set based on the actual data used for clustering. The findings suggested that the four-

cluster model performed slightly better than the six-cluster model across the three internal 

criteria measures. The four cluster stability measures captured the extent to which the 

clusters remain intact (i.e., not disappear easily) when the data set is changed in a non-

essential way (Hennig, 2007). The cluster stability findings showed slightly mixed 

results, with the four-cluster model outperforming the six-cluster model on two (i.e., 

Average proportion of non-overlap and Average Distance between means) of the four 

stability indices. However, the results for the other two stability measures, Figure of merit 

(FOM) and Average Distance (AD), showed similar result for both the models. Overall, 

this suggests a preference for the four-cluster model in terms of the stability of the 

clusters. The cluster coherence allowed us to see if the GCA variables involved in their 

extraction significantly differed across the roles to identify which variables contribute to 

the role distinction. The cluster coherence evaluation showed the four-cluster model 

exhibited more separation across the GCA measures than the six-cluster model. 
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The cluster models were further inspected for their ability to generalize both 

within and across the three data sets. The internal generalization assessment for the 

Traditional CSCL data showed both the four- and six-cluster model exhibited almost 

perfect agreement with predicting the clusters in the testing data set (see Table 20-21). 

However, for both the SMOC and Land Science data sets, we saw six-cluster model had 

higher accuracy (i.e., internal generalization), compared to the four-cluster model (see 

Table 27). The external generalization evaluation results for the four-cluster model 

showed the high accuracy between the Traditional CSCL and SMOC datasets, but very 

low agreement for predicting the Land Science data. This is because the pattern across 

the GCA measures for four-cluster model is almost identical in the SMOC and 

Traditional CSCL data sets. In contrast, the four clusters model in the Land Science data 

set only moderately aligned with the clusters in the SMOC and Traditional CSCL data 

sets. 

As we saw, the six-cluster model does not generalize as well across the data sets. 

The highest predictive accuracy was observed for the Land Science data set predicting 

the cluster centers in the Traditional CSCL data set. The lower agreement for the six-

cluster model is likely due to the lack of consistency in the clusters across the data sets. 

Higher agreement between the Traditional CSCL and SMOC data sets was anticipated, 

based on their overlap in the four-cluster model. Interestingly, this is not what was found. 

Instead, the additional clusters produced in the six-cluster model aligned well across the 

Traditional CSCL and Land Science data sets (see Figure 13 and Figure 17). The two 

additional clusters in the SMOC data set appeared to identify learners very high on 

responsiveness (see cluster 4 in Figure 15), and social impact (cluster 5 in Figure 15). 
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Overall, the cluster internal and external generalization evaluations provided confidence 

in the robustness for the identified roles.  
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Chapter 8: Student Roles and Learning 

The practical value of the identified social roles can be tested at multiple of levels 

of granularity. At a minimum, the social roles (Driver, Task-Leader, Follower, Over-

rider, Lurker, and Socially Detached) should be meaningfully related to student learning 

gains. This would provide external validation for the identified social roles (i.e., clusters) 

in the four- and six-cluster models. Unlike the internal criteria explored earlier in the 

Detecting Student Roles chapter, external criteria are independent of the way the clusters 

are obtained. External cluster validation can be explored by either comparing the cluster 

solutions to some “known” categories or by comparing them to meaningful external 

variables, i.e. variables not used in the cluster analysis (Antonenko, Toy, & Niederhauser, 

2012). In the current research, the latter approach was implemented by exploring the 

relationship with individual student learning and overall group performance (Research 

Question 3a & 3b) to determine whether the cluster membership differed relative to these 

meaningful variables. Specifically, usefulness of the framework for identifying learners’ 

roles in collaborative learning is explored through two analyses of the data: (a) the 

influence of student roles on individual student performance, and (b) the influence of 

student roles on overall group performance.  

The multi-level investigation conducted in the current research also addresses a 

frequently noted limitation found in collaborative learning research. CSCL researchers 

encounter issues regarding the differing units of analysis in their datasets (Janssen, 

Erkens, Kirschner, & Kanselaar, 2011). That is, collaborative interactions can be 

analyzed with the group, individual student, and interaction between students as units of 

analysis. For example, in the current dissertation, some variables of interest are measured 
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at the individual learner and interaction levels (e.g., student learning gains, participation, 

internal cohesion, social impact, overall responsivity, newness, communication density, 

and social roles identified by the cluster analysis), whereas other variables are measured 

at the group level (e.g., group diversity, group composition, and group performance). 

Researchers have emphasized the need to conduct more rigorous, multi-level research 

(Cress, 2008; Bram De Wever, Van Keer, Schellens, & Valcke, 2007; Stahl, 2005; 

Suthers, 2006b). However, collaborative learning studies usually center on only one of 

these units of analysis (Stahl, 2013a). As a result, there is little consideration of how the 

two levels are connected, even though it is clear that such connections are crucially 

important to understanding and orchestrating learning in collaborative learning 

environments (Stahl, 2013a). To address this gap in the literature, a series of models were 

constructed to explore the influence of group level constructs on individual student level 

learning gains, as well as the influence of individual student level constructs on group 

performance. Table 29 provides an overview of the mixed-effects models exploring 

learning across the four- and six-cluster solutions.  
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Table 29 

Overview of Mixed-Effects Models Exploring Learning across the Four- and Six Cluster 
Solutions  

Model 
Number Dependent 

Variable 

Level of 
Dependent 
Variable 

Independent 
Variable 

Level of 
Independent 

Variable 

Random 
Variable(s) 

1 Learning 
Gains Student Social Roles Student 

Student 
Nested in 

Group 

2 Learning 
Gains Student  Role 

Diversity Group 
Student 

Nested in 
Group 

3 Performance Group Role 
Diversity Group Group 

4-6 Learning 
Gains Student  

Proportional 
Occurrence 

Roles 
Group 

Student 
Nested in 

Group 

7-9 Performance Group 
Proportional 
Occurrence 

Roles 
Group Group 

 

A mixed-effects modeling approach was adopted for these analyses due to the 

nested structure of the data (e.g., students within groups) (Pinheiro & Bates, 2000). 

Mixed-effects models include a combination of fixed and random effects and can be used 

to assess the influence of the fixed effects on dependent variables after accounting for any 

extraneous random effects. Multilevel modelling handles the hierarchical nesting, 

interdependency, and unit of analysis problems that are inherent in collaborative learning 

data. They are  the most appropriate technique for investigating data in CSCL-

environments (De Wever et al., 2007; Janssen et al., 2011).  
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In addition to constructing the fixed effects models, null models with the random 

effects (learner and group or group) but no fixed effects were also constructed. A 

comparison of the null random-effects only model with the fixed-effect models allows us 

to determine whether social roles and communication patterns predict student and group 

performance above and beyond the individual student and group characteristics. Akaike 

Information Criterion (AIC), Log Likelihood (LL) and a likelihood ratio test were used to 

determine the best fitting and most parsimonious model. Additionally, the effect sizes for 

each model were estimated using a pseudo R2 method, as suggested by Nakagawa and 

Schielzeth (Nakagawa & Schielzeth, 2013). For mixed-effects models, R2 can be 

characterized into two varieties: marginal R2 and conditional R2. Marginal R2 is associated 

with variance explained by fixed factors, whereas conditional R2 can be interpreted as the 

variance explained by the entire model, namely random and fixed factors. Both marginal 

(R2
m) and conditional (R2

c) R2 convey unique and relevant information regarding the 

model fit and variance explained, so both are reported. The nlme package in R (Pinheiro 

et al., 2016) was used to perform all the required computations. All analyses are on the 

Traditional CSCL dataset because it was the base corpus for the cluster analyses and it 

has the most consistent individual and group performance measures. 

Influence of Student Roles on Individual Student Performance 

First, the relationship between learners’ roles and performance in the 

collaborative learning environment was assessed for both the four- and six-cluster 

models. A performance score was obtained for each student by calculating their 

proportional learning gains, formulated as [% Posttest - % Pretest] / [1 - % Pretest] 
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(Hake, 1998). Correlations between learning gains and the six GCA variables in the 

Traditional CSCL data set are reported in Table 30. 

Table 30 

Correlations between Learning and GCA Variables in the Traditional CSCL Data Set 

 Learning 
Gains Participation Social 

Impact 
Overall 

Responsivity 
Internal 

Cohesion Newness 
 
Participation 0.10**      
Social Impact 0.10* 0.07     
Overall 
Responsivity 0.10* -0.01 0.69***    
Internal 
Cohesion 0.13*** 0.21*** 0.57*** 0.52***   
Newness 0.06 0.62*** 0.05 -0.03 0.11**  
Communication 
Density 0.04 0.54*** -0.11*** -0.18*** -0.05 0.91*** 

Note. *** p < .001. ** p < .01. * p < .05. 

As discussed earlier, two linear mixed-effects models were constructed: (a) the 

full model with learning gains as the dependent variable, social roles as independent 

variables, and student nested within group as the random effects, and (b) the null model 

with random effects only and no fixed effects. The likelihood ratio tests indicated that 

both the Four-Cluster model with χ23) = 14.93, p = .001, R2
m = .02, R2

c = .95, and the six-

cluster model with χ2(5) = 11.55, p = .04, R2
m = .02, R2

c = .95 yielded a significantly 

better fit than the null model. A number of conclusions can be drawn from this initial 

model fit evaluation and inspection of R2 variance. First, the model comparisons (between 

null and full models) imply that the roles in both the four and six-cluster models were 

able to add a significant improvement in predicting the learners’ performance above and 

beyond individual participant and group characteristics. Second, for both the four and six-

cluster model, social roles, individual participant, and group features explained about 
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95% of the predictable variance, with 2% of the variance being accounted for by the 

social roles.  

The social roles that were predictive of individual student learning performance 

for the four-Cluster model and six-cluster model are presented in Table 31 and Table 32, 

respectively. The reference group for both analyses was the Driver role, meaning that the 

learning gains for the other roles are compared against the Driver reference group. As can 

be seen from Table 31, three of the four social roles showed significant differences in 

student learning gains, as compared to the Driver role. Similar results were observed 

across the Six-cluster model (Table 32), which showed four of the six roles exhibited 

significant differences in student learning gains, again as compared to the Driver role. In 

both models, learners who took on more socially responsible, collaborative roles, such as 

Driver, performed significantly better than students who occupied the less socially 

engaged roles, like Lurker, and Over-rider. There was not significant difference between 

the performance of the Drivers and Task-Leader, suggesting these are the more 

successful roles in terms of student learning gains.  

It is important to note that the observed difference in learning gains across the 

social roles is not a result of the students simply being more prolific because Task-

Leaders and Socially Distracted learners performed on par with the Drivers, but were 

among of the lower participators in the group. The profile for the Socially Detached 

learners showed mid-range values for responsivity and social impact, compared to their 

internal cohesion scores. However, the Task-Leaders profile illustrated that when they 

did make contributions it was very responsive to the other group members (i.e., high 

responsivity), semantically connected with their previous contributions (i.e., higher 
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internal cohesion). Further, their contributions were seen as relevant by other members 

and warranted further follow up by their peers (i.e., high social impact). These findings 

reflected a more substantive difference in social awareness and engagement for the 

Drivers and Task-Leaders, compared to the Over-riders, beyond the surface level 

mechanism of simply participating often. Taken together, these discoveries show that not 

only are the identified roles related to learning in general, but the relationship is 

theoretically meaningful, which provides external validity.  

Table 31 

Descriptive Statistics for Student Learning Gains Across Four Roles and Mixed-Effects 
Model Coefficients for Predicting Differences in Individual Student Performance Across 
Clusters 

Role Four-Cluster Model 
M SD β SE 

Driver  0.24 0.85 0.24*** 0.07 

Task-Leader 0.09 0.85 -0.15 0.09 

Over-rider -0.02 0.87 -0.26** 0.10 

Lurker  -0.10 0.85 -0.33*** 0.09 
Note. * p < .05. ** p < .01. *** p < .001. Mean (M). Standard deviation (SD). Fixed 
effect coefficient (β). Standard error (SE).  
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Table 32 
Descriptive Statistics for Student Learning Gains Across Six Roles and Mixed-Effects 
Model Coefficients for Predicting Differences in Individual Student Performance Across 
Clusters 

Role Six-Cluster Model 
M SD β SE 

Driver 0.21 0.89 0.21** 0.07 
Over-rider 0.02 0.88 -0.19* 0.10 
Lurker -0.11 0.79 -0.32** 0.11 
Follower -0.08 0.92 -0.29** 0.12 
Socially Detached 0.03 0.83 -0.18 0.11 
Task-Leader 0.09 0.84 -0.12 0.10 
Note. * p < .05. ** p < .01. *** p < .001. Mean (M). Standard deviation (SD). Fixed 
effect coefficient (β). Standard error (SE).  
 

Incorporating Group Level Measures 

As discussed earlier, it is possible that characteristics of the group influence 

individual learner outcomes and vice versa. The multilevel nature of collaborative 

processes highlight the importance of specifying the unit of analysis in documenting, 

analyzing and assessing collaborative learning process dynamics (De Wever, Schellens, 

Valcke, & Van Keer, 2006; Sawyer, 2014). There are three primary ways that 

collaborative process dynamics can be conceptualized, namely as group-level construct, 

individual student-level construct, and student-student interaction level construct (Stahl, 

2013b). Therefore, interactions can be analyzed with the group, individual student, and 

interaction between students as units of analysis. Measures that capture the interaction 

dynamics between students can be aggregated to represent both student level constructs, 

similar to the roles in the current research. The performance assessment of collaborative 
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interactions can be based on the group level (e.g., knowledge convergence, topic 

relevance) or individual student level outcomes (Strijbos, 2016).  

Figure 18 shows a fully connected network that illustrates how all three collaborative 

process dynamics influence each other and includes two performance assessments. 

Figure 18 highlights the importance of the unit of analysis. Unpacking these cross-level 

patterns in group interactions and understanding how these patterns relate to performance 

is a high priority for collaborative researchers (Kapur, 2011; Reimann, 2009; Stahl, 2005; 

Stahl et al., 2014; Suthers, 2006). However, few studies have attempted to answer this 

call. The investigations below attempt to further our understanding of how group level 

constructs, namely group compositions and diversity, interact with student and group 

level outcomes. 

 

 

Figure 18. Multilevel interactions between process and performance levels in 
collaborative learning. 

Interaction Group Student 

Group 
Performance 

Student 
Performance 
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Two groups of models were constructed to assess the influence of group 

composition on group performance and individual student learning gains. The first set of 

models assessed the influence of group role diversity on student learning gains and group 

performance. The second set of models dove deeper to explore the influence of group 

compositions, as measured by the proportional occurrence of each of the roles, on student 

learning gains and group performance. As a reminder, group performance was 

operationally defined as the amount of topic-relevant discussion during the collaborative 

interaction, as described earlier in the Methods section. Correlations between group 

performance, student learning gains, diversity, and the proportional occurrence of each 

role in the four- and six-cluster model are reported in Table 33 and Table 34, 

respectively. As seen in Table 33 and Table 34, no relationship was observed between 

student learning gains and group performance, so this was not probed further. Quite small 

relationships were observed between the four-cluster model role diversity (M = .88, SD= 

.24) and the six-cluster model role diversity (M = 1.04, SD= .26) with student learning 

gains and group performance. However, when these relationships were further explored 

in the four-cluster model, the likelihood ratio tests indicated that the full diversity models 

for student learning gains and group performance did not yield a significantly better fit 

than the null model with χ2(1) = .54, p = .46, R2
m = .001, R2

c = .96, and χ2(1) = .24, p = 

.62, R2
m = .002, R2

c = .88, respectively. An inspection of the six-cluster model diversity 

also showed the full model was not a better fit for the data for student learning gains or 

group performance with χ2(1) = .39, p = .52, R2
m = .001, R2

c = .96, and χ2(1) = .26, p = 

.62, R2
m = .002, R2

c = .88, respectively.  
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Table 33 

Correlations between Student Learning Gains, Group Performance, Role Diversity and 
the Proportional Occurrence of Four Roles 

 Student 
Level  Group Level Measures 

Measure Learning 
Gains 

Group 
Performance Diversity Prop. 

Driver 
Prop. Task-

Leader 
Prop. Over-

rider 
Group 
Performance .00      

Diversity -.03 .04 
    

Prop. Driver .05 .30*** .16**    
Prop. Task-
Leader .07 .29*** .02 .38***   
Prop. Over-
rider -.06 -.30*** -.06 -.78*** -.61***  
Prop. Lurker -.06 -.30*** 0.12** -.58*** -.81*** .39*** 
Note. *** p < .001. ** p < .01. * p < .05. 
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Table 34 

Correlations between Student Learning Gains, Group Performance, Role Diversity and 
the Proportional Occurrence of Six Roles  

 Student 
Level Group Level Measures 

Measure Learning 
Gains 

Group 
Performance Diversity 

Prop. 
Over-
rider 

Prop. 
Driver 

Prop. 
Follower 

Prop. 
Lurker 

Prop. 
Socially 

Detached 
Group 
Performance 0.00        
Diversity -0.02 -0.03 

    
  

Prop. Over-
rider -0.03 -0.28*** 0.03 

   
  

Prop. Driver 0.03 0.28*** -0.12*** -0.77*** 
  

  
Prop. Follower -0.01 0.02 0.12*** -0.31*** 0.29*** 

 
  

Prop. Lurker -0.05 -0.28*** -0.04 0.47*** -0.49*** -0.46***   
Prop. Socially 
Detached -0.01 -0.13*** 0.23*** 0.16*** -0.43*** -0.29*** 0.07  
Prop. Task-
Leader 0.05 0.32*** -0.16*** -0.47*** 0.28*** -0.11** -0.52*** -0.37*** 
Note. *** p < .001. ** p < .01. * p < .05. 

The second set of analyses involved a more fine-grained investigation of the 

influence of (the proportional occurrence) good and bad roles on student learning gains 

and group performance. A total of twelve linear mixed-effects models were constructed. 

For the four-cluster roles, six linear mixed-effects models were constructed, a null model 

with the random effect of group, but no fixed effects, a productive roles model with the 

proportional occurrence of Drivers and Task-Leaders as the independent variable, and an 

unproductive roles model with the proportional occurrence of Over-riders and Lurkers as 

the independent variable. For the six-cluster roles, six linear mixed-effects models were 

constructed, a null model with the random effect of group, but no fixed effects, a 

productive roles model with the proportional occurrence of Drivers, Task-Leaders, and 

Socially Detached learners as the independent variable, and an unproductive roles model 

with the proportional occurrence of Over-riders, Followers and Lurkers as the 
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independent variable. For both the four and six-cluster role models below, the first three 

models had student learning gains as the dependent variable, whereas the next three had 

group performance as the dependent variable. 

 For the student level analyses of the four-cluster roles, the likelihood ratio tests 

indicated that neither the productive role model nor the unproductive role model yielded 

a significantly better fit than the null model with χ2(2) = 3.54, p = .17, R2
m = .01, R2

c = 

.96, and χ2(2) = 3.34, p = .19, R2
m = .005, R2

c = .96, respectively. Similarly, the student 

level analyses of the six-cluster roles, the likelihood ratio tests indicated that neither the 

productive role model nor the unproductive role model yielded a significantly better fit 

than the null model with χ2(3) = 2.62, p = .45, R2
m = .004, R2

c = .96, and χ2(3) = 2.75, p = 

.43, R2
m = .004, R2

c = .96. Based on the previous findings showing that social role does 

influence one’s individual learning, this latter result suggests that it is less important that 

a person is combined with productive roles than it is that the person is enacting a 

productive role.  

For the group level analysis of the four-cluster roles, the likelihood ratio tests 

indicated that that both the productive roles model and the unproductive roles model 

yielded a significantly better fit than the null model with χ2(2) = 20.67, p < .001, R2
m = 

.13, R2
c = .89, and χ2(2) = 20.36 p < .001, R2

m = .13, R2
c = .89, respectively. For the group 

level analysis of the six-cluster roles, the likelihood ratio tests indicated that that both the 

productive roles model and the unproductive roles model yielded a significantly better fit 

than the null model with χ2(3) = 23.62, p < .0001, R2
m = .15, R2

c = .90, and χ2(3) = 20.92 

p < .001, R2
m = .13, R2

c = .89, respectively. Several conclusions can be drawn from this 

initial model fit evaluation and inspection of R2 variance. First, the model comparisons 
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support the claim that the proportional occurrence of productive and unproductive roles, 

in both the four and six-cluster models, were able to add a significant improvement in 

predicting the group performance above and beyond group characteristics. Second, for all 

models, the proportional occurrence of different social roles along with group features 

explained about 89% of the predictable variance in group performance, with 26-28% of 

the variance being accounted for by the proportional occurrence of different social roles. 

Table 35 and Table 36 the social roles that were predictive of group performance for both 

the productive roles model and the unproductive roles model in the four and six-cluster 

role models, respectively.  

A similar pattern was observed across the four and six role models, as shown in 

Table 35 and Table 36. Specifically, the proportional occurrence of most social roles 

predicted group performance when analyzing both the productive roles model and the 

unproductive roles model. Specifically, groups with learners who occupied more socially 

responsible, collaborative roles (namely Driver and Task-Leader) performed significantly 

better than groups with less socially engaged roles (Lurker and Over-rider). These 

findings mirror the pattern that was observed for individual student learning and social 

roles (model 1). Taken together, these results illustrate that not only are the identified 

clusters related to both student learning and group performance in general, but the 

relationship is theoretically interpretable, which provides additional confidence towards 

the external validity of the cluster analysis.  
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Table 35 
Descriptive Statistics for Group Performance Across Four Roles and Mixed-Effects 
Model Coefficients for Predicting the Influence of Productive and Unproductive Roles on 
Group Performance  

Role 
Productive Roles Model 

Role 
Unproductive Roles 

Model 
M SD β SE M SD β SE 

Prop. of Driver .28 0.99 1.16 
** .40  Prop. of Lurker -.23 .93 -.98** .40 

Prop. of Task-
Leader .25 1.05 .81* .36  Prop. of Over-

rider -.26 .89 -.96** .39 

Note. N = 148; * p < .05; ** p < .01. Mean (M). Standard deviation (SD). Fixed effect 
coefficient (β). Standard error (SE).  

 

Table 36 

Descriptive Statistics for Group Performance Across Six Roles and Mixed-Effects Model 
Coefficients for Predicting the Influence of Productive and Unproductive Roles on Group 
Performance  

Role 
Productive Roles 

Model Role 
Unproductive Roles 

Model 
M SD β SE M SD β SE 

Prop. of Driver 0.27 1.05 1.15** 0.41  Prop. of Over-
Rider -0.27 0.92 -1.05* 0.46 

Prop. of Socially 
Detached -0.18 0.79 0.42 0.52  Prop. of 

Follower 0.03 0.94 -1.02* 0.55 
Prop. of Task-
Leader 0.37 1.04 1.27** 0.39  Prop. of Lurker -0.32 0.94 -1.42* 0.52 

Note. N = 148. * p < .06. ** p < .01. Mean (M). Standard deviation (SD). Fixed effect 

coefficient (β). Standard error (SE).  

Discussion 

This chapter focused on addressing the practical value of the identified roles in 

both the four- and six-cluster models. Specifically, we investigated whether the social 

roles (Driver, Task-Leader, Lurker, and Over-rider, Socially Detached, and Follower) 

were meaningfully related student learning gains and group performance. Overall, the 
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results suggest that (a) the roles that learners occupy influences their learning, and (b) the 

presence of roles within a group interaction can result in different outcomes for that 

group, being either more or less beneficial. Taken together, these discoveries show that 

not only are the identified roles related to learning in general, but the relationship is 

theoretically meaningful, which provides external validity.  

For the individual student learning models, we saw that socially engaged roles, 

like Driver, significantly outperformed less participatory roles, like Lurkers. This finding 

might be expected. However, other findings emerged that were less intuitive. For 

instance, we found that Task-Leaders and Socially Detached (although not quite as high) 

leaners performed on par with the Drivers, but were among of the lower participators in 

the group. This suggests the difference in learning gains across the social roles is not a 

result of the students simply being more prolific. The Task-Leaders were quite 

responsive, high social impact, internal cohesion, but lower scores for newness and 

communication density. However, the most defining feature of the Socially Detached 

learners was their high internal cohesion because they exhibited mediocre scores across 

the other GCA measures. Something interesting starts to emerge when these profiles are 

juxtaposed with the Over-riders. Over-riders were the highest participators, but had lower 

learning gains, responsivity to peers, social impact, and mediocre internal cohesion. 

Together, this highlights the potency of having internal cohesion, and being even mildly 

socially aware and engaged with the other group members. More than simply talking a 

lot, the intra and interpersonal dynamics (captured by the internal cohesion, responsivity, 

and social impact measures), appear to be major factors in how much students learn.  

The influence of these roles on group performance was also investigated. The first 
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analyses investigated the influence of the overall diversity of roles on group performance. 

Here, we were interested in seeing if groups that are comprised of, for example, six 

different roles performed better than those that were comprised of all Task-Leaders. This 

was motivated by the group interaction literature, which suggests that diversity can be a 

major contributor to the successfulness of collaborative interactions. These analyses did 

not suggest any significant influence of group diversity on student or group performance. 

The findings for diversity in the literature have explored several different types of 

diversity, including personality, prior knowledge, gender, and other individual traits 

(Barron, 2003; Fuchs, Fuchs, Hamlett, & Karns, 1998). Therefore, there is the possibility 

that the diversity in roles is not an important type of diversity.  

The next analyses dove deeper to investigate if group composition, or the 

proportional occurrence of different roles influenced group performance. The findings 

here were considerably more promising. The results largely mirrored those found for the 

individual students, with a few exceptions. Interestingly, the finding for Socially 

Detached learners was tempered when it came to group performance. Specifically, we 

observed the presence of Socially Detached learners within a group did not significantly 

influence the group performance. These findings for group level performance have 

implications optimal group composition. Again, the results suggest the optimal group 

composition is not comprised of simply high participating learners. Instead, the optimal 

group composition involves a combination of both low and high participators. However, 

what is perhaps even more important is that the learners within the group are both aware 

of and invested in the social climate of the group interaction and collaborative outcome. 

Another difference between the influence of roles on groups and student performance 
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pertains to the effect size. The influence of roles within a group appears to have a more 

potent influence on group performance (explaining 26%-28% of the variance) than does 

the influence of taking on a particular role on student performance (explaining only 2% 

of the variance). These discoveries highlight the importance of conducting multi-level 

analyses (i.e., individual student and group levels) to understand the differential influence 

of phenomena at these levels. 
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Chapter 9: Measurement of Emergent Roles in Collaborative Learning Interactions 

Theoretical Background 

The theoretical perspectives that explain emergent properties in small group 

interactions are heavily influenced by process-oriented theories coming from the social 

psychology of small groups, cognitive psychology, and industrial-organizational 

psychology (Cooke, Gordman, & Winner, 2007; Fiore et al., 2010; Letsky, 2008). The 

majority of the theoretical views on cognitive and social processes in small groups have 

been conceived in information processing terms that organize variables in an input-

process-output (IPO) model proposed by McGrath 1984 (see Ilgen, Hollenbeck, Johnson, 

& Jundt, 2005 for a review; McGrath, 1984). The classical IPO framework specifies a 

linear progression and one-directional causal relation between the characteristics of the 

input that give rise to the processes, which in turn establish the outcomes (e.g. the 

processes cannot influence the inputs). Although the overall influence of the IPO 

heuristic has been positive, the utility of IPO models as a guide to empirical research has 

been criticized because it fails to capture the emerging consensus about groups as 

complex, adaptive systems (Cooke & Hilton, 2015; Ilgen et al., 2005). The recognition of 

the inherent complexity in the interactional dynamics of group members has produced a 

more emergent view of how groups function and perform (Arrow, McGrath, & Berdahl, 

2000; Rosen, 2015; Stahl, 2005).  

Emergent states are constructs that develop over the course of group interactions 

and influence the group and individual student outcomes (Ilgen et al., 2005; 

Puntambekar, Erkens, & Hmelo-Silver, 2011). Contemporary perspectives of successful 

group interactions build on the IPO framework but attempt to address its limitations by 
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explicitly incorporating the inherent dynamics and highlighting when, where, and with 

whom various processes and emergent states become relevant. For example, Ilgen and 

colleagues (2005) discuss the feedback loop that link group outputs and subsequent 

inputs (i.e., knowledge, motivation, and behaviors are both inputs). Contemporary theory 

emphasizes feedback loops and recursive relationships as a fundamental aspect of group 

interactions. In line with this, researchers have almost universally recognized that group 

processes are inherently dynamic (e.g., Ilgen et al., 2005; Kozlowski, 2015; Puntambekar 

et al., 2011; Stahl, 2013a; Strijbos & De Laat, 2010). However, group processes are still 

predominantly investigated as static constructs.  

The dynamics inherent in the conceptualization of group processes are not 

currently well specified in group interaction research. This has resulted in researchers 

advocating that more attention needs to be devoted to group dynamics in research (e.g., 

Cooke et al., 2007) and advances in research design (e.g., Foltz & Martin, 2009; 

Kozlowski, 2015). The approach adopted in the current dissertation addresses this by 

taking an emergent and dynamic perspective to understanding the intrapersonal and 

interpersonal sociocognitive processes across time and whether specific dynamics lead to 

more successful collaborative interactions.   

 In the CSCL literature there has been debate and tension around studying roles as 

stable patterns versus emergent by-products of group interaction processes that change 

over time (Hoadley, 2010). The goal of the following analyses is to investigate the 

identified social roles (i.e., clusters) to see if they exhibit characteristics typically 

associated with emergent processes. If the roles of particular group members are indeed 

an emergent property of interactions, then they will exhibit certain properties: (a) they 
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should not be consistently or highly associated with trait based characteristics, and (b) 

they will not be static, but instead will change in different groups. 

Results and Discussion  

Are learners’ social roles consistently or highly associated with trait based 

characteristics? The Big Five personality dimensions (Goldberg, 1981; McCrae & John, 

1992) are central to trait-based approaches to personality (Ozer & Benet-Martinez, 2006). 

The Big Five personality dimensions are briefly described below. It is important to note 

that each of the five personality factors represents a range between two extremes.  

• Openness: This trait features characteristics such as imagination and insight, and 

those high in this trait also tend to have a broad range of interests. Individuals 

with lower scores on this trait are often much more traditional and may struggle 

with abstract thinking.  

• Conscientiousness: Standard features of this trait include high levels of 

thoughtfulness, with good impulse control and goal-directed behaviors. Those 

high on conscientiousness tend to be organized and mindful of details. 

• Extraversion: Extraversion is characterized by excitability, sociability, 

talkativeness, assertiveness and high amounts of emotional expressiveness. 

• Agreeableness: This personality dimension includes attributes such as trust, 

altruism, kindness, affection and other prosocial behaviors. Individuals that score 

higher on agreeableness are incline to be more cooperative while those low in this 

trait tend to be more competitive and even manipulative. 

• Neuroticism: Neuroticism is a trait characterized by moodiness and emotional 

instability. Individuals who are high in this trait tend to experience mood swings, 

anxiety, moodiness, irritability and sadness. Those low in this trait tend to be 

more stable and emotionally resilient. 

Over the years, the Big Five model has gained a reputation of being context 

independent with longitudinal and cross-cultural evidence supporting this basic 

personality structure (McCrae & John, 1992). The Traditional CSCL data set contains 
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students’ self-reported Big Five personality traits, so it is ideal for testing the first claim 

(i.e., they should not be consistently or highly associated with trait based characteristics). 

Correlational and linear discriminant analyses were adopted to explore the association 

between students’ personality characteristics and the identified social roles. Table 37 

shows that the Pearson correlation coefficients between Big Five personality measures 

and GCA measures in the Traditional CSCL data set were quite small, ranging from r = -

0.11 to 0.14. The only significant relationship was between Participation and Openness. 

This relationship between Openness and Participation is consistent with previous findings 

by Chen and Caropreso (2004). This correlation analysis shows how the sociocognitive 

GCA measures are related to personality characteristics in an expected way, but they do 

not appear to be consistently or highly associated with the trait based personality 

characteristics. Means for Big Five personality measures across the four roles are 

presented in Figure 19. The pattern appears to align with what we might expect to for the 

identified roles. For instance, the Over-rider (represented by the green bar) showed higher 

scores on openness and extraversion, but lower on conscientiousness and agreeableness. 

This pattern might be anticipated by individuals that dominate the interaction with their 

personal agenda.  
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Table 37 

Pearson Correlations between Big Five Personality and GCA Measures for Traditional 
CSCL Data Set 

Measure Opennes
s  

Conscientiousne
ss 

Extraversio
n 

Agreeablenes
s 

Neuroticis
m 

Participation 0.14*** -0.04 0.06 -0.04 0.00 
Social Impact -0.03 0.12** -0.05 0.06 0.02 
Overall 
Responsivity -0.04 0.08* -0.11** 0.04 0.03 

Internal 
Cohesion -0.01 0.14*** -0.03 0.05 0.04 

Newness 0.04 -0.02 0.03 -0.08* -0.01 
Communicatio
n Density 0.03 -0.01 0.03 -0.07 0.00 

Note. * p < .05. ** p < .01. *** p < .001. 

 
 
Figure 19. Traditional CSCL means and standard errors for Big Five Personality 
measures across roles. 

 

Linear discriminant function analysis (DFAs) was used as a follow up to the 

correlation analyses. DFAs is a commonly used data mining technique that is useful in 

determining whether a set of variables is effective in predicting category membership 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30
Openness Conscientiousness Extraversion Agreeableness Neuroticism

M
ea

n

Listener Driver Over-rider Lurker



	

	 126	

(Maimon & Rokach, 2010). The DFA generates a discriminant function, a statistical 

technique that predicts which one of the 4 alternative roles a person occupies based on a 

set continuous variables (i.e., Big Five personality measures).  

These analyses were intended to provide some initial evidence indicating whether 

differences in trait-based personality characteristics were related to the identified social 

roles students take on during collaborative interactions. However, the DFA results show 

that only the first function, Openness to experience, significantly discriminated among 

the roles. Overall, the results suggest that the clusters can be distinguished by the DFA, 

but not very well. Some degree of association was to be expected. Indeed, some degree of 

association was found, however, the DFA does not provide evidence that the roles are 

highly, consistently, or reliability related with learners’ personality traits.  

Are learners’ social roles static or do they change across different groups? 

The next set of analyses proceeded to test the second claim, and further evaluate if the 

social roles are a product of trait-based characteristics in individual students or emergent 

processes within the interaction. Specifically, if learners consistently occupy the same 

social roles in different groups with varying compositions, this will provide evidence 

against the emergent property perspective. The SMOC dataset, where students 

participated in multiple groups throughout the semester, was ideal for testing the second 

claim. In the AutoMentor dataset, students were reorganized into different groups 

midway through the course, and so there could be changes to the roles the students took 

on. However, there would only be a single possible role-transition per student, and so 

does not form sufficient examples to robustly test these hypotheses. Consequently, only 

the SMOC data was used in the following analyses. The frequency of the conversational 
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roles was explored over the nine days that chats took place (see Figure 20). We can see 

from the visualization that the social roles vary quite a bit from day to day. Some 

variation might be expected due to students being absent on certain days, but there are 

large variations in most instances, which would suggest the variation is perhaps not a 

product of student absence. Further, a qualitative examination of the data showed that 

individuals were indeed occupying different roles throughout the course.  

 

 
Figure 20. Frequency of social roles over time 

 

The findings from the qualitative inspection, correlation, and DFA analysis 

provide evidence that the social roles students take on during multi-party interactions are 

an emergent product of the interaction, rather than a trait-based characteristic of the 

student. The qualitative inspection showing students occupying different roles over the 

semester is particularly interesting and raises new questions regarding the dynamics of 
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social role transitions. The temporal dynamics of social roles is an important 

phenomenon that has not received much emphasis, so investigations into these patterns 

can provide valuable insights for CSCL research and practice.  

Therefore, the next analyses focus on quantifying and exploring patterns in social 

role transitions. Specifically, state transition networks (STNs) were used to better 

understand the evolution pathways of students’ social roles over time. A state transition 

model encodes the probability of transitioning between specific states (i.e., social roles) 

during successive chat interactions. By examining the transition probabilities between 

roles, STN quantifies the patterns in transitions from one role to another. In this context, 

the sociocognitive roles can be examined as an evolving, multi-state network, thereby 

allowing us to reveal temporal patterns that may otherwise remain hidden. Table 38 and 

Table 39 show contingency tables with raw counts for the transitions from the roles in the 

rows to the roles in the columns, under the four and six-cluster models, respectively. 

These raw counts are derived from looking at the roles for a given participant across 

sequential chat days, irrespective of when the student occupied that role.  

Emergence is a difficult concept to define concretely. In the context of these 

discourse roles, it is easier to contrast emergent roles with perfectly trait-based and 

perfectly arbitrary roles. If roles were entirely determined by stable characteristics of a 

person, then we should expect little to no variation in the role that a person takes on. On 

the other hand, if roles were entirely arbitrary, we would expect no stable relationship 

between an individual and her role, nor any influence of past role on future role (i.e., the 

role is independent from itself across time). The truly emergent role is therefore 

somewhere in the middle between these two extremes. While we may not be able to 
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identify the causal factors that drive role adoption from purely observational data, we can 

test for the viability of these two null-hypotheses. 

Table 38  

Contingency Table for Transitions Among Roles in SMOC for Four-Cluster Model 

Role Lurker Over-rider Driver Task-Leader 
Lurker 1063 564 382 582 
Over-rider 560 743 511 351 
Driver 468 643 693 472 
Task-Leader 677 479 489 565 
 
Table 39  

Contingency Table for Transitions Among Roles in SMOC for Six-Cluster Model 

Role Over-rider Driver Initiator Lurker Follower Task-
Leader 

Over-rider 644 472 126 344 107 292 
Driver 572 623 142 277 139 403 
Initiator 139 149 102 185 106 221 
Lurker 315 196 132 336 149 225 
Follower 158 111 92 202 110 166 
Task-Leader 402 407 194 336 191 477 
 

A chi-squared association test of these values showed that the subsequent roles 

are not independent of the prior roles (four-cluster: c2=461.93, df =9, p < 0.001; six-

cluster: c2=510.3, df=25, p < 0.001). This provides evidence against the purely arbitrary 

hypothesis, since if roles truly were arbitrary we would expect there to be no influence of 

history on the next role adopted. Table 40 and Table 41 provides the empirical 

conditional probability for the four and six-cluster models, respectively.  
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Table 40  

Observed Transition Frequencies for SMOC Data Set in SMOC for Four-Cluster Model 

Role Lurker Over-rider Driver Task-Leader 
Lurker 0.41 0.22 0.15 0.22 
Over-rider 0.26 0.34 0.24 0.16 
Driver 0.21 0.28 0.30 0.21 
Task-Leader 0.31 0.22 0.22 0.26 
 
Table 41 

Observed Transition Frequencies for SMOC Data Set in SMOC for Six-Cluster Model 

Role Over-rider Driver Initiator Lurker Follower Task-
Leader 

Over-rider 0.32 0.24 0.06 0.17 0.05 0.15 
Driver 0.27 0.29 0.07 0.13 0.06 0.19 
Initiator 0.15 0.17 0.11 0.21 0.12 0.25 
Lurker 0.23 0.14 0.10 0.25 0.11 0.17 
Follower 0.19 0.13 0.11 0.24 0.13 0.20 
Task-Leader 0.20 0.20 0.10 0.17 0.10 0.24 
 

Each cell in the table gives the empirical conditional probability of transitioning 

to the role in the column, given that the student was in the role on the row. As such, each 

row is a discrete probability distribution. The fact that the transition probabilities are so 

distributed is compatible with the emergence hypotheses. If roles were entirely trait-like, 

and determined by the individual, then we would expect the diagonal values to be 1.0 and 

the off-diagonals to all be 0.0.  If the roles were entirely arbitrary (i.e. uniformly random), 

then the all values in Table 40 (four-cluster model) would be 0.25, and in Table 41 (six-

cluster model) they would all be 0.16. A series of chi-squared goodness-of-fit tests were 

conducted to test whether these distributions were significantly different from both a 

uniform distribution, and a distribution where the identity transition (i.e., Driver -> 

Driver, Lurker -> Lurker, etc.) were 1.0 and all others 0.0. All of these provided strong 
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evidence (p < 0.001) that these distributions were neither uniformly random, nor similar 

to a perfectly trait-like distribution, providing further evidence against the two null-

hypotheses. 

 In order to determine if the effect of the prior role has a meaningful influence on 

the subsequent role, over and above what you might expect from chance, we must 

compare the conditional probability, P MtJ7 Mt , to the corresponding marginal 

probability, P(MtJ7). Following the method of D’Mello and Graesser (2012a), an effect-

size metric was computed for each transitions as follows: 

L Mt → MtJ7 =
P MtJ7 Mt − P(MtJ7)

1 − P(MtJ7)
 

This metric gives the difference between the conditional and marginal probabilities, 

scaled by the potential for such a difference given the size of the marginal. If the from- 

and to- variables are independent, this metric will be zero because the conditional and 

marginal probabilities will be equal. It will tend towards larger positive/negative values 

as the conditional probabilities get larger/smaller than the marginal probabilities. In 

addition to this metric, a one-sample t-test was performed on each potential transition. 

The marginal probabilities for the four-cluster role model were: Lurker = 0.30, Over-rider 

= 0.26, Driver = 0.22, and Task-Leader = 0.21. The marginal probabilities for the six-

cluster role model were: Over-rider = 0.24, Driver = 0.21, Initiator = 0.09, Lurker = 0.18, 

Follower = 0.09, and Task-Leader = 0.19. The results of the transition analyses are 

summarized in Tables 42 and 43. 
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Table 42   
 
Matrix of Effect-Size Metrics for Four-Cluster Role Model 

Role Lurker Over-rider Driver Task-Leader 
Lurker 0.16*** -0.06*** -0.10*** 0.01 
Over-rider -0.06*** 0.11*** 0.01 -0.06*** 
Driver -0.13*** 0.03* 0.10*** -0.01 
Task-Leader 0.01 -0.06*** 0.00 0.05*** 
Note. *** p < .001. ** p < .01. * p < .05. 

Table 43   
 
Matrix of Effect-Size Metrics for Six-Cluster Role Model 

Role Over-rider Driver Initiator Lurker Follower Task-
Leader 

Over-rider 0.07*** 0.05** 0.01*** 0.04 0.01*** 0.03*** 
Driver 0.06* 0.07*** 0.02*** 0.03*** 0.02*** 0.04 
Initiator 0.02*** 0.02*** 0.01** 0.02 0.01** 0.02*** 
Lurker 0.03 0.02*** 0.01 0.04*** 0.02** 0.02** 
Follower 0.02*** 0.01*** 0.01* 0.02*** 0.01*** 0.02 
Task-Leader 0.04*** 0.04 0.02 0.04 0.02 0.05*** 
 Note. *** p < .001. ** p < .01. * p < .05. 

  These matrices give a sense for the meaningful connections in a potential STN for 

these roles. We can see that the diagonal of each matrix is strongly significant, with 

relatively large metric scores. This might incline us to support the static trait hypothesis, 

however, when we see the number of significant off-diagonal values, it becomes clear 

that this cannot be the whole story. The metric scores on the diagonals are also not 

uniformly the largest for every row, leading us to believe that other transitions may be 

more meaningful. Additionally, the matrices are not symmetrical, meaning that the 

tendency to go from role A to B is not necessarily the same as the tendency to go from B 

to A. This also tends to support a picture of emergence and complex dynamical changes 

between the roles. 
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While we see both positive and negative significant transitions for the four-cluster 

model, we have only positive transitions in the six-cluster model. This seems to line up 

according to the more active or passive roles, so that while there may be a weak positive 

association within active (Driver, Over-rider) and passive (Lurker, Task-Leader) roles, 

there are only strongly negative associations across the active-passive divide. This may 

indicate that while the roles themselves are not trait-based, the tendency towards an 

active or passive role is. It is also interesting to note that for both of the roles in the six-

cluster model that do not occur in the four-cluster model (Initiator and Follower) the 

diagonal entry is not the largest value, whereas it is for all other roles. This may indicate 

that these roles are less stable, and might collapse into one of the other roles. Further 

analysis would be needed to investigate this possibility. 
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Chapter 10:  General Discussion 

The overall objective of this research was to investigate the discourse of 

collaborative learning to gain insight on why some groups are more successful than 

others. A group communication analysis (GCA) framework was developed to address the 

main questions raised in this dissertation. As described in chapter 4, the GCA applies 

automated computational linguistic techniques to the sequential interactions of online 

collaborative interactions. The GCA involves computing six distinct measures of 

participant sociocognitive interaction patterns (i.e., Responsiveness, Social 

Impact/Initiative, Internal Cohesion, Communication Density, and Sharing of New 

Information). The automated natural language metrics that make up the GCA allow us to 

understand how roles are constructed and maintained through the sociocognitive 

processes within an interaction. 

There are some notable limitations to the GCA concerning the variables selected 

for inclusion. Particularly, the current research focused only focused on sociocognitive 

variables. However, there are several other collaborative interaction characteristics that 

would likely be valuable when attempting to characterize the roles students occupy 

during group interactions. For instance, affective characteristics of individuals and groups 

have been shown to play a very important role in learning (Baker, D’Mello, Rodrigo, & 

Graesser, 2010; D’Mello & Graesser, 2012b; Graesser, D’Mello, & Strain, 2014). There 

has also been evidence suggesting the importance of behavioral characteristics, such as 

keystrokes, click-stream, response time, duration, and reading time measures, that could 

provide additional information related to the roles learners occupy in collaborative 

interactions (i.e., Antonenko et al., 2012; Azevedo, et al., 2010; Mostow & Beck, 2006). 
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Finally, the measure of topic relevance was used to provide an independent measure of 

group performance (i.e., separate from student learning gains) in the current research. 

However, this is arguably a quite important feature that could provide valuable 

information for understanding social roles in group interactions. These limitations will be 

addressed in subsequent research activities.  

In the chapter 7, Detecting Social Roles, the GCA was applied to two large, 

collaborative learning, and one collaborative problem solving dataset (learner N = 2,429; 

group N = 3,598). Participants were then clustered based on their profiles across the GCA 

measures. The cluster analyses identified roles that have distinct patterns in behavioral 

engagement style (i.e., active or passive, leading or following), contribution 

characteristics (i.e., providing new information or echoing given material), and social 

orientation. The four and six-cluster models revealed the following roles: Drivers, Task-

Leaders, Socially Detached learners, Over-riders, Followers, and Lurkers. The 

identified social roles (i.e., clusters) underwent stringent evaluation, validation, and 

internal and external generalization assessments. Specifically, bootstrapping and 

replication analyses illustrated that the roles generalize both within and across different 

collaborative interaction datasets, indicating that these roles are robust constructs. Thus, 

this methodological contribution of the GCA is expected to provide a more objective, 

domain independent, and deeper exploration of the micro-level intrapersonal and 

interpersonal patterns associated with student roles. Moreover, as a practical contribution, 

a substantially larger corpus of data can be analyzed with the GCA than when humans 

need to annotate the data. Interestingly, the GCA measures revealed behavioral and 

communication patterns of the social roles that do not entirely overlap with those 
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observed in Strijbos and De Laat’s (2010) framework. The identification of these 

additional roles might serve as a conceptual contribution for research focusing on 

understanding the social roles within multi-party communication. Overall, the results 

from chapter 6 indicate that learners’ patterns of linguistic coordination and cohesion, as 

measured by the GCA, can diagnostically reveal the roles that individuals play in 

collaborative discussions.  

In the chapter 7, Learning and Social Roles, the practical value of the of the 

identified roles in both the four- and six-cluster models was evaluated. Specifically, we 

investigated whether the social roles (Driver, Task-Leader, Lurker, and Over-rider, 

Socially Detached, and Follower) were meaningfully related student learning gains and 

group performance. Overall, the results suggest that a) the roles that learners occupy 

influences their learning, and b) the presence of roles within a group interaction can result 

in different outcomes for that group, being either more, or less beneficial for the 

collaborative outcome. This chapter provided two important contributions to the 

collaborative learning literature. First, the multilevel mixed-effects models applied in this 

chapter are rarely applied in CSCL research; however, they are the most appropriate 

statistical analysis for this nested structure data CSCL data (De Wever et al., 2007; 

Janssen et al., 2011; Pinheiro & Bates, 2000). Furthermore, these models impose a very 

stringent test of the influence of roles on group and student learning by controlling for the 

variance associated with differences in group and learner characteristics. As such, the use 

of mixed-effects models provides confidence in the robustness of the findings in this 

chapter. Second, the multi-level investigation conducted in this chapter addressed a 

frequently noted limitation found in collaborative learning research. Collaborative 
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interactions are inherently multilevel in that they can be analyzed with the group, 

individual student, and interaction between students as units of analysis. As such, 

prominent CSCL researchers have emphasized the need to conduct more rigorous, multi-

level research (Cress, 2008; De Wever, Van Keer, Schellens, & Valcke, 2007; Stahl, 

2005; Suthers, 2006b). However, the call for thorough, multi-level research is rarely 

answered in the literature. Instead, collaborative learning studies usually center on only 

one of these units of analysis (Stahl, 2013a). As a result, there has been little reflection on 

how the levels are connected and differentially influenced by phenomena, although it is 

evident that such connections are fundamentally important for the intellectual growth and 

practical value of collaborative learning research (Stahl, 2013a). As Kapur et al., (2011) 

said “It is worth reiterating that these methods should not be used in isolation, but as part 

of a larger, multiple grain size analytical program. At each grain size, findings should 

potentially inform and be informed by findings from analysis at other grain sizes—an 

analytical approach that is commensurable with the multiple levels (individual, group) at 

which the phenomenon unfolds. Only then can these methods and measures play an 

instrumental role in the building and testing of a process-oriented theory of problem 

solving and learning.” In line with this, the most noteworthy discoveries in chapter eight 

concerns the less Initiative findings for the influence of roles on student learning and 

group performance. The results suggested the difference in learning gains and group 

performance across the social roles is not a result of the students simply being more 

prolific. That is, more than simply talking a lot, the intra and interpersonal dynamics 

(captured by the internal cohesion, responsivity, and social impact measures) appear to be 

a more potent element in the success of collaborative groups and how much individual 
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students learn. 

Two additional limitations to this research are connected, and concern both the 

GCA methodology and the external validation of the identified roles. First, one of the 

central contributions of the GCA can also be viewed as a limitation. Specially, there are 

pros and cons associated with automated linguistic methodologies. There have been 

several analytical approaches to exploring language, discourse and communication in 

CSCL. Regarding analytical approaches, scholars typically rely on human coding that use 

content analysis schemes or surface level communication features. While there has been 

extensive knowledge gleaned from manual content analyses, manual methods are labor-

intensive, and as such are no longer a viable option with the increasing scale of 

educational data (Daradoumis et al., 2006). Additionally, manual content analysis based 

on CSCL coding schemes has been criticized for relying on preconceived categories of 

behavior for the phenomenon of interest rather than seeking to discover those phenomena 

in their unique situations (Stahl, 2006; Stahl et al., 2014). As such, this is one of the 

notable contributions of the GCA. However, this brings us to the related limitation. One 

of the benefits of the preconceived categories involved in manual content analyses is that 

these coded categories would afford a “gold standard” external validation. For instance, if 

these roles were identified through manually coded categories, then the cluster analysis 

results could be compared against the human annotated “gold standard”.  

There were two complications with the present data and GCA methodology that 

precluded a more traditional “gold standard” evaluation of external validity. One issue is 

that in the current research we explored substantially larger collaborative interactions 

than are typically analyzed with manual methods in CSCL research. The second issue is 
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that the GCA variables are comprised of rather complex and dynamic discourse 

characteristics that are calculated within segments of moving windows of 20 turns across 

the group interactions. Hence, collaborative interaction data of this size and multifaceted 

discourse characteristics would be quite difficult and time consuming, if not impossible, 

for humans to achieve. However, external cluster validation can be explored by either 

comparing the cluster solutions to some “gold standard” categories or by comparing them 

to meaningful external variables, i.e. variables not used in the cluster analysis 

(Antonenko et al., 2012). In the current research, this potential limitation was addressed 

by implementing the latter approach. Specifically, evidence for the external validation for 

the roles was provided by showing that the identified roles are related to both individual 

student learning and group performance in general, and that the relationship is 

theoretically meaningful.  

This dissertation serves as an initial investigation into understanding why some 

groups perform better than others. Despite the limitations, this research provided some 

fruitful lines of research for moving forward. Specifically, the methodological GCA 

framework allows us to understand how roles are constructed and maintained through the 

sociocognitive processes within an interaction. Ideally, the developed analytical tools and 

empirical findings of this research will contribute to our understanding of how 

individuals learn together as a group and thereby advance the learning sciences. More 

broadly, GCA provides a framework for researchers to explore the intra- and inter-

personal patterns associated with the participants’ roles and the sociocognitive processes 

related to successful collaboration.  
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Appendix A 
Example Mid Class Quiz (MCQ) 

1. According to Parental Investment Theory, which of the following people involved 
in a (heterosexual) relationship is likely to be the most upset: 

a. Ralph, who discovers that his wife, has been secretly saving money for 
their kids' college fund. 

b. Raquelle, who discovers that her husband Toby had sex with his kung fu 
instructor, Kimberly. 

c. Rashmi, who discovers that her boyfriend Kwame, has invested her 
parents' savings in a risky business venture. 

d. Paul, who discovers that his girlfriend Santiba formed a deep emotional 
connection with her diving instructor on vacation last month. 

e. Raul, who discovers that his girlfriend Petra had sex with another 
man while on a work trip to London. 

2. According to Parental Investment Theory, which of the following people involved 
in a (heterosexual) relationship is likely to be the most upset: 

a. Ralph, who discovers that his wife, Petra has been secretly saving money 
for their kids' college fund. 

b. Rashmi, who discovers that her husband Trent, has invested her parents' 
savings in a risky business venture. 

c. Paul, who discovers that his fiancé Dorothee has not had sex with anyone 
else since they first laid eyes on one another. 

d. Raul, who discovers that his girlfriend Santiba formed a deep emotional 
connection with another man while on a work trip to London. 

e. Raquelle, who discovers that her husband Toby formed a deep 
emotional connection with his kung fu instructor, Kimberly. 

3. According to Parental Investment Theory, which of the following people involved 
in a (heterosexual) relationship is likely to be the most upset: 

a. Ruby, who discovers that her boyfriend, Torsten, has been secretly saving 
money for their kids' college fund. 

b. Rupert, who discovers that his girlfriend Rashmi has formed a deep 
emotional connection with another man while on a work trip to London.  

c. Petra, who discovers that her fiancé, Noah, has not had sex with anyone 
else since he met her. 

d. Raquelle, who discovers that her partner Trent, had sex with another 
woman on vacation last month. 

e. Dorothee, who discovers that her fiancé, Paul has developed a strong 
emotional bond, with SuLing his pilates teacher. 

4. According to Parental Investment Theory, which of the following people involved 
in a (heterosexual) relationship is likely to be the most upset: 

a. Isabel, who realizes her husband Paul had sex with Santiba, his diving 
instructor, while on vacation last month. 

b. Raul, who discovers that his fiancé, Portia, has been secretly saving for 
their kids' college fund. 
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c. Raquelle, who discovers that her best friend Rashmi is pregnant with 
twins. 

d. Rupert, who discovered that his partner Ruby developed strong feelings 
for a co-worker on a recent work trip to London. 

e. Torsten, who realized his fiancé, Natalie had a sexual relationship 
with Kwame her guitar teacher. 
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Appendix B 
UT2014 SMOC Collaborative Interaction Details 

 
 

  

 
U

T2
01

4 
SM

O
C 

da
ta

se
t d

et
ai

ls 
of

 th
e 

ni
ne

 d
ay

s w
ith

 c
ol

la
bo

ra
tiv

e 
in

te
ra

ct
io

ns
. 

D
at

e 
In

st
ru

ct
io

na
l T

op
ic

 
C

Q
 

M
C

Q
 

G
ro

up
s N

 
W

or
ds

 p
er

 g
ro

up
 

8/
28

/2
01

4 
V

id
eo

/ G
en

de
r s

te
re

ot
yp

ic
al

  b
eh

av
io

r 
N

o 
N

o 
29

7 
M

 =
 2

09
.7

0,
 S

D
 =

 1
28

.5
 

9/
2/

20
14

 
O

pe
ra

tio
na

l d
ef

in
iti

on
 o

f a
ng

er
 

N
o 

N
o 

32
3 

M
 =

 2
08

.4
9,

 S
D

 =
 7

5.
2 

9/
16

/2
01

4 
V

id
eo

/ W
ha

t d
o 

dr
ea

m
s m

ea
n?

 
N

o 
N

o 
51

9 
M

 =
 1

11
.7

4,
 S

D
 =

 4
8.

9 

9/
23

/2
01

4 
V

id
eo

/C
on

di
tio

n 
an

d 
un

co
nd

iti
on

ed
 st

im
ul

us
 

N
o 

Y
es

 
30

6 
M

 =
 1

04
.5

4,
 S

D
 =

 4
3.

0 

10
/2

1/
20

14
 

Ev
ol

ut
io

na
ry

 p
sy

ch
ol

og
y 

pe
rs

pe
ct

iv
es

 o
n 

ge
nd

er
 

di
ff

er
en

ce
s i

n 
in

fid
el

ity
 

N
o 

Y
es

 
27

6 
M

 =
 1

64
.6

7,
 S

D
 =

 8
0.

7 

11
/4

/2
01

4 
So

ci
al

 in
te

ra
ct

io
n 

Y
es

 
N

o 
63

0 
M

 =
 1

07
.9

0,
 S

D
 =

 5
9.

9 

11
/1

3/
20

14
 

C
lin

ic
al

 p
sy

ch
ol

og
y:

 P
er

so
na

lit
y 

D
is

or
de

rs
 

N
o 

N
o 

43
5 

M
 =

 5
7.

96
, S

D
 =

 5
2.

9 

11
/1

8/
20

14
 

A
nx

ie
ty

 a
nd

 d
ep

re
ss

io
n 

di
so

rd
er

s:
 H

ow
 to

 ta
lk

 a
bo

ut
 

th
em

 a
nd

 li
st

en
 to

 o
th

er
s 

N
o 

N
o 

29
7 

M
 =

 1
45

.0
4,

 S
D

 =
 7

7.
6 

12
/4

/2
01

4 
O

pe
n 

D
is

cu
ss

io
n:

 N
o 

To
pi

c 
N

o 
N

o 
29

5 
M

 =
 2

01
.4

8,
 S

D
 =

 9
2.

2 

 



	

	 179	

Appendix C 
Density and Scatter Plots for GCA Variables 
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Appendix D 
Medoids for the Two-Cluster Solution Without the Communication Density Measure Across the 

GCA Variables  
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Appendix E 
Centroids for the Four-Cluster Solution Without the Communication Density Measure Across 

the GCA Variables  
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Appendix F 
Centroids for the Six-Cluster Solution Without the Communication Density Measure Across the 

GCA Variables  
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Appendix G 
Multivariate skewness and kurtosis evaluation chi-square Q-Q plot 
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