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ABSTRACT

Unsupervised feature learning is one of the key components of machine learning

and artificial intelligence. Learning features from high dimensional streaming data is

an important and difficult problem which is incorporated with number of challenges.

Moreover, feature learning algorithms need to be evaluated and generalized for time

series with different patterns and components. A detailed study is needed to clarify

when simple algorithms fail to learn features and whether we need more complicated

methods.

In this thesis, we show that the systematic way to learn meaningful features

from time-series is by using convolutional or shift-invariant versions of unsupervised

feature learning. We experimentally compare the shift-invariant versions of cluster-

ing, sparse coding and non-negative matrix factorization algorithms for: reconstruction,

noise separation, prediction, classification and simulating auditory filters from acoustic

signals. The results show that the most efficient and highly scalable clustering algorithm

with a simple modification in inference and learning phase is able to produce meaningful

results. Clustering features are also comparable with sparse coding and non-negative

matrix factorization in most of the tasks (e.g. classification) and even more successful in

some (e.g. prediction). Shift invariant sparse coding is also used on a novel application,

inferring hearing loss from speech signal and produced promising results.

Performance of algorithms with regard to some important factors such as: time

series components, number of features and size of receptive field is also analyzed. The

results show that there is a significant positive correlation between performance of clus-

tering with degree of trend, frequency skewness, frequency kurtosis and serial correlation

of data, whereas, the correlation is negative in the case of dataset average bandwidth.

Performance of shift invariant sparse coding is affected by frequency skewness, frequency

kurtosis and serial correlation of data. Non-Negative matrix factorization is influenced
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by data characteristics same as clustering.
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1. Introduction
Feature learning is a very important problem in today’s world inundated with

data. Three classes of algorithms have been found to be very effective for unsuper-

vised feature learning: sparse coding that minimizes the reconstruction error subject

to sparsity constraints, non-negative matrix factorization (NMF) which is also called

non-negative sparse coding in some cases as well as clustering that captures the data

distribution. Coates et al. [CN11, CLN10] analyzed the performance of several feature

learning algorithms, such as, sparse autoencoders, sparse RBMs, k-means clustering,

and Gaussian mixture model, for the task of classification in images. The simplest

and computationally efficient k-means clustering emerged as the best performer on the

CIFAR-10 and NORB datasets.

In the case of time series, however, Keogh and Lin [KL05] made objections to

existing methods of clustering and found it meaningless in some cases.The standard way

to deal with time-series is to sample it using a shifting window; the data distribution

within a window is assumed to be stationary. It was found, if the overlap between

consecutive windows is high, the features learned using clustering is independent of the

data and hence, were deemed meaningless. On the other hand, overlap between two

consecutive windows is necessary because without overlap, choice of offset for the first

window would become a critical parameter and choices that differ by just one point can

give arbitrarily different results.

Since 2005, the challenges of time-series clustering have been well-studied.

The problem with the previous works is proposing heuristic solutions without analyzing

the underlying issues, complexity, missing parts of information, lack of real world high

dimensional data validation and failing to find desired patterns. To the best of our
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knowledge none of the previous works focused on comparing clustering feature learning

approach with other feature learning algorithms. Furthermore, even though sparse

coding has been widely used in different applications and specially as a subroutine in

deep learning, there is a lack of evaluation method to study quality of learned features

[HCSH15].

Our goals are two-fold: 1) to analyze when clustering of time series is meaning-

less, how this problem can be solved using shift-invariant algorithms and how meaningful

features can be learned from time-series using shift-invariant (Convolutional) cluster-

ing algorithms, and 2) to evaluate the performance of these three clustering, sparse

coding and non-negative matrix factorization for unsupervised feature learning from

different benchmark time-series datasets for applications of reconstruction, noise sepa-

ration, prediction, classification and simulating auditory filters . Furthermore, we report

our findings on inferring hearing loss from an individual’s speech using a novel line of

investigation.

Structural analysis of data along with evaluating algorithms with regard to

number of features and size of receptive field provides a prescription of choosing the

best algorithm and parameters for a given dataset.

1.1 Contributions

� Proposing a systematic way of learning meaningful features from time series data

using clustering algorithm.

� Evaluating results of three unsupervised feature learning algorithms on five differ-

ent tasks.

� Analyzing the factors that can significantly affect performance of algorithms on

representing data.

� Providing a prescription of choosing the best feature learning algorithm and pa-

rameters for a given dataset.
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� Applying shift invariant sparse coding to infer hearing loss of hearing impaired

individuals from their speech.

1.2 Outline

This thesis will proceed as follows:

Chapter 2: Literature Review. Chapter 2 will cover the previous works

on unsupervised feature learning, its applications and evaluation methods. Since, un-

supervised feature learning concerns with a wide area of research, we will focus on the

three algorithms that have been used in this thesis.

Chapter 3: Models and Methods. In this section the three learning algo-

rithms, the applications that the learned features are applied on, including reconstruc-

tion, noise separation, prediction, classification and simulating encoding signals as well

as the evaluation metrics are introduced. The approach that has been used for inferring

hearing loss of hearing impaired individuals’ from their speech is also introduced in this

section.

Chapter 4: Experimental Results. The experimental results and evalu-

ation of results are presented in chapter 4. In this section, we will also analyze the

results, take the factors that may influence performance of algorithms into account, and

provide a prescription on selecting the feature learning algorithms on different data and

situations.
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2. Literature Review
In this section literature review of the relevant works on the three unsupervised

feature learning algorithms, the five applications and evaluation methods is presented.

2.1 Subsequence time series clustering

Clustering is one of the important tasks of data mining that can also be seen

as an unsupervised feature learning algorithm [CLN10]. K-means clustering had been

applied by Das et al. [DLM+98] on timeseries subsequences in 1998. A time series

can be defined as an ordered sequence of real valued numbers which are uniformly

sampled measurements of an event or quantity. Many signals of interest such as speech,

stock price, and physiological signals are time series. Many other works have used

subsequence clustering as a subroutine [TSD00, FCNL01, HDT02, JLS02, MU01] in

different tasks such as prediction, abnormality detection and prediction. In 2005, Keogh

and Lin using some experiments showed subsequence of time series clustering (STS

clustering) is meaningless [KL05]. Since 2005 researchers have tried to figure out the

challenges of time series clustering and find a solution [Che05, Che07, DBD09, MKBS09,

RKLE12, CHKB13, MSRR13, RNR12, SYCC+15]. Authors in [ZAT14] have reviewed

subsequence time series clustering, found three main research proposing solutions. The

problem with the previous works is proposing heuristic solutions without analyzing

the underlying issues, complexity, missing parts of information, lack of real world high

dimensional data validation, and failing to find desired patterns.

2.2 Shift-invariant sparse coding

Sparse coding is a signal representation method which adopts a dictionary of

features [AEB06, MBPS09]. Concentration on shift invariant versions of sparse coding
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has increased in the applications of audio and image signals during last decade [SL06,

MLG+08, CPR13, BL14, Woh14, Woh16]. Sparse coding has many applications in the

pipeline of unsupervised feature learning such as audio classification[LPLN09], cognitive

science [AL01], deionising and reconstruction of audio signals [HCSH15] and prediction

[FRG14]. Motivations of using shift-invariant version of sparse coding is different based

on the area of study. In the case of audio which is a type of time series, authors in

[SL06] refer to disadvantages of blocking and role of choosing the offset of first window.

2.3 Non-negative matrix factorization

Non-negative matrix factorization [PT94] is also a method of finding a suitable

representation of data. There are different types of non-negative matrix factorization

which use different cost functions. In the case of using mean squared cost function and

L1 regularization, this algorithm is very similar to sparse coding [HD11], so it can be

called non-negative sparse coding [Hoy02, TN12]. There are some works to make NMF

algorithm shift-invariant [Beh03, PPC08].
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3. Models and Methods
This section introduces the algorithms and methods that have been used to

make clustering of time series meaningful and evaluate the algorithms. A brief descrip-

tion of each application is also included.

3.1 Algorithms

This section discusses unsupervised shift-invariant (or convolutional) feature

learning algorithms for time series data. Choice of sliding window with maximum over-

lap between two consecutive windows is to include all possible phases of each pattern

in the learning stage. So shift-invariant learning approaches should be able to find the

patterns even if they are distributed in different phases. Stochastic gradient descent

which is an incremental method is used for optimizing the objective function.

3.1.1 Shift-invariant spherical clustering

In case of high-dimensional data, such as time-series, the direction of a data

vector is more important than its magnitude [SGM00] which is captured by cosine

similarity in spherical clustering. Shift-invariant spherical clustering learns nonorthog-

onal and shift-invariant features that partitions the input space on the surface of a

d-dimensional hypersphere of unit radius. The algorithm captures the density of the

data in an unsupervised manner by maximizing the following objective on convergence:

`(X ,D) =
k∑
i=1

∑
xj∈N (i)

(xj ∗Di) (3.1)

where X = {x1, x2, ...xt} is the set of n-dimensional data points, D = {D1, D2, ...Dk}

is the set of d-dimensional features (or cluster centers), d ≥ n, N (i) is the set of data

points in the neighborhood of Di, and ∗ is the convolution operator. The performance of

shift-invariant clustering algorithm is evaluated using frequency analysis and statistical
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metrics, such as: meaningfulness, entropy and F-measure.

3.1.2 Shift-invariant sparse coding

Sparse coding may be construed as a generalization of the winner-take-all

spherical clustering [AEB06]. The algorithm consists of two steps: encoding which

is often computed using a matching pursuit-like [MZ93] algorithm, and learning by

minimizing the following objective function:

ε(X ,D) =
1

2
||X −

k∑
i=1

Di ∗ αi||22 + λ||α||1 (3.2)

where α is the coefficient vector and λ is a parameter governing the tradeoff between

accurate reconstruction of the data points and the regularization.

3.1.3 Shift-invariant non-negative matrix factorization

Non-negative matrix factorization (NMF) is an unsupervised feature learning

algorithm and different objective functions are proposed. In the case of using mean

squared cost function and L1 regularization, it is very similar to shift invariant sparse

coding [Beh03, PPC08]. The only difference is that both data and dictionary have to

be non -negative. The objective function is as follows:

ε(X ,D) =
1

2
||X −

k∑
i=1

Di ∗ αi||22 + λ
∑

f(α) (3.3)

The difference between sparse coding and NMF is the sparsity constraints. The form

of f defines a measurement for trade off between reconstruction accuracy and sparsity

level. The typical choice of f in NMF is f(α) = |α|. The convolution is used instead of

dot product to learn shift invariant features.

3.2 Applications

In this section the applications which have been used for evaluation of algo-

rithms are introduces.
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3.2.1 Reconstruction

Reconstruction of a signal can be done using a matching pursuit algorithm and

reconstruction signal-to-noise ratio (SNR) is a widely used measure for evaluating the

ability of a dictionary of features with respect to rate fidelity or ability of reconstruction

[MLG+08, SL06]. As the number of coefficients increases, SNR also increases which

shows improvement of reconstruction. However, a larger number of coefficients need

more computational cost because of a larger number of iterations in matching pursuit

algorithm. SNR can be calculated in decibels (dB) using the following equation:

SNRdB = 20 log10

Asignal
Aresidual

(3.4)

Asignal is amplitude of signal (a timeseries window) and Aresidual is amplitude

of reconstruction error.

3.2.2 Noise separation

Four separation oriented measures are introduced in [HCSH15] to evaluate

ability of dictionaries in noise separation. ε-error noise to speech separability (εNSS) is

one of them. Given a speech dictionary Ds = {D1, D2, ..., DI} and a noise dictionary

Dv = {D1, D2, ..., DJ}, a speech evaluation dataset Xs, and a noise evaluation dataset

Xv,

εNSS = εASD(Ds,Xv) − εASD(Ds,Xs) (3.5)

where εASD is average sparseness degree of representation when the error tolerance is

fixed as ε. A matching pursuit algorithm was used for sparse decomposition in encoding

(testing) step. In this algorithm each feature can be used multiple times which is

an applicable property for shift-invariant algorithms because they need less number of

features to represent the data, the dictionaries do not have to be over complete even in

sparse coding.
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3.2.3 Prediction

Three methods of online prediction with capturing temporal correlations have

been introduced in [FRG14]. An exponentially decaying window technique is used for

prediction task using the three shift invariant algorithms. Considering observations

xτ ∈ <n and dictionary of features D which is learned on data {xτ}t−1τ=1, the vector of

coefficients αt corresponding to the tth measurement xt is found as:

αt = arg min
α
Ltγ(α,D) (3.6)

where

Ltγ(α,D) =
1

2

t∑
τ=1

γt,τ ||xτ −Dα||22 + λ1||α||1 (3.7)

where the forgetting factor γt,τ = γt−τ , γ ∈ (0, 1] allows to capture temporal correlation

in α while down-weighs influence of old measurements.

The performance of algorithms are measured using two metrics, Mean Absolute

Percentage Error (MAPE) [HK06] and relative Root Mean Square Error (RMSE).

MAPE =
100

n

n∑
i=1

|xt − x̂t
xt
| (3.8)

where x̂t is the forecasted value for observation at time t.

RMSE =

√√√√ 1

n

n∑
i=1

(xt − x̂t)2 (3.9)

3.2.4 Classification

A simple classification algorithm (k-NN) is used to classify the time series using

learned features [Alt92]. After unsupervised feature learning step, a mapping between

a new signal and a feature vector is needed to train the classifier. These features can

be selected arbitrarily [Coa12]. This step is called feature encoding or inference. The

features feed k-NN as an input. The classification error rate is used to evaluate quality

of learned features in classification. K-NN works as follows: when a sample data arrives,

k-NN finds the k nearest neighbors in the labeled training set based on some distance
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measures (e.g. Euclidean distance) and the classification is done using a voting approach.

3.2.5 Simulating auditory filters

Authors in [SL06] have used the convolutional sparse coding to simulate au-

ditory filters. They have shown the acoustic waveforms can be represented efficiently

using a non-linear model based on a population spike code. The spikes are able to

encode temporal positions and magnitudes of acoustic features precisely. They have

also shown that there is striking similarities between learned features from speech and

auditory nerve-filters.

Using box plots they have shown similarities of learned features with cat au-

ditory nerve filters and gammatones filter bank which is a mathematical approximation

of cochlear filters.

3.2.6 Inferring hearing loss from speech

Shift-invariant sparse coding is used to learn kernels (features) from speech.

Then, unimportant and harmful features were detected and removed using the method

introduced in [HCSH15]. The kernel functions are analyzed using the a set of neuro-

physiological metrics and statistical metrics to infer hearing loss of hearing impaired

individual.

Tuning Curve (TC)

A frequency TC is used to display the auditory threshold at various frequencies

for a single auditory neuron. Each nerve fiber has a characteristic frequency (CF)

where it responds at threshold. TCs should be symmetric at frequencies below 1000

Hz, whereas, at higher frequencies the curves become increasingly asymmetric with a

very sensitive, frequency-selective tip and long, broadly-tuned tail. Hair cell damage

is a leading cause of hearing loss. Flattened tip of the TC happens due to damage of

outer hair cells results and loss of sensitivity. However, loss of inner hair cells allows the

TC to maintain its overall shape but there is a loss of sensitivity. Loss of both inner
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and outer hair cells result in a major loss of sensitivity which causes a much broader

shape to the TC. The distribution of CFs will highlight the frequency regions within

the audible range where hair cells are damaged or missing; such regions should be larger

or more frequent in individuals with severe-to-profound hearing loss than normal ones.

The shape of the TC is captured by its bandwidth and Q10 value.

Q10 value

The sharpness of a TC is determined by the width of the V-shape of the curve

relative to the CF which is commonly expressed in terms of the quality (Q) factor. The

Q10 is typically used; it refers to the point that is 10 dB below the peak. Formally,

Q10 = fC/BW where fC is the CF and BW is the bandwidth. The half-power points

are the usual cutoff values which are used to define a bandwidth. Since it is difficult to

determine the half-power points of TCs, the points on the curve that are 10 dB up from

the minimum point of the TC are used. The bandwidth of a TC provides important

information about its frequency selectivity; as bandwidth increases, frequency selectivity

decreases. Thus, hearing-impaired individuals ought to have greater bandwidth than

their normal counterparts which can be captured by the mean bandwidth of all TCs

across the spectrum. For a particular CF, narrower the bandwidth, larger is the Q10 dB

value. Due to greater bandwidth, the slope of Q10 values increases slower with frequency

for hearing-impaired individuals as compared to normal-hearing ones.

Perception Measurements

Three measurements were considered to show the level of hearing loss in our

subjects.

Hearing measurement.

Each subject’s hearing was quantified by calculating the pure tone average

(PTA) which provides the average of the hearing threshold levels at 500, 1000, and 2000

Hz. This frequency region is commonly referred to as the speech frequency region of
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the audiogram. The PTA is a decibel level that quantifies the degree of hearing loss for

each ear.

Perception measurement.

All subjects’ speech perception ability was evaluated using the AzBio sentences

[SDL+12]. The AzBio sentences are recorded by both male and female talkers and

are routinely used to evaluate the speech perception capabilities of hearing-impaired

subjects. All subjects listened to three 20-sentence AzBio lists, one in quiet and two

in noise, and listeners were required to repeat the sentences heard. Listener responses

were scored as percent correct based on the number of words repeated correctly across

all sentences in a list.

Hearing loss age of onset.

Hearing loss age of onset is the age which hearing loss was started. This feature

is considered because it affects ability of speaking, and there should be a significant

difference between a person who have never had a hearing ability and a person who lost

his hearing ability when he was older.

3.2.7 Structural analysis of time series

In this section, performance of algorithms with regard to structural analysis

of data is analyzed. There are some classical and advanced statistical features which

describe global characteristics of time series [WSH06]. Trend, seasonality, skewness,

kurtosis, frequency skewness, frequency kurtosis, serial correlation, and average band-

width are eight of the quantified descriptors that are used to be checked in this thesis.

A normalized metric to [-1,1] shows degree of presence of a feature.

Trend and seasonality

Trend and seasonality are common features of time series. Traditionally, every

time series can be decomposed to trend, cyclic, seasonal, and irregular components.

Seasonal-Trend decomposition procedure based on Loess (STL) [CCMT90] which is a
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filtering procedure for decomposing a time series into trend, seasonal, and reminder

components is used to decompose time series. Let Y be the original time series, X be

de-trended time series which is computed using X = Y −T , Z be de-seasonalized signal

Z = Y − S, and reminder series is defined as Y ′ = Y − T − S. Then, measures of

trend and seasonality are as follows [WSH06]: degree of trend= 1− V ar(Y ′)
V ar(Z)

and degree

of seasonality = 1− V ar(Y ′)
V ar(X)

.

Skewness

Skewness is defined as a measure of symmetry or lack of symmetry. A distri-

bution of data is considered symmetric if left and right of its center point look the same.

Degree of asymmetry of values around the mean value for a univariate data Yt can be

calculated using the skewness coefficient S = 1
nσ3

∑n
i=1(Yt − Ȳt)3, where, Ȳt is the mean

and σ is the standard deviation and n is the number of data points. Skewness of normal

distribution is zero. Negative values of skewness indicate the data are skewed left and

positive values indicate the data is skewed right. Skewness is actually a measure to

show if the data distribution is heavy tail. Frequency skewness is calculated in the same

manner except the data is transformed to frequency domain.

Kurtosis

Kurtosis is a measure to show if distribution of data is peaked or flat comparing

with a normal distribution. Kurtosis for a univariate time series Yt can be calculated as

follows: K = 1
nσ4

∑n
i=1(Yt− Ȳt)4. Since, the kurtosis for a standard normal distribution

is 3, the excess kurtosis is K−3. The standard normal distribution has a kurtosis of zero

while positive kurtosis indicates a peaked distribution and negative kurtosis indicates a

flat distribution.

Serial correlation

Serial correlation is another important properties of time series [WSH06]. To

extract a measure which shows the degree of serial correlation of a dataset, autocorrela-
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tion function can be used. Autocorrelation, at a single time is, rk = Corr(Yt, Yt−k) where

k is time lag. The average autocorrelation is considered as degree of serial correlation.

Average bandwidth

Bandwidth is measure to show difference between lower and upper frequencies

and is typically measured in hertz. Sometimes it is considered as the difference between

the upper and lower cutoff frequencies (e.g. -3 dB). It is considered to show if frequency

spectrum contains a wide range and is thick or not.
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4. Experimental Results
Experimental results for evaluation of clustering algorithms and comparison

with two other feature learning methods are presented in this section.

4.1 Shift-invariant clustering is meaningful

To understand Keogh’s report, his experiment was replicated using Cylinder-

Bell-Funnel time series in the UCR datasets [CKH+15]. For each pattern, 30 normalized

instances were concatenated together with each instance having a length of 128. Then,

k-means clustering (k = 3) was applied to the subsequences of the time series using a

sliding window technique, with w = 128 and s = 1 (w and s represent window length

and slide length). While we expected the features capture the three patterns, they were

closely similar to sine waves, as shown in Figure 4.1. Figure 4.1 illustrates one sample

Fig. 4.1: a) patterns of CBF dataset, and b) their frequency spectrum.

of each cylinder, bell, and funnel patterns and their frequency spectrums while Figures

4.2 and 4.3 contain results of shift-variant and shift invariant algorithms on the CBF

dataset respectively. To figure out what these features captured, we plotted power

spectrum of each pattern that can be calculated using Discrete Fourier Transform, and
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Fig. 4.2: Results of applying different shift-variant algorithms on Cylinder, Bell, Funnel

dataset [KL05]. Top rows shows the learned kernels using a) k-means, b) spherical clus-

tering, c) sparse coding, d) non-negative matrix factorization (NMF), and e) principal

component analysis (PCA). The bottom row shows the corresponding power spectra.

Fig. 4.3: Results of applying shift invariant versions of a) clustering, b) sparse coding,

and c) non-negative matrix factorization on CBF dataset [KL05].

found all three patterns have strong peaks in the same frequency, however the same

patterns in the dataset had different phases. Figure 4.1 shows power spectrum of a

sample of each signal. As the plots show, the features capture the frequency of data.

To validate this claim, we generated a set of five pure tones with frequencies of

100, 500, 1000, 2000, and 3000 Hz. We concatenated the tones in three different orders
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and then concatenated the three signals to get one long signal. Then the signal was

broken to the subsequences with maximum overlap. K-means clustering could find the

frequencies, but the cluster centers were a combination of almost all frequencies. K-

means algorithm with Euclidean distance as similarity measure is not able to separate

different patterns when they are distributed in different phases. The learned features

and their power spectrum are shown in figure 4.4.

Fig. 4.4: Results of applying k-means on pure tone dataset. k-means is not able to

separate the patterns in the dataset and the features capture multiple frequencies that

are available in dataset.

Since, k-means clustering failed in our experiment, we applied four different al-

gorithms to our synthesized dataset and summarized the results in table 4.1 where sph,

omp1, shift inv. sph, and shift inv. omp1 stands for online clustering with cosine simi-

larity measure, and shift-invariant online clustering. RMSE is mean of root square error

between a pure tone and its best match cluster center, CF-Error is difference of center

frequencies (location of strong peak in power spectrum) between set of pure tones and

set of cluster centers, whereas Distance of frequency distribution is difference between

frequency distribution of pure tone signals and the cluster centers which calculated by

fast Fourier transform.

Table 4.1: Results of different clustering algorithms on pure tone dataset

RMSE CF-Error Dist. of frequency

k-means 0.0124 3500 18.9475

Sph 0.0140 2300 29.5232

Shift inv. Sph. 9.4247e-05 0 0.7861
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Shift-invariant algorithms were able to capture the frequencies and separate

the patterns. Figure 4.5 shows the features learned by shift-invariant clustering.

Fig. 4.5: Results of applying shift-invariant spherical clustering on pure tone dataset.

Shift-invariant spherical clustering is able to separate the patterns in the dataset and

each feature captures frequency of one pattern.

We also applied the shift-invariant algorithms on CBF dataset and got the

patterns back. The results are shown in figure 4.2. Performance of shift-invariant

spherical clustering algorithm, were also evaluated on UCR datasets based on entropy, F-

measure as well as ratio of average within-cluster-distance and average between-cluster-

distance. Eight datasets were selected to be comparable with results that were reported

in [JJO11]. Figure 4.6 shows performance of our algorithm in comparison with clustering

algorithm with different similarity measures with respect to entropy and F-measure.

Fig. 4.6: Comparing performance of shift-invariant spherical clustering with other clus-

tering algorithm which were presented in [JJO11]. ED: Euclidean distance, DTW: dy-

namic time warping, WDTW: weighted dynamic time warping and Conv: shift-invariant

clustering.
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Figure 4.7 shows performance of our algorithm in comparison with clustering

algorithm with different similarity measures with respect to meaningfulness.

Fig. 4.7: Comparing performance of shift-invariant spherical clustering with other clus-

tering algorithm which were presented in [JJO11]. ED: Euclidean distance, DTW: dy-

namic time warping, WDTW: weighted dynamic time warping and Conv: shift-invariant

clustering.

The ratio of average within-cluster-distance and average between-cluster-distance

is known to show meaningfulness of clustering. Nearest to zero is the best. The results

show that in all of datasets shift-invariant clustering was able to learn meaningful fea-

tures, however, performance of clustering is shown in entropy and F- measure plots.

The lower the value of entropy, the higher the clustering quality, on the contrary, the

higher the value of F-measure, the better the clustering quality. The results show that

in order to get the best performance in clustering, choice of similarity measure plays an

important role. For example if in a dataset, the position of each pattern is important,

then shift-invariant approaches cannot be the best. We can also use a penalty measure

for large lags same as the method which is used in [JJO11] for DTW.
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4.2 Comparing shift-invariant unsupervised feature

learning methods

To understand Keogh’s report, his experiment was replicated using Cylinder-

Bell-Funnel time series in the UCR datasets [CKH+15]. For each pattern, 30 normalized

instances were concatenated together, with each instance having a length of 128. Then,

k-means clustering (k = 3) was applied to the subsequences of the time series using a

sliding window technique, with w = 128 and s = 1 (w and s represent window length

and slide length). While we expected the features capture the three patterns, they were

closely similar to sine waves, as shown in Figure 4.2.

To figure out what these features captured, we plotted power spectrum of each

pattern that can be calculated using Discrete Fourier Transform and found that all three

patterns have strong peaks in the same frequency; however the same patterns in the

dataset had different phases.

4.2.1 Reconstruction

In this section the algorithms are evaluated with respect to signal reconstruc-

tion. Three sets of features were learned on TIMIT training set [ZSG90] and Stock

price dataset (Standard and poor 500 closed price). Their reconstruction SNR is shown

in figure 4.8. Reconstruction SNR using a dictionary of random Gaussian noise is also

calculated to show the effect of feature learning in reconstruction. The results show

ability of reconstruction depends on dataset. In the case of speech data, sparse coding

learns the best feature, however, shift invariant clustering is more successful in stock

price data.

4.2.2 Noise separation

In order to evaluate the algorithms in the noise separation application, a ran-

dom subset of 1000 seconds of speech from TIMIT dataset were chosen for testing
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Fig. 4.8: Reconstruction SNR for TIMIT and Stock price

performance of two shift-invariant algorithms. Three kinds of noise including babble,

pink, and white noise were down sampled to sampling frequency of 16 KHz.118 seconds

of each were chosen for training and rest of 117 sec were excluded for testing. Length of

window for all the experiments was 20 ms. Dictionaries of 50 atoms were learned using

each algorithm on the four datasets. A Matching pursuit algorithm was used for sparse

decomposition in encoding step. Slope of linear regression line for the last 5 points was

used as a stopping criteria in learning section with 0.001 as a threshold. The largest

value of ε-NSS is better. Figure 4.9 shows performance of algorithms for noise sepa-

ration. The three algorithms are able to separate white noise from speech. However,

separating babble noise and pink noise is more complicated. Babble noise is a mixture

of speech and is difficult to be removed. Pink noises are different from speech; however,

they have overlapped spectrum with speech and do not satisfy the noise assumption of

sparse coding. In these experiments sparse coding performed better. Even though, if

error tolerance is low, clustering also performed as well as sparse coding. Performance

of non-negative matrix factorization is between sparse coding and clustering.
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Fig. 4.9: Comparisons of e-NSS. Three noises, namely white, pink and babble noises are

used.

4.2.3 Prediction

Three datasets are used to compare performance of algorithms in prediction

task: 1) Darwin sea level pressures (SLP), which contains monthly values of the Darwin

Sea Level Pressure series from 1882 to 1998, 2) Electricity demand (ELD), 15 minutes

averaged values of power demand in the full year 1997, and 3) Standard and Poor 500

(SandP) daily stock price from 1960 till 2016. The results of one step prediction are

shown in table 4.2 and table 4.3
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Table 4.2: Prediction MAPE for the three datasets. Clust, Sparse and NMF refer

to shift invariant versions of clustering, sparse coding and non-negative matrix factor-

ization.RNN refers to recurrent neural network. Number of hidden units in RNN is

considered equal to the number of features in the feature learning algorithms.

Algorithms Clust Sparse NMF RNN

SLP 12.7087 17.8825 16.0027 7.76

ElD 5.0779 34.8392 5.1932 1.899

SandP 1.4805 2.3810 1.7271 0.68

Table 4.3: Prediction RMSE for the three datasets. Clust, Sparse and NMF refer to shift

invariant versions of clustering, sparse coding and non-negative matrix factorization.

RNN refers to recurrent neural network. Number of hidden units in RNN is considered

equal to the number of features in the feature learning algorithms.

Algorithms Clust Sparse NMF RNN

SLP 0.1724 0.2286 0.2196 0.1138

ElD 0.0640 0.3583 0.0683 0.02716

SandP 0.0196 0.0287 0.0246 0.0121

Figure 4.10 shows parts of predicted signals using the features learned from

three algorithms.
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Fig. 4.10: Prediction results for SLP, ELD and SandP datasets

4.2.4 Classification

Clustering and sparse coding are widely used to learn features from data and

classify the patterns using deep structures to get high accuracy. However, our goal is not

finding the best accuracy but comparing three groups of unsupervised feature learning

algorithms in time series classification. For this reason a simple classification algorithm

(k-NN) has been chosen to classify the time series using learned features and in all of

the experiments k is set to one. In learning part, maximum overlap was considered

between consecutive windows. In inference part also two simple methods were chosen:

1) dot product of features with the time series and 2) results of cross correlation and

their lags. These two inferences were used to feed 1-NN algorithm. For each dataset

the number of learned features for clustering and sparse coding is the same.
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Table 4.4: Information about datasets

Datasets Train-size Test-size length # of classes Type

Beef 30 30 470 5 SPECTRO

BeetleFly 20 20 512 2 IMAGE

BirdChicken 20 20 512 2 IMAGE

CBF 30 900 128 3 SIMULATED

DistalPhalanx- 400 139 80 3 IMAGE

OutlineAgeGroup

Earthquakes 322 139 512 2 SENSOR

ECG 200 100 100 96 2 ECG

ECG 5000 500 4500 140 5 ECG

ElectricDevices 8926 7711 96 7 DEVICE

Face (four) 24 85 350 4 IMAGE

Face (all) 560 1690 131 14 IMAGE

FacesUCR 200 2050 131 14 IMAGE

Fish 175 175 463 7 IMAGE

FordB 3636 810 500 2 SENSOR

Ham 109 105 431 2 SPECTRO

Strawberry 613 370 235 2 SPECTRO

Trace 100 100 275 4 SENSOR

TwoLeadECG 23 1139 82 2 ECG

Wine 57 54 234 2 SPECTRO

WordSynonyms 267 638 270 25 IMAGE

Worms 181 77 900 5 MOTION

WormsTwoClass 181 77 900 2 MOTION
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Table 4.5: Classification Error Rate

Datasets clust- clust- sparse- sparse- nmf- nmf- Raw

dot xcorr dot xcorr dot xcorr data

Beef 0.3667 0.5333 0.4000 0.6333 0.4000 0.5333 0.333

BeetleFly 0.3500 0.6000 0.3000 0.5000 0.2000 0.5000 0.250

BirdChicken 0.5000 0.4000 0.3500 0.5500 0.4000 0.4500 0.450

CBF 0.1244 0.0256 0.1444 0.1978 0.1400 0.2400 0.148

DistalPhalanx- 0.2800 0.2575 0.2575 0.2625 0.2475 0.3125 0.218

OutlineAgeGroup

Earthquakes 0.3199 0.3602 0.3043 0.3571 0.2646 0.3665 0.326

ECG 200 0.2000 0.1600 0.1900 0.1900 0.1000 0.2100 0.120

ECG 5000 0.0807 0.1036 0.0829 0.829 0.0842 0.1004 0.075

ElectricDevices 0.4775 0.5676 0.4551 0.5656 0.4462 0.5274 0.450

Face (four) 0.2614 0.3977 0.2955 0.4659 0.3864 0.5455 0.216

Face (all) 0.4473 0.5633 0.4888 0.5787 0.6503 0.5811 0.286

FacesUCR 0.5776 0.5137 0.4615 0.5824 0.7288 0.6273 0.231

Fish 0.5943 0.5943 0.3657 0.5771 0.5314 0.5886 0.217

FordB 0.4607 0.4587 0.4849 0.4788 0.4970 0.4956 0.442

Ham 0.4095 0.4762 0.3333 0.4476 0.4970 0.4476 0.400

Strawberry 0.1207 0.1240 0.0930 0.1207 0.1354 0.1289 0.062

Trace 0.3000 0.3000 0.1100 0.2700 0.2800 0.1900 0.240

TwoLeadECG 0.3626 0.3433 0.2133 0.2968 0.4390 0.3863 0.253

Wine 0.2407 0.5556 0.4074 0.5370 0.2407 0.4444 0.389

WordSynonyms 0.4337 0.5096 0.4984 0.3809 0.4310 0.7132 0.382

Worms 0.6133 0.6575 0.6188 0.5912 0.6409 0.6630 0.635

WormsTwoClass 0.4144 0.4530 0.3702 0.4144 0.4586 0.4972 0.414
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Features were learned in one layer and maximum sparsity level in shift-invariant

sparse coding was equal to number of features. The results were compared with 1-NN

with Euclidean distance in the raw data obtained from [CKH+15]. Table 4.4 contains

information about 22 of UCR time series datasets [CKH+15]. Table 4.5 illustrates error

rate of Classification.

Classification for the above datasets were also done using recurrent neural

network (RNN). Number of hidden units are considered equal to the number of features

that were learned in feature learning algorithms. Results are shown in table 4.6. Since

there were fluctuations in error rate, we ran the experiments five times and the results

are average of the five errors.
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Table 4.6: Classification Error Rate using recurrent neural network (RNN)

Datasets RNN

Beef 0.18002

BeetleFly 0.15

BirdChicken 0.26

CBF 0.19416

DistalPhalanxOutlineAgeGroup 0.2008

Earthquakes 0.15098

ECG 200 0.2986

ECG 5000 0.0596

ElectricDevices 0.3785

Face (four) 0.1892

Face (all) 0.1696

FacesUCR 0.3525

Fish 0.1491

FordB 0.092

Ham 0.458

Strawberry 0.026

Trace 0.253

TwoLeadECG 0.1029

Wine 0.2376

WordSynonyms 0.6092

Worms 0.5399

WormsTwoClass 0.4031
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4.2.5 Simulating auditory signals

A quantitative comparison between three sets of features which have been

learned using three algorithms is needed. Three different codes were optimized to rep-

resent speech (sph), environmental sound (Env), and vocalization (Voc) using the three

algorithms. For each learned kernel function in the given code, the best matching re-

cover filter was found from the Gamma chirp functions which is a parameterized model

of cochlear filters.

Figure 4.11 shows the distribution of correlation coefficients of active kernel

functions where the red line is the median of the coefficients values for that code. The

25th and 75th quartiles are shown by the lower and upper edges of the box while the

whiskers indicate the 5th and 95th percentiles. Outliers are shown with red pluses.

Efficient codes for speech is significantly better predictors of the cochlear code

approaching the fitted gammatone model in accuracy consistent with results in the

literature. In all of algorithms environmental sound has higher median in correlation

coefficients in comparison with animal vocalization. Correlation coefficients with Gaus-

sian white noise are also included to be compared with learned features and illustrate

effect of learning. Shift invariant sparse coding outperformed the other two feature

learning algorithms. Shift invariant clustering has the same median but there some

outliers in the correlation results. In all of algorithms
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Fig. 4.11: Distribution of correlation coefficients of active kernel functions. a) sparse

coding, b) Non-negative matrix factorization and, c) Clustering. GWN, Voc, Env and

Sph refer to Gaussian white noise, vocalization, environmental sound and speech.

4.3 Effect of time series components

In this section we want to figure out how time series structural characteristics

affect performance of feature learning algorithms. First, eight features from raw time

series, called degrees of trend, seasonality, skewness, frequency skewness, kurtosis, fre-

quency kurtosis, serial correlation, and frequency bandwidth have been calculated from

23 datasets of time series. Then coefficient of variation (cv = σ/µ) of three feature learn-

ing algorithms is calculated for all datasets. Table 4.7 shows the results for structural

characteristics, while, tables 4.8 contains Cv results for shift invariant feature learning
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algorithms.

Table 4.7: Structural characteristics of dataset: trend, Seas: seasonality, Skew: Skew-

ness, F.Skew: Frequency skewness, Kurt: Kurtosis, F.Kurt: Frequency Kurtosis and

Scorr: serial correlation, along with Cv coefficient of variation which is degree of clus-

tering successfulness

Datasets Trend Seas Skew F.Skew Kurt F.Kurt Scorr

Beef .9988 -.0014 1e-4 .0082 .028 .2527 .1489

BeetleF ly .9994 6e-4 5e-4 .0046 .0257 .2076 .1345

BirdChicken .999 2e-4 1e-4 .0037 .0376 .4259 .2655

CBF .8350 .0711 -.0062 .0193 .0999 .5422 .2042

DistalPhalanxAgeGroup .9929 .0157 .0028 .0218 .0767 .2857 .1521

Earthquakes .4451 .0029 .0071 .0294 .0027 .0126 .0219

ECG200 .9834 .0039 -.0032 .0234 .1008 .5832 .2402

ECG5000 .7999 3e-4 -.0125 .0665 .0463 .2205 .1580

ElectricDevices .3918 -2e-16 .0624 .4 .0011 .0451 .0258

Face(four) .9341 .0012 6e-4 .0099 .0158 .0625 .0673

Face(all) .9692 .0014 3e-4 .0228 .028 .0669 .0767

FacesUCR .992 -.0056 -.0061 .0342 .0382 .1207 .1080

Fish .9994 .0013 3e-4 .0039 .0624 .9324 .3116

FordB .9040 5e-4 1e-4 .0046 .0181 .0950 .0838

Ham .9886 .0027 -4e-4 .0046 .0183 .0950 .0919

Phoneme .2988 .0278 2e-4 .0030 .0066 .0343 .0482

Strawberry .9978 -2e-4 .006 .0198 .0506 .3558 .2069

Trace .9974 -6e-5 -.0012 .015 .0414 .321 .1682

TwoLeadECG .9902 .0085 -.023 .0668 .0761 .3076 .1932

Wine .997 2e-5 .005 .0198 .0342 .1701 .1385

WordSynonyms .987 6e-6 .0066 .018 .0302 .148 .1286

Worms .999 9e-4 5e-4 .0029 .024 .3418 .1819

WormsTwoClass .999 -7e-4 5e-4 .0029 .0241 .3418 .1819
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Table 4.8: Coefficient of variation Cv for the three feature learning algorithms on the

23 datasets.

Datasets Clust Sparse NMF

Beef 16.74 8.4259 7.03

BeetleF ly 9.7565 8.7096 6.46

BirdChicken 12.2675 8.4241 9.54

CBF 15.3797 17.4542 2.73

DistalPhalanxAgeGroup 34.2150 19.2665 9.81

Earthquakes 3.2724 6.7169 1.9

ECG200 19.1786 23.7957 2.95

ECG5000 12.3258 19.3985 2.54

ElectricDevices 3.6254 5.67 2.76

Face(four) 7.5113 4.2001 20.03

Face(all) 5.4362 9.0601 1.91

FacesUCR 5.6230 6.9284 3.76

Fish 47.9050 49.3436 2.58

FordB 5.7346 2.7673 6.31

Ham 19.3397 3.5637 6.51

Phoneme 3.3590 12.5585 5.54

Strawberry 23.6463 15.3873 4.81

Trace 14.1564 9.6931 5.34

TwoLeadECG 27.9643 6.1959 5.41

Wine 24.6635 4.5112 6.51

WordSynonyms 7.3467 7.3776 2.72

Worms 6.1156 5.3354 1.9

WormsTwoClass 19.1786 5.3554 4.77

Correlation coefficients of Cv with different structural features, show significant

relationship between clustering features performance and trend, frequency skewness, fre-
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quency kurtosis, same similarity and frequency bandwidth. Table 4.9 shows the Pearson

correlation and spearman correlation coefficients and their significance level. The results

show that shift invariant clustering algorithms perform better if the trend degree of time

series is higher, frequency distribution is asymmetric and has a stronger peak (dense)

with heavy tail and same similarity of data is high, whereas the performance decreases

when the frequency bandwidth increases.

Table 4.9: Correlation of the structural features with shift invariant clustering perfor-

mance. * indicates p-value < 0.05 and ** shows p-value <0.01

Features Trend F.Skew F.Kurtosis SSim BWavg

Pearson 0.42* 0.622** 0.696** 0.655** -0.387*

Spearman 0.459* 0.748** 0.645** 0.677** -0.393*

However, sparse coding has positive correlation with frequency skewness, fre-

quency kurtosis and same similarity of data which is consistent with our finding in the

experimental results. The results are shown in table 4.10.

Table 4.10: Correlation of the structural features with shift invariant sparse coding

performance. * indicates p-value < 0.05 and ** shows p-value <0.01

Features F.Skew F.Kurtosis SSim

Pearson 0.598** 0.815** 0.641**

Spearman 0.735** 0.516* 0.495*

Shift invariant NMF shows similarities to both clustering and sparse coding as

expected. It has positive correlation with trend, frequency skewness, frequency kurtosis

and same similarity while the correlation with frequncy bandwidth is negative. Table
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4.11 contains the results.

Table 4.11: Correlation of the structural features with shift invariant NMF performance.

* indicates p-value < 0.05 and ** shows p-value <0.01

Features Trend F.Skew F.Kurtosis SSim BWavg

Pearson 0.352* 0.227 0.765** 0.716** -0.433*

Spearman 0.697** 0.566** 0.664** 0.674** -0.601**

4.4 Number of features

Number of features play an important role in performance and efficiency of

algorithms. In this section we show that number of features that should be learned

depends on size of dataset and structure of data. All other factors remain the same

during the experiments. Three different datasets are used to determine how number of

features affect performance of algorithms, namely standard and poor stock price, ECG

dataset and German emotional speech dataset. Part of datasets (20%ofdataset) is used

for test. The learned features are used with the same objective function as learning

procedure but not updated. Activity of features are counted and the features with

activities of more than 10% of the median of all activations are considered as useful.

The activation rate of dictionaries is calculated as ratio of useful features over number

of features in the dictionary. The results are shown in Figure 4.12.
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Fig. 4.12: Activity rate of dictionaries of 5, 10, 25, 50, 100 and 150 features learned

using the three algorithms on three datasets: a. Stock price, b. ECG, and c. German

emotional speech.

If a threshold of 0.2 is chosen to characterise a dictionary as active, from figures

it is shown that for stock price, clustering and NMF need to be initialized by 25 features

but sparse coding needs 50 features. For ECG all dictionaries should be initialized with

50 features and for German emotional speech we need dictionaries of 100 features. Size

of dataset is 14000 for stock price, 19000 for ECG, and 380160 for speech.

There is a strong relationship between size of dataset and activation of dictio-

nary. Furthermore, there is an evidence of relationship between dictionary activation

and global characteristics of dataset since for a dataset with high degree of trend (stock

price), clustering and NMF needs less number of features than sparse coding.
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4.5 Size of receptive field

Size of receptive field is another factor that affects performance of feature

learning algorithms. In this section dictionary of features using the three algorithms

are leaned on different length receptive fields. The same datasets in the last section are

used and number of features are also selected based on results of last section. Quality

of representation is measured with the same objective function that is used in learning

phase for each algorithm so results of different algorithm should not be compared with

other algorithms. Sparsity level for sparse coding is fixed on 15% of features.

Encoding phase in sparse coding and non-negative matrix factorization is done

with matching pursuit. Sparsity constraints of each algorithm is used. Since, matching

pursuit is a strong encoder and try to reconstruct data with every kinds of features, the

features that are not touched or touched only one time are ignored to remove effect of

noise (We have seen normal Gaussian noise performed better than sparse coding features

in reconstructing stock price.) The results are illustrated in Table 4.13
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Fig. 4.13: Quality of representation against size of receptive field using the three algo-

rithms on stock price, ECG, and German emotional speech datasets. a) sparse coding

b) NMF, and c) clustering

The results show that quality of features decrease as size of receptive field

increase in sparse coding. In non-negative matrix factorization the pattern is not as

regular than sparse coding but the performance decrease with increasing size of receptive

field in general. Clustering has different behaviour in different datasets. In a stock price

which contains time series with high degree of trend, increasing receptive field size,

increase quality of representation, however, in the two other datasets it is inverse.
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4.6 Inferring hearing loss from speech

All recorded data was downsampled from 44.1 to 16 KHz. The kernels of

length 320 samples (20ms) are learned from normalized time-amplitude speech windows

of 200 ms duration. Hence the learned kernels are also time-amplitude signals; they

resemble the gammatone filters. The frequency components of a kernel determine its

tuning properties, with the most dominant component being its CF. Unimportant and

harmful features were removed from all sets of features.

The kernels learned from each of our subjects were evaluated based on neu-

rophysiological metrics. In order to show degree of loss of characteristic frequencies,

distance between distribution of CFs from each subject’s features with respect to dis-

tribution of CFs from TIMIT dataset features was found using Kolmogorov-Smirnov

statistic. Since, TIMIT is a dataset of many people’s speech, all possible ranges of CFs

are existed in its set of features. Slope of the linear regression from the Q10 vs. CF plot

were also found. Pearson correlation of these three features with result of AzBio test,

PTA and hearing loss age of onset were found.

The features calculated from speech kernels are identified from the literature

as salient features that clearly discriminate between normal and hearing-impaired in-

dividuals based on their tuning properties in the peripheral auditory pathway and the

three features came from data are the features that show the factors which might affect

speech of hearing impaired subjects. The results are shown in table 4.12.

Table 4.12: Correlation Analysis Results (∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.005)

LossCF SlopeQ10

AzBio -0.417 ** 0.596 ***

PTA 0.40 * -0.51 ***

Ageofonset -0.56 *** 0.3393
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As we expected, loss of characteristic frequency has a significant correlation

with all three features. It has a positive correlation with PTA and negative correlation

with AzBio. It means as we move from normal hearing people to hearing impaired

with higher level of hearing loss, LossCF increases. It has a negative correlation with

hearing loss age of onset which means subjects who lost their hearing ability at birth or

early ages have more LossCF , whereas people who lost their ability of hearing in older

ages, have a similar characteristic frequency distribution to normal hearing people.

Consistent with previous findings, it shows people cannot produce frequency

spectrums which have not heard. SlopeQ10 has a very significant correlation with Azbio

test results and PTA which shows SlopeQ10 decreases as we move from normal hearing

subjects to hearing impaired with severe hearing loss.

Then, the features were used for spike coding. For comparison, a 200 ms win-

dow of speech with a wide range of frequencies from TIMIT dataset is chosen to show

significant differences in auditory representation of a typical speaker and a hearing im-

paired speaker using the predicted cochlea filters. Figure 4.14 shows the time amplitude

signal, its spectrogram which is a visual representation of the spectrum of frequencies

and two spikegrams, one from a normal hearing subject and one from hearing impaired

subject.
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Fig. 4.14: Spikegrams for 200 ms of speech signal

To test ability of response to different frequencies in all subjects, the kernels

were used for spike coding of puretones in the range of human hearing. The histogram

of response to frequencies along with audiogram of a normal hearing subject, a subject

with moderate hearing loss in some areas and a profound hearing loss subject as well as

distribution of responses are shown in Figure 4.14. Since the puretones were uniformly

distributed, the ideal distribution of response to frequencies should be a diagonal line

but since only 32 features are learned, the plot for normal hearing subject is also an

approximation of the line. The results are shown in 4.15 Furthermore, the curve in

the audiogram is not the only factor which reflects frequency selectivity of a person.

Information of other features which affect distribution of response are shown in Table

4.13. PTA is not shown in the table because it is directly calculated from audiogram.
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An audiogram is a graphical representation of an individual’s hearing sensi-

tivity that plots the softest sound an individual can hear (threshold of audibility) as a

function of frequency. Listeners are presented with 365 puretone stimuli at octave fre-

quencies from 250 to 8000 Hz and are instructed to indicate the softest sound they can

hear. This threshold level is then plotted for each ear separately on the audiogram with

O’s representing the right ear and X’s representing the left ear. The hearing aid device

was removed during this test but it was used during AzBio test. As it is shown in the

literature, hearing impaired subjects have issues in high frequency regions, however, as

the level of hearing loss decreases, there is an improvement in distribution of response.

To have a more comprehensive comparison, the subjects were divided to three groups

based on their audiograms: Normal hearing, Moderate hearing loss and Severe hearing

loss. Average frequency selectivity of subjects was calculated for the three groups.

Figure 4.16 shows the quantile-quantile (q-q) plot for the three groups. A

q-q plot is a graphical tool to determine if two groups of data come from the same

distribution. The average frequency selectivity for the normal hearing group is as our

expectation, even though only three normal hearing subjects are available. Having

an approximation of the area with less frequency selectivity is a very helpful tool for

audiologists to tune the cochlear implant.

Table 4.13: Information of subjects whose audiograms are shown.

LevelofHearingLoss Moderate Severe

AzBio 72.62 0

Age of onset 17 At birth
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Fig. 4.15: Audiogram and frequency selectivity distribution for a normal hearing subject,

a subject with moderate hearing loss and a subject with severe hearing loss.

Fig. 4.16: Q-Q plot of three groups of subjects. Group1 indicates normal hearing

subjects, Group2 and Group3 are subjects with moderate hearing loss and severe hearing

loss, respectively.
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5. Conclusion
In this thesis a detailed study of clustering of subsequences of time series is

presented and shift invariant spherical clustering is introduced as a systematic approach

of learning meaningful features from time series. Then, the features learned using shift

invariant clustering is compared with other widely used unsupervised feature learning

methods, shift invariant sparse coding and shift invariant non-negative matrix factor-

ization, in five tasks: reconstruction, noise separation, prediction, classification, and

simulating auditory filters from acoustic signals.

The results showed while clustering is very efficient and highly scalable, it

can produce results which are quite close to other two feature learning methods and

in some cases it it even more successful. In the task of prediction, clustering acquired

more accuracy in the three different datasets. In classification, clusteing and sparse

coding performed quite close in the 22 benchmark datasets. Results of classification

using features were also compared with classification on raw data and in most of the

datasets the important information of data were not lost and in many datasets feature

learning improved the classification accuracy. In the task of noise separation, sparse

coding generated the best results because it not only was able to separate white noise

from speech but also more complicated noises and noises similar to speech. In the task

of reconstruction, sparse coding was the best in speech reconstruction but clustering

won the competition in reconstructing stock price signals. In order to simulate auditory

filters from speech, both clustering and sparse coding were successful but sparse coding

generated more efficient features.

The results were also analyzed with respect to the factors that may affect

performance of algorithms. We showed that if a dataset contains time series with high
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degree of trend and serial correlation, the clustering algorithm is the best feature learning

approach, however, if the average bandwidth of dataset is high, it is better if the features

learn by sparse coding. Higher degree of frequency kurtosis and skewness increase

performance of all three algorithms. Furthermore, number of features that should be

learned is a function of size of dataset.

Since, in speech datasets, sparse coding generated features with higher quality,

shift invariant sparse coding were applied on data of hearing impaired subjects and was

able to successfully infer nature of hearing loss from their speech.
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