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ABSTRACT 

Saluja, Riya. M.S. The University of Memphis. May 2013. Transient Stability En-
hancement of Electric Power Grid by Novel Braking Resistor Models. Major Professor: 
Dr. Mohd. Hasan Ali. 

The dynamic braking resistor is one of the effective methods to enhance the transient 

stability of power grid system. In this work, two new braking resistor models, namely, 

rectifier controlled braking resistor and chopper rectifier controlled braking resistor mod-

els, using a single unit of braking resistor are proposed, and their performance is com-

pared with the existing thyristor controlled braking resistor model. Comparison is made 

in terms of the speed indices, number of components used, heat loss, harmonics, and cost. 

The effectiveness of the proposed methodology is tested through Matlab/ Simulink simu-

lations considering both temporary and permanent faults in power system. Simulation 

results for all braking resistor models are compared and analyzed. The performance of the 

proposed models is comparable to the existing braking resistor model. Therefore, the 

proposed braking resistor models can be considered as an alternative to the existing BR 

model for improving the transient stability of power systems. 
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I. INTRODUCTION 

Due to the continuous increase in the power demand and the limited non-renewable 

resources for generating the power, many renewable energy power plants such as wind, 

solar, etc., are merged into the existing power grid system to meet the increasing demand 

without overburdening the existing system. Also, the flexible alternating current trans-

mission systems (FACTS) devices are designed to help in transmitting the bulk power 

from one location to other. Simultaneously, research is also going on to make the existing 

system a smart gird one, which is self-sufficient, reliable and more efficient to help main-

tain a continuous and reliable power supply and decrease any failures occurring in the 

system due to human error.  

The development of the modern power system has led to an increasing complexity in 

the study of the power systems, and also presents new challenges to power system stabil-

ity, in particular, to the aspects of transient stability and small signal stability [1]. Transi-

ent stability plays a vital role in the bulk transmission of power by ensuring the stable op-

eration during the events of large disturbances and faults. The various control strategies 

to maintain the power system stability with non-linear control theories are available in 

literature.   

Insertion of braking resistors in the power grid system to improve the transient stabil-

ity and to maintain the continuity of power supply during any fault conditions is a well-

known power system stability method [2], [3]. The various implementation of braking 

resistors for the improvement of bulk power transmission is available in literature. The 

earlier work mentions the use of braking resistors in Russia for the improvement of the 

dynamic stability of the hydro synchronous generators [4], [5] as well as in United States 
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to improve the transient stability of Arizona Public Service Company for bulk transmis-

sion of the power [2].  With the advancement in technology, braking resistors implemen-

tation is playing a vital in improving the low-voltage ride-through of a wind turbine [6], 

in damping the sub-synchronous resonance of the power grid system [7], etc. 

A. PROBLEM  SATEMENT  

Due to the technology developments, integration of non-renewable power plants, and 

interconnection of complete grid system has increased the necessity of having a stable 

and synchronized power grid system. The cascading effects of failures, caused due to any 

three-phase-to-ground faults, lead to [2] the power outages and instability of the turbine-

generator system. So, it has become a priority for power engineers to add some external 

means to avoid the complete power outages and to supply a reliable power to the con-

sumers. 

The live braking resistor model consists of three banks of resistors connected in paral-

lel at the output terminal of the synchronous generators [2-4], [8-10]. The braking resistor 

is inserted in the power grid system following the transient conditions such as sudden in-

sertion of a large load, falling of a tree branch on long transmission line causing three-

phase-to-ground faults, etc. The braking resistors are switched in and out of the power 

circuit either manually by a plant engineer or automatically by the close-loop control 

switch.  

The stability of the synchronous generator can be defined by equations (1) and (2). 

The operation of a synchronous generator can be modeled by the swing equation given by 

(2). During steady state, the mechanical power, Pm, send by the prime mover to the syn-

chronous generator counter balances the electrical power, Pe, generated by the generator. 
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Thus, at steady state, Pm = Pe, and accelerating power, Pa = 0, as in (1). During a fault 

condition, all the current flows through the transmission line to the fault point, since the 

transmission network is of low impedance. The transmission network is basically induc-

tive that makes the generator current 90˚ out of phase with the generator voltage. Thus, 

the real power delivered by the generators decreases, while the input mechanical power 

through the turbine to the generator remains approximately the same. The net torque on 

the generator shaft then causes the generator to accelerate resulting in accelerating power, 

Pa. 

Pa = Pm –  Pe                                                    (1) 

𝑴𝒅𝟐𝜹
𝒅𝒕𝟐

+ 𝑫𝒅𝜹
𝒅𝒕

=  𝑷𝒎 + 𝑷𝒆              (2) 

where δ is the angle of machine relative to the synchronous angle of the system, M is the 

inertia constant, D is damping coefficient, Pm is mechanical power, and Pe is electrical 

power. Due to the accelerating power, Pa, the synchronous generator may lose its syn-

chronism. The most effective method to restrict the increasing speed is to provide a brake 

by applying an artificial load for short duration. It is achieved by inserting a braking re-

sistor into the system. 

The control laws based on different inputs such as change in active power, rotor angle 

and/or voltage of synchronous generators, etc., of machines have been reported in litera-

ture for switching operation of braking resistors in the power network. By using non-

linear control analysis methods, the control parameters for braking resistors are suggested 

in the literature [1].  
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The power electronic devices played a vital role for the development of the control 

switches for the switching operation of the braking resistors in the power grid system. 

These switches are triggered by the triggering pulses generated by the controller. These 

switches also helps in the design of economical braking resistor models with use of min-

imum number of braking units to provide a better control on the three phase system. The 

work of C.S. Rao and et al. in seventies [11-16] on braking resistor models mention the 

use of thyristor switches for controlling the insertion of the braking resistor unit in the 

give power grid system. The full wave thyristor controlled [11-13], and the half-wave 

thyristor controlled [14-16] switches have been designed to provide economical braking 

resistor models. The control strategies designed for braking switches take change in 

speed of the synchronous generator as an input and is fed to the controller. Later, fuzzy 

controlled half wave braking resistor was also reported [16].  

The reported braking resistor models with close-loop control switch are designed us-

ing three units of braking resistors giving an independent control on each phase of the 

power grid system. The fuzzy logic controlled braking resistors [17-26] the optimal con-

trol dynamic braking resistor [27], microprocessor controlled dynamic braking resistor 

[28], heuristic controlled dynamic braking resistor [29] are few other examples for the 

design of the thyristor controlled three phase model design.  

An effective braking resistor model which is economical, smaller in size, has better 

switching operation & control and minimum heating loss and harmonics, is still to be ex-

plored. With the availability of the power electronics devices, new switches can be de-

signed that can give better ON/OFF control of the braking resistor unit. So, along with 
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the modeling of the braking resistor models, a discrete controller is also needed that can 

trigger the respective switch at the right instant. 

B. LITERATURE REVIEW: 

The barking resistor is a dummy load that is added in the power grid system during 

any transients occurring in the system. It not only improves the transient stability of the 

electric power grid, but also helps in the bulk power transmission without going out of 

synchronism. It is switched-in at the terminal of the electrical machine such as synchro-

nous generator, to decrease the accelerating speed of the generator as required by the sys-

tem, and is switched-out after getting the desired speed. It can be connected in series or in 

parallel with the system depending on its purpose such as improving the dynamic stabil-

ity, low-voltage ride through of induction machines, etc.  

The braking resistors are used to improve the dynamic stability of hydro generators 

[4], [5]. The interval for which braking resistors are inserted in the power grid system is 

very important to know beforehand, because longer duration of insertion of braking resis-

tor will cause instability of the complete power grid system. The studies have been done 

to analyze this duration as well as the repeated use of braking resistor for achieving better 

transient stability. The work [4] suggests that electrical multi-cycle braking employing 

optimum control based on the measurement of slip and excess power is more efficient 

method of damping swings and improving the stability of a hydro-electric generator as 

compared to either single-cycle braking or high-response automatic reclouser. The bang-

bang control was employed at the 1330-MW Zeya hydroelectric power plant for dynamic 

braking resistors [30].  
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 In Arizona Public Service Company 292-mile transmission system from the Four 

Corners Plant to Phoenix [2], decelerating braking resistors are implemented for improv-

ing the transient stability as well as to increase the bulk power transmission in the exist-

ing system.  It was suggested that adding 300 MW braking resistor in the existing plant 

would be more feasible and cost effective as compared to adding other line capacity on 

long transmission system for improving the transient stability of the system.  

In Canada, the implementation of braking resistor was done in the Peace River 500-

kV transmission system for improving the transient and dynamic stability of grid system 

[8]. In 1960’s, a 138 kV 600 MW braking resistor, consisting of three banks at 200 MW 

each, was installed on the BC Hydro system located on Peace River in order to meet de-

sign stability. One of those three resistor banks was replaced in 1987 with a new type of 

resistor.  A load test was run onsite to verify the capability of the resistor [31] . It was 

shown that the stability was maintained following faults by employing a braking resistor 

and additional stabilizing signal to the generator excitation system.  

In Japan, the transient stability limit power, of the Owase 275-kv, 141 km long trunk 

line, was 500-600 MW. In addition to that, two-phase to ground or three-phase faults oc-

curring in the system will completely shut down the transmission line. So, a study was 

made to avoid the limitations by adding the electric braking resistors with the transmis-

sion lines. The transient stability of the system was improved effectively by means of 

electric braking, by connecting a damping resistor in parallel with the generator bus line 

at the fault occurrence [9].  

Similarly, by installing 1400-MW dynamic braking resistor at the Bonneville Power 

Administration's Chief Joseph Substation, system stability in the Pacific Northwest [10] 
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has been enhanced. The capacity of the Pacific Northwest-Southwest Intertie was also 

increased by the use of resistor braking for faults in the Pacific Northwest-Southwest.  

The control strategies are needed to determine the insertion interval of the braking re-

sistor, so that over-loading of the power grid system as well as the over-heating of the 

braking resistors can be avoided. So, a lot of research studies have been done which were 

more concentrated on the control strategies of switching operation of braking resistor. A 

simple strategy based on speed deviation signal [32] was developed and successfully uti-

lized for automatic single or multiple insertion of braking resistor, whenever required. 

The study showed that a fair degree of agreement between the analytical and experi-

mental results enhances confidence in their reliability.  Another control algorithm based 

on discrete-level generalized predictive control was examined as a possible approach for 

optimal control of the brake. Prony analysis was used to identify system transfer func-

tions, which were then related to control design considerations and robustness properties 

[33]. Another control strategy of a variable structure control for dynamic braking resis-

tors reported in literature [34] was tested in a multi-machine power system to improve the 

transient performance as well as to increase the transfer capability.  

A generic methodology reported in the literature used physical control means to alle-

viate transient stability crisis. The minimum-angle and minimum-norm aiming strategies 

were used to provide explicit feedback solutions to the control problem. Several choices 

of the aim state were proposed in [35] and [36] . Simulation results show that both these 

methods result in an improvement of the critical clearing time, and that they result in a 

more desirable state trajectory than simple on/off control based on angular-velocity 

measurements.  
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For enhancing the transient stability of hydro generators, a dynamic braking resistor 

is proposed together with a tuned-existing governor to improve the stability margin of a 

hydro generator [37]. Root locus and Routh's stability criterion are used to obtain propor-

tional-integral-derivative (PID) controller parameters of the governor. The dynamic brak-

ing resistor was designed to operate with reduced harmonic injection during its operation. 

The proposed technique prevents the speed going beyond its limit, when load rejection 

takes place due to fault in the power system. Hence, the total or partial power system 

failures can be avoided. 

Besides the control strategies, studies have been done for the integrated use of brak-

ing resistors with any other stability improving devices such as the study of integrated 

and coordinated control of generator exciter, steam turbine and shunt braking resistor 

[38] to provide the maximum benefits of transient and steady state stability for a wide 

range of operating conditions, the study of dynamic braking strategy and excitation con-

trol for arresting the first swing instability [27], the study of the braking resistors and stat-

ic var compensator (SVC) for enhancing transient stability [39], the study of coordinated 

fast valving and braking resistor control for balancing the mismatch between mechanical 

input power and electrical output power [40], etc. In [27], a comparison is made among 

braking resistor, resistor-reactor and resistor-capacitor strategies with and without excita-

tion control. The control strategies are obtained in terms of system states and other meas-

urable quantities. 

The combined effect of FACTS devices and braking resistors such as the fault current 

limiter and the thyristor controlled braking resistor (TCBR) [41], [42], thyristor con-

trolled resistive brake and SVC [43], system damping resistor and series - shunt capaci-
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tors [44], are also reported in the literature. It is suggested in [41], [42] that by using both 

the fault current limiter and the TCBR, the transient stability can be enhanced. Following 

a major disturbance in power system, the fault current limiter operates for limiting of the 

fault current, enhancement of the transient stability and suppression of the turbine shaft 

torsional oscillation, and then the TCBR operates with the objective of fast control of 

generator disturbances. The study indicates a significant power system stability en-

hancement and damping turbine shaft torsional oscillations. The combination of thyristor 

controlled resistive brake and SVC [43] are modeled and coordinated for the small signal 

stability investigation. The performance of the systems studied is based on the minimum 

integral squared error.  

The transmission capability limit of a system can be enhanced by using system damp-

ing resistor and series - shunt capacitors [44]. The system damping resistor is very effec-

tive for short distance transmission lines such as 50 km or so. For long distance transmis-

sion lines, experimental results indicate that the transmission lines compensated by series 

capacitor are effective. By using the FACTS technology, the new system stabilizing tech-

nique was proposed [45].  

During any large load interruption, maintaining transient stability is more important. 

Hence it is required that the proper switching operation of switchable supplementary con-

trols such as dynamic brakes, shunt reactor, series capacitor, thyristor switched resistor, 

etc. should occur. Many switching controls based on different input from generators are 

reported in literature.  For dynamic brakes, shunt reactor or series capacitor, a dynamic 

programing based switching strategy in the form of close-loop is analyzed [46]. For dy-

namic braking resistor and shunt reactor, a control strategy based on the time optimal 
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control is proposed [47]. The time optimal control is derived as a function of synchronous 

machine power, its rotor angular position, and speed deviation. It is found that the strate-

gy is very effective in controlling the first swing instability. Similarly, for series capacitor 

control and braking resistor control, a control strategy based on nonlinear, variable-

structure control theory is proposed [48].  For the idealized control, only two switching 

applications are required, which suggests that the controller will be easily realized and 

reliable.  

For thyristor controlled braking resistor (TCBR), a closed-loop control strategy de-

rived using direct Lyapunov method and non-linear multi-machine system model is noted 

in literature [49]. The control law has been derived using direct Lyapunov method and 

non-linear multi-machine system model. It is optimal in the sense that it causes the 

quickest dissipation of the power system energy released by a disturbance. Another close-

loop control strategy, for TCBR based on equal area criterion (EAC) is designed for gen-

erating triggering pulses for the thyristor switch [50]. A conventional and a fuzzy logic 

controller have been developed and compared. It has been shown that the mentioned ap-

proach provides a simple and effective method for the transient stability improvement. 

Another control method for the thyristor controlled dynamic braking resistor and the 

nonlinear optimal control theory noted in literature is based on a hierarchical framework 

for coordinating multiple dynamic-braking units during the transients ensuing major dis-

turbances [51-55]. The control strategy considered is designed for two different hierarchy 

frameworks, a two-level hierarchy and multi-level hierarchy. This creates a multiple local 

feedback controllers that can be realistically implemented using only local measurements 

and whose performance is consistent with respect to changes in network configuration, 
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loading and power transfer conditions. For the control strategy mentioned, following a 

major disturbance, the rotor angle and rotor speed of each generator unit are determined 

and the firing angle of the thyristor switch associated with the braking resistor is calculat-

ed by the local controllers.  

The closed-loop control laws, capable to realize multiple switching operations of a re-

sistive brake aiming at enhancement of power system stability, is formulated as a multi-

stage decision problem. By using a model-based reinforcement learning method, known 

as prioritized sweeping, the control law is computed [56], [57].   

The implementation of braking resistor in a network not only supports the bulk power 

transmission, but also helps improve the transient stability. There are impacts on the tur-

bine-generator shaft sections when subjected to various power system disturbances and 

switching operations [58]. 

The dynamically controlled, three phase resistor bank, can be used to damp shaft tor-

sional oscillations in large steam turbo-generators [59]. The torsional damping can be 

achieved by using a control strategy based on generator speed. The substantial damping 

can be achieved with a relatively small resistor bank, thus reducing the risk of significant 

shaft damage due to electrical disturbances. Another mentioned control strategy for thy-

ristor-controlled dynamic resistance braking for damping torsional oscillations in a power 

system is based on modal control theory. A PID controller is designed for thyristor-

controlled dynamic resistance braking in order to stabilize all sub-synchronous resonance 

modes in the power system [60]. 

Similarly, for damping the torsional oscillations in large turbo generators, the control 

system of TCBR is designed by using the pole placement technique [61] and [62]. A dy-
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namic fundamental frequency model for TCBR is developed. The study indicates that 

substantial damping is achieved not only for the torsional oscillatory modes but also for 

the inertial mode by using the proposed control system. It presents a new concept for 

damping electro-mechanical oscillations in a large turbo generator. The proposed concept 

is based on coordination between power system stabilizer and TCBR. This coordination 

will enhance the stability of the inertial and torsional oscillatory modes.  

Series compensation has been proven to increase stability in transmission of electric 

power, whereas series capacitor results in severe sub-synchronous torques leading to gen-

erator-turbine shaft damage. The mitigation of sub-synchronous transient torques is 

achieved through resistor bank controlled by fuzzy logic controller [63].  

During unsuccessful reclosing of circuit breakers, the damping of turbine-generator 

shaft torsional oscillations can also be achieved by the coordinated implementation of 

fuzzy logic-controlled braking resistor and optimal reclosing [19]. The effect of the coor-

dination of optimal reclosing and fuzzy logic-controlled braking resistor on the transient 

stability of a multi-machine power system in case of an unsuccessful reclosing of circuit 

breakers is studied. The studies show that the transient stability performance of the coor-

dinated operation of optimal reclosing and fuzzy controlled braking resistor is better than 

that of the coordinated operation of conventional auto-reclosing and fuzzy controlled 

braking resistor [18]. 

More control strategies for damping the slowly growing sub synchronous resonant 

frequency oscillations are noted in literature, such as a control strategy for dynamic brak-

ing resistors employing generator speed variation, rotor angle and power variation signals 

to switch in braking resistors at the generator terminal [64], control strategy for dynamic 
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braking designed through fuzzy logic control theory through classical minimum-time 

strategy [65]. The dynamically switched braking resistors are proved to control the unsta-

ble modes very effectively. 

The use of dynamic braking as a cost-effective measure for damping inter-area oscil-

lations is also noted in literature. The control scheme for this purpose is based on com-

manded electrical power calculated by the respective model transformation. The model is 

formed based on the measurements provided by phasor measurement units and data col-

lected from energy management system [66]. Fuzzy controlled braking resistors are de-

signed for providing better control of BR unit for switching in and out from the grid sys-

tem to improve the transient stability of the system [17-26].  

With all the existing models and design available, it is necessary to implement a cost 

effective, low maintenance generator brake. Many topologies have been proposed but a 

standard topology is not yet formed. A full wave thyristor controlled and a half wave 

TCBR models have been proposed to provide a more cost effective and economic brak-

ing resistor models [11-16]. A fuzzy logic based control law is designed for both the 

braking resistor models. Similarly, other two types of braking resistor configuration, a 3-

phase, bi-directional, full wave, Y-connected phase-controlled ac/ac converter, and a 3-

phase, full wave, thyristor-controlled rectifier bridge, have also been noted in literature 

[67] [29]. A simple rule-based ‘ON-OFF’ control law for braking resistor based on the 

local measurements of generator output real power and its derivative is designed. 

It is established that the application of a braking resistor at the generator terminal en-

hances significantly the power transfer limit over a transmission line. A cost effective 

brake resistor is also proposed using developments in thick film, metal oxide resistors. 
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The brake has very low resistance and virtually no inductance, allowing its use during a 

fault to slow a generator's acceleration [68].  

The application of the dynamic braking resistor for improving the transient stability 

of synchronous generators used for hydro-power plants and thermal power plants is well 

established. Now, its implementation with induction generators is also explored.  An in-

duction generator draws a large amount of reactive power from the system if it acceler-

ates to a high speed, which could result in voltage collapse. The voltage collapse occur-

ring can be mitigated by using braking resistor based method [69] and the stability per-

formance of distribution systems with induction generators can be enhanced. Also, the 

coordinated operation of static synchronous compensator (STATCOM) and dynamic 

braking resistor improves the stability of a large wind farm [70]. The STATCOM sup-

plies the reactive power demand of the wind farm dynamically in order to maintain the 

network voltage. The dynamic braking resistor is controlled by Liapunov’s stability crite-

rion to absorb the active power of the wind farm during the network fault. 

A control scheme for the low-voltage ride-through capability of a 2 MW full convert-

er wind turbine with permanent magnet synchronous generator is designed emphasizing 

the regulation of the dc-link voltage and minimization of the drive train torque surplus 

[6].  

The fault-ride through is a necessary grid requirement for all the large wind farms in-

terconnected to the power network. A novel alternative technology is proposed that in-

serts series resistance into the generation circuit. The series dynamic braking resistor dis-

sipates active power and boosts generator voltage, potentially displacing the need for 

pitch control and dynamic reactive power compensation [71]. 
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The renewable energy power plants are being integrated with the existing power grid 

system. Many of these generators are synchronous machines with low values of inertia, 

and thus possess short critical clearance times to avoid the onset of transient instability. 

With fault clearance times of up to 1s occurring in distribution networks, there is the po-

tential for a growing problem, as distributed generation makes up a larger proportion of 

installed capacity. The series braking resistors, switched into circuit at the generator ter-

minals, improve the transient stability [72]. Similar close-loop braking resistor control 

strategy for wind generator synchronous is introduced to enhance the transient stability of 

the grid system [25].  

C. NOVELTY IN THIS WORK 

Based on all the available literature for the dynamic braking resistor and power elec-

tronic switches, the highly efficient braking resistor models are designed and tested on 

the simulated power grid system. The initial purpose is to design a braking resistor model 

using a single unit of braking resistor that will not only reduce the size of the braking re-

sistor model, but also reduce the overall cost of the braking resistor.  

Two new braking resistor models, namely rectifier controlled braking resistor 

(RCBR) model and chopper rectifier controlled braking resistor (CRCBR) model are de-

signed in this work. The switches of these models are designed by using highly efficient 

power electronics devices. Novelty of these models is that both models use one unit of 

braking resistor as compared to three units of braking in the existing thyristor controlled 

braking resistor (TCBR) model [17] for the three phase system.  

The other important part is to design a closed-loop controller that will sense the 

change in the characteristics of the synchronous generators connected to a grid system 
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and generate required triggering pulse.  As mentioned earlier, the deviation in the active 

power, rated voltage, rotor angle or speed can be used to design the controller input. For 

this work, the change in speed is taken as the input to the controller and respective trig-

gering pulse is generated. 

Models are implemented by using MATLAB/Simulink software, and are tested con-

sidering both balanced and unbalanced temporary and permanent faults in a single gener-

ator and multi-machine power grid models.  
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II. POWER SYSTEM STABILITY AND ITS CLASSIFICATION 

With the integration of non-renewable power plants and the expansion of existing 

power grid system, the necessity to maintain the power system stability increases espe-

cially in terms of transient stability. The stabilization of transient stability helps in main-

taining the continuous power supply, as well as transmission of bulk power through the 

long transmission lines without adding new transmission line.    

A. BASIC CONCEPTS OF POWER SYSTEM STABILITY 

Power system stability is broadly defined as the property of the power system that en-

ables the system to remain in a state of operating equilibrium after being subjected to a 

disturbance [73].  Instability in a power system is manifested in many different ways de-

pending on the system configuration and operating mode. Traditionally, the stability 

problem has been one of maintaining synchronous operation. Since power systems rely 

on synchronous machines for generation of electrical power, a necessary condition for 

satisfactory system operation is that all synchronous machines remain in synchronism or, 

colloquially, “in-step”. This aspect of stability is influenced the dynamics of generator 

rotor angles and power-angle relationships. Instability may also be encountered without 

loss of synchronism such as the collapse of load voltage due to induction motor load fed 

by a synchronous generator. This chapter describes the basic concepts and problems of 

power system stability [74]. 

The stability is a condition of equilibrium between two opposing forces namely the 

mechanical input power and the electrical output power as in (1). The electrically con-

nected synchronous machines try to maintain the synchronism by the restoring forces act-

ing between them. When there is any fault in the system, due to opening of circuit break-
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ers, power supply to some of the loads is interrupted. This results in the decrease in the 

electrical power but the mechanical power input to the system remains the same. This 

mismatch results in the increase in the speed of the synchronous generators in terms of 

accelerating power. This leads to the instability of the system.   

The transient disturbances occurring in the system could be continuous change in 

load, the transmission line faults, the sudden drop in large load from the system, or 

switching of the large induction machines, etc.  Depending upon the disturbances occur-

ring, the measures are taken to maintain the stability and the synchronism of the power 

grid system. The understanding of stability problems is greatly facilitated by the classifi-

cation of stability into various categories.  

B. CLASSIFICATION OF POWER SYSTEM STABILITY   

The classification of power system stability is needed to analyze and study the stabil-

ity problems properly. The classification of power system proposed in [73] is based on 

the following considerations: 

a) The physical nature of the resulting mode of instability as indicated by the main 

system variable in which instability can be observed. 

b) The size of the disturbance considered which influences the method of calculation 

and prediction. 

c) The devices, processes and the time span that must be taken into consideration in 

order to assess stability.  

The power system stability is broadly classified as rotor angle stability, frequency 

stability and voltage stability. The complete classification of power system stability, sug-

gested in [73], is shown in Figure 1. 
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Figure 1: Classification of power system stability. 

The disturbances occurring in the system may cause the instability of the system and 

may cause the interruption of power supply to the consumers as well as affect the plant 

economy.  The instability depends on the system configurations and operating modes.  

C. TRANSIENT STABILITY 

Transient stability is related to the ability of the power system to maintain synchro-

nism when subjected to severe disturbance, such as short circuit on transmission line, 

sudden loss of a large load, etc. It depends on both the initial operating state of the system 

and the severity of the disturbance [74]. Various control strategies to improve the transi-

ent stability are discussed in literature review section of this thesis. The literature review 

indicates that the measures to improve the transient stability depend on transient stability 

limit and critical clearing time of the power grid system.  
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The transient stability limit refers to the maximum flow of power possible through a 

point in the system without the loss of stability when a sudden disturbance occurs. 

The critical clearing time is the maximum time between the fault initiation and it’s 

clearing such that the power system is transiently stable. This includes relay and breaker 

operating times and possibly the time elapsed for the trip signal to reach the other end 

breaker. Clearing times are in the range of a few power frequency cycles in modern pow-

er systems employing high-speed circuit breakers (1-cycle breakers are in service) and 

solid-state relays. 

The methods to improve transient stability can be classified under four categories as 

mentioned below: 

i) Minimization of disturbance severity and duration 

ii) Increase in forces restoring synchronism 

iii) Reduction of accelerating torque by reducing input mechanical power 

iv) Reduction of accelerating torque by applying artificial load 

The recovery of a power system subjected to a severe large disturbance is of interest 

to system planners and operators. Typically the system must be designed and operated in 

such a way that a specified number of credible contingencies do not result in failure of 

quality and continuity of power supply to the loads. These calls for accurate calculation 

of the system dynamic behavior, which includes the electro-mechanical dynamic charac-

teristics of the rotating machines, generator controls, SVC, loads, protective systems and 

other controls. The commonly known methods to enhance the transient stability of a sys-

tem are as follows: 

a) High-speed fault clearing,  



 

21 
 

b) Reduction of transmission system impedance 

c) Shunt compensation 

d) Dynamic braking 

e) Reactor switching  

f) Independent and single-pole switching  

g) Fast-valving of steam systems 

h) Generator tripping 

i) Controlled separation 

j) High-speed excitation systems 

k) Discontinuous excitation control  

l) Control of high voltage direct current (HVDC)  links 

Transient stability analysis can be used for dynamic analysis over time periods from 

few seconds to few minutes depending on the time constants of the dynamic phenomenon 

modeled. The insertion of braking resistor is an effective measure to improve the transi-

ent stability of the system.   
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III. MODELING OF BRAKING RESISTOR MODELS 

Braking resistor is one of the most efficient and widely used external control methods 

to improve the transient stability of the power grid system. It is a dummy load connected 

in series or in parallel with the synchronous generators to maintain power system stability 

of the power system whenever any large disturbances occur in the system. The proposed 

two new braking resistor models are designed and the performance of the newly designed 

models is compared with the existing TCBR model. The design of new models and exist-

ing models are described in details in following section. The controller designed for all 

three models to generate their respective triggering pulses is also described in the follow-

ing sections.  

A. CONNECTING POINT OF BRAKING RESISTOR:  

The braking resistor models can be connected in two ways with the synchronous gen-

erators. They can be connected directly to the terminals of the synchronous generators, as 

shown in Figure 2 [13] but it will increase the cost of implementing the braking resistor, 

and also if a number of generators are connected in parallel in a network, then braking 

resistor is needed to be added at each generator terminal. The other position of adding 

braking resistor model without exceeding the basic cost is at the high voltage side of the 

synchronous generator step-up transformer as shown in Figure 3 [22]. For a multi-

machine system, an optimal insertion point for braking resistors can be determined so that 

minimum braking resistor models can be used without increasing the cost [75].  

For this work, the braking resistor model is connected at the high voltage terminal of 

the synchronous generator (Tr.-SG) through a step-down transformer (Tr.-BR) as shown 

in Figure 3. A step-down transformer is needed for the insertion of braking resistor, be-
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cause the rated voltage ratings for the power electronics devices assumed for this work is 

6.6 kV.  

 

Figure 2: Line diagram of braking resistor model connected directly at the terminal of the 

synchronous generator. 

 

Figure 3: Line diagram of braking resistor model connected on high voltage side 

of synchronous generator. 

B. SWITCH ELEMENTS OF BRAKING RESISTOR MODELS 

Due to the development of power electronic devices, different switching mechanisms 

have been developed for improving the power system stability. In this work, thyristors, 
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diodes and insulated gate bipolar transistor (IGBT) power electronic devices have been 

used for designing three different switches for the braking resistor models.  

A thyristor is a solid-state three-terminal power electronic device with larger power 

handling capability [76]. It is actually a latching device that can be turned on by the con-

trol terminal (gate) but cannot be turned-off by the gate. It acts as a directional switch be-

cause of its property to conduct only once in one cycle of input voltage signals. If the thy-

ristors are forward biased, then they conduct for the positive half-cycle of the input volt-

age signal; and if reverse biased, then they conduct for the negative half-cycle of the in-

put voltage signal. This property of thyristor is exploited in designing the existing TCBR 

model switch as well as rectifier controlled braking resistor model switch. The switching 

of thyristor is done by the firing angle or delay angle, α, which is defined as the electrical 

angle at which the thyristor is turned on, after it is forward-biased or reverse-biased.  

An IGBT is a three-terminal power semiconductor device primarily used as an elec-

tronic switch. It requires less base current for turning on of the transistor, thereby reduc-

ing the size and complexity of the gate drive circuit [77]. It is a highly efficient and fast 

switching device. This property is used to design a DC to DC converter also called as 

chopper circuit in the chopper rectifier controlled braking resistor model switch. 

Another power electronic device used to design the braking resistor models is diode. 

It is a two-terminal solid state unidirectional device with asymmetric transfer characteris-

tic. It offers low resistance path to current for a forward biased diode. Hence, current can 

flow only in one direction. It is an uncontrolled power electronic device used to design an 

uncontrolled rectifier circuit in chopper rectifier controlled braking resistor model switch. 

The basic design of all three models is described in detail in next sections.  

http://en.wikipedia.org/wiki/Power_semiconductor_device
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C. BRAKING RESISTOR MODEL DESIGNS 

The designs of the existing braking resistor model and the proposed braking resistor 

models are discussed in next sections. 

1. Thyristor Controlled Braking Resistor (TCBR) Model  

The TCBR model taken from [17] is used as a reference model to provide a compara-

tive study with the proposed models. The TCBR model, as shown in Figure 4, consists of 

two controlled thyristors connected back-to-back in series with the single braking resistor 

unit, BR, which is grounded, for a per phase system. The Figure 4 shows three phase con-

figuration for the power system network which is connected to the main system through 

step-down transformer (Tr.-BR).  The back-to-back connected thyristors are acting as a 

controlling switch for the braking resistor model, hence the firing angle, α, for this circuit 

varies between 0˚ and 180˚. 

 
 

Figure 4. Line diagram of Thyristor Controlled Braking Resistor (TCBR) model. 
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Thyristors T1, T3 and T5, shown in Figure 4, are forward-biased, so they operate for 

the positive half cycle of voltage waveform, and thyristors T2, T4 and T6 are reverse-

biased, so they operate for negative half cycle of voltage waveform. Following a fault, 

the current will flow through the BR unit, if the thyristors T1, T3 and T5 or thyristors T2, 

T4 and T6 are in ON state. The thyristors are triggered by the firing angle, α, generated by 

the designed controller. The braking resistor unit BR consumes the excessive transient 

energy and decreases the accelerated power by consuming excessive transient energy. 

The average power consumed by the braking resistor unit is given by  

𝑃𝐵𝑅 =  1
𝜋

 ∫ 𝑣. 𝑖𝑅 .𝑑(𝜔𝑡)𝜋
0 = 𝑉𝑔2.

𝜋 𝑅𝐵𝑅
(𝜋 − 𝛼 + 0.5 𝑆𝑖𝑛(2𝛼))  (W)             (3) 

where, v is the instantaneous value of generator terminal bus voltage, iR is the instantane-

ous value of current through BR unit, VG is the rms value of generator terminal bus volt-

age, α is the firing angle needed to trigger the thyristor switch, PBR is the average power 

absorbed by the braking resistor and RBR is the resistance value of BR unit for the TCBR 

model.   

2. Rectifier Controlled Braking Resistor (RCBR)Model 

The proposed RCBR model, shown in Figure 5, consists of a rectifier circuit in series 

with single BR unit [78]. The three phase rectifier circuit consisting of six controlled thy-

ristors, coverts AC voltage into DC voltage, which is fed to the single BR unit. All the 

thyristors are connected in forward biased condition and form control switch for the BR 

unit. Once the thyristors are triggered by the firing angle, α, they act as unidirectional di-

ode device.  
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Figure 5: Line diagram of Rectifier Controlled Braking Resistor (RCBR) Model. 

For rectifier operation, the firing angle, α, should vary between 0˚ and 90˚. The DC 

voltage, VDC, that appears across the BR is calculated by using (4), and the power con-

sumed by the braking resistor unit BR is calculated by (5) 

𝑉𝐷𝐶 =  3 𝑉𝑚
𝜋

cos𝛼  (V)                       (4) 

𝑃𝐵𝑅 =  (𝑉𝐵𝑅)2

𝑅𝐵𝑅
  (W)                                                       (5) 

where, VDC is voltage across BR, Vm is the peak of the line voltage across the thyristor 

rectifier circuit, α is firing angle for thyristors, PBR is total power absorbed by the BR 

unit, and RBR is the resistance value of the BR unit of RCBR model.    

3. Chopper Rectifier Controlled Braking Resistor (CRCBR) Model 

The proposed CRCBR model consists of uncontrolled diode rectifier and chopper cir-

cuit. The CRCBR model has better benefits over RCBR model in terms of high efficiency 

and fast switching circuit [77] with reduced harmonic contents. The uncontrolled diode 
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rectifier converts the AC voltage into DC voltage, and the chopper switch converts the 

DC voltage into DC voltage that acts as DC/DC converter.  

The CRCBR model, as shown in Figure 6, consists of three phase uncontrolled diode 

rectifier circuit, DC link capacitor, controlled chopper switch (CS) and single BR unit.  

The uncontrolled diodes are unidirectional devices, connected in forward biased condi-

tion. The diode rectifier unit transforms AC voltage and current into DC voltage and cur-

rent. A capacitor (C) is needed to maintain minimum DC voltage across the diode rectifi-

er and given by (6). When the voltage across the capacitor increases beyond its rated ca-

pacity, extra voltage is dissipated as heat energy through the BR unit. The chopper circuit 

consists of IGBT power electronic device. The function of chopper switch is to turn-on 

when the duty cycle, d, is 1 for full conduction of BR unit and turn-off when duty cycle, 

d, is 0 for no conduction of BR unit.  

 
Figure 6: Line diagram of Chopper Rectifier Controlled Braking Resistor (CRCBR) 

Model. 
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the accelerated power by consuming excessive transient energy. The DC voltage, VDC, 

across the BR unit and the power absorbed is calculated by using (7) and (5) respectively.  

𝑉𝐷𝐶′ =  3 𝑉𝑚
𝜋

 (V)                (6) 

𝑉𝐷𝐶 = 𝑑 𝑉𝐷𝐶′   (V)                          (7) 

where, Vm is the peak of the line voltage across the diode rectifier, VDC’ is the DC voltage 

across the capacitor and also the input voltage to the chopper, d is the duty cycle of chop-

per, and VDC is the voltage across the BR.  

D. BRAKING RESISTOR VALUES FOR ALL MODELS: 

The braking resistor resistance value desired for the braking operation should be such 

that it should not affect the synchronism of the system, provide an instant brake to the 

increasing speed of the synchronous generators, and can easily be coupled to the circuit 

network. The braking resistors were initially connected through circuit breakers, so it was 

necessary to know the maximum current rating of the circuit breaker that it will allow to 

pass through it. Secondly, the voltage rating of the braking resistors should be higher than 

the terminal voltage of the synchronous generators; otherwise it will affect the coupling 

of breakers with the network. But an exact value of braking resistors to be employed in 

the network is still under research. 

For this work, the effectiveness of the braking resistor models were analyzed for dif-

ferent per unit values of braking resistors. It was found that the speed responses of all 

models improved with increasing per unit value of braking resistors. Hence, for this 

work, resistance value of the braking resistor unit for different models is calculated based 
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on 1.0 per unit rated power.  In other words, the power absorbed by the braking resistors 

is equivalent to the rated power of the complete network. The resistance value of BR unit 

for all models is calculated considering full conduction mode.  

For the TCBR model switch, the firing angle, α, is 0˚ for full conduction of BR unit. 

By solving the power equation (3) for α =0, the resistance of BR unit, RBR (8) can be de-

rived. For the RCBR model switch, the firing angle, α, is 0˚ for full conduction of BR 

unit. So, by solving the voltage equation (4) for α =0, and substituting VDC in (5), the re-

sistance of BR unit, RBR (9) is derived. Now for the CRCBR model switch, the chopper 

switch action is based on ON/OFF status. So, the duty cycle, d, for this switch should be 

1 for full conduction. From (6), the voltage across capacitor, VDC’, will completely be re-

flected across the BR unit, hence VDC = VDC’. The resistance of BR unit can be calculated 

by (9).  

     𝑅𝐵𝑅 =  𝑉𝑔
2

𝑃𝐵𝑅
    (Ω)                       (8) 

    𝑅𝐵𝑅 =  𝑉𝐷𝐶
2

𝑃𝐵𝑅
    (Ω)            (9) 

Where, Vg  is the voltage across BR unit for TCBR model, VDC  is the voltage across BR 

unit for RCBR and CRCBR models and PBR is the power absorbed by BR unit. 

E. CONTROLLER DESIGN FOR BRAKING RESISTOR MODELS 

As mentioned in literature, multiple inputs such as rotor angle, voltage, speed, power, 

and etc. from the synchronous generator can be sending as an input to the controller for 

designing a suitable braking resistor model. In this work, change in speed of the synchro-
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nous generator (i.e., the speed at transient state - the speed at steady state), Δω, is consid-

ered as an input to the controller and the respective output is generated.  

Three different BR models, discussed in this work, need different switching pulses for 

triggering respective switches. A control block diagram of the controller designed for this 

work is shown in Figure 7.  It consists of a classical PID controller and a limiter. The 

controller takes the change in speed of synchronous generator, Δω, as an input, and pro-

vides its output to the limiter block. A limiter is used to limit the output of PID controller 

within the range LMin and LMax as required by each model. The final control output from 

the controller block is fed to the respective switch of each model as shown in Figure 4-6.  

  

 
Figure 7: A control block of controller designed for all braking resistor models. 

The change in speed of the generators, Δω, connected in the network, can be meas-

ured by using phasor measurement unit (PMU) or the remote terminal units (RTUs). 

Then it can send to the controller to generate the triggering pulses. 

The TCBR model, shown in Figure 4, needs firing angle, α for triggering the two thy-

ristors connected back-to-back. For the positive half cycle, the thyristor, T1, operates, and 

for the negative half cycle, the other thyristor, T2, operates. For full conduction of the BR, 

the firing angle, α, should be 0ᵒ and for no conduction of BR unit, it should be 180ᵒ. 

KP 

KP/TI (1/s) 
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Δω  ∑ Control 
Output 
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Therefore, the controller block generates control output as firing angle, α, which varies 

between 0ᵒ and 180ᵒ.  

The RCBR model, shown in Figure 5, needs firing angle, α, for triggering the thyris-

tor full wave rectifier circuit. For full conduction of BR unit, the firing angle, α, for thy-

ristors, should be 0ᵒ and for zero conduction of BR unit, it should be maintained at 90ᵒ. 

Therefore, the controller block generates control output firing angle, α, that varies be-

tween 0ᵒ and 90ᵒ. 

The CRCBR model, shown in Figure 6, needs duty cycle, d, for triggering the uncon-

trolled diode rectifier and controlled IGBT chopper switch, CS. The controller switch 

needs 1 and 0 for ON and OFF states of IGBT device. Therefore, the controller block 

generates control output duty cycle, d, which varies between 0 and 1. 

The insertion of braking resistor model is needed in the circuit only when the Δω ex-

ceeds a preset value. For avoiding excessive heating of braking resistor units and chatter-

ing effect in the TCBR model BR unit, a preset limit for Δω is set at 0.001 p.u. of rated 

speed. This limit for controller is also chosen such that the power grid system gets stabi-

lized as quickly as possible, and the BR is not inserted into power grid system for a long 

time so as to avoid overheating of BR units. 

When Δω increases beyond this preset value, the control output is generated and fed 

to the respective switches of braking resistor models.  The triggering of the respective 

switches of the braking resistor model inserts the braking resistor model in the network, 

resulting in decrease in speed of the generator.  
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IV. TRANSIENT STABILITY ANALYSIS OF SMIB SYSTEM  

The effectiveness of the proposed models is needed to be tested and compared with 

the effectiveness of the existing braking resistor models before its implementation with 

the real power grid system. Matlab/Simulink software is used to simulate and test all 

braking models with two power grid systems, namely a single machine system and a mul-

ti-machine system. The performances of all three braking resistors are analyzed and com-

pared in case of both balanced and unbalanced temporary and permanent fault conditions 

for a simulation time of 15 sec.   

A. SINGLE MACHINE INFINITE BUS SYSTEM (SMIB) MODEL DETAILS 

The SMIB power grid system [23] is shown by a single line diagram in Figure 8. The 

system model consists of a single synchronous generator (SG, rated as 1000MVA, 20KV, 

50 HZ) feeding an infinite bus through a step up transformer rated as (20KV/500KV) and 

a double circuit transmission line system. The parameters for the synchronous generator 

used in this work are taken from [23] and shown in Table 1, and also the transmission 

line parameters are shown in Figure 8. The governor system (GOV) and the automatic 

voltage regulator (AVR) system are also used for the analysis purpose to provide transi-

ent stability to the power grid system. The circuit breakers (CB), are connected in the 

power grid system as a primary protection device during the fault condition. The steady 

state values obtained for the synchronous generator are shown in Table 2. 

1. Elements of Power Grid System  

The governor system also known as speed governor system controls the steam input 

to the turbine connected to the synchronous generators. It senses a speed deviation or a 

power change command and converts it into appropriate valve action [79].  It controls the 
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mechanical input to the system. The control system block of the governor system used for 

this work is taken from [21], and is shown in Figure 9. The ωm and ωmo are actual speed 

and reference speed, respectively, of the synchronous generator. The Pfdo is the reference 

power input set for the GOV system and P is the actual power input to the synchronous 

generator. 

 

Figure 8: Single line diagram of single generator infinite bus system (SMIB). 

 

 

 

 

Figure 9 : The control block of governor (GOV) model. 
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Table 1: Synchronous generator simulation parameters for SMIB system 

Frequency [Hz] 50 

Generator power ratings [MVA] 1000 

Armature Resistance, ra [pu] 0.003 

Armature leakage reactance, xa, [pu] 0.139 

d-axis synchronous reactance, Xd, [pu] 1.79 

q-axis synchronous reactance, Xq   [pu] 1.71 

d-axis transient reactance, X’d   [pu] 0.169 

q-axis transient reactance, X’q   [pu] 0.228 

d-axis sub-transient reactance, X”d   [pu] 0.135 

q-axis sub-transient reactance, X”q   [pu] 0.20 

Zero sequence reactance, X0   [pu] 0.13 

d-axis open circuit transient time constant, T’do [s] 4.30 

q-axis open circuit transient time constant, T’qo [s] 0.85 

d-axis open circuit sub-transient time constant, T”do [s] 0.032 

q-axis open circuit sub-transient time constant, T”qo [s] 0.05 

Inertia constant, H [s] 2.894 

 

Table 2: Generator initial values for SMIB system 

Generator output 0.9 p.u. 

Generator terminal voltage 1 p.u. 

Generator load angle 60˚ 
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The automatic voltage regulator also known as excitation system regulates the field 

voltage of the synchronous generator. For a large synchronous generator, the exciter may 

be required to supply field currents [79]. It is also combined with the power system stabi-

lizer to stabilize the voltage of the power grid system. The generator output voltage is 

compared with a reference voltage and an error is amplified and fed to the field of a spe-

cial high gain dc generator. The control system block of the automatic voltage regulator 

is taken from [21] and is shown in Figure 10.The Vt and Vto are actual voltage and refer-

ence voltage, respectively, of the synchronous generator. The Efdo is the reference excita-

tion voltage and Efd  is the actual excitation voltage for the synchronous generator. 

 Figure 10 : The control block of Automatic Voltage Regulator. 

 The circuit breaker is a primary element connected in the power system to operate 

when a severe condition such as a fault occurs in the network. The relays connected with 

the circuit breaker senses the abnormality in the transmission lines such as high flow of 

line current and send signal to the circuit breaker to operate and cut down the faulted line 

from the healthy line [79].  

B. CONTROLLER  PARAMETERS FOR SMIB 

The SMIB system consists of one synchronous generator. Therefore, the input to the 

controller, Δω, shown in Figure 7, is fed from the generator SG as shown in Figure 8. 
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Following a fault condition, when Δω increases beyond the set limit of 0.001 p.u. or 3 

rpm, the triggering pulses will be generated and fed to the respective braking resistor 

models.  

The controller parameter values, KP, TI, and TD, calculated by the trial and error 

method, for all different braking resistor models are shown in Table 3. The LMin, and 

LMax, is the limiter value required to limit the triggering pulses within the range. The val-

ue of braking resistor unit is calculated based on the 1 p.u. of power. 

As mentioned earlier, each BR model is implemented with the same type of control-

ler, but as triggering is different for each model, different controller parameters are re-

quired to generate required control output.  

Table 3: Controller parameters and braking resistor values 

Model Type 
Controller Parameter Limiter parameters 

RBR (Ω) 
KP TI TD LMax LMin 

TCBR 10 0.0001 0.01 180 0 0.04356 

RCBR 7 0.01 0.0001 90 0 0.07952 

CRCBR 1.0 0.0001 0.0001 1 0 0.07952 

 

C. SIMULATION RESULTS 

For analyzing the effectiveness of the braking resistor models to enhance the transient 

stability of the power system network, a speed index performance, Δωc, is calculated by 

(7). The smaller the Δωc is, the better the performance of model is. 
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     ∆𝜔𝑐 =  ∫ |∆𝜔| 𝑑𝑡𝑇
0       p.u. sec                               (10)  

where, T is the simulation time of 15.0 sec,  Δω is change in speed of synchronous gener-

ator. Both balanced (3LG: three phase-to-ground and 3LS: three-phase short circuit) and 

unbalanced (2LG: double line-to-ground, 2LS: line-to-line, and 1LG: single line-to-

ground) temporary and permanent faults are considered at the fault point F of the SMIB 

system as shown in Figure 8.  

For temporary fault, it is considered that the fault occurs at 0.1 sec and is cleared at 

0.6 sec, the CB opens at 0.2 sec and recloses at 1.2 sec. For permanent fault conditions, 

the CB reopens at 1.3 sec, while the other simulation conditions are the same as the tem-

porary faults. The time step and simulation time are chosen as 0.00005 sec and 15 se-

conds, respectively. 

The speed index values, calculated by using (10) for both balanced (3LG and 3LS) 

and unbalanced (2LG, 2LS and 1LG) temporary and permanent faults with and without 

BR models are shown in Tables 4 and 5. The speed index values indicate that the pro-

posed models performance is comparable to the existing model performance for all fault 

conditions. It also indicates that the proposed CRCBR model’s performance is better than 

the proposed RCBR and existing TCBR model performances for temporary faults, but for 

permanent fault condition, the RCBR model performance is better than the existing 

TCBR and the proposed CRCBR model performances.  

The speed curves for a duration of 5 seconds in case of balanced (3LG) and unbal-

anced (2LG and 1LG) temporary and permanent faults are shown in Figures 11 to 13 and 

Figures 14 to18.  
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The speed curves with respect to speed index, is varying accordingly for all models. 

The speed responses of proposed CRCBR model show better performance as compared 

to other proposed and existing models. The proposed RCBR model speed curves show 

slow decay as compared to TCBR model speed deviation curves for all faults. They also 

indicate that both proposed models and the existing model is stabilizing synchronous 

generator within small period of time without exceeding the speed limit set for 0.001 p.u. 

or 3 rpm by the controller. 

The total power absorbed in mega-watt (MW) by braking resistor units of all three 

braking resistor model is shown in Tables 6 and 7. The values imply that the power ab-

sorbed by CRCBR model is more as compared to the RCBR and TCBR models. The bet-

ter the speed index values, the higher the power absorbed by the braking resistor units is.  

The more power absorbed by the braking resistors may result in increase in tempera-

ture of the braking resistor and affects its performance for braking. But, it is concluded 

that increase in temperature does not affect the performance of the braking resistor and 

consequently the transient stability [22]. 

The firing angle and power absorbed by braking resistor unit responses for TCBR, 

RCBR and CRCBR braking models for 3LG temporary fault are shown in Figures 17-22 

and for permanent fault in Figures 23-28. The power absorbed by braking resistor follows 

the corresponding firing angle generated by the controller. The firing angle curves for all 

models indicate that the steady state stability is achieved within 2 seconds for temporary 

fault conditions and within 3 seconds for permanent fault condition with multiple inser-

tion of braking resistor units. The power absorbed by braking resistor units for proposed 

RCBR model and existing TCBR model does not exceed the 1000 MW, but for the pro-
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posed CRCBR model, the power absorbed for the first peak is 1700 MW. The CRCBR 

model’s braking resistor unit absorbs accelerating power as well as the power generated 

by the synchronous generator resulting in instant decrease in speed of the generator. 

Table 4 : Speed index values (in 10-3 p.u. sec) for temporary fault conditions 

 

Types of Fault Without BR With TCBR With RCBR With CRCBR 

3LG 8.109 3.792 4.02 3.970 

3LS 7.968 3.667 3.97 3.961 

2LG 5.753 2.270 2.956 2.142 

2LS 3.052 2.203 2.418 2.242 

1LG 2.483 1.924 2.029 1.952 
 

 

Table 5 : Speed index values (in 10-3 p.u. sec) for permanent fault conditions 

 

Types of Fault Without BR With TCBR With RCBR With CRCBR 

3LG 12.35 6.028 5.415 5.689 

3LS 12.19 5.93 5.341 5.638 

2LG 11.78 4.231 4.666 3.872 

2LS 6.216 3.227 3.418 3.341 

1LG 5.287 2.991 3.303 3.050 
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Table 6 : Total power consumed (in MW) by the braking resistor for temporary fault 

conditions 

Types of Fault With TCBR With RCBR With CRCBR 

3LG 139.3 119.7 175.5 

3LS 139.9 117.1 176.2 

2LG 101.8 93.40 122.9 

2LS 76.96 55.59 87.00 

1LG 41.02 27.91 55.98 

 

Table 7 : Total power consumed (in MW) by the braking resistor for permanent fault 

conditions 

Types of Fault With TCBR With RCBR With CRCBR 

3LG 268.2 156.4 256.1 

3LS 265.9 154.8 248.7 

2LG 285.2 1.72.8 319.1 

2LS 125.5 74.60 161.8 

1LG 79.24 59.48 102.8 
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`  

Figure 11 : Speed curves for 3LG temporary fault. 

 

Figure 12 : Speed curves for 2LG temporary fault. 

 

Figure 13 : Speed curves for 1LG temporary fault. 
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Figure 14 : Speed curves for 3LG permanent fault. 

 

Figure 15 : Speed curves for 2LG permanent fault. 

 

Figure 16 : Speed curves for 1LG permanent fault. 
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Figure 17: Firing angle generated through the controller for 3LG temporary fault for 

the TCBR model. 

 

 

Figure 18: Total power absorbed by the braking resistor unit of TCBR model for 3LG 

temporary fault for the TCBR model. 
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Figure 19: Firing angle generated through the controller for 3LG temporary fault for 

the RCBR model. 

 

 

Figure 20: Power absorbed by the braking resistor unit of TCBR model for 3LG tem-

porary fault for the RCBR model. 
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Figure 21: Duty cycle generated through the controller for 3LG temporary fault for 

the CRCBR model. 

 

 

Figure 22: Power absorbed by the braking resistor unit of TCBR model for 3LG tem-

porary fault for the CRCBR model. 
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Figure 23: Firing angle generated through the controller for 3LG permanent fault for 

the TCBR model. 

 

 

Figure 24: Total power absorbed by the braking resistor unit of TCBR model for 3LG 

permanent fault for the TCBR model. 
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Figure 25: Firing angle generated through the controller for 3LG permanent fault for 

the RCBR model. 

 

 

Figure 26: Power absorbed by the braking resistor unit of TCBR model for 3LG per-

manent fault for the RCBR model. 
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Figure 27: Duty cycle generated through the controller for 3LG permanent fault for 

the CRCBR model. 

 

 

Figure 28: Power absorbed by the braking resistor unit of TCBR model for 3LG per-

manent fault for the CRCBR model. 
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V. TRANSIENT STABILITY ANALYSIS OF IEEE 9-BUS POWER SYSTEM  

The effectiveness of the proposed models and the existing braking resistor models are 

also tested on a two machines system i.e., the IEEE-9 bus power system. It is a standard 

power system model that is used to analyze the transient stability. The IEEE-9 bus power 

system model consists of two synchronous generators; hence the transient analysis is 

done for the single-speed input and multiple-speed input to the controller and also for 

single insertion point and multiple insertion point of braking resistor model into the pow-

er system model. The speed index performances of all three braking resistors are ana-

lyzed and compared for balanced and unbalanced temporary and permanent fault condi-

tions by measuring the speed performance index for a simulation time of 15 seconds.   

A. IEEE- 9 BUS POWER SYSTEM MODEL DETAILS 

The IEEE–9 bus power system model, shown by the line diagram Figure 29 [21], 

consists of two synchronous generators G1 (200 MVA) and G2 (130 MVA) feeding three 

loads and an infinite bus through transformers Tr-1 ((20.2/20 KV), Tr-2 (20.4/20 KV) 

and Tr-3 (20 kV/20.8 KV) and double circuit transmission lines. It is noteworthy here 

that the step-down voltage ratio for transformer Tr-1 and Tr-2 are assumed for this simu-

lation work. However, in real field applications, these ratings of transformers do not ex-

ist.  

The synchronous generators parameters used to simulate for this work is shown in 

Table 8 and the initial values obtained for both the generators are shown in Table 9.  The 

double circuit transmission line parameters consisting of resistance (R), reactance (X) and 

susceptance (B) are shown in Figure 29. The circuit breakers (CB) are the primary pro-

tective device installed to cut-off faulted line. 
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The GOV and AVR control blocks used for IEEE-9 bus power system model are dis-

cussed in earlier section and shown by the block diagrams in Figures 9 and 10, respec-

tively.  

 

 

 

 

 

 

 

 

Figure 29: Single line diagram of standard IEEE-9 bus system model. 
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Table 8: Synchronous generator parameters for IEEE-9 bus model used for simulation 

Synchronous generator parameters  SG1 SG2 

Generator power rating [MVA] 200 130 

Armature resistance, ra    [pu] 0.003 0.004 

Armature reactance, xa    [pu] 0.102 0.078 

d-axis synchronous reactance, Xd   [pu] 1.651 1.220 

q-axis synchronous reactance, Xq   [pu] 1.590 1.160 

d-axis transient reactance, X’d   [pu] 0.232 0.174 

q-axis transient reactance, X’q   [pu] 0.380 0.25 

d-axis sub-transient reactance, X”d   [pu] 0.171 0.134 

q-axis sub-transient reactance, X”q   [pu] 0.171 0.134 

d-axis open circuit transient time constant, T’do [s] 5.90 8.970 

q-axis open circuit transient time constant, T’qo [s] 0.535 1.500 

d-axis open circuit sub-transient time constant, T”do [s] 0.033 0.033 

q-axis open circuit transient time constant, T”qo [s] 0.078 0.141 

Inertia constant, H [s] 9.000 6.000 

 

Table 9: Synchronous generator initial values for IEEE-9 bus system model 

 G1 G2 

Generator output 1.9 p.u. 1.2 p.u. 

Generator terminal voltage 1.02 p.u. 1.06 

Generator load angle 59.9˚ 64.9˚ 
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1. Braking Resistor Model Connected to Generators 

A braking resistor model can be connected directly to the terminals of the synchro-

nous generator or at the terminal of the high voltage side of the generator transformer. 

For this work, the braking resistor model is connected on the high voltage side as shown 

in Figure 30. Therefore, the transient stability enhancement can be achieved by adding a 

single model’s of braking resistor within the system, at locations A or B shown in Figure 

29, or by adding two models of braking resistors in the system together, at both locations 

A and B as shown in Figure28.   

 

 
 
 
 
 
 

 

Figure 30: Line diagram of the braking resistor model connected to the high transmission 

side of the generator transformer. 

B. CONTROLLER  PARAMETER FOR IEEE-9 BUS MODEL 

For a multi-machine system, possible location of inserting braking resistor model to 

enhance transient stability is equivalent to the number of synchronous generators in the 

system. Therefore, there are two possible locations for inserting braking resistor models 

in the system, location A, closer to synchronous generator G1 and location B, closer to 

synchronous generator G2, as shown in Figure 35. Hence, for this work, the transient 

analysis is done depending on the number of braking resistors inserted in the power sys-
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tem models, as well as considering the number of input to the controller, Δω, shown in 

Figure 7. For this work, the input to the controller is the change in speed of the synchro-

nous generator. The controller can be fed only with the change in speed of the synchro-

nous generator which has braking resistor model connected to its step up transformer or 

fed with the sum of the deviation in speed of both the generators; even though only one 

braking resistor model is connected to the terminal of synchronous generator. The analy-

sis is grouped as follows: 

i) Single synchronous generator speed deviation input to the controller, Δω = 

Δω1 or  Δω2 : 

a. Braking resistor model connected at location A, the speed deviation input 

Δω = Δω1, the speed deviation of the synchronous generator G1 

b. Braking resistor model connected at location B, the speed deviation input 

Δω = Δω2, the speed deviation of the synchronous generator 

ii) Sum of the speed deviations of both synchronous generators as an input to the 

controller, Δω= Δω1+ Δω2 

a. Braking resistor model connected at location A 

b. Braking resistor model connected at location B 

c. Braking resistor model connected at locations A & B 

The controller parameter values, KP, TI, and TD, calculated by the trial and error 

method, for IEEE-9 bus power system model for all different braking resistor models are 

shown in Table 10. For two different input conditions for the controller, the values calcu-

lated are assumed to be the same. The LMin and LMax are the limiters required to limit the 

triggering pulses within the range, and are shown in the Table 10.  
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As mentioned earlier, each BR model is implemented with the same type of control-

ler, but as triggering is different for each model, different controller parameters are re-

quired to generate required control output. Different parameter values, KP, TI, TD, LMin, 

and LMax, as required by each controller for each model are shown in Table 10.  

Table 10: Controller parameters and braking resistor values 

Model Type 

Controller parameters for  Limiter  

parameters RBR (Ω) Δω = Δω1 or Δω1 Δω= Δω1+ Δω2 

KP TI TD KP TI TD LMax LMin 

TCBR 12 0. 1 0.001 12 0.1 0.001 180 0 0.4356 

RCBR 7 0.01 0.0001 7 0.01 0.0001 90 0 0.7952 

CRCBR 1 0.0001 0.0001 1.0 0.0001 0.0001 1 0 0.7952 

C. SIMULATION RESULTS 

For analyzing the effectiveness of the braking resistor models to enhance the transient 

stability of the power system network, the system performance is done based on two dif-

ferent input conditions to the controller as mentioned in earlier section. The speed index 

performance Δωc, for single speed input and two speeds input, is calculated by using (11).  

∆𝜔𝑐 =  ∫ (|∆𝜔1| + |∆𝜔2|) 𝑑𝑡𝑇
0   p.u. sec                  (11) 

where, T is the simulation time of 15.0 sec, Δω1 and Δω2 are change in speed of synchro-

nous generators G1 and G2, respectively.  The smaller the Δωc, the better the performance 

is.  
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Both balanced (3LG: three phase-to-ground and 3LS: three-phase short circuit) and 

unbalanced (2LG: double line-to-ground, 2LS: line-to-line, and 1LG: single line-to-

ground) temporary and permanent faults are considered at the fault points F1, F2, and F3 

of the IEEE-9 bus power system model as shown in Figure 29.  

For temporary fault, it is considered that fault occurs at 0.1 sec and is cleared at 0.6 

sec, the CB opens at 0.2 sec and closes at 1.2 sec. For permanent fault conditions, the CB 

reopens at 1.3 sec, while the other simulation conditions are the same as the temporary 

faults. The time step and simulation time are chosen as 0.00005 sec and 15 seconds, re-

spectively. 

The speed index values calculated for all three fault locations for both temporary and 

permanent fault conditions are shown in Table 11. It can be seen from the table that the 

speed index values for the fault location F3 are higher as compared to the speed index 

values at fault locations F1 and F2. It implies that F3 is a critical fault point and hence the 

controller parameters are designed for this critical point considering that if any fault oc-

curs in this section, then the system should be stabilized soon without losing synchronism 

of the power network.  

1. Single speed deviation input to the controller 

For transient analysis, the speed deviation input to the controller, Δω, is the individual 

speed deviation of the synchronous generator G1 or G2, i.e. Δω = Δω1 or Δω2 correspond-

ing to the terminal where braking resistor model is inserted. The possible locations of in-

serting the braking resistor models are as follows: 

i) Braking resistor model connected at location A 

ii) Braking resistor model connected at location B 
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Table 11: Speed index values (in 10-3 p.u. sec) for all fault condition without implementa-

tion of braking resistor models 

Types of 
Faults 

Temporary fault Permanent fault 

Fault at F1 Fault at F2 Fault at 
F3 

Fault at 
F1 

Fault at 
F2 

Fault at 
F3 

3LG 29.20 25.16 33.55 29.48 28.69 35.79 

3LS 28.89 24.89 33.25 29.18 28.39 35.57 

2LG 19.13 15.69 28.36 22.09 20.34 34.00 

2LS 13.29 11.17 19.71 15.62 14.44 26.03 

1LG 8.79 6.995 15.53 12.03 10.45 21.82 

 

The speed index values calculated by using (11) for balanced and unbalanced tempo-

rary and permanent fault with and without braking resistor models, inserted at above 

mentioned locations, in case of fault locations F1 are shown in Tables 12 and 13. 

As can be seen from Table 11, the fault location F1 is an intermediate critical point for 

both the temporary and permanent fault conditions. It is closer to the synchronous genera-

tor G1, as shown in Figure 29. For this fault location, insertion of the braking resistor 

models at location A gives better speed index performance results as compared to the in-

sertion of braking resistor models at location B. It also indicates that the proposed 

CRCBR model’s performance is better than the proposed RCBR and existing TCBR 

model performances for permanent fault condition, and comparable for temporary fault 

condition.  Tables 12-13 also indicate that the location A is a better braking resistor inser-

tion point for the existing TCBR model and the proposed RCBR model for fault at F1. 
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With the CRCBR model, both insertion location points give comparable speed index val-

ues. 

The power absorbed by the braking resistor units of the corresponding braking resis-

tor models for fault at location F1, for temporary and permanent faults are shown in Ta-

bles 14 and 15, respectively. The power absorbed by the proposed CRCBR model is 

higher as compared to the proposed RCBR and existing TCBR models.  

For single input to the controller, the single speed deviation is fed as an input for 

analysis. Speed responses for generator G1 and G2 with single speed deviation input to 

controller and braking resistor models inserted at location A and B for balanced 3LG 

temporary and permanent fault at location F1 are shown in Figures 31-38. The speed 

curves follow the speed index values shown in Table 12and 13.  

Table 12: Speed index values (in 10-3 p.u. sec) for temporary fault at F1 for single speed 

deviation input to the controller 

Type of  

Fault 

Without  

BR 

TCBR location  RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 29.20 9.988 17.05 11.91 17.16 10.11 10.64 

3LS 28.89 9.914 17.09 11.82 17.05 10.01 10.59 

2LG 19.13 8.623 13.08 9.733 12.93 6.189 9.466 

2LS 13.29 7.728 10.09 8.085 10.34 5.122 8.687 

1LG 8.79 7.57 7.36 6.875 7.373 5.029 6.236 
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Table 13: Speed index values (in 10-3 p.u. sec) for permanent fault at F1 for single speed 

deviation input to the controller 

Type of Fault Without BR 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 29.48 11.05 20.29 13.80 21.57 10.41 13.77 

3LS 29.18 11.01 20.35 13.71 21.44 10.17 13.75 

2LG 22.09 9.474 17.53 11.22 17.52 7.48 12.88 

2LS 15.62 8.264 13.73 9.476 13.62 6.733 11.0 

1LG 12.03 8.676 11.56 8.597 10.97 6.121 9.055 

 

Table 14: Total power consumed (in MW) for temporary fault at F1 for single speed devi-

ation input to the controller. 

Types of 

 Fault 

TCBR location  RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 53.89  37.66  61.37  49.99  97.12 54.44 

3LS 53.16  36.78 61.77  48.96  94.78 53.4 

2LG 33.05  17.69 41.91  27.12  35.32 20.24 

2LS 20.42  8.58 28.71  10.9  16.35 8.194 

1LG 10.9  2.976  8.806  2.124  7.375 3.886 
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Table 15: Total power consumed (in MW) for permanent fault at F1 for single speed de-

viation input to the controller 

Types of Fault 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 57.41 41.13 59.93 56.63 54.57 48.74 

3LS 56.7 40.27 59.65 55.67 51.98 47.95 

2LG 42.8 27.68 50.93 37.35 38.4 28.51 

2LS 24.19 14.58 35.47 15.6 22.37 14.6 

1LG 18.72 7.631 23.35 6.495 14.56 9.25 

 

 

 

 

Figure 31: Speed response of G1generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 32: Speed response of G2generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 33: Speed response of G1generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 34: Speed response of G2 generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

 

 

Figure 35: Speed response of G1generator for 3LG permanent fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 36: Speed response of G2generator for 3LG permanent fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 37: Speed response of G1generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 38: Speed response of G2 generator for 3LG temporary fault at location F1 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

From Table 11, it can be seen that fault location F2 is a least critical point to disturb 

the network and is closer to the synchronous generator G2. For this fault location and sin-

gle speed deviation input to the controller, the speed index values calculated by using 

(11) for both balanced (3LG and 3LS) and unbalanced (2LG, 2LS and 1LG) temporary 

and permanent faults are shown in Tables 16-17.  The insertion of the braking resistor 

models at location B gives better speed index performance results as compared to the in-

sertion of braking resistor models at location A for the proposed CRCBR model and the 

existing TCBR model. But with the proposed RCBR model, the location A for braking 

resistor model gives better results. It also indicates that the proposed CRCBR model’s 

performance is better than the proposed RCBR and existing TCBR model performances 

for temporary faults as well as for permanent fault conditions. 

The power absorbed by the braking resistor units of the proposed CRCBR and RCBR 

models and existing TCBR models for temporary and permanent faults are shown in Ta-

bles 18-19. The CRCBR model absorbs more power as compared to the RCBR and 
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TCBR models for temporary faults at location A, but for permanent faults, the TCBR ab-

sorbs more power.   

For single input to the controller, the single speed deviation of generator with the 

braking resistor model is fed as an input for analysis. Speed responses for generator G1 

and G2 with single speed deviation input to controller and braking resistor models insert-

ed at location A and B for balanced 3LG temporary and permanent fault at location F2 are 

shown in Figures 39-46. The speed curves follow the speed index values shown in Table 

16 and 17.  

 

Table 16: Speed index values (in 10-3 p.u. sec) for temporary fault at for F2 single speed 

deviation input to the controller 

Type of Fault Without BR 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 25.16 10.29 8.267 12.31 14.06 10.10 9.615 

3LS 24.89 10.28 8.255 12.24 13.89 10.32 9.462 

2LG 15.69 9.389 5.269 10.03 10.45 6.544 6.698 

2LS 11.17 8.47 4.93 8.643 8.386 6.354 5.802 

1LG 6.995 6.838 4.263 6.688 6.024 6.106 4.792 
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Table 17: Speed index values (in 10-3 p.u. sec) for permanent fault at F2 for single speed 

deviation input to the controller. 

Type of Fault Without BR 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 28.69 10.91 15.69 14.35 19.00 10.90 11.51 

3LS 28.39 10.75 15.83 14.21 18.88 10.84 11.47 

2LG 20.34 9.33 14.24 10.98 15.49 7.511 10.92 

2LS 14.44 8.296 11.38 9.499 12.17 7.186 9.162 

1LG 10.45 7.778 9.681 8.013 9.485 6.427 7.347 

 

 

Table 18: Total power consumed (in MW) for temporary fault at F2 for single speed devi-

ation input to the controller 

Types of Fault 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 49.52 68.44 61.97 40.46 77.32 48.57 

3LS 49.06 67.2 61.55 40.2 74.39 47.92 

2LG 26.61 37.13 38.71 23.63 31.38 20.9 

2LS 14.05 26.18 22.74 15.74 13.38 12.20 

1LG 26.08 14.83 2.307 4.57 2.67 4.834 
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Table 19: Total power consumed (in MW) for permanent fault at F2 for single speed de-

viation input to the controller 

Types of Fault 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 49.06  37.74  57.17  46.13  49.62 47.18 

3LS 48.36  37.15  56.92  45.08  54.21 46.43 

2LG 35.77  23.05  45.79  29.41  31.04 27.7 

2LS 21.59  12.16  29.79  11.69  16.23 15.09 

1LG 13.87  46.76  16.89  4.406  7.8 9.24 

 

 

 

Figure 39: Speed response of G1generator for 3LG temporary fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 40: Speed response of G2generator for 3LG temporary fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 41: Speed response of G1generator for 3LG temporary fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 42: Speed response of G2 generator for 3LG temporary fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

 

 

Figure 43: Speed response of G1generator for 3LG permanent fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 44: Speed response of G2generator for 3LG permanent fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 45: Speed response of G1generator for 3LG permanent fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 46: Speed response of G2 generator for 3LG permanent fault at location F2 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

As can be seen from Table 11, fault location F3, is a critical point for both the temporary 

fault conditions and permanent fault conditions and it is located in between both the syn-

chronous generators G1 and G2 as shown in Figure 29. The speed performance indices 

calculated by using (11) for single input to the controller, and two insertion points of 

braking resistors, in case of balanced and unbalanced  temporary and permanent faults are 

shown in Tables 20-21.  

It can be seen from Tables 20-21 that, for the fault location F3, the insertion of the 

braking resistor models at location A gives better speed index performance results as 

compared to the insertion of braking resistor models at location B. The indices values al-

so indicate that the proposed CRCBR model’s performance is comparable to the pro-

posed RCBR and existing TCBR model performances for temporary faults as well as for 

permanent fault condition.  The speed index values for the existing TCBR model are bet-

ter than the speed index values of the proposed RCBR model. 
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 The power absorbed by the braking resistor units of the proposed CRCBR and RCBR 

models and existing TCBR models for balanced and unbalanced temporary and perma-

nent faults are shown in Tables 22 and 23, respectively. The power absorbed by the brak-

ing resistor units is more which means that the speed index value is lower; hence the sys-

tem is stabilized within short period of time. The more the power is dissipated through 

the braking resistors, the more the system is stabilized.   

Speed responses for generator G1 and G2 with single speed deviation input to con-

troller and braking resistor models inserted at location A and B for balanced 3LG tempo-

rary and permanent fault at location F3 are shown in Figures 47-54. The speed curves fol-

low the speed index values shown in Table 20 and 21.  

Table 20: Speed index values (in 10-3 p.u. sec) for temporary fault at F3 for single speed 

deviation input to the controller 

Type of Fault Without BR 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 33.55 11.55 19.41 14.23 19.75 12.57 14.70 

3LS 33.25 11.46 19.32 14.15 19.63 12.53 14.75 

2LG 28.36 10.36 17.87 12.82 17.93 11.32 11.96 

2LS 19.71 9.539 14.91 10.91 14.22 8.939 9.825 

1LG 15.53 8.808 12.52 9.783 12.22 6.165 9.099 
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Table 21: Speed index values (in 10-3 p.u. sec) for permanent fault at F3 for single speed 

deviation input to the controller 

Type of Fault Without BR 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 35.79 16.39 22.5 17.74 23.17 19.46 18.54 

3LS 35.57 16.2 22.42 17.56 23.07 19.26 18.32 

2LG 34.00 14.25 21.38 15.63 21.89 16.59 15.48 

2LS 26.03 11.42 15.94 12.46 18.15 16.15 12.42 

1LG 21.82 10.07 16.48 10.87 16.09 7.439 11.78 

 

Table 22: Total power consumed (in MW) for temporary fault at F3 for single speed devi-

ation input to the controller 

Types of Fault 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 83.86  55.13  79.09  66.23  98.52 78.85 

3LS 83.41  54.44  78.53  65.68  98.14 78.76 

2LG 69.49  43.29  69.4  55.63  86.72 61.61 

2LS 42.24  22.72  52.88  32.52  66.02 31.02 

1LG 30.06  14.48  40.26  21.41  45.26 17.53 
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Table 23: Total power consumed (in MW) for permanent fault at F3 for single speed de-

viation input to the controller 

Types of Fault 
TCBR location RCBR location CRCBR location 

At A At B At A At B At A At B 

3LG 89.15  58.87  88.05  62.28  153.3 90.82 

3LS 88.4  58.34  87.58  61.77  152.5 89.58 

2LG 75.61  54.52  76.85  60.61  123.6 79.44 

2LS 51.88  47.45  61.07  61.02  80.86 60.01 

1LG 42.28  27.51  51.38  36.93  39.13 34.01 

 

 

 

Figure 47: Speed response of G1 generator for 3LG temporary fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 48: Speed response of G2 generator for 3LG temporary fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 49: Speed response of G1generator for 3LG temporary fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 50: Speed response of G2 generator for 3LG temporary fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

 

 

Figure 51: Speed response of G1generator for 3LG permanent fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 52: Speed response of G2generator for 3LG permanent fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

Figure 53: Speed response of G1generator for 3LG permanent fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 
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Figure 54: Speed response of G2 generator for 3LG permanent fault at location F3 

[Single speed deviation input to the controller and braking resistor inserted at location B]. 

The speed index values for the proposed models are comparable to the existing model 

performance for all fault locations. Although the insertion of braking resistor model at 

any terminal point of generator in the system will increase a substantial load on the com-

plete power grid system, the effect of its insertion will be more on the corresponding ter-

minal of the synchronous generator due to the corresponding speed input to controller. 

Therefore, the controller designed with single speed deviation input will control the in-

crease in speed of the corresponding synchronous generator, but will not able to control 

the speed of the other synchronous generator connected in the power grid system as ef-

fectively, as can be seen in speed curves of PQ and PV generators. The fault locations 

and the synchronous generator capacity will play a vital role in enhancing the transient 

stability. 

2. Sum of speed deviation of both synchronous generators as an input to the controller  

For transient analysis purpose, the speed deviation input to the controller shown in 

Figure 7 and 30 is the sum of speed deviations of G1 and G2, i.e. Δω = Δω1 + Δω2. The 
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three configurations for inserting braking resistor models are possible with this input to 

controller and are discussed in earlier section and are as stated as follows: 

i) Braking resistor model connected at location A 

ii) Braking resistor model connected at location B 

iii) Braking resistor model connected at location A & B 

For the fault location F1, the speed index values calculated by using (11) in case of 

balanced and unbalanced temporary and permanent faults for the proposed RCBR and 

CRCBR models and existing TCBR model, is shown in Tables 24 and 25. The speed in-

dex values for all three models are comparable. The proposed RCBR model provides bet-

ter transient stability as compared to proposed CRCBR model and existing TCBR model 

for temporary faults. For permanent faults, the proposed CRCBR model provides better 

control compared to TCBR and RCBR model’s performances.  

The total power consumed by the braking resistor units of proposed CRCBR and 

RCBR models and existing TCBR models is shown in Table 26 and 27 for temporary and 

permanent fault conditions respectively. The power absorbed by braking resistor units is 

higher for the models which have better speed index values. The more the power ab-

sorbed, the lower the speed index value is.  

The input to the controller is the sum of the speed deviation of both the synchronous 

generators, wherever the braking resistor model is inserted. The total speed deviation 

curves for the input to the controller for 3LG temporary and permanent fault at location 

F1 for braking resistor models inserted only at location A, only at location B and both at 

locations A and B, are shown in Figures 55-60. The speed deviation curves indicate that 

the controller generates corresponding triggering pulses when the total speed deviation 
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exceeds the preset limit of 0.001 p.u., and hence the total speed deviation does not exceed 

the set limit. The generators G1 and G2 get stabilized without exceeding the speed limits.  

Table 24: Speed index values (in 10-3 p.u. sec) for temporary fault at F1 for sum of two 

speed deviation input to the controller 

Types 
of 

Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 29.20 9.44 8.52 8.51 8.58 8.9 8.25 9.99 10.2 8.83 

3LS 28.89 9.40 8.46 8.46 8.51 8.78 8.13 9.62 10.1 9.08 

2LG 19.13 7.86 7.24 8.06 6.46 6.2 6.62 6.74 6.64 6.04 

2LS 13.29 7.25 6.72 8.08 5.62 5.62 6.16 4.19 5.59 4.47 

1LG 8.79 6.57 5.84 7.43 4.92 4.92 5.04 2.54 2.88 2.40 

Table 25: Speed index values (in 10-3p.u. sec) for permanent fault at F1 for sum of two 

speed deviation input to the controller 

Types 
of 

Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 29.48 10.5 11.5 10.2 11.5 11.4 10.8 11.9 10.8 9.89 

3LS 29.18 10.4 11.5 10.1 11.4 11.3 10.7 11.8 10.9 9.37 

2LG 22.09 9.0 10.0 9.5 9.32 9.08 9.10 7.68 7.73 6.23 

2LS 15.62 7.8 9.1 9.8 7.95 8.04 8.43 5.42 5.14 4.05 

1LG 12.03 7.4 8.1 11.3 6.68 7.13 6.93 4.19 4.29 3.65 
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Table 26: Total power consumed (in MW) for temporary fault at F1 for sum of two speed 

deviation input to the controller 

Types 
of 

Fault 

TCBR location RCBR location CRCBR location 

At A At B At 
A&B At A At B At 

A&B At A At B At 
A&B 

3LG 61.3  65.8  78.6  73.4 78.3 104 168 154 193 

3LS 60.6  65.0 77.6  72.9 77.5 103 167 155 188 

2LG 36.8  39.6 53.4 43.7 54.1 75.4 67.1 83.9 831 

2LS 27.3  27.9  43.9  35.8 41.0 57.9 26.8 32.5 29.8 

1LG 18.9  16.5  31.4  23.3 25.2 28.1 12.4 14.4 13.2 

 

Table 27: Total power consumed (in MW) for permanent fault at F1 for sum of two speed 

deviation input to the controller 

Types of 
Fault 

TCBR location RCBR location CRCBR location 

At A At B At A&B At A At B At A&B At A At B At A&B 

3LG 66.9 77.1 94.1 87.8 97.4 132 86.2 101 105 

3LS 66.5 76.5 93.5 87.1 96.4 131 83.7 98.3 103 

2LG 49.4 57.8 76.9 63.9 75.4 104 57.1 62.3 63.4 

2LS 33.2 40.2 60.9 48.9 56.8 76.5 34.7 33.6 37.63 

1LG 27.1 30.2 63.5 38.8 42.6 51.7 23.4 23.8 26.0 
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Figure 55: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviation input to the controller and braking resistor inserted at location A]. 

 

 

  

Figure 56: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 
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Figure 57: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviations input to the controller and braking resistor inserted at location A 

& location B]. 

 

 

Figure 58: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviation input to the controller and braking resistor inserted at location A]. 
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Figure 59: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 

 

Figure 60: Total speed deviation response for 3LG temporary fault at location F1 

[Two speed deviations input to the controller and braking resistor inserted at location A 

& location B]. 
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From Table 11, the fault location F2 is a least critical point for both the temporary 

fault and permanent fault conditions and is closer to synchronous generator G1, as shown 

in Figure 29. For this fault location, insertion of the braking resistor models at any of the 

mentioned locations provides comparable speed index performance results for both the 

balanced and unbalanced temporary and permanent faults as shown in Tables 28 and 29. 

The tables also indicate that the speed index performance is vice-versa for all three brak-

ing resistor models when compared for temporary and permanent faults. The proposed 

CRCBR model’s performance is better than the proposed RCBR and existing TCBR 

model performances for all three braking resistor insertion points as mentioned earlier. 

The speed index values for the existing TCBR and the proposed RCBR model are compa-

rable for all three braking resistor insertion points. The power absorbed by the braking 

resistor unit by both the proposed CRCBR and RCBR models and existing TCBR models 

for temporary and permanent faults are shown in Tables 30 and 31.  

The total speed deviation curves for the input to the controller for balanced 3LG tem-

porary and permanent faults at location F2 for braking resistor models inserted only at lo-

cation A, only at location B and both at locations A and B are shown in Figures 61-66. 

The speed deviation curves indicate that the controller generates corresponding triggering 

pulses when the total speed deviation exceeds the preset limit of 3.6 rpm or 0.001 p.u., 

and hence the total speed deviation do not exceed the set limit.  
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Table 28: Speed index values (in 10-3 p.u. sec) for temporary fault at F2 for two speed de-

viation input to the controller 

Types 
of 

Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 25.16 9.49 7.76 8.95 8.60 8.25 8.13 9.16 9.95 8.37 

3LS 24.89 9.61 7.70 8.98 8.55 8.13 8.07 9.12 9.41 8.64 

2LG 15.69 6.51 6.28 7.54 6.73 5.70 6.50 6.36 5.87 5.91 

2LS 11.17 6.31 5.71 7.70 6.16 5.24 6.00 4.01 4.23 3.54 

1LG 6.995 4.74 4.91 6.16 4.41 4.40 4.55 2.57 2.75 2.30 

 

 

Table 29: Speed index values (in 10-3 p.u. sec) for permanent fault at F2 for two speed 

deviation input to the controller 

Types of 
Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 28.69 12.1 9.87 10.8 11.8 10.8 10.4 11.9 10.9 9.83 

3LS 28.39 11.5 9.80 11.1 11.8 10.7 10.3 11.6 10.4 9.54 

2LG 20.34 10.4 8.31 9.39 9.32 8.54 8.84 7.57 7.31 6.79 

2LS 14.44 8.41 7.21 11.00 7.94 7.41 7.87 5.26 4.75 4.25 

1LG 10.45 7.67 7.46 9.44 6.60 6.65 6.74 4.18 4.01 5.86 
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Table 30: Total power consumed (in MW) for temporary fault at F2 for two speed devia-

tion input to the controller 

Types of 
Fault 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 53.8 53.8 71.5 72.2 69.7 93.1 134 162 146 

3LS 52.9 53.1 70.9 71.2 68.7 92.3 131 161 142 

2LG 28.9 30.5 44.7 37.2 44.5 62.7 46.2 61.9 52.8 

2LS 22.7 21.4 41.2 30.4 35.0 49.7 25.3 27.9 29.6 

1LG 12.4 12.1 24.8 19.9 19.6 22.6 11.3 10.3 10.8 

 

Table 31: Total power consumed (in MW) for permanent fault at for two speed deviation 

input to the controller 

Types 
of 

Fault 

TCBR location RCBR location CRCBR location 

At A At B At 
A&B At A At B At 

A&B At A At B At 
A&B 

3LG 68.1 64.8  91.9  83.7 84.5 118 83.6 85.5 98.0 

3LS 66.3  64.3  92.8  82.6 83.9 118 80.5 83.6 96.2 

2LG 49.5  46.9  72.6  60.0 63.4 90.3 54.9 53.2 62.2 

2LS 33.1  29.7  64.8  44.9 45.0 57.2 33.1 31.0 34.5 

1LG 25.9  23.6  53.1  34.1 32.2 38.7 19.2 20.1 22.7 
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Figure 61: Total speed deviation response for 3LG temporary fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location A]. 

 

 
 
Figure 62: Total speed deviation response for 3LG temporary fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 
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Figure 63: Total speed deviation response for 3LG temporary fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location A 

& location B]. 

 

 
Figure 64: Total speed deviation response for 3LG permanent fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location A]. 
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Figure 65: Total speed deviation response for 3LG permanent fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 

 

Figure 66: Total speed deviation response for 3LG permanent fault at location F2 

[Two speed deviations input to the controller and braking resistor inserted at location A 

& location B]. 
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From Table 11, the fault location F3 is a critical point for both the temporary fault and 

permanent fault conditions and is in-between synchronous generator G1 and G2, as 

shown in Figure 29. For this fault location, insertion of the braking resistor models at any 

of the mentioned locations provides comparable speed index performance results for both 

the balanced and unbalanced temporary and permanent faults as shown in Tables 32 and 

33. The tables also indicate that the speed index performance is vice-versa for all three 

braking resistor models when compared for temporary and permanent faults. The pro-

posed RCBR model’s performance is better than the proposed CRCBR and existing 

TCBR model performances for temporary fault conditions, whereas the proposed 

CRCBR model’s performance is better than the proposed RCBR and existing TCBR 

model performances for permanent fault conditions. The power absorbed by the braking 

resistor unit by both the proposed CRCBR and RCBR models and existing TCBR models 

for temporary and permanent faults are shown in Tables 34 and 35.  

The total speed deviation curves for the input to the controller for balanced 3LG tem-

porary and permanent faults at location F3 for braking resistor models inserted only at lo-

cation A, only at location B and both at locations A and B are shown in Figures 67-72. 

The speed deviation curves indicate that the controller generates corresponding triggering 

pulses when the total speed deviation exceeds the preset limit of 3.6 rpm or 0.001 p.u., 

and hence the total speed deviation do not exceed the set limit.  
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Table 32: Speed index values (in 10-3 p.u. sec) for temporary fault at F3 for two speed de-

viation input to the controller 

Types of 
Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 33.55 11.3 12.2 12.0 11.2 11.9 10.5 13.0 13.4 11.9 

3LS 33.25 11.2 12.1 11.9 11.0 11.8 10.3 13.0 13.2 12.1 

2LG 28.36 9.26 9.54 10.1 8.73 9.55 9.07 10.3 11.3 10.3 

2LS 19.71 6.76 7.16 7.40 6.56 6.59 6.85 7.78 9.01 7.76 

1LG 15.53 6.47 6.68 7.96 5.81 5.71 6.30 6.20 6.09 6.75 

 

Table 33: Speed index values (in 10-3 p.u. sec) for permanent fault at F3 for two speed de-

viation input to the controller 

Types of 
Fault 

Without 
BR 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 35.79 19.4 15.1 16.3 16.8 15.7 13.6 17.1 16.2 13.3 

3LS 35.57 19.3 15.0 16.1 16.7 15.5 13.4 17.0 16.1 13.7 

2LG 34.00 16.2 12.8 12.9 14.1 13.0 11.5 13.9 13.5 11.9 

2LS 26.03 11.8 10.4 11.2 10.5 10.5 9.40 14.6 12.5 8.45 

1LG 21.82 9.71 9.67 10.8 8.68 8.59 8.56 6.95 8.44 7.08 
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Table 34: Total power consumed (in MW) for temporary fault at F3 for two speed devia-

tion input to the controller 

Types of 
Fault 

TCBR location RCBR location CRCBR location 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

At 
A 

At 
B 

At 
A&B 

3LG 86.9 95.7  138  108 113 164 152 115 375 

3LS 86.1  95.4  137  108 113 162 152 116 369 

2LG 68.1  78.1  99.5  84.3 91.1 123 153 116 281 

2LS 40.4  49.2  63.4  51.8 59.6 81.8 114 126 146 

1LG 33.5  37.8  53.7  43.0 48.9 7.13 67.6 82.2 90.9 

 

Table 35: Total power consumed (in MW) for permanent fault at F3 for two speed devia-

tion input to the controller 

Types of Fault TCBR location RCBR location CRCBR location 

At A At B At A&B At A At B At A&B At A At B At A&B 

3LG 102 107  149  109 121 167 149 146 259 

3LS 102  106  148  108 120 166 149 146 253 

2LG 87.3  94.0  123  97.0 105 143 153 147 206 

2LS 61.8  70.2  98.7  71.2 82.8 115 94.8 120 116 

1LG 51.9  56.8  87.4  60.2 73.4 103 67.2 84.0 81.6 
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Figure 67: Total speed deviation response for 3LG temporary fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location A]. 

 

Figure 68: Total speed deviation response for 3LG temporary fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 
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Figure 69: Total speed deviation response for 3LG temporary fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location A 

& location B]. 

 

Figure 70: Total speed deviation response for 3LG permanent fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location A]. 
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Figure 71: Total speed deviation response for 3LG permanent fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location B]. 

 

 

Figure 72: Total speed deviation response for 3LG permanent fault at location F3 

[Two speed deviations input to the controller and braking resistor inserted at location A 

and location B]. 
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VI. DISCUSSIONS  

The proposed CRCBR and RCBR models and the existing TCBR model switches are 

compared and analyzed on the basis of cost and heat and harmonics factors. They are 

briefly discussed in the following sections. 

A. COST ANALYSIS 

The important feature of the proposed models is the reduction of the number of BR 

units to one from three for a three-phase system because of the switch designs of the pro-

posed models. All components used in the switch design of the existing and proposed 

models are compared and shown in Table 36. It can be seen that the number of braking 

resistor unit is reduced to one for the proposed models as compared to three braking re-

sistor units used in proposed models. However, few components, such as the capacitance 

bank and diodes, are not used in the TCBR model’s switch, while they are used for de-

signing the other two model’s switches. The braking resistor unit values for the proposed 

models and existing models for SMIB and IEEE-9 bus power system test models are dis-

cussed in the earlier sections. The braking resistor value for the proposed models is ap-

proximately twice that of a single unit of the existing TCBR braking resistor. It might be 

possible that with the controller switch, the overall size of the braking resistor model will 

be reduced and the proposed models provide a simultaneous control on three phases with 

single switch. The number of elements as well as their ratings used to design the existing 

and proposed models is nearly the same.  The best feature would be the reduction of the 

cost of BR units with the reduced number of BR units installed. 
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Table 36: Components used for designing switches of proposed and existing braking re-

sistor models discussed in this work 

Components TCBR RCBR CRCBR 

Thyristors 6 6 0 

Diodes 0 0 6 

IGBT 0 0 1 

Capacitance 0 0 1 

BR Units 3 1 1 

 

B. HEAT LOSS AND HARMONICS ANALYSIS 

The proposed models’ braking resistor units absorbs DC voltage and current whereas 

the existing TCBR model braking resistor unit absorbs AC voltage and power. The DC 

voltage and current have their own advantages over AC current and voltages, such as ear-

lier reduces harmonic current and ripples and decrease heating of BR units. Also, with the 

reduction of the number of BR units, the heat losses occurring due to heating of BR unit 

for the proposed models reduced to approximately one-third as compared to that in the 

existing TCBR model. The total power consumed by the CRCBR model is more as com-

pared to that by other two models. So, the heat loss for the CRCBR model would be 

more. It is described in [77], [80] that the CRCBR models are more efficient as compared 

to the RCBR models, as they generate a load current with reduced ripple and generate 

less current harmonics.  
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The disconnection of the heavy load from the power grid system decreases the elec-

trical load connected to the synchronous generator. The governor system takes few se-

conds for sensing the increase in speed of the synchronous generator and for closing the 

input valve of the steam turbine generator. During this period, the synchronous generator 

gets accelerated. The acceleration of the synchronous generator will lead to the change in 

the frequency of the power grid system and hence affect the loads connected to the power 

grid system. The instant insertion of braking resistor will absorb the accelerating power 

of the synchronous generator and make the system stabilize. 
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VII. CONCLUSION AND FUTURE WORK 

The proposed RCBR and CRCBR models can be used as an alternate solution to the 

existing TCBR model for the enhancement of power system transient stability. Also, each 

of the proposed BR model has an advantage of reduced number of BR units with few 

trade-off conditions, such as speed index, cost, heat loss and harmonics.  

A. CONTRIBUTION OF THE THESIS 

The transient stability enhancement is related to achieving the stabilized and synchro-

nized power grid system following a severe load transition due to any fault occurrence in 

the system or due to failure of the system. The insertion of the braking resistor into the 

power grid system helps in enhancing the power system stability as well as the bulk pow-

er transmission without affecting the existing power grid system. The effectiveness of the 

two new braking resistor models, designed in this work, and the existing braking resistor 

model are compared on the basis of the performance indices, heat and harmonic, and 

cost. The transient stability analysis is performed for both kinds of temporary and perma-

nent faults.  

This thesis proposes the RCBR and CRCBR models with an advantage of reduced 

number of BR units which may lead to reduced overall size and cost of the BR model. 

The speed curves and speed indices calculated for both balanced and unbalanced fault 

conditions imply that the proposed models are alternate solutions to the existing BR 

model considering few trade-off conditions, such as speed index, cost, heat loss and har-

monics. Also, the CRCBR model is better than the other models, whereas heat losses by 

the CRCBR model would be higher due to higher power dissipation in BR.   
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B. FUTURE WORK 

As an extension to this work, the following points can be considered in the future. 

a) In future, by getting the exact market price for all the components used to design 

the proposed models and the existing models, the analysis can be made for the 

economical, small-sized, and efficient braking resistor models.  

b) For this work, the required triggering pulses for the switching operation of the 

braking resistor models are generated by the designed PID controller. The de-

signed PID controller takes change in speed of synchronous generator as an input 

and generates the required pulses. It is also reported in literature that the transient 

stability of the power grid system can be enhanced by controlling the other steady 

state parameters of the synchronous generator, such as the change in steady-state 

voltage, change in steady state load angle, change in kinetic energy of the syn-

chronous generators, etc. Hence, in the future, a PID based controller can be de-

signed for different inputs from synchronous generators to generate the required 

triggering pulses for the proposed models and results can be compared.  

c) There is also a scope of designing a non-linear controller except the existing fuzzy 

logic and neural network controllers and can be compared with the existing con-

troller performances.  

d) These models are needed to be tested on a multi-machine system to see the effec-

tiveness for a large system. The optimal insertion point for the insertion of brak-

ing resistor models can be analyzed.  

e) The braking resistor unit value of 1 p.u. is used for this work. There is no work 

reported regarding the use of an optimal value of braking resistor unit. So, an 
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analysis is required to determine the resistor optimal value that can improve the 

transient stability. 
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