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Abstract 

Stovall, Scott. Ph.D. The University of Memphis, May 2005. An Improved Method for 
the Identification and Inversion of Multi-Mode Rayleigh Surface Wave Dispersion 
Collected From Non-Uniform Arrays Utilizing A Moving Source Approach.  Major 
Professor: Shahram Pezeshk 
 
 

An improved method using a moving source approach is utilized in the analysis of 

Rayleigh surface waves for the accurate identification of higher mode propagation used 

in inversion.  Two non invasive surface wave methods, Multi- station Analysis of Surface 

Waves (MASW) and Refraction Microtremor (ReMi) were used for the construction of 

composite dispersion curves representing the relationship of Rayleigh phase velocity (VR) 

with frequency.  Multiple tests were executed with source offsets increasing with each 

successive test in order to account for near field effects and higher mode attenuation 

levels.  The resulting dispersions were combined to form a composite dispersion which 

effectively maps all participating modes of propagation.  The inversion was executed 

using a genetic algorithm (GA) which takes advantage of the Rayleigh forward problem.  

The results show good ability to identify intermediate high and low velocity layers and 

agree well with downhole results. 
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Chapter 1. Introduction 

1.1 Introduction 

For a structure to be built and stand the test of time it must have a solid foundation.  

There are many natural disasters that can occur at any time and if not prepared for can 

result in catastrophic failures.  Over the past century engineers have become more aware 

of the hazards associated with earthquakes and have been working diligently to best 

prepare for them.  One of the most studied hazards is the ground response resulting from 

an earthquake.   Many of today’s structures are not built on rock foundations and many 

countries have found it necessary to build up land in order to provide adequate living 

space.  This creates significant risk levels in areas where seismic hazards are high.  

Seismic hazard by definition is the study of expected ground motion due to an 

earthquake event.  For large scale zones these hazards are displayed in what is referred to 

as hazards maps (Figure 1.1).  Hazard maps display the earthquake ground motions for 

various probabilities of occurrence and are used in building codes for seismic provisions.  

These provisions incorporate hazard maps into the design of buildings and other 

structures in order that they may withstand the effects of the ground motion induced by 

the probable earthquake event.  Hazard maps are constructed based on regional geology 

and may not represent the actual conditions for a local site.  Research has shown that the 

upper 100 ft of the underlying soil structure has significant effect on site response due to 

a seismic event (NEHRP, 2003).   
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Figure 1.1  Hazard map of the continental United States for 5% 
probability of occurrence in 50 years (adopted from 
USGS website). 

  

 
In today’s engineering field, there are many tools to aid in the determination of site 

response due to a seismic event.  One of the main tools is the computer program 

SHAKE91 (Idriss and Sun, 1992).  SHAKE91 allows for the determination of site 

specific ground response due to an input motion.  The inputs can be actual recorded 

events or synthetic seismograms developed to represent the regional characteristic events.  

SHAKE91 can determine the site response from two essential properties of the 

underlying substructure.  These two properties are the thickness of the individual soil 

layers and their respective shear wave velocities.    

Methods used for determining in-situ soil properties can be either intrusive or non-

intrusive.   Intrusive methods require boreholes to be drilled into the ground that allow for 

sampling of the soil substructure at depth intervals.  Physical samples can be retrieved 
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and tested in the laboratory to determine the soil properties.  The boreholes can then be 

cased and sensors placed at specific depths to record the arrival times of seismic waves 

generated at the ground surface.  A velocity profile of the underlying substructure can 

then be produced from the recorded arrival times. 

Non-intrusive methods use seismic energy propagating along the surface of the 

ground to determine the underlying soil layers.  Different techniques use different types 

of wave energy arriving at sensors located along the ground to determine the in-situ soil 

conditions.  One of the most popular techniques is the Multi-channel Analysis of Surface 

Waves (MASW).  The MASW measures the frequency-dependent phase velocities of 

Rayleigh surface waves propagating along the ground surface to construct a dispersion 

curve.  This dispersion curve is then inverted to determine soil properties such as layer 

thicknesses and shear-wave velocities.  

The MASW technique has become a popular method for soil velocity profiling and 

has been shown to provide reliable results (Lai and Rix, 1998;  Foti , 2000;  Hebeler, 

2001; Pezeshk and Zarrabi, 2005; and Boore and Asten, 2008).  However, the MASW 

method suffers at low frequencies due to high levels of ground noise and from the 

presence of multi-mode Rayleigh wave propagation.  Research has shown that when a the 

soil substructure contains layers where the soil velocity is either higher or lower than the 

layers above and below, higher mode Rayleigh surface waves have significant influence 

on the resulting dispersion (Mooney and Bolt, 1966; Tokimatsu, 1992; and  Lai and Rix, 

1998).  It is therefore imperative that all participating Rayleigh modes be identified for 

reliable determination of in-situ soil conditions.  
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1.2 Research Goal 

The goal of this research is to develop a method for the accurate identification of 

higher mode Rayleigh surface waves for use in inversion in order to produce reliable 

shear wave velocity profiles.  A moving harmonic source approach is used to overcome 

the problems associated with near-field effects as well as changes in attenuation as a 

function of depth.  By increasing the source offset, higher mode Rayleigh wave 

participation can be seen in the resulting dispersion curve allowing for the identification 

of individual propagating modes. The use of multiple modes in inversion helps to 

minimize possible solutions to the Rayleigh eigen-problem.  

In order to account for the poor signal-to-noise ratios at low frequencies resulting 

from the Harmonic source, a combination of the Multichannel Analysis of Surface Waves 

(MASW) method along with the Refraction Microtremor (ReMi) method is used to 

construct composite dispersion curves to be used in the inversion process.  The composite 

dispersion curves allow for a much broader frequency range to be investigated for 

Rayleigh wave dispersion.   

A genetic algorithm is used for inversion to take advantage of the forward solution of 

the Rayleigh eigen-problem and allows for a large search space for finding the optimum 

solution.  The end result is a multi-mode inversion of Rayleigh wave dispersion that 

predicts the in-situ soil velocities of an underlying substructure. 

 
1.3 Dissertation overview 

This dissertation is organized into seven chapters containing individual sections 

relating to specific topics of interest.  Chapter 2 introduces some of the important 

characteristics of Rayleigh wave propagation and the resulting theories involved in the 
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solution to the Rayleigh eigen-problem.  The effects of multi-mode Rayleigh wave 

propagation on dispersion are discussed along with the inversion technique used for the 

determination of soil layer velocities.  Chapter 3 discusses the methods used in the 

measurement of Rayleigh surface wave dispersion.  The Regression Line Slope (RLS), 

Frequency-wavenumber (f-k), and  Refreaction Microtremor (ReMi) methods are 

discussed, and the accuracy of each method is addressed.  Chapter 4 details the testing 

procedures and needed equipment for the collection of experimental Rayleigh wave 

dispersion along with the procedures used in downhole testing.  Chapter 5 explores the 

signal processing techniques used in the methods of Chapter 3 and indentifies important 

experimental results needed for the achievement of the research goals. Chapter 6 displays 

the results of both the experimental testing and inversion of the Rayleigh wave 

dispersion.  Comparison is made between the shear wave velocity profiles obtained from 

downhole testing and that of the Rayleigh wave inversion results.  In Chapter 7, the 

conclusions of the research goals are discussed and recommendations for future research 

are suggested.    
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Chapter 2. Literature Review 

Rayleigh wave propagation is a complex problem governed by the in-situ conditions 

within the underlying substructure.  The waves themselves are a combination of multiple 

seismic waves that interact due to reflections and refractions caused by layer interfaces.  

The properties of the individual layers directly influence the dynamic response of the 

seismic waves and the resulting propagation characteristics.  The following chapter 

discusses these properties and how they are used in the formulation of theoretical 

Rayleigh wave propagation.  Several techniques for the solution of the theoretical model 

are discussed along with the method of inversion used for the determination of in-situ 

shear-wave velocities. 

 
2.1 Dynamic Soil Properties 

One of the key areas in the study of geotechnical earthquake engineering is the site 

response resulting from the cyclic loading of the underlying soil structure.  The response 

is mainly influenced by the properties of the soil commonly referred to as the dynamic 

properties.  These dynamic soil properties directly influence the behavior of seismic wave 

propagation and the resulting site response.  The mechanical behavior of soils is a 

function of the strain magnitude experienced under specific stress conditions and can best 

be understood from the hysteresis loop shown in Figure 2.1.  A hysteresis loop charts the 

relationship of induced strain as a function of applied stress under cyclic loading 

conditions.  The inclination of the hysteresis loop is controlled by the soil stiffness, which 

is described by the tangent shear modulus at any point during the loading process.  The 

general inclination of the hysteresis loop can be approximated by averaging the values of 

the tangent shear modulus over the entire loading process resulting in (Kramer, 1996)  
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 sec
c

c

G



 (2.1.1)

 

where c and c are the shear stress and shear strain amplitudes.  Changes in strain 

amplitude during loading result in changes to the hysteresis loop and subsequently the 

secant shear modulus.   

 

Figure 2.1  Hysteresis loop representing the stress-strain behavior 
of a soil undergoing cyclic loading. 

 

By plotting the locus of points corresponding to the tips of the hysteresis loops for 

different strain amplitudes, a curve known as the backbone curve can be plotted with 

respect to strain amplitude (Figure 2.2).  The slope of the curve measured at the origin 

represents the largest value of the shear modulus (Gmax).  When strain amplitude is zero, 

G and Gmax are equal.  As strain amplitude increases the ratio G / Gmax drops.  This ratio is 

Gtan

Gsec



c

c
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known as the modulus ratio and when plotted with respect to shear strain produces the 

modulus reduction curve of Figure 2.3.  The modulus reduction curve depicts how the 

soil stiffness or rigidity decreases with increased strain.   

 

 

 

Figure 2.2  Backbone curve G plotted with maximum shear 
modulus Gmax. 

 

 
The area within the hysteresis loop in Figure 2.1 defines the energy dissipation 

during loading and is commonly referred to as the damping ratio defined as (Kramer, 

1996)   

 
2

sec4 2
loopD

S c

AW

W G


  
  (2.1.2)

 

Backbone Curve





Gmax

G
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where WD is the dissipated energy, WS is the maximum strain energy, and Aloop is the area 

of the hysteresis loop.   

 

 

 Figure 2.3  Modulus reduction curve. 
 
 

From Equation (2.1.2) it can be inferred that as strain amplitude increases, Gsec will 

decrease resulting in an increase in Aloop and thus an increase in damping with increased 

strain.  In seismology a dimensionless definition is given for energy dissipation known as 

the quality factor Q (Aki and Richards, 1980): 

 
 1

( )
2 ( )

Q 
 

  (2.1.3)

 

It should be noted that both  and Q assume a material under linear stress-strain 

conditions.  Later sections will show how this dissipation of energy can have a dramatic 

log 

max

G

G

1.0
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effect on Rayleigh wave propagation.  The dynamic soil property most used in site 

response is the shear wave velocity defined as (Kramer, 1996) 

 
 

S
S

G
V


 (2.1.4)

 

where VS  is the shear wave velocity,  is the mass density and GS is the shear modulus.  

The shear modulus is defined by 

 

2(1 )S

E
G

v



(2.1.5)

 

where E is the elastic modulus and v is Poisson’s ratio.  The shear wave velocity is used 

as input for site response programs such as SHAKE91 (Idriss and Sun, 1992).  SHAKE91 

uses shear wave velocities along with shear modulus reduction and damping curves to 

determine ground accelerations based on an equivalent linear elastic analysis. 

The compression wave velocity is determined in a manner similar to that of VS 

and is expressed as 

 2B S
P

G G
V




 (2.1.6)

 

where GB is known as Lame’s constant.  Lame’s parameters are typically identified as  

and however, to minimize confusion in later sections and maintain consistency GB and 

GS, respectively,  are used here.   

Lame’s parameters are related to the elastic modulus and Poisson’s ratio.  GS is 

the shear modulus described above and GB is used to describe the effects of dilation on 

tensile stress.  GB is related to the bulk modulus by  
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 2

3B SG K G  (2.1.7)

 
where K is defined as   

 (1 ) 4

(1 )(1 2 ) 3 S

v E
K G

v v


 

 
(2.1.8)

 

Inserting Equation (2.1.8)  into (2.1.7) GB is expressed by   

 
 

(1 )(1 2 )B

vE
G

v v


 
(2.1.9)

 
 

The above dynamic soil properties directly influence seismic wave propagation used 

in the determination of in-situ soil conditions.  This will become clear in the following 

section, which discusses seismic wave propagation and the fundamental theories involved 

for Rayleigh surface wave propagation.  

 

2.2 Seismic Waves 

Seismic waves are waves of energy the travel through the earth radiating outward 

from their source.  A source may be the sudden rupture of rock along a fault line, an 

explosion, or any other force imparted in the earth.   There are two types of seismic 

waves: body and surface waves.  Body waves travel in the interior of the earth as opposed 

to surface waves that travel along the surface of the earth.   

Body waves are composed of P and S waves. P waves, also known as primary or 

compression waves, exhibit particle motion in the direction of propagation and mimic a 

spring undergoing compression and dilation. S waves, also known as secondary or shear 
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that contain wavefronts that are perpendicular to the direction of travel.  Plane wave 

propagation is the essential component in the calculation of Rayleigh wave dispersion 

and is thus explained in detail.  The scalar wave equation that describes how a wave field 

propagates in three dimensions is defined by (Aki and Richards 1980) 

 
 2

2
2 2

1 u
u

c t


 


 (2.3.1)

 

where u is the displacement, t is the time, c is the velocity of the propagating wave, and 

2 is the Laplacian operator defined by 

 
 2 2 2

2
2 2 2x y z

  
   

  
(2.3.2)

 

Assuming a harmonic solution for the one dimensional propagation along x in the form 

 
 ( ) exp( )u f x j t  (2.3.3)

 

where  is the circular frequency, Equation (2.3.3) can be substituted into Equation 

(2.3.1) resulting in a harmonic solution to the scalar wave equation in one dimension: 

 
 ( , ) exp( ( ))u x t A j t kx  (2.3.4)
 

where x is the position and k is the wavenumber in the direction of x.  The wavenumber k 

represents the number of wavelengths per unit distance and can be thought of as the 

spatial analog of frequency.  The wavenumber k is related to the wavelength  by the 

following 
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 2
k




 (2.3.5)

 

where  is the length of the wave propagating along x and is thus termed the wavelength.  

Planes of constant phase are perpendicular to the direction of propagation along x (Figure 

2.6).  If Equation (2.3.4) is a propagating wave, then planes of constant phase move by an 

amount x as time advances by an amount t so that  

 
 ( , ) ( , )u x x t t u x t    (2.3.6)
 

Equation (2.3.6) implies that if Equation (2.3.4) is planar then 

 
 0t k x    (2.3.7)

 

and therefore 

 x
c

t k

 


   (2.3.8)

 

where c is the velocity of the plane wave propagating along x.  Surface wave 

measurement techniques based on spectral analysis use the relationship of Equation 

(2.3.8) for determining the phase velocity of propagating waves.  However, it must be 

understood that Equation (2.3.8) is only applicable to a single sinusoidal propagating 

wave.  For waves traveling with multiple frequencies and wavenumbers, the dispersion 

characteristics must be accounted for. 
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Figure 2.6  Plane waves of constant phase propagating in the 
direction of k. (Adopted from Johnson and Dudgeon, 
1993). 

 

 

2.4 Surface Wave Dispersion 

As a seismic wave propagates away from a source, the overall shape of the wave will 

expand due to the material properties of the medium of which it passes through.  This 

phenomenon is known as dispersion and is characterized by the existence of two 

velocities termed the phase and group velocity.  The argument for the analysis of 

dispersion, as described by Pujol (2003), considers two plane waves of equal amplitude 

with different propagating frequencies and wavenumbers defined as   

 
  1 1 1( , ) exp ( )u x t A i t k x   (2.4.1)

and 

  2 2 2( , ) exp ( )u x t A i t k x   (2.4.2)

 
 

k

x

to-kx = c

to+t)-k(x-x) = c

Planes of constant phase
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where k1 = ko+k, k2 = kok, 1 = o+ 2 = oand o is the reference 

frequency.If a wave u(x,t) is a superposition of u1(x,t) and u2(x,t) then  

 
       ( , ) exp ( ) exp ( ) exp ( )o ou x t A i t kx i t kx i t k x           (2.4.3)

 
 
which can be expressed as (Pujol, 2003) 

 
    ( , ) 2 cos exp ( )o oy x t A t kx i t k x      (2.4.4)

 
 
The cosine term of Equation (2.4.4) represents a wave propagating with a group velocity 

U defined as 

 d dc
U c k

k dk dk

 


     (2.4.5)

 
 
Inserting Equation (2.4.5) into Equation (2.4.4) results in 

 
    ( , ) 2 cos exp ( )ou x t A k Ut x ik ct x      (2.4.6)

   
 
If  and k are very small then the cosine term of Equation (2.4.6) is close to unity.  The 

result is a wave propagating with a velocity equal to 

 
 o

o

c
k


  (2.4.7)

 
 

Equation (2.4.6) is known as the carrier wave and is displayed as the solid line in Figure  
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1.  The carrier wave propagates with velocity c and it is modulated by U, which varies 

more slowly.  The envelope, corresponding to two consecutive zeros of the modulated 

wave, travels at a velocity equal to U.   

 

Figure 2.7  Supersposition of two harmonic waves close in 
frequency and wavenumber (solid line).  The dashed 
curve is the envelope of the modulated wave (adopted 
from Pujol, 2003) 

 
 
When U < c, the dispersion is considered to be normal.  When U > c, the dispersion is 

considered irregular.  Figure 2 displays both cases for the superposition of an infinite 

number of harmonic waves close in frequency and wavenumber.  Maximum peak values 

for the envelopes are indicated by plus signs and the same peak of the carrier wave by the 

circles.  For U < c, the peak of the carrier wave travels faster than the envelope resulting 

in the peak shifting to the right as time t advances.  For U > c, the envelope travels faster 

thus the carrier peak lags behind. 

  

x
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Figure 2.8  Superposition of an infinite number of harmonic waves 
close in frequency and wavenumber.  Maximum peaks 
values for envelope are indicated by the plus signs and 
the peak of the carrier wave indicated by the circles.  
Each subplot is a for a fixed value of t.  All t values are 
equally spaced (from Pujol, 2003) 

 
 

U <  c U >  c

t
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For this research, harmonic waves of a individual frequency are generated 

resulting in Rayleigh surface wave propagation that follows Equation (2.4.7).  This 

propagating velocity is known as the phase velocity and from this point will be defined as 

 
RV

k


  (2.4.8)

 

where VR is the Rayleigh phase velocity,  is the frequency of propagation, and k is the 

propagating wavenumber.  Equation (2.4.8) is commonly referred to as the Rayleigh 

dispersion relationship.  The term dispersion is used due to the phase velocities 

dependence on frequency.  For Rayleigh wave measurement techniques, the phase 

velocity is the property obtained from field experiments used for the construction of a 

dispersion curve.  The dispersion curve is used to show the relationship between phase 

velocity and frequency of propagating Rayleigh waves, and is used in inversion for 

determining in-situ shear-wave velocities.  A detailed description of the dispersion curve 

and its use is discussed in Section 2.8.  The following three sections help to understand 

the Rayleigh dispersion relationship by discussing the solution techniques used in 

determining the Rayleigh secular function.   

 
 

2.5 Rayleigh Waves in Homogeneous Media 

Rayleigh waves, as discussed in Section 2.2, are surface waves generated from the 

interaction of P and SV waves at a free surface.  They were first studied in 1885 by Lord 

Rayleigh and later described in detail by Lamb (1904).   For Rayleigh waves traveling in 

a semi-infinite homogeneous isotropic halfspace, the equation of motion in the absence of 
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body forces is described using Navier’s equation in vector notation defined as (Aki and 

Richards 1980) 

 2
2

2
( ) ( )B S SG G G

t
      


u
u u  (2.5.1)

 

where u is the particle displacement vector, t is the time,  is the halfspace density, 

( )  u denotes the divergence of u, 2 is the Laplacian operator of Equation (2.3.2), and 

GS and GB are Lame’s elastic moduli described in Section 2.1.   Lord Rayleigh showed 

that for a semi-infinite, linear elastic, homogenous medium with a null stress boundary 

condition at the free surface, a solution for the above condition is satisfied by  

 
 6 4 2 2 28 (24 16 ) 16( 1) 0K K K        (2.5.2)
 

where  and K are the velocity ratios of shear waves (VS), compression waves (VP), and 

Rayleigh waves (VR) defined as 

 
S

P

V

V
  (2.5.3)

 

 
R

S

V
K

V
  (2.5.4)

 

Equation (2.5.2)  is cubic in K2 and real solutions exist for Poisson’s ratio values from 0.0 

to 0.5 (Viktorov 1967).  Figure 2.9 displays solutions of Equation (2.5.2) for ratios of 

VR/VS and VP/VS.  The results show that Rayleigh wave velocity within a homogeneous 

medium is only slightly lower than that of the shear wave velocity where the compression 



22 
 

wave velocity has negligible influence on Rayleigh wave velocity.  Viktorov (1967) 

suggested an approximation to Equation (2.5.2) in the form 

 
 0.87 1.12

1

v
K

v





(2.5.5)

   

Using Poisson’s ratios where real solutions exist for Equation (2.5.2), Equation (2.5.5) 

results in a confined Rayleigh wave velocity of the form 

 
 

0.87 0.96R

S

V

V
  (2.5.6)

 

It should be noted that Equation (2.5.2) is independent of frequency and thus Rayleigh 

waves of all frequencies propagate at the same velocity within a semi-infinite 

homogenous isotropic halfspace.   

 

P-waves

S-waves

R-waves

Poisson’s Ratio 

V
/V

S
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Figure 2.9  Relation between Poison’s ratio v and wave velocity 
propagation. (From Richart et al., 1970). 

 
 

Richart et al. (1970) showed the variation of vertical and horizontal Rayleigh wave 

displacements within an infinite homogenous isotropic medium to be 

 
 

2

2

2
( ) exp ( ) exp ( )

1

q s
q sk kU z zk zk

sk k
k

             
 (2.5.7)

 

 

2

2

2
( ) exp ( ) exp ( )

1

q
s q qkW z zk zk

s k k k
k

            
 (2.5.8)

 

where U(z) and W(z) are the vertical and horizontal displacements as a function of depth 

z, k represents wavenumber, and the variables q and s are defined by  

 2
2 2

2
1

q
K

k
   (2.5.9)

 

 2
2

2
1

s
K

k
   (2.5.10)

 

By inserting values of K that satisfy Equation (2.5.2) into Equations (2.5.7) and (2.5.8), 

the vertical and horizontal Rayleigh wave displacements as a function of depth can be 

determined (Figure 2.10).   The resulting horizontal and vertical components of 

displacement are out of phase 90 degrees, with the vertical component larger than the 

horizontal.  This results in an elliptical-retrograde particle motion.   
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It can be seen that the Rayleigh wave displacements become quite negligible as 

depth increases, thus material properties at some point will have little if no effect on wave 

propagation.  This leads to the assumption that a zone of influence exists within the 

medium that directly controls wave propagation.  This zone has been estimated to extend 

to a depth equal to one-half to two-thirds of the wavelength (Sánchez-Salinero, 1987; 

Hebeler, 2001).  It is this zone of influence that is of special interest for higher mode 

Rayleigh wave propagation (Section 2.9).  While the preceding discussion helps to 

explain some of the characteristics of Rayleigh wave propagation, it does not reflect the 

typical conditions present in soils.  Most soil substructures contain heterogeneities that 

drastically influence Rayleigh wave propagation.   

        

 

Figure 2.10  Amplitude ratio vs. dimensionless depth for horizontal 
and vertical Rayleigh wave displacements for various 
values of Poisson’s ratio (From Richart et al., 1970). 
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2.6 Rayleigh Waves in Layered Media 

For Rayleigh waves propagating in vertically heterogeneous media where the 

mechanical properties are assumed to be depth dependent,  Navier’s equations take the 

following form (Aki and Richards, 1980)  

 

 
2

2
2

( ) ( ) 2SB
B S S z z

dGdG
G G G

dz dz z t
               

u u
u u e u e u (2.6.1)

 

where ez is the unit vector in the direction perpendicular to the free surface and   denotes 

the vector product.  It can be seen from Equation (2.6.1) that if is there is no change in 

Lame’s parameters GB and GS with respect to depth then Equation (2.6.1) becomes 

Equation (2.5.1) representing an semi-infinite homogeneous isotropic medium.  Aki and 

Richards (1980)  showed that by assuming a displacement field u(x,t) as 

 
  

 

1 1

2

3 2

( , ( ), ) exp ( ( ) )

: 0

( , ( ), ) exp ( ( ) )

u r z k i t k r

u

u i r z k i t k r

   

   

   
 

 
     

u  (2.6.2)

 

where u1,u2, and u3 are the horizontal, transverse, and vertical components of the 

displacement field u, i is an imaginary number,  is the circular frequency of excitation, t 

is the time, r is the direction of propagation, and k() is the frequency dependent 

wavenumber which is a multi-valued function,  substitution of Equation (2.6.2) into 

Equation (2.6.1) and writing in matrix form results in  
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 
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
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  

 
 
    

    
          
         
  

(2.6.3)

 

Where 

 
 

 

 

1
3 2

2
4 1

, ( ) , ( )

, ( ) , ( 2 ) ( )

S

B S B

d r
r z k G k r

d z

d r
r z k G G k G r

d z
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    
     
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and (z) is a function of Lame’s parameters: 
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By defining f(z) = [r1 r2 r3 r4]
T and letting A(z) represent the 4 4 matrix of 

Equation(2.6.3), Equation (2.6.3) can be rewritten as a linear differential eigenvalue 

problem  

 

 
(z)

( ) ( )
d

z z
dz

 
f

A f  (2.6.6)

 

with displacement eigenfunctions  1 , ( ),r z k    and  2 , ( ),r z k    and stress 

eigenfunctions  3 , ( ),r z k    and  4 , ( ),r z k    subjected to the following boundary 

conditions. 
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(2.6.7)

 

For given frequency values , specific wavenumber values for k() result in non-

trivial solutions to Equation (2.6.6).  These particular values for k() represent the 

eigenvalues and the corresponding solutions for rj(z,k(),) are the eigenfunctions.  From 

Equation (2.6.3), it can be seen that solutions to the eigenvalue problem are frequency 

dependent and thus Rayleigh waves propagating in a layered medium are dispersive.   

In its implicit form the Rayleigh dispersion equation is expressed as 

 

  ( ), ( ), ( ), 0R B S iG z G z z k  F (2.6.8)

 

where ki denotes the the ith mode wavenumber resulting in a solution to the eigenvalue 

problem where i = 1: M and M is the total number of possible modes.  A solution to 

Equation (2.6.8) can be achieved by many different techniques such as finite element, 

finite difference, numerical integration, and spectral and boundary element methods.   

One of the most common solution techniques is the Thomson-Haskell algorithm.   

The algorithm constructs Equation (2.6.8) as the product of layered matrices relating the 

displacement and stress components acting at layer interfaces.  The roots found in using 

the algorithm are the wavenumbers corresponding to the individual modes of 

propagation.  These wavenumbers are then used for the determination of the 

displacement and stress eigenfunctions.  However, the algorithm has show numerical 

instability at high frequencies (Knopoff, 1964; Dunkin, 1965; Thrower, 1965; Schwab and 

Knopoff, 1970; Watson, 1970; Abo-Zena 1979; and Harvey 1981). 
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Kennett (1974) first introduced the method of reflection and transmission 

coefficients for the solution of the eigenvalue.  It was later improved by Chen (1993) and 

Hisada (1994).  The method, which is similar to Thomson-Haskell, establishes the 

Rayleigh dispersion equation from the construction of reflection and transmission 

matrices for the determination of the normal modes in a multi-layered elastic half-space. 

This method is very attractive due to its ability to model the constructive interfaces 

leading to the formation of Rayleigh wave modes. 

 Ben-Menahem and Singh (1981) showed that a wave field originating from a 

harmonic point source can be expanded in a series of pth-order Hankel functions.  As a 

result the particle displacements resulting from the superposition of distinct Rayleigh 

modes can be represented as  

 

  
1

( , , ) ( , , ) exp
M

jj
j

u r z A r z i t k r     


          (2.6.9)

 

where M is the number of modes,  = r or z, [A(r,z,)]j  are the Rayleigh displacement  

amplitudes for the jth mode,  = -/ 4 for  = r, and  = / 4 for  = z.  Equation 

(2.6.9) results in a complex solution where the displacements are chosen by either the real 

or imaginary parts.  By choosing the imaginary part, Equation (2.6.9)  with some 

trigonometric identities becomes (Lai and Rix, 1998) 

 

 ( , , ) ( , , ) sin ( , , )u r z r z t r z               
 (2.6.10)

 

where  represents the imaginary part of u and ( , , )r z   is defined as 
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and  is defined as 
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(2.6.12)

 

If the wavefront in Equation (2.6.10)  represents plane wave propagation, then  

 

 ( , , ) constantt r z       (2.6.13)

 

Differentiating Equation (2.6.13) with respect to time  

 ( , , ) 0
dr

r z
r dt


 
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(2.6.14)

 

results in an effective phase velocity  
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(2.6.15)

 

where ˆ ( , , )V r z   denotes the effective Rayleigh phase velocity.  Equation (2.6.15) is a 

local quantity that depends on the spatial position where it is evaluated; therefore 

individual components of ˆ ( , , )V r z   will travel at different velocities.  Lai and Rix 

(1998) states that  
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is not in general equal to zero.  This results in a Rayleigh wave train that accelerates as it 

propagates along the surface.  Understanding that  
,r is a local quantity and must be 

integrated over r to obtain ( , , )r z  , an explicit form of the effective Rayleigh phase 

velocity is given by 
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(2.6.17)

 

For a harmonic source FZ exp(it) located at the surface, the Rayleigh amplitudes 

( , , )
i

A r z    for each ith mode are related to the displacement eigenfunctions by 
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where Fz is the amplitude of the harmonic point source, Vi and Ui are the phase and group 

velocities for the ith mode of propagation, the subscript s denotes surface, and Ii is the first 

Rayleigh integral associated with the ith mode of propagation defined by (Aki and 

Richards, 1980)    
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(2.6.19)
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Lai and Rix (1998) showed that the solution of the Rayleigh dispersion equation in 

an elastic medium can be computed using Green’s function and the concept of mode 

superposition. They defined the displacement Green’s function as   

 

  ˆˆ ( , , ) ( , , ) exp ( , , )u r z r z i t r z            (2.6.20)

 

where ˆ ( , , )r z   and ( , , )r z   are computed using Equations (2.6.11) and (2.6.12) 

along with the modal amplitudes obtained from Equation (2.6.18).  Letting Fz = 1 results 

in  

 

    
         

  

0.5

1 1 2 2

1 1

, , , , cos1ˆ ( , , )
4 2

M M
i j i s j s i j

r
i j i j i i i j j j

r k z r k z r k z r k z r k k
r z

r k k VU I V U I


  

      
  
  (2.6.21)

 

 
         

  

0.5

2 2 2 2

1 1

, , , , cos1ˆ ( , , )
4 2

M M
i j i s s i j

z
i j i j i i i j j j

r k z r k z r k z r kj z r k k
r z

r k k VU I V U I


  

      
  
 (2.6.22)

 

 

1 2

11

1 2

1

( , , ) ( , , )
sin

4( )
( , , ) tan

( , , ) ( , , )
cos

4( )

M
i s i

i
i i i i i

r M
j s j

j
j j j j j

r z k r z k
k r

k VU I
r z

r z k r z k
k r

k V U I

  

    




                    




 

(2.6.23)

 

 

2 2

11

2 2

1

( , , ) ( , , )
sin

4( )
( , , ) tan

( , , ) ( , , )
cos

4( )

M
i s i

i
i i i i i

z M
j s j

j
j j j j j

r z k r z k
k r

k VU I
r z

r z k r z k
k r

k V U I

  

    




                    




 

(2.6.24)

 



32 
 

 

The previous four equations result is an expression for ˆ ( , , )u r z   where the main factors 

z, zs, and r are uncoupled.  Equations (2.6.21) and (2.6.22) result in the definition of the 

function (Lai and Rix, 1998) 

 ˆ( , , ) ( , , )r z r z    (2.6.25)

 

where ( , , )r z   is called the Rayleigh geometrical spreading function and will be 

discussed further in Section 2.10.  As it was show in the above relationships, Rayleigh 

wave propagation in vertically heterogeneous media is a complex problem.  If all 

parameters are not accounted for, then the accuracy of inversion results will suffer.  

      

2.7 Rayleigh Waves in a Visco-elastic Heterogeneous Media 

In the preceding section, the Rayleigh eiegenproblem was approached by finding 

solutions to Navier’s equations of motion in the form of harmonic displacements with 

specific boundary conditions.  It has been shown (Christensen, 1971; and Foti, 2000) that 

elastic solutions to the Rayleigh eigenproblem can be adjusted to obtain solutions for the 

visco-elastic case with identical boundary conditions.  Equation (2.6.6) along with the 

boundary conditions of Equation (2.6.7) are used with the replacement of the elastic 

moduli GB and GS with the frequency dependent complex moduli GB
*() and GS

*().  

Solutions to the Rayleigh eigenproblem result in eigenvalues and eigfunctions that are 

complex valued.   

Lai and Rix (1998) developed a technique for the solution of the complex-valued 

eigenproblem associated with a visco-elastic heterogeneous media.  Their method 
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simultaneously determines the effective Rayleigh dispersion and attenuation curves along 

with the displacement and stress eigenfunctions.   The technique is based on the Cauchy 

residue theorem of complex analysis, which takes advantage of the Rayleigh secular 

function where the partial derivatives of the Rayleigh phase velocity with respect to the 

medium parameters are computed using Hamilton’s variational principle.  The algorithm 

accounts for the inherent coupling between phase velocity and attenuation due to material 

dispersion for both a weak and strongly dissipative media.  

The preceeding solution techniques for the Rayleigh eigenvalue problem have shown 

that k() can be a multi-valued function of frequency.  This is the effect of geometric 

dispersion resulting from constructive interfaces within a heterogeneous medium.  

Seismic rays can be reflected and/or refracted resulting in the existence of multiple 

modes of propagation traveling at different phase velocities.  Due to the superposition of 

multiple modes of propagation, Rayleigh waves travel in wave trains with a velocity of 

propagation known as the effective Rayleigh phase velocity.  The effective phase velocity 

can introduce uncertainties in experimental dispersion results along with inaccuracy in 

the inversion process for determining in-situ soil properties. Therefore, it is important that 

all participating Rayleigh modes be identified correctly on the dispersion curve used in 

inversion.     

 

2.8 Rayleigh Wave Dispersion Relationship 

As discussed in Section 2.5, the variability of the frequency-dependent velocity is a 

consequence of the dynamic soil properties encompassing some penetration zone.  This 

zone is directly related to the wavelength of propagation defined by  
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           RV f (2.8.1)

 

where VR is the Rayleigh phase velocity discussed in Section 2.4,  f is the frequency, and 

 is the wavelength.  For Rayleigh waves propagating in a homogeneous medium, the 

velocity of propagation is constant. Therefore, for Equation (2.8.1) to hold true, as 

frequency changes so must the wavelength.  Rayleigh waves of low frequency will 

propagate with longer wavelength resulting in greater depths of penetration.  When a 

medium contains multiple layers with varying dynamic properties, the velocity of 

propagation will be controlled by the material properties in which the Rayleigh wave 

penetrates as expressed in Equation (2.6.1) and displayed in Figure 2.11.  

 

 

Figure 2.11  Rayleigh wave penetration depth as a function of 
frequency fi  for normalized displacements. 

 
 

When plotted, the dispersion relationship described above is referred to as a 

dispersion curve.  If the medium of Figure 2.11 is normally dispersive (i.e. soil velocity 
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increases with depth as in Case 1 in Table 1) the resulting normally dispersive curve 

would be represented by that of Figure 2.12. 

 
Table 1  Soil profile-Case 1  

 
Layer Thickness VS VP 

1 2 300 600 
2 4 425 850 
3 8 550 1100 

Half Space - 700 1400 
 

      
Figure 2.12  Dispersion curve for normally dispersive medium 

(Case 1). 
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The normally dispersive curve of Case 1 described above is convenient but not 

always typical of in-situ conditions.  Typical soil strata are comprised of multiple layers 

with varying soil type and dynamic properties.  It is not uncommon for a layer to be 

sandwiched between two other layers of either higher or lower velocities.  When this is 

the case, the dispersion curve can take on many shapes. The following are three examples 

that show the influence that soil layering has on Rayleigh wave dispersion.  Case 2 as 

provided in   Table 2 Table 2 is a soil structure with a high velocity layer sandwiched 

between two lower velocity layers.  It can be seen in Figure 2.13 that the dispersion curve 

for the frequency range of 20 to 50 Hz is influenced by the properties of the 2nd layer 

resulting in a small rise on the curve before returning to a normally dispersive trend.  

From this point, portions of the dispersion curve were the phase velocity increases with 

frequency will be termed inversely dispersive.  

 
   Table 2  Soil profile-Case 2  

 
Layer Thickness VS VP 

1 2 300 600 
2 4 550 1100 
3 8 425 850 

Half Space - 700 1400 
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Figure 2.13  Dispersion curve for Case 2 soil profile with high 
velocity layer sandwiched between two lower velocity 
layers. 

 

Case 3 is the inverse of Case 2 with a low velocity layer sandwiched between two 

high velocity layers.  The resulting dispersion curve reflects the low velocity layer as a 

dip in the curve at 40 Hz and then is inversely dispersive up to 75 Hz where the curve 

returns to a normal dispersive trend.    
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Table 3  Soil profile-Case 3  

 
Layer Thickness VS VP 

1 2 425 850 
2 4 300 600 
3 8 550 1100 

Half Space - 700 1400 
 
 

 
Figure 2.14  Dispersion curve for Case 3 soil profile with low 

velocity layer sandwiched between two higher velocity 
layers. 
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The final example covers an important case where the dispersion curve is no longer 

continuous.  The soil profile of Case 4 in Table 4 is similar to that of Case 3 with the 

exception that the low velocity layer has been further reduced in order achieve a 

discontinuity in the dispersion curve.  Figure 2.15 displays the resulting dispersion curve 

and it can be seen that a jump occurs at approximately 90 Hz.  Jumps in the dispersion 

curve result when the medium properties within the zone of influence are no longer 

governed by the fundamental mode of propagation (Lai and Rix, 1998).  When a soil 

profile contains either a high or low velocity layer sandwiched between two other layers, 

higher Rayleigh modes can dominate the dispersion curve.  The resulting curve requires a 

mulit-mode analysis and inversion to be conducted in order for soil velocities to be 

accurately determined. 

    

 
Table 4  Soil profile-Case 4 

 
Layer Thickness VS VP 

1 2 425 850 
2 4 220 440 
3 8 550 1100 

Half Space - 700 1400 
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Figure 2.15  Dispersion curve for Case 4 soil profile with low 
velocity layer sandwiched between two higher velocity 
layers resulting in a jump in the dispersion curve. 
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intermediate layers are present within a medium (Tokimatsu et al., 1992; Park et al., 

1999).  The number of possible modes is dependent on the soil properties of the medium 

and exist only for frequencies higher than the cut-off frequency.  The cut-off frequency 

for Love waves for a layer over a half-space is defined as (Aki and Richards, 1980) 
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(2.9.1)

 

where n is the nth mode, h is the layer thickness, and1 and H are the shear wave 

velocities of the layer and half-space, respectively.  While there is no closed form 

equation for Rayleigh waves it has been shown that both Love and Rayleigh dispersion 

curves are very similar for frequencies above 0.01 Hz for the first four higher modes 

(Kennett, 2001).  For a multi-layered medium, 1 can be estimated by the time-weighted 

average shear-wave velocity defined by 
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where i  is the ith layer shear wave velocity and hi is the ith layer thickness.  The 

estimated cutoff frequencies for the first three higher modes of Case 1 resulting from 

Equation (2.9.1) and Equation (2.9.2) are 22, 43, and 64-Hz.  Figure 2.16 displays the 

first four modes for the soil profile of Case 1.  Mode 1 represents the fundamental mode 

of propagation and matches that of Figure 2.12.  The higher modes are the results of 

lower k() values in the solution of Equation (2.6.3) where the largest k() value 

represents that of the fundamental mode.   Solutions for the lower k() values are not 
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possible below the cutoff frequency as seen in Figure 2.16. 

 

       Figure 2.16  Mutli-mode dispersion curves for Case 1.  Modes 
1 through 4 are represented by blue, green, red, and 
cyan open circles, respectively. 
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thus penetrate deeper into the soil stratum as can be seen in the displacement 

eigenfunctions of Equation (2.6.6) plotted in Figure 2.17.  Notice the oscillatory 

displacements of the higher modes resulting in multiple zero crossings.  For each 

successive higher mode, the number of zero crossings increases to the mode number.   

Also, notice how the zone of influence increases with mode number.  This typically 

results in an increased propagation velocity for higher modes.  Figure 2.18 through 

Figure 2.24 display the multi-mode dispersion curves and the displacement 

eigenfunctions for Cases 2 through 4.  It should be noted that the displacement 

eigenfunctions plotted for each case are for the frequency of 40 Hz unless otherwise 

specified.  This frequency was chosen due to the influence of the intermediate layering on 

the Rayleigh dispersion at 40 Hz for cases 2 and 4. 

 

 

Figure 2.17  Displacement eigenfunctions for first three modes of 
Case 1 at 40 Hz. 
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The multi-mode dispersion plot of Case 2 illustrated in Figure 2.18 displays some 

important characteristics.  First, there appears to be no dispersion information for the 

second mode for frequencies above 90 Hz.  This is due to the eigenvalue problem having 

no non-trivial solution for a continuous second mode over a specific frequency range. 

The solution for k2(), where the subscript denotes mode number,  is aligned with the 

continuous curve of the next higher mode.  It can be seen in Figure 2.19 that the 

displacement eigenfunctions for mode 2 have a much larger zone of influence than in the 

previous Case 1. The result of the larger penetration zone is a Rayleigh wave that samples 

deeper into the medium resulting in a higher propagation velocity.  When this velocity 

jump is high enough, such as in Case 2, jumps in the dispersion curve can and most often 

will occur.  Secondly, modes three and four appear to be converging at 100 Hz.  This is 

not uncommon is dispersion results and it should be noted that all modes converge to a 

single velocity at the frequency limit were all modes are propagating in the uppermost 

homogeneous layer.   

The convergence of the individual modes prior to all modes propagating in the 

uppermost layer could be the results of mode pinching (Kennett, 1983).  Mode pinching 

can occur when an individual mode is channeled in a velocity inversion layer resulting in 

a constant propagation velocity.  The higher mode above continues on its normally 

dispersive trend and may cross over the lower mode curve.  The velocity inversion in 

Case 2 is located in the second layer.  If Equation (2.8.1) is applied using the phase 

velocity value of 500 for Mode 2 at 100 Hz the resulting wavelength  is 5 which is 

located within the velocity inversion channel of Layer 2.  The effects of the velocity 

channel can also be seen in the slight rise in the dispersion curve of the fundamental 
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mode.  At approximately 40 Hz the phase velocity value is 400 resulting in a wavelength 

of  4 which is also located within the velocity channel.  While there is no jump or 

pinching in the dispersion curve for this region it will be shown in later sections how the 

location of the source plays an important role in the resulting experimental dispersion 

curves.      

         
Figure 2.18  Mutli-mode dispersion for Case 2.  Modes 1 through 4 

are represented by blue, green, red, and cyan open 
circles, respectively. 
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Figure 2.19  Displacement eigenfunctions for first three modes of 
Case 2 at 40 Hz. 
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multiple zero crossings (Figure 2.25).  Notice the identical penetration depths for both 

Modes 1 and 2.    

 

     

  

Figure 2.20  Mutli-mode dispersion for Case 3.  Modes 1 through 4 
are represented by blue, green, red, and cyan open 
circles, respectively. 
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Figure 2.21  Displacement eigenfunctions for first three modes of 
Case 3 at 40 Hz. 

 

 

Figure 2.22  Displacement eigenfunctions for first three modes of  
Case 3 at 85 Hz. 
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Figure 2.23  Case 4 Mutli-mode dispersion. Modes 1 through 4 are 
represented by blue, green, red, and cyan open circles, 
respectively. 
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Figure 2.24  Displacement eigenfunctions for first three modes of 
Case 4 at 40 Hz. 

 

 

Figure 2.25  Displacement eigenfunctions for first three modes of 
Case 4 at mode jump. 
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2.10 Rayleigh Wave Attenuation 

Attenuation, by definition, quantifies the amount of energy loss during propagation 

of a seismic wave.  There are two types of attenuation: intrinsic or material attenuation 

caused by particle displacement resulting in energy dissipation as discussed in Section 

2.1 and geometric attenuation, which is the loss of energy due to the spreading or 

expansion of a seismic waves as they travel from a source.   

Body and surface waves traveling along a free surface generated by a harmonic point 

source differ in their geometric attenuation.  Body waves attenuate at a rate proportional 

to the distance r from the source as r-1 where surface waves attenuate at a rate of r-0.5 

(Ewing et al., 1975).  The lower attenuation rate of the surface waves compared to their 

respective body waves makes surface waves ideal for site investigation requiring seismic 

recording arrays of considerable length.   

The above relationship for surface wave attenuation follows the principle of 

conservation of energy and does not hold true for a non-homogeneous media (Lai and 

Rix, 1998).  Recalling the geometric spreading function ( , , )r z 
 
from Section 2.6, Lai 

and Rix showed that Rayleigh wave displacement fields are the result of the 

superposition of multiple modes of propagation referred to as geometric dispersion.  

Figure 2.26 displays the results for ( , , )r z 
 
as a function of distance r from the source 

for a homogeneous media and the four cases from Section 2.9 where z = 0 and  = 40 Hz.  

It is clear that for a heterogeneous media the geometric attenuation can be strongly 

influenced by geometric dispersion resulting from media layering.  Similar results for 

geometric attenuation were also seen by Tokitmastu et al. (1992); Gucunski and Wood 

(1991); and Lai and Rix (1998).   
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Figure 2.26  Geometric spreading function for interpreting 
geometric attenuation in a heterogeneous media. 
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2.11 Inversion 

Inversion is the process of determining either an unknown input  to a system or a set of 

unknown system characteristics coupled to a system response.  For the Rayleigh inverse 

problem it is the system characteristics GB(z), GS(z), and (z) that are unknown.   The system 

input is defined by the harmonic source and the system response by the Raleigh wave 

dispersion curve.     

Inverse problems often suffer from instability since they are not well-posed.  Jacques 

Hadamard, a French mathematician, defined a well-posed problem as one that models 

physical phenomena with the following properties  

a. A solution exists 

b. The solution is unique 

c. The solution depends continuously on the data 

For the Rayleigh inverse problem, it is property “b” that is most often violated due to 

either lack of sufficient information or problem constraints.  Many solutions can exist for a 

given dispersion that meets the minimum criteria for a solution.  Additional information such 

as material properties and layer geometry obtained from soil logs can help to reach a global 

solution; however, this defeats the purpose of non-invasive techniques.  This research 

minimizes the problem of multiple solutions by mapping the higher modes of propagation 

over a range of frequencies for inversion.  The higher modal velocities provide the necessary 

additional information for inversion to possibly achieve a unique solution.    

The inversion of Rayleigh wave dispersion has been studied for over 50 years 

(Thompson, 1950; Haskell, 1953; Nazarian, 1984; Horike, 1985; Tokimatsu, 1995; Lai and 

Rix, 1998; Park et al., 1999; Zywicki, 1999; Hebeler, 2001; and Zarrabi 2005).  While each 
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study has provided different methods for approaching the inverse problem, they all can be 

viewed as either local or global search procedures.  

 Local searches initially guess a solution to a functional and then refine the solution 

until convergence to a stationary point is achieved.   An inherent limitation to local 

techniques is that the functional must be smooth and that its derivatives both exist and are 

continuous.  It is also necessary that the initial guess be sufficiently close to the solution in 

order to achieve convergence and then there is still no guarantee that a global solution has 

been found. 

Global searches take advantage of the entire solution space in order to achieve 

convergence to a global solution.  They are not constrained by initial guesses and do rely on 

gradient-based methods.  However they can require significantly more time to arrive at a 

solution and thus are more expensive.     

For this research the global search technique genetic algorithm (GA) is used based on 

the research by Zarrabi (2005).  The genetic algorithm is a search technique that utilizes the 

mechanics of natural selection and genetics.  The overall goal of the GA is to minimize an 

objective function that represents the error between the theoretical and experimental Rayleigh 

dispersion curves.  

 In genetic algorithms parlance, generations are the iterative steps used in determining 

solutions to the objective function and selecting solutions based on their performance or 

fitness.  The variables associated with the selected solutions are transformed into binary 

strings where crossover can occur.  Crossover recombines the binary coding of selected 

variables to produce an offspring to be used as a solution along with the original variables in 

the next generation.   

Mutation is the random alteration of an encoded variable and is performed so that the 

probability of searching a particular subspace is never zero.  The process continues until a 
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maximum number of generations is achieved or some minimum criterion for the objective 

function is met.              

The Rayleigh dispersion equation used in the objective function contains multiple 

variables that result in an extremely large search space.  Rix et al. (1991) showed that the 

influences of the Poisson’s ratio and mass density on the Rayleigh dispersion equation are of 

secondary importance.  The parameters seldom change from their initial values and can be 

considered constants; therefore, Equation (2.6.8) can be re-written as 

         , 0R s H VF  (2.11.1)

 

where H is a vector representing the layer thicknesses and Vs is the vector representing the 

layer shear-wave velocities.  Equation (2.11.1) reduces the Rayleigh dispersion equation to 

only two variable sets thus largely reducing the overall search space.   

The forward solution to Equation (2.11.1) is achieved through computer code 

developed by Rix and Lai (1999) based on the research methods of Lai and Rix (1998) and 

Hisada (1994) from Section 2.6.  For each generation of the GA, the objective function 

calculates the error between the forward solution of Equation (2.11.1) and the experimental 

Rayleigh dispersion by 

  

    
exp theo

R Rerror  V V  (2.11.2)

 

where exp
RV are the Rayleigh wave phase velocities obtained from experimental results, theo

RV

are the theoretical Rayleigh wave phase velocities from Equation (2.11.1), and is the 

Euclidian norm.  The GA is halted when a minimum of Equation (2.11.2) is met or when a 

maximum number of pre-set generations is achieved.   
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The only alteration to the genetic algorithm from Zarrabi (2005) is the adjustment for 

multiple mode dispersion.  Equation (2.11.2) is evaluated in the same manner; however, the 

theoretical Rayleigh wave velocities used are a composite of individual modal phase 

velocities over their respective frequency ranges.  Each mode is weighted equally so as to not 

influence the results for a particular mode.    

Rayleigh wave propagation is a complex problem involving combinations of 

multiple-modes of propagation. In order for inversion to be accurate, correct 

identification of higher-mode Rayleigh wave propagation is essential.  The following 

section will show the typical methods used for both the passive and active source 

measurements of Rayleigh wave propagation for the determination of Rayleigh phase 

velocity.
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Chapter 3. Rayleigh Surface Wave Measurements 

The theoretical relationships of Chapter 2 result in Rayleigh wave dispersion 

calculations based on given soil parameters.  However, as is often the case, it is the soil 

parameters themselves that are unknown.  Therefore, if the dispersion relating to the soil 

conditions is known, then the parameters can be determined through an inversion process.  

 Surface wave techniques for the measurement of Rayleigh wave dispersion have 

been researched for over 30 years. They have evolved from simple two-sensor methods 

(Stoke et al., 1994) into vast multi-sensor arrays (Park et al., 1999). This chapter 

describes in detail the different methods used for the determination of Rayleigh wave 

dispersion using both active and passive source techniques. 

 
3.1 Spectral Analysis of Surface Waves 

The spectral analysis of surface waves (SASW) is a non-invasive method used for 

the determination of low-strain in-situ soil conditions.  The SASW method measures the 

phase angles for the propagating surface plane waves at various points along an array of 

receivers. These phase angles are then used to determine frequency-dependent phase 

velocities.  These frequency-dependent phase velocity measurements are the Rayleigh 

wave dispersion discussed in Section 2.8. 

Traditional SASW testing (Nazarian 1984; Nazarian and Stoke; 1984; and Stoke 

1994) uses two receivers and a source, typically a sledge hammer or weight drop device.  

The receivers are placed a certain distance apart, the source is activated, and the resulting 

surface waves are recorded.  Heisey (1982) suggested that the receiver spacing should be 

greater than one-third and less than two wavelengths.  However, as layer velocities are 

unknown and the resulting wavelength can vary greatly as seen in Section 2.8, testing 
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with various receiver spacings results in more reliable measurements (Stoke 1994).  

Stoke (1994) suggested a more appropriate relationship between receiver spacing and 

wavelength to be one-half to three times the wavelength. 

Two common testing procedures are used with the two receiver spacing technique 

described above: common source/receiver (CSR) and common midpoint geometry 

(CMP) .  In the CSR method either the source or receivers are fixed in place while the 

other is moved during testing (Figure 3.1 top).  In the CMP method both the receivers and 

the source are moved an equal distance about an imaginary centerline (Figure 3.1 

bottom).  Theoretically both methods should produce the same results if the medium is 

horizontally homogeneous.  

A spectrum analyzer is used to determine the phase difference recorded between 

receivers.  By using the principle of a rotating vector, the travel time between two 

receivers can be determined by (Stoke 1994) 

 
2 2

Δ T Δ
t

f

 
 

  (3.1.1)

 

where  is the phase difference, T is the period, and f is the frequency of propagation.  If 

x is the distance between the two receivers, then the phase velocity can be determined 

by 

 

 R

x
V

t


 (3.1.2)
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The term VR represents the Rayleigh wave phase velocity, which will be used throughout 

the rest of this paper instead of surface wave velocity since Rayleigh waves are the focus 

of the research. 

  

 

Figure 3.1  CSR (top) and CMP (bottom) testing procedures. 
(Adopted from Rix 2000). 
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One limitation of the SASW method is an inability to recognize multiple mode wave 

propagation.  The phase difference between the two receivers is assumed linear but, as 

Section 2.6 points out, the propagating wave can be a superposition of multiple mode 

waves resulting in an effective propagating phase velocity that may not be linear. 

 
3.2 Multi-Channel Analysis of Surface Waves 

The multi-channel analysis of surface waves (MASW) method utilizes an array of 

receivers to determine phase change without having to move receivers.  The length and 

geometry of the array is dependent on the desired wavenumber k() resolution and will 

be discussed in more detail in Chapter 5.  Two types of arrays are generally used: 

uniform and non-uniform (Figure 3.2).  Information gathered from uniform arrays limits 

uncertainties in the processing of data where as non-uniform arrays allow for information 

to be gathered over distances with fewer receivers.  Later sections will show in more 

detail how non-uniform arrays produce results that can lead to errors if the signal 

processing theory is not well understood.  

 

        

Figure 3.2  MASW array setup for uniform (top) and non-uniform 
(bottom) sensor spacing. 
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3.3 Regression Line Slope Method 

The regression line slope method (RLS) for MASW uses the cross power method to 

determine the phase difference between receivers (Zarrabi, 2005).  The cross power 

method first estimates the power spectral densities of each receiver along the array using 

the discrete Fourier transform (DFT) 

  
1

0

( ) ( )exp
N

i i n n
n

S s t j t 




   (3.3.1)

 

where Si() is the complex-valued power spectrum of the receiver located in the ith 

position of the receiver array,  is the circular frequency (equal to 2f where f is the 

propagating frequency),  j is an imaginary number, and N is the total number of samples 

recorded by the receiver. The cross power is then determined by array multiplying the 

power spectrum of one receiver and the complex conjugate of the power spectrum of the 

other receiver: 

 

 
*( ) ( ) ( )

m nS S n mY S S    (3.3.2)

 

where * denotes complex conjugate.  The complex conjugate is applied so the phase 

change between the two receivers is accounted for in the resulting complex value which 

can then be determined from the following relationship 
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where and are the imaginary and real parts of the complex valued ( )
m nS SY  .  This 

process is repeated for each receiver in the array with respects to reference receiver m.  If 

the signal being recorded is a propagating monochromatic plane wave then the resulting 

phase difference as a function of distance should result in a linear relationship whose 

slope represents the wavenumber k().  Recalling from Section 2.3 that 

 

 
               

2 f t
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 (3.3.4)

 

and that the travel time from Section 3.1 is 
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the following relationship can be derived:   
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From this it can be deduced that the slope is 

 
              

k
x
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


 

(3.3.7)

 

The resulting phase changes are plotted in (Figure 3.3) with respect to the distance 

between the reference receiver m and all other individual receivers.  It is apparent that the 

initial phase differences (open circles) do not represent a constant slope.  Recognizing 

that Equation (3.3.7) is a function of the period T which is related to the wavelength  as 
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RV f
T

 
 

(3.3.8)

 

if the array length is longer than the propagating wavelength  then the corresponding 

phase information recorded from the array, past the length of  will need to be 

unwrapped by 2.  This can be conceptualized by the rotating vector completing one full 

2rotation where the phase begins to repeat itself.  By applying a 2 unwrap to the phase 

angles at jumps of  or greater, a constant slope can be achieved.  This slope represents 

the wavenumber k() of propagation (solid circles).   

 

         

Figure 3.3  Phase difference as a function of distance (open circles) 
and unwrapped phase angles (solid circles). 
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may result in the phase angles oscillating around a dominant mode of propagation 
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containing two modes is propagating along an array.  The resulting unwrapped phase 

angles are a weighted combination of both modes and do not result in a constant slope.  

The oscillating phase angles can still be used to identify the dominant mode but is 

insufficient for identifying the other modes of propagation.   

When a signal contains many modes of propagation the unwrapped phase angles can 

result in a nonlinear curve that is completely indiscernible.  Figure 3.5 shows the results 

of the RLS from a signal containing five modes of propagation.  It is unclear if the 

unwrapped phase angles are oscillating around a single mode or around multiple modes.  

The calculated wavenumber from the resulting slope could differ significantly from the 

dominate mode of propagation.   

           
Figure 3.4  Dual mode phase unwrapping using RLS.  Propagating 

wavenumbers are represented by solid lines and 
unwrapped phase angles by circles connected by solid 
line. 
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Figure 3.5 Multi mode phase unwrapping using RLS.  Propagating 
wavenumbers are represented by solid lines and 
unwrapped phase angles by circles connected by solid 
line. 
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 ( , ) H HP k f e wRw e (3.4.1)
            

where k is a the wavenumber propagating in the direction of the array, f is the 

propagation frequency, e is the steering vector, w are the weights applied to the array of 

recievers, H denotes the Hermitian transpose, and R is the spatio-spectral correlation 

matrix.  The R matrix contains the cross power information for all receiver pairs within 

an array and is written in matrix form as 
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where individual elements of R( f ) are defined by 
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 Here Si,n()S*j,n() represents the cross correlation between the Fourier spectra of two 

individual receivers i and j where * denotes the complex conjugate and B is the number 

of blocks each signal is segmented into for use in Welch’s averaged, modified 

periodogram method of spectral estimation (Welch 1967).  Welch’s method will be 

discussed in detail in Section 5.2.    

The steering vector of Equation (3.4.1) is a sequence of phasors designed to 

cancel the phase shifts of the propagating plane wave in order to determine the power in 

particular f-k pairs.  The steering vector represents the collection of phase shifts along the 

array and is defined by 
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where e is the phase shift vector associated with trial wavenumber k in the direction of 

the receiver array and x1, x2, .. xm are the receiver locations in the array.   

Shading can be applied through the use of a diagonal weighting matrix.  Shading 

can enhance the beamformer’s shape and reduce side lobe heights, resulting in better 

frequency-wavenumber resolution.  The weighting matrix is the collection of receiver 

weights placed along the diagonal defined as 

 

 1 2( ) mw x diag x x x     (3.4.5)

 
 
Figure 3.6 displays a steered response for a Raleigh plane wave propagating with a 

velocity of 305 ft/sec and a corresponding k value of 0.7854.  The steered response 

results in a wavenumber spectrum with the maximum energy located at the propagating 

wavenumber.  
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Figure 3.6  Steered response of a plane wave propagating with 
wavenumber k = 0.7854. 

 
 

3.5 Refreaction Microtremor 

The Refraction Microtremor (ReMi) method, as described in Louie (2001), is used in 

the determination of Rayleigh wave phase velocity determined from ambient noise and is 

based on the p- transformation or slantstack (Thorson and Claerbout, 1985), The p- 

transformation is defined as 
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where x is distance, t is time,  is the intercept time, and p is the slope of the line 

representing dt/dx, the inverse of apparent velocity in the direction of x.  Equation (3.5.1) 

maps a two dimensional sequence in space-time into another two dimensional sequence 

in slowness-intercept time.   In its discrete form Equation (3.5.1) is defined as 
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where i,k and l are integers, and po is the maximum desired slowness value.  

Equation (3.5.2) is calculated for both positive and negative p values so that the 

energy in both the forward and reverse directions is accounted for.  It should be noted 

that if an active source is utilized with this method, only the forward summation need be 

used.  The value chosen for po represents the inverse of the minimum velocity that will be 

determined in the transform.  The value of po  should be chosen based on local knowledge 

of soil conditions.  This can save processing time by avoiding low slowness values that 

are unrealistic.  The number of slowness values used is dependent on the desired 

resolution and time requirements for analysis. A large number of slowness values will 

provide a higher resolution in the steps that follow but will also require more time for 

analysis.  The next step is to compute the Fourier transform of each p- trace in A(p,   
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where m is an integer.  From Equation (3.5.3) the power spectrum is calculated as 

 

 *( , ) ( , ) ( , )A A AS p f F p f F p f (3.5.4)

 

where * denotes the complex conjugate.  The energy in both the forward and reverse 

directions is then summed by 

 

 0 0( , ) [ ( , )] [ ( , )]A A p A pS p f S p f S p f    (3.5.5)

 

The resulting values from Equation (3.5.5) are then plotted as a p-f spectrum as seen in 

Figure 3.7.   
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The energy spectrum of Figure 3.7 displays the energy distribution for propagating 

waves along the line of receivers in x as a function of slowness vs. frequency. The 

squares plotted along the area of the spectrum where light green areas meets the dark blue 

areas are considered the energy of the surface waves propagating most directly along the 

line of receivers in x.  The reason for this is that any surface wave contributing to the 

energy spectrum propagating at angles oblique to the line of receivers in x will result in 

lower slowness or higher apparent phase velocities. This raises an interesting question as 

to what happens if there is no energy directly along the line.  The chosen velocities would 

then be overestimated by some amount.  This can be overcome by creating a source at the 

end of the line to ensure propagation along the line.   

         

Figure 3.7  p-f spectrum obtained from ReMi method using 24 
receivers spaced 8 meters apart. 
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The energy band in the direction opposite to the normal dispersion is due to spatial 

aliasing.  Just as temporal sampled data results in a Nyquist frequency (see Section 5.1) 

defining aliasing criteria, spatially sampled data results in a spatial Nyquist frequency due 

to slowness wraparound.  Care must be taken in choosing velocity values to the right of 

the aliasing band due to possible spectral leakage.  For this research velocities will not be 

chosen beyond the spatial aliasing bands.  The velocity information beyond the bands 

will be supplied via the MASW method.  

 

3.6 Source Methods 

The Rayleigh waves recorded for the before-mentioned surface wave techniques 

come from either passive or active sources.  Passive sources are ideal due to the fact they 

require less equipment and less physical effort.  However, it should be understood that 

the energy formed by the passive source comes from an active source somewhere in or on 

the earth.  The sources can be mini earthquakes, vehicle traffic, ocean tides, or any other 

action that imparts force into or on the earth.  Therefore, by labeling a source as either 

active or passive is simply stating whether or not the recorded waves were generated by 

the person or persons conducting the experiment.   

Active sources are typically viewed as either an impulse or harmonic source.  An 

impulse source can be a sledge hammer, weight drop mechanism, or any other 

mechanism that applies a dynamic point force of energy into the earth.  Advantages of 

point sources include multiple frequency generation with each application and trigger 
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time of the event that allows for the stacking of data.  However, the signal is short-lived 

and often suffers from low signal-to-noise ratio for arrays of significant length.   

Harmonic sources induce a repeatable sinusoidal energy signal that can be controlled 

for amplitude, duration, and frequency.  A signal that is isolated at a specific frequency 

and long in duration results in a large sampling space for determining phase information.  

This also allows for spectral techniques, such as Welch’s method outlined in Section 3.4, 

that help to minimize variances in the signal.  Harmonic sources can suffer from lack of 

energy at low frequencies due to the mechanism required to generate the sinusoidal 

signals.  As the penetration depth of interest increases so must the energy level and for 

the harmonic source this means more mass. 

In the above section multiple techniques for the measurement of Rayleigh surface 

waves have been described.  For this research the f-k method along with the ReMi 

method will be used.  The f-k method offers a robust way of determining Rayleigh phase 

velocity without the need for the unwrapping of phase angles, which has been shown to 

be problematic.  The ReMi method will aid in the determination of Rayleigh phase 

velocities at low frequencies where the active source methods, due to low source energy, 

have difficulties.  Both methods require equipment that can both record and convert 

seismic energy into digital format that can then be used by a computer to process the 

acquired data.   

The following section provides detail of the equipment used for both the MASW and 

ReMi methods along with the method used for the collection of downhole data.  The 

testing procedures also discussed along with the computer software used in analysis. 
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Chapter 4. Testing and Equipment 

The techniques described in Chapter 3 require that surface wave measurements be 

collected for processing.  Depending on the frequency range of interest, one technique 

may offer more reliable measurements than another.  The MASW methods offers good 

signal-to-noise ratio for high frequencies but suffer at frequencies below 10 Hz (Hebeler, 

2001).  The ReMi method can fill this gap by using low frequency noise in its dispersion 

calculations (Louie, 2001).  For this research each site contained a borehole that was used 

to find the in-situ shear-wave velocities and was used as a control test for the two non-

invasive methods. The following sections describe the testing procedures and equipment 

used in both the invasive and non-invasive methods along with the collection of 

downhole data.    

 
4.1 MASW Testing and Equipment 

In order to take advantage of the signal-to-noise ratio and sampling size offered by a 

harmonic source, surface waves were generated using the APS Model 400 Electro-SEIS 

Shaker (Figure 4.1).  The Shaker has a weight of 160 lbs. and is capable of applying a 

force (sine peak) up to 100 lb as shown in the force envelope plot of Figure 4.2.  The 

APS system can be used to generate either a single or a swept sine wave for frequencies 

up to 200 Hz.   The model is rated to 15 amperes, which is supplied by the APS Model 

144 Dual-Mode Amplifier (Figure 4.3).  The amplifier has a current output of 15 amperes 

and a frequency range of 0 to 2000 Hz. 
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Figure 4.1  APS Model 400 ELECTRO-SEIS Shaker. 
 

 

Figure 4.2  Force envelope for Model 400 Shaker.  
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Figure 4.3  APS Model 144 Dual-Mode Amplifier. 
 

Sinusoidal waves are generated using the Hewlett Packard 33120A 

Function/Arbitrary Waveform Function Generator distributed by Agilent Technologies 

(Figure 4.4).   The 33120A can produce individual and swept sinusoidal waveforms 

ranging from 100Hz to 15 MHz and is controlled via USB interface using the computer 

software VEE Pro.    

 

 

Figure 4.4  Hewlett Packard 33120A Function/Arbitrary 
Waveform Function Generator. 
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VEE Pro is a graphical language environment with built-in auto-detect functionality 

for using Agilent instruments.  The graphical user interface is user friendly and the 

program contains a large library of signal processing tools.  A program called 

“SASW_Testing” was developed using VEE Pro to generate sinusoidal signals for a 

range of frequencies over specified time periods.  For this research each frequency was 

generated for ten seconds.  This duration was chosen so that a specific number of 

windows could be applied using Welch’s method from Section 3.4.  The program begins 

by establishing all communication with the external devices (Figure 4.5).  Once this is 

accomplished, the program sends the waveform information to the waveform generator, 

which then generates the signal and transmits the waveform to the 144 dual-mode 

amplifier.  The signal is then amplified and passed to the Shaker where harmonic 

excitation commences. 

As the Rayleigh waves generated by the shaker propagate they are recorded by an 

array of 15 Wilcox 731A seismic accelerometers.  The accelerometers are shown in 

Figure 4.6 along with the metal base fabricated in-house to secure the sensors in the 

ground.  Each accelerometer is powered by the Wilcox P31 Power Unit/Amplifier 

(Figure 4.7).  The P31 is a ultra-low-noise power unit and amplifier with optional gain 

and filter settings.   
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Figure 4.5  SASW_Testing program developed inVEE Pro. 
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Figure 4.6  Wilcox 731A Seismic Accelerometer. 
 
 

 

Figure 4.7  Wilcox P31 Power Unit/Amplifier with optional gain 
and filter settings. 
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The signals received by the accelerometers are recorded using the VT1432A 16-

channel 24-bit digitizer by VXI Technologies.  It has a maximum sampling rate of 51,200 

samples/sec.  The VT1432A is controlled by the CT-100C portable VXIbus mainframe, 

which is connected to a computer via USB port.  The SASW_Testing program discussed 

above simultaneously controls the CT-100C along with the waveform generator.  The 

VEE program was set up to pass the recorded information from the CT-100C for each 

accelerometer to an individual ASCII file (Figure 4.5) and to display the current signal in 

the display panel for viewing during testing (Figure 4.9).  The main display panel 

contains a waveform plot for each receiver in the array that allows for the signal to be 

viewed during testing.  A small display panel in the bottom right of the panel displays the 

current frequency of excitation.  Figure 4.10 shows a zoomed in view of a waveform plot 

during testing.  A typical setup of the data acquisition equipment is shown in Figure 4.11. 

 

Figure 4.8   CT-100C portable VXIbus mainframe with slotted 
VT1432A 16-channel 24-bit digitizer. 
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Figure 4.9  Main Panel of SASW_Testing program. 
 

 

 

Figure 4.10  Zoomed in view of a waveform plot for a 35-Hz 
signal. 
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Figure 4.11  Data acquisition Equipment. From left to right: 
Computer with VEE Pro software; 33120A 
Function/Arbitrary Waveform Function Generator; 
CT-100C portable VXIbus mainframe with slotted 
VT1432A 16-channel 24-bit digitizer; and 144 Dual-
Mode Amplifier. 

 
 

4.2 ReMi Testing and Equipment 

The recording of surface waves for the ReMi method was accomplished using 24 

4.5-Hz geophones (Figure 4.12).  Geophones were used because the data acquisition 

equipment with the ReMi method has a specific connection and cables designed for use 

with geophones.  However, geophones would still be the preferred choice due to the large 

amount of wire that would be required for the accelerometers.   The data was acquired 

using the DAQLink II, 24-bit, 24-channel data acquisition box manufactured by 

SeismicSources (Figure 4.13).  Powered by a portable 12-volt battery, the DAQLink II is 

small and extremely light (3 lbs) with a power consumption of less than 0.4 Watts per 

channel, making it ideal for field testing.  It has internal storage of up to 2GB of data and 

standard output formats include SEG-Y, SEG-2, and ASCII.  The DAQLink II can record 
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for up to 3600 seconds per test and can sample at rates of 8, 4, 2, 1, 0.5, 0.25, and 0.125 

msec.  

 

 

                      Figure 4.12  4.5 Hz geophone.  
   

 

 

Figure 4.13  DAQLink II with 12-volt battery and power cable. 
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The collection of the seismic traces was handled using the computer software 

program Vibrascope produced by Seismic Source.  Vibrascope is a seismic data 

acquisition system that allows the collection, viewing, and analysis of seismic traces.  

Figure 4.14 displays the trace viewing screen incorporated into the Vibrascope program.  

From this screen you can also choose to view the spectrum, seismic correlation, and noise 

statistics of any or all of the traces.  For this research the program was only used to record 

the seismic traces.  All other signal processing was conducted using the computer 

program SeisOpt ReMi.   

 

 

Figure 4.14  Vibrascope program displaying recorded traces. 
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4.3 Downhole Testing and Equipment 

Downhole testing in an invasive technique used to determine in-situ soil conditions 

typically reported as vertical seismic profiles (VSP).  VSPs define a soil structure’s 

velocity properties as a function of depth, which is the main input data in site response 

programs.  The downhole technique requires that a borehole be drilled and cased, 

typically in PVC, to a desired testing depth.  The outside of the casing material is then 

grouted to ensure coupling between the casing and the surrounding soil.  The grout 

should be allowed two to three days to dry completely before testing.  

 Testing procedures consist of placing a geophone or set of geophones into the 

borehole at a specific depth in order to record the arrival of seismic energy produced by a 

source located at the surface (Figure 4.15 top).  Once the signal has been received and 

recorded the geophones are then lowered to the next depth.  The process is continued 

until the geophones reach the bottom of the borehole or some desired depth.  The test 

data is then analyzed in order to determine the arrival times of the seismic energy (Figure 

4.15 bottom).  The arrival times are chosen as the point where the energy first arrives at 

depth.  Figure 4.16 displays a typical VSP from which the arrival times would be chosen.  

Once the arrival times are selected, the velocities of the depth intervals can be computed.  

The interval velocities are typically calculated as (ASTM D7400). 
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where Vsi is the interval shear wave velocity, r is the change in propagation length, t is 

the change in arrival time, di is the depth of interval i, and ti is the arrival time of the 

seismic energy at the ith depth.  Equation (4.3.1) can introduce some error when the 

source is located some distance from the borehole.  This is discussed further in Section 

5.9.  The resulting interval velocities are then plotted as in   Figure 4.17 to help identify 

layers of intermediate velocity. 

The choice of whether to use one or two geophones is up to the researcher.  

Typically two geophones are placed in the borehole, one at di and the other at di-1.  This 

allows for both geophones to take advantage of the same energy source used for the 

determination of Vsi.  The proper selection of the arrival times is extremely important and 

is discussed in detail in Section 5.8.   

For this research the seismic energy was generated using an air-powered shear-wave 

hammer system similar to that of Lui et al. (1996).  The hammer is placed on a steel base 

designed to couple with the ground and is then secured in place by positioning a vehicle 

on top of the system (Figure 4.18).   
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Figure 4.15  Downhole testing procedure (top), recorded seismic 

energy traces (bottom). 
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Figure 4.16  Typical VSP constructed from downhole data. 
 

     
 
  Figure 4.17  Interval velocities resulting from VSP. 
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Figure 4.18  Shear-wave hammer system used to generate shear-
waves. 

 

The downhole vertical seismic profiles were collected using the BHG-2 Tri-Axial 

10 Hz Wall-Lock Geophone system manufactured by Geostuff (Figure 4.19).  The system 

is capable of producing a tight friction lock against an encased borehole using a clamping 

mechanism comprised of a steel leaf spring compressed by a motor-driven piston.  The 

clamping mechanism is controlled by the BHGC-4 Borehole Geophone Controller          

Figure 4.20).  The BHGC-4 uses toggle switches to control the clamping and releasing 

actions for each BHG-2 geophone along with a power meter for monitoring current, 

which indicates the clamping action and force.         

Borehole

Hammer
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Figure 4.19  BHG-2  Wall-Lock geophone system. 
 
 

The seismic data recorded by the geophones in the borehole are transmitted through 

wires connected to the BHGC-4 and passed along to the data acquisition system (Figure 

4.21).  The data acquisition system contains an AC/DC power unit, 16-channel amplifier 

boards with eleven amplification settings ranging from 20 to 210, and the DT-9800 data 

acquisition box manufactured by Data Translations.  The DT-9800 converts analog 

signals to digital form and communicates with the VEE Pro software. Sampling rates and 

duration times are directly controlled from the VEE Pro panel.  For this research data was 

recorded at a sampling rate of 1500 points per second for a duration time of 3 seconds. 
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          Figure 4.20  BHGC-4  Borehole geophone controller. 
 

 
 

 

Figure 4.21  Data acquisition system for downhole testing. 
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Figure 4.22 displays the front panel of the VEE Pro program used for the collection 

of the downhole seismic traces.  The panel displays all 16 channels with their 

corresponding 3 second recorded windows.  Figure 4.23 displays the zoomed-in view of a 

signal recorded by a single channel.  For this research two geophones were placed in the 

borehole simultaneously at 5 ft intervals. The seismic traces recorded by the lower 

geophone in the borehole are displayed in channels 1, 2 and 3 and the upper geophone in 

channels 4, 5 and 6.  Channels 7, 8, 9, 13, 14 and 15 are unused and the surface geophone 

is displayed in channels 10, 11 and 12.  The signal recorded at the surface is used for 

checking the accuracy of the trigger mechanism used in the construction of the VSP.   

 

 

Figure 4.22  Front panel display of VEE Pro program for downhole 
testing. 

 

The trigger is displayed in channel 16 and is used for determining the exact time of 

the hammer impact.  Recording of all the traces begins prior to activation of the hammer 

system and thus the hit time is required to properly align the traces for the construction of 
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the VSP.  The trigger is activated when the hammer arm slides past a light sensor located 

next to the hammer impact plate.  The light sensor sends a 10-volt signal to the data 

acquisition system identifying the time of hit.       

 

 

Figure 4.23  Zoomed-in view of single channel recording. 
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Chapter 5. Signal Processing 

Chapter 4 discussed the procedures and equipment used in the collection of Rayleigh 

surface wave data.  The data collected by the instrumentation is a digitized sample of the 

continuous signals recorded.  These digitized copies are then used for the methods 

described in Chapter 3.  The following chapter discusses important signal processing 

techniques, such as frequency resolution, aperture selection, coherency, spatial aliasing 

and higher mode resolution, which need to be understood and followed in order for the 

methods of Chapter 3 to produce reliable results to be used in inversion. 

        
5.1 Frequency Resolution 

Chapter 3 showed that MASW relies on phase information to determine Rayleigh 

dispersion.  This requires all collected data to be transformed from the time domain to the 

frequency domain via the Discrete Fourier transform (DFT).  Care must be taken when 

extracting the information for frequencies that may not be represented by the DFT.  The 

DFT is defined as (Bracewell, 1965) 
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Where 

 

 ( ) ( )of f t t     (5.1.2)
 

t is the sampling interval, ( )of t t  is the sample at time t  adjusted from the initial 

recording time to, N is the total number of samples and the quantity v/N is analogous to 

frequency measured in cycles per sampling interval.  From Equation (5.1.1) it can seen 
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that the individual frequency resolution in the DFT is directly controlled by the 

relationship v/N where the total number of samples N is dependent on the sampling 

interval t.  If sampling intervals used in testing are not chosen appropriately, frequency 

resolution can suffer. 

 Two problems arise when the sampling rate is not chosen properly.  The first 

problem is known as aliasing.  Aliasing occurs when under-sampling causes a signal to 

appear aliased into a signal of lower frequency content.  The frequency limit where 

aliasing occurs is governed by the Nyquist frequency, which is defined as    
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where fs sampling frequency, which is the inverse of the sampling interval t.  The 

Nyquist frequency establishes the maximum resolvable frequency due to the chosen 

sampling frequency.  Any frequency information collected beyond the Nyquist frequency 

is considered aliased and should be considered unreliable. 

The second problem is that the individual frequency step resolution may not allow 

for a specific individual frequency to be obtained.  Individual frequency resolution is 

controlled by 

 
                      

sff
N

   (5.1.4)

 

where f is the frequency step. When a signal is transferred from the time domain to the 

frequency domain via the DFT, information is only available for the frequencies that are 

a multiple of f.  All information pertaining to a specific frequency that is not a multiple 
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of f will be integrated into the next closest frequency step.  This problem can be 

overcome by padding the end of a signal with zero values prior to the application of the 

DFT.  This is done in order to increase the value of N and thus decrease the value of f.   

For this research a sampling frequency of 640 points per second was selected along with 

a 10 second recording window resulting in a frequency step of 0.1 Hz.  

 
5.2 Welch’s Averaged Modified Periodogram 

The f-k method of Section 3.4 applies Welch’s method in order to minimize variance 

in the power spectrum estimates used in the calculation of spatio-spectral correlation 

matrix.  Welch’s method is a spectral averaging technique that partitions a time domain 

signal into a specified number of overlapping segments. The overlapping segments are 

then windowed and the discrete Fourier transform, Equation (3.3.1),  is applied to each 

window.  Welch’s method then averages the DFT from each segment in order to 

minimize variance in the power spectrum estimate.  

When applying Welch’s method in Section 3.4 it is important that the correct number 

of windows and window size be chosen.  Just as sampling frequency is important to 

frequency resolution so are the window choices.  Recall that Welch’s method splits a 

time domain signal into a specified number of overlapping segments.  The size of the 

overlap is user-defined but typical examples use a 50% overlap.  The overlap used is due 

to the fact that most window functions afford more influence to the center of the data set.  

Figure 5.1  displays three common window functions along with their matching kernels.  

The kernel is the inverse Fourier transform of the window and helps to indentify the 

spectral leakage associated with the windowing function.  The best window function to 

use can depend on the information required from the data set.  For this research the 
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Hanning window was used due to its low side lobe contribution.  This helps to minimize 

spectral leakage and to maximize the visibility of higher mode propagation within the 

wavenumber spectrum of Equation (3.4.1).     

    

 

Figure 5.1  Windowing functions with matching kernels for 
Rectangular (top), Bartlett (middle), and Hanning 
(bottom) windows. 

 

 
5.3 Coherency 

The methods used in the determination of Rayleigh phase velocity require that the 

data between individual recievers be linearly correlated.  In order to insure that the 

measured process between receivers is linearly related, the coherency function is used to 

check the data.  The coherency function is defined by 
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where Y is the cross power between receivers Sn and Sm from Equation (3.3.2) and the * 

denotes the complex conjugate.  If the data recorded at the individual recievers is exactly 

linear related then Equation (5.3.1) results in a coherency value of  1.  Low coherency 

values can result from low signal-to-noise ratio, body-wave interference, and near-field 

effects.  For this research only coherency values of 0.90 and higher are accepted from the 

MASW method.   

 
5.4 Apertures 

Due to the fact that propagating waves vary in space and time, sensor arrangements 

have a significant influence on the ability of an array to capture propagating energy.  It is 

the arrangement of sensors within an array that determines the aperture used in the 

collection of propagating energy.  The two-dimensional Fourier transform of a spatial-

temporal signal s(x,t) can be written as (Johnson and Dudgeon, 1993) 

 

 ( , ) ( , ) exp( )exp( )S k s x t j t jkx dxdt 
 
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    (5.4.1)

 

where k is the wavenumber,  is the circular frequency, x is the position, t is the time and 

j is the imaginary number.  Inserting the uniform plane wave equation 
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into Equation (5.4.1) yields 

 

 ( , ) exp( ( ) ) exp( ( ) )o
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where ko and o represent a particular wavenumber and frequency.  If unlimited temporal 

and spatial data could be collected then the wave field of Equation (5.4.3) would be given 

by the two-dimensional impulse function in f-k space as 
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Equation (5.4.4) is an ideal smoothing kernel.  In reality, experimental measurements are 

neither perfect nor infinite in length.  The finite wave field is therefore a convolution over 

wavenumber between the Fourier transform of the field and the aperture smoothing 

function  

 
 ( , ) ( , ) ( )Z k S k W k  (5.4.5)

   

where S(k,) is determined from the two-dimensional DFT and W(k) is defined as 
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where w(x) is the aperture function, also termed applied weights, that help to control the 

shape of the ASF and m is the total number of sensor locations.  For the case of a single 

plane wave propagating along x due to a source waveform s(t), the frequency-

wavenumber spectrum can be written as 
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 ( , ) ( ) ( )oZ k S W k k    (5.4.7)
 

 From Equation (5.4.7) it can be seen that when k is equal to ko then 

 

                 ( , ) ( ) (0)oZ k S W   (5.4.8)
                              

Along this path the output spectrum equals the signal spectrum.  For all other values of k, 

the signal spectrum is multiplied by a value less than one resulting in less power in a 

particular f-k pair.  

The ASF’s main lobe is used as a beam to point, algorithmically, the array’s spatial 

filter toward desired f-k pairs.  Plane waves of frequency f traveling along the array with 

wavenumber k will result in peaks within the steered response power spectra.  It is the 

shape of the ASF that is most important when analyzing results from the f-k method.  If a 

linear array is used in the collection of data with uniformly spaced sensors, the resulting 

ASF would look like a typical aperture function with a main lobe peak and small 

decreasing side lobes as seen in Figure 5.2.  If a non-uniform array is used, the ASF 

suffers from higher side lobes resulting from aliasing effects from gaps within the 

coarray.  
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Figure 5.2  ASF for a linear array of length 102 ft. with uniform 
spacing of 3 ft. (solid line), non uniform array x = [0 2 
4 7 10 14 20 26 34 42 52 62 72 87 102] ft. (dashed 
line). 

 
 

5.5 Spatial Aliasing 

Spatial aliasing is the result of insufficient sampling along a space axis that results in 

an aperture function becoming distorted. To avoid spatial aliasing in a particular 

direction, the minimum spatial separation contained in the coarray must be (Zywicki, 

1999) 

              min
min 2

d


  (5.5.1)

 

where d is the minimum spatial separation and  is the wavelength.  Recalling Equation 

(2.9.3) , the maximum wavenumber that can be contained in the wavefield without 

aliasing is therefore 

              max
min min

2
k

d

 


   (5.5.2)

 

Wavenumber k
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where kmax is analogous to the Nyquist frequency.  When uniform spacing is used, the 

sampling rate is constant resulting in identifiable aliasing criteria within the ASF.  

However, available space and equipment limits may not allow for a uniform spacing to 

occur.  Non-uniform arrays are designed so that a given array length can be achieved with 

less sensors.  A problem with non-uniform arrays is that they contain spatial gaps in their 

coarray.  These gaps results in uneven spatial sampling resulting in no true aliasing 

present in the ASF. In cases where true aliasing lobes do not exist, large side lobes 

demarcate aliasing criteria.  It is these side lobes which are the focus of concern when 

interpreting multiple-mode Rayleigh waves.   

For spatial arrays, the lag domain is summarized by the coarray, which represents 

all the spatial lags contained in an array. The coarray is defined as   

 

                 
1 1

( ) ( )
S S

m n
m n

C x x 
 

   (5.5.3)

 

where xm and xn are the positions of individual sensors,  is the lag distance between 

sensors m and n, and S is the total number of sensors in the array.  From Equation (5.5.3) 

it can be seen that the zero lag will result in the highest coarray value, which equals the 

total number of sensors in the array.  For a uniform array this results in a linear decline in 

coarray value with increasing lag.  Figure 5.3 graphically displays the coarray for a 102-ft 

array with uniform 3 ft spacing and Figure 5.4 displays the coarray for the 102-ft non-

uniform spacing array of Hebeler (2001).  The uniform array contains larger values in the 

coarray for individual lags than that of the non-uniform array, resulting in an ASF with 

lower side lobe contributions (Figure 5.5).    
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The coarray can prove to be helpful when determining the optimal geometry for a 

non-uniform array.  The magnitude squared of the ASF is equal to the Fourier transform 

of the coarray which is defined as (Johnson and Dudgeon, 1993) 

 

                 
2

( ) ( ) exp( )W k c jkx


  (5.5.4)

 

Once an array geometry is chosen, the resulting ASF can be determined from Equation 

(5.5.4).  This allows for an optimization procedure for determining an optimal ASF.   

 

Figure 5.3  Coarray for 102-ft array with uniform 3-ft spacing. 
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minimum spectral leakage.  The 100 ft minimum length was chosen due to the depth of 

penetration desired.  The actual depth of penetration a wavelet can achieve is not certain 

until inversion is completed.  Some researchers suggest the depth of penetration is 

typically equal to one half or two thirds the wavelength (Ballard, 1964; Lai and Rix, 

1998; Foti, 2000; and Hebeler, 2001).  The results of the GA provided a non-uniform 

array that matched those used in both previous studies from Hebeler (2001) and Zarrabi 

(2005).  Equation (5.5.5) displays the geometry of the 15-sensor non uniform array.  The 

resulting kmax value of Equation (5.5.2) is  

 

            [0 2  4  7  10  14  20  26  34  42  52  62  72  87 102] ftx   (5.5.5)
 

 

 

Figure 5.4  Coarray for 102-ft array with non uniform spacing.  
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Figure 5.5  Array smoothing function for uniform and non-uniform 
arrays. 

 
 

 
5.6 Wavenumber Spectrum 

The results of Equation (3.4.1) used in the f-k method to determine Rayleigh 

phase velocity produce a wavenumber spectrum that displays the power in particular f-

k pairs.  If a single-mode Rayleigh wave is propagating along the non-uniform array of 

Equation (5.5.5) the resulting wavenumber spectrum would be that of Figure 5.6.   

For multiple-mode propagation the resulting wavenumber spectrum should contain 

multiple peaks located at the wavenumber k values of the propagating modes.   

For this research, the f-k method was applied to synthetic multiple-mode Rayleigh 

waveforms generated using Equation (2.3.4) with a duration of 10 seconds.  Figure 5.7 
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along the array.  Figure 5.8 displays the waveform generated by the superposition of 

the propagating modes.   

 

Figure 5.6  Wavenumber spectrum for single mode propagation. 
 

 
Figure 5.7  One-second window of synthetic time histories for 

individual Rayleigh wave mode propagation for each 
receiver in a non-uniform array. Frequency = 5 Hz 
with k = 0.2 (dashed) and k = 0.75 (solid).  
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Figure 5.8  One-second window of synthetic time histories of 
mulit-mode, k1 = 0.2  and k2 = 0.75, Rayleigh wave 
propagation for frequency of 5 Hz for each receiver in 
a non-uniform array. 
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Figure 5.9  Wavenumber spectrum for multi-mode, k1 = 0.2  and k2 
= 0.75, Rayleigh wave propagation for frequency of 5 
Hz. 
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Figure 5.10 Wavenumber spectrum for multi-mode, k1 = 0.2  and 
k2 = 0.5, and k3 = 0.75 Rayleigh wave propagation for 
frequency of 5 Hz. 
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This is best explained in complex notation by defining the temporal response of a 

receiver from a multi-mode propagating plane wave as 

 

            ,1 1 ,( , ) exp ( ) exp ( )r r o r r M o M rs x t A j t K x A j t K x       (5.6.1)

  

where  xr is the position coordinate of receiver r in the array, t is the time, Ar,m is the 

amplitude of the mth mode at reciever r, o is the circular frequency, Km is the 

wavenumber of propagation for the mth mode, and M is the total number of propagating 

modes.   In summation form this reduces to 

 

           ,
1

( , ) exp ( )
M

i i m o m i
m

s x t A j t K x


   (5.6.2)

 

The cross power between receivers can then be calculated by 

 

       , ,
1 1

( , ) ( , )* exp ( ) exp ( )
M M

c r c n o n c r m o m r
n m

s x t s x t A j t K x A j t K x 
 

      (5.6.3)

 

where the * represents complex conjugate.  Combining summations results in  

 

      , ,
1 1

( , ) ( , )* exp ( )
M M

c r c n r m m r n c
n m

s x t s x t A A j K x K x
 

   (5.6.4)

 

where the frequency dependence ot in the exponential has been eliminated.  Applying 

the weighted steering vector of Section 3.4, the wavenumber spectrum can then be 

calculated by     
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        , ,
1 1 1 1

( ) exp exp ( ) exp
N M M N

c c c n r m m r n c r r
c n m r

P k w jkx A A j K x K x w jkx
   

      (5.6.5)

 

where wc is the vector of applied weights for each receiver c, N is the total number of 

receivers, and k is the range of wavenumbers used in the wavenumber spectrum. When 

the summations are combined Equation (5.6.5) reduces to  

  

       , ,
1 1 1 1

( ) exp ( ) ( )
N N M M

c r c n r m m r n c
c r n m

P k w w A A j K k x K k x
   

      (5.6.6)

 

From Equation (5.6.6) it can be determined that when an individual k is equal to 

the true propagating wavenumbers K and n is equal to m the result of the exponential 

component is equal to one.  This results in Equation (5.6.6) retaining all the power from 

Equation (5.6.4) at K.  When n does not equal m the exponential value is less than one 

resulting in a decrease in the cross power. 

Equation (5.6.6) can therefore be used as a model for comparison between 

theoretical and experimental results.  An inversion of Equation (5.6.6) should determine 

the true modal propagation values.  However, Equation (5.6.6) assumes complete modal 

participation in all receivers within an array, which is not necessarily the case in 

experimental results.    

There are three types of interference that influence the shape of the wavenumber 

spectrum apart from the true modal propagation. The first is low-frequency noise 

propagation.  Low-frequency noise is a common occurrence in areas containing soft 

sediments such as the Mississippi embayment.  Figure 5.11 displays the Fourier 

amplitude spectrum of a single receiver from a MASW experimental test site.  The 
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spectrum contains sharp high-amplitude peaks for frequencies above 20 Hz providing 

good signal-to-noise ratios for high frequencies.  Below the 20-Hz frequency level the 

signal to noise ratio becomes poor thus resulting in poor spectral resolution.  

 

Figure 5.11  Fourier amplitude spectrum for all experimental 
frequencies.  
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experiment is plotted in Figure 5.13.  It can be seen that for frequencies below 20 Hz the 

coherency value begins to drop off sharply.      

 

Figure 5.12  Fourier amplitude spectrum for experimental frequencies 
from 3.75 to 20 Hz. 
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is most likely due to a poor signal-to-noise ratio that results in high side lobe 

contribution. 

                  
Figure 5.13  Coherency values for experimental frequencies. 
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Figure 5.14  Wavenumber spectrum for experimental data (solid 

line) and synthetic data (dashed line) for 3.75 Hz, K = 
0.013.  
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one-half the wavelength.  In fact the length of the source offset plus the array length is 

less than one-third the wavelength.  

 
5.7 Higher-Mode Resolution 

One of the goals of this research was to clearly identify individual modes of 

propagation for an accurate inversion of Rayleigh wave dispersion.  As seen in the 

section above accurate determination of higher-mode propagation can be a challenge 

when other factors of wave propagation are involved.  However, for typical dispersion 

curves obtained from experimental results, the dominance of higher-mode wave 

propagation is typically for frequencies above 30 Hz.  Recalling the Fourier amplitude 

spectrum of Figure 5.11, the MASW method with a harmonic source provides good high 

frequency resolution above 20 Hz.  

The main obstacle is in identifying the dominant mode’s true modal value.  If a 

MASW experiment was conducted for the site of Case 2 (Figure 2.18) the experimental 

dispersion curve may result in a dominant higher mode for frequencies above 90 Hz.  If a 

multi-mode inversion was conducted and the frequencies above 90 Hz were associated 

with the second mode, the results would be inaccurate due to the fact that the frequencies 

above 90 Hz fall on the third mode.   

The reason for higher-mode dominance within Rayleigh dispersion is not certain.  

The two likely possibilities are attenuation and near-field effects.  It was shown in 

Section 2.8 that higher-mode Rayleigh waves penetrate deeper into a media.  It is also 

known that surface wave attenuation is most sensitive to shear wave dissipation (Kennett, 

2001).  If the quality factor Q for shear waves increases with depth, then at some 
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horizontal distance the higher modes will most likely become dominant due to their 

higher energy levels.   

Near-field effects could also be responsible due to the larger depth of penetration of 

higher modes.  Rayleigh waves require approximately one-half their wavelengths from 

the source before becoming planar (Stoke et al., 1994).  Higher modes penetrate deeper 

thus their wavelengths are longer and most likely need more time to become planar.  If 

either or both of the above-mentioned factors contribute to the dominance of higher-mode 

propagation, then the solution should be spatial in nature.   

If the higher modes eventually dominate the Rayleigh dispersion as a function of 

horizontal distance, then the source location should control the modal resolution of the 

Rayleigh dispersion curve.  Initial tests were conducted to verify this and are presented in 

the figures below.  Figure 5.15 displays a dispersion curve obtained from a 10-ft source 

offset.  The curve is completely dominated by the fundamental mode.   

 

                

Figure 5.15  Dispersion curve for 10-ft offset. 
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Figure 5.16 through Figure 5.19 display some of the wavenumber spectra used in the 

construction of the dispersion curve.  Each wavenumber spectrum is plotted along with 

the synthetic spectrum based on Equation (5.6.6) for the k value of the main peak.  It can 

be seen that the synthetic spectrum matches well for the 18.75 and 31.25 Hz frequencies.  

As the frequency increases, the width of the main lobe for the experimental data 

increases.  The reason for the increase in main lobe width is not certain but could be due 

to propagating wavenumbers that are aligned close to one another.   However, as source 

offset distance increases, sharper more distinct peaks will begin to form in the 

waevenumber spectrum.   

Figure 5.21 displays the dispersion curve obtained using a 30-ft source offset.  There 

is clearly a higher mode jump for frequencies above 90 Hz.  By investigating the 

wavenumber spectra used in the construction of Figure 5.21 a hypothesis can be drawn as 

to why the widening of the peaks occurs at higher frequencies.   
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Figure 5.16  Wavenumber spectrum for experimental data (solid line) 
and synthetic data (dashed line) for 18.75 Hz, k = 0.178. 

 
 

 

Figure 5.17  Wavenumber spectrum for experimental data (solid 
line) and synthetic data (dashed line) for 31.25 Hz, k = 
0.337. 
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Figure 5.18  Wavenumber spectrum for experimental data (solid 
line) and synthetic data (dashed line) for 55 Hz, k = 
0.636. 

 

 
Figure 5.19  Wavenumber spectrum for experimental data (solid 

line) and synthetic data (dashed line) for 80 Hz, k = 
0.988. 
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Figure 5.20  Wavenumber spectrum for experimental data (solid 
line) and synthetic data (dashed line) for 100 Hz, k = 
1.255. 

 

 

Figure 5.21  Dispersion curve for 30-ft offset. 
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this is still not certain.  This trend continues until 75 Hz when these assumed higher mode 

peaks begin to rapidly diminish (Figure 5.23 and Figure 5.24).  If these secondary peaks 

were chosen as higher modes and added to the dispersion curve of Figure 5.21, the 

resulting dispersion would look like that of Figure 5.25.  If Figure 5.25 is accurate it 

could then be assumed that the mode jump at 90 Hz must be the third or even higher 

mode.  However, care must be taken when associating secondary peaks with higher 

modes.  Side lobes resulting from spatial aliasing can produce the same effects when 

chosen as secondary peaks.  
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Figure 5.22  Wavenumber spectrums for frequencies of 27.5 to 45 
Hz for 30-ft offset. 
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Figure 5.23  Wavenumber spectrums for frequencies of 55 to 80 Hz for 
30-ft offset. 
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Figure 5.24  Wavenumber Spectrums for frequencies 90 to 100 Hz for 
30-ft offset. 
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peaks were chosen whose magnitude was higher than 0.4.  This value was chosen in 

order that no peaks were associated with side lobes resulting from the ASF itself.  It is 

clear that the dispersion of Figure 5.26 offers no certainty as to the true modal phase 

velocities. 

 

Figure 5.25  Dispersion curve for 30-ft offset with suspected 
next-higher mode. 

        

Figure 5.26  Dispersion curve for 30-ft offset with suspected 
next two higher modes. 
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The results of the above test do not produce a high level of confidence for the 

identification of higher modes.  The only information from the wavenumber spectrum 

that can be used with any certainty is the dominant peak except in frequency ranges of 

low coherency.  For this research only the dominant peaks were used in the construction 

of experimental dispersion curves.  In order to identify as many modes as possible, 

incremental source offsets were used.  If the increased width of the main lobe is due to 

either attenuation or near-field effects, changes in offset distance should result in changes 

in the dominate mode of propagation.  For near offsets the fundamental modes will most 

likely control depending on the length of the array.  This is due to the fact that the 

wavelength of the fundamental mode is the shortest and should take less time to become 

planar.  However, if an array is long enough a higher mode could eventually dominate 

over a majority of the array length thus resulting in a dominant higher mode within the 

wavenumber spectrum.  For a short array the higher mode may still be experiencing near-

field effects and thus explain the wide main lobe response in the wavenumber spectrum.  

Once a higher mode becomes planar there should be a distinct split in the peaks that 

represent the propagating modes. 

The domination of the higher modes could be the result of higher Q values as a 

function of depth.  In Section 2.8, the response of displacement eigenfunctions was 

plotted for individual modal values.  It was shown that the majority of the energy 

distribution for the fundamental mode was located near the surface.  Higher modal energy 

is distributed more evenly with depth and thus would attenuate less if Q values increased 

with depth.   
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The results section will show that the determination of multiple modes for a given 

frequency can be achieved through multiple source offsets.  Each offset produces an 

individual Rayleigh dispersion curve that is used in combination with all others obtained 

at different source offsets.  The resulting dispersion curve is a composite mapping of the 

individual propagating modes as a function of frequency.    

 
5.8 Downhole Arrival Times 

The determination of soil velocities from downhole testing requires that arrival times 

be picked from a VSP for use in calculating the interval velocities.  Figure 5.27 displays 

the chosen arrival times for an example VSP where the arrival times are depicted by a + 

sign located at the beginning of the energy arrival.  It is imperative that the arrival time be 

chosen as close as possible to the first energy arrival in order to minimize error.  If the 

main peaks are chosen as the arrival times two errors are incurred.  The first is the 

velocity of the uppermost layer will be highly underestimated due to the resulting larger 

denominator of Equation (4.3.1).  The second error is incurred due to the signal shape 

changing with depth.  As depth increases the signal can pass through multiple layers that 

result in the signal’s shape becoming altered.  Signals at different depths can have 

varying pulse widths with the main peak shifted significantly.  Reflections from lower 

layers can also cause significant disturbances in signals located in the layers above. 

The cross correlation of signals can also be used to determine the time difference 

between signal arrivals.  By determining the time shift required to maximize the cross 

correlation function, the velocity between the two intervals can then be determined by 

dividing the depth interval by the time shift.  This method can also produce large errors 

when the signal shape of one depth interval does not match that of the other.  Large peaks 
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in the signal due to reflections from below can have significant influence on the results of 

the cross correlation technique. 

 

Figure 5.27  Example downhole VSP with picked arrival times.  
 

 
5.9 Downhole Velocity Determination 

The interval velocities calculated form a downhole VSP can contain significant 

errors when the source is located some distance x from the borehole.  Recalling that 

Equation (4.3.1) for the determination of soil velocity is written as 
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The numerator of Equation (5.9.1) simply calculates the difference in ray path distance ri 

between the source and two receivers (Figure 5.28).   This difference is then divided by 

the change in arrival time for the determination of layer velocity.   

 

 Figure 5.28  Downhole schematic. 
 

For shallow layers the propagating signal can spend significantly more time in one layer 

than Equation (5.9.1) would suggest.  To illustrate this consider a source located x = 5 

feet from the borehole and the depth interval between sensors is 5 feet.   If the arrival 

time at the interface of Layers 1 and 2 is 0.00900 seconds and the arrival time at the 

interface of Layers 2 and 3 is 0.014815 seconds then the resulting ray path difference 

would be 
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 2
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 (5.9.3)

 

However, if the seismic wave traveling along r2 in Layer 1 is propagating at the velocity 

of layer 1, then the velocity of layer 2 should be calculated using the true length and time 

of the wave traveling along r2 in layer 2.  This can be accomplished by using the angle  

of r2 from the horizontal as shown in Figure 5.29. The angle  is calculated by   

 1 2tan
d

x
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 (5.9.4)

 

where d2 is the depth from the surface to the bottom of layer 2.  The length of the ray path 

r`i in an individual layer is 

 `
sin( )

i
i

d
r


  (5.9.5)

 

where di is the thickness of the individual layer.  The total time the signal is traveling 

through any layer i is therefore                                                                                                                      
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where Vi is the velocity of layer i and t`i is the total time required for the signal to 

propagate through layer i.  For the uppermost layer the velocity is the simple calculation 
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For the second layer the velocity is determined by dividing the length r`2 by the arrival 

time at the bottom of layer 2 minus the time the signal has spent in layer 1.   
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Figure 5.29  Downhole ray paths 
 

 
As source offset distance increases so will the results between Equations (5.9.1) and 

(5.9.8) . Table 5 displays the variation of velocity as a function of source offset with the 

appropriate arrival times for a V1 of 785.7 ft/sec and V2 of 726 ft/sec using Equations 

(5.9.1) and (5.9.8).   
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   Table 5.  Computed layer velocity as a function of source offsets, 
V1 = 785.7 ft/sec and V2 = 726 ft/sec. 

Source 
Offset 

Distance 
(ft) 

 
Arrival time 

t1 

(sec) 

 
Arrival time 

t2 
(sec) 

 
 

Equation (5.9.1) 
V2 

  (ft/sec) 
 

 
 

Equation (5.9.8) 
V2   

(ft/sec) 
 

          5     0.009000     0.014815            707           726 
          7     0.010949     0.016175            690           726 
          9     0.013104     0.017827            669           726 

 

     Table 6 presents how this error is further compounded with a high velocity in the 

upper layer.  The arrival times are adjusted for a V1 of 1000 ft/sec and V2 of 726 ft/sec 

 

     Table 6.  Layer velocity as a function of source offsets, V1 = 
1000 ft/sec and V2 = 726 ft/sec. 

 
Source 
Offset 

Distance 
 (ft) 

 

 
Arrival time 

 t1 
(sec) 

 
Arrival time 

t2 
(sec) 

 
 

Equation (5.9.1) 
V2 

  (ft/sec) 
 

 
 

Equation (5.9.8) 
V2  

 (ft/sec) 
 

          5     0.007071     0.01329           661           726 
          7     0.008602     0.01451           610           726 
          9     0.010296     0.01599           555           726 

 

 
For a multiple layer case with equally spaced depth intervals Equation (5.9.8) can be 

simplified to the following 
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where Vn is the velocity at layer n, rn is the distance from the source to the sensor in layer 

n, tn is the arrival time at layer n, Vi is the velocity of an individual layer above layer n.  

Once the top layer velocity is determined from Equation (5.9.9) each successive layer 

velocity can then be determined using Equation  (5.9.10) .  These equations can be easily 

programmed into a computer algorithm or a spreadsheet for automatic calculation of 

layer velocities. 
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Chapter 6. Experimental Results  

6.1 Results for Covington, TN 

The first site tested was at a Tennessee Department of Transportation maintenance 

facility located in Covington, TN at coordinates 35°33'33.77" North by 89°36'58.14" 

West (Figure 6.1).  This site was chosen due to the existence of a 200-ft cased borehole 

remaining from a previous research project (Pezeshk and Zarrabi, 2005).  Both MASW 

and ReMi tests were conducted. 

     

 

Figure 6.1  Tennessee Department of Transportation maintenance 
facility located in Covington, TN. 

 

The downhole velocity profile used for this test was adopted from Ge et al., (2007) 

and is displayed in Figure 6.2.  Ge et al., (2007) used a waveform matching technique for 

the determination of the vertical seismic profile. The technique uses synthetic waveforms 

generated from the method outlined by Wu, (1983) to match the experimental results 

collected from downhole measurements.  
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Observation of the boring logs, located in the Appendix, would suggest a uniformly 

increasing velocity with depth up to approximately 60 to 90 ft.  At this depth range, the 

standard penetration values drop somewhat from the previous layer.  The VSP of Figure 

6.2 reflects this at the depth of 30 meters, but it also reflects the same type of response at 

a depth of 10 meters.  The borings log depicts a transition from silt to dense sand at 

approximately 10 meters, but there is no indication that there would be such a dramatic 

drop in velocity as the VSP suggests.  However, as it will be shown, the MASW/ReMi 

results show similar patterns.   

The MASW testing as outlined in Section 4.1 was performed using the 15-receiver 

non-uniform array previously used by Hebeler (2001) and Zarrabi (2005).  The receivers 

remained in place throughout the test with source offsets at 5, 10, 30, and 60 ft.  A 

maximum 60-ft offset was used due to equipment constraints.  Figure 6.3 displays the 

experimental dispersion curve obtained using a source offset of 5 ft.  The dispersion 

curve is dominated by the fundamental mode of propagation along with what appears to 

be an inversely dispersive trend at the low frequency end of the curve.  However, this is 

believed to be due to the poor coherence values for these frequencies as seen in Figure 

6.4.  The bottom two frequencies along with one other have dropped below the required 

0.9 value needed for the MASW data to be linearly coherent (see Section 5.3).  If an 

inversion was carried out for this individual dispersion, the results would be a uniformly 

increasing velocity structure with depth.  However, from Figure 6.2 this is known not to 

be true and thus the inversion would not produce accurate results.   
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Figure 6.2  Downhole VSP and shear wave velocity chart for 
Covington, TN (adopted from Ge et al., 2007) 

 

The source was then moved to a 10-ft offset and the MASW test was repeated.  The 

results were very similar to the 5-ft offset test with the only difference being a slight 

change over the low frequencies (Figure 6.5).  Once again the coherency values for the 

lowest frequencies drop below the 0.9 threshold. 



137 
 

 

Figure 6.3  Experimental dispersion curve for Covington, TN with 
5-ft offset. 

 

 

Figure 6.4  Coherency values as a function of frequency for 
Covington, TN with 5-ft offset. 
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Figure 6.5  Experimental dispersion curve for Covington, TN with 
a 10-ft offset. 

 

Figure 6.6  Coherency values as a function of frequency for 
Covington, TN with a 10-ft offset. 
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The reason for the low coherence at low frequencies is most likely due to a poor 

signal-to-noise ratio.  The noise spectrum of an individual receiver is displayed in Figure 

6.7.  It can be seen that for frequencies below approximately 20 Hz the signal-to-noise 

ratio begins to diminish rapidly.   

Once the source was moved to a 30-ft offset, the dispersion curve began to reflect 

higher-mode propagation as shown in Figure 6.8 along with the corresponding coherency 

plot in Figure 6.9.  At 90 Hz there is a jump in the dispersion curve from the fundamental 

mode to that of a higher mode.  The actual mode number is unknown and to assume that 

it is the next higher mode would be careless as will be shown shortly.  The coherence 

values remain as they have been in the previous offsets with poor values at low 

frequencies.  Once the source offset is moved to 60-ft, better assumptions as to actual 

mode number values can be made.     

 

Figure 6.7  Fourier amplitude spectrum for MASW test data (blue) 
and ground noise (red).  
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Figure 6.8  Experimental dispersion curve for Covington, TN with 
30-ft offset. 

 

 

Figure 6.9  Coherency values as a function of frequency for 
Covington, TN with a 30-ft offset. 
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Figure 6.10 displays the dispersion curve results for the MASW test with a 60-ft 

offset.  The resulting dispersion curve contains some key characteristics for 

understanding the multiple mode dispersion relationship.  Multiple-mode jumps appear in 

the dispersion curve over specific frequency ranges.  Recalling the dispersion curves 

from the previous offset tests, it can be seen that as the source offset increases, higher 

mode participation begins to dominate the dispersion curve.  This would suggest that 

either the higher modes need more time to develop, and thus are more susceptible to near 

field effects, or higher modes attenuate at a lower rate than that of the fundamental mode.  

This could result from higher Q values at the larger depths where higher modes penetrate.  

 

Figure 6.10  Experimental dispersion curve for Covington, TN 
with 60-ft offset. 
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begins to become inversely dispersive until it reaches a peak at 15 Hz and then returns to 

a normally dispersive trend.  This effect is the result of simultaneous multiple-mode 

propagation along the array and is referred to as the effective phase velocity as discussed 

in Section 2.7.  It is now clear from Figure 6.10 that the jump in the dispersion curve at 

90 Hz was not the second mode.  In fact it appears likely that the jump corresponds to the 

fourth mode.  Notice how the coherency values at the lower frequencies increased for the 

60 ft offset (Figure 6.11).  This would support the near-field theory that the lower 

frequency, longer wavelengths need more time to develop and become planar. 

 

Figure 6.11  Coherency values as a function of frequency for 
Covington, TN with 60-ft offset. 
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wavelengths corresponding to low-frequency propagation. Only twelve sensors were used 

due to spatial constraints.  The ReMi method took advantage of the low-frequency noise 

shown in the Fourier amplitude spectrum of Figure 6.7 for the construction of the p-f 

spectrum shown in Figure 6.12.  Slowness values are chosen along the bottom of the 

energy spectrum in order to obtain values associated with the surface waves propagating 

most directly along the array of receivers.  The dispersion curves from both the MASW 

and ReMi methods were combined to form a composite dispersion curve (Figure 6.13).  

The composite dispersion curve should ensure that both the MASW and ReMi 

dispersions agree well at their point of intersection.  It is possible that energy may not 

propagate directly along the line of receivers, especially if only ambient noise is used.  

The resulting dispersion from the ReMi method could result in a curve that lies above 

that of the MASW method.  However this can be overcome by creating a source at the 

end of the receivers to ensure energy propagation along the line. 
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Figure 6.12  Frequency-slowness spectrum obtained from ReMi 
for Covington, TN. 

 
 

Inversion of the composite dispersion was carried out by the Genetic Algorithm of 
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are displayed in Figure 6.14 with the corresponding velocity profile shown in Figure 

6.15.   
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2.9) at 60 Hz and what appears to be no information for Mode 1 for frequencies above 70 

Hz.    

 

Figure 6.13  Composite dispersion curves obtained from MASW 
(open circles) and ReMi (solid circles) for Covington, 
TN.  
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more of an averaged result.  However, the results should show similarities due to the slow 

nature of soil deposits and the short 102 ft length of the MASW array.   

A final remark should be made on the portion of the curve between 60 and 80 Hz.  

While the experimental and theoretic values differ, it is believed that the theoretical 

values represent effective phase velocities due to the presence of the multiple mode 

propagation.  If the source were to be moved further away, these effective velocities 

would more than likely jump to a dominant mode.  However, equipment constraints did 

not allow for this to be confirmed. 

The resulting shear wave velocity profiles of the downhole and MASW/ReMi 

methods are compared in Figure 6.15 and Figure 6.16.  Figure 6.15 displays the 

comparison for the first 100 ft and Figure 6.16 for the entire 165 ft.  Although the 

borehole reaches to 200 ft, the results of the MASW/ReMi only penetrate to 165 ft.  The 

velocity profile from the MASW/ReMi methods reflects the high velocity layer at 15 feet 

and matches the overall trend in the velocity profiles well.  In fact, the velocity profile of 

Figure 6.16 reflects the low velocity layer sandwiched at 90 ft.  The 100-ft average shear 

wave velocity as defined by Equation (3.5-1) in NEHRP (2003) results in 829 ft/sec from 

the downhole method and 758 ft/sec from the MASW/ReMi methods, which results in 

only a 9% difference.   

The variability in the results of the GA is displayed by the error bars in both figures.  

The error bars represent the standard deviation for all solutions found by the GA with 

fitness values obtained from Equation (2.11.2) that are within 10% of the minimum 

fitness reached.  The variability for the first 100 ft is minimal with an average standard 

deviation in shear-wave velocities of 40 ft/sec.  This minimum variability in solutions is 
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attributed to the presence of higher mode resolution in the dispersion curve used in the 

inversion process.  For depths below 100 ft, the average standard deviation climbs to 112 

ft/sec.    

 

 

Figure 6.14  Multi mode inversion of MASW/ReMi dispersion for 
Covington, TN site. Triangles represent experimental 
phase velocities.  Theoretical phase velocities are 
represented by; 1. Red circles for fundamental mode, 
2. Blue x for 2nd mode, 3. Green squares for 3rd mode 
and 4. Magenta plus signs for 4th mode.  
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Figure 6.15 Velocity profile comparison for Covington, TN site for 
100 ft.. 
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Figure 6.16  Velocity profile comparison for Covington, TN site 
for 165 ft.. 
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6.2 Results for Hayti, Missouri 

The second site tested was located near Hayti, Missouri at coordinates 36°10'14.52“ 

North by 89°47'21.44" West (Figure 6.18).  This site was chosen due to the presence of a 

100-ft cased borehole used in consulting work.  Both MASW and ReMi tests were 

conducted along with a downhole test reaching 90 feet in depth.      

 

 

Figure 6.17   Test site located near Hayti, Missouri.  
 
 

The testing for all methods was the same as for the Covington site with the only 

exception being that the source offsets were 10, 30, and 60 ft.  Figure 6.18 displays the 

VSP along with the resulting shear wave velocities obtained from the downhole 

experiment.  There is fair agreement between the VSP and the boring log located in the 

Appendix.  The log indicates distinct layer boundaries at depths of 10, 30, 45, 50, 60, 80, 

and 90 ft.  The VSP contains significant velocity changes at depths of 10, 30, 45, and 60 
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ft.  Once again, there is the presence of inverse layering, which typically results in higher 

mode Rayleigh wave propagation and dispersion curve fluctuation.   

 

Figure 6.18  Downhole VSP and shear wave velocity chart for 
Hayti, Missouri site. 

 

The dispersion curve for the 10-ft source offset contains what appears to be a large jump 

in the dispersion curve at frequencies above 75 Hz (Figure 6.19).  By inspecting the 

coherency values in Figure 6.20, it can be seen that the values are all below the 0.9 

threshold for frequencies above 75 Hz.  It is unclear why the coherency was poor 

especially since the site was a very quiet farmland with no farm equipment in use.  By 
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penetration depth would be around 10 to 15 ft.  This happens to coincide with a low-

velocity layer sandwiched at approximately 15 ft in Figure 6.18 which could explain the 

phenomenon. 

 

Figure 6.19  Experimental dispersion curve for Hayti, Missouri site 
with a 10-ft offset. 

 

Once the offset was moved to 30-ft, higher modes began to dominate the dispersion 

curve for frequencies above 45 Hz.  It is interesting how the apparent higher mode for 

frequencies above 75 Hz from Figure 6.19 has completely vanished.  Investigation of the 

coherency values from Figure 6.20 show that all the values are now above the 0.9 

threshold for frequencies above 10 Hz.  This test resulted in excellent low-frequency 

resolution from the MASW method with only the two lowest frequencies dropping below 

the 0.9 threshold. 
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Figure 6.20  Coherency values as a function of frequency for 
Hayti, Missouri site with a 10-ft offset. 

 

 

Figure 6.21  Experimental dispersion curve for Hayti, Missouri site 
with a 30-ft offset. 
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Figure 6.22  Coherency values as a function of frequency for 
Hayti, Missouri site with a 30-ft offset. 

 

The 60-ft-offset test resulted in larger jumps in the dispersion curves as compared to 

that of the 30-ft-offset test (Figure 6.23).  There are also some significant scattering 

effects at frequencies above 75 Hz.  With the exception of a few low frequencies, all of 

the coherency values of Figure 6.24 are above the 0.9 threshold, but only slightly.  There 

is also a small set of phase velocity values between 30 and 40 Hz that appear to be 

effective phase velocities but it is not clear.  The composite dispersion curve will shed 

some light on this matter.  
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Figure 6.23  Experimental dispersion curve for Hayti, Missouri site 
with a 60-ft offset. 

 

Figure 6.24  Coherency values as a function of frequency for 
Hayti, Missouri site with 60-ft offset. 
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For this site, 24 receivers with 8-meter spacing were utilized for the ReMi method.  

The frequency-slowness spectrum obtained from the ReMi test is displayed in Figure 

6.25.  Once again the slowness values were obtained from the bottom of the energy 

spectrum for use in the construction of a composite dispersion curve. 

An interesting observation is made from the spectrum of Figure 6.25.  It appears 

there is an energy band representing a higher mode for frequencies ranging from 7 to 9 

Hz.  Slowness values were chosen along the bottom of the higher energy band to test if 

they matched the higher mode dispersion obtained from the MASW test. 

     

 

Figure 6.25  Frequency-slowness spectrum obtained from ReMi 
for Hayti, Missouri site. 
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The resulting composite dispersion from both the MASW and ReMi methods is 

plotted in Figure 6.26, and includes the higher mode data from the upper energy band of 

the frequency-slowness spectrum.  Only points with coherency values clearly above the 

0.9 threshold were used in the composite curve.  Individual frequencies that did not meet 

this requirement were not used. 

 

 

Figure 6.26  Composite dispersion curves obtained from MASW 
(open circles) and ReMi (solid circles) for Hayti, 
Missouri site.  
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inversion for the composite dispersion curve for the Missouri site are encouraging (Figure 

6.27).  It can be seen from the figure that all the points of both the MASW and the ReMi 

dispersion match very well for all modes with the exception of the lowest frequency of 

approximately 2 Hz.  The higher mode ReMi dispersion matches the 3rd mode well for 

frequencies between 7 and 9 Hz resulting in a high confidence in the ReMi method.  The 

results of the inversion are reflected in the shear wave velocity profile of Figure 6.28 for 

the first 100 ft and in Figure 6.29 for depths to 200 ft.  The 100-ft average shear wave 

velocity from inversion is 625 ft/sec compared to 668 ft/sec for the downhole test.  This 

results in a 7% difference of Equation (3.5-1) in NEHRP (2003).   

The error bars of Figure 6.28 are small for the shallow layers but begin to increase 

below 90 ft.  Below the 90 ft depth, the average standard deviation in shear-wave velocity 

is 31 ft/sec.  Beyond 90 ft, the average climbs to 150 ft/sec.  This is could be due to the 

inaccuracy involved from picking points along the p-f spectrum but is uncertain.  The 

higher mode participation from the ReMi method helps to minimize uncertainty for the 

lower frequencies but only for the 7 to 9 Hz range.  This range has a penetration depth of 

approximately 90 ft.  After the 90 ft penetration depth, only the fundamental mode 

information contributes.  
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Figure 6.27   Multi mode inversion of MASW/ReMi dispersion for 
Hayti, Missouri site. Triangles represent experimental 
phase velocities.  Theoretical phase velocities are 
represented by; 1. Red circles for fundamental mode, 
2. Blue x for 2nd mode, 3. Green squares for 3rd mode 
and 4. Magenta plus signs for 4th mode.  
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Figure 6.28  Velocity profile comparison to 90 ft. for the Hayti, 
Missouri site. 
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Figure 6.29  Velocity profile comparison to 200 ft. for the Hayti, 
Missouri site. 
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Chapter 7. Conclusions 

This study provided an improved procedure to identify multiple propagating 

Rayleigh surface modes in MASW dispersion data.  The improved procedure was tested 

using two sites: Covington, TN and Hayti, Missouri. At those sites the procedure was 

able to identify as many as four propagating modes.  The moving source offset help to 

overcome the problems associated with near field effects and possible lower attenuation 

of higher mode propagation.  By initially placing the source close to the array spread, the 

fundamental mode can be mapped before higher mode propagation dominates the 

dispersion curve.  By moving the source to greater distances, the near-field effects can be 

overcome and, as a result, higher modes identified and used in inversion.  

The larger offsets also make it possible to use non-uniform arrays without the 

concern of having to indentify multiple modes from smaller peaks within the 

wavenumber spectrum.  Multi-mode determination from the wavenumber spectrum can 

lead to serious errors due to the lack of full modal participation at each receiver.  By 

increasing the offset, the higher modes are allowed to develop and become planar, which 

allows for the accurate determination of their phase information.     

The mapping of as many propagating modes as possible helps to eliminate possible 

mistakes in the identification of individual modes.  The inversion process is only as good 

as the information it utilizes for finding the best solution; therefore, including higher 

mode propagation in inversion allows for a minimum solution to be reached with little 

variance between individual solutions.  
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Typical MASW procedures only provide soil profiling to around 100 ft due to the 

lack of energy at low frequencies.  The ReMi method has its strength at low frequencies 

due to the high energy of low frequency noise propagating in the soft sediments of the 

Mississippi embayment.  The composite dispersion curves obtained from both the 

MASW and ReMi methods allowed for a broader frequency range to be used in the 

inversion process.  This coupled with the higher mode resolution, provided the necessary 

information to determine the shear wave velocity profiles to much greater depths than 

normally possible with the MASW method alone.   

The genetic algorithm used in the inversion process provided good results for both 

sites when compared to downhole results.  Typical inversion times are between 4 and 6 

hours on a 3-GHz PC but can be much longer depending on the amount of layering 

allowed and the criteria for termination.  It should be noted that the Rayleigh surface 

waves are not going to sample the same as the downhole method and the layering can be 

simplified greatly for inversion purposes.  The forward method used in the GA is a 

helpful tool that can be utilized to fine-tune inversion results. 

 
7.1 Recommendations for Future Research     

In the above research a harmonic source was used to produce a continuous sinusoidal 

input.  This is extremely beneficial due to the fact that it provides a large data sample and 

allows for spectral averaging techniques.  However, recent research has shown that when 

a source such as a sledge hammer is used, specific filters can be designed to identify the 

individual propagating modes within a signal at specific receiver locations.  This could be 

very helpful in determining at what point along an array specific modes have formed and 

to determine the attenuation rates associated with the individual modes.  
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More tests need to be conducted utilizing the ReMi method for the determination of 

higher-mode phase velocities.  The Missouri site offered a glimpse in to what could be a 

very helpful strategy into mapping higher modes at very low frequencies.  This would 

allow for extremely large depths to be investigated with little effort.  The ReMi method 

utilizes a very small amount of equipment that is both portable and inexpensive compared 

to other testing methods.  By mapping the higher modes for low frequencies, the variation 

in GA solutions could be minimized resulting in a more unique solution.   

A sampling frequency of 640 points per second was used in this research for the 

MASW method.  While this provided a Nyquist frequency of 320 Hz, some of the 

problems associated with high frequencies could be overcome by increasing the sampling 

frequency to approximately 10 times the maximum frequency used.  This would insure 

maximum phase measurement resolution while also possibly enhancing the higher mode 

visibility.  
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Appendix 

 

Figure A.1  Boring log for Covington, TN 
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Figure A.2  Boring log for Covington, TN 
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Figure A.3  Boring log for Covington, TN 
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Figure A.4  Boring log for Covington, TN 
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Figure A.5  Boring log for Hayti, Missouri 
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Figure A.6  Boring log for Hayti, Missouri 
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Figure A.7  Boring log for Hayti, Missouri 
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