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ABSTRACT 

Christopher Leonard Howell, Ph.D.  The University of Memphis.  December/2010.  
Visual task performance assessment using complementary and redundant information 
within fused imagery.  Major Professor: Dr. Carl E. Halford. 

 

Image fusion is a process of combining information from a set of source images to 

obtain a single image with more relevant information than any individual source image.  

The intent of image fusion is to produce a single image that renders a better description of 

the scene than any of the individual source images.  Information within source images 

can be classified as either redundant or complementary.  The relevant amounts of 

complementary and redundant information within the source images provide an effective 

metric for quantifying the benefits of image fusion.  Two common reasons for using 

image fusion for a particular task are to increase task reliability or to increase capability.  

It seems natural to associate reliability with redundancy of information between source 

bands, whereas increased capability is associated with complementary information 

between source bands.  The basic idea is that the more redundant the information 

between the source images being fused, the less likely an increase in task performance 

can be realized using the fused imagery.  Intuitively, the benefits of image fusion with 

regards to task performance are maximized when the source images contain large 

amounts of complementary information.  This research introduces a new performance 

measure based on mutual information which, under the assumption the fused imagery has 

been properly prepared for human perception, can be used as a predictor of human task 

performance using the complementary and redundant information in fused imagery.   
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The ability of human observers to identify targets of interest using fused imagery 

is evaluated using human perception experiments.  In the perception experiments, 

imagery of the same scenes containing targets of interest, captured in different spectral 

bands, is fused using various fusion algorithms and shown to human observers for 

identification.  The results of the experiments show a correlation exists between the 

proposed measure and human visual identification task performance.  The perception 

experiments serve to validate the performance prediction accuracy of the new 

performance measure.  The development of the proposed metric introduces into the 

image fusion community a new image fusion evaluation measure that has the potential to 

fill many voids within the image fusion literature. 
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1 INTRODUCTION 
 

     It is no surprise that image fusion has gained a fair amount of research activity over 

the past few years.  The process of combining image information from multiple sensors 

can increase the information content made available to the end user, giving the end user a 

competitive edge.  It should be noted, the relevance of the information being fused 

depends highly on the intended visual perception task.  An illustration of the potential 

benefits of image fusion can be seen in Figure 1.  In the figure are a short-wave infrared 

(SWIR), long-wave infrared (LWIR) and an image showing the fusion of the two source 

images.   A quick comparison between the SWIR and LWIR images shows various 

amounts of complementary and redundant information exists.  In both images, ample 

visual information is available regarding the vehicle in the scene.  That is, both the LWIR 

and the SWIR contain enough information to recognize the presence of the vehicle.  In 

contrast, only one human target can be seen lurking in the tree line for the LWIR, while 

for the SWIR two human targets can be seen sitting in the vehicle.  The fusion of the 

LWIR and SWIR images results in an image that contains more information than any 

individual source image with regard to human targets in the scene.  This illustration 

shows the possible benefits image fusion can have on visual task performance.  At the 

same time it shows the benefits of image fusion are often dependent on the intended task.  

For tasks such as identifying human targets in a scene, it is safe to assume using this 

imagery, visual task performance would be best using the fused image. 
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Figure 1.  Infrared imagery used to illustrate possible benefits achievable with image 
fusion. 

 

However, determining the effectiveness of an image fusion algorithm is not a trivial 

task.   Several reasons complicate the evaluation of image fusion algorithms (to include 

but not limited to): lack of proper registration between the source images; non-linear 

image fusion algorithms (thereby negating the use of familiar linear tools); lack of an 

available reference image; and differences in the target sets and scenes used in 

comparison studies reported in the literature.  In addition to these reasons, image fusion is 

used for a variety of different tasks which make it difficult to identify common 

requirements for image fusion algorithm development.  However, there are three 

fundamental requirements generally accepted for any fusion algorithm before other 

considerations are entertained: (i) the fusion algorithm should preserve as much of the 
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salient information in the source images as possible; (ii) the fusion algorithm should not 

generate artifacts which affect the human observer’s ability to perform the task; and (iii) 

the fusion algorithm must be tolerant of imperfections in the source imagery such as 

noise or mis-registration.  Besides the fusion algorithm itself, other pre and post 

processing operations such as rescaling of the source data and manual gain and level for 

optimum contrast in the fused data, along with display quality, may affect the quality of 

the fused image.  These considerations may have as much influence on the fusion quality 

as the actual fusion algorithm if not attended to properly.  

Quantitative image fusion quality assessments usually consist of calculating the 

similarity between the fused image and either a reference image (Smith, Chari, Halford, 

Fanning, & Reynolds, 2009) or the source images.  Usually there is not a fused reference 

image available for comparison, therefore the development of non-reference objective 

measures for predicting image fusion quality is needed.  There are many objective 

measures being reported in the literature.  Wang, Yu, and Shen (2009) presented an 

overview of some common image fusion metrics.  Accurate assessment of human 

performance using image fusion algorithms in response to system changes is needed for 

the development of better fusion algorithms and their implementations.   

In general, proving objective measures useful with assessing whether a fused image 

has better quality over its source images is an important task, but for the target acquisition 

community, the objective measure of interest is human task performance.  The most 

accurate means for evaluating how a human observer will perform a particular visual task 

using various image fusion algorithms is to measure performance through direct testing.   

The value of interest obtained from perception testing is the average performance of the 
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observers for each particular visual task.  Given a proper amount of test participants, the 

uncertainty associated with the average performance measure can be minimized and a 

sufficient estimate of expected visual task performance can be measured.  Perception 

tests, albeit an ideal measure of human task performance, are time consuming and very 

expensive.  Identifying an objective measure that correlates to human visual task 

performance would alleviate the need for exhaustive subjective testing, along with its 

associated high cost and demanding time requirements.  I present in this dissertation the 

results from an investigation into the effects fused source band complementary and 

redundant information have on the identification task. 

 

 

 

 

 

 

 

 

 

 



5 

 

2 BACKGROUND 

Many military operations require soldiers to perform visual tasks, such as detection, 

recognition and identification (DRI) of targets.  The military is very interested in 

improving human observers’ ability to perform DRI tasks.  The military is also very 

interested in improving situational awareness for their military observers.  These tasks are 

conducted in a wide range of environments and in both daytime and nighttime settings.   

To this end, the military continuously seeks to improve its imaging capabilities for day 

and night operations.  Information apparent in one spectral band may not be present in 

another.  Combining multi-sensor data onto a single display or into a single image 

supports the need to provide each soldier or end user with as much high quality 

information in the most efficient manner as possible.  To this end, in this dissertation, the 

quality of information transferred to the fused images is evaluated and used to quantify 

the benefit of image fusion.   

An accurate model of image fusion based task performance will depend on how much 

the atmosphere, along with an imager’s noise and blur affects the reproduction of the 

scene.  These environmental effects and imaging system imperfections affect the human 

observer’s ability to extract information about a target within the imagery.  In addition, 

the behavior of image fusion algorithms in response to factors like registration errors, 

noise, blur, and contrast reduction also affects the human observer’s ability to extract 

information about a target.  As such, there are many factors that affect image fusion 

quality; the need for an objective metric is clear.   
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2.1. Target Acquisition Models 

Target acquisition (TA) models serve as a means for quantifying the quality of an 

image (or sensor) by predicting the field performance of quantities such as the probability 

of detection, recognition or identification of a set of targets.  As the image information 

propagates from the scene through the atmosphere to the optical instrumentation and then 

display, a loss of information about the target occurs.  The U.S. Army RDECOM 

CERDEC Night Vision and Electronic Sensors Directorate (NVESD) TA model, 

NVThermIP1

1. Target acquisition performance is related to perceived image quality, that is, how 

well a human sees a target depends on the perceived quality of the imagery. 

, models this process well for a single sensor system.  The objective for the 

model NVThermIP is twofold: it models sensor performance and task performance.  The 

theory behind NVThermIP is based on the following two assumptions: 

2. Perceived image quality is related to threshold vision.  This basically states that if 

a human observer cannot perceive degradations within the imagery then these 

degradations have no effect on TA performance. 

These two assumptions provide the basis for determining the limits on TA 

performance imposed by both the sensor and the human observer.  The objective of 

sensor performance modeling is to predict the probabilities of an ensemble of military 

observers using electro-optic/infrared (EO/IR) sensors to accomplish a predefined 

military task as a function of range.  The objective of task performance modeling is to 

                                                 
 

1 NVThermIP (U.S. Army NVESD, 2005) is a computer program that models thermal 
imaging systems in the mid to far infrared spectral bands (3-12 µm).  This model is used for 
thermal systems that sense emitted infrared light.  NVThermIP predicts target acquisition 
performance that closely matches the capability of the sensor being modeled. 
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determine the sensitivity and resolution requirements for successful completion of 

military tasks, based upon a description of target size and signature, along with an 

empirical measure of the task difficulty for a human observer.    

Based on the above assumptions, if the contrast of a target exceeds some threshold, 

target and background discriminations can be made allowing the target acquisition task to 

be performed.  Vollmerhausen, Jacobs, and Driggers (2004) gave an equation for 

quantifying a human observer’s vision while looking through EO/IR sensors, expressed 

as:  

 
( ) ( )

( )
( )}fk

fMTF
fCTF

fCTF N
SYS

EYE
SYS

22
2

2
2 1 σ+=  

(2.1-1) 

 

where f is the spatial frequency in cycles per milliradian at the target, 2
EYECTF  is the 

contrast threshold function (CTF) of an unaided eye, 2
SYSMTF is the system MTF, k is a 

calibration factor and 2
Nσ is the perceived noise. 

 Vollmerhausen et al.  (2004) has shown that the TTP metric given in equation 2.1-2 

defines the effective bandwidth, weighted by the sensitivity of the system, that is 

available to the human observer, under the assumption that an ensemble of targets has an 

average target contrast TC  at all spatial frequencies.  The TTP metric is given as: 
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C
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T /
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where f1 and f2 are the lower and upper frequency intercepts, respectively, between the 

target contrast and the system CTF.  The TTP metric determines the excess modulation as 
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a function of spatial frequency, weighted by the system CTF.  This weighted bandwidth 

can be viewed as a measure of perceivable information available to the human observer 

for a particular sensor.   

When the TTP is multiplied by the ratio 













Range

Areatgt , the TTP metric yields what is 

referred to as V.  The V value to obtain 50% probability of task performance is 

determined through experimentation.  This value is referred to as V50.  V and V50 are 

used to obtain the actual performance prediction curve Target Transfer Probability 

Function (TTPF) that NVThermIP outputs.  The expression used to obtain the curve has 

the form: 
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the coefficient 







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50

24.054.1
V
Vβ . 

According to NVThermIP model, V is a measure of image quality and V50 is a 

measure of task difficulty.  The relationship between human observer performance and 

image quality is obtained through the TTPF.   

A measure is needed that can accurately account for the loss or increase in 

information as a direct result of image fusion.  Once a measure is validated using this 

criterion, the metric’s outcome needs to be integrated into TA models. 
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The concept of weighted bandwidth being viewed as a measure of perceivable 

information available to the human observer for a particular sensor served as a motivation 

for this research.  The questions I sought to answer were: given two separate sensors to 

be fused, how should information within competing frequency band intervals between 

sensors be handled? How much redundant information exists between overlapping as 

well as unique frequency bands? I decided to explore the latter question as the former 

seems to be more related to fusion algorithm development.  Determining the 

complementary or redundant information within a specified frequency interval provides 

invaluable insight for developing better image fusion algorithm comparison methods as 

well as aiding the prediction of visual task performance with image fusion.   

2.2. Complementary and Redundant Information 

Information is being defined as spatial frequency information for the purposes of this 

dissertation.  Complementary information exists when imagery of the same scene is 

captured in different spectral bands.  Likewise redundant information exists when 

imagery of the same scene is captured in similar spectral bands.  In this context, 

redundant or complementary information can be described as overlapping or unique 

spatial frequencies between spectral bands, respectively. This definition of 

complementary and redundant information leads to the conclusion that different spatial 

frequency bands within the same sensor possess only complementary information.  

Although the spatial frequency information is complementary, the perceivable 

information is often similar enough to perform task such as identification of targets.  

Driggers, Vollmerhausen, and Krapels (2000) conducted a study investigating the 

importance of low spatial frequency information versus high spatial frequency 
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information for an identification task.  The results of this study indicated that low spatial 

frequency information does contribute to overall performance.  This means that the entire 

target spectrum, complementary and redundant target information, is used in the 

identification task.  It should be noted that the importance of the target spectral regions 

remains uncertain.  With regards to image fusion, when fusing the information from 

different imagers, the final resultant image will be made up of various amounts of 

complementary and redundant information.  Common spatial frequency bands between 

different sensors can contain redundant information or they can contain complementary 

information.  Likewise complementary spatial frequency bands between sensors can 

contain redundant information or they can contain complementary information.  In 

general, the fused image information can be described by the following equation: 

ninformatio Redundant  n informatioary Complement n informatio Fused +=       (2.2-1) 

The fusion of complementary and redundant information from sensors with 

different characteristics allows for a more complete understanding of the surroundings, 

thus allowing for improved situational awareness and better planning and decision 

making.  This concept is not new.  Humans gather information from multiple senses like 

sight, touch and smell to make decisions necessary to perform everyday tasks.  The sense 

of hearing can be combined with the other senses to allow for decisions to be made in 

environments where sight, touch and smell may be severely degraded or impeded 

altogether.   

As early as the 1950s, data fusion was used to obtain a better quality composite 

image more suitable for identifying natural and manmade objects.  Image fusion is a 

branch of data fusion, where data fusion is defined as the process describing the means 
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and tools for the alliance of data originating from different sources.  In the 1980s, the 

development of image fusion algorithms began to evolve from primitive techniques to 

more advanced methods.  Harper, Lilliesand, and Keifer (1990) and Chavez, Sides, and 

Anderson (1991) recognized that obtaining a single image with more information than the 

source images was achievable.  Towards the end of that decade, Hall and Liinas (1997) 

and Pohl and Genderen (1998) gave two very good introductions to multi-sensor data 

fusion.  These papers gave good explanations of the concepts, methods and possible 

applications pertaining to image fusion.  Although these papers certainly do not mark the 

origin of image fusion precisely, they provide a comprehensive description of where 

image fusion was up to that point in time.  Image fusion has gained a great deal of 

attention over the years since then.   

2.3. Image Fusion 

The concept behind image fusion is easily understood, however a broad definition 

for image fusion, like the one offered in the introduction, is needed because of the 

different tasks and types of information being combined.  Some situations require a single 

image that contains high spatial resolution and high spectral information, as in remote 

sensing or pan sharpening, in an attempt to optimize human visual task performance.  

Image fusion offers a solution for situations such as these.  If we think of the information 

in each source image in terms of sets, then the fusion of image information can be 

thought of as a set reduction as opposed to an integration of information.  Set theory 

concepts can be evoked to help understand this concept.   

When dealing with problems concerning the interrelationship of sets, Venn 

diagrams are useful visual tools that provide assistance with understanding the 
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relationship of sets.  Referring to the Venn diagrams in Figure 2, if we let A represent the 

set that contains all the information within image 1 and we let B represent the set that 

contains all the information in image 2, then the union, intersection and difference 

operations of the sets can be explained as follows: 

 The union (or sum) of two sets, A and B, is the set of all those elements that 

belong to A or B, or both. 

 The intersection (or product) of two sets A and B is the set of all the elements that 

belong to both A and B. 

 The difference A – B of any set B relative to the set A is a set consisting of all 

elements of A that are not elements of B.   This can also be understood as the 

relative complement of B in A. 

 

 

Figure 2. Venn diagram illustrating the union, intersection and difference operations on 
sets. 
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The relative complements of B in A and the relative complement of A in B are 

used to obtain the complementary information in both A and B; that is 'AB=Α and 

'BA=Β , is found to be: 

 ( )ΑΒ−Α=Α   
(2.3-1) 

  ( )ΑΒ−Β=Β   (2.3-2) 

 
The sum (or union) of equations 2.3-1 and 2.3-2 yields: 

 ( ) ( )ΑΒ−Β+Α=Β+Α  (2.3-3) 

To see that equation 2.3-3 holds, the difference relation 'ABBA =− given in set theory 

and DeMorgan’s law ( ) ''' BAAB += may be used.   The verification of equation 2.3-3 is as 

follows: 

Using the right hand side of the equation 2.3-3, 

 ( ) ( ) ( )( )'ΑΒΒ+Α=ΑΒ−Β+Α  (2.3-4) 

by virtue of the difference law previously given.  An application of DeMorgan’s law can 

be applied to one of the terms on the right hand side of this equation to obtain: 

 ( )( ) ( )( )''' Β+ΑΒ+Α=ΑΒΒ+Α  (2.3-5) 

 ( )( ) ( ) ( ) Β+Α=ΒΑ+ΑΒ=Β+ΑΒ+Α ''''  (2.3-6) 

 
Rewriting equation 2.3-3, replacing sums with unions and products with intersections: 

 ( )Β∩Α−Β∪Α=Β∪Α  (2.3-7) 
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Using set theory notation, equation 2.3-7 can be interpreted as the union of the 

complementary information present in the source bands is equivalent to the union of the 

total information in A and B minus the intersection of information shared between them.   

By letting the union of A and B represent the fusion process, then it can be seen that set 

reduction occurs when the redundant information between the inputs is filtered out.  This 

line of reasoning will be continued in chapter 4 regarding the development of the 

proposed information measure.    

As previously stated, image fusion, in general, is a process of combining the 

complementary and redundant information contained in a set of source images to obtain a 

single resultant image with more relevant information than any individual source image.  

The information involved in a linear fusion process is shown in Figure 3.  A fusion 

algorithm that obeys linearity principles does not introduce additional information into 

the fused image that was not originally present in either source image.  It is the intent of 

image fusion to combine the complementary and redundant information from multiple 

images into a single image that renders a better description of the scene than any of the 

individual source images.  For image fusion to be beneficial, the resultant image (usually 

a composite image) is required to be more suitable for the purposes of human visual 

perception task performance.  It should also be noted, the relevance of the information 

being fused depends highly on the intended visual perception task (Krebs & Sinai, 2002).   

It is the goal of image fusion to preserve and combine all the relevant information present 

in the source imagery into a single output image.  The output image should improve 

information content making it easier to perform target acquisition tasks such as DRI tasks 

as well as situation awareness.  Furthermore, the task performance using the fused 
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imagery should be, at a minimum, at least as good as that using the higher performing 

individual source band for a particular task.  Three common motivations for considering 

the use of image fusion for a particular task are to increase the reliability and capability of 

a task or to increase the range of operation.   

Combining spectral signatures from multiple spectral bands is thought to be a 

process that gives the end user a single image with the best quality of information so that 

the performance on a particular task can be optimized.  However, quantifying the effect 

complementary information has on image fusion algorithm performance remains open 

research.     

 

Figure 3. Information diagram for the total information in a fused image F.  An ideal 
fusion process would capture and transfer all the complementary and redundant 
information in A and in B to the fused image. 

 

2.3.1. Image Fusion Methods 

As a general classification, image fusion methods can be described as being either 

spectral or spatial domain techniques, with three different levels of information 

represented as: pixel level, feature level and decision level (Pohl & Genderen, 1998): 
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1. Pixel based fusion is the process of combining information on a pixel-by-pixel 

basis from the pixels in a set of source images with the goal of achieving improved 

performance with various image processing tasks, such as DRI tasks.   

2. Feature level fusion is the process of extracting and combining the salient features 

present in a set of source images such as pixel intensities, edges and textures. 

3. Decision level fusion is a process performed at the highest level of abstraction.  

Salient information is extracted from each source image separately and then combined 

applying decision rules to achieve a final fused image.   

Pixel based fusion methods require operation directly on the images without the 

need of any transformations or decompositions to the images.  These techniques are often 

relatively simple and fast thereby lending themselves favorably to real time processing, 

but not without costs.  Pixel level fusion algorithms such as pixel averaging greatly 

reduce the contrast in the fused image and are sensitive to registration accuracy.  Feature 

level methods require images to undergo some amount of transformation or 

decomposition to extract features from the image.  The input images are transformed or 

decomposed into multiple scales or levels and various fusion rules are applied at each 

level to select which image component will be represented in the corresponding fused 

image’s level.  An inverse transform is then carried out to obtain the fused image.  Some 

associated problems with feature based methods are, at times, spectral content of small 

objects have the potential to not be reproduced in the fused image; the algorithm 

developer is left to determine appropriate threshold values; also, there is a bit more 

computational complexity in feature based methods compared to pixel based methods.  
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Feature based methods can be referred to as pre-detection methods while decision level 

methods can be referred to as post-detection methods.  I defer the reader to Gunatilaka 

and Baerlein (2001) for more insight into decision level methods, as the majority of the 

algorithms used in this dissertation are feature level fusion processes.   

Image pyramid approaches and wavelet based methods are some popular spectral 

domain techniques.  In image pyramid approaches, an image pyramid is constructed 

consisting of multiple scales of low-pass or band-pass copies of an image, where each 

level usually is a factor of two smaller than its predecessor.  Furthermore, each successive 

level is created from a decomposition of the lower spatial frequencies in the image.  All 

the original information needed to reconstruct the original image is contained in the 

image pyramid, therefore, to obtain the original image an application of fusion rules and 

an inverse transform is needed.   

Wavelet based methods are similar to pyramid based approaches in that wavelet 

methods also decompose the image into multiple scales, which are constructed by a 

selection of the salient wavelet coefficients.  Various selection rules can be applied to 

select the coefficients, and then an inverse wavelet transform is conducted to recreate the 

original image.  Multi-resolution approaches, such as those based on pyramids and 

wavelets, are constructed to take advantage of the human visual system (HVS) being 

primarily sensitive to local contrast changes, i.e., edges.   

2.3.2. Image Fusion Quality 

It is a goal of image fusion to ultimately generate a composite image containing a 

better quality of information; the interpretation of ‘better quality’ will depend on the 

intended application (Wald, 1999).  The quality of different image fusion schemes is 
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historically determined by subjective evaluations (Ryan & Tinkler, 1995; Toet & 

Franken, 2003).  A great deal of research is available on investigating image fusion 

quality, both objectively and subjectively (Arathi & Soman, 2009; Canga et al.  2005; 

Cvejic, Loza, Bull, & Canagarajah, 2005; Cvejic, Loza, Bull, & Canagarajah, 2006; 

Hossny, Nahavandi, & Creighton, 2008; Howell, Halford, & Krapels, 2010; Moore, 

Halford, & Howell, 2007; Nava, Escalante-Ramirez, & Cristobal, 2007; Neriani, Pinkus, 

& Dommett, 2008; Petrovic, 2007; Petrovic & Xydeas, 2005; Piella & Heijmans, 2003; 

Qu, Zhang, & Yan, 2002; Wang & Bovik, 2002; Wang & Bovik, 2004; Wang & Bovik, 

2009; Waxman et al., 1997 ).  As previously stated, image fusion offers the end user 

several benefits such as: reduction in uncertainty, improvement in reliability, robustness 

and capability of the system performance, along with a broader range of operation.   

2.4. Performance Benefit of Image Fusion 

Moore (2007) investigated the performance benefits achievable with image fusion 

by conducting a controlled case study in which human observers were tasked to identify 

basic numbers between 0-9 in a human perception identification experiment using 

various image fusion algorithms.  Experimental details are given in Figures 4a and 4b.  In 

this experiment Moore created an image of white Gaussian noise and applied a threshold 

to the noise image using Laplacian pyramid decomposition.  The binary noise image was 

then subtracted from a matrix of ones and both were applied to a set of ideal images.  

This process created purely complementary source images to be fused.  The degraded 

images were used as inputs into various image fusion algorithms.  Observers were asked 

to simply identify the numbers presented to them without knowledge of which fusion 

algorithm was used to recombine the numbers.  Shown in Figure 4c are the results of the 
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performance evaluation using discrete wavelet transform (DWT) fused imagery.  Human 

performance using the DWT fused imagery clearly outperformed each of the individual 

source images.  However, the issue surrounding the ability to predict the increase in 

performance remained unclear.  Nonetheless, this work suggests that, at least with 

complementary spatial information, a fusion performance increase over source band 

performance can be realized. 

 

 

Figure 4a. Process to generate a contrived set of complementary source images 

 

 

Figure 4b. Example test imagery.  Shown are two complementary source images and 
their fused result using a DWT fusion algorithm. 
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Figure 4c. PID results from perception tests evaluating all the DWT fused imagery along 
with the source imagery. 

 

2.5. Objective Measures of Image Fusion Quality 

Image fusion has been applied to a large variety of multi-sensor applications and, 

as a result, selecting an optimum fusion algorithm for each application is extremely 

difficult.  In general, it is a difficult task to quantify the benefit associated with using 

image fusion.  Some possible reasons for this are: there usually is not a reference image 

available for comparison; registration errors, pre and post processing techniques vary 

depending on who registers the imagery; and quite often there are vast differences in the 

scenes and targets being fused for comparison.  Additionally, the task of quantifying 

image fusion algorithm performance is complicated further because so many objective 

measures for image fusion only work well for certain types of algorithms.  A common 

medium with which to compare the quality of fusion algorithm performance is necessary 

due to factors such as the variety of scenes, variability in registration error, type of 

spectral bands fused, and differences in the target sets.  So how does one go about 

assessing image fusion performance? To begin answering this question, one needs to 

focus on the intent of image fusion.  The ultimate purpose of image fusion is to provide 
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information to the end user, i.e., information not readily available in individual source 

images that allows for an increase in task performance.   

Many applications call for a human as an end user of the fused result, therefore 

human perception of the fused result is very important.  Human perception experiments 

are the primary means for evaluating DRI task performance and are essential in 

developing and validating TA models.  NVESD has identified standard procedures for 

the analysis of DRI experiments, so that the output from the experiments (typically the 

probability of correct response) can be repeated and validated with field tests.  While 

perception experiments are ideal for evaluating human task performance, they are time 

consuming and expensive to conduct.  Many objective measures are being investigated to 

perform trade studies regarding the performance of different image fusion algorithms.  In 

addition to correlating with human performance, a non-reference measure of image 

fusion quality should address some of the short comings human perception evaluations 

present.  For instance, measurements using objective metrics should be less expensive, 

faster than human evaluations and repeatable.  The main area of interest surrounding 

objective metrics is whether they possess the capability to predict human task 

performance.  Therefore, an objective performance metric that correlates with human 

visual perception is extremely desirable.  Ultimately we desire a fused image that 

contains more relevant information than any individual source image.  It seems 

reasonable to approach assessing image fusion performance by evaluating the 

information content transferred between the source and the fused images, or by 

evaluating the reduction in uncertainty of image information.    
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Using Shannon’s assumption that one element of a large number of messages 

from an information source is just as likely as another and, thereby, drawing a 

comparison to quantifying information in communication theory, many useful methods 

have been established to quantify the information content in an image.  By satisfying this 

well known assumption, a measure of the information within an image can be achieved 

using the concepts of information theory.  To obtain a measure of the average 

information (entropy) in an image estimated in the units of bits per pixel, the following 

equation can be used: 

 
( ) ( )ififH

N

i
2

1
log∑

=

−=  

(2.5-1) 

Here, N represents the number of grayscale levels in the image’s histogram and ( )if  is 

the normalized frequency of occurrence of each grey level.  For the purpose of this 

research, entropy is understood to be a measurement of the uncertainty in the information 

a single random variable contains.  This definition differs from that of physics entropy, in 

that physics entropy is a measure of the probability of the state of a particular system.  

Physics entropy is governed by the second law of thermodynamics, which states that the 

total entropy of the universe will never decrease.  However, this research is concerned 

with statistical entropy, which is a probabilistic measure of the uncertainty or ignorance 

one has regarding a random variable.  Intuitively, an increase in image information is 

desired if there exists ignorance or uncertainty regarding what is being observed.  

Therefore, knowledge is gained with increased information, and as a result, a reduction in 

uncertainty surrounding the topic in question is achieved.  This implies that 
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measurements of reduction in uncertainty allow for measurements of information and 

vice versa.   

Entropy can be used as a measure to estimate the change in information between 

the source and the fused images.  However, entropy as a direct measure of information 

transfer should be used with caution.  If the entropy in the fused image is higher than the 

entropies in the source image, one may erroneously conclude the fused image contains 

more information.  In fact, it is not clear if the “higher information” is due to noise or an 

actual increase in information.  Additionally, with regards to understanding human 

perception of information, entropy may fall short on this task as well.  As an example, 

Figure 5 displays an image multiple times processed in such a manner that each image 

contains identical pixel intensities and therefore identical histograms.  The pixel 

intensities of a portion of each image were successively randomly redistributed and 

entropy measurements were taken for each image.  Figure 5 shows that each image had 

the same entropy regardless of the perceivable information shown.  Although the amount 

of perceivable information obviously changed, entropy was insensitive to the change.  

Additionally it can be observed that mutual information (MI) reacts in a desirable 

manner.  The MI measure for each successive image, unlike entropy, gives higher and 

higher values as more of the information is made perceivable.  The question that remains 

with this type of an analysis is can this type of relationship between human perception of 

visual information and MI be exploited to predict visual task performance? 

MI is an established, non-reference image quality metric and is a reasonable 

metric for evaluating image fusion performance (Hossny et al., 2008; Nava et al., 2007; 

Qu et al., 2002;).  MI is a well known concept of information theory and measures the 
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amount of information that one image contains about the other by measuring the 

similarity of their intensity distributions.  Given two random variables X and Y, MI 

measures the degree of dependence between X and Y by measuring the distance between 

their joint statistical distributions and that of total independence.  Higher MI values 

indicate higher similarity between the distributions of the corresponding image pairs and 

therefore a larger reduction in uncertainty.  Smaller values indicate smaller reductions in 

the uncertainty between the random variables, with zero representing independence.  MI 

also captures some of the slight differences of the spectral characteristics of the images.   

MI can be defined as (Reza, 1961): 

 ( ) ( ) ( ) ( )yxHyHxHyxI XYYXXY ,, −+=  (2.5-2) 

( )xH X  and ( )yH Y represent the entropies of image x and y; ( )yxH XY ,  is the cross 

entropy and this is the term that maximizes MI.  MI between two random variables can 

be found with knowledge of their cross entropy.   

 



25 

 

 

Figure 5. Comparison between MI and entropy.  Entropy appears insensitive to changes 
in perceivable image information while MI shows sensitivity to changes in the 
perceivable image information. 

 

Spatial domain techniques akin to pixel averaging will score high using MI.  This 

is because the fused image is simply equal to a linear combination of the input images 

plus some constant term.  This characteristic does not serve MI well as a metric for 

comparing different types of image fusion algorithms.  However, with MI, there is no 

assumption regarding the relationship of the pixel intensities of the images, so MI is 

useful for comparisons between similar algorithms.  It is a measure of the degree of 

dependence between the random variables under investigation.   

Case studies similar to that shown in Figure 5 justify, or at the very least strongly 

suggest, the need for a “smarter” measure of information when attempting to evaluate 

human perception of image information.  Many investigations into MI, or other 

information theory based metrics, are carried out for this purpose. 
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There are a variety of other measures currently reported in the literature that are 

information theory related or statistics feature related, each with their own pros and cons.  

The difficulty surrounding this area of research is due to the variety of application 

requirements and the lack of a reference image to compare to the composite image.   

Often an ideal composite image is created and used as a reference for comparing the 

fused image results (Li, Manjunath, & Mitra, 1995; Rockinger, 1997; Smith et al.  2009).   

The creation of a reference image allows the use of some widely used metrics such as 

mean squared error (MSE), signal-to-noise ratio (SNR), peak-signal-to-noise ratio 

(PSNR), and standard deviation to somewhat validate the fusion algorithms.  However, in 

practical situations, a reference or test image is not available, which in turn motivates the 

development of objective non-reference image fusion quality assessment measures.    

Q.  Wang et al.  (2009) gives an overview of other image fusion metrics found 

within the literature.  Z.  Wang and Bovik (2002) introduced an image quality index (IQI) 

measure to quantify the structural distortion between two input images.  The IQI can be 

described as a product of three components: (i) a measure of the correlation coefficient 

between the two input images; (ii) a kind of average luminance distortion measure; and 

(iii) a contrast distortion measure.  The IQI gives a measure of the similarity between two 

input images, where one image is meant to be a reference image.  Piella and Heijmans 

(2003) extended the IQI by Wang and Bovik to include a comparison between the fused 

image and the source images.  The new measure is called the fusion quality index (FQI) 

and it gives an indication of the amount of salient information transferred to the fused 

image from the source images.  This measurement is accomplished by using the local 

statistics of a nn× sliding window as the saliency factor for each image.  Piella and 
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Heijmans revised the FQI to assign more weight to the salient regions in the images.  The 

revision is called the weighted FQI (WFQI).  This was done in an attempt to model the 

HVS, which is known to give higher importance to visually salient regions in an image.   

The authors also modified the WFQI to take into account the edge information available 

in an image.  This was done in an attempt to model the importance of edges in the HVS.  

Tsagaris and Anastassopoulos (2006) introduced a new global measure for image fusion 

methods.  Their image fusion performance measure (IFPM) uses MI as well as 

conditional MI to evaluate the amount of information transferred to the fused image from 

the source images.  Tsagaris et al.  used conditional MI to guarantee that overlapping 

information within the inputs would only be used once in the evaluation of various fusion 

algorithms.   
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3 Image Fusion Algorithms 

It is desired to identify image fusion methods suitable for real time 

implementations.  The quality of the spatial registration of the images being fused 

influences the overall performance associated with each image fusion algorithm.  The 

details and some of the relative strengths and weaknesses of the fusion algorithms used in 

this research are presented in the following sections.  For clarity, when image fusion is 

referenced, it is understood as fusing two source images only. 

3.1. Laplacian Pyramid 

The Laplacian Pyramid (LAP) is obtained using an iterative sequence of 

difference images between two successive levels of Gaussian pyramids.  This technique 

is also referred to as the Difference of Low Pass (DoLP).   At each resolution level, the 

difference image is created by subtracting a weighted, up-sampled low-pass filtered 

version of the image from itself. 

Let kG  be the thK (k=1, …N) Gaussian pyramid level for each of the source 

images S1 and S2 respectively.  Then 0
1G =S1 and 0

2G =S2.   Each thK level in the source 

images is convolved with a Gaussian kernel, down-sampled then assigned to the 

thK )1( + level of the pyramid.  The pyramid layers decrease in size due to the down-

sampling operation that shifts the spatial frequencies in the image relative to the Gaussian 

blur kernel.  This process is represented by the following: 
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  The Gaussian pyramid is constructed with low-pass filtered copies of the original 

image, each having a cut-off frequency one octave lower than the previous level.  Then 

the Laplacian pyramid is represented as: 
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(3.1-2) 

 
The fused image can be obtained by fusing together each corresponding pyramid 

level of the source images using fusion selection rules such as taking the maximum 

difference value between the two source images at each level.  The Laplacian Pyramid 

algorithm used is based on Peter Burt’s Laplacian Pyramid (Burt & Adelson, 1983; 

Adelson, Anderson, Bergen, Burt, & Ogden, 1984).  Two versions of the Laplacian 

fusion algorithm are used in this research; LAPA and LAPB only differ by the Gaussian 

blur kernel used for reconstruction of the final fused image. 

3.2. Ratio of contrast 

Toet (1989) introduced an image fusion technique that was motivated by the 

human visual system’s dependence on contrast.   The local luminance contrast is 

preserved in the fused resultant image, thereby providing better details to a human 

observer.  Local luminance contrast is defined as: 

 

b

b

L
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=  
             (3.1-3) 

 

where L is the luminance contrast at a certain location in each image and bL is the local 

background luminance.   
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The ratio of contrast (referred to in this research as Contrast Ratio) fusion process 

is similar to the DoLP described in section 3.1 in that the difference operation in equation 

3.1-2 is now represented by a ratio.  The thK level k
iR 2,1= of the Ratio of Low-Pass (RoLP) 

pyramid is obtained as: 
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                   (3.1-4) 

 

The fused image is obtained by using a fusion selection rule that retains the image 

features with high contrast.  There are two versions of the Contrast Ratio (CR) fusion 

algorithm, CRA and CRB, which differ only by the Gaussian blur kernel used for 

reconstruction of the final fused image. 

3.3. Opponent processing 

In the opponent processing (OP) image fusion algorithm, the polarity of one of the 

source bands is reversed before the images are combined.  The result is then scaled by the 

reciprocal of the sum of the original images.  Fopp( yx, ) is found from S1( yx, ) and 

S2( yx, ) as shown below: 
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C is a constant to control the shape of the scaling.  In this research, two versions of the 

OP algorithm are used, OPA and OPB.  OPA and OPB represent the cases when the 

polarity of each source band is reversed, ‘A’ for source band 1 and ‘B’ for source band 2. 
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3.4. Multi-scale decomposition based fusion 

The multi-scale (MS) decomposition based fusion was implemented by an 

iterative process of obtaining a multi-scale decomposition of the two source images 

independently while applying a weighting operation at each resolution level.  The fused 

image is obtained by a superposition of the weighted resolution levels of each image.  

Using multiple scales reduces the possibility of losing image detail in the fused image.     

3.5. Shift invariant discrete wavelet transform 

The DWT (Huntsberger & Jawerth, 1993) uses multiple scales to decompose the 

images and thus reduces the possibility of losing image detail.  Due to the sub-sampling 

process, wavelet coefficients are not always properly compared.  To solve this problem, a 

shift-invariant discrete wavelet transform (SIDWT) was developed where the down-

sampling of the standard wavelet transform has been omitted.  The fused low-pass 

coefficients are generated by averaging the low-pass coefficients of the source images.  

The fused high-pass and band-pass coefficients are generated by comparing the 

magnitude of the high-pass and band-pass coefficients in the source images and selecting 

the larger magnitude on a pixel-by-pixel basis.  To retrieve the fused image, the inverse 

SIDWT is applied (without the up-sampling).  The SIDWT is more computationally 

expensive than the DWT, but more often results in visibly better results.   

3.6. Pixel Averaging and Superposition 

Spatial domain methods like pixel averaging are simple and fast enough for real 

time implementation.  Pixel averaging and superposition are almost identical processes, 

as pixel averaging adjusts the contrast using a mean value for display, whereas 



32 

 

superposition uses a median value.  The following can be used to describe the pixel 

averaging of two images: 

Let X and Y represent the two source images to be fused.  Then fusion by 

superposition can be defined as: 

 ( ) ( ) ( )yxYyxXyxF ,,, ∗+∗= βα  (3.1-6) 
 

Here the constants α  and β represent weights whose sum adds to 1.  When these 

weights are both 0.5 (as used in this study), equation 3.1-6 is also known as pixel 

averaging.  Superposition is somewhat analogous to overlaying the images and reducing 

the contrast by a factor of 1/n, where n represents the number of images to be fused.   

  Pixel averaging is a widely used and simple approach to image fusion and is 

based on the assumption of additive noise.  If there are N source images and the variance 

of noise in the N images is equal, then averaging the images reduces the noise by a factor 

of N.  The major drawbacks of pixel averaging are a reduction in the salient feature in the 

image and the reduction in image contrast. 

3.7. Evaluation of fusion algorithms 

Preliminary investigations were conducted to gain more insight concerning how 

fusion algorithms behaved generally, and in response to complementary source 

information.  Information in this context is being referred to as spatial frequencies.   

3.7.1. Linearity testing 

A study was conducted to determine if any of the fusion algorithms could 

possibly be approximated as linear.  Having the ability to assume linear operation for 

some of the fusion algorithms could be invaluable when attempting to develop image 
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fusion metrics.  To this end, a Gaussian impulse image was created, filtered using the 

filters shown in Figure 11 (chapter 5, section 5.1), fused, and then visually compared to 

the original impulse image.  The frequency response of the impulse images contains all 

frequencies.  By filtering the frequency response of an impulse, many combinations of 

source information can be combined and observed.  The fused output images from this 

process should closely resemble the input image if the fusion algorithm operates under 

the assumption of linearity.  Figure 6 gives some results from this study.   

The impulse image at the top of Figure 6 was filtered into low-pass and high-pass 

components.  These images were used as input into the superposition, Laplacian and 

Ratio of Contrast fusion algorithms.  Each impulse response image is the fused output 

image from each fusion algorithm in response to fusing the filtered inputs.  On the left 

side of the figure, the impulse response of each fusion algorithm is given along with each 

respective frequency response.  The shifted input image was filtered and used as input 

into the fusion algorithms.  The corresponding impulse and frequency responses are 

given on the right side of the figure.  By inspection, it can be seen that the superposition 

algorithms exhibited linear shift invariant properties as expected.  The Laplacian and the 

Ratio of Contrast fusion algorithms failed to give similar frequency responses when the 

source impulse was shifted to a different location in the image.   
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Figure 6. Linearity test for a few common image fusion algorithms.  Top images are the 
original impulse and shifted impulse images.  Each impulse image was filtered into low 
and high pass components and used as inputs for the image fusion algorithms.  The fused 
images are being referred to as impulse response images.  The respective frequency 
responses were obtained using a shifted Fourier transform (the magnification for the 
shifted ratio of contrast was adjusted due to cropping of image).   
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3.7.2. Complementary intensity information 

As previously shown, many image fusion algorithms are inherently non-linear and 

often introduce additional information (noise) that could degrade the quality of the 

information transferred to the fused image.  Information in this analysis is not considered 

spatial frequency information (the source images in this analysis have identical frequency 

spectrums); however, the analysis does give an indication as to how the fusion algorithms 

handle complementary spatial information.  An analysis of this type allows for 

assumptions of degradation or enhancement properties concerning each image fusion 

algorithm. 

The performances of a select group of image fusion algorithms were evaluated 

using purely complementary source images.  A single image and its complement, 

obtained by subtracting the image from an array of ones, were fused and the output of 

each fusion algorithm was observed.  This process can be referred to as “white-hot / 

black-hot” fusion.  As a result of the “white-hot / black-hot” fusion the images fused were 

perfectly registered, thereby eliminating any errors due to registration.  The superposition 

algorithm was included due to its functional simplicity and linearity; the SIDWT and 

Laplacian fusion algorithms were chosen to represent wavelet based and pyramidal based 

fusion schemes in general. 

Two source band images were used in this investigation: LWIR and SWIR (given 

in Figure 7 as LW and SW respectively), where LWc and SWc represent the 

complements of each source image respectively.  Some of the characteristics of each 

fusion algorithm can be seen by observing the fused images in Figure 7.  For instance, the 

superposition algorithm tends to output constant grayscale values for input pixels that 
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have complementary intensities.  The SIDWT shows its edge enhancement 

characteristics.  The Laplacian fusion algorithm shows the tendency to introduce 

competing information within the image space. 

The analysis is the same for both source images shown in the figure; however, it 

can be observed that the effects from fusing complementary LWIR imagery in this case 

were more visually favorable than in the SWIR case.  One can make a case in terms of 

predicting performance, when using complementary source images, based on how the 

target area is obscured within the images; however, the effects of these characteristics 

certainly need to be quantified.  Figure 7 shows each image fusion algorithm handles 

complementary information differently: some enhance edge information; some produce 

constant intensities; while others actually introduce information into the fused image that 

effectively competes with the source information.  It is important to know how each 

fusion algorithm handles this type of information.  Chapter 4 introduces an image fusion 

performance metric to quantify visual task performance when fusing source 

complementary and redundant spatial frequency information. 
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Figure 7. Image fusion using complementary information.  LW – long wave; SW – short 
wave,; LWc and SWc – LW and SW complement respectively.  LW and LWc were fused 
with each fusion algorithm, likewise for SW and SWc.  The fused results are shown 
below each set of original images. 
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4. Performance Metric 

As previous stated there are three performance criteria generally accepted for 

image fusion algorithms; they are: 

(i) The fusion algorithm should preserve as much of the salient information in the 

source images as possible 

(ii)  The fusion algorithm should not generate artifacts or inconsistencies which affect 

the human observer’s ability to perform the required task 

(iii)The fusion algorithm must be tolerant of imperfections in the source imagery such 

as noise or mis-registration.   

To obtain an effective metric for quantifying the benefit of image fusion, a better 

understanding of the impact complementary source information has on image fusion 

algorithm performance is needed.  The above criteria serve as a guide for evaluating and 

comparing multiple image fusion algorithms, however, determining the effectiveness of 

an image fusion algorithm in terms of visual task performance is not a trivial task.  

Reasons such as registration errors and lack of a well defined reference image for 

comparison complicate the evaluation of image fusion algorithms.  Section 5.4 gives the 

results of several analyses investigating the performance of the proposed metric under 

various types of degradations for a select group of image fusion algorithms. 

4.1 Proposed Metric 

The quantitative assessment of fusion algorithm performance is complicated by 

non-linear processes and the lack of an ideal fused image for comparison; therefore, there 

is a need to identify or develop a non-reference objective metric for determining the 
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quality of the image fusion process.  For this purpose, a new image quality metric 

referred to as the fused common information measure (FCIM), based on mutual 

information (MI) is introduced and given as: 

 

YFXF

XY

II
IFCIM
+
∗

=
2

 
(4.1-1) 

By letting X and Y represent two images with marginal distributions ( )xp X  and 

( )ypY respectively, and with joint probability distribution ( )yxp XY , , the MI between the 

two images can be described as: 
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(4.1-2) 

FCIM uses MI to measure the redundant information transferred from the source 

images X and Y to the fused image F.  As complementary information in the source 

images increases, the FCIM scores decrease.  Measuring the transfer of redundant source 

information to the fused image was the inspiration behind the development of the FCIM 

metric. 

The FCIM can be derived using the definition of MI and a bit of algebra.  

Referring to Figure 8, the MI between two random variables, say X and Y, can also be 

defined in the following two ways: 

 ( ) ( ) ( )YXHXHYXI |, −=  (4.1-3) 

 

 ( ) ( ) ( )XYHYHYXI |, −=  (4.1-4) 
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A summation of these two equations yields a separate equation, namely: 

 ( ) ( ) ( ) ( ) ( )XYHYXHYHXHYXI ||,*2 −−+=  (4.1-5) 

 
From this equation, a normalized MI can be derived.  It can be seen from equation 

4.1-2, only the joint probability distribution is needed to obtain a measure of MI between 

images X and Y.  Referring to equation 2.5-1, the uncertainty in the joint probability 

distribution can be written as: 

 ( ) ( ) ( )∑∑
= =

−=
n

i

m

j
jiji yxpyxpXYH

1 1
,log,  

(4.1-6) 

The maximum value H(XY) may have is H(X)+H(Y); this fact is used in the 

definition of MI as given in equation 2.5-2.  Figure 8 also illustrates this fact.  This shows 

that H(X)+H(Y) is a candidate for normalizing MI.  

  

 

Figure 8. Venn diagram showing the relationship between the uncertainties, conditional 
uncertainties and mutual information for sets X and Y.  H represents entropy. 
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Normalizing both sides of equation 4.1-5 by H(X)+H(Y) yields: 

 ( )
( ) ( )

( ) ( )[ ]
( ) ( )YHXH

XYHYXH
YHXH

YXI
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−=
+

||1,*2
 

(4.1-7) 

The same analysis used to obtain equation 4.1-7 can be carried out for the MI 

between two different images, say X and F as follows: 

 ( ) ( ) ( )FXHXHFXI |, −=  (4.1-8) 

 ( ) ( ) ( )FYHYHFYI |, −=  (4.1-9) 

Figure 9 can be use to help illustrate the above relations.  A summation of equations 4.1-8 

and 4.1-9 yields a separate equation, namely: 

 ( ) ( ) ( ) ( ) ( ) ( )FYHFXHYHXHFYIFXI ||,, −−+=+  (4.1-10) 

Normalizing equation 4.1-10 by H(X) + H(Y) yields: 
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(4.1-11) 

By taking the ratio of equations 4.1-7 and 4.1-11, the FCIM follows: 
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(4.1-12) 

The FCIM metric is offered as a new variant of MI eliminating the use of entropy 

in its performance calculation.  FCIM performance is tested using different levels of 
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white Gaussian noise (WGN) added to the source imagery before fusion.  These results 

are given in chapter 6.   

4.2 Variants of MI 

There are many variants of MI reported that prove useful with evaluating image 

fusion performance (Cvejic et al., 2006; Nava et al., 2007; Piella & Heijmans, 2003; 

Wang et al., 2009).  However, Hossny et al. (2008) discussed the unsuitability of using 

classical mutual information as a performance measure for image fusion.  Qu et al.  

(2002) presented an image fusion performance measure using mutual information by 

estimating the joint entropy between two source images x,y and fused image f as follows: 

 ( ) ( )YFIXFIM XY
F ,, +=  (4.2-1) 

where X,Y, and F are the normalized histograms of source images x,y and the fused 

image f, respectively.  Hossny et al.  reported applying this mutual information measure 

to image fusion raises a problem concerning the scaling of the metric.  Hossny et al.  

argue since ( ) ( )XHXXI =, where ( )XH  is the entropy of the random variable X, the 

measures ( )XFI ,  and ( )YFI ,  are not measured on the same scale.  That is, the self 

information between random variables may be substantially different.  Therefore 

XY
FM mixes two unnormalized quantities which results in a bias toward the source image 

with the highest entropy.  Their proposed solution to resolve the scale imbalance between 

source information was to use a variant of MI that properly normalizes the measurement.  

This problem has been the source of the development of several variations of MI to be 

used as a proper metric.  Horibe (1985) proposed a normalized mutual information (NMI) 

measure as follows: 
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 ( ) ( )
( ) ( ){ }YHXH

YXIYXNMI
,max

,, =  
                             (4.2-2) 

where ( )XH  and ( )YH  are the entropies of the random variables X and Y, respectively.  

Kvalseth (1987) was somewhat critical of this normalizing variant, stating the measure in 

equation 4.2-2 was given without any justification.  Kvalseth generalized Horibe’s 

normalized information measure to: 

 ( ) ( )
iD
YXIYXNMI ,, =  

(4.2-3) 

where the denominator iD  is some appropriate normalizing factor.  The denominator iD , 

however, does not necessarily have a unique solution.  Some possible candidates for iD  

are given as: 
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(4.2-4a) 

(4.2-4b) 

(4.2-4c) 

(4.2-4d) 

Kvalseth stated that only 2D  and 3D  are proper normalizing factors and that 3D  is 

a compromise candidate, as it is an average between 1D and 2D .  Kvalseth further justified 

the use of 3D  by considering information theory concepts referred to as the coefficients 

of constraints (Attneave, 1959) defined by: 

 ( )
( )

( )
( )YH

YXIU
XH
YXIU XYYX
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(4.2-5) 
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2
|YXU  and 2

|XYU are defined in information theory as one minus the conditional uncertainty 

of X given Y divided by the uncertainty of X, and one minus the conditional uncertainty 

of Y given X divided by the uncertainty of Y, respectively.  Along with equation 4.1-7, 

equation 4.2-5 begins to shed some light on why Kvalseth’s choice of 3D  as a proper 

normalizing factor for MI.   

It should be noted that the uncertainty in the joint probability matrix between X and Y 

can be given as: 

 ( ) ( ) ( ) ( ) ( )YXHYHXYHXHYXH ||, +=+=  (4.2-6) 

Equation 4.2-6 shows two equivalent ways to obtain the maximum uncertainty 

between two random variables.  In terms of a single random variable, the uncertainty in 

H(X) and H(Y) can be found by subtracting from H(X,Y) the uncertainty that remains 

after having knowledge of X and Y respectively.  When H(X) and H(Y) are purely 

redundant, the conditional terms go to zero, resulting in the maximum joint uncertainty 

equal to H(X) and H(Y) respectively.   

To derive the U equations in equation 4.2-5, all that is needed is to normalize 

equation 4.1-3 and 4.1-4 by their maximum amount of uncertainty.  That is, for equation 

4.1-3: 

 ( ) ( ) ( )YXHXHYXI |, −=  (4.2-7) 
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(4.2-9) 

In a similar manner, normalization of equation 4.1-4 follows as: 

 ( )
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( )
( )

2
|

|1,
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=−=  
(4.2-10) 

 
It is clear by the definition of MI that the uncertainty in one set can be reduced 

given knowledge of the other.  Equations 4.2-9 and 4.2-10 are asymmetric measures of 

association between random variables X and Y, and are understood as the proportion of 

the uncertainty associated with a given set of information that is transmitted from another 

set. 

By taking a weighted average1 2
|YXU of  and 2

|XYU and using ( )XH  and ( )YH  as 

the weights, the following symmetric association metric results: 

 ( )
( ) ( )YHXH

YXIU
+

∗
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,22  
(4.2-11) 

   

which gives ( )
3

2 ,
D

YXIU = , completing Kvalseth’s justification for his choice of 

normalizing factor.  Hossny et.  al.  used the concept of coefficient of constraints (CofC) 

to modify equation 4.2-1 as: 
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1A weighted average is obtained by applying weights to each term to be added, then 
summing up the quantities.  Last, divide the summation by a sum of the weights.   
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where ( )XH , ( )YH  and ( )FH  are the entropies of the random variables X, Y and F, 

respectively.  Equation 4.2-12 will be referred to as the Hossny metric for the remainder 

of the document.  Hossny et al.  went on to show how the error between classical MI and 

the normalized version increases as the difference between the source image entropies 

increases, further emphasizing the caution surrounding the use of classical MI as an 

information measure for image fusion.  The use of entropy measures to normalize MI for 

use as an image fusion metric are frequently reported in the literature.   

4.3 Mutual Information using Image Fusion 

The concept of reducing the uncertainty in one set given knowledge of another is 

extended to the case of three random variables.  The definition of MI for two source 

images X and Y and a fused image F follows: 

 ( ) ( ) ( )FYXIYXIFYXI |,,,, −=  (4.3-1) 

Equation 4.3-1 shows that the redundant information shared between the source 

images and the fused image can be obtained by measuring the redundant information 

between the source images minus the information that the fused image can explain.  This 

can be readily seen with the help of Venn diagrams, as given in Figure 9.  
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Figure 9. Venn diagram showing the relationship between the uncertainties, conditional 
uncertainties and mutual information for sets X, Y and F.  H represents entropy and I 
represents mutual information. 

 

To obtain a measure of the information transferred from the source images to the 

fused image, one needs to measure the shared information between the source images and 

subtract out the information the fused image explains.  Using the definition of the CofC’s 

given in equation 4.2-5, an alternative development of the FCIM measure can be 

obtained.  I sought to develop a metric that tracks the transfer of information between the 

source and fused images.  By definition, the uncertainty in information for source image 

X is given as H(X), and likewise the uncertainty in information for source image Y is 

given as H(Y).  CofC equations were modified to account for the remaining uncertainty 

in each of the source images not explained by the fused image, that is: 
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By subtracting from H(X), the information in X explained by the fused information, 

H(X|F), what is left is the remaining uncertainty in the information for image X.  This 

process is repeated for image Y.  The information in the fused image explains some of 

the uncertainty in both of the source images (not necessarily the same information in both 

images).  The revisions of equation 4.2-5 yield quantities that satisfy the multivariate 

constraint property that the amount of information transferred between two sets is equal 

to the uncertainty of their joint probability matrix minus the actual uncertainty.  Each of 

these measures reduces back to the CofC equations given in equation 4.2-5 when the 

source images contain exactly redundant information (no complementary information), 

then.  This would indicate the fusion process did not provide any additional information 

to explain the uncertainty in the source images.  Therefore, this measure can be used to 

evaluate the degree of complementary information transferred to the fused image from 

the source images.   

Recalling the previous definition for MI, 2
|YXUF and 2

|XYUF can be rewritten as: 

 ( ) ( )
( ) ( )
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( ) ( )FYHYH

XYHYHUF
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(4.3-3) 

 
Using the fact that the MI between the inputs remains constant, a measurement of the 

reduced uncertainty in the input information as explained by the fused image can be 

made.  2
|YXUF can be interpreted as the amount of uncertainty in X minus the amount of 

uncertainty explained by Y, divided by the amount of uncertainty in X minus the amount 

of uncertainty explained by F.  The same can be said of 2
|XYUF .  In this way, tracking how 
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much uncertainty the fused image explains about each source image, FCIM can track 

how much of the information between the source images was actually transferred to the 

fused image.  This process captures each fusion algorithm’s ability to reduce the 

uncertainty in the inputs.
 

As stated, the denominators in equation 4.3-3 give an indication of how much the 

fused image explains the uncertainty in information for each of the source bands.  They 

should also be recognized as a measure of information gain, or by remembering the 

definitions of MI given, one can see the denominators are in fact the MI between each 

source and fused image separately.  Rewriting the equations as: 

 ( )
( )
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(4.3-4) 

A weighted average of 2
|YXUF and 2

|XYUF can be obtained and used as a measure of 

redundant information transferred from the source images to the fused image.  Using 

I(X,F) and I(Y,F) as weights, the weighted average of the two above equations is taken.  

This procedure results in the proposed information measure referred to as the fused 

common information measure (FCIM).  FCIM serves as another variant of mutual 

information.  For completeness, FCIM is given again below: 

 ( )
( ) ( )YFIXFI

YXIFCIM
,,

,2
+

∗
=  

(4.3-5) 

Accordingly, using Kvalseth’s generalized MI equation: 

 ( ) ( )
iD
YXIYXNMI ,, =  

(4.3-6) 
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FCIM is equivalent to Kvalseth’s generalized MI equation with ( ) ( )
2

,, YFIXFID i
+

= .   

4.4 FCIM as an Image Fusion Ranking Metric 

FCIM can also be used to rank image fusion algorithm performance.  The 

redundant information between the source images remains constant always; therefore, 

each fusion algorithm’s ability to transfer the source information can be measured in 

terms of the reduction in the uncertainty of redundant source information as explained by 

the fused image.  Since H(X) is always greater than H(X) – H (X|F), FCIM values are 

equal to or greater than that of equation 4.2-11, therefore equation 4.2-11should be 

subtracted from FCIM.  The proposed image fusion ranking measure (IFRM) is given as 

follows: 

 ( )CofCaverageweightedwithNMIFCIMIFRM −=  (4.4-1) 
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 (4.4-2) 

 

The difference of the CofC and FCIM indicate how complementary the source 

images are, as a function of each particular fusion algorithm.  IFRM is discussed in 

chapter 8.   

4.5 Other Common Metrics 

This section describes some of the common image fusion metrics previously 

referenced in section 2.5.  Although the following metric is not useful for image fusion 

algorithm comparisons by itself, because it only compares two images, it has been used to 
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develop image fusion metrics; as will be shown later.  The image quality index (IQI) 

(Wang & Bovik, 2002) is used to quantify similarity between two input images (usually 

when one image is a reference image), and is defined as: 
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(4.5-1) 

where Q0(a, b) represent a measure of the similarity between input images a and b and 

has a value between -1 and 1. 

The first term of Q0 measures to what extent input images a and b are linearly 

correlated.  The second term is a measurement of closeness between the mean luminance 

of images a and b.  The third component measures the similarity in contrast between the 

two images.   

The FQI is an extension of the IQI and allows for comparisons between a fused 

image and two source images.  To determine the FQI (Piella & Heijmans, 2003), a 

comparison is made between the source images and the fused image, identifying which 

image has the largest amount salient information.  This process is accomplished by using 

the local statistics of a nn× sliding window as the saliency factor for each image.  The 

FQI is defined as: 
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where )(wλ indicates the weighting factor that measures which window being compared 

offers the most relevant information.  )(wλ is calculated as: 
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where )(wλ has a value between 0 and 1.  s(a|w) and s(b|w) represent the saliency in each 

window of image a and b respectively. 

FQI gives an indication of how much of the salient information has been 

transferred in to the fused image from both of the input images.  The fusion quality index 

has values between -1 and 1. 

The WFQI is similar to the FQI, however, whereas the FQI treats the weighting 

factors within the sub-images equally, the WFQI assigns more weight to those regions 

with higher saliency in the input images.  This weighting scheme is intended to model the 

human visual system, which is known to give higher importance to visually salient 

regions in an image.  The saliency of the windows for the WFQI is defined as: 

 ))|(),|(max()( wbswaswC =  (4.5-4) 

and the WFQI is defined as: 

 
∑∑ ∈′∈′

−+
′

=
Ww

oo
Ww

w wfbQwwfaQwWC
WC

fbaQ ))|,())(1()|,()()((
)(

1),,( λλ

 

 

(4.5-5) 

and takes on values between -1 and 1. 

The EDFQI uses the WFQI and adds to it by taking into account the edge 

information present in an image.  EDFQI returns favorable results for those algorithms 

that attempt to model the importance of edges to the HVS.  EDFQI is defined as:  
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(4.5-6) 

a`, b`, f` are the edge images corresponding to the source images a, b, f.  α is a parameter 

used to weight the edge information versus the image information.  The suggested value 

of 1 forα was used in this study (Piella & Heijmans, 2003).  EDFQI also has values 

between -1 and 1. 
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5 Metric Evaluation 

The FCIM metric was tested under various levels of noise and the results are 

given in section 6.1.2.1.  The evaluation of information transfer using image fusion needs 

to be robust in response to such degradations.  Additionally, to gain more insight into 

FCIM’s performance, the FCIM was used in a perception experiment where controlled 

amounts of complementary information were presented to image fusion algorithms and 

observer identification performance was evaluated.  The results of this investigation are 

given in section 5.2. 

5.1 Filter design 

The source imagery used in the perception experimented presented in section 5.2 

was created using the 2-D filters shown in Figure 8.  Figure 10 shows a one dimensional 

(1-D) representation of the filters.  These filters were designed as finite impulse response 

(FIR) filters and were implemented using the Parks-McClellan algorithm in Matlab.  The 

filters are equiripple linear phase FIR filters, and are optimum in the sense that the 

maximum error between the desired and actual frequency responses is minimized. 
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Figure 10. Linear phase FIR equiripple filters used to create imagery with various 
amounts of complementary information.  Left figure shows two filters with cutoff and 
cuton frequencies of .15.  Right figure shows two filters with cutoff and cuton 
frequencies of .25.  Cutoffs and cutons are normalized frequencies defined between 0 and 
1, where 1 is the half sample frequency.  The transition bands are of length .1.  
Frequencies are given in pi*rad/sample. 

 

 

Figure 11. 2-D versions of the 1-D linear phase FIR equiripple filters shown in Figure 10. 
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Information content in an image, as defined in this research, can be controlled 

through filtering.  Separating an image into various low and high frequency images 

creates a pair of images that contains different amounts of complementary and redundant 

spatial frequency information.  Even when two images contain exactly complementary 

spatial frequency information, human performance results have shown that enough 

perceivable information exists in both bands to perform an identification visual task 

(Driggers et al., 2000).  Results such as those in Howell et al. (2010) suggest that a 

measure designed to use image information as a means to predict visual task performance 

should take into account both the complementary and the redundant information present 

in an image.   

5.2 Complementary and Redundant Information 

The evaluation of fusion quality in response to various amounts of 

complementary information at the input can be simplified somewhat by using filtered 

imagery as input into fusion algorithms.  Generating source imagery from a single image 

by filtering eliminates any errors due to image registration, thereby eliminating the third 

performance criterion given at the start of chapter 4.  With control of the source 

information content, image fusion algorithms can be systematically evaluated based on 

the transfer of salient information between the source images and the fused, and on 

whether a fusion algorithm introduces any artifacts that affect the task performance.  

Human perception experiments and the FCIM metric can be used to perform these 

evaluations.   
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5.2.1  Human Perception Experiment under Controlled Conditions 

Human performance results from an initial investigation to determine if there 

exists a correlation between the complementary information within source imagery and 

fusion algorithm performance under controlled conditions are reported in this section.   

An eight alternative forced choice (8AFC) ID experiment was conducted in which 

nine observers participated.  The eight targets used in this study are referred to as the 2S3, 

BMP, M109, M113, M2, M60, T62, and T72 targets.  A single source, low noise super 

resolved long wave infrared (LWIR) image of each target was spectrally filtered into two 

parts: low spatial frequency and high spatial frequency images.  The filters designed in 

section 5.1 were used in this process.  Figures 12 and 13 illustrate the filtering process to 

obtain the fused test imagery.  The high passed (HP) and low passed (LP) filtered images 

were used to represent the source imagery.  The naming convention used to identify the 

information content in the fused images is the “1515 fusion” and the “2525 fusion” cases.  

“1515” and “2525” represent the cutoff and cuton frequency for each source image to be 

fused.  For example, the fusion of a LP image with cutoff of .25 pi*rad/sample and a HP 

cuton of .25 pi*rad/sample will be referred to as a “2525 fusion” case; likewise for the 

“1515 fusion” case.  The source images used in the experiment were fused using pixel 

averaging, SIDWT and Laplacian fusion.  A sample of the original imagery at each range 

is shown in Figure 14.  Only the fused and original images were included in the ID 

experiment. 
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1515 Fusion Case 

 

              Low-pass 

 

      High-pass 

Figure 12. Filtering process to create source band imagery for controlled experiment: one 
with a low-pass cutoff frequency of .15 pi rad/sample and the other band using a high-
pass cuton frequency of .15 pi rad/ sample.  The fused imagery shown was created using 
the superposition algorithm with equal weights of .5.    
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             Low-pass 
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Figure 13. Filtering process to create source band imagery for controlled experiment: one 
with a low-pass cutoff frequency of .25 pi rad/sample and the other band using a high-
pass cuton frequency of .25 pi rad/ sample.  The fused imagery shown was created using 
the superposition algorithm with equal weights of .5.    

 

The observers were shown the original and fused LWIR stimuli of each target at 

three different aspects and four different ranges.  The ranges used in the experiment were 

200 meters, 500 meters, 800 meters, and 1500 meters.  All observers were trained to 

identify the standard target set with 95% accuracy using the U.S.  Army’s Recognition of 

Combat Vehicles (ROCV) training software.  The observers were shown each target in 

random order and were asked to identify which of the eight targets was presented in the 

scene; their ability to identify the targets correctly was recorded.  A total of the correct 

and incorrect choices were recorded and the results are plotted in Figure 17.  

sample
rad  25. ∗= πξ cutoff sample

rad  25. ∗= πξ cuton
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Figure 14. A subset of the experiment test imagery: original imagery of the T72 target at 
each test range for only one aspect. 

 

Due to the number of images and the high redundancy between the test images, 

learning effects had to be taken into account.  To mitigate inner-test learning, 

approximately half the test group began with the fused imagery generated with the 1515 

fusion case and the rest began with the 2525 fusion case.  Given the nature of this 

experiment, it was expected the performance between the fused and original images is 

approximately the same.   

Initially, the superposition fusion algorithm was used simply because it was 

simple and was less likely to introduce uncertainties with regards to the analysis of the 

results.  Figure 15 shows the probability of identification (PID) performance results 

versus range using the original and superposition fused imagery.  Although the error bars 

for the data set was large, the observers mean performances show sensitivity to the 

  T72 target at range 200m T72 target at range 500m 

T72 target at range 800m T72 target at range 1500m 
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change in complementary information being fused.  This conclusion is supported by the 

increase in the curves between the “1515 fusion” and the “2525 fusion” cases. 
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Figure 15. Averaged target performance results from a controlled experiment using 
superposition fused filtered imagery and the target performance using the original 
imagery for comparison. 
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Figure 16. Individual target results from a controlled experiment using the imagery from 
the 1515 and the 2525 fusion cases. 

 

Figure 16 is given to show how each individual target contributes to the mean 

performance.  Using Figure 16 as a reference, it seems at closer ranges the PID 

performance using the T62 and T72 targets reduced the mean performance and, as the 
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range increased, PID performance using the M113 and M60 targets helped maintain a 

higher mean performance.  This type of analysis may lend itself useful for identifying 

optimal target sets for objective evaluation measures. 

The above experimental analysis was extended to include the performance results 

using the additional image fusion algorithms.  The results using all the fusion algorithms 

are given in Figure 17.  Immediately, one sees that the mean performances for all of the 

image fusion algorithms are approximately equal.  And although there is not much 

separation between the performance curves shown, the Laplacian fusion performance 

shows a tendency to be the lower performer.  As the complementary information 

increased, the HP source image contributes increasingly less to the fusion process.  This 

means the similarity between the LP image and the original image is increasing, 

indicating the HP image had less effect on the fused image.  An image performance 

measure using MI should capture this relationship; consequently, the FCIM metric should 

yield a lower value in these cases.   
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Figure 17. Averaged target performance results from a controlled experiment using fused 
filtered imagery and the target performance using the original imagery for comparison. 
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This approach has a couple of benefits that need mentioning.  First, controlling 

the source information content creates an environment for which the sensitivity of the 

FCIM metric can be systematically evaluated; and second, factors related to errors in 

image registration can be avoided under these test conditions.  This process allows for a 

single variable to be adjusted while monitoring the performance of the FCIM.  In this 

way, a clearer understanding regarding the relationship between complementary 

information and fusion algorithm performance is achieved. 

This type of evaluation served to establish the relationship between 

complementary information and task performance using the FCIM metric when 

evaluating fused imagery.  The results of this study show a correlation exists between the 

proposed metric and identification task performance.   

5.2.2 Metric Results  

Figure 18 shows partial results of the individual target PIDs along with the FCIM 

evaluation results; Figure 19 shows the results for the Hossny metric; both figures only 

show the results for the superposition performance.  The T72, M109 and 2S3 targets have 

been selected to use for the analysis; overall results of both metric performances are 

given in the Appendix I.  The target metric scores are plotted as a function of range for 

ease of comparison with human visual task performance.  The PID increased from the 

1515 fusion case to the 2525 fusion case, showing the performance effects of varying the 

amount of complementary information presented to the fusion algorithm.  As the 

cutoff/cuton frequencies increased, the LP image contained a large majority of the total 

image information and therefore caused the fusion performance to migrate towards the 
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PID obtained with the original imagery.  For this contrived case, one does not expect the 

fused performances to surpass that of the originals.  This contrived approach does 

however show as the source imagery became more complementary with respect to each 

other, the human observers performed better.  This conclusion is interesting given that 

each fusion algorithm was presented the same information in both the 1515 and 2525 

fusion cases; the difference being the amount of complementary information in each 

source band changed.  The results of the FCIM support the human performance results.  

That is, most of the FCIM values decreased as a function of range; in addition the FCIM 

values decreased going from the 1515 fusion case to the 2525 fusion case.  This is a 

desirable characteristic for the FCIM. 

The Hossny metric values appear to exhibit to some degree the same trend as 

FCIM with regards to decreasing values with increasing range.  The variation in the 

Hossny metric for the 1515 fusion case compared to the 2525 fusion appears to change 

differently than does the FCIM.  The FCIM decreases its values with increasing 

cutoff/cuton frequencies indicating the redundancy between the source images is 

decreasing; as seen in Figure 19, the Hossny metric increases its values with increasing 

cutoff/cuton frequencies.   
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Figure 18. PID performance curves from Figure 13 and FCIM performance for the 
controlled human perception experiment.  The results shown are for the 2S3, M109 and 
T72 targets using the superposition fusion algorithm. 
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Figure 19. PID performance curves from Figure 13 and the Hossny metric performance 
for the controlled human perception experiment.  The results shown are for the 2S3, 
M109 and T72 targets using the superposition fusion algorithm. 
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Pearson’s moment correlation coefficient is used to evaluate the relationship 

between the FCIM, Hossny metric and PID performance.  The results of the correlation 

analysis are given in Table 1.  Each cell in Table 1 represents a correlation analysis 

between the respective targets PID as a function of range and the corresponding metric 

values for each fusion case.  The FCIM shows good correlation with human performance 

for the 2S3, BMP, M109, M60, and T62 targets for both of the fusion cases.  A modest 

correlation seems to exist for the T72 target.  The Hossny metric shows good correlation 

with the 2S3, BMP, and M2 targets across both fusion cases, but did not show any 

correlation with the other targets.  A point of interest is that the correlation seems to 

improve for some targets and decrease for others as the complementary information 

increases (1515 fusion case to the 2525 fusion case), this is true for both metrics 

evaluated.  Another point of interest is that although the Hossny metric did not have good 

correlation for the individual targets, the overall correlation for the target set as a whole 

did.  This point should raise concerns regarding whether there are other influences 

causing the correlation to improve (or degrade). 
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Table 1 

Pearson’s moment correlation results between the FCIM and human performance for 
the superposition algorithm performance for each individual target 

 FCIM  

SUP 1515 
fusion case 

Overall = 0.93 

FCIM  

SUP 2525 
fusion case 

Overall = 0.95 

Hossny Metric  

SUP 1515 
fusion case 

Overall = 0.94 

Hossny Metric  

SUP 2525 
fusion case 

Overall = 0.94 

2S3  0.98 0.96 0.95 0.96 

BMP 0.97 0.99 0.96 0.84 

M109 0.91 0.94 0.74 0.46 

M113 0.39 -0.05 0.36 0.66 

M2 0.44 0.16 0.84 0.91 

M60 0.95 0.97 0.59 0.44 

T62 0.83 0.93 -0.10 -0.11 

T72 0.73 0.82 0.39 0.37 
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Table 2 

Overall correlation values for the average FCIM and Hossny Metric 
values across the entire data set and human identification 
performance (PID) for all the algorithms used in the controlled 
perception experiment 

1515 fusion case FCIM Hossny Metric 

SUP 0.93 0.94 

SWT 0.93 0.94 

LAP 0.91 0.93 

   

2525 fusion case FCIM Hossny Metric 

SUP 0.95 0.94 

SWT 0.95 0.93 

LAP 0.92 0.81 

 

 

Correlation is a valuable tool when its limitations are understood.  Intuitively, we 

understand correlation as a measure of independence between two variables.  The 

correlation coefficient doesn’t indicate an exact functional relationship between two 

variables; it only gives an indication of the degree of linear relation between the 

variables.  That is, the correlation coefficient expresses the correlation between two 

variables, telling whether the correlation is positive or negative; it also allows for 

comparisons between correlations as well as it allows for determining when correlations 

change.   



70 

 

A common question that arises when dealing with correlation measures is how 

errors in the data effect the correlation.  Errors can increase or decrease the correlation to 

some value far away from the true value.  The scatter plots of Anscombe’s quartet can 

serve as a warning to those who chose to blindly use correlation without examining the 

data.  Figure 20 shows the famous scatter plots of Anscombe’s quartet (1973).  Each data 

set has the same mean, standard deviation and correlation value, although not all of the 

data sets have linear relationships.  The functional relationship of the top left data set 

appears to be normal in nature, while although the top right certainly has an obvious 

relationship between the data, it doesn’t seem to follow an assumption of linearity.  

Bottom left and bottom right data sets emphasize the need to visually observe the data; 

the outliers in both of these data sets severely influence the correlation measure.  Scatter 

plots are needed, in addition to correlation, to correctly describe the association between 

each metric and visual task performance.  Refer to Appendix II for a visual illustration of 

the correlation between PID and the image fusion metrics that resulted in the correlation 

values given in Table 2.   

Another common and important question that arises when using correlation 

coefficients is how chance affects the correlation measure.  One may present the 

hypothesis: what is the chance, or probability, of getting a correlation of 0.81 or higher 

when in fact no correlation exists?  Hypotheses such as this are easily accepted or 

rejected with the help of a table of probability levels for the correlation coefficient1

                                                 
 

1 

.  For 

example, using Table 1 in Appendix IV for n = 4 pairs of data, a correlation coefficient of 

http://physics.mercer.edu/Younce/pearson.html Table of critical values for correlation 
coefficients given in Appendix IV. 

http://physics.mercer.edu/Younce/pearson.html�
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0.81 has a significance value of 0.05.  This means that there is a 95% probability that the 

correlation measure of 0.81 is significant, therefore the hypothesis can be rejected.   

If the concern is with which functional relationship exists between the two 

variables, then the significance of the correlation measure is important, such as when the 

FDA says smoking cigarettes greatly increases your chance of getting lung cancer2
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.  If a 

study was conducted that resulted in the findings that smoking cigarettes had a 60% 

correlation with lung cancer, then 0.6 correlation is a significant measure.  If the concern 

is with forecasting or predicting a relationship between two variables, then their variances 

are important. 
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Figure 20. Anscombe’s Quartet: a famous data set for illustrating the importance of 
plotting data in conjunction with correlation measures.   

                                                 
 

2  http://www.fda.gov/ForConsumers/ByAudience/ForWomen/ucm118545.htm. 



72 

 

The variation between the two fusion cases for each image fusion metric used in 

this investigation is given in Figure 21.  In the figure, each metric’s value for the 1515 

fusion case and the 2525 fusion case is plotted against the other.  A y = x curve is given 

in each plot as a reference indicating how far off the metric is from an exact linear 

correlation when the complementary information changes.  If the metric is indifferent to 

the changes in source information content, then all the points would lie on the y = x 

curve.  Scatter plots far away from the y = x line indicate a large variation in the metric’s 

values between cases and vice versa.  Therefore, the distance of the scatter plots relative 

to the y = x curve suggests the magnitude of variation in the metric scores between the 

two fusion cases with respect to the input information.  The scatter plots in Figure 21 

show a large variation in the source information for the Hossny metric.  Thus the Hossny 

metric shows most of the variation between the fusion cases is with the 2525 fusion case.  

The FCIM shows a smaller variation measured between fusion cases where most of the 

variation is attributed to the 1515 fusion case (except for the Laplacian fusion algorithm).   

Recall, as the cutoff/cuton frequency increases, the HP source image contains less 

and less edge information, and therefore presents less relative information to the fusion 

algorithm.  This means that more relative complementary information is present in the 

1515 fusion case than in the 2525 fusion case.  The FCIM supports this conclusion for the 

superposition and SIDWT fusion algorithms.  Also recall, the characteristics of each 

fusion algorithm performance when presented exactly complementary source information 

(Figure 7).   

In addition, it has already been shown in Figure 5 that noise can influence entropy 

measurements.  It is plausible to assume that the larger variation in the Hossny metric for 
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the 2525 fusion case, and possibly the FCIM Laplacian 2525 fusion case, is a result of 

this phenomenon.   

When evaluating the correlations given in Table 2 the reader should also 

remember that the information in the HP band cuton at .25 pi*rad/sample is mostly faint 

edges to an extent, and therefore contributes very little to the fused resultant image.  The 

FCIM seeks to evaluate the common information content of the source imagery, with one 

minus the FCIM giving a measure of the complementary information content.  The FCIM 

demonstrates that it is a likely candidate for evaluating imagery that is highly 

complementary.  It is expected, when both source bands posses their maximum relevant 

complementary information, the FCIM will render its minimum value, indicating the 

presence of high complementary information in the fused image. 
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Figure 21. Sensitivity analysis for the FCIM and Hossny metrics evaluating the fusion 
algorithms used in the controlled human perception experiment.  Hossny metric gives 
more weight to the 2525 fusion case where FCIM gives more weight to the 1515 fusion 
case (except for the LAP fusion algorithm). 
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6 Validation of FCIM 

The most direct method to evaluate human performance of a visual task such as 

target identification is to conduct perception experiments.  As stated previously, 

perception experiments are time consuming and very expensive.  Therefore, alternatives 

are sought that reduce the time and financial burdens perception tests create.  For this 

purpose, objective measures that correlate with human visual task performance are 

needed.  Human perception experiments serve to assist with both the development and 

the validation of objective measures.   

The visual task investigated in this research is the ID task, which usually requires 

an observer to make a decision concerning the target being presented before he/she is 

allowed to continue testing.  This type of experiment is referred to as a forced choice 

experiment.  An N alternative forced choice (NAFC) experiment is conducted to 

determine how well human performance compares to that of the FCIM using LWIR and 

SWIR fused imagery.  Here, N represents the number of distinct targets to be identified.  

For the LWIR/SWIR fused perception experiment, N equals 8, because there is a total of 

eight different targets to be identified.  A separate perception experiment evaluating how 

well humans identified hand held targets is also presented in this chapter; for this 

experiment N equals 12. 

6.1 Human Perception Experiments: tracked vehicles 

An 8AFC experiment was conducted using a standard set of tracked military 

vehicles.  The vehicle set was the same vehicle set used in the controlled perception 

experiment presented in chapter 5.  The target set for this experiment was captured in the 

LWIR and SWIR at four different ranges: 300 meters, 500 meters, 800 meters, and 1500 
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meters.  The source imagery was fused using the superposition, Laplacian and the 

SIDWT image fusion algorithms.  Sample test imagery at a range of 300 meters is shown 

in Figure 22.  Each observer was presented a target from either the source band imagery 

(LWIR or SWIR) or the fused imagery and was asked to identify which of the N targets 

was being displayed.  Human performance results from this experiment are given in 

Figure 20.   

 

  

   

Figure 22. Sample imagery from the LWIR/SWIR 8AFC experiment.  Top left is the 
LWIR image and top right is SWIR image.  From left to right, the bottom row shows the 
superposition, SIDWT and Laplacian fused images.   

 

6.1.1 Human Performance Results 

The performance curves shown in Figure 23 are plotted as a function of range.  It 

should be mentioned that a total of three observers participated in this experiment; as a 

result, the error bars are large.  For de-cluttering purposes, the error bars are not shown in 

the figure.   
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The PID performances for the source and fused imagery suggest that it may be 

possible to obtain human performance using image fusion that is greater than the PID 

performances using the source imagery.  This seems to be the case for the SIDWT 

performance results up until range 1500 meters where the LWIR performance appears to 

be better.   
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Figure 23. PID performance results for the 8AFC perception experiment using LWIR, 
SWIR, superposition, Laplacian and SIDWT fused images.  The average error (not 
shown) for the curves was +/- 18%. 

 

The definition of image fusion suggests there are instances where the fused image 

contains more relevant information than does any source image.  However, there is much 

speculation surrounding the ability to obtain performance increases using image fusion.  

Identifying an image fusion algorithm that correlates with human performance is a key 

initial step in image fusion algorithm performance discrimination.  Once a metric is 
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identified that correlates with human performance using image fusion, one would then 

like to develop a metric that can discriminate between collections of algorithms, selecting 

a proportion of the algorithms that outperform the rest.   

6.1.2 Metric Results 

The FCIM and Hossny metric were applied to the test imagery used in the 

LWIR/SWIR 8AFC perception experiment.  The results of this analysis for each image 

fusion algorithm are given in Figure 24.  Table 3 gives the correlation values for both the 

FCIM and the Hossny metric values plotted in Figure 24 and the PID curves in Figure 23.  

Comparing Table 2 and Table 3, one immediately sees the correlations are reduced for 

both metrics when using actual separate spectral bands as inputs to the fusion algorithms.  

However, the FCIM still has good correlation with PID; the Hossny metric doesn’t.  The 

Hossny metric uses entropy as a normalizing factor in its calculations.  Entropy was 

shown in chapter 2 to be an undesirable measure when trying to monitor perceivable 

visual information.    
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Figure 24. Metric results plotted as a function of range.  Both sets of plots shown are 
averaged across each range for the entire image set.   
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Table 3 

Pearson’s moment correlation coefficients between human identification 
performance given in Figure 23 and both the FCIM and Hossny metric values 
given in Figure 24 for each of the three fusion algorithms 

 Correlation 

PID versus FCIM 

Correlation 

PID versus Hossny 
Metric 

SUP 0.75 -0.15 

LAP -0.89 0.03 

SWT 0.77 -0.62 

 

 

The FCIM only uses MI in its evaluations of information content in the fused 

images.  The FCIM shows it has good correlation with human performance using fused 

contrived source imagery and real source imagery.  The scatter plots given in Appendix 

III support the correlations.  A third experiment was conducted using hand held targets 

and different spectral bands to evaluate the FCIM under different conditions.  The FCIM 

shows good correlation in this experiment; section 6.2 gives the results.   

6.1.3 Noise analysis 

The impact noise may have on the FCIM and Hossny metric is investigated using 

the imagery from the LWIR/SWIR 8AFC perception experiment.  Noise was added to a 

single image, where the signal-to-noise ratio (SNR) in the image is controlled by 

applying a ratio of the power spectrum of the signal to the power spectrum of the noise.  

The signal in this case is to be understood as each individual source image; the noise is an 
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image of white Gaussian noise (WGN).  To fix the SNR within each image, the following 

procedure was followed: 

1. Create an image of WGN 

2. Obtain the power spectrum of the noise (Pn), LWIR (Pl) and SWIR (Ps) images 

3. Take the ratio of Pl/Pn and Ps/Pn, and divide each ratio by the desired SNR  

4. Multiply the square root of the values in step 3 with the noise image 

5. Finally, add the noise to each respective image 

Figures 25 a, b, and c show sample imagery as a result of fusing the noisy LWIR 

and SWIR  input imagery in this evaluation.  In each figure, source images containing the 

noise are given on top and the fused images for each algorithm are on the bottom.  Table 

4 gives the evaluation results for both the FCIM and the Hossny metric for the fused 

images with and without noise applied to the source images.   
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Figure 25a.  Fused LWIR and SWIR imagery using three different image fusion 
algorithms with a SNR of 40 dB imposed on the imagery.  SUP-superposition, LAP-
Laplacian and SWT- Shift-invariant DWT 

 

Figure 25b. Fused LWIR and SWIR imagery using three different image fusion 
algorithms with a SNR of 15 dB imposed on the imagery.  SUP-superposition, LAP-
Laplacian and SWT- Shift-invariant DWT. 
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Figure 25c. Fused LWIR and SWIR imagery using three different image fusion 
algorithms with a SNR of 1 dB imposed on the imagery.  SUP-superposition, LAP-
Laplacian and SWT- Shift-invariant DWT. 

 

The first column of Table 4 shows the FCIM and Hossny metric results after 

evaluating the fusion of the source imagery without any noise applied.  The following 

columns show the results for both metrics in response to noise being added to each source 

image before fusing.  Applying various amounts of increasing noise can cause the source 

images to become redundant.  As the information within the source images become more 

redundant, the FCIM (equation 4.3-5) increases its value with increasing noise.  The 

Hossny metric (equation 4.2-12) values are decreasing while the input sources are 

becoming more redundant.  This is because the two terms in the numerator are becoming 

more and more similar, while the entropy in the denominator is increasing due to the 

added noise.   
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Table 4 

Metric evaluation using controlled amounts of noise added to source images before 
image fusion is carried out 

 Original  

(no noise) 

SNR = 40 dB SNR = 15 dB SNR = 1 dB 

FCIM     

SUP 0.91 0.91 0.91 0.90 

SI-DWT 0.97 0.97 0.97 0.95 

LAP 0.79 0.78 0.77 0.74 

     

Hossny Metric     

SUP 0.17 0.17 0.17 0.15 

SI-DWT 0.17 0.16 0.15 0.14 

LAP 0.20 0.19 0.19 0.18 

 

 

The FCIM and Hossny metric maintained their rankings (in terms of highest to 

lowest values) as the noise increased for each image fusion algorithm.  Both metrics 

demonstrated a robustness to noise for the superposition algorithm.  However, the FCIM 

values remained constant for the superposition and the SIDWT fusion algorithms up until 

a SNR of 1.  This demonstrates a degree of robustness for the FCIM in its measure of the 

relevant redundant information; that is, the FCIM values don’t react to the added noise 

appreciably until a SNR of 1 was achieved.  The SIDWT and Laplacian fusion algorithms 

caused a reduction in the Hossny measurement for each level of noise added to the inputs.  

The results of Table 4 suggest that the FCIM measures similar relevant information 
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between the inputs and the fused image up until a SNR of 1.  The Hossny metric 

measures differences in information content for the fused images for all noise levels with 

the SIDWT and Laplacian fusion algorithms.  Although human performance results have 

not been evaluated using the imagery in Figure 25, looking at the images suggests that the 

quality of the images does not decline drastically until a SNR of 1 is achieved.  This is 

what the FCIM values in Table 4 suggest; however a perception study should be 

conducted to validate this claim.   

6.2 Human Perception Experiments: hand held targets 

A 12AFC experiment was conducted using a set of handheld targets.  The 

perception test used LWIR and image intensified (I2) images of the small handheld 

objects.  There were a total of twelve different objects with each object shown placed in a 

single hand.  The twelve handheld objects displayed in this test were: a gun, hand 

grenade, rock, cell phone, PDA, camera, flashlight, soda can, coffee mug, knife, brick, 

and a radio.  The ‘gun’ image set at 7 meters is displayed in Figure 26 as an example of 

the test images used in the perception test.  PID performance was recorded for imagery of 

the handheld objects captured at ranges of 7m, 10m, and 15m.  There was only one aspect 

(placed in a single hand) of each object shown at the three different ranges.   

Ten different fusion algorithms, in addition to the source images, were used in 

this experiment.  The images were shown in random order for each of the three ranges.  

The trials were divided into three cells to guard against fatigue that could affect the 

results in an unpredictable manner. 
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Figure 26. Fused imagery of the “Gun” image set at 7 meters.  From top going left to 
right, LWIR and I2 are the two source images; superposition and pixel averaging, shift-
invariant DWT (SIDWT), multi-scale (MS) decomposition, Laplacian (LAP) fusion: two 
versions A and B, Contrast Ratio (CR) fusion: two versions A and B and opponent 
processing (OP): two versions A and B. 

 

 

Eight observers were trained to identify the 12 different handheld items.  A 

training set of the images was developed and shown to the observers in a PowerPoint 

presentation to allow time to familiarize themselves with the test images.  Once the 

observers felt they knew the targets in the training set well, a test had to be taken.   Each 

observer was required to obtain 95 percent accuracy with identification on the training set 
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before being allowed to participate in the actual experiment.  The time required for 

training varied depending upon the individual trainee. 

The observers were shown fused images of the handheld objects in random order 

for a particular range and then asked to identify each object being displayed.  The 

observers’ correct responses were annotated for each of the three ranges and the results 

are given in section 6.2.1. 

6.2.1 Human Performance Results 

Figure 27 shows the PID versus range results from testing the identification of 

hand held objects.  The curves shown represent the ID performances corresponding to the 

ten different fusion algorithms; the individual source band performances are not shown. 

 

Figure 27. PID versus range results using image fusion of handheld targets. 
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The performance results in Figure 27 show that the ID performances decreased as 

the range increased for all the fusion algorithms except the MS algorithm.  The 

performances for the majority of the fusion algorithms are approximately equal.  As the 

range increases the objects become more ‘similar’, and as a result their differences 

become more difficult to discriminate.  The FCIM metric can be used to monitor 

relationships between task difficulty and similarity in image information.   

6.2.2 Metric Results 

There were only three ranges used in the hand held target experiment, which, 

according to the table of critical values for the Pearson’s correlation coefficient given in 

Appendix IV, means only correlations above 0.8 are significant, resulting in a 10% 

chance of rejecting the validity of the correlation. 

The correlations for the FCIM and Hossny metric with PID of hand held targets 

for different image fusion algorithms are given in Table 5.  Three image quality metrics 

reported in Piella and Heijmans (2003) are also listed in the table for comparison.  The 

FCIM shows good correlation (0.8 or better) with six out of the ten fusion algorithms. 
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Table 5 

Correlation values for various metrics and the human performance curves given in 
Figure 27 

 LPA LPB OPA OPB CRA CRB MS SUP Pix-
avg 

SWT 

FCIM -0.35 0.91 0.87 0.48 0.27 -0.58 -0.99 0.87 0.96 0.99 

Hossny 

Metric 

0.99 -0.45 0.28 0.58 0.89 0.67 0.35 0.49 0.44 0.77 

FQI -0.23 0.00 0.27 0.01 -0.48 0.45 0.91 0.55 -0.04 0.49 

WFQI -0.03 0.87 -0.03 0.24 0.11 0.89 0.42 0.12 0.43 0.21 

EFQI -0.23 0.43 -0.04 0.18 -0.83 0.69 0.41 0.12 0.57 0.29 

 

 

The FCIM has shown that, by measuring the transfer of information to the fused 

images, it is an effective metric for predicting human performance identifying military 

tactical vehicles and non-traditional targets using complementary source band 

information.  More human perception studies are needed to investigate and validate the 

full potential of the FCIM.   
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7 Discussion 

To be considered a valid metric, the metric must possess three key characteristics: 

1) The metric must show that it is consistent with the data it is evaluating; when the trend 

of the data decreases or increases, the metric values must consistently decrease or 

increase in the same direction or consistently increase or decrease in opposite directions 

from the data.  2) The metric must be sensitive to changes in the data; that is, when the 

data changes significantly in magnitude, the metric changes similarly and vice versa.  3) 

The metric must be calibrated; for example, a change in metric value of say .5 to .6 

translates consistently to an expected data value between .8 and .85.  The FCIM has 

demonstrated it is consistent with human performance and sensitive to variations in 

performance caused by changes in the information content of the fused imagery.  The 

previous scatter plots between FCIM and PID support an assumption of a linear relation.  

Therefore, linear regression is used to calibrate the metric to human performance data.   

7.1 Evaluation of the FCIM Metric 

For the controlled perception experiment, correlation plots of the resulting human 

performance data and the FCIM are given in Appendix I.  From these plots, a linear 

relation between the PID results and the FCIM values is assumed.  Under a linear 

assumption, a model can be derived for the relationship between the FCIM and PID 

performance using regression analysis techniques. 

A linear model will have the form: 

 
01 aXaY +=  (7.1-1) 
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The idea then is to find the values of a1 and a0 that allows Y to best fit the actual data.  In 

this case, Y is the dependent variable and X is the independent variable.  Matlab ® has a 

function polyfit that can be used to determine the unknown coefficients by minimizing 

the sum of the squares of the model deviations from the actual PID data.  This process is 

also known as least-squares fit to the data.  As determined by polyfit, the coefficients of 

the linear models for each image fusion algorithm are given in Table 6.   

 

Table 6 

Coefficients for a linear model of the human performance data in the controlled 
perception experiment  

 1515 fusion case 2525 fusion case 

 a1 a0 a1 a0 

SUP 17.77 -13.41 18.78 -14.94 

SIDWT 22.20 -18.13 50.18 -41.24 

LAP -12.66 12.75 -5.11 5.71 

 

A vector of metric values from 0.8 to 1 was created and used to evaluate the fit 

between the model and PID results for each image fusion algorithm.  The results of the 

model predictions using equation 7.1.1, the coefficients from Table 6 and the FCIM 

values for the controlled experiment are given in Figure 28.   
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Linear models for predicting image fusion performance
 using the FCIM: 1515 fusion case
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Linear models for predicting image fusion performance
 using the FCIM: 2525 fusion case
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y = 18.78*X - 14.94
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y = 50.18*X - 41.24
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y = -5.11*X + 5.71

 

Figure 28. The plots in the left figure show the linear fits to model the PID performances 
for three different image fusion algorithms for the “1515” controlled perception 
experiment.  Right shows the same analysis but for the 2525 fusion case.   

 

The linear fits given in Figure 28 allow for predictions of identification task 

performance using images generated from the same system as those shown in Figure 14.  
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Linear models for predicting image fusion performance using the FCIM

 

 

SUP
y = 19.68*X - 17.67
SIDWT
y = 14.15*X - 12.62
LAP
y = -35.1*X + 31.04

 

Figure 29. Linear fits to model the PID performances for three different image fusion 
algorithms for the LWIR/SWIR perception experiment. 
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Table 7 

Coefficients for linear models of the human performance data in the LWIR/SWIR 
image fusion perception experiment 

 Coefficients Linear models 

 a1 a0  

SUP 19.68 - 17.67 y = 19.68 * X – 17.67 

SIDWT 14.15 -12.62 y = 14.15 * X – 12.62 

LAP -35.1 31.04 y = -35.1 * X + 31.04 

 

 
The use of the above models given in Figure 29 should be used under the 

assumption that pre- and post image processing has been standardized to control the 

variability in the quality of the fused images.  Under these restraints, a clearer 

understanding of the variations in performance for the FCIM, and human observers alike 

can be properly assessed.   
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8 Additional Application of the FCIM 

An image quality metric that can be used to rank image fusion algorithms was 

developed using the FCIM.  This metric is the Image Fusion Ranking Metric (IFRM) 

introduced in section 4.4.   

8.1 Ranking metric 

The FCIM has shown it correlates well with human performance using different 

spectral bands and different target sets.  Additional research can be conducted to develop 

an objective metric that can correctly rank the PID performances associated with image 

fusion algorithms.  This would allow hundreds of image fusion algorithms to be 

evaluated and possibly reduced by an order of magnitude based on a single metric.  The 

IFRM was developed to objectively evaluate image fusion algorithms and rank the fusion 

algorithms according to how much each fusion algorithm transfers source information to 

the fused image.  Equation 4.4-2 is repeated here: 

 ( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )YHXH

YXI
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(8.1-1) 

The second term on the right hand side of the IFRM equation is Kvalseth’s 

normalized MI measure for two variable cases and the term on the right is the FCIM.   

Using the fact that Kvalseth’s normalized MI measure is a constant regardless of which 

image fusion algorithm is being evaluated, the variation in IFRM values depends upon 

the individual image fusion algorithm under investigation.  Therefore, the less redundant 

(that is, more complementary) the information transferred by the fusion algorithm, the 

lower the IFRM values, and vice versa.  This would allow each fusion algorithm to be 

measured on common terms.   
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The FCIM can only obtain values greater than or equal to that of Kvalseth’s 

normalized MI measure; therefore, the IFRM will take on values between 0 and 1.  

Higher values are given higher rank than lower values.  As the fused image explains more 

of the uncertainty concerning each of the source images, the FCIM, and therefore the 

IFRM, gives larger values.  This is a key concept that allows each fusion algorithm to be 

compared against another.  The rankings for the fusion algorithms used in the 

LWIR/SWIR perception study are given in Table 8.  Figure 30 shows plots of the data in 

Table 8 along with the human performance results from the experiment.   
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Figure 30. Rankings for three image fusion algorithms as determined by the IFRM.  
Human performance results from the LWIR/SWIR perception experiment are given for 
comparison. 
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Table 8 

 Image fusion algorithm ranking for the IFRM 

 IFRM  Values versus range Rankings 

 200m 500m 800m 1500m  

IFRM_SUP 0.899 0.885 0.882 0.877 2 

IFRM_SIDWT 0.913 0.900 0.893 0.889 1 

IFRM_LAP 0.829 0.829 0.835 0.840 3 

 

 

The IFRM was able to identify the best performing fusion algorithm.  The 

rankings are given in Table 8; in this case the highest ranking algorithm was the SIDWT 

fusion algorithm.  Human performance data shown on the right of Figure 30 confirms the 

ranking.  Because so few observers participated in the perception experiment, nothing 

definitive can be mentioned about how IFRM compares with human performance for the 

other algorithms.   

Because the IFRM uses the FCIM and a constant value in its calculations, the 

IFRM and the FCIM should give identical rankings.  The benefit to using the IFRM 

versus the FCIM for the moment is not yet established; however, it is expected that the 

IFRM is behaving similarly to when variations in image pixel intensities ride on top of a 

pedestal; the pedestal is often removed to get a clearer picture of the true variation, i.e., to 

improve the contrast in the image.  This pedestal removal usually results in a higher 

quality image.  The pedestal in the case of the IFRM is Kvalseth’s MI measure (a 

normalized MI measure of the inputs) and the variations that come from each fusion 
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algorithm can be measured using the FCIM.  The IFRM was tested to determine if any 

improvements in the correlation values given in Table 3 can be further improved upon by 

removing the ‘pedestal’ from the FCIM.  The correlation analysis results using IFRM and 

human observer PID are given in Table 9.   

 

Table 9 

Comparison between correlations using PID and FCIM 
and correlations using PID and IFRM for the 
LWIR/SWIR perception experiment 

 Performance correlations 

 PID vs FCIM PID vs IFRM 

SUP 0.75 0.86 

SIDWT 0.77 0.85 

LAP -0.89 -0.82 

 

 

There was a correlation improvement as a result of modifying the FCIM in this 

way.  More research using IFRM should follow to explain the cause in increased 

correlation between the FCIM and IFRM. 
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9 Image Quality with Reference Image Generation 
 

One of the reasons why image fusion quality assessment is such a difficult task is 

because usually there is not a reference image available to compare the fused result.  A 

new method for generating image fusion reference images is presented in this section.   

The human visual system (HVS) is known to be sensitive to edge information in 

images.  A method is proposed that uses the high frequency information in each source 

image to emphasize the edge information.  To this end, each source band image is HP 

filtered and the original source image along with the HP version of that image is used as 

input to image fusion algorithms.  In this way, high frequency information within the 

respective source bands is “boosted” as a function of individual fusion algorithms.  To 

obtain the fused resultant image, the fused high frequency “boosted” images are simply 

added to form the fused reference image.  This process is depicted in Figure 31. 

 

 

Figure 31. Procedure to generate a reference image using the image fusion algorithm to 
“boost” the high frequency component of each source image before combining the 
information. 



98 

 

Adding the fused images requires multiplicative factors that sum to 1 to account 

for display range differences.  This process is nothing more than the superposition fusion 

defined previously, which is known to reduce contrast in the images.  More optimal 

weighting schemes or combination procedures may be investigated to determine if there 

exists a higher quality image using the procedure in Figure 31.  Given a reference image, 

popular reference metrics, like UIQI and peak signal-to-noise (PSNR) and mean squared 

error (MSE) could then be used to evaluate the quality of the image fusion algorithm.   

A new metric that uses MI is introduced and proposed to evaluate the similarity 

between a fused image obtained using the original source images and a different fused 

image obtained using the “high-frequency boosted” source images.  This metric is 

normalized using a sum of similarity measures between each original source image and 

the corresponding “high-frequency boosted” image.  This measure is given as follows: 

 ( )
( ) ( )F2SWIR,IF1LWIR,I

F3F,I  Metric ReferenceFusion 
+

=  
(9.1-1) 

 
Evaluating how well an individual fusion algorithm can improve its high 

frequency information transfer from the source images to the fused image, coupled with 

human performance evaluations of the data, may lead to the development of methods for 

which a multitude of image fusion algorithms can be equivalently compared and 

discriminated against.  The FRM can be used to discriminate between the ‘best’ fusion 

algorithms according to the similarity between the output of each fusion algorithm and 

the reference images.   

To investigate this claim, let’s revisit the performance results from the 

LWIR/SWIR perception experiment.  Rather than look at the PID as a function of range, 
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I decided to investigate what percentage of correct IDs the ensemble of observers has 

with the entire target set.  In this way I can rank the overall correct ID for an entire image 

set.  To do this, I first used ordered statistics of the FRM values across the image set, 

after which I plotted an empirical distribution of the data values for each fusion 

algorithm.  This is shown in Figure 32.  The blue curve represents the actual data and the 

magenta curve represents the fit to a normal distribution.   

 

  

 

Figure 32.  Empirical distributions using ordered statistics of the FRM evaluation of three 
different fusion algorithms. 

 

The FRM ordered statistics follow a normal distribution for this image set.  The 
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tell me the distribution of images per range.  The thought here is that by applying the 

FRM to the image set I could determine the proportion of images within a required 

distance from the mean value, thereby obtaining knowledge of which image at a 

particular range is included.  Depending on the distribution of farthest to closest range 

imagery, I could impose a rank on the algorithm.  The slope of the curves could also be a 

candidate for ranking the algorithms.  For this study, the amounts of images within +/- 1 

STD for the fused images were used with results given in Table 10.   

  

Table 10 

Percentage of images that fell within +/- 1 STD of the mean FRM 
value for the LWIR/SWIR fused images 

SIDWT 71/96 = 74 % 

LAP 66/96 = 69 % 

SUP 65/96 = 68 % 

 

 

There were 74% of the SIDWT images within a STD from the mean FRM value.  

Of the 26% that were outside the mean, 58% of them were the images at 1500 meters.  

This suggests that the FRM is grouping the closer range images near its mean value.  The 

other algorithms had similar distributions.   

To determine the probability of correct, I plotted the ordered statistics of the FRM 

versus PID.  These plot is given are given in Figure 33.   
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Figure 33. Probability of correct responses recorded as a function of FRM values for the 
fused image set in the LWIR/SWIR experiment. 

 

The probabilities of correct responses for the superposition, SIDWT and the 

Laplacian fusion algorithms were 43%, 59% and 47% respectively, as seen in the above 

figure.  If the percentage of images within +/- 1 STD of the mean value is used to rank the 

fusion algorithms, then the ranking of the algorithms would be: SIDWT, Laplacian and 

then superposition.  A small point to note here, the IFRM and FRM rank SIDWT as the 

better fusion algorithm in this study.  Further research should be conducted to determine 

whether or not this characteristic of the FRM demonstrates consistency.  Consistently 

grouping closer range imagery into one cluster and the farthest range imagery into 

another cluster gives the FRM a useful classification characteristic for ranking image 

fusion algorithm performance.   
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10 Conclusion 
 

This dissertation introduces into the image fusion community a new image fusion 

evaluation measure, FCIM, which measures the information content within fused imagery 

and generates an associated performance prediction value.  The FCIM is effective in 

predicting human identification task performance for a particular set of assumptions and 

conditions.  The assumption that the fused imagery evaluated has been properly prepared 

for human perception is needed to relate human perception to the FCIM measures.  The 

performance of the FCIM is tested using different spectral bands and different target sets, 

with results showing the FCIM’s ability to effectively evaluate the complementary and 

redundant information content in fused imagery under these conditions for the purpose of 

predicting human task performance.   

Additionally, the FCIM has shown itself to be useful as a tool for comparing 

various image fusion algorithms and can be used as a measure to investigate image fusion 

quality.  The development of the FCIM is a major step towards the ultimate goal of being 

able to evaluate human visual task performance without the need of time consuming, 

expensive perception tests.   
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Figure 34. PID performance curves from Figure 13 and FCIM performance for the 
controlled human perception experiment.  The entire target set using the superposition 
fusion algorithm. 
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Figure 35. PID performance curves from Figure 13 and the Hossny metric performance 
for the controlled human perception experiment.  The entire target set using the 
superposition fusion algorithm. 
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Figure 36. Scatter plots for which correlation measures were obtained between human 
performance and each of the metrics used in the controlled perception experiment. 
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Figure 37. Sensitivity plots for each of the fusion algorithms used in the controlled 
experiment.  The Hossny metric for the 1515 and 2525 fusion cases is given on the left.  
The FCIM plots are on the right.   
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APPENDIX III 
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Scatter plot for FCIM and PID for each fusion algorithm
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Figure 38. Scatter plots for which correlation measures were obtained between human 
performance and each of the metrics used in the LWIR/SWIR perception experiment.  On 
the left are the plots for the FCIM and on the right are the plots for the Hossny metric. 
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APPENDIX IV 

 

Table 11 

 Pearson Product-Moment Correlation Coefficient Table of Critical Values.  
This table is taken from http://physics.mercer.edu/Younce/pearson.html 

df= N-2 

N = number of 

pairs of data 

Level of significance for two-tailed test 

.10 .05 .02 .01 

1 .988 .997 .9995 .9999 

2 .900 .950 .980 .990 

3 .805 .878 .934 .959 

4 .729 .811 .882 .917 

5 .669 .754 .833 .874 

6 .622 .707 .789 .834 

7 .582 .666 .750 .798 

8 .549 .632 .716 .765 

9 .521 .602 .685 .735 

10 .497 .576 .658 .708 

11 .476 .553 .634 .684 

12 .458 .532 .612 .661 
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13 .441 .514 .592 .641 

14 .426 .497 .574 .628 

15 .412 .482 .558 .606 

16 .400 .468 .542 .590 

17 .389 .456 .528 .575 

18 .378 .444 .516 .561 

19 .369 .433 .503 .549 

20 .360 .423 .492 .537 

21 .352 .413 .482 .526 

22 .344 .404 .472 .515 

23 .337 .396 .462 .505 

24 .330 .388 .453 .495 

25 .323 .381 .445 .487 

26 .317 .374 .437 .479 

27 .311 .367 .430 .471 

28 .306 .361 .423 .463 

29 .301 .355 .416 .456 

30 .296 .349 .409 .449 
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35 .275 .325 .381 .418 

40 .257 .304 .358 .393 

45 .243 .288 .338 .372 

50 .231 .273 .322 .354 

60 .211 .250 .295 .325 

70 .195 .232 .274 .302 

80 .183 .217 .256 .284 

90 .173 .205 .242 .267 

100 .164 .195 .230 .254 
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APPENDIX V 
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Figure 39. Image Intensifier source imagery for the hand held perception experiment.  
Starting from top left: Soda Can, Brick, Camera, Cell phone, Coffee Mug, Flashlight, 
Grenade, Gun, Knife, PDA, Radio, and Rock. 
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Figure 40. LWIR source imagery for the hand held perception experiment.  Starting from 
top left: Soda Can, Brick, Camera, Cell phone, Coffee Mug, Flashlight, Grenade, Gun, 
Knife, PDA, Radio, and Rock. 
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APPENDIX VI 

Preface 

The following document has been prepared for submission into the journal of 

Optical Engineering.  The contents of this document highlights research results 

comparing predicted human identification performance using optical systems that have 

single F-number optics versus optical systems that have dual F-number optics.  I am the 

first author of this document entitled “Performance comparison between dual F-number 

and single F-number infrared systems”. 
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Abstract: Dual F-number infrared systems are under development for 

deployment in various Army platforms and systems in other services.   A 

system incorporating dual F-number technology has the capability to 

increase system performance by allowing the use of variable field of views 

when performing military target acquisition tasks such as search and 

detection, recognition and identification.  The focus of this paper is on 

long-wave infrared (LWIR), mid-wave infrared (MWIR), and Notional 

Third Generation (3rd Gen) dual band FLIR imaging systems.    

In this paper, for a given set of assumptions, improvements in range 

performance achieved using dual F-number systems compared to single F-

number systems is quantified.  It has been determined that the use of a 

dual F-number system can provide a significant increase in overall system 

performance for MWIR and 3rd Gen FLIR systems.   The results presented 

in this paper are valid for infrared target acquisition systems where the 

human performs the search and detection process and the identification 

process.    

 

Keywords: Dual F-number, infrared system design, variable aperture, warm shield 

design, cold shield design 
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1.  Introduction 

The speed in which a system can gather light is described by its F-number and is 

ultimately determined by the effective focal length and aperture size of the optical 

system.   In optical systems the limiting factor for the narrow field-of-view (NFOV) is 

commonly the diameter of the optics.   In reflective spectral bands, like the visible, a 

variable F-number is achieved with a non-reflective adjustable iris/pupil in the optical 

train.  In emissive or thermal imaging, an iris like that would be an infrared noise source 

and adversely affect sensitivity.   Fixed aperture/F-number cold shields are typically 

implemented inside an infrared detector array’s dewar.  This limitation in turn determines 

the value of the wide field-of-view (WFOV).  Historically, there is a compromise 

between WFOV and NFOV performance for thermal infrared systems using a single F-

number, whereas a more optimal WFOV and NFOV performance can be realized using a 

system that incorporates dual F-number optics.   

A low F-number configuration is used for WFOV search/detection and a high F-number 

configuration is used for NFOV long range recognition or identification.   Dual F-number 

uses a low F-number in the WFOV and a high F-number in the NFOV.   A dual F-

number system has the benefit of being able to change its F-number with changing FOV, 

thus allowing optimization of system parameters such as sensitivity and resolution [1] 

which result in increased range performance.   A single F-number system is limited in 

this regard in so much as all the FOV’s are slaved off each other.   Incorporating dual F-

number in a system design allows the designer to optimize multiple FOV’s thus realizing 

increases in target acquisition range performance as a result. 
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Some general benefits of low F-number are: 1) a larger photon flux on the detector 

permitting higher signal to noise or shorter integration time (less motion blur) and 2) a 

larger aperture in the WFOV leading to detector-limited resolution.   The benefit of high 

F-number is the increased range due to a smaller instantaneous field-of-view (IFOV 

sometimes called detector angular subtense or DAS).   A high F-number reduces 

aberrations and increases the diffraction blur diameter; which usually causes the system 

to be diffraction limited.   Dual F-number uses low F-number in the WFOV for Search 

and Detection (SD) and high F-number in the NFOV for Identification (ID). 

An investigation has been conducted to quantify the performance benefit of dual F-

number versus single F-number.   The results of this study suggest a moderate benefit is 

expected for LWIR band systems whereas a large benefit is expected for MWIR and 3rd 

Gen systems.   A 3rd Gen FLIR is a dual band thermal imager comprised of a large format 

staring array that can simultaneously image LWIR/MWIR bands.    

The main goal of this study is to quantify the performance benefits associated with 

utilizing a dual F-number system.   Section 2.0 gives a description of system models used 

in this evaluation along with some underlying assumptions.   Performance evaluations 

between range and FOV for the LWIR and MWIR bands are also given.   Section 3.0 

discusses the results obtained from analyzing the models in Section 2 quantifies the 

benefits of dual F-number system performance and provides plots and tabular 

presentations of results for each infrared system.   
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2.  Implementation approaches 

There are currently two approaches to the implementation of dual F-number (see Figure 

1); warm shield and a cold shield design.   A reflective warm shield is an optic (with a 

hole in the center that acts as the system stop) on a paddle that rotates into the optical 

path outside the detector dewar.   In the cold shield approach, a variable aperture is 

placed in the cryogenic cold space and the aperture iris diameter is adjusted to change the 

system F-number.   Having the ability to vary the F-number with changing FOV’s and 

changing cold shield aperture size allows for system performance improvements.    

2.1 Dual F-number warm shield 

The reflective warm shield is on a paddle that moves in and out of the optical path.   The 

warm shield is actually an aspheric reflector that reflects the cold space radiation band 

into the dewar so that the detector does not receive unwanted radiation from regions 

outside the high F-number.   The left side of Figure 1 shows the two figures with and 

without the warm shield in place.   When the shield is out of the path, a low F-number is 

implemented and when the warm shield is in the path, a high F-number is implemented.   

Since the warm shield is on a swing arm assembly, there are a number of issues such as 

the failure of the swing arm could block the detector, the alignment repeatability of the 

aperture, and the space required outside the dewar results in larger optics. 

2.2 Dual F-number variable aperture 

The variable aperture [3,4,5] implementation is shown on the right side of Figure 1.  The 

variable aperture iris is actually placed in the cryogenic space of the detector dewar.   The 

iris mechanism provides the potential for not just dual F-number, but continuous F-
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number designs.   Although the moving parts are subjected to extreme temperature 

cycles, the approach has been proven to be robust enough to be implemented by a number 

of sensor manufacturing companies.   This approach provides compact optical design and 

is modular so the assembly can fit into a number of optical designs.   One drawback is 

that the added mass in the dewar requires an increased thermal cool down time or more 

power (and higher capacity cooler) to cool the dewar assembly.    

 

Fig.  1.  Dual F-number Implementation Approaches.  A more detailed comparison of the two 

techniques is shown in Table 1 

Table 1.   Comparison of Dual F-number implementation approaches 
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3.  Performance approach assessment and assumptions 

The SD range and the ID range are calculated for two sensor cases: a single F-number 

sensor and a dual F-number sensor.   The performance is also calculated for four 

conditions: 1) SD set with dynamic range for scene contrast at 1 kilometer, 2) SD is 

enhanced with Local Area Processing (LAP), 3) cold background, and 4) cold 

background with a small target contrast (cold target).   

Search and detection tasks (low F-number configurations) are performed in the WFOV 

to locate potential targets.   Upon detecting an object of interest in the WFOV the 

operator switches to the NFOV, where high F-number configurations are used, to 

determine if the object is indeed a target.   An optical system designed with one F-

number inherently suffers from trade-offs between the WFOV and NFOV performance.   

Traditional design of a system’s NFOV is limited by the diameter of the optics which in 

turns limits the system’s WFOV.   Optical systems designed utilizing dual F-number have 

the potential to realize performance increases in search and detection tasks and 

identification tasks within the same system.    

There are several sensor and target assumptions and are listed as follows.   The 

NFOV and identification performance is limited by a 6-inch aperture (the FOV is allowed 

to vary).   The WFOV is held constant at 10 degrees diagonal (8 degrees horizontal), so 

the entrance aperture size is allowed to vary and the focal length is held constant.   SD 

range performance is modeled with an observer search pan of 3 seconds per FOV which 

results in some level of smear or pan blur.  The detector is a 640 by 480 array with 20 

micrometer square elements.   The maximum charge storage is 10 million electrons and a 

50% maximum well capacity is used.   A 12 millisecond integration time limit is imposed 
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and a background temperature of 300K is imposed unless stated otherwise (as in the case 

with the cold weather performance).   

4.  Performance calculations 

The performance calculations were carried out using the above assumptions and the 

Night Vision Electronic Sensors Directorate (NVESD) thermal sensor performance 

model NVThermIP [6].   NVThermIP predicts the contrast threshold function (CTF) of 

the system as well as predicts the target acquisition range performance achievable by the 

sensor. 

The first performance calculation corresponds to no LAP in a mid-latitude summer 

environment.   The visibility was 23 kilometers and the aerosol content corresponded to a 

rural situation.   The target contrast was 1.25 Kelvin and the scene dynamic range (scene 

contrast temperature) was 5 Kelvin.   The performance calculations shown included no 

turbulence and no system vibration blur.   The FOV associated with the NFOV, 

identification mode, was allowed to vary with F-number.   Recall that the WFOV was 

constant at 8 degrees horizontal.   As the NFOV decreases, the identification range (noted 

in Figure 2 as ID FOV) increased until the system became diffraction-limited.   The eye 

distance to the system display (resulting in magnification) was optimized in a manner that 

gave the best range for the given imager.   The search and detection range (noted as SD in 

Figure 2) decreased with F-number due to a number of contributors to include lower 

signal-to-noise, and/or more smear due to a longer integration time.   In Figure 2, dashed 

lines correspond to the LWIR and solid lines correspond to the MWIR. 
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One aspect that is immediately apparent from Figure 2 is the small SD range 

performance compared to ID range performance.   The SD range performance is driven 

by the dynamic range limitations associated with adjusting WFOV gain and offset for 

temperature variations close to the sensor and then the atmospheric transmission and path 

radiance reducing the contrast of the target at longer ranges.   This reduction in long 

range target contrast is difficult for the human eye to see since the eye is limited by the 

CTF.   That is, the SD range performance is not limited by signal-to-noise.   It is limited 

by the eye CTF, the atmospheric transmission, and the dynamic range of the image on the 

display.   This effect does not occur with ID since the dynamic range is adjusted where 

the background is local to the target so that the gain and offset is optimized around the 

target.   Sensors without LAP have these characteristics. 

To compare a single F-number system to a dual F-number system, an F-number is 

selected for the single F-number system where both ID and SD range performances are 

good.   We chose F/5 for the single F-number MWIR system and F/2 and F/6.5 for the 

dual F-number MWIR system.   For the single F-number MWIR system, the SD and ID 

performance ranges were 3.4 and 11 km, respectively.   For the dual F-number MWIR 

system, the SD and ID performance ranges are 4.2 and 12.2 for a 24% and 11% range 

increase, respectively.   We could have chosen a lower F-number for the single F-number 

system, where the SD improvement would have been smaller, but the ID performance 

would have been larger.   However, reducing the SD performance range increases the 

chance for targets slightly pass the SD distance to go undetected and therefore the 

operator would never switch to the NFOV for ID.    As Figure 2 shows, targets above 3.4 

km for SD wouldn’t be detected using the single F-number MWIR system and therefore 
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no attempt on ID would be made; but targets between 3.4 km and 4.2 km would be 

detected using the dual F-number MWIR system, allowing for improved performance.   

A similar analogy can be carried out for the LWIR system.    

 For the LWIR system, we chose F/3.5 for the single F-number system and F/2 and F/5 

for the dual F-number system.   The single F-number SD and ID performance ranges 

were 4.0 km and 7.0 km, respectively.   For the dual F-number system, the SD and ID 

performance ranges were 4.5 km and 7.7 km for 12% and 10% performance increases, 

respectively. 

 

Fig.  2.   Detection and Identification Range Performance as a Function of F-number.   No Local 

Area Processing 

 

The second performance calculation included a WFOV that was accompanied by LAP.   

LAP extends the performance range of SD in the WFOV through the most efficient use 

of the available display dynamic range.   In Figure 3, the left image corresponds to a 
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WFOV without LAP and the right image corresponds to a WFOV with LAP.   The 

targets are much easier to detect in the right image. 

 

Fig.  3.   WFOV without (Left) LAP and with (Right) LAP 

 

Fig.  4.   Detection and Identification Range Performance as a Function of F-number.   With Local 

Area  Processing 

In Figure 4, the results are provided for a system with LAP.   The ID ranges are the 

same as those in Figure 2 since the performance of ID has a localized gain and offset.   

The SD range performance shows a dramatic improvement.   Two MWIR SD range 
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curves are shown: one with no MWIR integration time smear associated with the 3 

sec/FOV pan rate and one with the MWIR integration time smear.   Integration time 

smear in the LWIR is negligible.   The knee in the MWIR SD w/Smear curve is where 

the integration time maximum is met at 12 seconds.   Again, the single MWIR F-number 

was selected at F/5 and the dual MWIR F-number system was selected as F/2 and F/6.5.   

The ranges for SD were much larger and the improvement in SD range performance was 

28% where the improvement in ID range performance remained at 11%.   The single 

LWIR F-number was selected at F/3.5 and the Dual LWIR F-number system was F/2 and 

F/5.   The LWIR SD range performance for single F-number was 7.6 km and for dual F-

number was 8.7 km for a 15% improvement.   The LWIR ID range performance 

improvement remained at 10%. 

A stressing situation with MWIR is cold weather performance and an even more 

stressing situation is cold weather performance with a low contrast target.   MWIR is 

considered photon starved in cold temperatures.   We provide the later calculation with a 

target of contrast of 0.25 Kelvin and a background temperature that ranged from 240K to 

320K.   LWIR is not affected significantly by cold backgrounds.  Hodkins et.  al.  [7] 

conducted a study examining how the temperature in a scene impacts the noise in infrared 

sensors and their performances.   A cold weather performance comparison between 

MWIR and LWIR is given that supports the above conclusions.   Overall LWIR 

performance becomes better than MWIR performance when temperatures ≤  -24 oC (-11 

oF).   
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  Figure 5 shows the SD range performance and system noise equivalent temperature 

difference (NETD) as a function of F-number and background temperature.   NETD is 

given in [7] as: 
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TotalqN ,  is the total number of noise electrons that can be collected during integration 

time intt .  η is the detector quantum efficiency, dA is the detector area and τ is the 

average optics transmission over the waveband λ∆ .  BCKT is the background temperature 

and ( )

BCK

Tq

T
L
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∂

∂ ,λ is the scene photon radiance contrast evaluated at BCKT .   Equation 1 can be 

used to determine the effect F-number and integration time have on NETD.    

Note that the atmospheric model in Figure 5 has been changed to a cold weather arctic 

type climate with a 23km visibility and rural aerosols.   The background temperatures 

were set to 240K, 260K, 280K, 300K, and 320K (-35F, 1.4F, 37F, 73F, and 109F).   We 

considered 240K extremely cold, 260K moderate cold, and 280K mild cold conditions.   

The rapid drop in detection range performance at low F-number is due to smear during 

the search pan rate and the knee in the drop curves correspond to the 12 millisecond 

integration time limit.   To the right of the knee, the NETD increases and a loss in signal-

to-noise occurs.    
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Fig.  5.   Detection range and NETD as a Function of F-number and Background Temperature 

 

 

Fig.  6.   Identification range and NETD as a function of F-number and background temperature 

 

The cold weather detection calculations include LAP.   The cold weather identification 

results are provided in Figure 6.   The identification range is shown as a function of F-
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number and the temperature range is varied again.   Note that the identification range in 

the MWIR can also decrease at higher F-number (no smear is included) due to a decrease 

in signal-to-noise. 

Using Figure 5 and Figure 6, a comparison of single F-number to dual F-number 

systems can be accomplished for cold weather and low contrast targets.   In the MWIR, 

we chose a single F-number system of F/5 and a dual F-number system of F/2 and F/6.5.   

The single F-number SD and ID range predictions for a 240K background and 0.25K 

target were 4.5 km and 6.1 km.   The dual F-number SD and ID range predictions a dual 

F-number system was 7.4 km and 5.8 km for a 64% and -5% performance increase 

respectively.   The reduction in ID performance shows that while F/6.5 is a good choice 

for warmer conditions, it can result in a non-optimized system under photon-starved 

conditions.    From the authors point-of-view, the small reduction in ID performance is 

worth the large gain in SD performance.   In the LWIR, with a single F-number system of 

F/3.5 and a dual F-number system of F/2 and F/5, the SD and ID performance increase at 

a 240K background is 17% and 10%. 

Figure 5 and Figure 6 can be used to determine the performance benefits of dual F-

number at various background temperatures and for any selection of dual F-number. 

4.1 General benefits of dual F-number  

To compare the general performance of single F-number to dual F-number, consider the 

summary provided in Table 2.   For single F-number, an MWIR F/5 system was chosen 

and a LWIR F/3.5 system was chosen for all three cases (no-LAP, LAP, and cold weather 

with low contrast target).   This choice appeared to be a good balance between SD 
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performance and ID performance.   A smaller F-number such as F/4 or F/4.5 could have 

been chosen in the MWIR, however, the dual F-number benefit to ID performance would 

have been smaller and the benefit to SD would have been larger.   The same concept 

could be applied to the LWIR.   Therefore, F/5 appears to be a good compromise for the 

MWIR and F/3.5 is a good compromise in the LWIR.   The choices for dual F-number 

were F/2 for SD performance and F/6.5 for ID performance in the MWIR and F/2 and F/5 

in the LWIR.  The authors felt that the F/2 was practical with reasonable implementation.   

The ID performance selection of F/6.5 and F/5 provided for a diffraction-limited 

performance realm. 

In Table 2, The SD range predictions are shown in the No-LAP/LAP/Cold Weather 

format in each cell.   The ID range predictions are shown in the LAP/Cold Weather 

format since No-LAP or local automatic gain control did not make sense in the narrow 

field-of-view.   The single F-number performance corresponds to the F/5 MWIR system 

and a F/3.5 LWIR system.   The numbers shown (along with the corresponding F-

numbers) are the ranges in kilometers that correspond to 50% probability of detection 

(with search) and 50% probability of identification.   The bottom two rows show the 

range increase, in percentage, for SD performance and ID performance.   The notional 3rd 

Gen FLIR column takes the higher of the MWIR or LWIR performance for each case of 

single F-number and dual F-number.   The selection (MW or LW) is shown next to the 

range predictions.   These numbers are used to determine the percentage of range 

performance improvement from single F-number system to dual F-number system. 

Overall, the LWIR improvement (for the configuration sensor we used) is on the order 

of 15% improvement in search and detection performance (mainly due to an improved 
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MTF at lower F-number) and a 10% improvement for identification (mainly due to a 

higher diffraction exploitation).   The MWIR improvement ranges from 24% to 64% for 

search and detection and ranges from -5% to 11% for identification.   Notional Third Gen 

FLIR improvement ranges from 22% to 32% for search and detection and from 7% to 

18% for identification. 

Table 2.   Performance Comparison of Single F-number and Dual F-number 

 

 

5.  Summary 

The performance benefit of Dual F-number (versus single F-number) for infrared target 

acquisition systems is summarized in Figure 7 (for the configuration described in this 

paper).   The left chart is for search and detection performance and the right chart is for 

identification performance.   Blue bars are LWIR, red bars are MWIR, and white bars are 

notional 3rd Gen FLIR.   The search and detection benefit shows no-LAP, LAP, and cold 

weather with low contrast target performance.   The identification benefit shows LAP and 

cold weather with low contrast target performance.    
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Dual F-number can provide a significant increase in overall system performance for 

MWIR and Third Gen FLIR systems.   A moderate performance benefit can be seen in 

the LWIR.   In addition, LAP is extremely important for SD performance.   The results 

presented in this paper are valid for infrared target acquisition systems where the human 

performs the search and detection process and the identification process.   Other 

assumptions, such as a rapid scan WFOV with Aided Target Detection, would provide a 

larger benefit for dual F-number in the MWIR.   Finally, under cold conditions MWIR 

detectors require longer integration times than LWIR to achieve good NETD.   MWIR 

systems can be degraded, even with dual F-number systems, if the system is not 

optimized for cold weather performance.    

 

Fig.  7.   Performance Benefit of Dual F-number 
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