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Abstract

Named Data Networking (NDN) is a fundamental paradigm shift from the

current Internet where, packets are forwarded by name instead of the destination IP

address. By explicitly naming each packet and signing data, NDN enables some

revolutionary features like data authenticity, multicast data delivery, and multipath

forwarding with adaptive strategies. For NDN to work well over a network, it

requires a routing protocol which will not only need to propagate name reachability

in the network, but also compute ranked multipath forwarding entries for each name

by ensuring the security of routing exchanges. Moreover, moving from a traditional,

long studied, and well-understood IP based thinking process to name based routing

makes designing an efficient routing protocol for NDN more challenging. This thesis

presents Named-data Link State Routing (NLSR), which propagates name

reachability and computes ranked multiple nexthops for forwarding. NLSR also

takes advantage of inherent data authenticity features to provide simple yet robust

security for routing exchanges.

This thesis focuses on discussing four functional design goals of NLSR. First and

foremost is designing a naming scheme for routers, routing updates, and routers’

cryptographic certificates. The second design goal is to make a rational choice

between two available synchronization protocols for disseminating routing updates

in NDN. The third goal is designing an efficient algorithm to produce multiple

nexthops for each forwarding entry. The fourth and final goal is to produce a

self-sufficient design for naming, distributing cryptographic certificates in the

network, and deriving trust from those certificates for routing updates.

The goal of this thesis is to design and evaluate a routing protocol, which will

well serve the needs of NDN. NLSR moves from the conventional IP based routing

to name based routing and from single path forwarding to multiple path forwarding.

We have evaluated NLSR, and compared to IP link state routing protocol, it offers
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more efficient routing update propagation, inherent update authentication, and

native support of multipath forwarding. NLSR provides a great learning experience

to develop an application on top of NDN which requires meticulous consideration in

namespace design, careful design of the trust model for data authentication, and

most importantly, a mental adjustment to NDN’s design philosophy of using

interest-data exchanges for routing messages. NLSR is the first distributed routing

protocol in NDN for a single authoritative domain and the first step toward

developing and extending protocols for inter-domain routing.
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1 Introduction

The Internet has been evolving since its birth, and communication in the current

Internet is dominated by content distribution. To keep up with evolving Internet

communication, Internet researchers proposed Named Data Networking (NDN), a

new architecture for the future Internet. NDN is a fundamental architectural shift

from the current Internet, in which each packet carries a name instead of a

destination IP address. Unlike IP, NDN forwards a packet by looking at the names

of the packets [5]. Communication in NDN is consumer driven; that is, a consumer

issues interest for data by mentioning the name in an interest packet. This interest

is forwarded to a producer by looking at the name. A producer replies with a data

packet containing the name, data, and the signature of the producer. Upon

receiving the data, the consumer can verify the authenticity of the data. Thus,

because each packet is named and all data is signed, NDN inherently enables

features like data authenticity, in-network caching of data, multicast delivery of

packets, and an adaptive forwarding strategy for multipath.

NDN is evolving as the future of the Internet, and for proper network

functionality, it needs a routing protocol for generating Forwarding Information

Base (FIB) entries and installing them in the forwarding table of a NDN node.

Each FIB entry of NDN contains a name prefix and a set of nexthops through which

this name prefix can be reached. When any interest comes to an NDN node, the

interest’s name prefix is matched against the forwarding entries in the forwarding

table to forward that interest. Moreover, NDN has an inherent loop prevention
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technique [5,6], which allows the use of multiple nexthops for forwarding any packet

in the network. So, for efficient and effective adaptive forwarding, NDN needs a

routing protocol, that will not only produce name-based forwarding tables but also

support multiple nexthops for forwarding entries. Motivated by the need for an

effective name based routing protocol for NDN, we present the Named-data Link

State Routing (NLSR) protocol which supports name based routing and produces

ranked multiple nexthops for forwarding entries. NLSR is built on top of NDN, so

every routing update exchange is done in the form: interest/data. Like IP link-state

routing protocols such as OSPF [7], NLSR disseminates Link State Advertisement

(LSA) updates, builds a network topology from LSA updates, calculates shortest

paths, and generates next hops for forwarding entries. However, unlike IP, NLSR

produces ranked multiple nexthops for insertion into the forwarding table of an

NDN node. Moreover, NLSR takes advantage of data authenticity, which is a built

in feature of NDN, to ensure authenticity of routing update exchanges.

The contribution of this thesis is the first distributed routing protocol in NDN,

NLSR, which focuses on answering four main design questions: the first and

foremost question is how do we design an effective naming scheme to name routers,

routing updates, and routers’ certificates? In NDN, every entity is identified by

name. Although NLSR can use any underlying protocol for routing exchanges, each

entity in the protocol needs to be named. So, this is a design challenge in mapping

our traditional IP-based cognitive model to NDN’s name-based model.

The second design goal is to choose or design an efficient routing updates

synchronization protocol to disseminate updates in the network with minimal delay

time while also ensuring correctness. Moreover, where in IP routing protocol an

update is pushed in the network, the NDN philosophy allows NLSR to pull updates

from it. Instead of reinventing the wheel, we evaluated two available

synchronization protocols in NDN, NDN-Sync (hop by hop dataset synchronization
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protocol) and chronoSync (distributed dataset synchronizaition protocl), in order to

find a functionally correct, optimal, and well suited for NLSR.

The third goal of NLSR design is to create an algorithm which produces ranked

multiple nexthops to facilitate multipath forwarding thereby taking advantage of

the adaptive forwarding strategy in NDN [15]. While IP routing produces single

best nexthops or limits its forwarding to equal cost multipath, NDN routing needs

to produce multiple nexthops for each forwarding entry to make the best use of

NDN’s intelligent and adaptive forwarding strategy.

The fourth and final design goal is to exploit NDN’s built in data authenticity

features to ensure security of routing updates without exposing them to any

potential security threats. NLSR is directly benefitted from the built in feature of

data authenticity in NDN. As routing updates are NDN packets, which carry name,

data, and a signature, a receiving router can verify the signature of routing update

packets. The router can then ensure that the routing update packet was generated

by an authentic router and was not tampered with during the dissemination

process. The contribution of this thesis towards achieving this design goal is finding

a secured distribution process for cryptographic certificates as well a method to

derive trust from these certificates.

This thesis describes the design choices and rationale to achieve these four main

design goals in NLSR. The goal of this thesis is to present the feasibility and

benefits of using a link state routing protocol in NDN rather than inventing one.

We evaluated NLSR, and compared to IP link state routing protocol it offers more

efficient routing update dissemination, built-in update authentication, and native

support for multipath forwarding. The remainder of this thesis is organized as

follows: Chapter 2 provides brief background knowledge on Named Data

Networking (NDN) and link state routing. Chapter 3 describes design details of our

research work. Chapter 4 presents the evaluation of the NLSR protocol. Chapter 5
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discusses related works in NDN routing area, chapter 6 presents planned future

works, and finally, chapter 7 concludes the thesis.
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2 Background

NDN is an architectural shift from today’s IP, in which the concept of “where” in IP

is replaced with concept of “what”. Instead of forwarding packets to where – the

destination addresses, NDN forwards packets to what – the content that users in

today’s content-driven Internet really care about. In this chapter, we provide the

background on Named Data Networking (NDN) architecture. We also provide a

brief background on Link State Routing protocol at the end of this chapter.

2.1 Named Data Networking

As a result of its continuous evolution, today’s Internet has reached a point where

most of its communication has become content-driven, but the current IP

communication model was designed to be destination-driven. To better suit today’s

content-driven Internet communication pattern, Jacobson et al. proposed a new

Internet architecture: Named Data Networking (NDN) [5]. In this section, we will

briefly discuss the basic concepts of NDN, which is the foundation for our work.

2.1.1 NDN Packets

All packets in NDN are of two types: interest and data as depicted in Figure 2.1.

Interest packets are sent when consumers express interest for data. Each interest

packet carries a name for the desired data, a selector field indicating preferences and

restrictions if multiple content matches are found in response to the interest, and a

nonce (a random value used to detect duplicates). Data packets contain a name

which is used to match interest of consumers), the data content, the publisher’s
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signature, and additional signing information about the publisher’s cryptographic

certificates, validity, etc.

Figure 2.1: Two types of NDN packets:interest and data

2.1.2 Hierarchical name

Each and every packet in NDN is identified with a hierarchically-structured name,

which is unique under a scope. For example, this thesis can be named as /memphis.

edu/cs/ahoque/thesis/msthesis.pdf, where each ‘/’ represents a boundary

between name components and is not part of the name. Naming conventions vary

from application to application and are opaque to the network [6]. Because of the

name’s opacity, applications can choose any naming scheme and evolve from the

network independently. Furthermore, this hierarchical naming structure enables

applications to represent a relationship between two pieces of data.

2.1.3 NDN node

Each NDN node has three main components in its forwarding plane [5]: the

Forwarding Information Base (FIB), the Pending Interest Table (PIT), and the

Content Store (CS). The FIB stores forwarding entries used to forward interests
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towards a potential matching data source(s). Unlike IP, NDN allows a list of

outgoing faces rather than a single, best next-hop or equally costly multi-hops. The

PIT stores the unsatisfied interest names along with the faces they are received

from so that data packets can be routed back to the consumers by following the

interest trail. The CS is used for caching data in a NDN node. Figure 2.2 shows the

forwarding plane model of a NDN node taken from [5].

Figure 2.2: Forwarding plane of NDN Node consists of Forwarding Information Base
(FIB), Content Store (CS), and Pending Interest Table (PIT) [5]

2.1.4 Consumer-driven communication

Communication in NDN is consumer-driven, where the consumer initiates

communication by expressing an interest for desired data. A NDN node forwards

this interest to the producer(s) of the data according to the entries in the FIB,

which is populated by a name-based routing protocol. The node also remembers the

name of this interest and adds the incoming face as an entry in the PIT. When the

interest packet reaches a data packet matching its name, the data packet traverses

back toward the consumer by following a reverse path laid out by the interest. All
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unsatisfied interests are recorded in the PIT. If multiple interests exist for the same

name, a NDN node does not forward this interest again upstream since there will

already be a PIT entry matching this name. Instead, another incoming face will be

added to the PIT entry’s face list. Later on when the corresponding data arrives,

the node checks the PIT for the unsatisfied matching interest, finds the list of faces,

and sends the data out to all those faces downstream. So NDN’s forwarding plane

supports multicast packet delivery, as shown in Figure 2.3.

Figure 2.3: Consumer-driven communication supporting multicast delivery in NDN
[16]

2.1.5 Intelligent forwarding plane

A NDN node preserves the state of each interest in the PIT after forwarding it. So

each entry in the PIT indicates unsatisfied interest from the downstream node and

is removed if matching data satisfies the interest. This per-packet state information

not only allows NDN to forward packets to multiple faces and avoid loops, along

with the data returning success feedback it also enables NDN to be adaptive in

reaction to network failures. This ultimately leads to first alternative path

exploration and better network resource utilization. Moreover, a NDN node can also

limit the rate of incoming packets by limiting the PIT size [6].
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2.1.6 Data centric security

NDN secures data packet instead of securing communication channels [4, 5]. Each

data packet contains the publisher’s signature, coupled with its name. The

signature, along with the publisher’s information, allows consumers to authenticate

the data, verify its provenance, and derive trust from a model. This security

approach makes data independent of where it comes from, allowing NDN to cache

data anywhere in the network to satisfy any future interest. More importantly, by

leveraging this end-to-end security approach of NDN, consumers and publishers of

data (applications) can tailor and customize their own trust model.

2.2 Link State Routing

Link state routing is a global routing scheme where each router originates Link

State Advertisements (LSAs) about itself, and its connectivity states. These LSAs

are disseminated in the network from router to router. After network convergence,

every router in the network has a map of the network, which is used to

independently compute individual best paths to a reachable destination. The basic

functionality and concepts of link state routing are discussed briefly in this section.

2.2.1 Building Adjacency

Each router maintains a relationship called ‘Adjacency’ with its neighbors after

being discovered via a Hello protocol [7]. Hello packets from the Hello protocol also

serve the purpose of monitoring the adjacency status of neighbors. This adjacency

relationship plays an important role in the Link State Advertisement

synchronization process.

2.2.2 Link State Advertisement (LSA) synchronization

After establishing adjacency with its neighbor, the router builds LSAs by

encompassing its connectivity and state information and sends them out to its

adjacent neighbors using a reliable flooding technique. Each router receiving the
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LSAs first copies them into its own Link State Database (LSDB), then sends them

out again to that router’s adjacent neighbors (except for the incoming one) in an

area. Thus each and every router advertises and gathers knowledge of the network.

Aging and sequencing is applied to expire old LSAs and replace them by

propagating new LSAs respectively.

2.2.3 Routing table calculation

Following network convergence, every router’s LSDB should be identical in a area.

At this point, every router in a area has the same complete picture of the network in

order to compute the shortest path to all reachable destinations. Then each router

builds a network topology from the Link State Database, considering itself as the

root of the network tree, and applies Dijsktra’s shortest path algorithm to calculate

the shortest path to all destinations. After shortest path calculation, each router

generates its own routing table by calculating next-hop to all reachable destination.
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3 Design and Implementation

NLSR is a link state routing protocol for NDN. Like other link state routing

protocols (OSPF [7], IS-IS [8]), NLSR propagates LSAs for building the network

topology as well as distributes name prefix reachability. NLSR discovers,

establishes, and maintains adjacency with neighboring routers. Whenever NLSR

detects any changes in adjacency’s state such as link failure, link recovery, neighbor

router crashing, or neighbor router recovery, it updates the LSA and disseminates

the new LSA to the network. NLSR also advertises name prefixes from both static

configuration and dynamic registration by content producers. Upon every deletion

or addition of a name prefix, NLSR disseminates a new LSA. NLSR’s LSDB always

keeps the latest version of the LSAs.

NLSR’s such dissemination of LSAs and building the topology may first appear

to be very trivial, as identical functionalities have already been implemented in IP

routing protocol. However, since NLSR is implemented on top of NDN, it needs to

use Interest and Data packets, and the design must shift away from the familiar

concepts of destination IP addresses to name prefixes and from data pushing into

the network (where any node can simply send any packet to any other node) to data

pulling from it. Therefore, in NDN we have to think in terms of packet names and

data retrieval. To be more precise, we need a methodical naming system for routers,

routing updates (Section 3.1), and router’s cryptographic certificates (Section 3.6).

Moreover, we need to pull routing updates promptly and without previous

knowledge of when an update may be generated (Section 3.3).
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In terms of routing functionality, NLSR distinguishes itself from all other link

state routing protocols by two facets: it produces multiple routes for each name

prefix in place of single best next-hops, and it signs and verifies all routing updates

messages to ensure that each router can originate and disseminate only its own

prefix and connectivity information within the network. We present our route

calculation algorithm in Section 3.4 and our trust model in Section 3.6. As a first

step in developing this NDN-based routing protocol, our initial design of NLSR lies

in the context of a single routing domain with a single authority on which our trust

model is built. We truly believe that this design and deployment experience of

NLSR in the NDN research test bed can offer us a concrete stepping stone towards

developing an inter-domain routing protocol that incorporates routing policies and

an inter-domain trust model.

3.1 Naming

Designing a functional naming scheme for each element: routers, routing updates in

the routing system, and the router’s corresponding cryptographic certificates is

perhaps the most challenging and important element of NLSR’s design. Based on

current operational practices and network structuring schemes, a hierarchical

naming system best suits capturing the relationships among various network

components in the system. This makes it easy to identify routers belonging to the

same network, sites, and messages generated by a specific router.

Every router in our design is named by following a structured hierarchical

naming scheme. The first part of the router name is the network this router belongs

to, the second part is the site owning the router, and the final part is the assigned

router name. So a router name becomes of the form /<network>/<site>/

<router>. For instance, an ATT router in Atlanta PoP (point of presence) may be

named /ATT/AtlantaPoP/router7. This way we know that if two routers share the
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same /<network> prefix then they belong to same network, and if they share the

same /<network>/<site> prefix, then they belong to same site. This naming

scheme not only makes it easy to filter out erroneous, unwanted routing messages,

but it also derives trust (Section 3.6).

The NLSR process on a router is denoted by the process name following the

router name: the router name is used as its prefix, followed by the process name

that NLSR constitutes to the form/<network>/<site>/<router>/nlsr. This

process name is used in periodic info message exhanges between neighboring routers

for establishing adjacency, detecting failure, or the recovery of either links or routing

processes (Section 3.5). Moreover, this process naming scheme of process provides

the scope of running other routing processes on the same router in the distant

future.

Routing updates are named with the prefix /<network>/nlsr/LSA/<site>/

<router>. Ideally, any updates originated by a NLSR process should have the

process prefix /<network>/<site>/<router>/nlsr/LSA, indicating that it has

been generated by a NLSR process of router /<network>/<site>/<router>.

However, since our implementation uses ChronoSync [16] to disseminate LSA data

in the network, all routing updates need to share a common routable prefix in their

name. ChronoSync does not impose any constraints on the naming of routing

updates however, the fact that it assumes that all data names to be synched are

routable creates a circular reference to the routing process itself. To avoid this

circular indirection, all routing updates generated by a NLSR process share a

common prefix /<network>/nlsr/LSA(we call this the <LSA-Prefix>), and append

/<site>/<router> at the end to differentiate LSAs originated by different NLSR

routers.
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3.2 LSAs

NLSR originates and disseminates three types of LSAs: a) Adjacency LSAs, b)

Prefix LSAs, and c) Hyperbolic LSAs. All the LSAs of NLSR have the name format:

/<LSA-Prefix>/<site>/<router>/<LSA-type>/<sequence-no>, where <router>

is the name of the router that originates the LSA, <LSA-type> is the type of LSA

(Prefix, Adjacency or Hyperbolic LSAs), and <sequence-no> is an integer used to

determine the ordering of a particular LSA as it changes over time. The Adjacency

LSA is used to advertise all active adjacency with neighboring NDN routers. Each

adjacency link description of an Adjacency LSA contains a neighboring router name

associated with a cost to reach that neighbor. NLSR builds an adjacency list at

startup time and creates the Adjacency LSA. Any changes in the status of any link

to a neighbor or neighboring process detected by periodic “info” Interest messages

(Section 3.5) triggers updates by the propagation of the Adjacency LSA.

Table 3.1: Contents of an LSA
LSA Type Content

Adjacency LSA # Active Links (N), Neighbor 1 Name, Link 1 Cost, ..., Neighbor N
Name, Link N Cost

Prefix LSA Name Prefix

Hyperbolic LSA Hyperbolic Radius, Hyperbolic Cordinate

The Prefix LSA advertises all name prefixes (statically configured and

dynamically advertised by application) that are reachable from the origination

router. Withdrawal or addition of any name prefix causes a NLSR router to update

and disseminate the Prefix LSA thoughout the network. Hyperbolic LSAs contain

the geometric hyperbolic coordinates of the origination router, which are used for

hyperbolic routing table calculation [9].

In order to remove outdated LSAs caused by router crashes and network

partitions, every router periodically refreshes each of the advertised LSAs by
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generating a newer version with an incremented sequence number. Each LSA has a

lifetime associated with it and is removed from the LSDB when its lifetime expires.

Therefore, if a router crashes, its LSAs will not persist in the network. If a network

is partitioned because of periodical LSA expiration, the LSAs of one partition will

be discarded from another partition to ensure consistency in the network. One

important thing to note here: route calculation should not be impacted by the

obsolete LSAs in NLSR. If a router crashes or a link goes down, its neighbors will

update the status of their LSAs and propagate them throughout the network, so

traffic will not be directed towards those routers or by those links. Since we do not

use the refreshes to handle packet losses or state corruption (Sync Protocol handles

that), and the obsolete LSAs do not affect routing table calculations, the LSA

refreshing interval can be set to a relatively long period.

3.3 LSDB Synchronization

For the conceptual simplification of our design, we view the LSDB as a collection of

data and the LSDB synchronization problem as a data synchronization problem of

the LSDB as maintained by the routers. Routers periodically exchange their hashes

of the LSDB to detect inconsistencies and recover from them. This synchronization

approach avoids unnecessary flooding to the network – when the network is stable,

as only one hash (instead of all the LSAs) is exchanged between neighbors.

Moreover, it is also receiver-driven, implying that a router will request LSAs only

when it has CPU cycles available.

3.3.1 NDN Synchronization protocol (Sync)

In the early stages of NLSR implementation, NLSR uses the NDN synchronization

protocol [10] to disseminate LSAs to neighboring routers. Sync is associated with

the NDN repository, which allows applications to define collections of named data

called slices in repo, which are then kept in sync with identically defined slices in
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neighboring repos. Sync computes a hash tree over all the data in a slice and

exchanges the root hash between neighbors to detect discrepancies. If the hash

values do not agree, two neighboring nodes then exchange the hash values with

nodes on the next tree level continuously until they detect the specific leaf node(s)

causing the problem. They then exchange the data to reach consistency.

Figure 3.1 shows how a LSA is disseminated in the network. To synchronize the

slice containing LSAs, the Sync protocol periodically sends special Interest messages

called Root Advise messages, along with the hash value of the slice, to the

neighboring nodes (step 1). When Router A’s NLSR creates a LSA and writes it in

the Sync slice (step 2), its hash value becomes different from that of Router B. This

causes Router A’s Sync to reply to the Root Advise Interest from Router B with the

new hash value of its local slice (step 3). Router B’s Sync then compares the hashes

and recursively requests for the next level of hashes that are causing the differences.

Eventually, Router B’s Sync identifies the data that needs to be synchronized (LSAs

in the context of NLSR) and retrieves them using Interest messages (step 4 and 5).

The Sync on Router B then sends the data name to the local NLSR agent (step 6),

which fetches the data from the local repo (step 7 and 8) and updates its LSDB

(step 9).

Although the NDN synchronization protocol gives NLSR an efficient hop-by-hop

dissemination of LSAs in network, it fails to notify NLSR in case of frequent

updates in a large network, making NLSR functionally incorrect. Moreover, NDN

synchronization retains all old copies of data, causing memory usage to grow with

each LSA refresh interval by the size of all LSAs in the network, which makes NLSR

unfeasible to run for a relatively longer period.

16



Figure 3.1: LSA dissemination process from Router A to Router B via NDN synchro-
nization protocol

3.3.2 ChronoSync

ChronoSync takes a distributed approach instead of a hop-by-hop approach like the

NDN synchronization protocol. ChronoSync forms a cryptographic digest by

summarizing the state of the dataset of the all-involved parties (the router in our

case) in the network, and exchanges it among them. Each entity can detect

differences in the dataset from the digest and can decide which data to fetch,

whether to fetch, and when to fetch [16].

ChronoSync is implemented as a library, and any application can incorporate it

for dataset synchronization. When there is a data update, ChronoSync increases the

sequence number associated with the data name, computes the digest, and

exchanges the digest with others to fetch the updated data name(s). If there is an

update in any data name, the application can detect it and decide what to do with

that update. However, NLSR itself needs to increase the sequence number of the

LSAs when generating a LSA update instead of letting ChronoSync do it. Therefore

we modified the ChronoSync library so that it can adapt with the NLSR

requirements of pushing the sequence number with the LSA updates.
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Figure 3.2: LSA dissemination process from router A to Router B via ChronoSync

Figure 3.2 shows how NLSR disseminates LSAs via ChronoSync. Lets assume

that at any stable state both routers have outstanding sync interest on digest d1

(step 1). Router A updates its LSAs and pushes updates to ChronoSync in step 2.

In step 3, ChronoSync calculates digest d2 and sends sync data for outstanding

sync interest on d1. ChronoSync on router B calculates its own digest d2 and both

routers send outstanding interest for fetching future updates (step 5 and 6). In step

7, ChronoSync on router B notifies the NLSR process about the routing update.

Router B then sends interest for the updated LSA to router A in step 8. In step 9,

router A replies back with LSA data in response to step 8’s interest. In step 10,

router B installs the LSA into the LSDB.

ChronoSync’s ability to handle simultaneous data generation without failing to

notify applications and to recover from network partitions makes it an ideal

candidate for routing updates dissemination in order to ensure correctness. Unlike

NDN Sync, ChronoSync does not store any content, which makes it more feasible
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for long-term usage with any application. Because of its correctness and all the

other benefits over NDN synchronization protocol, we chose to use ChronoSync for

LSA dissemination with NLSR.

3.4 Multipath Calculation

Each NLSR node constructs a network topology using the information from the

Adjacency LSAs in the LSDB. Afterwards, it runs a simple extension of the

Dijsktra’s algorithm to produce multiple next-hops for each destination node. But if

a router is configured to calculate the routing table using hyperbolic information,

NLSR calculates the routing table according to the hyperbolic routing algorithm

presented by Fragkiskos et al [9]. From the Prefix LSAs, we know which name prefix

is originated from which destination router. So from prefix LSA we get destination

router for name prefix, and from routing table we obtain list of next-hops to reach

that destination. By combining these two information, we can obtain a list of

next-hops to reach each name prefix.

Our multipath calculation using Dijsktra’s algorithm works as follows: It removes

all immediately adjacent links except one, then uses Dijkstra’s algorithm to

calculate the cost of using that link to reach every destination in the topology. This

process is repeated for every adjacent link. In the case of hyperbolic routing

calculation it’s trivial, as the algorithm checks the distance from all neighbors to the

destination and multipath calculation is done in one pass. Afterwards, NLSR ranks

the next-hops for each destination based on the route cost to reach that destination.

Note that NLSR allows the operator to specify the maximum number of paths per

name prefix to insert into the FIB, so that the FIB size can be controlled when a

node has many neighbors. However, the computational cost still increases as the

number of neighbors increases, because the algorithm checks through all the

neighboring links to produce the cost for each path and then ranks them.
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Unlike IP, routing information in NDN acts only as a hint to the forwarding

plane. The forwarding plane can observe data delivery performance using state

information maintained in the PIT and then rank the multiple next-hops of a name

prefix using the actual observation as well as the ranking from the routing

protocol [15]. However, the ranking information from the routing protocol is still

important in forwarding the initial interest to a name prefix and in exploring

alternative routes when the current route fails to retrieve data.

3.5 Failures and Recovery Detection

NLSR sends out periodic “info” interest messages through each link for detecting

link failures and/or remote NLSR process failures. If an “info” interest times out,

NLSR will try re-sending it at specific times with short intervals to make sure the

interest is not lost. If no response to the “info” interest is received from the

neighbor at the other end, adjacency with that neighbor is considered down. Later

on, NLSR continues to send these periodic “info” interests to detect the recovery of

this adjacency, but at a relatively long interval to avoid high message overhead

during a long-lasting failure. For NLSR processes, it is impossible to determine

whether the remote NLSR process has died or the connecting link has failed.

However, this distinction is insignificant since in both cases the link should not be

used to forward any kind of traffic.

When any failed link recovers or a dead remote NLSR process comes alive, NLSR

will receive a response to the “info” Interest and change that adjacency status to

‘Active’. Any change in adjacency status due to failure/recovery of either a link or a

NLSR process results in updating the Adjacency LSAs, disseminating the LSA

throughout the network, and scheduling routing table calculation. Figure 3.3

illustrates how Node A detects an adjacency failure with Node C and recovery with
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Figure 3.3: Router A’s adjacency failure detection of Router C and adjacency recovery
detection of Router B

Node B.

3.6 Security

Each and every packet in NDN is digitally signed, and the signature is attached as a

part of the packet. The signature covers the content, binds the name with that

content, and includes a small amount of signature information useful in data

verification [5]. One piece of the supporting data is the key locator [1, 5], which

indicates the name of the key used to sign the packet so that the receiver can fetch

the certificates to verify the signature.

A LSA with a valid signature states that the signature was produced using the

public key indicated in the key locator field but it does not verify the provenance of

the LSA. For an instance, any attacker can sign a Prefix LSA with his key and

inject the LSA into the network. So to check the authenticity of the data, a process

not only needs to verify the signature, but it also must authenticate that this LSA is

indeed signed by an authorized NLSR process. In other words, we need to check

that the key has the correct name of the corresponding NLSR process. This still
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does not eliminate the possibility of an attacker forging a key with the same name.

We then need a trust model to verify the authenticity of the key and a secured

system for key distribution and revocation.

3.6.1 Trust Model

NLSR is an intra-domain routing protocol. In the context of a single network

domain, there is usually a network administrator (a trust anchor) that can certify

the authenticity of keys in the network. Therefore we use this trust anchor for key

signing and verification, which is easy to setup and manage. We could let this trust

anchor sign the public key of every router, but this approach presents a greater

security risk when one key is used to sign a large number of keys. Instead, we design

a hierarchy of five levels that is rooted at the trust anchor, which limits the signing

scope of each key to a smaller size. Table 3.2 shows the name of each key at every

level of the hierarchy. Note that the last component of a key name is always the

hash of the key (not shown in the table), so that when someone expresses an

Interest to a key, the name always matches a specific key. At the top level of the

hierarchy is a root key owned by the network domain’s administrator. The next

level is a set of site keys, each owned by the administrator of a single site in the

domain (where a site can be a department in an organization or a PoP in an ISP),

that are signed by the root key. Each site key signs a set of operator keys (there

may be more than one operator for a site). Each operator key signs a set of router

keys, each of which signs the key of the NLSR routing process on that router.

Finally, the NLSR key signs the routing data originated by the NLSR process.

Table 3.2: Keys Names
Key Owner Key Name

Root /<network>/keys

Site /<network>/keys/<site>

Operator /<network>/keys/<site>/O.Start/<operator>

Router /<network>/keys/<site>/R.Start/<router>

NLSR /<network>/keys/<site>/.R.Start/<router>/nlsr
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Figure 3.4: Signing and verification process of each routing packet

NLSR strictly enforces the trust model rooted at the trust anchor. Figure 3.4

depicts the flow of signing and the verification process of each NLSR packet. When

a NLSR router sends a LSA to the network, it signs the packet with its NLSR key

and puts the key name in the ‘SignedInfo/KeyLocator/KeyName’ field of the Data

packet. Upon receiving a LSA, a NLSR router fetches the key from its certificate

store or sends an Interest to fetch the key to complete the verification process.

NLSR also checks whether the key indeed belongs to the origination router’s NLSR

process. This process repeats until NLSR reaches the self-signed key of the trust

anchor. If at any step key fetching is unsuccessful, NLSR finds that an unauthorized

key signed the key, or the final verification step does not reach the trust anchor, the

LSA is considered illegitimate and its discarded as being unsolicited. Note that once

a key is verified, we record this information and do not repeat the verification on

this key for future packets.

3.6.2 Key Distribution

NLSR distributes keys in the network using ChronoSync during startup time. Each

router publishes an update in the name of its certificate with a new sequence

number. Other routers receiving these update messages from ChronoSync fetch

these certificates and try to verify each certificate by looking at the certificate
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names included in the signed information (Section 3.6.1). If signer certificates are

available in the certificate store and the router can verify the certificate, it is stored

in certificate store. Otherwise, the router sends an interest to fetch the signer

certificate. This process continues until the router reaches its trust anchor.

Certificates are discarded for the same reason a data packet is discarded as

described in the previous section. Associating a sequence number with certificates

also allows NLSR to revoke signing keys and certificates. The router needs to

publish updates of certificate names with a new greater sequence number. Other

routers will fetch this certificate and replace older certificate with the newer

certificate after successful validation by NLSR.

3.7 Implementation

Figure 3.5 shows the block diagram of modular NLSR implementation. Mainly,

NLSR can be divided into four components: a) LSDB b) Routing c) Security and d)

Communication. The LSDB stores all LSAs (Section 3.2) from the network during

the LSDB Synchronization process described in Section 3.3. The routing module

builds a network topology by gathering knowledge from the LSDB, it calculates the

routing table (Section 3.4), and it generates the FIB for NDN. The security module

implements the trust model, stores certificates, signs outgoing data packet, and

authenticates incoming data packets before any processing (Section 3.6).

The communication module consists of three sub-modules: i) Data Manager, ii)

Interest Manager, and iii) Sync Logic Handler (SLH). The Interest Manager is

responsible for sending out and receiving interest. The received interest is forwarded

to the Data Manager for further processing. The Data Manager takes care of

sending out data in response to incoming interest, and it processes incoming data

from neighbors. The Data Manager communicates with the security module to sign
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Figure 3.5: Block diagram of NLSR modules

data before sending it out and to validate any incoming data packet. The SLH is

responsible for publishing LSA updates in the network and for notifying NLSR

about updates from the network. The LSDB module informs SLH about LSA

updates, incorporating LSA names with the latest sequence number. The SLH

publishes updates to the attached ChronoSync. ChronoSync then synchronizes

updates across the network. When ChronoSync detects any updates from network,

it immediately notifies the SLH. The SLH communicates with the Interest Manager

to fetch this update. The inbound/outbound arrows attached to the Interest

Manager and Data Manager connects them to the neighboring NLSR process, and

the arrow from ChronoSync connects it to the neighboring ChronoSync process.
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4 Evaluation

In this chapter, we evaluate the performance of NLSR in terms of processing time,

messaging overhead, and convergence time. For conducting tests, we built a network

consisting of six heterogeneous nodes with different operating systems and

specifications. Figure 4.1 shows the topology we used to represent these results.

Although refresh time for LSAs can be set at long intervals (Section 3.2), in order to

test the protocol in a short period of time we set the refresh time to be every 30

minutes instead of on the order of days. This allowed us to carefully observe all

functionality and measures of performance in a short period of time.

Figure 4.1: Network Topology

Figure 4.2 represents the CPU usage of the NLSR process at each node. The

number in parenthesis following the node name indicates the degree of the node

(how many active neighbors that are connected to the node). It is evident from

Figure 4.2 that the nodes with a higher degree of connectivity in the network

exhibit higher CPU usage, which means the computational or processing cost
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increases linearly with the number of active links of nodes. This behavior is

exhibited by NLSR mainly because of the per-link shortest path calculation

(section 3.4), and a higher message-exchanging overhead.
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Figure 4.2: NLSR CPU utilization increases proportinately with the number of active
link

Figure 4.3 demonstrates the comparison of NLSR’s processing overhead with and

without the proposed trust model. It is notable that even with the proposed trust

model, which requires multiple levels of keys to sign and verify a packet, the extra

processing cost is hardly significant. This is due to the fact that NDN by default

signs all outgoing data packets. The only noticeable difference between the two

schemes is the verification process. NLSR, with the proposed trust system,

distributes keys at the startup, which increases the probability of having a high

certificate store hit ratio during the verification process. NLSR only requires

fetching new certificates; it stores the certificates once after verification, resulting in

a very low CPU cost. Figure 4.3 further illustrates the higher CPU usage of

multipath routing calculation as opposed to single path routing calculation. Since
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the CPU cost due to messaging is the same in both schemes, the difference here is

mainly due to the higher processing cost of multipath calculation.
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Figure 4.3: NLSR’s Average CPU utilization: even with key management NLSR has
almost same CPU utilization for both multi and single path

For the convergence test, we used the same topology shown in the Figure 4.1.

After booting up all the nodes, we waited long enough to let all the LSDBs

synchronize. Once the network was in a converged state, we generated traffic using

the ccnping utility [13]. We hosted the ccnping server on node 6, while node 2 was

used to generate ccnping ping messages (Interest) with a default timeout value of 4

seconds. After 60 seconds we brought down node 4, which forces the ping messages

from node 2 to take an alternative path to reach node 6. Figure 4.4 shows the

benefits of multipath routing, wherein node 2 did not need to recalculate the path

again. Instead, traffic moved to an alternate path as soon as the failure was

detected. NLSR with single path calculation, however, took more than a minute to

find the alternative route and moved back to old router as soon as we restored the

link. Note that the convergence time can be fine-tuned by tweaking the values of
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the “info” interest interval, its time out value, and the “info” interest ’s retry number

(which were set to 60 seconds, 15 seconds and 3 times respectively for this test).

With these values and configuration settings, link failure detection can take

anywhere from 45-105 seconds. By reducing the values, NLSR convergence time can

be reduced, but it will result in increasing the number of routing messages

throughout the network.
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Figure 4.4: NLSR convergence time with & without multipath support. With multi-
path support traffic takes alternative path immediately(blue), but single path takes
about 60 seconds to converge

Table 4.1 shows the number of messages exchanged by OSPFN (Section 5).

Table 4.2 demonstrates the number of messages exchanged by NLSR. NLSR

exchanges slightly more messages (11.8 messages per link per minute) than

compared to OSPFN (10.2 messages per link per minute). With the current

implementation, each NLSR process sends interest messages to fetch data when it

gets a notification for an LSA update, which results in extra message exchanges for

interest and data. We can reduce these LSA interest and data exchanges by piggy
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Table 4.1: OSPFN Message Count

Links Hello LS Update LS Ack Total/Node
Node 1 2 1446 728 296 2470
Node 2 2 1441 884 161 2486
Node 3 4 2886 1250 739 4875
Node 4 3 2166 1040 457 3663
Node 5 2 1442 697 321 2460
Node 6 3 2165 1235 324 3724
Total/Type 16 11546 5834 2298 19678
Avg/Node 2.7 1924.3 972.3 383 3279.7
Avg/Link 1 721.6 364.6 143.6 1229.9
Avg/Link/Min 6 3 1.2 10.2

backing the updated LSA data with sync data. This improvement will reduce the

number of messages exchanged by NLSR to 9.04 per link per minute (presented in

table 4.3), which is lower than the number of messages exchanged by OSPFN

Table 4.2: NLSR Message Count

Links
Info Info Sync Sync LSA LSA Total

Interest Data Interest Data Interest Data /Node
Node 1 2 242 241 1204 534 426 278 2925
Node 2 2 242 241 1237 419 386 235 2760
Node 3 4 484 484 2199 1413 805 627 6012
Node 4 3 363 363 1855 686 671 300 4238
Node 5 2 242 242 1141 365 451 147 2588
Node 6 3 363 363 1770 667 633 431 4227
Total/Type 16 1936 1934 9406 4084 3372 2018 22750
Avg/Node 2.7 322.7 322.3 1567.7 680.7 562 336.3 3791.7
Avg/Link 1 121 120.9 587.9 255.3 210.8 126.1 1421.9
Avg/Link/Min 1 1 4.9 2.1 1.8 1.1 11.8
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Table 4.3: NLSR Message Count

Links
Info Info Sync Sync Total

Interest Data Interest Data /Node
Node 1 2 242 241 1204 534 2221
Node 2 2 242 241 1237 419 2139
Node 3 4 484 484 2199 1413 4580
Node 4 3 363 363 1855 686 3267
Node 5 2 242 242 1141 365 1990
Node 6 3 363 363 1770 667 3163
Total/Type 16 1936 1934 9406 4084 17360
Avg/Node 2.7 322.7 322.3 1567.7 680.7 2893
Avg/Link 1 121 120.9 587.9 255.3 1085
Avg/Link/Min 1 1 4.9 2.1 9.04
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5 Related Work

Very limited work has been done in the routing area of NDN. We previously

developed OSPFN [14], an extension of OSPF (Open Shortest Path First) for

routing in NDN, and deployed this routing extension in the NDN research test bed.

OSPFN defines a new type of Opaque LSA to carry name prefixes in routing

messages. It installs the best next-hop to each name prefix in the FIB, and

additionally operators may manually configure a list of alternative next-hops for

OSPFN to install in the FIB. Although OSPFN can build a FIB with name prefixes,

it has significant limitations. As with conventional IP routing protocols, OSPFN

still uses IP addresses as router IDs, relies on GRE tunnels to cross legacy networks,

and computes only a single best next-hop for each name prefix. Experience from

OSPFN deployment suggests that managing IP addresses and tunnels are major

operational problems, and inadequate multipath support limits NDN’s effectiveness.

The routing protocol proposed by Dai et al. [2] is similar to NLSR on the

surface, but it differs from NLSR in the following aspects: Firstly, it uses OSPF to

collect the topology and compute shortest path, whereas NLSR uses ChronoSync to

disseminate routing updates. Secondly, their routing message exchanges do not

follow basic NDN philosophy, and therefore cannot exploit advantages offered by

NDN like built-in security. Finally, their multipath forwarding is limited to content

served by multiple producers.

Torres et al proposed a Controller-based Routing Scheme (CRoS) for NDN [12].

The controllers store the network topology, calculate the routes, and store named
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data locations so that they can install a route for any named data in the network.

The idea of having decentralized controllers is very intriguing, however the network

needs to be flooded with specially formatted Interest messages to search for

controllers, which can ultimately lead to high routing message overhead.

In [11], the authors proposed a Cooperative Routing Protocol, which focuses on

a FIB reconstruction based on the content retrieval statistics of a router. In this

scheme, the authors define the network as a set of requester routers (generating or

receiving interests and forwarding them to next-hop routers if the content is not

available in the Content Store) and provider routers (advertising name prefixes, i.e.

connected to producers). Based on the content retrieval statistics, one router

reconstructs FIB entries to aggregate multiple flows of interest for similar content.

Although the proposed scheme improves network performance, it uses content

retrieval statistics to reconstruct FIB, which would not be possible if the FIB was

not constructed by some other routing protocol first. In [3], the authors proposed

the name-based routing scheme NetInf, which adopts a hierarchical Distributed

Hash Table (DHT for name-based routing. The authors proposed to have DHTs for

each Point of Presence (PoP) for name resolution. These PoP-level DHTs are

aggregated into a higher-level DHT for the resolution of names in a larger domain.

The topmost DHT in the NetInf hierarchy (known as REX) stores indices for all the

content in the network. This huge scale of indices storing for each content in the

topmost DHT creates a network performance bottleneck.
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6 Future Work

NLSR functions in a single authoritative area/domain. With the growth of NDN, it

will also need to mature to function in multiple domains. This work is the first step

towards the development of an inter-domain routing protocol for NDN. Moreover,

this current simple implementation of multipath calculation results in a linear

increase in CPU processing time with the number of neighboring nodes. We will

investigate this multipath calculation algorithm to improve the performance of

NLSR.

NLSR uses ChronoSync for LSA dissemination, which effectively distributes the

names of the updates across the network, however NLSR still needs to send Interests

throughout the network to fetch these updates. But if the updated data could

piggy-back on the sync data exchanges (which contain only names), then NLSR

would not have to send those extra Interest messages, resulting in decreased message

exchanges, reduced network convergence time, and improved routing efficiency.

The trust model functions properly under the assumption that NLSR will be

within a single authoritative domain where a single entity is the trust anchor. But

in multiple authoritative domains, prior assumption will no longer stand, and this

trust model then will need to find an effective way to determine a trust anchor and

derive trust, which is also a future goal of this NDN routing research.
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7 Conclusion

The design of Link State Routing protocol is a long studied, well-understood

subject for IP. However, devising an efficient Link State Routing protocol for NDN

has proved to be an interesting challenge, and our design of NLSR so far has served

as a great learning experience. NLSR departs from the conventional IP-based

routing protocol’s single path forwarding with multiple path forwarding options,

and it also propagates name reachability to meet NDN’s routing needs. Our key

gains from this experience, have come from NLSR specifically needing to develop a

new application on top of NDN, which requires a systemic name space design,

careful design of a trust model for key authentication, and most importantly,

thinking through adjustments to NDN’s design pattern. The results represent the

first step of our endeavor to explore new routing schemes and extend into

inter-domain routing for NDN.
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