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Abstract

Madahian, Behrouz. PhD. The University of Memphis. August, 2015. Statistical
Shrinkage Methods for Classification, Prediction, and Feature Extraction Using
Genomewide Gene Expression Data and Small Sample Sizes. Major Professor:
Dr. Lih Yuan Deng.

With advent of new technologies, more data is being collected than ever

before. Data is pouring in from every conceivable direction: from operational and

transactional systems, from Micro array experiments and Genome Wide

Association Studies, from inbound and outbound customer contact points, from

mobile media and the Web to mention a few. Researchers and investigators in

many fields are faced with the problem of identifying important effects among

thousands of variables in high dimensional datasets. This process often results in

non or weekly identified effects. Nowadays a common problem when processing

data sets with large number of variables compared to small sample sizes is to

estimate the parameters associated with each variable. When the number of

variables far exceeds the number of samples, the parameter estimation becomes

very difficult. The attempt to find important variables deriving different phenomena

based on single variable analysis is more likely to not give a comprehensive

picture due to complexity of the phenomena and presence of several predictors

with potentially significant effects. Thus, methods based on single variable

analysis are too simple to give a comprehensive picture of phenotype

architecture. Therefore, more statistically challenging models which are able to

accommodate simultaneous analysis of a large number of variables despite small
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sample sizes are essential in these cohorts. In this thesis, we developed several

novel methods for sample classification, prediction and feature extraction in

cohorts with large number of variables compared to small sample sizes using

Bayesian shrinkage methods as well as non-parametric methods such as Support

Vector Machines and Random Forests. We utilized Generalized Double Pareto

and Double Exponential prior distributions on parameters in Bayesian Generalized

Linear Models setting. These distributions have a spike at zero shrinking the

parameters towards zero which imposes sparsity in the model. We utilized

Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling algorithm

to estimate the parameters. The models were applied to Microarray data sets

such as prostate cancer, leukemia, and breast cancer cohorts. In order to obtain

more robust results 50 resampling on train and test data was performed and

average performance of the models in 50 runs were reported. We investigated the

classification accuracy, feature extraction ability, and prediction ability of the

models. Based on our findings, the Bayesian hierarchical models developed

obtain high classification accuracy as well as result in more cohesive variable sets

compared to other common methods used for the same purpose. We show that

using few predictors obtained from our models, we achieve higher performance

compared to other competitive methods. We also investigated the use of literature

to aid the selection of initial predictors used in the model. Our finding suggests

that even though in some instances use of literature will result in better prediction

and classification, this is not unanimously true and in some cases it results in

poorer performance. This is mainly due to the fact that literature based predictor
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sets can be weak signals in the data set at hand as well as our information about

the variables deriving different phenomena based on literature is not fully

complete. Ideally, we would like to use literature to tune and prioritize signals

directly coming from the experiment. To this end, we developed a literature aided

sparse Bayesian Generalized linear model that uses literature information a priori

to guide the choice of hyper parameters and amount of shrinkage imposed in the

model. The developed model not only achieves high classification accuracy,

sensitivity, and specificity but also, results is substantially more relevant genesets

which turns out to explain the underlying mechanisms of phetotypes better.
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Chapter 1

Introduction

The hereditary material in humans and almost all other organisms is stored in

DNA or deoxyribonucleic acid [2]. Four basic molecular units called nucleotides

form linear double-stranded polymer called DNA. These four base pairs are

adenine, thymine, cytosine, and guanine. For simplicity they are called A, T, C,

and G bases respectively. DNA bases pair up with each other with strict base

pairing rule: A pairs with T with 2 hydrogen bonds and C pairs with G with 3

hydrogen bonds. Genetic information is stored in sequence of nucleotides. Genes

are specific sequences of DNA that provide instructions for several activities in the

cells. The coding parts of DNA sequence determine what the purpose of the gene

is and the non-coding sequence determines when the gene is expressed. When a

gene becomes active, in a process called transcription an RNA copy of the gene’s

information is created. In RNA the 3 base pairs A,C,G are the same as the ones

in DNA and instead of T it has Uracil (U). In RNA, A pairs with U and C pairs with

G as in DNA. RNA molecule has 3 different types:

• Messenger RNA (mRNA): it contains genetic information needed to make

proteins.

• Transfer RNA (tRNA): performs a role in protein production in the cell by

transferring protein building block (amino acids) to the protein synthesis

machinery.

• Ribosomal RNA (rRNA): it is the RNA component of ribosome (protein

synthetic machinery).
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The process of conversion from mRNA to protein is called translation. The

abundance of corresponding RNA for each gene determines the levels of gene

expression which is generally an indicator of the amount of protein produced [22].

Since not all the genes are active at the same time, the study of expressed genes

under different conditions such as different cancers or treatment has proved to be

very effective in casting light on gene disease associations.

DNA Microarray

DNA microarray technology enables scientist to examine several thousands

of genes at the same time. A microarray is made up of thousands of precisely

placed nucleotides called probes on a small piece of glass. Each probe contains

different DNA oligonucleotide sequence that is complementary to the mRNA of

interest. The DNA oligonucleotide is immobilized on the microarray surface using

photolithography or spotting techniques. Generally, mRNA is reverse transcribed

to generate a more stable molecule called complementary DNA or cDNA. After

this process is done, the cDNA molecules are labeled with fluorescents dyes. The

cDNA molecules bind to the probes that are complementary to their sequence by

hydrogen bonds. Then the array is washed and scanned by confocal scanners.

The intensity of the lights emitted is used to determine the amounts of mRNA

which is the surrogate to the gene expression values and the amount of proteins

produced.

Proteins (such as enzymes, hormone receptors to mention a few) are

functional units of cells. Some examples of cellular activities performed by

proteins includes but are not limited to cell differentiation, response to
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environmental stimuli, cell division (mitosis), and cell death (apoptosis). Since

proteins are functional machinery of the cells and the amount and type of the

proteins produced in the cells are determined by the genotype of the cell,

expression of genes determine the phenotypes of cells and organisms. That

means that different organisms and tissues can perform their specific functions

through expression of different genes.

Using DNA Microarray to Help Diagnostics and Therapeutics

DNA Microarray provides facilities for researchers to learn more about

different types of diseases such as study of cancer. In the past, scientists have

classified different types of cancers based on the morphology of the organs in

which the tumor develops. Microarray technology provides invaluable means for

studying diseases based on patterns of gene expression in tumor cells which has

opened new channels for diagnostics and innovative therapeutics. By using

microarrays, design of targeted treatment strategies towards specific types of

cancers has become possible. Furthermore, by examining the gene activity

differences in normal and tumor cells, treated and untreated tumor cells, scientists

will be able to understand exactly how different therapies affect tumors which

potentially can lead to more effective treatments.

Gene Expression Analysis

One of the most important applications of DNA Microarrays is based on

gene expression analysis. Estimation of the level of expression of several

thousands of genes for the sample of cells have been made possible by the use of

DNA microarrays. In gene expression analysis, molecular signature of the tissue
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is obtained by allowing the RNA obtained from the tissue hybridize on the DNA

Microarray. This information may help to perform better disease classification,

guide choice of therapy, and identify new therapeutic targets.

Sample Classification Based on Gene Expression Analysis

The classification of different tumor types is of major importance in cancer

diagnostics and new therapeutic discoveries [2,3,71]. A disease like cancer is

fundamentally a malfunction of genes [3]. It is known that cancer classification

based on gene expression data provides the key information for addressing

fundamental problems pertaining to diagnostics of cancer and discovery of new

drugs. Diagnostics and discrimination of sample types based on gene expression

data has the potential to provide reliable and accurate cancer classification. Many

studies have shown the superior diagnostic performance of cancer classification

based on gene expression data compared to traditional methods based on

morphology and clinical appearance [79,80,100,105].

A variety of techniques have been developed which utilize gene expression

data for cancer classification. Some of these methods include but are not limited

to Bayesian analysis [16,59], support vector machine (SVM) [36,84,92],

self-organizing maps [63], k-nearest neighbor (KNN) [77,106], and ensemble

methods [44,83]. Most of these methods are based on selecting a subset of these

genes as biomarkers and then performing cancer classification based on these

genes. Principal component analysis (PCA) has been used for the analysis of

gene expression data [78]. PCA enables researchers to reduce the dimension

and thus complexity of the data and explain the variation in the data based on first

4



few principal components. PCA is especially useful for visualization and clustering

of the samples based on their gene expression data [78]. In many of the

approaches, the variables are assumed fixed, but in many cases where the

predictor variables are random, such as gene expression data, assumptions can

be made that result in the same formulation as in fixed case [74]. One such

assumptions is a joint multivariate normal distribution for response and predictors,

other is an analysis of response conditioned upon the random predictors. For the

remaining discussion we will assume an appropriate assumption has been made.

Binary and Multi-category Classification Problems

DNA microarray technology shifted the scale of genomics research by

providing capabilities to study several thousands of genes at the same time in a

single experiment. DNA microarray measures the relative amount of mRNA.

Transcriptional changes reflect the status of disease including cancers and thus

gene expression profiles can be used in classification of different types of

cancer [69]. Binary classification problems deal with situations where phenotypes

have two possible categories. For instance, in cancer studies, gene expression

profiles can be used for classifying the samples into normal and tumor tissues.

When the phenotype under study has more than two categories, the multinomial

classification problem exists. Some classification algorithms naturally permit the

use of more than two classes while others are binary algorithms.

In several applications, the multi-class classification is reduced to several

binary classification problems. One strategy is training a single classifier per class

by considering samples of that class as positive and other samples as negative
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samples [10]. Another approach creates
(
k
2

)
binary classifiers for a k-way multi

class problem. For each binary classifier, two sample types are used to train the

model to predict each of the two. At testing, all the classifiers are applied to each

sample and the class that has the most number of asignments is predicted by the

combined classifier [10]. Several methods have been developed that permit the

use of more than two categories of outcome such as logistic regression, and

Random Forests. In most of these methods, the probability of belonging to each

category of outcomes is predicted for each sample.

Cancer Classification Challenges and Shortcoming of Current Methods

Even though the DNA microarrays have made simultaneous monitoring of

thousands of gene expressions possible, sample sizes remain small, most of

them have less than 100 samples. On the other hand, the number of

genes-attribute space- is enormous. Each observation has thousands of genes

associated with it. Assume we mapped the samples in the attribute space, then

the samples will be very sparse in the high dimensional space. Most classification

algorithms are not powerful enough to deal with datasets with this kind of

characteristics. Thus, applying standard classification methods to such data will

result in several problems. High dimensionality and small sample size may give

rise to overfitting. Additionally, having so many genes results in expensive

computation time. Therefore developing an effective classification algorithm

based on gene expression data is not an easy task [103].

Another challenge arises from the presence of noise in the gene expression

data. The noise can be categorized into technical and biological noise [8]. The
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noises introduced at various stages of data preparation is called technical noise.

The noise introduced by genes that are not relevant to the cancer classes is

called biological noise-most of the genes are not related to the cancer under

study. The presence of noise coupled with small sample size makes accurate

classification of tumor types very difficult [8]. The majority of genes in gene

expression data analysis are not related to the phenotype under study, dealing

with these huge number of irrelevant genes, which comprise a disproportionate

number of attributes in gene expression dataset, provides another challenge. In

most gene expression studies, the number of relevant genes comprise a small

portion of the total number of genes. Additionally, the presence of irrelevant genes

reduces the discriminating power of those relevant genes. Extracting these genes

from the pool of several thousands of genes is a big challenge.

The fourth challenge arises from the fact that classification accuracy is not the

only goal in cancer classification. Biological relevancy is another appealing

criterion to most biologists. Biological information revealed during the process can

help in further gene function discovery [103]. Therefore, classifiers that not only

produce high classification accuracy but provide insight into biology are desirable.

In order to highlight those variables that are most relevant to certain phenomena,

it is necessary to develop an approach to weed out unimportant variables.

To tackle this problem, several approaches based on the idea of single variable

analysis at a time have been proposed including: the t-test [21], a regression

modeling approach [87], mixture model approach [66] and non-parametric

methods [91]. The shortcoming of all these methods is that they are all univariate
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variable selection methods. However, most complex phenomena are polygenic; a

single variable analysis can only detect a very small portion of variation and, also,

may not be powerful for identifying weaker associations [7]. In addition, it is very

common for different variables to interact with each other to form a complex

network of interactions, which cannot be characterized from individual analyses.

Thus, the need for new methods which are able to analyze large number of

variables becomes more obvious. Set based approaches to finding significant

variable have the following advantages to single variable analyses. First, by

inferring associations over sets of related variables, they can potentially decrease

uncertainty around variables and false positive. Second, the insights into the

functional links provided, facilitates interpretation of results. The last but not least,

they can potentially uncover a significant pattern distributed over multiple

variables while the changes in individual variables have a small effect providing a

much better framework to investigate architecture of complex diseases. In order

to address limitations that come with single variable analysis methods, lots of

research has focused on the development of various approaches for simultaneous

analysis of multiple variables [53,94,98].

In linear regression framework, least square method is used to obtain estimate

of parameters. The ordinary least square estimates obtained are not quite

satisfactory mainly due to poor accuracy of prediction resulting from high

variances of estimates and poor performance when the dataset at hand contains

large number of variables with small sample size [88]. Often, one would like to

establish a smaller subset which offers the strongest effect and discriminating
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power. It is believed that prediction accuracy can be improved by setting the

parameters associated with unimportant variables to zero and thus obtaining

more accurate prediction for significant variables [88]. Traditionally, by using

forward selection, backward elimination, and stepwise selection a subset of

predictors in a regression framework is obtained. However, these approaches are

computationally expensive and unstable even when the number of predictors is

not large [7]. Furthermore, in this setting there are thousands of variables

compared to small sample size at hand which can result in over fitting and can fail

to identify important predictors. Thus, the data structure makes it impossible to

use traditional multivariate regression for analysis [48]. Researchers have used

logistic regression extensively when the response variable is binary and

multi-category. But for the data structure explained above, procedures

incorporated into the software packages to obtain maximum likelihood estimates

of parameters will become computationally intensive and sometimes intractable.

In addition, the maximization process may not converge to the maximum

likelihood estimates and predictors may have large estimated variances resulting

in poor prediction accuracy [70].

There has been a great effort to develop methods that are able to analyze lots

of variables simultaneously by inducing sparseness in the model while

highlighting the relevant variables. Least Absolute Shrinkage and Selection

Operator (LASSO) work by Tibshirani in 1996 drew much attention to the

area [88]. There exists a rich literature discussing methods to analyze the LASSO

and related approaches [45,104,107,108]. After the work of [89] and [27],
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Bayesian approach to the same problem gained interest. A Bayesian LASSO was

proposed by park and Casella (2008) and Hans (2009), [37,67]. However, these

procedures may cause over-shrinking of large coefficients due to the relatively

light tails of the double exponential prior thus introducing major bias. Using a

normal-Jeffreys prior which has heavier tails than the double exponential

distribution, small coefficients may shrink to zero while minimally shrinking large

coefficients and thus obtaining better results. However use of this prior has no

meaning from an inferential aspect as it results in an improper posterior [5]. An

alternative class of hierarchical priors were proposed that uses Bayesian adaptive

Lasso with non-convex penalization [90]. However, it lacks simple analytic form.

Armagan et. al (2011) proposed the Generalized Double Pareto (GDP) prior

distribution [5] . The properties of this distribution that makes it appealing include:

having a spike at zero alongside student-t like tails, a simple analytic form and

yielding a proper posterior. In addition, it resembles the double exponential

density in the neighborhood of zero and has heavier tails compared to double

exponential, remedying unwanted bias resulting from over shrinkage of

parameters toward zero [5].

Classification Accuracy and Biological Relevance

Another challenging problem in analyzing gene expression data is the fact

that identification of a set of biologically relevant markers with high predictive

power remains difficult. Several machine learning algorithms have been used for

cancer classification with promising results. However, majority of machine

learning algorithms are geared toward obtaining the highest classification
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accuracy and do not take into account the biological relevance of the markers

obtained. Thus, in the majority of applications markers found do not convey

meaningful biological information and are merely good classifiers. Thus, a

machine learning schema that is able to bridge classification accuracy and

biological relevance will be of high merit to the community and can potentially

result in deeper understanding of mechanisms involved.

GCAT is a web-based tool that determines the functional coherence of gene

sets by performing latent semantic analysis of Medline abstracts [96]. In GCAT,

each gene –document was generated by concatenation of all titles and abstracts

of the Medline. After gene-document was collected, latent Semantic Analysis

(LSA) is used to calculate the gene-gene similarity matrix. LSA is a variant of the

vector space model that reduces the dimensions of the matrix by applying

Singular Value Decomposition (SVD) so that genes can be compared more

conceptually [39]. Thus, LSA allows extraction of both explicit and implicit gene

relationships from the literature. In a vector space Model, the semantic structure

of a document is represented as a vector in word space and the degree of

similarity between documents is calculated by the cosine of the angles between

document vectors [39,96]. Given any set of genes, GCAT calculates the cosine

distribution of the gene set compared with that of a random gene set. More

specifically, Fisher’s Exact test is used to determine if the number of gene

relationships above the cosine value 0.6 is significantly different from that which is

expected by chance. The p-value obtained from this procedure is called Literature

derived p-value (Lpv) [96]. Small Lpv values indicate that the input gene list are
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functionally cohesive as opposed to random set of genes. In what follows we use

GCAT to assess the biological relevance of set of markers obtained from our

model.

Dissertation Outline

In this thesis we integrated double exponential prior and Generalized

Double Pareto prior into the Bayesian Generalized Linear Models framework to

induce sparseness in situations with the number of parameters to be predicted far

exceeding the number of samples. In Chapter 2, we develop a hierarchical

Bayesian Generalized Linear Model for binary response situations using

Generalized Double Pareto prior on model parameters. In chapter 3, we develop a

sparse Bayesian multinomial model that can handle multi-category response

variables that are ordinal in nature. The model is applied and tested on a prostate

cancer progression data set [90]. In chapter 4, we extend the model developed in

chapter 2 in order to handle situations with ordinal response variables in

Generalized Linear Models framework. This model was tested on a prostate

cancer stages data set. Resampling techniques were used in order to remove the

bias caused by the choice of training and test samples.

We performed 50 resamplings on the training and test samples and the

average accuracy of the model across 50 runs was reported. We investigated the

effect of literature aided initial input variable list on model performance in chapter

5. In chapter 6, we developed a literature aided sparse Bayesian generalized

linear model that incorporates literature information to guide choice of

hyper-parameters and amount of shrinkage imposed in the model thus bridging
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predictive power and biological relevance of markers obtained. Chapter 7

includes discussion on future work.
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Chapter 2

A Bayesian Approach for Inducing Sparsity in Generalized Linear Models

Using Generalized Double Pareto Prior

Abstract

Identification of marker genes for classification of samples using microarray or

RNAseq expression data remains challenging. In these settings, the data sets

often contain a large number of variables (genes) and a relatively small number of

samples which may render the variable selection process unstable. In addition,

single variable analysis methods are too simple to give a comprehensive picture

of the molecular mechanisms underlying complex phenotypes. Therefore,

methods are needed to shrink the number of variables (induce sparsity) to avoid

over-fitting, while accommodating simultaneous analysis of a large number of

genes despite small sample sizes. The Generalized Double Pareto (GDP) prior is

used to induce sparsity in a Bayesian generalized linear model setting. The GDP

distribution has a spike at zero like the double exponential density, but has a

Student t-like tail which helps remedy over-shrinkage of signals toward zero. In

this study, a fully Bayesian hierarchical model was developed in order to facilitate

Gibbs sampling. The GDP model was evaluated using three published datasets

on leukemia and breast cancer. For each experiment, we randomly divided the

samples into training and test groups. For each data set, using the top 10 genes,

the GDP model achieved higher classification sensitivity (0.91-1.0) than the

double exponential model (0.86-1.0). Interestingly, we found that the GDP model
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identified marker genes with high literature derived functional cohesion. The top

100 genes identified by the GDP model had a literature p-value ranging from

2.06E-7 to 4.49E-24 for the three data sets, compared to the double exponential

model (1.1E-3 to 3.13E-6). We conclude that the Bayesian sparse model with

GDP prior results in better classification and more functionally relevant marker

genes.

Introduction

High throughput expression studies are commonly used to identify genes that

contribute mechanistically to a phenotype or provide biomarkers for classification

of samples related to a given phenotype. A major challenge in analysis of gene

expression is that relatively few samples are analyzed with respect to many

thousands of gene expression variables. To address this problem, several

approaches based on the idea of single variable analysis have been

proposed [22,66,86,91]. The shortcoming of all these methods is that they are

univariate gene selection methods. However, most complex traits are polygenic

so that a single variable analysis can only detect a very small portion of covariants

and may not be powerful enough to identify weaker effects [7]. In order to address

limitations that come with single variable analysis methods, recent efforts have

focused on the development of various approaches for simultaneous analysis of

multiple variables [53,94,98].

Traditionally, by using forward selection, backward elimination, and stepwise

selection a subset of predictors in a regression framework is obtained. However,

these approaches are computationally expensive and unstable even when the

15



number of predictors is small, [7,48]. Researchers have used logistic regression

extensively when the response variable is binary. But for the data structure

explained above, procedures used to obtain maximum likelihood estimates of

parameters will become computationally intensive and sometimes intractable. In

addition, the maximization process may not converge to the maximum likelihood

estimates and predictors may have large estimated variances which results in

poor prediction accuracy [70].

It was previously proposed that prediction accuracy can be improved by setting

the unimportant parameters associated with variables to zero and thus obtaining

more accurate prediction for significant variables, [88]. There has been a great

effort to develop methods that are able to analyze many variables simultaneously

by inducing sparseness in the model while highlighting the relevant variables.

Least Absolute Shrinkage and Selection Operator (LASSO) work by Tibshirani in

1996 drew much attention to the area. There exists a rich literature discussing

methods to analyze the LASSO and related approaches [45,104,107,108]. After

the work of [27,89] Bayesian approach to the same problem gained interest. A

Bayesian LASSO was proposed recently by [67] and [37]. However, these

procedures may cause over-shrinking of large coefficients due to the relatively

light tails of the double exponential prior, and thus may introduce major bias.

Using normal-Jeffreys prior which has heavier tails than double exponential

distribution, we would be able to shrink small coefficients to zero while minimally

shrinking large coefficients and thus obtaining better results. However, it has no

meaning from an inferential aspect as it leads to an improper posterior, [5].
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An alternative class of hierarchical priors proposed in [33] that uses Bayesian

adaptive Lasso with non-convex penalization. However, it lacks simple analytic

form. In [5], authors proposed the Generalized Double Pareto (GDP) prior

distribution with application to continuous outcomes. The properties of this

distribution that makes it appealing include: having a spike at zero alongside

student-t like tails, simple analytic form and yielding proper posterior. In addition,

it resembles double exponential density in the neighborhood of zero and has

heavier tails compared to double exponential remedying unwanted bias resulting

from over shrinkage of parameters toward zero [5].

In this article, we integrated a GDP prior into the Bayesian generalized linear

models framework to induce sparseness in situations where the number of

parameters to be predicted far exceeds the number of samples. The model

developed can be used to analyze binary phenotypes. In step one, we derive the

fully conditional distributions for all parameters in a multi-level hierarchical model

in order to perform the fully Bayesian treatment of the problem. In the second

step, the Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling

algorithm developed in step one is used to estimate all the parameters [30,31].

The model shows a great flexibility to fit many variables at the same time. We

apply our method to a leukemia dataset, [32], and two breast cancer tumor data

sets [18] and [93]. The goal of the study is three-fold: Identification of a small

number of genes having the greatest discriminating power in order to allow

researchers to quickly focus on the most promising candidates for diagnostics and

therapeutics, using the developed model to obtain the probability of each sample
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belonging to one of the categories of phenotype, and obtaining high classification

accuracy. In addition, we expect to not only achieve the above goals but also

identify more biologically relevant genes to the phenotype under study.

Methods

In many different fields of science such as gene expression analysis

continuous outcome variables are not very common and most often we are faced

with dichotomous or multi-level response variables. In these situations, the simple

linear regression model which is designed for analyzing models with continuous

outcome variables is not appropriate. Generalized linear models (GLM) provide a

way to handle these situations. Consider a situation with binary response. Let

y1, y2, ..., yn represent the observed response variables in which ‘n’ is the number

of observations (samples). Here yi can take on 0 or 1 if for example the sample is

normal or cancer respectively. In the case of gene expression analysis, gene

expression levels are measured for each sample and we let wij represent the

expression level of gene j in the ith sample. In the context of GLM, nonlinear link

functions are used to associate the nonlinear, non-continuous response variable

to the linear predictor wi
Tθ in which θ is a 1*p vector of θ=[θ1, .., θp]

T associated

with covariate vector wi=[wi1, .., wip]
T . Let H represent this link function. The GLM

model can be represented as [1,62]:

H(E(yi)) = H(P (yi = 1)) = wi
Tθ (2.1)

In this formula, wi is the vector of covariates for individual i. We used logistic

link function which corresponds to logistic regression [62].
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H(P (yi = 1)) = H(Pi) = ln

(
Pi

1− Pi

)
; where Pi = P (yi = 1) (2.2)

In order to be able to find the posterior distributions of parameters, we need to

integrate the likelihood function multiplied by joint prior distributions of all

parameters. However, this approach will result in an intractable integration. As

explained in [1], in order to be able to set up the Gibbs sampler, we introduce ’n’

independent latent variables l1, l2, ..., ln defined as li = wT
i θ + ei. We assume

logistic distribuion on error temrs, F (ei) = 1
1+e−ei

, to obtain logistic regression. In

order to be able to set up the Gibbs sampler, we approximate the logistic

distribution on the latent variables with t-distribution defined as li ∼ tv(wi
Tθ). The

reason for choosing t-distribution is that logistic distribution has heavy tails and

normal distribution does not provide a good approximation. Hence, we used

student-t distribution with v degrees of freedom on latent variables to provide a

better approximation for distribution on latent variables. We treat the degrees of

freedom as unknown and estimate it alongside other parameters. It should be

noted that this distribution is a non-central t-distribution with v degrees of freedom

and non-centrality parameter wi
Tθ. The following relationship is established

between response and corresponding latent variable.

yi =


1 if li ≥ 0

0 Otherwise

This way the response and latent variables are linked in binary outcome

situations. This approach connects the logistic regression for yi to a linear
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regression model for the latent variable li, [1]. The probability of each sample

belonging to the category 1 can be calculated as follows.

p(yi = 1) = p(li ≥ 0) = p(ei ≥ −wT
i θ) = p(ei < w

T
i θ) =

1

1 + e−w
T
I θ

Bayesian Hierarchical Model and Prior Distributions

In order to sample li from tv(wi
Tθ), we use the following hierarchical model

which is equivalent to sampling from the corresponding t-distribution [34]. This

two-level hierarchical form is easier to work with both analytically and

computationally compared to the original form of the t distribution [34]. This two

level hierarchical distribution enables us to obtain closed forms for fully conditional

posterior distributions of parameters.

li|Λi,θ ∼ N(wi
Tθ,

1

Λi

); Λi ∼ Gamma(
v

2
,
v

2
) (2.3)

Here gamma distribution is defined as π(x|α, β) = βα

Γ(α)
xα−1e−βx. We put

independent generalized double Pareto priors on all θ s. This prior is defined as

follows, [5].
f(θ|ζ, ρ) =

1

2ζ
∗ (1 +

|θ|
ρζ

)−(1+ρ) ; ρ, ζ > 0 (2.4)

Letting θj ∼ GDP (ζ = δ
ρ
, ρ) independently, the joint distribution of θs is defined as

follows [5].
π(θ) =

p∏
j=1

[
1

2 δ
ρ

∗ (1 +
|θj|
δ

)−(1+ρ)] (2.5)

GDP prior can be represented as a scale mixture of normal distributions leading

to computational simplifications that makes Gibbs sampling feasible [5]. The
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GDP ( δ
ρ
, ρ) prior is equivalent to the following hierarchical representation [5].

θj|τj ∼ N(0, τj); τj ∼ Exp(
λj

2

2
); λj ∼ Gamma(ρ, δ) (2.6)

The hyper parameters ρ and δ control the shape of the GDP distribution and

thus the amount of shrinkage induced [5]. As δ increases the distribution

becomes flatter and variance increases. As ρ increases the tails of distribution

becomes lighter, variance becomes smaller, and the distribution becomes more

peaked [5]. Thus, large values of ρ may cause unwanted bias for large signals

and stronger shrinkage for noise-like signals while larger values of δ flattens the

distribution and we may lose the ability to shrink noise-like signals [5]. In the

absence of information on hyper parameters one can either set them to default

values (ρ = δ = 1) or choose a hyper prior distribution and let data speak about

the values of these hyper parameters. We adopt the following prior distributions

for these parameters.

π(ρ) =
c

(1 + cρ)2
; c > 0⇒ median(ρ) =

1

c
(2.7)

π(δ) =
c′

(1 + c′δ)2
; c > 0⇒ median(δ) =

1

c′
(2.8)

The priors on ρ and δ correspond to generalized Pareto priors with location

parameter 0, shape parameter 1, and scale parameters c−1 and c′−1 respectively.

As mentioned in the above formula, c and c′ determine the location of the median

of the distribution of parameters ρ and δ . For sampling purposes, we do the

following transformations that leads to uniform prior distribution for the new
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parameters (the proof is given in appendix 1) [5].

u1 =
1

1 + cρ
; u2 =

1

1 + c′δ
(2.9)

Defining the parameters as above, the hierarchical representation of the model

is as follows. li|Λi,θ ∼ N
(
wi

Tθ, 1
Λi

)
, Λi ∼ Gamma

(
v
2
, v

2

)
, θj ∼ N (0, τj),

τj ∼ Exp
(
λj

2

2

)
, λj ∼ Gamma (ρ, δ), and we use non-informative uniform prior on

v. Using the above mixture representation for the parameters and defining the

prior distributions, we obtain following fully conditional posteriors that lead to a

straightforward gibbs sampling algorithm. The derivation of fully conditional

posterior distributions is presented in appendix1.

li|− ∼ TN

(
wi

Tθ,
1

Λi

)
(2.10)

In equation 2.10, ‘TN’ stands for truncated normal distribution, li is sampled from

truncated normal distribution with parameters defined above. Point of truncation is

zero and in each iteration of the Gibbs sampling, each li is sampled from above

the truncation point if corresponding yi is 1 and it will be sampled from the below

the truncation point otherwise.

θ|− ∼MVN
([
W TΛW + T ∗

]−1
W TΛL,

[
W TΛW + T ∗

]−1
)

(2.11)

The normal distribution defined above is a multivariate normal distribution with

mean vector and variance covariance matrix as specified. Where,

T ∗p∗p = diag(τ1
−1, ..., τp

−1), Λn∗n = diag(Λ1, ...,Λn), and W is the n*p design matrix
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in which wij represents expression level of gene j in the ith sample.

τj
−1|− ∼ Inv −Ggaussian

(√
λj

2

θj
2 , λj

2

)
(2.12)

In equation 2.12, Inv-Gaussian denotes inverse Gaussian distribution with

location
√

λj
2

θj
2 and scale λj2. Each λj and Λj are sampled according to equation

2.13 and 2.14 respectively.

λj|− ∼ Gamma (ρ+ 1, |θj|+ δ) ; j = 1, .., p (2.13)

Λr|− ∼ Gamma

(
v + 1

2
,
1

2

[
(lr −wr

Tθ)2 + v
])

; r = 1, .., n (2.14)

The fully conditional distributions for v, u1, and u2 are represented in equations

2.15 to 2.17 [5].

v|− ∝

[
n∏
i=1

Λi

v
2
−1exp

(
−vΛi

2

)]
∗

[
n∏
n=1

v
2

v
2

Γ(v
2
)

]
(2.15)

u1|− ∝
(

1− u1

cu1

)p
∗

p∏
j=1

(
1 +
|θj|
δ

)−(
1−u1
cu1

+1)

(2.16)

u2|− ∝
(

c′u2

1− u2

)p
∗

p∏
j=1

(
1 +

c′u2

1− u2

|θj|
)−(1+ρ)

(2.17)

As we can see, the fully conditional distributions of v, u1, and u2 do not have

closed form and thus we adopt the following embedded giddy gibbs sampling to

sample from v, ρ, and δ [5,75]. On a grid of k values (v1, v2, ..., vk) representing

values of degrees of freedom considered, we perform the following

procedure [5,75].
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• Calculate the weights as ri = π(vi|−) according to formula 2.15.

• Normalize the weights riN = ri∑k
i=1 ri

• Sample one value from (v1, v2, ..., vk) with probabilities
(
r1
N , r2

N , ..., rk
N
)
.

On a grid of values in interval (0, 1) we use the same procedure to sample one

value from u1 and u2 to use in the current iteration of Gibbs sampling. The only

difference is that at the end of the procedure we transform u1 and u2 back to ρ and

δ using ρ = 1
c

[
1
u1
− 1
]

and δ = 1
c′

[
1
u2
− 1
]

respectively. The concise description of

the Gibbs sampling algorithm explained above is represented in figure 1.

Datasets

The model was evaluated using one leukemia dataset [32] and two different

breast cancer data sets [18] and [93]. The Golub leukemia data set included bone

marrow or peripheral blood samples from 72 patients with either acute

lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). The gene

expression levels for 7129 human genes were measured for this cohort. For our

study, this dataset was randomly split into a training group of 38 samples

containing 27 ALL and 11 AML samples and a test group of 34 samples

containing 20 ALL and 14 AML samples [32]. The Chin breast cancer data set

contains gene expression profiles in 118 primary breast tumors (28 basal-like and

90 non-basal like) from a cohort of patients treated according to the standard of

care between 1989 and 1997 [18]. The dataset was randomly divided into two

training and test groups such that each group contains equal number of basal-like

and non-basal samples. The Wang breast cancer data set contains gene
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expression profiles in 249 breast tumors (43 basal-like samples and 206

non-basal) from patients with lymph-node negative breast cancer who were

treated during 1980–1995, but who did not receive systemic neo-adjuvant or

adjuvant therapy [93]. The dataset was randomly divided into two training and test

Figure 1: Gibbs sampling algorithm for model with Generalized Double Pareto
prior and binary response.
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groups such that each group contained equal sample number of basal-like and

non-basal samples.

Results

For each data set, we used top five hundred differentially expressed genes as

input to our model. For each of the train groups, the Gibbs sampler is run for

60,000 iterations and we discard the first 20,000 samples as burn in. In order to

sample hyper parameters ρ and δ, we set c and c′ to 1 to achieve the standard

behavior of GDP prior [5]. Genes were selected based on posterior mean of θ

associated with each gene. Figure 2 represents posterior mean of θ s for the 500

genes input to the model for the Golub data set. While some noise like signals are

reduced toward zero, other signals stand out which turn out to be biologically

more relevant to AML and ALL. Additionally, we obtained another sparse

Bayesian Generalized linear model by imposing double exponential prior on θs

(SBDE), [37,56,57,67]. We used our model for class prediction of AML and ALL

samples on the leukemia data set and basal-like and non-basal tumor samples in

the breast cancer data sets. For example, the probability of a new sample being

ALL was calculated as follows.

P (ynew = 1) =
1

1 + exp
(
−wi

T θ̂
) (2.18)

In this formula, θ̂ is the posterior mean of θ s obtained for each train group and

wi is the vector of gene expression values associated with the corresponding θ̂ s

used for prediction. Using only the first top ten genes-obtained from training the
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Figure 2: Posterior mean of θ asociated with each gene.

model on train groups ,we analyzed percent correct classification (accuracy),

sensitivity, and specificity as measures of evaluation of the model. Sensitivity and

specificity are statistical measures that evaluate performance of binary

classifiers [4]. Sensitivity measures the proportion of actual positives (e.g.

basal-like) that are identified by the model to be positive (e.g. basal-like) and

specificity measures the proportion of negatives (e.g. non-basal) that are correctly

classified as negative (e.g. non –basal). As a measure of the robustness of the

model, we switched train and test groups for each data set and run the model

again and obtained the classification results on the new test groups. Table 1 and

2 show the classification results on the test groups for each data set obtained

using our model compared to SBDE. Also, the sensitivity and specificity of the
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Table 1: Classification accuracy, sensitivity, and specificity for test groups.

DataSet Model Accuracy Sensitivity Specificity
Golub GDP 0.941 1 0.86
Golub SBDE 0.912 0.95 0.86
Gray GDP 0.949 0.84 1
Gray SBDE 0.966 0.86 1
Wang GDP 0.976 0.91 0.99
Wang SBDE 0.952 0.86 0.97

Table 2: Classification Accuracy, Sensitivity, and specificity for test group. Train
and test groups switched

DataSet Model Accuracy Sensitivity Specificity
Golub GDP 0.921 0.89 0.91
Golub SBDE 0.895 0.85 0.91
Gray GDP 0.949 0.79 1
Gray SBDE 0.932 0.71 1
Wang GDP 0.92 0.92 0.93
Wang SBDE 0.911 0.71 0.95

classification when train and test groups were switched are show in Table 2 for

test groups.

Latent Semantic Analysis(LSA) is a technique in natural language processing

used for analyzing the relationships between a set of documents and the terms

they contain by producing a set of concepts related to documents and terms [39].

Medline is the premier bibliographic database for biomedicine supported by

national library of medicine. GCAT is a web-based tool that determines the

functional coherence of gene sets by performing latent semantic analysis of

Medline abstracts [96]. In GCAT, each gene –document was generated by

concatenation of all titles and abstracts of the Medline. After gene-document was

collected, latent Semantic Analysis (LSA) is used to calculate the gene-gene

similarity matrix. LSA is a variant of the vector space model that reduces the
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Table 3: GCAT top 100 genes’ p-values for the GDP model compared to model
with double exponential prior (SBDE).

DataSet T-test GDP SBDE
Golub 0.19 2.1E-7 0.0015
Gray 3.1E-5 2.9E-8 0.0011
Wang 7.44E-40 4.49E-24 3.13E-6

dimensions of the matrix by applying Singular Value Decomposition (SVD) so that

genes can be compared more conceptually [39]. Thus, LSA allows extraction of

both explicit and implicit gene relationships from the literature. In a vector space

Model, the semantic structure of a document is represented as a vector in word

space and the degree of similarity between documents is calculated by the cosine

of the angles between document vectors [39,96]. Given any set of genes, GCAT

calculates the cosine distribution of the gene set compared with that of a random

gene set. More specifically, Fisher’s Exact test is used to determine if the number

of gene relationships above the cosine value 0.6 is significantly different from that

which is expected by chance. The p-value obtained from this procedure is called

Literature derived p-value (Lpv) [96]. Small Lpv values indicate that the input gene

list are functionally cohesive as opposed to random set of genes.

We utilized GCAT to obtain the literature p-value for the top 100 genes

obtained from t-test, SBDE, and GDP model. The results of the analysis is shown

in Table 3. As we can see the p-values obtained under our model is highly more

significant compared to SBDE which indicates that our model results in more

biologically relevant genes compared to SBDE and t-test.
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Discussion

Microarray gene expression technology continues to be used to obtain more

understanding of mechanisms of human diseases, develop classifiers for

prediction of poor versus good outcomes, and to detect relevant signals amidst a

large body of noises [25,65]. These information can be used for tailoring the

treatments towards individuals [13,72]. Gene expression studies usually measure

several thousands of genes across the entire genome for few number of samples.

Statistical modeling becomes challenging as the familiar “large p small n

situations” arises. Identification of biologically relevant markers as well as ability

to classify samples are of high interest among the community. Previous studies

have shown that the correct selection of subsets of genes from microarray data is

key for accurate classification of disease phenotypes, [17,23].

In order to highlight those covariates that are most relevant to certain

phenotype, it is necessary to develop an approach to weed out unimportant

covariates [102]. Models that induce sparsity in terms of number of covariates in

the model are of interest in order to obtain reliable and accurate predictions by

learning classifiers [52]. It has been shown that majority of informative markers

may not be highly differentially expressed and thus models that use very

light-tailed priors are prone to the danger of losing biologically valuable

information contained in these markers [47].

The key contribution of this work is to utilize a Generalized Double Pareto prior

and develop a sparse Bayesian hierarchical Generalized linear model that can
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accommodate binary phenotypes, obtain high classification accuracy, and identify

biologically relevant genes at the same time. In our model, while shrinking small

effects toward zero and producing sparse solutions, the over shrinkage problem

caused by using light-tailed priors would be remedied by the heavier tails obtained

via mixing over the hyper parameters using GDP prior [5]. We applied the model

to the leukemia data set [32], and two breast cancer data sets [18] and [93]. We

used the model to do prediction of sample type on the test datasets. The

Bayesian set up enables us to assign the samples to one of the categories in a

coherent way. Classification accuracy, sensitivity, and specificity were used as

measures of model performance. As shown in table 1 and 2, the model developed

obtains high classification accuracy, sensitivity and, specificity in all 3 data sets

and outperforms the SBDE model in all cases except 1.

In order to test robustness of the model, we switched training and test data set

and trained the model on the new train dataset and performed classification on the

new training and test data sets. In this case the model results in better classifying

accuracy in all three data sets which is in accordance with the results obtained in

the first analysis. GCAT literature p-value of the top 100 genes obtained from the

model represents the biological relevance of markers obtained [96]. Our model

results in more significant literature based p-values which indicates that more

biologically relevant genes are obtained using our model compared to SBDE. In

conclusion, using the GDP prior in a Bayesian generalized linear models frame

work we were able to achieve high classification accuracy and obtain biologically

relevant marker genes to the outcomes in each experiment.

31



There exists a possibility of utilizing Metropolis–Hastings algorithm instead of

Griddy Gibbs sampling algorithm employed to sample hyper-parameters v, u1, u2.

Metropolis Hastings is a Markov chain Monte Carlo (MCMC) method for obtaining

a sequence of random samples from a probability distribution for which direct

sampling is difficult [31]. The Metropolis–Hastings algorithm can draw samples

from any probability distribution P (x), provided you can compute the value of a

function f(x) which is close to the density of P . On the other hand, most simple

rejection sampling methods suffer from the dimensionality, where the probability

of rejection increases exponentially as a function of the number of

dimensions [31]. Metropolis Hastings algorithm is only useful when you can find a

suitable “jumping” density which is “similar” (close) to its target density to avoid

excessively slow mixing [31]. This is a difficult task, especially for

high-dimensional space. In addition, the metropolis algorithm within each iteration

on the last part of the MCMC procedure would dramatically increase the running

time of the MCMC process.

In future, we plan to incorporate literature information into the prior

distributions in order to design literature informed priors that would potentially

enable us to obtain machine learning models with high classification accuracy

which provide very enriched set of markers with high biological relevance to the

phenotype under study. This potential development which could bridge the gap

between classification accuracy and biological relevance will be of high merit to

the community and can potentially result in deeper understanding of mechanisms

involved. The model developed here should be extendable to datasets with
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multi-level response variables. In chapter 3 and chapter 4, we explore the

development of sparse bayesian generalized linear models to address

multi-category response situations.
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Chapter 3

Application of Sparse Bayesian Generalized Linear Model to Gene Expres-

sion Data for Classification of Prostate Cancer Subtypes

Abstract

A major limitation of expression profiling is caused by the large number of

variables assessed compared to relatively small sample sizes. In this study, we

developed a multinomial Probit Bayesian model which utilizes the double

exponential prior to induce shrinkage and reduce the number of variables in the

model. A hierarchical Sparse Bayesian Generalized Linear Model (SBGLM) was

developed in order to facilitate Gibbs sampling which takes into account the

progressive nature of the response variable. The method was evaluated using a

published dataset (GSE6099) which contained 99 prostate cancer cell types in

four different progressive stages [90]. Initially, 398 genes were selected using

ordinal logistic regression with a cutoff value of 0.05 after Benjamini and

Hochberg FDR correction. The dataset was randomly divided into training (N=50)

and test (N=49) groups such that each group contained equal number of each

cancer subtype. In order to obtain more robust results we performed 50

re-samplings of the training and test groups. Using the top ten genes obtained

from SBGLM, we were able to achieve an average classification accuracy of 85%

and 80% in training and test groups, respectively. To functionally evaluate the

model performance, we used a literature mining approach called Geneset

Cohesion Analysis Tool [96]. Examination of the top 100 genes produced an
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average functional cohesion p-value of 0.007 compared to 0.047 and 0.131

produced by classical multi-category logistic regression and Random Forest

approaches, respectively. In addition, 96% of the SBGLM runs resulted in a GCAT

literature cohesion p-value smaller than 0.047. Taken together, these results

suggest that sparse Bayesian Multinomial Probit model applied to cancer

progression data allows for better subclass prediction and produces more

functionally relevant gene sets.

Introduction

As data collection technologies evolve, the number of variables which can be

measured in experiments increase. For example, modern microarray experiments

can measure the expression levels of several thousand genes simultaneously.

Since the number of samples is typically much smaller than the number of

variables, it is challenging to identify important genes among the large amount of

data points [15]. Many univariate analysis approaches have been applied to select

important genes from microarray experiments such as t-test [21], regression

modeling [87], mixture model [66] and non-parametric methods [24,91]. However,

since most complex traits are polygenic, a single variable analysis can only detect

a very small portion of the relevant variation and may not be powerful enough to

identify weaker interactions between the variables [7].

In order to address limitations of single variable analysis methods, several

approaches have been developed for simultaneous analysis of multiple

variables [53,94,98]. In linear regression framework, the least square method is

used to obtain estimate of parameters. The ordinary least square estimates
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obtained are not quite satisfactory mainly due to poor accuracy of prediction

resulting from high variances of estimates, the large number of variables with

respect to small sample size, and the error in variables [88]. It is preferred to

select a smaller subset of variables, sometimes referred to as feature selection,

which offer the strongest effect and discriminating power. A standard method

used to improve the parameter estimation, prediction, and classification is subset

selection and its variants such as backward elimination, forward and stepwise

selections. These methods are all discrete processes and can be highly

inconsistent, meaning that a small change in the data can result in very different

models [45,48,70,88,104,107]. In addition, these approaches are

computationally expensive and unstable when sample sizes are much smaller

than the number of variables [49,88]. Moreover in this setting, over-fitting is a

major concern and may result in failure to identify important predictors. Thus, the

data structure of typical microarray experiments makes it difficult to use traditional

multivariate regression analysis [7]. Given the aforementioned drawbacks, several

groups have developed methods to simultaneously analyze a large number of

variables [26,49,64,101,107]. It has been proposed that prediction accuracy can

be improved by setting the parameters associated with unimportant variables to

zero and thus obtaining more accurate prediction for the significant variables [88].

Various methods such as K-nearest neighbor classifiers [24], linear

discriminant analysis [99], and classification trees [24] have been used for

multi-class cancer classification and discovery [14,20,73]. However in all these

methods, gene selection and classification are treated as two distinct steps that
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can limit their performance. One alternative to deal with these situations is using

Generalized Linear Models (GLM) [37,58,60,62]. Researchers have used GLM

methodology extensively when the response variable is not continuous. But for

typical microarray experiments, procedures to obtain maximum likelihood

estimates of parameters will become computationally intensive and sometimes

intractable. In addition the maximization process may not converge to the

maximum likelihood estimates and predictors may have large estimated variances

which results in poor prediction accuracy [70]. In order to avoid over-fitting and

improve model accuracy, models which impose sparsity in terms of variables

(genes) are desirable [88]. Least Absolute Shrinkage and Selection Operator

(LASSO) is a well-known method for inducing sparseness in the model while

highlighting the relevant variables [45,88,95,107]. A Bayesian LASSO method

was proposed by [37,67] in which double exponential prior is used on parameters

in order to impose sparsity in the model. In this article, we integrate double

exponential prior distribution into the Bayesian generalized linear model

framework to induce sparseness in situations where the number of parameters to

be predicted exceeds the number of samples. The model developed can be used

to analyze multi-category phenotypes such as progressive stages of cancer. In

step one, we derive the fully conditional distributions for all parameters in a

multi-level hierarchical model in order to perform the fully Bayesian treatment of

the problem. In the second step, the Markov Chain Monte Carlo (MCMC)

method [30,31] based on Gibbs sampling algorithm is used to estimate all the

parameters. This model takes into account the ordinal nature of the response
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variable. We applied and evaluated our model to a publicly available prostate

cancer progression dataset [90]. The goals of the study are to test if a hierarchical

Sparse Bayesian Generalized Linear Model (SBGLM) can: 1) Identify a smaller

number of genes with high discriminating power; 2) Obtain high classification

accuracy; 3) Identify more biologically relevant genes related to the phenotype

under study.

Methods

In many biomedical research applications, dichotomous or multi-level outcome

variables are desired. In these situations, the simple linear regression model

which is designed for continuous outcome variables is not appropriate due to

heteroscedasticity and non-normal errors. Furthermore, there is no guarantee

that the model will predict legitimate responses (e.g. 1, 2, 3, and 4 in polytomous

response variable with 4 levels). Generalized linear models (GLM) provide a way

to address these situations [58,60,62]. Let [yi, wi1, ..., wip]
n
i=1 represent n

observations in which the response variables yi can take values 1, 2, 3, .., k

where k is the number of categories of the ordinal response variable. In addition,

let (wi1, .., wip) represent the value of variable 1 to variable p in observation ′i′. In

the case of gene expression analysis, gene expression levels are measured for

each sample and wij represents expression level of gene j in ith sample. We

implemented GLM for ordinal response in Bayesian framework by utilizing link

functions and careful introduction of latent variables [1]. In Bayesian framework,

the joint distribution of all parameters is proportional to the likelihood multiplied by

the joint prior distributions on the parameters. More specifically, in Bayesian
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Multinomial Probit Model, the likelihood function is defined as in formula (3.1) in

which πij is the probability that sample i is from jth category where j ranges from 1

to k and k is the number of ordinal categories of response variable [1]. In formula

3.1, I(yi = j) is an indicator function having value one if the yi is in category j and

zero otherwise. It should be noted that each observation contributes one value in

the inner product to the equation (3.1) since the indicator function returns value of

zero if j is not equal to the category of outcome for the sample.

L(π|y) =
n∏
i=1

[
k∏
i=1

(
π
I(yi=j)
ij

)]
(3.1)

In order to be able to find the posterior distributions of parameters, we must

integrate the likelihood function multiplied by joint prior distributions of all

parameters. However, this approach will lead to an intractable integration. As

explained in [1], in order to be able to set up the Gibbs sampler and incorporate

regression parameters into the model, we introduce ‘n’ independent latent

variables l1, l2, ..., ln defined as li = wT
i θ + ei with ei ∼ N(0, 1) [1]. In this formula,

wT
i is the vector of gene expressions for individual i and θ = (θ1, .., θp) are

parameters associated with variable 1 to variable p. The following relationship is

established between response variable and its corresponding latent variable [1].
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yi =



1 iff −∞ = γ1 ≤ li < γ2

2 iff 0 = γ2 ≤ li < γ3

:

k iff γk ≤ li < γk+1 =∞

(3.2)

In order to insure that the thresholds are identifiable, following the guidelines

of [1], we fix γ2 at zero and γ1 and γk+1 are defined according to equation above.

In the context of GLM, we use nonlinear link functions to associate the nonlinear,

non-continuous response variable to the linear predictor wTi θ. Using the relations

defined above, the probability of each sample being in category j (j=1, 2, .., k) is

derived in equation 3.3 in which Φ represents cumulative distribution function of

standard normal distribution and πij is the probability of sample i being from

category j [1].

ζij = P (yi ≤ j) = P (li ≤ γj+1) = P (ei+w
T
i θ ≤ γj+1) = Φ(γj+1−wTi θ) ; πij = ζij−ζij−1

(3.3)

In this way, the linear predictor wT
i θ is linked to the multi-category response

variable yi. The function that links the linear predictor to the response variable is

called a link function and in the multinomial Probit model, this link function is

cumulative distribution of standard normal density as defined above [1,60].

Bayesian Hierarchical model and prior distributions

A sparse Bayesian ordinal Probit model was implemented which takes into

account the ordinal nature of cancer progression stages and can accommodate
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large number of variables. We used independent double exponential prior

distributions on θj as follows [7,67]. It should be noted that θj is the parameter

associated with gene j. This prior distribution has a spike at zero and light tails

which enables us to incorporate sparsity in terms of number of variables used in

the model [7,107].
π(θj|λ) =

√
λ

2
e−
√
λ|θj | (3.4)

The double exponential distribution can be represented as scale mixture of

normal with an exponential mixing density [7,37,67,107]. This hierarchical

representation will be used in order to be able to set up the Gibbs

sampler [7,67,107].

√
λ

2
e−
√
λ|θj | =

∫ ∞
0

1√
2πηj

e
−
θ2j
2ηj ∗ λ

2
e−

λ
2
∗ηjdηj (3.5)

Having li ∼ N
(
wT
i θ, 1

)
, the following hierarchical prior distribution is used on

parameters associated with gene 1 to gene p [7].

θj|ηj ∼ N (0, ηj) ; ηj ∼ Exp

(
λ

2

)
(3.6)

Defining the parameters as above, the hierarchical representation of the model

is as follows. li|θ ∼ N(wi
Tθ, 1) , θj|ηj ∼ N(0, ηj) , and ηj ∼ Exp

(
λ
2

)
. We also

assume uniform priors on thresholds and we will find their fully conditional

posterior distribution alongside other parameters. Using the above mixture

representation for the parameters and defining prior distributions, we obtain the

following fully conditional posterior distributions that will be used in a simple Gibbs
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sampling algorithm.
li|− ∼ DTN(wT

i θ, 1) (3.7)

In formula 3.7, DTN stands for doubly truncated normal distribution. For

observation ‘i’ with yi = r, li must be sampled from normal distribution defined

above truncated between γr and γr+1 in each iteration of the algorithm.

θ|− ∼MVN
([
W TW + T−1

]−1
W TL,

[
W TW + T−1

]−1
)

(3.8)

Fully conditional posterior distribution of vector of model parameters is

multivariate normal distribution with mean vector and variance covariance matrix

as specified where T = diag(η1, η2, .., ηp). In 3.8, W is the n ∗ p matrix in which wij

represents expression level of gene j in ith sample and p is the number of genes

(variables) in the model and L = [l1, l2, . . . , ln]T and ‘n’ is the number of samples.

The fully conditional distribution of hyper-parameters η−1
j , j = 1, .., p are

inverse-Gaussian distribution with location
√
λ
|θj | and scale λ. In each iteration of the

Gibbs sampling, η−1
j is sampled from the inverse gaussian distribution defined in

equation 3.9.
η−1
j |− ∼ inv −Gaussian

(√
λ

|θj|
, λ

)
(3.9)

In the case of multinomial response, we assign independent uniform priors to

thresholds and thus the fully conditional distribution for thresholds is uniform

distribution and we need to sample them in each iteration of Gibbs sampling

alongside other parameters in the model [1].

γs|− ∝
n∏
i=1

[I(yi = s− 1) ∗ I(γs−1 ≤ li < γs) + I(yi = s) ∗ I(γs ≤ li < γs+1)] (3.10)
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As explained in [1] , the conditional posterior distribution of γs can be seen to

be Uniform(δ1, δ2) in which δ1 = max [maxi [li|yi = s− 1] , γs−1] and

δ2 = min [mini [li|yi = s] , γs], [1]. It should be noted that I() is indicator function

and its value is one if its argument is true and is zero otherwise. Figure 3

represents the Gibbs sampling algorithm workflow in a coherent way.

Dataset and feature selection

The method was applied to a published dataset on prostate cancer

progression downloaded from Gene Expression Omnibus at NCBI

(GSE6099) [90]. The data set contains gene expression values for 20,000 probes

and 101 samples corresponding to five prostate cancer progressive stages

(subtypes): Benign, prostatic intraepithelial neoplasia (PIN), Proliferative

inflammatory atrophy (PIA), localized prostate cancer (PCA), and metastatic

prostate cancer (MET) [90]. Since there were only two samples for PIA, we

removed these samples from further analysis. Probes with missing in more than

10 percent of the samples were removed from the data set. For the remaining

probes, the missing values were imputed by using the mean value of the probe

across samples with non-null values. Before applying our model to this data set,

for each gene we performed logistic regression for ordinal response. This method

enables us to take into account the ordinal nature of response variable in the

analysis and provides a gene list to be used as input to the model. Genes were

ranked based on the p-value associated with the hypothesis H0 : θi = 0 from the

most significant to least significant. θi is the parameter associated with gene i. We

performed Benjamini and Hochberg FDR correction [9]. An FDR cutoff value of
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0.05 resulted in a list of 398 genes. Thus, the input to our model was 398 variables

(genes) for 99 samples corresponding to four different prostate cancer subtypes.

The Gibbs sampling algorithm was implemented in R software and the program

ran for 60k iterations and the first 20k was discarded as burn-in.

Figure 3: Gibbs sampling algorithm flowchart for sparse Bayesian Generalized
Linear model utilizing Double Exponential prior and multinomial response.
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Evaluation

The dataset was randomly divided into training (N=50) and test (N=49) groups

such that each group contained an equal number of prostate cancer subtypes,

Benign, PIN, PCA and MET. Taking benign as an example, there are 34 benign

samples, we randomly divide it into two groups one half is used as part of the

training and the other half is hold out to be used as part of the test set for model

evaluation. The same procedure is repeated for PIN, PCA, and MET to obtain

complete train and test sets each having equal number of each subtype. Genes

were ranked based on posterior mean of parameters and the top 10 or 50 genes

obtained from the model were used for classification. In order to make the model

more robust we performed 50 re-samplings on selection of training and test

groups and re-ran the model. The average performance of SBGLM was compared

to two well-known classification methods: Support Vector Machine (SVM) and

Random Forrest. SVM was implemented in R software using Kernlab library [42]

and Random Forest was implemented in R using randomForest library [51].

Results

Figure 4 shows an example of the mean of posterior distribution of θ s

associated with 398 genes in a single run of SBGLM. We used the top 10 or 50

genes to test the classification accuracy of the SBGLM on 50 resampled training

and test groups. Each training and test group had an equal number of the four

prostate cancer subtypes: Benign, prostatic intraepithelial neoplasia (PIN),

localized prostate cancer (PCA), and metastatic prostate cancer (MET). We found
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Figure 4: Posterior mean of θ asociated with gene 1 to gene 398.

that the average overall classification accuracy of the SBGLM was 80.4 and 82.3

percent when using 10 and 50 marker genes, respectively (Table 4). The

performance of SBGLM approach was compared to two well-known classification

methods, SVM and Random Forest [12] when using top 10 or top 50 genes from

398 input genes. We found that the overall accuracy of SBGLM was substantially

better than SVM and was comparable, albeit slightly lower, to Random Forrest

when using either 10 or 50 marker genes.

It is important to note that the feature selection for SVM and Random Forests

was based on the p-values of the ordinal linear regression model (top 10 and top

50 from the 398 input genes). These results indicate that a small subset of the

398 input genes is better for predicting prostate cancer progression. Next, we

examined the performance of SBGLM with regard to classifying the different
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Table 4: Overall average accuracy of SBGLM, SVM and Random Forest using 10
and 50 marker genes.

Model P=10 P=50
SBGLM 80.4(0.06) 82.3(0.063)
SVM 53.6(2.7) 0.67(3.04)
Random Forest 83(1.6) 84.6(2)

Table 5: Average classification accuracy of prostate cancer subtypes in the test
group using SBGLM, SVM and Random Forest with 10 marker genes.

Sample Type SBGLM SVM Random Forest
Benign 95.1(6) 84.4 (5.3) 91.1(4.5)
PIN 61.7(2.8) 9(7.2) 61.4(1.9)
PCA 86.9(1.1) 37.4(9) 86.7 (2.1)
MET 56(3.2) 55.3 (1.2) 82.8(7.3)

subtypes of prostate cancer in comparison to SVM and Random Forrest (Table 5).

When using 10 marker genes, SBGLM classified all four subtypes of prostate

cancer more accurately than SVM, and it performed better than Random Forrest

for classifying Benign, PIN, and PCA. Interestingly however, when using 50

marker genes, SBGLM performed better than Random Forrest at classifying

Benign, PIN and MET(Table 6). These results indicate that the performance of

SBGLM is comparable to Random Forrest in classifying subtypes of prostate

cancer, although the results for both methods are sensitive to the number of

selected marker genes. Since the results of SBGLM were comparable to Random

Forrest, we next asked if SBGLM gene rankings were more or less relevant to the

biological mechanisms associated with prostate cancer progression. As a first

step in evaluating the biological relevance for the top ranked genes in the models,

we used a literature based method called GeneSet Cohesion Analysis Tool

(GCAT) [96].
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Table 6: Average classification accuracy of prostate cancer subtypes in the test
group using SBGLM, SVM and Random Forest with 50 marker genes.

Sample Type SBGLM SVM Random Forest
Benign 99.6(1.9) 90.1(1.7) 96.8(1.3)
PIN 53.4(1.4) 38.2(8.2) 52(1.1)
PCA 65.4(7.2) 45.8(6.2) 84.8(5.4)
MET 95.4(6.3) 81.8(1.6) 83.6(7.09)

GCAT is a web-based tool that determines the functional coherence p-values

of gene sets based on latent semantic analysis of Medline abstracts [96]. The

literature derived p-value is obtained by comparing distribution of gene similarities

for the gene set to the one obtained for a randomly selected genes from the whole

genome [96]. The small Lpv is an indication of functional cohesion of gene set.

Table 7 shows the average GCAT literature derived p-values (LPv) for the top 100

genes obtained from 50 runs of SBGLM and Random Forrest as well as the top

100 genes based on the p-value rank ordering of single gene analysis using

ordinal logistic regression. We found that on average, SBGLM produced more

functionally cohesive gene list (LPv = 0.007) compared to classical logistic

regression (LPv= 0.047) and Random Forest (LPv=0.131). Notably, 96 percent of

the runs had smaller LPv than 0.047, produced by initial p-value ranking. Based

on these results, we conclude that although SBGLM produces comparable

classification accuracy as Random Forrest, it identifies more biologically relevant

gene markers.

Discussion

Complex diseases and biological processes are caused by interaction of

multiple genes (gene products). Hence, current approaches which rely on single
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Table 7: Literature based functional cohesion p-values (LPv) of the top 100 genes
obtained from three different models.

Model GCAT P-value
SBGLM 0.007 (0.001)
Classical Logistic regression 0.047
Random Forest 0.131(0.07)

variable analysis have limited utility in understanding molecular mechanisms and

identification of genetic biomarkers for classification of diseases [14,21,73].

Moreover, most genomic approaches collect data for a much larger set of gene

variables compared to the number of samples being investigated. Therefore,

highly regularized approaches, such as penalized regression models, are needed

to identify non-zero coefficients, enhance model predictability and avoid

over-fitting [107]. Lastly, continuous response variables which are a requirement

of linear regression methods are not applicable to response variables

(phenotypes) that are dichotomous or polytomous. To address these limitations,

we developed a sparse Bayesian multinomial model and evaluated its

performance using prostate cancer gene expression data. We found that the

SBGLM classification accuracy of prostate cancer subtypes were comparable to

Random Forrest. However, SBGLM identified more biologically relevant gene sets

(Table 7).

Based on these results, we posit that SBGLM may be a better approach to

simultaneously identify marker genes for classifications as well as gaining insights

into the molecular mechanisms of the phenotype under investigation.

Interestingly, using fewer genes, SBGLM had very good discrimination
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performance for classifying benign (99.6% accuracy) versus metastatic prostate

cancer (95.4% accuracy), but the model discrimination was weaker for PIN and

PCA (Table 5). These results are consistent with the previous observation that

PIN and PCA share markedly similar expression signatures [90]. We found that

increasing the number of marker genes to 50 does not improve discrimination

between PIN and PCA, suggesting that different molecular mechanisms may

underlie the progression of PIN to PCA.
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Chapter 4

A Robust Bayesian Approach for Inducing Sparsity in Generalized Linear

Models with Multi-Category Response

Abstract

The dimension and complexity of gene expression data obtained from

microarrays has created challenging data analysis problems. Specifically, large

number of genes to be analyzed compared to small number of samples is a major

limitation in expression profiling. This issue has attracted attention to shrinkage

and estimation methods. In this study, We utilized the Generalized Double Pareto

(GDP) prior to induce sparsity in Bayesian generalized linear models setting. GDP

while has a spike at zero like the double exponential density, it also has a Student

t-like tail behavior which helps us remedy over shrinkage of signals toward zero

and thus offers more robustness properties. A hierarchical Sparse Bayesian

Generalized Linear Model using GDP prior (SBGG) was developed in order to

facilitate Gibbs sampling which takes into account the progressive nature of the

response variable. Bayesian computation is straightforward via the simple Gibbs

sampling algorithm developed. The method was evaluated using a published

dataset (GSE6099) which contained 99 prostate cancer cell types in four different

progressive stages. Initially, 398 genes were selected using ordinal logistic

regression with a cut-off value of 0.05 after Benjamini and Hochberg FDR

correction. The dataset was randomly divided into training (N=50) and test (N=49)

groups such that each group contained equal number of each cancer subtype. In
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order to obtain more robust results we performed 50 re-samplings of the training

and test groups. We were able to achieve an average classification accuracy of

86% and 82.5% in training and test groups, respectively using only the top ten

genes obtained from SBGG. We functionally evaluated the model performance by

using a literature mining approach called Geneset Cohesion Analysis Tool.

Examination of the top 100 genes produced an average functional cohesion

p-value of 2.0E-4 compared to 0.007, 0.047, and 0.131 produced by Sparse

Bayesian Generalized Linear Model obtained by imposing double exponential

prior on parameters (SBGDE), classical multi-category logistic regression, and

Random Forest approaches, respectively. In addition, 100 percent of the SBGG

runs resulted in a GCAT literature cohesion p-value smaller than 0.047. Based on

our results, we conclude that the Bayesian Multinomial Generalized Linear model

applied to cancer progression data results in better subclass prediction and

produces more functionally relevant gene sets.

Background

Genomic research has benefited from microarray technology as a high

throughput discovery tool. In modern microarray experiments, expression levels of

several thousand of genes are measured across small number of samples

(usually less than100). The dimension and complexity of gene expression data

obtained from microarrays creates challenging data analysis problems. One of the

major challenges is related to the nature of microarray experiments having

substantially smaller number of samples compared to tens of thousands of

variabes. This is due to the fact that the very small sample size makes it very
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challenging to identify important genes among the pool of large number of genes

at hand [15]. Several statistical methods in univariate and multivariate analysis

frameworks have been developed to address this problem. Some of the univariate

analysis approaches applied to selection of important genes from microarray

experiments include t-test [46], regression modelling [50], mixture model [66] and

non-parametric methods [90,91]. However, single gene analysis is unable to

identify weaker associations especially for complex polygenic phenotypes for

which the relevant variation is distributed across several variables [7]. In order to

address limitations of single variabe analysis methods, Several approaches for

simultaneous analysis of multiple variabes have been developed [53,94,98].

One of these classical techniques is linear regression. In a linear regression

framework, the least square method is used to obtain estimate of parameters. In

cohorts with large number of variabes compared to much smaller sample size,

parameter estimates based on ordinary least squares have high variances which

results in poor prediction accuracy [88]. Feature selection that can result in set of

genes with strongest effect and discriminating power is of high interest. Variable

selection in regression framework namely backward elimination, forward

selection, and stepwise selection have been used as a standard method to

improve parameter estimation and prediction. One of the shortcomings of these

methods is that these are discrete processes which are very sensitive to the

changes in the data at hand. That is, a minor change in data can result in very

different models [49,88,107]. Additionally, the computational complexity of these

approaches when the number of variabes are very large makes them less
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attractive for gene expression analysis [49,88]. Moreover in this setting,

over-fitting is a major concern and may result in failure to identify important

predictors. Thus, the data structure of typical microarray experiments makes it

difficult to use traditional multivariate regression analysis [7].

Several groups have developed methods in an attempt to overcome these

drawbacks [49,53,94,98,108]. Various methods such as K-nearest neighbour

classifiers [90], linear discriminant analysis [99], and classification trees [90] have

been used for multi-class cancer classification and discovery [14,20,73].

However, gene selection and classification are treated as two separate steps

which can limit their performance. One alternative to deal with these situations is

using Generalized Linear Models (GLM) [58,60,62]. Scientist in many different

fields are faced with traits that are categorical such as normal and cancerous

tissues in case of binary traits and study of stages of cancer progression which

can have multiple categories. For situations with categorical phenotypes,

researchers have used GLM methodology for data analysis, prediction, and

classification. For typical microarrays, due to extensively large number of

variabes, the maximum likelihood estimates of parameters will become

computationally intensive and sometimes intractable. Additionally, since the

sample size is much smaller than number of variabes, the maximum likelihood

estimates may have large estimated variances and thus result in poor prediction

accuracy. The last but not least, maximization process may not converge to

maximum likelihood estimates [94]. It has been proposed that prediction accuracy

can be improved by setting the unimportant variabes to zero and thus obtaining
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more accurate prediction for the significant variabes [88].

In order to avoid over-fitting and improve model accuracy, models which

impose sparsity in terms of variables (genes) are desirable [88]. Least Absolute

Shrinkage and Selection Operator (LASSO) is a well-known method for inducing

sparseness in the model while highlighting the relevant variables [45,88,107]. A

Bayesian LASSO method was proposed by [37,67] in which double exponential

prior is used on parameters in order to impose sparsity in the model. However,

these procedures may cause over-shrinking of large coefficients due to the

relatively light tails of the double exponential prior thus introducing major bias [58].

Using normal-Jeffreys prior which has heavier tails than double exponential

distribution, we would be able to shrink small coefficients to zero while minimally

shrinking large coefficients and thus obtaining better results. However it has no

meaning from an inferential aspect as it leads to an improper posterior [5]. An

alternative class of hierarchical priors proposed in [14] that uses Bayesian

adaptive Lasso with non-convex penalization. However, it lacks simple analytic

form. In [5] authors proposed the Generalized Double Pareto (GDP) prior

distribution. The properties of this distribution that makes it appealing include:

having a spike at zero alongside student-t like tails, simple analytic form and

yielding proper posterior. In addition, it resembles double exponential density in

the neighborhood of zero and has heavier tails compared to double exponential

remedying unwanted bias resulting from over shrinkage of parameters toward

zero [5]. In this article, for the first time- to the best of our knowledge- we integrate

GDP prior into the Bayesian generalized linear models framework dealing with
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multi-category ordinal response variables to induce sparseness in situations with

number of parameters to be predicted far exceeding the number of samples. The

model developed can be used to analyze multi-category phenotypes such as

progressive stages of cancer. In step one, we derive the fully conditional

distributions for all parameters in a multi-level hierarchical model in order to

perform the fully Bayesian treatment of the problem.

In the second step, the Markov Chain Monte Carlo (MCMC) method [30,31]

based on Gibbs sampling algorithm is used to estimate all the parameters. This

model takes into account the progressive levels of the response variable. We

applied and evaluated our model to a publicly available prostate cancer

progression dataset [90]. Our study has 3 goals, testing if the model developed

can :1)result in a smaller subset of genes with high discriminating power, 2)

obtaining high classification accuracy; 3) in addition to above goals, we aim at

finding more biologically relevant genes related to phenotype under study

compared to competitive methods.

Methods

Let y1, y2, .., yn represent the observed response variables which can take

values 1, 2, 3, .., k where k is the number of categories of the ordinal response

variable. In addition, let wij represent the value of variabe ‘j’ in sample ‘i’. In the

case of gene expression analysis, gene expression levels are measured for each

sample and wij represents expression level of gene j in ith sample. We

implemented GLM for ordinal response in Bayesian framework by utilizing logistic

link function and careful introduction of latent variables [1]. In Bayesian framework
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joint distribution of all parameters is proportional to likelihood multiplied by prior

distributions on the parameters. The generic form of likelihood function for

Bayesian Multinomial model was represented in chapter 3 formula (3.1).

As explained in [1], in order to be able to set up the Gibbs sampler and

incorporate regression parameters into the model, we introduce ′n′ independent

latent variables l1, l2, .., ln defined as li = wT
i θ + ei and F (ei) = 1

1+e−ei
[55]. In this

formula, wT
i is the vector of gene expressions for individual i and θ = (θ1, .., θp)

are parameters associated with variable 1 to p respectively. The relationship

between response variable and the corresponding latent variables are explained

in chapter 3 formula (3.2) [1]. In order to insure that the thresholds are identifiable,

following the guidelines of [1] we fix γ2 at zero and γ1, and γk+1 are defined

according to equation (3.2). In the context of GLM, we use nonlinear link functions

to associate the nonlinear, non-continuous response variable to the linear

predictor wTi θ, [1,62]. It should be noted that logistic distribution has heavy tails

and thus normal distribution does not provide a good approximation and hence

we used student-t distribution with v degrees of freedom on latent variables. We

treat the degrees of freedom as unknown and estimate it alongside other

parameters. Using the relations defined above, the probability of each sample

being in category j(j = 1, 2, .., k) is derived in equation (4.1) in which πij is the

probability of sample i being from category j [1].

ζij = P (yi ≤ j) = P (li ≤ γj+1) = P (wT
i θ+ei ≤ γj+1) =

1

1 + e−(γj+1−wTi θ)
; πij = ζij−ζij−1

(4.1)
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In this way, the linear predictor, wT
i θ, is linked to the multi-category response

variable yi. The function that links the linear predictor to the response variable is

called a link function and in the multinomial Logistic model, this link function is

cumulative distribution of standard Logistic density as defined above [1,58,60]

Prior distributions and Bayesian set up

A sparse Bayesian ordinal logistic model was implemented which takes into

account the ordinal nature of cancer progression stages and can accommodate

large number of variabes. In order to sample li from tv(w
T
i θ), we use the

hierarchical model represented in chapter 2 formula (2.3) which is equivalent to

sampling from the corresponding t-distribution [62]. This two-level hierarchical

form is easier to work with both analytically and computationally compared to the

original form of the t distribution [62]. We put independent generalized double

Pareto priors on all θ s as represented in formula (2.4) [5]. This prior distribution

has a spike at zero and light tails which enables us to incorporate sparsity in

terms of number of variabes used in the model [5]. WE put independent GDP

prior on all parameters as θj ∼ GDP (ζ = δ
ρ
, ρ) independently. The joint distribution

of θs was obtained in chapter 2 formula (2.5).

GDP prior can be represented as a scale mixture of normal distributions

leading to computational simplifications that makes Gibbs sampling feasible. The

GDP ( δ
ρ
, ρ) prior is equivalent to hierarchical representation presented in formula

(2.6) [5]. The hyper parameters ρ and δ control the shape of the GDP distribution

and thus the amount of shrinkage induced. As δ increases the distribution

becomes flatter and variance increases. As ρ increases the tails of distribution
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becomes lighter, variance becomes smaller, and the distribution becomes more

peaked. Thus, large values of ρ may cause unwanted bias for large signals and

stronger shrinkage for noise-like signals while larger values of δ flattens the

distribution and we may lose the ability to shrink noise-like signals. As mentioned

in [5], by increasing ρ and δ at the same rate the variance remains constant but

tails of the distribution becomes lighter converging to Laplace density in limit. This

can lead to over-shrinkage of coefficients that are away from zero. In the absence

of information on hyper parameters one can either set them to default values

(ρ = δ = 1) or choose a hyper prior distribution and let data speak about the

values of these hyper parameters.

We adopt the prior distributions defined in chapter 2 formulas (2.7) and (2.8)

for these parameters. The priors on ρ and δ correspond to generalized Pareto

priors with location parameter 0, shape parameter 1, and scale parameters c−1

and c′−1 respectively. As mentioned in the formula (2.7) and formula (2.8), c and c′

determine the location of the median of the distribution of parameters ρ and δ .

For sampling purposes, we use the transformations presented in formula (2.9)

that lead to uniform prior distribution for the new parameters [5]. Defining the

parameters as above, the hierarchical representation of the model is as follows.

li|λi,θ ∼ N
(
wi

Tθ, 1
Λi

)
, Λi ∼ Gamma

(
v
2
, v

2

)
, θj ∼ N(0, τj), τj ∼ Exp

(
λj

2

2

)
,

λj ∼ Gamma (ρ, δ), and we put noninformative uniform prior on v. Using the

above mixture representation for the parameters and defining the prior

distributions, we obtain following conditional posteriors that lead to a

straightforward gibbs sampling algorithm.
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li|− ∼ DTN(wi
Tθ,

1

Λi

) (4.2)

In formula (4.2), DTN stands for doubly truncated normal distribution with

mean wT
i θ and variance 1

Λi
. For observation ‘i’ with yi = r, li must be sampled

from normal distribution defined above truncated between γr and γr+1 in each

iteration of the algorithm. In each iteration of Gibbs sampling procedure, θ is

sampled from the multivariate normal distribution with mean vector and variance

covariance matrix as derived in equation (2.11). The fully conditional posterior

distribtion for parameters [τ−1
j ]nj=1 is Inverse Gaussian distribution defined in

equation (2.12). In each iteration of the Gibbs sampling, each λj and Λj is

sampled according to equation (2.13) and (2.14) respectively. The fully conditional

distributions for v,u1, and u2 are represented in equations (2.15)-(2.17). As

explained in chapter 2, the fully conditional distributions of v, u1, and u2 (formula

2.15-2.17) do not have closed form and thus we adopt the following embedded

giddy gibbs sampling to sample from v, ρ, and δ [5,75]. On a grid of k values

(v1, v2, ..., vk) representing all possible values of degrees of freedom we perform

the following procedure.

• Calculate the weights as ri = π(vi|−) according to formula 15.

• Normalize the weights riN = ri∑k
i=1 ri

• Sample one value from (v1, v2, ..., vk) with probabilities (r1
N , r2

N , ..., rk
N).

On a grid of values in interval (0, 1) we use the same procedure to sample one

value from u1 and u2 to use in the current iteration of Gibbs sampling. The only

difference is that at the end of the procedure we transform u1 and u2 back to ρ and
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δ using ρ = 1
c
[ 1
u1
− 1] and δ = 1

c′
[ 1
u2
− 1] respectively. In the case of multinomial

response, we assign independent uniform priors to thresholds and thus the fully

conditional distribution for thresholds is uniform distribution and we need to

sample them in each iteration of Gibbs sampling alongside other parameters in

the model [1]. The fully conditional distribution on thresholds is represented in

formula (3.10). Using equation (3.2), and (3.9), the conditional posterior

distribution of γs can be seen to be Uniform(δ1, δ2) in which

δ1 = max[maxi[li|yi = s− 1], γs−1] and δ2 = min[mini[li|yi = s], γs]. It should be

noted that I() is indicator function and its value is one if its argument is true and is

zero otherwise. The Gibbs sampling procedure is explained in the flowchart

represented in figure 6.

Dataset and Feature Selection

The method was applied to a published dataset on prostate cancer

progression downloaded from Gene Expression Omnibus at NCBI

(GSE6099) [90]. The data set contains gene expression values for 20,000 probes

and 101 samples corresponding to five prostate cancer progressive stages

(subtypes): Benign, prostatic intraepithelial neoplasia (PIN), Proliferative

inflammatory atrophy (PIA), localized prostate cancer (PCA), and metastatic

prostate cancer (MET) [90]. Since there were only two samples for PIA, we

removed these samples from further analysis. Probes with null values in more

than 10% of the samples were removed from the data set. For the remaining

probes, the null values were imputed by using the mean value of the probe across

samples with non-null values. Before applying our model to this data set, for each
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Figure 5: Gibbs sampling procedure for SBGG model.

gene we performed logistic regression for ordinal response.

This method enables us to take into account the ordinal nature of response

variable in the analysis and prepare a gene list used as input to the model. Genes

were ranked based on the p-value associated with the hypothesis H0 : θi = 0 from
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the most significant to least significant. In here θi is the parameter associated with

gene i. We performed Benjamini and Hochberg FDR correction [9]. An FDR

cut-off value of 0.05 resulted in a list of 398 genes. Thus, the input to our model

was 398 variabes (genes) for 99 samples corresponding to four different prostate

cancer subtypes. The Gibbs sampling algorithm was implemented in R software

and the program ran for 60k iterations and the first 20k was discarded as burn-in.

Simulation and Cross validation procedure

The dataset was randomly divided into training (N=50) and test (N=49) groups

such that each group contained an equal number of prostate cancer subtypes

Benign, PIN, PCA and MET. Genes were ranked based on posterior mean of

parameters and the top 10 or 50 genes obtained from the model were used for

classification. In order to make the model more robust, we performed 50

re-samplings on selection of training and test groups and re-ran the model. The

average performance of SBGG was compared to three well-known classification

methods: Support Vector Machine (SVM), Random Forrest, and Sparse Bayesian

Generalized Linear Model obtained imposing double exponential prior (SBGDE)

on parameters. SVM was implemented in R software using Kernlab library [42]

and Random Forest was implemented in R using randomForest library [51], We

implemented the SBGDE according to [57,58] in R software.

Results

Figure 6 shows an example of the mean of posterior distribution of θ s

associated with 398 genes in a single run of SBGG. We used the top 10 or 50

genes to test the classification accuracy of the SBGG on 50 resampled training
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and test groups. In order to have a balanced data set, each training and test

group had an equal number of the four prostate cancer subtypes: Benign,

prostatic intraepithelial neoplasia (PIN), localized prostate cancer (PCA), and

metastatic prostate cancer (MET). We found that the average overall classification

accuracy of the SBGG was 82.5% and 94.2% when using 10 and 50 marker

genes, respectively (Table 8). Three well known classification methods namely,

Figure 6: Posterior mean of θ asociated with gene 1 to gene 398 obtained from
Gibbs Sampling.

Random Forest [12], Support Vector Machine(SVM) [43], and SBGDE [56] were

implemented and the classification results were compared to our model. We found

that the overall accuracy of SBGG was substantially better than SVM and SBGDE

64



Table 8: Overall average accuracy of SBGLM, SVM and Random Forest using 10
and 50 marker genes.

Model P-10 P-50
SBGG 82.5(0.55) 94.9(3.08)
SBGDE 80.4(0.06) 82.3 (0.063)
SVM 53.6(2.7) 67(3.04)
Random Forest 83(1.6) 84.6(2)

when using top 10 and top 50 genes for classification. Table 8, shows that when

using 10 marker genes, Random Forest performs slightly better than SBGG (0.5%

higher average classification accuracy). However when using 50 marker genes,

SBGG achieves measurably higher classification accuracy than Random Forest.

It is important to note that the feature selection for SVM and Random Forests

was based on the p-values of the ordinal linear regression model (top 10 and top

50 from the 398 input genes). These results indicate that a small subset of the

398 input genes is better for predicting prostate cancer progression. Next, we

examined the performance of SBGG with regard to classifying the different

subtypes of prostate cancer in comparison to SVM, Random Forrest, and SBGDE

(Table 9, and Table 10). When using 10 marker genes, SBGG classified all four

subtypes of prostate cancer more accurately than SVM, and it outperformed

SBGG for classifying PIN, PCA, and MET. It also performed better than Random

Forrest for classifying PIN, and PCA. Interestingly however, when using 50 marker

genes, SBGG performed substantially better than SVM in classifying all tumor

subtypes and outperformed SBGDE in classifying PIN and PCA samples. SBGDE

performed slightly better that SBGG for classifying benign samples using 50

marker genes. Comparison of classification results to Random Forrest shows that
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Table 9: Average classification accuracy of prostate cancer subtypes in the test
group using SBGG, SBGDE, SVM, and Random Forrest models with 10 marker
genes.

Sample Type SBGG SBGDE SVM Random Forest
Benign 89.4(6.1) 95.1(6) 84.4(5.3) 91.1(4.5)
PIN 62.5(1.6) 61.7(2.8) 9 (7.2) 61.4(1.9)
PCA 98.7(0.7) 86.9(1.1) 37.4(9) 86.7(2.1)
MET 59.4(2.06) 56(3.2) 55.3(1.2) 82.8(7.3)

Table 10: Average classification accuracy of prostate cancer subtypes in the test
group using SBGG, SBGDE, SVM, and Random Forrest models with 50 marker
genes.

Sample Type SBGG SBGDE SVM Random Forest
Benign 95.4(3.07) 99.6(1.9) 90.1(1.7) 96.8(1.3)
PIN 80.6(0.08) 53.4(1.4) 38.2(8.2) 52(1.1)
PCA 98.9(1.9) 65.4(7.2) 45.8(6.2) 84.8(5.4)
MET 96.8(4.6) 95.4(6.3) 81.8(1.6) 83.6(7.09)

SBGG outperforms Random Forest in all categories except benign for which

Random Forest achieves slightly better accuracy.

These results indicate that the performance of SBGG is comparable to

Random Forrest in classifying subtypes of prostate cancer and slightly better,

although the results for both methods are sensitive to the number of selected

marker genes. Since the results of SBGG were comparable to Random Forrest,

we next asked if SBGG gene rankings were more or less relevant to the biological

mechanisms associated with prostate cancer progression. As a first step in

evaluating the biological relevance for the top ranked genes in the models, we

used a literature based method called GeneSet Cohesion Analysis Tool

(GCAT) [96]. GCAT is a web-based tool that determines the functional coherence

p-values of gene sets based on latent semantic analysis of Medline abstracts [96].

Table 11 shows the average GCAT literature derived p-values (LPv) for the top
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Table 11: Literature based functional cohesion p-values (LPv) of the top 100 genes
obtained from three different models.

Sample Type Lpv
SBGG 2.0E-4(1.7E-5)
SBGDE 0.007(0.001)
Classical Logistic Regression 0.047
Random Forest 0.131(0.07)

100 genes obtained from 50 runs of SBGG, Random Forrest, SBGDE as well as

the top 100 genes based on the p-value rank ordering of single gene analysis

using ordinal logistic regression. We found that on average, SBGG produced

more functionally cohesive gene list (LPv = 2.0E-4) compared to SBGDE

(LPv=0.007), classical logistic regression (LPv= to 0.047) and Random Forest

(LPv=0.131). Notably, 100% of the runs had smaller LPv than 0.047, produced by

single gene analysis using classical logistic regression p-value ranking. The

Literature p-value for the median run was 4.50E-06 compared to 1.90E-04 for

SBGDE and 2.85E-02 For Random Forest.

Discussion

Complex disease and biological processes are polygenic and caused by

interaction of multiple gene products. Hence, single gene analysis approaches

utility is limited in understanding complex molecular mechanisms and

identification of genetics biomarkers for classification of diseases [21,31,73].

Additionally, large number of genes collected compared to small number of

samples in microarray experiments makes the data analysis, feature extraction

and prediction quite challenging. In the situations that we are faced with fat

datasets with p >> n, highly regularized approaches, such as penalized
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regression models, are needed to identify non-zero coefficients, enhance model

predictability and avoid over-fitting [70]. The Bayesian Lasso which is a Bayesian

version of L1 penalized regression is such one of the most popular techniques.

However, this procedure inherits the problem of over-shrinking of large

coefficients due to the relatively light tails of the double exponential prior and may

miss some of the important factors in the model. Recently, the Generalized

Double Pareto (GDP) prior distribution was proposed as an alternative to induce

sparseness in situations when we are faced with large number of variabes

compared to sample size [5]. The authors applied the proposed method in the

normal linear regression model framework. This prior has a simple analytic form,

yields a proper posterior and possesses appealing properties, including a spike at

zero, Student t-like tails, and a simple characterization as a scale mixture of

normals leading to a straightforward Gibbs sampler for posterior inferences that

makes Bayesian shrinkage estimation and regularization feasible [5]. Utilizing this

prior in a more general framework of generalized linear models, we presented a

Bayesian hierarchical model to simultaneously fit and estimate all variabes in p »

n situations. While shrinking small effects toward zero and producing sparse

solutions, the over shrinkage problem caused by using light-tailed priors would be

remedied by the heavier tails obtained via mixing over the hyper parameters. We

developed a sparse Bayesian multinomial model and evaluated its performance

using prostate cancer gene expression data. We employ latent variables which

are distributed as student-t distribution to account for heavy tails of logistic

distribution to specialize the model to a regression model.
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We fit the model in a fully Bayesian approach, employing the MCMC algorithm

to generate posterior samples from the joint posterior distribution, which can be

used to make various posterior inferences. The Bayesian algorithm developed

treats all parameters as unknown including hyper parameters associated with the

GDP hierarchical representation and generates their posterior samples alongside

other parameters. We used the model to do prediction of tumor type on the test

dataset. The Bayesian set up enables us to assign the tumors to one of the

categories in a coherent way. In addition, we obtain the probability of each tumor

belonging to one of the categories that is much more meaningful than hard rules

of assignment that use 0 or 1 to correspond to being in a special category or not.

Also, we use small number of genes to do the prediction which simplifies the

experimental procedure.

We compared the model performance to three well known models: random

forests, SVM, and SBGDE. The average classification accuracy of SBGG using

10 marker genes was higher than SBGDE and SVM and was only 0.5% lower that

Random Forest. However, when using 50 marker genes it outperforms all the

three other methods (Table 9 and Table 10). We found that the SBGG

classification accuracy of prostate cancer subtypes were comparable to Random

Forrest when using 10 marker genes for classification and it outperforms Random

Forest in 3 out of four categories when we used 50 marker genes. Additionally, it

outperforms SBGDE in 3 out of 4 categories when using 10 marker genes for

classification and 3 out of 4 categories when using 50 marker genes.

Furthermore, SBGG identified more biologically relevant gene sets (Table 11).
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Based on these results, we posit that SBGG may be a better approach to

simultaneously identify marker genes for classifications as well as gaining insights

into the molecular mechanisms of the phenotype under investigation.

Interestingly, using fewer genes, SBGG had very good discrimination performance

for classifying benign (89.4% accuracy) versus PCA (98.7% accuracy), but the

model discrimination was weaker for PIN and MET (Table 2). These results are

consistent with the previous observation that PIN and PCA share markedly similar

expression signatures [90]. Random Forests are an ensemble method for

classification that has been shown to have good performance in many

bioinformatics applications. However, Random Forrest is prone to over-fitting in

datasets with noisy classification tasks. In addition, it is very hard to interpret the

classifications made by Random Forests. Furthermore, if data contain categorical

variables with different number of levels, Random Forest favors variables with

more levels, making the variable importance measures unreliable [11].

Conclusion

It is important to note that the classification accuracy of all three models were

compared using a selected set of 398 genes which were obtained based on

p-value of single gene analysis using an ordinal regression model. Hence, this

biases the initial gene selection process. It is possible that some biologically

relevant genes to the prostate cancer progression might have been missed by this

analysis due to low signal. One way to perform an initial gene selection could be

to consider gene pathway information as described previously by others [81].
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Chapter 5

Evaluation of literature aided variable selection in classification and feature

prioritization

One of the fundamental tasks in biomedical research is analysis of

gene-disease association. A major source to achieve this goal is examination of

Microarray data due to relatively low cost. Since a large number of genes are

typically involved with possible interactions, the association of genes with

diseases is very complicated. Methods employed for gene ranking(gene

prioritization) are based on statistical or knowledge based approaches to find

genes most likely associated with a given disease [41,76]. Technical and

biological variability are the main causes of the noisy nature of gene expression

data which makes their analysis complex. This makes prediction methods aimed

at obtaining gene disease associations often less that adequate [68]. Even with

reliable gene expression data, statistical analysis of that data remains largely

challenging [97]. Normally, gene expression data are ranked by the strength of

the signal compared across disease and control tissues. Several studies have

aimed at comparing the results of multiple studies of the same genes and have

found little correlation between results [29]. Several factors contribute to this issue

including individual variation, different gene activation cycles, and variations in

protocols used to prepare the tissues [25]. Biomedical literature can be used as

an informative way to obtain the relevance of genes to different diseases. One

caveat of this method is that many genes from poorly studied organisms are not
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well defined in literature. Additionally, a comprehensive summarization of the

literature attached to genes of different organisms is a challenging task [28].

Another fundamental task in biomedical research is regarding cancer

classification. Cancer research is one of the major areas in medical fields. It is

clear that prediction of different tumor types with high accuracy offers the

advantage of providing better treatment and reducing toxicity in the patients. In

the past, cancer classification has majorly been based on morphological and

clinical experiments. It has been reported that these methods have limited

diagnostic ability due to their several limitations [6]. Gene expression data can

provide the key for addressing the fundamental issues relating to cancer

diagnostics and drug discovery [54]. The main two aspects of cancer

classification is classification accuracy and ability to reveal meaningful gene

information. The high dimensionality of gene expression data(tens of thousands

of genes) compared to very small sample sizes (usually below 100) makes cancer

classification a daunting task. Another issue is that most genes are irrelevant to

the cancer classification task at hand. Additionally, it is very common for highly

differentially expressed genes not to be relevant to the disease under

study [35,54]. Some researchers proposed to perform gene selection prior to

applying cancer classification methods. This step will help in reducing the data

size and thus improving the running time of the classification algorithm.

Additionally, another issue concerning cancer classification is statistical

significance versus biological relevance of cancer classifiers [54]. Most cancer

classification methods available are from statistical and machine learning area
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ranging from parametric methods such as generalized linear models to

nonparametric methods such as nearest neighbor analysis and support vector

machines [54]. One common aspect of most of these methods used in cancer

classification is that the primary goal of authors is classification accuracy and they

are less concerned with biological relevance [54]. This is due to the fact that most

classifiers are built based on strong signals or differentially expressed genes

across sample types. However, the majority of cancer related genes might not be

highly differentially expressed and thus the classifiers obtained based on

differentially expressed genes across different sample types might not reveal

biologically relevant genes. Gene selection methods that are based on signal

strength and differentially expressed genes, choose genes that are highly

differentially expressed across different tissue types, i.e. cancer and normal tissue

that might not necessarily be related to cancer.

GeneIndexer

Literature information can be used to select biologically relevant genes from

gene expression data in order to build cancer classifiers. This method can

potentially be very helpful in order to highlight the biological relevance of

classifiers built based on gene expression data. Here we investigate a very

famous gene ranking method based on biological literature called Gene

Indexer [39]. Gene Indexer utilizes Latent Semantic Indexing (LSI), a vector space

model for information retrieval, to automatically identify conceptual gene-gene and

gene-disease relationships from titles and abstracts of MEDLINE citations [39].

This method has proved to identify gene-keyword and gene-gene relationships
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with high average accuracy. Additionally, this method is able to obtain implicit

relationships between genes and keywords that proves very helpful in identifying

conceptual relationships [39].

Front-end Gene Selection Using Gene Indexer

We used Gene Indexer to obtain the input gene list to our models and other

classifiers built in previous chapters. For the leukemia data set of Golub et al used

in chapter 2 [32], the “leukemia” keyword was used to obtain literature correlation

of genes with leukemia. Genes were ranked based on their literature correlation

and the top 500 genes were used as input to the models. This data set consisted

of 72 samples obtained from Golub et al. [32]. In the Golub data set, the bone

marrow or peripheral blood samples from 72 patients with either acute

lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) were collected.

The gene expression levels for 7129 human genes were measured for this cohort.

We then extract these gene expressions from the data set and use them as input

to the classifiers. The data set was randomly divided into train and test data sets

of size 37 and 35 respectively. The training data sets contained 24 ALL and 13

AML samples and test data set contains 23 ALL and 12 AML samples. Genes

were ranked based on the posterior mean of parameters and the top 10 genes

obtained from the model were used for classification. In order to make the model

more robust, this process is repeated 50 times and the average classification

accuracy on training and test samples are reported.

The second data set used was the prostate cancer progression dataset

downloaded from Gene Expression Omnibus at NCBI (GSE6099) [90]. The data
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set contains gene expression values for 20,000 probes and 99 samples

corresponding to four prostate cancer progressive stages (subtypes): Benign,

prostatic intraepithelial neoplasia (PIN), localized prostate cancer (PCA), and

metastatic prostate cancer (MET) [90]. For this data set, we used the “prostate

cancer” keyword to obtain literature correlation of genes with “prostate cancer”.

The gene expressions corresponding to the top 500 genes were extracted from

the data set and used as input to the classifiers. The dataset was randomly

divided into training (N=50) and test (N=49) groups such that each group

contained an equal number of prostate cancer subtypes Benign, PIN, PCA and

MET. Genes were ranked based on posterior mean of the parameters and the top

10 genes obtained from the model were used for classification. In order to make

the model more robust we performed 50 re-samplings on selection of training and

test groups and re-ran the model. The average performance of SBGG was

compared to three well-known classification methods: Support Vector Machine

(SVM) [85], Random Forrest [40], and Sparse Bayesian Generalized Linear Model

obtained imposing double exponential prior (SBGDE) on parameters. SVM was

implemented in R software using Kernlab library [42] and Random Forest was

implemented in R using randomForest library [51], We implemented the SBGDE

according to [57] in R software.

Classifiers based on GeneIndexer and signal strength input gene lists

Table 12 represents the classification accuracy obtained for the binary

classifiers built for the leukemia data set. In this table, SBGG represents Bayesian

Generalized model built using Generalized double Pareto prior, “SBGDE” is the

75



Table 12: Average Classification accuracy, Sensitivity, and specificity for test
groups.

Model Gene Selection Accuracy Sensitivity Specificity
SBGG Diff expression 94.1(3.05) 0.95(0.04) 0.93(0.029)
SBGG GeneIndexer 87.3(6.6) 0.9(0.054) 0.79(0.073)
SBGDE Diff expression 91.2( 10.8) 0.95(0.12) 0.86(0.098)
SBGDE GeneIndexer 81(7.09) 0.85(0.052) 0.71(0.09)
SVM Diff expression 63(13) 0.7(0.16) 0.5(0.11)
SVM GeneIndexer 69.1(8) 0.75(0.03) 0.57(0.11)
Random Forest Diff expression 93(4.2) 0.9(0.036) 0.93(0.048)
Random Forest GeneIndexer 88(2.7) 0.85(0.019) 0.93(0.035)

Table 13: Average classification accuracy of prostate cancer subtypes in the test
group using SBGG, SBGDE, SVM, and Random Forest.

Sample Type Gene Selection SBGG SBGDE SVM Random Forest
Benign Diff expression 89.4(6.1) 95.1(6) 84.4(5.3) 91.1(4.5)
Benign GeneIndexer 72(2.9) 51(10.04) 83(1.2) 88(1.08)
PIN Diff expression 62.5(1.6) 61.7(2.8) 9.0(7.2) 61.4(1.9)
PIN GeneIndexer 73(6.3) 66 (5.1) 13(8.6) 60.3(2.3)
PCA Diff expression 98.7(0.7) 86.9(1.1) 37.4(9) 86.7(2.1)
PCA GeneIndexer 87(1.4) 69(2.3) 37.4(5.2) 84.7(1.7)
MET Diff expression 59.4(2.06) 56 (3.2) 55.3(1.2) 82.8(7.3)
MET GeneIndexer 48(7.2) 44 (2.5) 37 (6) 54(9.3)

classifier build using Double exponential prior, SVM is the classifier based on

support vector machines and the last classifier is build based on Random Forests.

Table 13 represent the classification accuracy of multi-category classifiers built on

prostate cancer progression data set. The values in this table show the average

classification accuracy on the test data set for multi-category GDP model

(SBGG), sparse Bayesian Generalized linear model developed using double

exponential prior (SBGE), Support Vector Machine model (SVM), and Random

Forest model. The input gene selection is done in two different scenarios: the

p-value rank ordering of single gene analysis using ordinal logistic regression and

top Genes obtained from GeneIndexer.
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Results and Discussion

Table 12 represents the classification accuracy, sensitivity, and specificity

measures for the sparse Bayesian Generalized linear model based on generalized

double Pareto prior ( SBGG), sparse Bayesian Generalized linear model based on

double exponential prior (called SBGDE), Support Vector Machine model (SVM),

and the model based on Random Forests (Random Forest). As we can see the

classifiers built based on input gene list obtained from differential expression

p-value ranking obtain higher classification accuracy, sensitivity, and specificity

than the rankings based on GeneIndexer in the majority of the classifiers. In the

GDP model, the classification accuracy and sensitivity and specificity is close for

the two paradigms. For the SVM model, the support vector machine obtains

higher classification accuracy, sensitivity, and specificity when using Gene Indexer

as input gene selection. For the Random Forest model the classification accuracy

in both paradigms are very close to each other. All in all the classifiers built on

highly differentially expressed genes obtain higher classification accuracy

compared to the Gene Indexer input gene list counterparts.

Table 13 represents the average classification accuracy for the multi-category

classifiers built on prostate cancer progression data sets. The four models

developed are the Sparse Bayesian Generalized Linear model based on

generalized double Pareto prior(SBGG), Sparse Bayesian Generalized Linear

model based on double exponential prior (SBGDE), the Support Vector Machine

model, and Random Forest model. For the Benign, sample type the models that
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are built based on input gene list obtained using single gene analysis using

ordinal logistic regression outperform the counterparts built upon the input gene

list obtained from Gene Indexer. For the PIN sample type, the models based on

Gene Indexer outperform their counter parts for SBGG, SBGDE, SVM and the

classification accuracy is a bit lower for the Random Forest model but comparable

for the two scenarios. For the PCA sample type, the models based on ordinal

logistic regression input gene list outperform the gene Indexer input gene list

models in 3 out of four models namely, SBGG, SBGDE, and Random Forest and

it has slightly lower classification accuracy for the SVM model. For the MET

sample types, the models based on ordinal logistic regression input gene lists

outperform all the models built based on Gene Indexer input gene list.

Even though the classifiers built based on the GeneIndexer gene selection

paradigm come close in classification accuracy, sensitivity, and specificity to their

counterparts for some of the classifiers, in majority of the classifiers, the gene

selection based on signal strength results in higher accuracy, sensitivity, and

specificity. One of the main reason for this phenomena is that the majority of

cancer related genes are not highly differentially expressed across different tissue

types which lowers their ability to be highly powerful predictors. On the other

hand, gene selection methods that are based on signal strength and differentially

expressed genes choose genes that are highly differentially expressed across

different tissue types, i.e. cancer and normal tissue. However, most of these

genes can be housekeeping genes or genes that are differentially expressed

during different cell cycles that might not be necessarily related to cancer.

78



Thus, the classifiers obtained based on differentially expressed genes across

different sample types might not reveal biologically relevant genes. Thus, even

though these models obtain higher classification accuracy, they suffer from the

fact that they do not obtain comprehensive biological relevance in the set of

predictors obtained. Reduction in uncertainty due to technical and biological

variability through more comprehensive and unified tissue preparation and

experimentation can bridge the gap between classification accuracy and

biological relevance in cancer analytics and obtain more informative machine

learning models in cancer diagnostic and therapeutics. Another important issue is

that using an input gene list solely based on current literature hugely biases the

downstream results due to the fact that it ignores the signals coming out of the

experiment. Ideally, we would want signals coming from the experiment have

greater weight but have a technique to prioritize and tune these signals based on

biological information from literature.

In chapter 6, we develop a literature aided Sparse Bayesian Generalized

Linear Model (LSBGG) which can incorporate literature information in the form of

prior knowledge in tuning the prior distribution imposed on parameters. This way

we are able to take into account the biological relevance of markers to guide the

amount of shrinkage imposed in the model. Thus, we would be able to potentially

bridge the gap between classification accuracy and biological relevance and

obtain a set of markers which have high diagnostic capability based on more

biological relevance to phenotype under study.
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Chapter 6

Development of Literature Aided Bayesian Sparse Generalized Linear Model-

Bridging Classification Accuracy and Biological Relevance

Abstract

Gene expression profiling has two major limitations that offset their statistical

performance. Firstly, large numbers of variables are assessed compared to

relatively small sample sizes. Secondly, identification of a set of biologically

relevant markers with high predictive power remains difficult. Several machine

learning algorithms have been used for cancer classification which are geared

toward obtaining high classification accuracy and do not take into account the

biological relevance of the markers obtained. Thus, in the majority of applications,

markers found do not convey meaningful biological information and are merely

good classifiers. A machine learning schema that is able to bridge classification

accuracy and biological relevance will be of high merit to the community and can

potentially result in deeper understanding of the mechanisms involved. In this

study, we developed a Literature aided Sparse Bayesian Generalized Linear

model which utilizes Generalized Double Pareto prior (LSBGG) to induce

shrinkage in terms of the number of variabes. Additionally, instead of uninformed

hyper parameters for the prior distributions, we adopt a literature informed

approach to adjust the hyper parameters based on a marker’s biological relevance

to the phenotype under study. This will aid us in controlling shrinkage imposed on

genes based on their biological relevance.
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The method was applied to the leukemia data set of Golub et al. (1999). The

data set was randomly divided into train and test samples of sizes 37 and 35

respectively and classification performance on the test group was evaluated. We

performed 50 resamplings on the training and test groups. The top 500 highly

differentially expressed genes obtained were used for the modeling step. Using

the top 10 genes obtained from our model, we were able to achieve 96% average

classification accuracy. Additionally average sensitivity and specificity of 97% and

93% was achieved across the 50 runs. The model without incorporation of

biological information (SBGG) achieves averages of 87%, 92%, and 83%

accuracy, sensitivity, and specificity respectively. Additionally, There were 41

genes common in all 50 runs for the literature aided model compared to only 6

common genes for the model with uninformed choice of hyper parameters. This

results suggest that the literature model results in more consistent results with

significantly higher biological relevance. Taken together, these results suggest

that the literature informed Sparse Bayesian Generalized Linear Model applied to

leukemia data sets allows for better subclass prediction based on more

functionally relevant gene sets.

Introduction

The ability of cost-efficient gene expression analysis brings the possibility of

studying the relationship between complex traits or diseases and genes across

the entire human genome. Microarray studies usually include tens of thousands of

genes assayed for a few number of experimental units [19]. The widely applied

methods for analyzing gene expression data are based on single marker analysis
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in which the association of each gene to the traits are analyzed

independently [21,66,87,91]. However, these methods are not capable of

capturing variance present in the polygenic phenotypes arising from several

variabes in a complex system [7]. Due to this limitation, simultaneous analysis of

genes has received more attention recently [53,94,98]. There are two main

challenges in developing methods for simultaneous analysis of genes in gene

expression data. Firstly, the large disparity between the number of variables and

the number of observations in the model reduces the accuracy of the prediction

and selection.

Another challenge in gene expression analysis is identification of a set of

biologically relevant markers with high predictive power. For example several

machine learning algorithms have been used for cancer classification which are

geared toward obtaining highest classification accuracy and do not take into

account the biological relevance of the markers obtained. Thus, in majority of

applications markers found do not convey meaningful biological information and

are merely good classifiers. Thus, a machine learning schema that is able to

bridge classification accuracy and biological relevance will be of high merit to the

community and can potentially result in deeper understanding of the mechanisms

involved. This is especially crucial when the goal of data analysis is the

identification of highly accurate but small panels of biomarkers with potential

clinical utility [82]. For large-scale problems with p»n, in linear regression, there is

a mass of literature in both frequentist and Bayesian framework. Frequentists

methods impose constraints on the size of the coefficients known as penalization.
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The most popular one is the L1 norm penalty called Lasso introduced by

Tibshirani [88].

A commonly used method for imposing shrinkage in the Bayesian framework

is achieved by imposing prior distributions centered around

zero [5,7,34,37,49,67]. In the majority of these methods the rate of

shrinkagemay not be desirable due to the fact that the same rate of shrinkage is

imposed on all parameters and all the coefficients are shrunk with the same rate.

Literature based association of markers to the trait are not taken into account by

these models which does not allow the capture of the comprehensive picture of

disease phenotype. Due to this limitation, only partial information is gained from

the biological stand point. Thus, a machine learning schema that is able to bridge

classification accuracy and biological relevance can potentially result in deeper

understanding of mechanisms involved.

A more desirable penalization method would be one that incorporates

literature information into the prior distribution by imposing different rates of

shrinkage, is obtained by adjusting the shape of the prior distribution on

parameters. In this study, we developed a literature aided Bayesian Shrinkage

Generalized Linear model which utilizes Generalized Double Pareto prior

(LSBGG) to induce shrinkage in terms of the number of variabes. Instead of

uninformed hyper parameters for the prior distributions, we adopt a literature

informed approach to adjust the hyper parameters based on the marker’s

biological relevance to the phenotype under study. This will aid us in guiding

shrinkage imposed on genes based on their biological relevance. This way we are
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able to impose different degrees of shrinkage adjusted based on literature

association of marker to the phenotype under study. We applied our method to

the leukemia data set of Golub et al. [32].

Methods

Let y1, y2, ..., yn represent the observed response variables in which ′n′ is the

number of observations (samples). Here, yi can take on 0 or 1 if for example the

sample is normal or cancer respectively. In the case of gene expression analysis,

gene expression levels are measured for each sample and we let wij represent

the expression level of gene j in the ith sample. We use a logistic link function

introduced in formula (2.1) and (2.2) to associate the probability of belonging to

one of the categories to the linear combination of variabes. As explained in [1], in

order to be able to set up the Gibbs sampler, we introduce ′n′ independent latent

variables l1, l2, ..., ln with li ∼ tv(wi
Tθ) where li ≥ 0 if yi = 1 and li < 0 if yi = 0.

This approach connects the logistic regression for yi to a linear regression model

for the latent variable li, [1]. It should be noted that the logistic distribution has

heavy tails and thus the normal distribution does not provide a good

approximation. Hence, we used student-t distributions with v degrees of freedom

on latent variables, li ∼ tv(wi
Tθ) [61]. We fix the degrees of freedom at 9 as the

t-distribution with 9 degrees of freedom closely approximates logistic

distribution [61].

Prior Distributions and Hyper Parameter Settings

In order to sample li from tv(wi
Tθ), we use the hierarchical model of formula

(2.3) which is equivalent to sampling from the corresponding t-distribution. This

84



two-level hierarchical form is easier to work with both analytically and

computationally compared to the original form of the t distribution [34]. This two

level hierarchical distribution enables us to obtain closed forms for fully conditional

posterior distributions on parameters. We put independent generalized double

Pareto priors on all θ s as defined in formula (2.4) [5]. As mentioned in chapter 2,

GDP prior can be represented as a scale mixture of normal distributions leading

to computational simplifications that makes Gibbs sampling feasible. The

GDP
(
δj
ρj
, ρj

)
prior is equivalent to the following hierarchical representation [5].

θj|τj ∼ N(0, τj); τj ∼ Exp

(
λj

2

2

)
; λj ∼ Gamma(ρj, δj) (6.1)

The hyper parameters ρj and δj control the shape of the GDP distribution and

thus the amount of shrinkage induced. As δj increases the distribution becomes

flatter and variance increases. As ρj increases the tails of distribution becomes

lighter, variance becomes smaller, and the distribution becomes more peaked.

Thus, large values of ρj may cause unwanted bias for large signals and stronger

shrinkage for noise-like signals while larger values of δj flattens the distribution

and we may lose the ability to shrink noise-like signals. Here, we use literature

information to guide the choice of hyper parameters ρj and δj. We divided the

genes into 5 bins using quantiles of literature correlation of genes to 5 groups

(0-20 percentile, 21-40 percentile, 41-60 percentile, 61-80 percentile, and 81-100

percentile). Genes on the higher percentiles have higher correlation to the cancer

query. We set ρj = 1 if the literature correlation for a gene is located in the highest
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bin and set ρj = 1.4, 1.6, 1.8, 2 if the gene is located in 61− 80, 40− 60, 21− 40,

and 0− 20 percentiles respectively and we set δj = 1. This way we are able to

incorporate biological knowledge and control the amount of shrinkage imposed on

each gene based on the association of the gene to the phenotype under study.

Figure 7 represents this choice of prior distributions on parameters. Figure 8

Figure 7: Literature based GDP Prior.

shows a zoomed-in view of tail behavior of these distribution in order to

demonstrate the tail behaviors more clearly.
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Figure 8: Tail behavior for literature based GDP Prior.

Fully Conditional Posterior Distributions

Defining the parameters as above, the hierarchical representation of the model

is as follows. li|λi,θ ∼ N
(
wi

Tθ, 1
Λi

)
, Λi ∼ Gamma

(
v
2
, v

2

)
, θj ∼ N (0, τj),

τj ∼ Exp
(
λj

2

2

)
, λj ∼ Gamma (ρj, δj). Using the above mixture representation for

the parameters and defining the prior distributions, we obtain conditional

posteriors as derived in formulas (2.10)- (2.12) for li, θ, and τ−1
j respectively

leading to straight forward Gibbs sampling algorithm. Each λj is sampled

according to the fully conditional distribution defined in formula (6.2) and Λj is

sampled according to equation (2.14).

λj|− ∼ Gamma (ρj + 1, |θj|+ δj) ; j = 1, .., p (6.2)

The Gibbs sampling algorithm is concisely represented in the Figure 9 as a

flowchart.
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Figure 9: LSBGG. flow chart representing Gibbs sampling algorithm.

Application

We apply our model to the leukemia data set of Golub et al. [32]. In the Golub

data set, the bone marrow or peripheral blood samples from 72 patients with

either acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) were

collected. The gene expression levels for 7129 human genes were measured for
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this cohort. The dataset is randomly split into training group of 37 samples

containing 24 ALL samples and 13 AML samples and test group of 35 samples

containing 23 ALL and 12 AML samples. The model is trained on the train data

set and tested on the test data set and accuracy, sensitivity, and specificity of the

model is reported. We used the top 500 genes based on p-value rankings of

differentially expressed genes for downstream analysis. The literature correlation

of these genes to leukemia is obtained using GeneIndexer. GeneIndexer is a

commercially available software used to classify and prioritize genes based on

functional information in the biomedical literature. It mines for explicit and implicit

relationships, and finds an association between the genes and keywords [39].

Results

The Gibbs Sampler was run for 60k iteration and the first 20k is discarded as

burn in. Genes were ranked based on posterior mean of θ associated with each

gene. A plot of posterior mean of θ associated with genes is represented in Figure

10. Using top 5, 10, 20, 30, 40, and 50 genes obtained from the model, we

Figure 10: LSBGG. Posterior mean of θ asociated with each gene.
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evaluate classification accuracy, sensitivity and specificity on test data sets across

50 runs. The model performance was compared to the set up in which both ρj

and δj are set to 1 for all genes and no biological information was incorporated

into the model. These results are represented in Table 14. Each row represents

model performance using different numbers of genes for classification. We used,

5, 10, 20, 30, 40, and 50 genes and analyzed the model performance. The

LSBGG model outperforms the SBGG model in average accuracy, sensitivity and

specificity regardless of number of genes used for model evaluation.

Table 14: Classification Accuracy, Sensitivity, and Specificity Analysis.

LSBGG SBGG
#genes Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
5 0.93(0.054) 0.94(0.08) 0.92(0.1) 0.84(0.096) 0.87(0.15) 0.78(0.24)
10 0.96(0.031) 0.97(0.039) 0.93(0.074) 0.89(0.08) 0.92(0.11) 0.83(0.208)
20 0.96(0.035) 0.98(0.039) 0.93(0.081) 0.92(0.056) 0.96(0.05) 0.85(0.17)
30 0.96(0.03) 0.98(0.026) 0.94(0.07) 0.94(0.042) 0.97(0.0476) 0.89(0.12)
40 0.97(0.03) 0.99(0.023) 0.93(0.075) 0.94(0.0408) 0.97(0.048) 0.89(0.117)
50 0.97(0.027) 0.99(0.021) 0.94(0.066) 0.95(0.031) 0.97(0.044) 0.92(0.088)

As it is obvious from the Table 14 , the model with literature informed choice of

hyper parameters results in better classification accuracy across different number

of genes chosen for classification. The classification accuracies reported are the

average results across 50 runs.

Next, we examined the top hundred genes obtained from the model across 50

runs to obtain the number of common genes and examine the consistency of

results obtained in different runs of the model. The number of common genes was

41 for our literature aided model compared to 6 for the other scenario. This results

suggest that the literature model results in more consistent gene sets based on

biologically relevant genes. This is strong indication of generalizability of the
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model for potential clinical use in diagnostics and therapeutics.

Simulation Study

In this section, we performed a simulation study with 6 different scenarios and

evaluate the performance of the literature aided model in each setting. We

simulated two different data sets of sizes 30 ( 15 cases and 15 controls) and 50

(25 cases and 25 controls). For each data set, we simulated 20 gene expression

values, assuming the first 5 genes are differentially expressed and the rest are

not. We also assumed that the first 5 genes are biologically relevant to the

response variable. Genes that are differentially expressed are randomly sampled

from N(µ1, σ1) and the rest are randomly sampled from N(µ2, σ2). We set

µ1 = 3, µ2 = 0, σ1 = σ2 = 1. We first elaborate on the data set with 30 samples in 3

different scenarios. We randomly divided the data into train (N=15) and

test(N=15). The model was trained on the train data set and its performance was

evaluated using the test data. The Gibbs sampling algorithm was run for 40k

iteration and the first 20k will be discarded as burn in. In the first scenario, we

assumed the first 5 genes are biologically relevant to response and the rest are

not. We put GDP distribution on gene j (j = 1, .., 20) with parameters specified as

(ρj = 1, δj = 1; j = 1, .., 5) and (ρj = 2, δj = 1; j = 6, .., 20). These two distributions

are shown in figure below. In the second scenario, we did not assume any

biological information in the model and we put GDP distribution with parameters

(ρj = 1, δj = 1; j = 1, .., 20) on parameters associated with each gene. In scenario

3, we assume the first 5 genes are biologically relevant to response variable

however these associations were mis-specified and assigned randomly (we

91



randomly assign 5 genes to be our biologically relevant genes).

We randomly divided the date set into train and test samples 50 times and the

average model performance and associated standard deviations on the test

samples across 50 runs for all three scenarios are presented in Table 15. We

used different number of genes (P represents the number of genes used for

classification) in order to be able to evaluate model performance across different

number of genes for classification. As we can see, in scenario 1 in which the

Figure 11: pecification of GDP prior distributions used in simulation study.

biological relevance of genes is correctly specified and used as prior information,
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Table 15: Simulaton study: Classification Accuracy, Sensitivity, and Specificity
Analysis, N=30 (associated standard deviations are represented in parentheses) .

P=5 P=10 P=20
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Scenario1 0.96(0.07) 0.94(0.08) 0.98(0.067) 0.98(0.055) 0.99(0.06) 0.96(0.042) 0.98(0.036) 0.97(0.052 ) 0.99(0.028)
Scenario2 0.88(0.084) 0.92(0.09) 0.84(0.06) 0.89(0.07) 0.91(0.06) 0.88(0.07) 0.92(0.06) 0.96(0.08) 0.88(0.03)
Scenario3 0.75(0.12) 0.68(0.095) 0.82(0.13) 0.806(0.1) 0.75(0.076) 0.87(0.08) 0.853(0.08) 0.905(0.11) 0.8(0.063)

the model obtained highest performance. The model which does not incorporate

prior information achieved the second best performance. It is interesting to note

that when the biological relevance of markers are miss-specified, the model

performance went down. This is due to over-shrinkage imposed on true signals.

For data set with 50 samples, we use the same procedure to generate the

data set, randomly dividing the data set into 25 samples for training and 25 for

testing. We repeated scenario 1 – scenario 3. Table 16 represent the model

performance evaluation in these scenarios.

Table 16: Simulaton study: Classification Accuracy, Sensitivity, and Specificity
Analysis , N=50 (associated standard deviations are represented in parentheses).

P=5 P=10 P=20
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Scenario1 0.93(0.07) 0.97(0.09) 0.9(0.08) 0.945(0.06) 0.92(0.08) 0.97(0.03) 0.97(0.026) 0.955(0.03) 0.98(0.034)
Scenario2 0.903(0.08) 0.87(0.10) 0.94(0.08) 0.9(0.068) 0.92(0.05) 0.89(0.07) 0.93(0.04) 0.91(0.05) 0.954(0.04)
Scenario3 0.79(0.15) 0.75(0.13) 0.83(0.11) 0.81(0.09) 0.76(0.11) 0.85(0.08) 0.86(0.06) 0.88(0.07) 0.845(0.06)

Consistent with the results obtained previously, the model in which the

biological information are correctly identified and incorporated into the model

achieved higher classification accuracy, sensitivity, and specificity compared to

the model without biological information as well as the model with miss-specified

biological information. Taken together based on the simulation study, we argue

that the literature aided model with correct specification of biological information

achieves highest performance compared to the model with miss-specified
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biological information and model without use of biological information a priori.

Simulation Study part 2

In this study we added noise to the variables(gene expressions) to see how

robust the model performance is in the presence of noise. We explored several

scenarios. We add/ subtract 5, 10, 20, 30, 40, and 50 percent of the actual

variable measured to the variable as random noise. For instance, assume we

want to induce 5% noise to the data. Let xij represents gene expression value for

gene ’j’ in sample ’i’. In the new data set, we replace xij by xij ∗ U(0.95, 1.05)

where U stands for a uniform distribution. We do this procedure for all genes in

the dataset. It should be noted that we use runif function in R to generate random

uniform numbers. The Golub data set was used for this study. The biological

relevance of genes was incorporated into the model by adjusting the shape of the

GDP distribution as described in section 6.5 and figure 7. The Gibbs sampling

algorithm was run for 40k iterations and the first 20k was discarded as burn-in.

The data is devided randomly into training and test samples according to chapter

5 section 2. We performed 50 resampling on the training and test data sets. The

average classification accuracy, sensitivity, and specificity and associated

standard deviations using top 10 marker genes obtained from the model are

represented in the table 17. Based on table above, as the amount of noise in the

data increases the model accuracy decreases. However, this decrease is not

dramatic and for example the model accuracy is still above 90% in the presence

of 20% noise. This demonstrate that the methodology is reasonably robust to the

presence of noise in the system.
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Table 17: Simulaton study part 2: Average classification accuracy, Sensitivity,
Specificity and associated standard deviations (in parentheses).

Accuracy Sensitivity Specificity
5% noise 0.943(0.05) 0.95(0.042) 0.927(0.062)
10% noise 0.935(0.055) 0.942(0.07) 0.91(0.068)
20% noise 0.903(0.07) 0.92(0.082) 0.88(0.076)
30% noise 0.86(0.074) 0.84(0.06) 0.9(0.08)
40% noise 0.815(0.08) 0.805(0.06) 0.842(0.1)
50% noise 0.79(0.11) 0.8(0.085) 0.78(0.13)
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Chapter 7

Conclusions and Future Work

In many disciplines, such as gene expression analysis and genome-wide

association studies, values of a large number of variables are measured

simultaneously. Thus, it is very common to have a disproportionate number of

variables compared to small sample sizes. In order to highlight those variables

that are most relevant to certain phenotypes, it is necessary to develop an

approach to weed out unimportant variables. Most complex diseases are caused

by multiple effects and thus a single variable analysis can only detect a very small

portion of variation and may not be powerful enough for identifying weaker

associations [7]. In the situations that we are faced with fat datasets with p » n,

highly regularized approaches are needed to identify non-zero coefficients,

enhance model predictability and avoid over-fitting [38].

To address these limitations, we developed several Bayesian methods using

different specialized priors that impose sparsity in terms of number of variables in

the model. Using a double exponential prior on parameters we developed a

sparse model in a Generalized Linear Model framework (SBGDE). This model

can be used for classification of cancer progression stages. We evaluated the

performance of the model using a publicly available data set on prostate cancer

progression. Using the top 10 genes and top 50 genes obtained from the model

we compared average classification accuracy and class-specific classification

accuracy to well-known machine learning methods such as Support Vector
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Machine (SVM) and Random Forest. The model outperforms SVM in all

categories and has comparable performance, albeit slightly lower, to Random

Forests. However, SBGDE identified more biologically relevant gene sets

compared to the other methods investigated.

The double exponential prior has light tails when compared to GDP that can

cause over-shrinkage of parameters towards zero, which may impose unwanted

bias. In order to address this problem, we investigated another prior distribution

with more tail robustness property. Recently, the Generalized Double Pareto

(GDP) prior distribution was proposed as an alternative to induce sparseness in

situations when we are faced with a large number of variables compared to

sample size [5]. The authors applied the proposed method in the normal linear

regression model framework. This prior has a simple analytic form, yields a

proper posterior and possesses appealing properties, including a spike at zero,

Student t-like tails, and a simple characterization as a scale mixture of normal

distributions leading to a straightforward Gibbs sampler for posterior inferences

that makes Bayesian shrinkage estimation and regularization feasible [5].

Utilizing this prior in a more general framework of generalized linear models,

we presented a sparse Bayesian hierarchical model that can incorporate a large

number of variables compared to small sample sizes. While shrinking small

effects toward zero and producing sparse solutions, the over shrinkage problem

caused by using light-tailed priors would be remedied by the heavier tails. Using

the GDP prior, we develop a sparse Bayesian generalized linear model (SBGG).

We evaluated the performance of the model using the leukemia data set of Golub
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et. al. [32]. Sensitivity, specificity, and classification accuracy measures were

used to evaluate the model. It is interesting that we found that SBGG outperforms

SBGDE and obtains higher classification accuracy and sensitivity and specificity.

We also obtained the GCAT literature p-value of top 100 genes obtained from the

model [96]. The SBGG results in more significant literature based p-values which

indicates that this model gives more biologically relevant genes compared to

SBGDE.

Additionally, we extended the SBGG model further to encompass data sets

with multi-category ordinal response. We developed a sparse Bayesian

multinomial model and evaluated its performance using prostate cancer gene

expression data. We compared the model performance to three models: Random

Forests, SVM, and SBGG. We found that the SBGG classification accuracy of

prostate cancer subtypes were comparable to Random Forrest when using 10

marker genes for classification and it outperforms Random Forest in 3 out of four

categories when we used 50 marker genes. Additionally, it outperforms SBGDE in

3 out of 4 categories when using 10 marker genes for classification and 3 out of 4

categories when using 50 marker genes. Furthermore, SBGG identified more

biologically relevant gene sets. We next asked if SBGG gene rankings were more

or less relevant to the biological mechanisms associated with prostate cancer

progression. In order to evaluate the biological relevance for the top ranked genes

in the models, we used a literature based method called GeneSet Cohesion

Analysis Tool (GCAT) [96]. GCAT is a web-based tool that determines the

functional coherence p-values of gene sets based on latent semantic analysis of
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Medline abstracts [96]. The average GCAT literature derived p-values (LPv) for the

top 100 genes obtained from 50 runs of SBGG, Random Forrest, SBGDE as well

as the top 100 genes based on the p-value rank ordering of single gene analysis

using ordinal logistic regression. We found that on average, SBGG produced

more functionally cohesive gene list (LPv = 2.0E-4) compared to SBGDE

(LPv=0.007), classical logistic regression (LPv= to 0.047) and Random Forest

(LPv=0.131). Notably, 100% of the runs had smaller LPv than 0.047, produced by

single gene analysis using classical logistic regression p-value ranking. The

Literature p-value for the median run was 4.50E-06 compared to 1.90E-04 for

SBGDE and 2.85E-02 For Random Forest. Based on these results, we posit that

SBGG may be a better approach to simultaneously identify marker genes for

classifications as well as for gaining insights into the molecular mechanisms of the

phenotype under investigation compared to the other three methods.

It is important to note that the initial gene set input to the model for the binary

and multi category situations are selected based on single gene analysis

paradigm. Hence, this could bias the initial gene selection process. Gene

selection methods that are based on signal strength and differentially expressed

genes choose genes that are highly differentially expressed across different tissue

types, i.e. cancer and normal tissue. However, most of these genes can be

housekeeping genes or genes that are differentially expressed during different cell

cycles that might not be necessarily related to cancer. It is possible that some

biologically relevant genes to the phenotype might have been missed by this

analysis due to low signal.
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Literature information can be used to select biologically relevant genes from

gene expression data in order to build cancer classifiers. These methods can be

very helpful in order to improve the biological relevance of classifiers built based

on gene expression data. Here, we investigated a very famous gene ranking

method based on biological literature called Gene Indexer [39]. Gene Indexer

utilizes Latent Semantic Indexing (LSI), a vector space model for information

retrieval, to automatically identify conceptual gene-gene and gene-disease

relationships from titles and abstracts of MEDLINE citations [39]. LSI method has

proved to identify gene-keyword and gene-gene relationships with high average

accuracy. Additionally, this method is able to obtain implicit relationships between

genes and keywords that proves very helpful in identifying conceptual

relationships [39]. The genes obtained based on literature were used for

classification using SBGG, SBGDE, SVM, and Random Forest. The results were

compared to the same models applied to input genes obtained from tests of

differential expression p-values.

For the binary response situation, we used leukemia data set for evaluating

our hypothesis. In SBGG model, the classification accuracy and sensitivity and

specificity were very close for the two paradigms. The SVM model obtained

higher classification accuracy, sensitivity, and specificity when using Gene Indexer

as input gene selection. For the Random Forest model the classification accuracy

in both paradigms are very close to each other. In conclusion, the classifiers built

on signal strength obtain higher classification accuracy compared to the Gene

Indexer input gene list counterparts.
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Next, we evaluated the literature based input gene list in the multi-category

response situations using prostate cancer progression data set [90]. The average

classification accuracy for the multi-category classifiers built on prostate cancer

progression data sets were compared. For the Benign sample type, the models

that are built based on input gene list from differential expression test outperform

the counterparts built upon input gene list obtained from Gene Indexer. For the

PIN sample type, the models based on Gene Indexer outperform their counter

parts for SBGG, SBGDE, SVM and the classification accuracy is a bit lower for

the Random Forest Model but comparable for the two scenarios. For the PCA

sample type, the models based on highly differentially expressed genes

outperform the Gene Indexer input gene list models in 3 out of four models

namely, SBGG, SBGDE, and Random Forest and it has slightly lower

classification accuracy for the SVM model. For the MET sample types, the models

based on differentially expressed input gene lists outperform all the models built

based on Gene Indexer input gene list.

Even though the classifiers built based on Gene Indexer gene selection

paradigm come close in classification accuracy, sensitivity, and specificity to their

counterparts for some of the classifiers, in the majority of the classifiers, the gene

selection based on signal strength results in higher accuracy, sensitivity, and

specificity. One of the main reasons for this phenomena is that the majority of

cancer related genes are not highly differentially expressed across different tissue

types which lowers their ability to be highly powerful predictors. On the other

hand, gene selection methods that are based on signal strength and differentially
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expressed genes, choose genes that are highly differentially expressed across

different tissue types, i.e. cancer and normal tissue. However, housekeeping

genes and genes highly differentially expressed in different cell cycles are

obtained from these methods that might not be related to cancer. Thus, the

classifiers obtained based on differentially expressed genes across different

sample types might not reveal biologically relevant genes. Even though these

models obtain higher classification accuracy, they suffer from the fact that they do

not obtain comprehensive biological relevance in the set of predictors obtained.

Using input gene list solely based on current literature biases the downstream

results due to the fact that it ignors the signals observed in the experiment.

Ideally, we would want to let signals observed have an impact on the results but

have a technique to prioritize and tune these signals based on biological

information from literature. Bridging the gap between classification accuracy and

biological relevance will be of high merit to the community and can potentially

result in deeper understanding of mechanisms involved.

In chapter 6, we developed a literature aided sparse Bayesian generalized

Linear model which utilizes Generalized Double Pareto prior (LSBGG) to induce

shrinkage in terms of number of variables. Instead of uninformed hyper

parameters for the prior distributions, we adopt a literature informed approach to

adjust the hyper parameters based on marker’s biological relevance to the

phenotype under study. This will aid us in controlling shrinkage imposed on genes

based on their biological relevance. Using the top 10 genes obtained from our

model, we were able to achieve 95.5% average classification accuracy.
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Additionally average sensitivity and specificity of 97.2% and 92.9% was achieved

across 50 runs. The model without incorporation of biological information (SBGG)

achieves average 88.6%, 91.8%, and 82.5% accuracy, sensitivity, and specificity

respectively. The LSBGG model demostrated superior performance consistently

regardless of the number of genes used for classification (Table 14). Additionally,

There were 41 genes common in all runs for the literature aided model compared

to 6 genes for the model with uninformed choice of hyper parameters. This results

suggest that the literature aided model produces more consistent results with

significantly higher biological relevance. Taken together, these results suggest

that literature informed Sparse Bayesian Generalized Linear Model applied to

leukemia data sets allows for better subclass prediction based on more

functionally relevant gene sets.

There exists a possibility of utilizing Metropolis–Hastings algorithm instead of

Griddy Gibbs sampling algorithm employed to sample hyper-parameters v, u1, u2

in chapter 2. Metropolis Hastings is a Markov chain Monte Carlo (MCMC) method

for obtaining a sequence of random samples from a probability distribution for

which direct sampling is difficult [31]. The Metropolis–Hastings algorithm can

draw samples from any probability distribution P (x), provided you can compute

the value of a function f(x) which is close to the density of P . On the other hand,

most simple rejection sampling methods suffer from the dimensionality, where the

probability of rejection increases exponentially as a function of the number of

dimensions [31]. Metropolis Hastings algorithm is only useful when you can find a

suitable “jumping” density which is “similar” (close) to its target density to avoid
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excessively slow mixing [31]. This is a difficult task, especially for

high-dimensional space. In addition, the metropolis algorithm within each iteration

on the last part of the MCMC procedure would dramatically increase the running

time of the MCMC process.

In future, we plan to extensively investigate the LSBGG model performance

across several different cancer cohorts. Additionally, we plan to investigate the

possible development of an effective model to translate biological information to

choice of hyper parameters. Furthermore, it is possible to evaluate performance

of models developed using pathway driven feature selection methods while

considering more complex variance-covariance matrix structures which takes into

account gene-gene interactions. In addition to these potentially exciting new

developments, further development is possible by considering survival time data

frameworks.
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Appendix 1Here, we derive fully conditional posterior distribution of parameter for the

models in chapter 2, chapter 4, and chapter 6. In these chapters Generalized

Double Pareto Prior is utilized for impossing sparsity in the models.

Derivation of transformations used on parameters ρ and δ

Let ρ and δ have the following distributions.

π(ρ) =
c

(1 + cρ)2 ; c > 0

π(δ) =
c′

(1 + c′δ)2 ; c′ > 0

Define the new variables u1 and u2 as follows:

u1 =
1

1 + cρ
; u2 =

1

1 + c′δ

Using simple inverse method technique we can see that u1 and u2 are uniformly

distributed. Here, we show the process for u1.

F (ρ) = 1
1+cρ

is the cdf of the pdf π(ρ) = c
(1+cρ)2 . We know that for Y = F (X) has

a U(0, 1).

SBGG: Deriving fully conditional distributions for parameters used in Gibbs

sampling.

Let the matrices Λ and T ∗ be diagonal matrices define as defined as

Λ = diag(Λ1, · · · ,Λn) and T ∗ = diag(τ−1
1 , ...τ−1

p ) . Using the prior specifications in

chapter 2, we obtain the following joint distribution.
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π(θ,L|y) ∝∏n
i=1 [ [I(yi = 1) ∗ I(li > 0) + I(yi = 0) ∗ I(li ≤ 0)] ∗ Λ

1/2
i ∗ exp

(
(li−wTi θ)

2

−2
Λi

)
∗

π(v) ∗
[

v
2

v
2

Γ( v2 )
Λi

v
2
−1 ∗ exp(−v

2
∗ Λi)

]
] ∗

[∏p
j=1

1√
τj

]
exp(−1

2
θTT ∗θ) ∗

[∏p
j=1 λ

2
j

]
∗[

exp
(
−1
2

∑p
j=1 λ

2
jτj

)]
∗
[∏p

j=1 λ
ρ−1
j

]
∗ exp

(
−δ
∑p

j=1 λj

)
∗ π(u1) ∗ π(u2)

Now we need to obtain fully conditional distributions for all the parameter in the

model. In what follows, in each subsection we derive these fully conditional

distributions step by step.

Fully Conditional Posterior Distribution for θ

It can be seen that the fully conditional distribution on θ is proportional to the

following.

θ|− ∝
[∏n

i=1 exp(
Λi∗(li−wTi θ)2

−2
)
]
∗ exp

(−1
2
θTT ∗θ

)
Next, we show that this fully conditional distribution is multivariate normal and

obtain the corresponding mean vector and variance covariance matrix needed in

order to be able to sample these parameters in each iteration of Gibbs sampling.

θ|− ∝ exp
(∑n

i=1
1
−2

(li −wT
i θ)TΛi(li −wT

i θ)
)
∗ exp

(−1
2
θTT ∗θ

)
θ|− ∝ exp

(
1
−2

[
(L−Wθ)T Λ (L−Wθ)) + (θTT ∗θ)

])
θ|− ∝ exp

(
1
−2

[
LTΛL− 2θTW TΛL+ θTW TΛWθ + θTT ∗θ

] )
θ|− ∝ exp

(
1
−2

[
θT (W TΛW + T ∗)θ − 2θTW TΛL

] )
θ|− ∝

exp
(

1
−2

[ (
θ − (W TΛW + T ∗)−1W TΛL

)T (
W TΛW + T ∗

) (
θ − (W TΛW + T ∗)−1W TΛL

) ])
Therefore, the Fully conditional distribution on θ ismultivariate normal
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distribution with following specification.

θ|− ∼MWN
[ (

W TΛW + T ∗
)−1

W TΛL ,
(
W TΛW + T ∗

)−1
]

Fully Conditional Posterior for τj

Before delving into derivation of fully conditional posterior for τj, we introduce

inverse Gaussian distribution for matter of consistancy. Let

x ∼ Inv −Gaussian(µ, σ). The pdf of x is defined as follows.

f(x) =
[ σ

2πx3

] 1
2 ∗ exp

[
−σ(x− µ)2

2µ2x

]

based on the joint distribution demonstrated early in this appendix, the fully

conditional posterior for τj is proportional to the following.

τj|− ∝ 1

τ
1
2
j

∗ exp
[
−1

2

(
θ2
j

τj
+ λ2

jτj

)]
In order to be able to effectively sample τj in each iteration of Gibbs sampling,

we need to obtain the closed form of the distribution and obtain the equations

defining mean and variance of this distribution. In what follows, the details of the

process taken is explained step by step.

Let K = 1
τj

then we have:

g(k) = f( 1
k
) ∗ 1

k2 ∝ 1

k
−1
2
∗ exp

[
−1

2
(
θ2
j
1
k

+ λ2
j ∗ 1

k
)
]
∗ 1

k2

g(k) ∝ 1

k
3
2
∗ exp

[
−1

2
(kθ2

j +
λ2
j

k
)
]

g(k) ∝ 1

k
3
2
∗ exp

[
−1

2

(
θ2
j k

2+λ2
j

k

)]
g(k) ∝ 1

k
3
2
∗ exp

−1
2
θ2
j

k2+
λ2
j

θ2
j

k
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g(k) ∝ 1

k
3
2
∗ exp

−1
2
θ2
j

k2+
λ2
j

θ2
j

−
2kλj
θj

+
2kλj
θj

k


g(k) ∝ 1

k
3
2
∗ exp

−1
2
θ2
j
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(
λ2
j

θ2
J

) 1
2
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g(k) ∝ 1

k
3
2
∗ exp

−1
2
θ2
j

(
λ2
j

θ2
j
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j

θ2
J

) 1
2
2
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g(k) ∝ 1

k
3
2
∗ exp

−λ2
j

k−(λ2
j

θ2
J

) 1
2
2

2
λ2
j

θ2
j

∗k


k|− = τ−1

j |− ∼ Inv −Gaussian
(
µ =

(
λ2
j

θ2
j

) 1
2

, σ = λ2
j

)
τ−1
j |− ∼ Inv −Gaussian

(
µ =

√
λ2
j

θ2
j
, σ = λ2

j

)

Fully Conditiona Posteriorl Distribution for λj

Here, we show that fully conditional distribution on λj is gamma distribtution and

obtain the parameters associated with it.

π(τj, λj|−) = π(τj|λj,−) ∗ π(λj|−)

π(τj, λj|−) ∝ λj

τ
1
2
j

∗ exp
[
−1

2

(
θ2
j

τj
+ λ2

jτj

)]
∗ λρ+1−1

j exp (−δλj)

π(τj, λj|−) ∝

λj

τ
1
2
j

∗ exp
[
−1

2

(
θ2
j

τj
+ λ2

jτj − 2θ2
j

(
λ2
j

θ2
j

) 1
2

)]
∗ exp

[
−θ2

j (
λ2
j

θ2
j
)

1
2

]
∗ λρ+1−1

j exp [−δλj]

π(λj|−) =
π(τj ,λj |−)

π(τj |λj ,−)

Using the kernel obtained for π(τj|λj,−) in previous section we obtain:

π(λj|−) ∝ exp
[
−θ2

j ∗
|λj |
|θj |

]
∗ λρ+1−1

j exp [−δλj]

π(λj|−) ∝ exp
[
−θ2

j ∗
λj
|θj | − δλj

]
∗ λρ+1−1

j
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π(λj|−) ∝ exp [−λj(|θj|+ δ)] ∗ λρ+1−1
j

λj|− ∼ Gamma (ρ+ 1, |θj|+ δ)

Fully Conditional Distribution for Λr

It can be easily seen that the fully conditional distribution on ΛJ is gamma

distributions and the parameters associated with it are specified below.

Λr|− ∝ Λ
1
2
r exp

[
− (lr−wTr θ)2

2
∗ Λr

]
∗ Λ

v
2
−1

r exp
[
−v

2
Λr

]
Λr|− ∼ Gamma

[
v+1

2
, 1

2
∗
(
(lr − wTr θ)2 + v

)]
The Fully Conditional Distributions for u1, and u2

Having each θj GDP ( δ
ρ
, ρ) independently, the joint distribution of θs is as

follows: π(θ) =
∏p

j=1

[
1

2 δ
ρ

∗
(

1 +
|θj |
δ

)−(1+ρ)
]

We put prior distributions as defined in equations (2.7) and equation (2.8).

Transformations defined in equation (2.9) is used which results in uniform priors

for new variables u1andu2. Using the results from [5] the following posterior

distributions are obtained for u1 and u2.

u1|− ∝
(

1−u1

cu1

)p
∗
∏p

j=1

(
1 +

|θj |
δ

)−(
1−u1
cu1

+1)

u2|− ∝
(
c′u2

1−u2

)p
∗
∏p

j=1

(
1 + c′u2

1−u2
|θj|
)−(1+ρ)
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Appendix 2SBGDE: Deriving fully conditional distributions for parameters used in Gibbs

sampling.

The fully conditional distributions for the Sparse Bayesian model developed

using double exponential prior developed in chapter3 are explored in this

appendix. Let T be a diagonal matrix defined as T = diag(η1, · · · , ηp).

Using the prior distributions as defined in chapter 3, we obtain the following

joint distribution.

π(θ, l|y) ∝
∏n

i=1

[∑k
j=1[I(yi = j) ∗ I(γj < li ≤ γj+1)

]
exp

(
(li−wTi θ)2

−2

)
∗

[∏p
j=1

1√
ηj

]
∗ exp

(−1
2
θTT−1θ

)
∗ exp

(
−λ

2

∑p
j=1 ηj

)

Fully Conditional Posterior Distribution for model parameters θ

based on the joint distribution obtained above, the fully conditional distribution on

θ is as follows.

θ|Ω ∝
[∏n

i=1 exp(
(li−wTi θ)2

−2
)
]
∗ exp

(−1
2
θTT ∗θ

)
We need to obtain closed form for this fully conditional distribution and obtain the

mean parameter and variance covariance matrix associated with it.

θ|Ω ∝ exp
[∑n

i=1
1
−2

(li − wTi θ)T (li − wTi θ)
]
∗ exp

(−1
2
θTT ∗θ

)
θ|Ω ∝ exp

(
1
−2

[(L−Wθ)T (L−Wθ) + (θTT ∗θ)]
)

θ|Ω ∝ exp
(

1
−2

[ LTL− 2θTW TL+ θTW TWθ + θTT−1θ ]
)
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θ|Ω ∝ exp
(

1
−2

[ θT (W TW + T−1)θ − 2θTW TL ]
)

θ|Ω ∝

exp
(
−1

2
[θ − (W TW + T−1)−1W TL]T (W TW + T−1)[θ − (W TW + T−1)−1W TL]

)
Based on these results, the fully conditional distribution on parameters θ is

multivariate normal distribution with parameters specifications as defined below.

θ|Ω ∼MWN
[

(W TW + T−1)−1W TL , (W TW + T−1)−1
]

Fully Conditional Posterior for ηj

ηj|Ω ∝ 1

η
1
2
j

∗ exp
[
−1

2
(
θ2
j

ηj
+ λ2

jηj)
]

We need to obtain closed form of the fully conditional distribution on ηj in order to

be able to sample these parameters efficiently in each iteration of Gibbs sampling.

Let Z = 1
ηj

then we have:

G(z) = P (Z ≤ z) = P ( 1
ηj
≤ z) = P (ηj ≥ 1

z
) = 1− F (1

z
)

g(z) = f(1
z
) ∗ 1

z2

g(z) ∝ 1

z
3
2
∗ exp

[
−1

2
(
z2θ2

j+λ

z
)
]

g(z) ∝ 1

z
3
2
∗ exp

[
−1

2
θ2
j (
z2+ λ

θ2
j

z
)

]

g(z) ∝ 1

z
3
2
∗ exp

[
−1

2
θ2
j (
z2+ λ

θ2
j

− 2zλ
θj

+ 2zλ
θj

z
)

]

g(z) ∝ 1

z
3
2
∗ exp

[
−1

2
θ2
j

(z−
√
λ
|θj |

)2

z

]
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g(z) ∝ 1

z
3
2
∗ exp

[
−1

2
θ2
j ∗ λ

θ2
j

(z−
√
λ
|θj |

)2

z λ
θ2
j

]

z|Ω ∝ Inv −Gaussian
(√

λ
|θj | , λ

)

Fully Conditional Distributions for γs

γs|Ω ∝
∏n

i=1 [I(yi = s− 1) ∗ I(γs−1 ≤ li < γs) + I(yi = s) ∗ I(γs ≤ li < γs+1)]

Using equation 3.2, and 3.10, and based on the results in [1], the conditional

posterior distribution of γs can be seen to be Uniform(δ1, δ2) in which

δ1 = max [maxi[li|yi = s− 1], γs−1] and δ2 = min [mini[li|yi = s], γs]. It should be

noted that I() is indicator function and its value is one if its argument is true and is

zero otherwise [1]. This argument is based on the results presented in [1].
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