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ABSTRACT

Sarker, Hillol. MS. The University of Memphis. December, 2014. Can
Wearable Sensors Help Assess the Reliability of Self-Reports in Mobile Health
Studies? Major Professor: Dr. Santosh Kumar.

Self-report in the form of Ecological Momentary Assessment (EMA) has

been the primary instrument to collect measurements from participants in their

natural environment. Given numerous sources of biases and inaccuracies in

self-report, assessing and improving the reliability of self-report has been the

subject of continuing research. However, to date, there exist only limited lab

based methods to check the veracity of collected self-report data. Increasing

adoption of sensors in field studies that sometimes can passively measure the

same phenomena that have been traditionally included in EMA self-report has

opened up a new opportunity to assess the reliability of self-reports.

In this paper, we use data collected in a week-long field study with

wearable sensors to first investigate whether lack of agreement between

self-reported location and GPS-inferred location can be used to predict the

reliability of self-reports. We find this not be the case, primarily because lack of

agreement on location results from sensitivity of some participants to reporting

locations and it does not indicate lack of care in completing self-reports. We then

investigate whether contexts of the participants, such as place (from GPS),

activity level (inferred from accelerometers), or stress (inferred from physiological

sensors) are associated with low reliability. We find that not being at home or work

does not predict reliability of self-report, nor does the context when participants

are engaged in physical activity at the time of receiving the self-report prompts.

However, we do find that if the participants are stressed at the time of receiving a

self-report prompt, then reliability of self-reported data is low. This implies that

unless demanded by the study protocol, self-report prompts should be avoided

when participants are under stress.
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Chapter 1

Introduction

Mobile technology has a potential to provide unprecedented visibility into

the health status of individuals in their natural environment [3]. Sensors

embedded in smart phones such as GPS, accelerometers, and microphone, and

those worn on the body with wireless connectivity to smart phones to assess

electrocardiography (ECG), respiration, galvanic skin response, etc. can

continuously monitor an individual’s health, behavior, and the surrounding

environment. Machine learning algorithms have been developed to obtain

measures of behavior and the exposure to the environment such as activity from

accelerometers, geoexposure from GPS, stress from physiology, and social

context from microphone. These automated measures of behavioral and

environmental contexts complement and enrich the self-reporting methods

traditionally used in health research studies conducted in the field environment.

1.1 Background

Self-report in the form of Ecological Momentary Assessment (EMA) [4] or

Experience Sampling Method (ESM) has been the primary instrument to collect

measurements from participants in their natural environment. These approaches

involve repeated assessment of a participant’s behavior, emotion, and the

associated contexts in real time. EMA (or ESM) is widely used by behavioral

psychologists and social scientists, as EMA provides more reliable assessment of

the participant’s behavior, states, and environment as compared to retrospective

self-report and is capable of measuring the subtle person-environment

interplays [5, 6]. Although momentary assessment reduces the limitations of recall

bias and assures that self-report data are provided when requested, reliability of

EMA has been questioned for a variety of reasons [7, 8]. First, the reliability of

self-reports may be low due to subjective biases. Such subjective biases arise
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due to a number of factors, such as the participant’s reporting style, lack of

motivation, lack of attention [9, 10], or urgency of completing the task . Also the

physical condition of the participant (e.g., fatigue, alcohol consumption, drug

withdrawal) may lead to unreliable self-reports. Third, excessive study burden

such as frequent prompts, long questionnaires, and long study duration may

impact the reliability of self-reports. Low reliability may also occur due to concerns

about the social desirability of one’s response or the sensitivity of the behavior

that is being assessed (e.g., illicit drug use, risky sexual behavior). Finally, EMAs

have the potential to actually change the phenomena measured [11, 12], in

particular reduce the occurrence of undesired behavior. This sort of measurement

reactivity can greatly reduce reliability of measurement.

1.2 Problems

There has been considerable amount of work on the feasibility of EMA in

psychophysiological studies of addictive behavior (e.g., smoking, drug usage,

process of relapse, and coping with withdrawal) [11, 13, 14], pain [5], and

psychological disorders (e.g., mood disorders, anxiety disorders, and

psychosis) [15, 16, 17, 6]. These studies assess the validity of EMA based

methods relative to clinical standards or standard questionnaires. To date, there

exist only limited lab based methods to check the ‘veracity’ of collected self-report

data. For example, in case of substance use, biochemical markers (e.g., urine

tests for drug usage, measurement of carbon monoxide levels in breath for

smoking, and in breath analyzers in case of alcohol use) have been used for this

purpose [11].

Separately, several methods have been proposed to determine the

reliability of self-reports via careful design of the questionnaire. One such method

is to add reliability check questions into the questionnaire. These questions are
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intended to help the investigator determine the accuracy of self-report responses,

as well as potentially assess response biases such as social desirability.

1.3 Research Objectives

With increasing adoption of sensors in health research studies, there is a

new opportunity to obtain some measures of interest passively (without having to

ask the participant), such as location. These sensors may thus reduce self-report

burden. Since these sensors can sometimes measure the same phenomena that

have traditionally been included in self-reports, they may also be used to assess

the reliability of self-reports by checking agreement between self-reported

answers with that obtained from the sensors. It is not known whether such a

method can accurately measure the reliability of self-report since the source of

unreliability in self-report may be affected by lack of attention, urgency of

completion, selective sensitivity to specific items in self-report, and social

desirability, among several other factors. Another way sensors could be used is to

infer the context of an individual at the time of receiving the self-report prompt.

Can automated detection of such contexts predict the reliability of self-reports? If

the former approach is successful, unreliable self-reports may be discarded from

analysis. If the latter approach works out, self-report prompts can be scheduled

so as to not occur during contexts that are associated with low reliability, unless

dictated by the study protocol.

In this study, we investigate whether lack of agreement between

self-reported location and that inferred from GPS can be used to predict the

reliability of self-reports. We also investigate whether contexts of the person such

as stress (inferred from physiological sensors) and activity level (inferred from

accelerometers) are associated with low reliability. We use data collected in a

week-long field study with a student population who self-reported themselves to

be daily smokers and social drinkers. The goal of this study was to re-examine the
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relationship between stress, smoking, and alcohol consumption, when these

behaviors are measured by wearable sensors, as compared with self-reports. The

participants in the study wore a wireless physiological sensor suit that collected

ECG, respiration, and accelerometry and carried a smart phone that included

GPS and accelerometers. Self-reports were obtained on the same phone that

collected data from all the sensors.

To measure reliability of self-reports, we compute Cronbach’s alpha

(α) [18] over six items on the questionnaire that were intended to measure the

same psychological construct, namely, affective state of the participants. We first

check whether these six items indeed measure the same construct. The value of

α for these six items for all subjects for entire self-reports was 0.88, which

indicates that these six items are indeed consistent. Second, we compute the

degree of agreement (κ) [19] between self-reported location with that inferred

from the GPS sensor. We find that unacceptable agreement on the location item

does not predict low reliability of self-report. This may be due to the sensitivity of

participants in reporting their location. In other words, they may not be

comfortable in reporting their location, under certain situations, but answer the

affect questions carefully (indicated by acceptable α), which we take to imply that

their self-reports are reliable. Third, we infer the physical activity episodes from

accelerometers worn on the body and stress from physiological

measurements [20]. We hypothesize that subjects may be pressed for time when

they are in motion. However, we find that physical activity is not associated with

low reliability. Interestingly, we find that if the participants are stressed at the time

of receiving the self-report prompt, their reliability across the affect items are

indeed unacceptable with statistical significance. Stress has traditionally been

measured using the six affect items that was included in the self-report measure

and hence it may not have been possible to infer from the answers whether the
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self-report was reliable under high-stress situations. Development of stress

measure that is inferred passively from physiological arousal has opened up a

new opportunity for assessing the reliability of self-report when under stress,

which we do find to be associated with low reliability. In addition to addictive

behavior such as alcohol and illicit drug use that has usually been associated with

low reliability of self-report, our work indicates that stress may be another factor of

interest when assessing reliability of self-report. We also examined whether a

self-report completed while driving is associated with low reliability1, but we did

not have sufficient data points to test for statistical significance for this context.

The rest of this paper is organized as follows. Chapter 2 discusses related

works. Chapter 3 describes the study and the data collected. Chapter 4 provides

computational methods involved in making inferences from the sensors and the

reliability metrics used. Chapter 5 presents the results of testing the reliability of

self-reports utilizing inferences made from sensors. We discuss the implications

and limitations of this work in Chapter 6 and conclude the paper in Chapter 7.

1Given the random nature of EMA[4], some did occur during driving. Participants were
instructed to park the car to a safe place and answer the EMA.
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Chapter 2

Related Works

In this chapter, we discuss related works on validity of EMA and self-report

in behavioral research and in crowdsourcing works. We then discuss

technological methods that have been used to assess validity of self-reports.

2.1 Behavioral Science

As mentioned in the Introduction, adoption of EMA assessment is quite

extensive in behavioral science research and assessment of validity of self-reports

has continued to be of interest to the research community [11, 15, 16, 6]. One

approach to assess the validity of EMA is to check its agreement with traditional

or clinical instruments. This approach, however, has produced mixed results [21].

Although a good correlation between the measurements obtained by EMA

methods and recall based methods confirm the validity of EMA, a moderate or

even low correlation does not necessarily indicate that EMA methods suffer from

low validity. A low correlation could result from inaccuracy in recall based

methods, due to bias. Although, clinical standards are considered to be ‘gold

standards’ meet agreement with EMA is not assured, as clinical standards are

derived from the lab while EMA is derived from the natural environment.

Therefore, assessing the validity of EMAs in field studies is more challenging.

A second approach is to compare EMA with an objective measure. For

example, in studies on substance use, researchers propose the use of

biochemical markers. For example, urine tests for drug usage, measurement of

carbon monoxide levels in breath for smoking, and in breathanalyzers for alcohol

use, are reported to be used in different studies [11]. However, most of these tests

require participant’s compliance and lab equipment, which may not scale well.
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2.2 Crowdsourcing

Crowdsourced human judgments using services such as Amazon’s

Mechanical Turk [22, 23] struggle with problems like validity or reliability. Similar to

the concerns associated with the reliability of EMA responses, there are concerns

of biases in responses, error in responses, and spamming. To increase

measurement reliability, [24] proposed to add verifiable questions in a data

collection study. In this particular work, the users were asked to rate the quality of

Wikipedia pages. Authors noted that the percentage of invalid summaries

reduced from 38% to 7% in the case where the user had to input the number of

references, images, and sections the page had as well as 4-6 keywors that

provide a good summery of the topic of the page. Also, the correlation between

the ratings provided by the user and that of Wikipedia administrators were

significantly higher than when users were asked only to rate the quality of a

specific Wikipedia page. These verifiable questions helped the researchers to

identify unreliable responses as well as signaled to users that their responses

might be scrutinized. Zhu [25] showed that verifiable questions alone may not be

enough to identify unreliable users. They suggest using the time spent on

individual items and the pattern of responses provided (e.g., lack of variance in

responses) to create a metric of reliability. As another approach, [23] suggested

using multiple indicators per construct in order to improve the reliability of

responses. None of these works make use of sensors.

2.3 Technological Assessment of Reliability

Prince [26] present an extensive literature review about direct versus

self-report measures for assessing physical activity. Direct measures provide

precise estimation of energy expenditure using sensors like accelerometers,

pedometers, heart rate monitors, calorimetry (i.e., using doubly labeled water),

and physiological markers (i.e., cardiorespiratory fitness). Correlations between
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self-report and direct measure ranged from -0.71 to 0.96. Given such wide

variability, it was not clear in that case whether the two instruments measured the

same phenomena.

The reliability of self-reported behavior was examined in a long-term study

on smartphone use in [27]. In this work, a background service logged the usage

of Gmail and Facebook by participants. Using self-report, participants provided

their recall about usage of these two applications. Three conditions were

included: voluntary reporting, prompted reporting on a set interval, and prompted

event reporting. It was shown that self-report was not able to provide a reliable

estimation of application usage duration in any of these conditions while using

Gmail. However, in case of Facebook it is likely to overestimate the usage

duration.

Elgethun [28] proposes the use of GPS to collect information about

participant location and showed that parents tend to under-report time spent by

their children at home, and overestimate when in other locations such being

outdoors or in transit. Diaries of mothers doing unskilled labor jobs or staying at

home also have low concordance with GPS. Stopher [29] shown that participants

tend to under-report about travel distances made but over-report the total duration

of travel time. These studies indicate that use of GPS can be a reliable tool to

measure the reliability of self-report about location. But, it is not clear if lack of

agreement between GPS inferences and self-report translate over to lack of

reliability in rest of the items in self-report.

In summary, the problem of assessing reliability of self-report collected in

the natural field environment is still an open problem, which can be revisited due

to the increasing adoption of sensors in field studies. It is of great interest to

determine if agreement between measures obtained from sensors and that from
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self-report can predict the reliability of self-report. And, if not, what role do

contexts inferred from sensor data play in assessing the reliability of self-reports?
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Chapter 3

Study Description

We use data collected in a scientific user study that was designed to

investigate the relationship among stress, smoking and alcohol use in the natural

environment over seven consecutive days. The study was approved by the

Institutional Review Board (IRB), and all participants provided written informed

consents. The novelty of the study was the use of sensors to assess stress,

physiology, and alcohol use.

3.1 Wearable Sensor Suite

Participants wore a wireless physiological sensor suite underneath their

clothes. The wearable sensor suite consists of two unobtrusive, flexible bands

worn about the chest and upper arm, respectively. The chest band provided

respiration data by measuring the expansion and contraction of the chest via

inductive plethysmography (called RIP), two-lead electrocardiograph (ECG),

3-axis accelerometer, temperature sensors (ambient and skin), and galvanic skin

response (GSR). The band worn about the upper arm contained a WrisTAS

transdermal alcohol sensor, allowing measurement of the participant’s alcohol

consumption, GSR, and skin temperature.

3.2 Mobile Phone

Participants carried a smart phone where software was installed to

communicate with the sensor suite. The mobile phone had four roles. First, it

robustly and reliably received and stored data transmitted by the sensor suite.

Second, it stored data from sensors local to the phone, including GPS and

accelerometers. These measurements were synchronized to the measurements

transmitted from wearable sensors. Third, participants used the phone to

complete system-initiated self-reports in the field. Fourth, participants

self-reported the beginning of drinking and smoking episodes by pushing a button.
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Fig. 3.1: Participant User Interface. From left, the first window shows the
participant how much money he/she has earned thus far for study compliance.
They can also report smoking or drinking events from this window. The second
window shows a confirmation of smoking or drinking self-report. The third window
shows one example of an EMA question about commuting. The fourth window
shows the end of an EMA interview. At the top of each window, there is a
connection status bar to help the user monitor the status of the sensor network
connection and correct it if necessary.

The phone software has user interfaces (UI) for both the study coordinator

and study participants. Participant UI (see figure 3.1) is used by the participants

to provide self-report. The participants have the option to move backward and

forward through the questions using the buttons at the bottom of the interface.

However, the interface does not allow viewing the next question unless the current

question is answered. At the end of the EMA questionnaire, the interface also

shows the incentives earned for responding to the EMA and the total earned so

far.

3.3 Self-report Measures

The mobile phone initiated field questionnaires based on a scheduling

algorithm (described below), which is a hybrid of time-based and event-based

EMA triggering mechanism. The 42-item EMA asked participants to rate their

subjective stress level on a 6-point scale as well as provide additional contextual

data on stress, smoking, and drinking episodes, such as whether the user is in
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conversation, whether the user is smoking alone or with others, and the number of

drinks consumed.

Several measures were adopted to reduce the burden of the study on the

participant. First, the smart phone software was programmed to deliver no more

than 20 questionnaire prompts in a day. Second, at least 18 minutes had to pass

between prompts. Third, the questionnaire was designed to limit the time required

to complete it to between 1 and 3 minutes. Fourth, participants had the option of

delaying a questionnaire for up to 10 minutes. If the participant did not respond to

the prompt at the second opportunity, the prompt would disappear. Fifth,

participants were also allowed to specify time periods when they did not wish to

receive prompts (e.g., during exams).

3.4 EMA Scheduling Algorithm

The scheduling algorithm is designed to balance two competing goals: (1)

minimize the burden on participants and (2) maximize the collection of

fine-grained ecologically valid self-reports. To keep the burden of the study low, a

minimum duration between two successive EMAs is always maintained (currently

18 min). Further, the scheduling algorithm uses budgets to guarantee some data

is collected for events of interest (assuming the event occurs) without exceeding

limits on participant burden.

The first budget is a global daily budget. When the global daily budget is

exceeded, no more EMAs can be triggered by the system until the following day.

The global daily budget is split into two subcategories (1) Event-based triggering

and (2) Random triggering. Randomly triggered EMAs capture baseline behavior

over the course of the day. Event-based triggering captures information

associated with a specific event (behavior) of interest.

Each type of event (e.g., smoking, drinking, speaking, etc.) also has its

own daily budget. As with the global daily budget, when an event’s daily budget is
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exceeded, no more EMAs can be triggered in response to this event until the

following day (because we collected a sufficient amount of information about that

event). When an event of interest is detected, the decision to trigger an EMA is

made with a probability proportional to the ratio of expected number of remaining

events of that type on the current day to the number of remaining budget for

events of that type. Initially, empirical estimates of the expected number of each

event per day are used. In long-term studies, these estimates can be

personalized to the participant.

Whenever an EMA is completed, the next time to trigger an EMA is

computed by dividing the remaining time of the day by the remaining total budget

and adding a random amount of time to it (±5min). Finally, the triggering of EMA

is tied to physiological data collection. If in the last 30 minutes more than 40% of

the sensor data is of bad quality [30], no EMA is triggered. As participants

incentives are proportional to the number of EMAs completed, participants must

wear the physiological sensors if they are to earn any incentives.

3.5 Field Study Procedure

A training session was conducted to instruct participants on the proper use

of the field study devices. Participants were instructed on the proper procedures

to remove the sensors before going to bed and put them back on correctly the

next morning. In addition, participants received an overview of the smart phone

software’s user interface, including the EMA questionnaires and the self-report

interface. Once the study coordinator felt the participant understood the

technology, the participant left the lab and went about their normal life for seven

days. For all seven days, the participant was asked to wear the sensors during

waking hours, complete EMA questionnaires when prompted, and self-report

smoking and drinking episodes.
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3.6 Incentives

Participants could earn up to $300 for participating in the study.

Participants earned $15 for completing a 90-minute lab session on affect; $35 for

attending daily lab appointment during the field study ($5 per day); and $75 for

completing all end-of-study procedures and returning the sensing equipment. The

remaining $175 was awarded based on compliance with the field study protocol.

Completing a self-report questionnaire was worth $1. An additional $0.25 bonus

was awarded if the questionnaire was completed within five minutes. A maximum

of 20 requests for self-reports occurred each day. Thus, the participant could earn

up to $25 per day ($1.25 x 20 self-report requests), adding up to $175 over seven

days of field study ($25 x 7). Since wearing physiological sensors and answering

42-items questionnaire upto 20 times daily are highly burdensome, level of

compensation was derived from the prevailing wage in similar behavioral science

studies [31] that involve wearable sensors. Most user-studies provide fixed

incentive to participants for completing the study [32, 33, 34, 35], while some

studies were purely voluntary [36]. We believe that micro-incentive [31] associated

with each EMA helps obtain a stronger measure of unreliability in self-report.

3.7 Participants

Participants in the study were recruited from the student population at a

large university (approximately 23,000 students) in the United States. Thirty

participants (15 male, 15 female) with a mean age of 24.25 years (range 18-37)

were selected who self-reported about being “daily smoker" and “social drinker".

Two participants dropped out from our study. One of them indicated that the

length of the chest-band and sensor connector was not large enough for the

participant’s size, and another fell sick during her scheduled participation time.
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Table 3.1: Summary of data collected in the user study.

Category Description
Participant 30 (15 male, 15 female)
Age 24.25 ± 6.25
Duration 1 week

Data Collected
2,064 hours of good quality sensors data
9.83 hours per day

Self-report prompts (EMA)
2717 in total
13.3 EMA per day (upper limit 20)
compliance 94%

3.8 Data Collected

Average number of EMA prompts delivered per day was 13.33, well below

the upper limit of 20 per day. EMA compliance rate is 94%. Participants delayed

2.28% of EMAs due to being busy or not being available at that specific time of

EMA prompt. An average of 9.83 hours per day of good quality sensors data was

collected from physiological sensors across all participants. Table 3.1 summarize

data collected in the user study.
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Chapter 4

Computational Procedure

In this section, we describe the metric for assessing the reliability of

self-reports and our procedure for computing various contexts such as location,

stress, and activity from sensor data. Figure 4.1 describes the components and

the outcomes of the computational procedure described in this section.

4.1 Metric for Assessing Reliability

We use Cronbach’s alpha [18] to assess the reliability of EMA responses.

Cronbach’s alpha measures the internal consistency of items that measures the

same psychological construct. Let k be the number of items, where σ2
i is the

variance of the i-th item, and σ2
T is the variance of the total scores formed by

summing up all the items. Cronbach’s alpha score is given by

α =
k

k − 1
(1−

∑
σ2
i

σ2
T

)

We observe that if all the items have equal variance and thus were perfectly

correlated, we obtained α = 1. On the other hand, if all the items were

independent, α = 0. In most studies, an alpha score of 0.7 or higher is regarded

as acceptable [18].

Our study questionnaire contains several affect items, Cheerful?, Happy?,

Energetic?, Frustrated/Angry?, Nervous/Stressed?, and Sad?, where participants

responded on a Likert scale of 1–6. To compute alpha, items that assessed

positive affect (Cheerful, Happy, and Energetic) were retained as scored and

items that assessed negative affect (Frustrated/Angry. Nervous/Stressed, and

Sad) were reverse coded (e.g., 1 becomes 6). The overall alpha score for our

questionnaire was found to be 0.88, which falls in the good region [1]. This implies

that there is good internal consistency among the selected items.
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Fig. 4.1: Procedure to compute the reliability score and location, stress and
activity states of the participants.
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Fig. 4.2: One example of GPS trace for one day of one participant. The
participant drives to a work-place and a restaurant. We record the location where
EMA prompt was triggered. The red line shows the path commuted by the
participant. The pinned locations are the location at the time of EMA prompt.

Table 4.1: Confusion Matrix for the Semantic Labeling model [2]. Restaurant is
sometimes confused with store.

Classified as
Home Work Store Restaurant Other

Home 617 11 10 0 4
Work 12 708 1 0 1
Store 8 7 203 6 9
Restaurant 4 1 43 27 3
Other 62 14 40 1 96

To measure reliability of EMA responses, we compute Cronbach’s alpha

across all EMA’s that satisfy a specific condition (e.g., all EMAs that were

triggered when at the “work” location). Given that we observed overall Cronbach’s

alpha 0.88 for selected 6 items, we compute alpha for a specific condition only if

there exist at least 10 EMAs so that we get a consistency score with power 0.95 at

level of significance α = 0.05 [37, 38].
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Table 4.2: Accuracy using semantic labeler model [2]. TP = true positive rate, FP
= false positive rate, P = precision, R = recall, F = F-Measure, and AUC = area
under the curve.

TP FP P R F AUC
Home 0.95 0.08 0.86 0.95 0.90 0.98
Work 0.97 0.03 0.96 0.97 0.97 0.99
Store 0.79 0.06 0.67 0.79 0.73 0.96
Restaurant 0.37 0.01 0.60 0.37 0.46 0.92
Other 0.43 0.02 0.77 0.43 0.55 0.89

0.86 0.05 0.85 0.86 0.85 0.97

4.2 Inference of Location & Kappa Score

Locations of interest and their semantic labels were determined from the

GPS traces that were collected on the phone. Figure 4.2 shows a typical GPS

trace of a participant for one day. Places of interest for a participant were places

where the participant spent a significant amount of time. We first applied a

clustering algorithm to the GPS data using the method proposed in [39]. Distance

threshold of 100 meters and temporal threshold of 5 minutes were used to find the

spatio-temporal clusters throughout the day for each participant. These clusters

represented the locations of interest. Next, we assigned semantic labels to these

locations using the method proposed in [2]. This method used demographic,

temporal and business features. Demographic features include the age and

gender of the participants which were collected from the participant recruitment

forms. The temporal features included the arrival time, visit midpoint time,

departure time, season, holiday, and the duration of stay at that location. These

features were also computed from the GPS traces and clusters. Lastly, the

business features include the count of different types of business entities such as

Arts/Entertainment, Food/Dining, Government/community, Education etc. within

the different distance thresholds of the current location (see [2] for details). To

compute the business features, we used Google Places API. For this model
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developed in Weka, we got an accuracy of 85.75% and a kappa of 0.80. Table 4.2

presents detailed accuracy across different locations and Table 4.1 presents the

confusion matrix of this semantic context labeler model. It can be noticed

that Home, Work, and Store are detected quite well. However, restaurant is

confused with store, because a store and a restaurant can be located close to one

another. We, therefore, corrected the labels (if necessary) by plotting the GPS

traces in Google earth and visually inspecting the locations. These location labels

were considered as ground truth. However, for some locations it was still not

possible to have a single label, for example, for some locations we could not

reliably distinguish between a store and a restaurant. We discarded these data

points.

4.3 Agreement between self-reported location and GPS-inferred location

In our study questionnaire, the possible responses to the question, What is

your Location?, are Home, Work, Store, Restaurant, Vehicle, Outside, and Other.

Therefore, we mapped the location labels obtained from the procedure described

above to these seven categories. We used the tree in Figure 4.3 to resolve

ambiguities in the mapping process. Location mentioned in the top 7 boxes (in

blue) are possible responses. For each of these locations, Figure 4.3 shows

possible locations that are mapped to it. For those locations for which we have

more than one label, we consider the self-reported location to be a match if it

matches with any of the possible labels.

We used Cohen’s Kappa (κ) [19] to measure agreement between the

self-reported location and the GPS-inferred location. Kappa varies from -1 to 1

where, κ scores of 1 and -1 indicates absolute agreement and disagreement

respectively, while κ = 0 indicates that agreement is due to random chance. In

most behavioral studies, κ > 0.7 is considered to be satisfactory. Similar to the
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Fig. 4.3: Location mentioned in the top 7 boxes (blue) are possible responses of
this item. There is a match if GPS log indicates that participant is in a location
mentioned in green colored box and he reported a location mentioned in
corresponding root blue box (ground truth location). Similarly, being at a location
mentioned in yellow colored box and reporting a location mentioned in the
corresponding root blue box was acceptable, and we mark their ground truth
location as the one reported. Otherwise, we keep the report as it is.
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Fig. 4.4: Standard deviations < 0.21384 are labeled as stationary and others are
labeled as non-stationary (i.e., walking or running).

case of computing alpha under specific conditions, we computed kappa when

there were at least 10 EMAs that satisfied a chosen condition.

4.4 Context Inference

Participant’s context can indicate whether a factor such as lack of attention

may be responsible for unreliable responses. In this paper, we considered two

such contexts, physical activity and physiological stress. These are computed

from the accelerometer and physiological sensors (i.e., ECG and RIP) present in

the wearable sensor suite. In both cases, we adapted existing inference

algorithms.

4.4.1 Activity Inference

To infer whether a subject is in motion or not, we used a simple threshold

based activity detector using the 3-axis on-body accelerometer (placed on chest).

Phone accelerometer data was not used because the phone may not be on the

person and thus may not indicate actual physical activity. We utilized the existing

physical movement detection approach [40, 41] and adapted it to fit our study. As

the placement of the accelerometer and the participant population is different from
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Fig. 4.5: The Lab Study Procedure for stress inference model. After 30 minute
rest period participants receive 3 stressors, public speaking, mental arithmetic,
and cold pressor.

that presented in the prior works, we collected training data to determine an

appropriate threshold for detecting activity. We have collected labeled data under

walking and running (354.16 minutes), and stationary (1426.50 minutes) states

from seven pilot participants who wore the same sensor suite. Figure 4.4 shows

the training data from seven pilot participants. We filtered the raw signal, removed

the drift, and extracted the standard deviation of magnitude, which is independent

of the orientation of the accelerometers and suggested by literature [40, 41]. We

find the distinguishing threshold for our accelerometer to be 0.21384, which is

able to distinguish stationary from non-stationary states with an accuracy of 97%

in 10-fold cross-validation [30].

4.4.2 Stress Inference

Measurements from the ECG and RIP sensors were used to extract

features for physiological stress model as proposed in [20]. To develop stress

model a lab study was conducted. There are several factors that can influence

physiological signals besides stress. Reasoning this during lab study participants

were instructed to avoid caffeine, tobacco, alcohol, drug (e.g., pain killer), and

excessive physical activity like exercise prior to lab session. Figure 4.5 summarize

the lab session. At the beginning participants had a 30 minute rest period so that

his physiology becomes at baseline. After that for ground truth of stress 21
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participants were exposed to three well known stressors like, public speaking,

mental arithmetic, and cold pressor [42, 43, 44, 45] with 5 minutes rest period

in-between. For building model ECG features like RR interval, ratio between low

and high frequency components of heart beat, and heart beat frequency in 3

bands (low, medium, and high) is used. As proposed in [20] we also considered

respiration features like respiration duration, inhalation duration, exhalation

duration, IE ratio, stretch, ratio of minute ventilation and minute volume, and

breath rate. Support Vector Machine (SVM) [46] based model is able to classify

stress at an accuracy of 89.17%. The model produces binary outputs, on 30

second segments of measurements. A correlation of 0.71 is observed between

the stress model and the self-reported rating of stress. As proposed in [20], stress

inference was discarded when the participant was detected to be not stationary

from the activity inference.
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Chapter 5

Results

In this section, we first present the reliability scores (alpha) and agreement

scores (kappa) of the participants. Next, we take a closer look at the data

obtained from the participants for whom we observe low agreement between

self-reported location and the GPS-inferred location. We investigate whether this

low agreement is due to one of the following reasons: (i) They are sensitive to the

location question, (ii) They do not wish to report certain locations due to privacy

concerns, or (iii) They are not fully available to respond accurately. We then

examine whether participants with low kappa have low reliability of self-reports as

measured using Cronbach’s alpha. Finally, we examine whether contexts such as

“stressed”, “physical activity” or “away from home or at work” at the time of

receiving an EMA prompt are associated with low reliability (i.e., α < 0.7), as we

speculate that during these contexts participants may not be fully available to

respond carefully to EMA.

5.1 Participant’s alpha score

Figure 5.1 presents the alpha score for each participant with an

unacceptable alpha or kappa score. We observe that two participants (P#20 and

P#44) had questionable alpha score. Upon closer examination of these

participants’ alpha scores in different location contexts, we observe that their

alpha scores are low in some contexts (e.g., 0.16 when outside of home or work

for P#20), but acceptable in other locations (e.g., 0.72 for P#20 when in home or

work location). Therefore, no participant was always inconsistent and every

participant reported reliably in at least at one context.

5.2 Participant’s kappa score

Figure 5.2 shows κ scores for each participant, where five participants

have absolute agreement with κ = 1 and eight participants have κ < 0.7. We
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Fig. 5.1: Participant’s Cronbach’s alpha. Alpha is sub-sectioned into six
groups [1], unacceptable(α <0.5), poor [0.5, 0.6), questionable [0.6, 0.7),
acceptable [0.7, 0.8), good [0.8, 0.9), and excellent (α ≥ 0.9). We observe that
only two participants have unacceptable alpha.

Fig. 5.2: Agreement score kappa (κ) measured from location inferred from GPS
and participant’s response to the location item. Overall κ for all participants is
0.78. Acceptable line is placed at 0.7.
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observed wide variability among the participants. We find some participants for

whom kappa score is 1, indicating that GPS-inference matched perfectly with

self-reported location for these participants.

5.3 Relation between kappa score and alpha score

We first test the following alternate hypothesis.

Hypothesis 1. Participants with unacceptable agreement between

inferred location and participant’s response to the location item, will have less

consistency in other self-reported items than those who have agreement on

location.

H0: αAcceptableKappa = αUnacceptableKappa

Ha: αAcceptableKappa >αUnacceptableKappa

We computed α for each of the 30 participants and divided them into two

groups based on whether agreement of location item is acceptable (κ≥0.7) or not.

Acceptable group had 22 participants with a mean of α=0.826 and σ=0.065,

whereas the unacceptable group had eight participants with a mean of α=0.813

and σ=0.120. A two sample two-tail F-test showed that these two groups did not

have equal variance (p-value 0.028). We therefore conducted a two sample

one-tail Welch’s t-test and estimated the p-value 0.384. Non-parametric Wilcoxon

rank sum test show that there is no significant difference between these two

groups with p-value 0.6549. Permutation test with statistics like mean and median

we get p-values 0.323 and 0.523, respectively for 1000 random permutations. As

a result, based on consensus in both parametric test and non-parametric test, we

cannot reject the null hypothesis (H0) and conclude that unacceptable agreement

between participants’ self-reported location and the one inferred from GPS does

not imply less consistency in self-report.
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Table 5.1: Context score for participants with unacceptable acceptance score of
alpha or kappa. P# for participant id, α for Cronbach’s alpha, κ for kappa
agreement score, H+W for Participant being at Home or Work, and Other for any
place other than Home or Work.

P# α κ
α κ

H+W Other H+W Other
16 0.85 0.55 0.85 0.68 0.67 0.20
17 0.91 0.68 0.88 0.83 0.49 1.00
20 0.56 0.16 0.72 - 0.16 -
24 0.73 0.20 0.75 - 0.20 -
25 0.91 0.49 0.91 0.86 0.54 0.21
28 0.82 0.22 0.80 - 0.20 -
30 0.81 0.12 0.83 0.46 0.08 0.35
31 0.91 0.40 0.92 0.82 0.32 0.59
44 0.69 0.87 0.73 - 1.00 -

To understand lack of strong association between low kappa and low

alpha, we further analyzed the reliability scores for the eight participants who have

unacceptable kappa (see Table 5.1). We observe that the alpha scores for all

these participants, except one (P#20), are greater than 0.7. We take this as

further corroboration that lack of agreement in location does not imply lack of care

in completing self-reports. We also observe that kappa is unacceptable for these

participants whether they were at home or at work (which we would expect not be

a sensitive location to reveal) or outside of these standard places. We conclude

that several of these participants may be sensitive to the location item itself,

irrespective of where they may be located.

5.4 Role of Context in Assessing Reliability of Self-reports

We now examine the role of three contextual components in predicting the

reliability of self-reports - location, activity, and stress.

5.4.1 Role of Location Context

Table 5.1 indicates that for two participants, the alpha scores when outside

of home or work, is lower than 0.7. This indicates that for at least some
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Fig. 5.3: Participant alpha in case of being at home or work, or other places
response is plotted in primary axis. Difference of them for each participant is
plotted in secondary axis. CI lower limit for the difference of samples of
Hypothesis 2 is also plotted in secondary axis.

participants, when they are not at home or work, they may not be fully available to

complete self-reports and hence their reports may have lower reliability.

To examine the role of location context, we formulate the following alternate

hypothesis.

Hypothesis 2. Participants will have lower reliability scores when they

are not at home or work.

H0: αHomeWork = αOther

Ha: αHomeWork >αOther

Responses from all participants were again categorized - one category

contained EMAs when the participant was at home or at work and the other

category contained EMAs when the participant was in other locations (e.g., a

store, a restaurant, in a vehicle, or outside). We calculated alpha for both of the

categories for each participant and conducted a one-tail paired t-test over 18
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sample pairs. Mean alpha of home or work, and other locations were 0.844 and

0.798, respectively, with a mean difference of 0.046. One tail paired t-test

estimated p-value 0.095. For Non-parametric Wilcoxon Signed Rank Test we get

p-value 0.123. As a result, we were not able to reject the null hypothesis (H0) and

conclude that participant’s consistency does not get affected due to being in less

frequent places, i.e., not at home or work, where participants spend 91.4% of their

time. Figure 5.3 presents the samples used in this test.

5.4.2 Role of Activity Context

To examine the role of physical activity on reporting reliability, we formulate

the following alternate hypothesis.

Hypothesis 3. Participants will have lower consistency scores when they

are engaged in physical activity.

H0: αStationary = αActivity

Ha: αStationary >αActivity

Physical activity is defined as participant performing an activity that has the

intensity at-least equal to that of during taking a walk, while stationary refers to

participant activity intensity level is less than walking. We calculate a pair of alpha

for participant being stationary or being in some physical activity for each

participant (following the same process described earlier). Our total sample pair

was 24, mean alpha of stationary and activity was 0.792 and 0.743, respectively,

and the mean of difference was 0.049. Two-tail paired t-test estimated p-value

0.313. Here, we are unable to reject the null hypothesis and report that physical

activity has no effect on consistency of self-reports. However, one-tail paired t-test

estimated p-value 0.156. For Non-parametric Wilcoxon Signed Rank Test we get

p-value 0.265. We are unable to reject the null hypothesis of (H0) and conclude

that physical activity does not result in inconsistent self-reports. Figure 5.4
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Fig. 5.4: Participant alpha in case of activity or being stationary while EMA
response is plotted in primary axis. Difference of stationary and activity for each
participant is plotted in secondary axis. CI for difference of samples of Hypothesis
3 is also plotted in secondary axis.

presents the samples used in this test. We hypothesize that during daily physical

activity like walking, people are more likely in transitioning state in their daily

life [47] and people have enough time to complete the self-report carefully and

consistently.

5.4.3 Role of Psychological Context

Next, we investigated whether participants’ psychological state can cause

them to provide less consistent response. This may be the case when they are

stressed and as a result may be too burdened psychologically to be fully available

to focus on completing the self-report. We test the following alternate hypothesis

to investigate the role of stress.

Hypothesis 4. Participants will have lower consistency scores when they

are stressed.

H0: αNotStressed = αStressed

Ha: αNotStressed >αStressed
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Fig. 5.5: Participant alpha in case of being stressed or not stressed response is
plotted in primary axis. Difference of alpha of not stressed and stressed for each
participant is plotted in secondary axis. CI lower limit for difference of samples of
Hypothesis 4 is also plotted in secondary axis.

It is possible that prompting EMA can cause physiological stress to the

participants. In order to select an unbiased binary stress indicator, we used five

consecutive 30-second intervals preceding the delivery of a self-report prompt

and considered the state of the individual to be stressed if they were found to be

stressed in 3 out of the 5 preceding 30-second intervals. Since the stress model is

a machine learning model, using 5 windows provides robustness of inference. We

selected only those instances where the 30-second intervals preceding the EMA

prompt did not have an activity episode that could interfere with stress model.

Responses collected from each participant were categorized into two groups,

“stressed” and “not stressed”. If a group contained less than 10 EMA, we

excluded that participant from this computation. We calculated alpha for both

stressed and not stressed groups for each participant and conducted a one-tail

paired t-test over 15 sample pairs. Mean alpha of stressed and not stressed was

0.626 and 0.816, respectively, with a mean difference of 0.189. One-tail paired
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Table 5.2: Hypothesis testing summary. H for Hypothesis number and n for
sample count (pair). For each hypothesis both parametric paired t-test and
non-parametric Wilcoxon Signed Rank test is performed.

H n
Group 1 (α) Group 2 (α) Mean of

Difference
p-value

Name Mean Name Mean t-test Wilcoxon

2 18
At Home
or Work

0.844 Other 0.798 0.046 0.095 0.123

3 24 Stationary 0.792 Activity 0.743 0.049 0.156 0.265
4 15 Not Stressed 0.816 Stressed 0.626 0.189 0.042 0.060

t-test estimated p-value 0.042. For Non-parametric Wilcoxon Signed Rank Test

we get p-value 0.060. We reject null hypothesis (H0). Figure 5.5 presents the

samples used in this test. We hypothesized that due to cognitive impairment

during a stressful episode [48] causes this inconsistency in self-report.

Table 5.2 summarizes the hypothesis testing results indicating the role of

location, physical, and physiological contexts in self-report reliability.
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Chapter 6

Discussion, Implications, and Limitations

Our results show that agreement between self-reported location and

GPS-inferred location may not indicate the reliability of an entire self-report and

self-report should not be discarded merely because the location report does not

match the GPS-inferred location. A lack of agreement may be due to the

sensitivity of some participants to the location question. This result also implies

that since GPS collects data passively in the background, participants may not be

consciously aware of their location being captured. Providing an option to stop the

location capture based on predefined rules or retrospective erasure of location

traces may be needed in future studies with GPS sensors.

Another way to use sensors to assess reliability of self-reports is by

inferring the context of the participant at the time of receiving a prompt and testing

if certain contexts should be avoided. Among the three contexts we examined

(location, activity, and stress), we find that location (at the level of whether at

home or work, or somewhere else) and activity (at the level of stationary or

non-stationary) are not associated with low reliability of reporting. Hence,

self-report prompts may still be delivered irrespective of the location and of

physical activity status. Further research may be needed to investigate the role of

these contexts at a deeper level, for example, by collecting sufficient data points

at various locations where participants may be pressed for time (e.g., when

driving) to investigate the role of context in predicting reliability of self-reports.

The third context we tested, namely stress, was associated with low

reliability. This may be due to the participants’ not being in the right state of mind

to focus on completing the self-report. This may be similar to the case when

participants fill out self-reports upon alcohol use or illicit drug use. These contexts

are known to result in self-reports with less than desired reliability. It is interesting
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to note that such conditions, however, do not necessarily have effect on the

compliance of the participants. We conclude, however, that unless the research

protocol demands prompting the participants when they are under stress,

self-report prompts should be deferred until the participant recovers from stress.

Doing so may improve the reliability of self-reports.

Several other contexts, e.g., eating, using the phone, playing games, or

working, where a person can be similarly mentally occupied as during stress, can

have similar effect on reliability. This relates to interruptibility studies [49] whose

goal has been to investigate interruptibility in work environments. Our results

imply that interruptibility should also be investigated in more varied contexts,

especially in the natural environment of the participants. Once such contexts are

found, avoiding those contexts can improve the reliability of self-reports.

We would like to point out several limitations of our work. First, although we

can detect driving episodes, a potential context that can affect reliability, we didn’t

have enough EMAs triggered during driving to statistically test its impact on

reliability1. Second, inclusion of additional sensors such as microphones to

identify conversation episodes, can uncover candidate contexts that can also

predict reliability. Third, even though this work suggests that avoiding stressful

events when prompting for self-report may improve reliability of self-reports,

whether doing so indeed improves reliability needs to be investigated separately.

Finally, participants for this study came from a mid-sized city in the U.S. and are

students in a large university. The results obtained here may not generalize to the

general population, other specialized population, or to other locations.

1Given the random nature of EMA[4], some did occur during driving. Participants were
instructed to park the car to a safe place and answer the EMA.
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Chapter 7

Conclusion

Self-report is the primary tool used in behavior research and social science

to collect data from individuals in their natural environment. It is well known that

self-report measurements are vulnerable to a wide range of problems such as

subjective bias, physical condition of the participant, and social desirability of the

response provided, to name a few. Limited and often expensive lab experiments

have been the only methods available thus far to assess the accuracy of

self-reports. In this paper, we attempt to use sensor data to assess reliability of

self-reports. We show that disagreement between location reported and the

location inferred from GPS is not an indicator of low reliability of the responses to

the rest of EMA. Inferring the physical activity episodes from accelerometers we

have identified that a person engaged in a physical activity such as walking is very

much likely to reliably answer EMAs. We inferred stressful episodes from ECG

and RIP sensor measurements and found that, unlike activity, stress does have

an effect on reliability. Our findings indicated that such mental states where an

individual is not fully (physically, mentally or emotionally) available, can have an

adverse effect on the reliability of self-reports. Knowledge of such states or

contexts can be very useful in designing future studies, especially EMA prompting

mechanisms.
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