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Abstract

Defenses against adversarial attacks are essential to ensure the reliability of machine learning

models as their applications are expanding in different domains. Existing ML defense techniques

have several limitations in practical use. I proposed a trustworthy framework that employs an

adaptive strategy to inspect both inputs and decisions. In particular, data streams are examined by

a series of diverse filters before sending to the learning system and then crossed checked its

output through a diverse set of filters before making the final decision. My experimental results

illustrated that the proposed active learning-based defense strategy could mitigate adaptive or

advanced adversarial manipulations both in input and after with the model decision for a wide

range of ML attacks by higher accuracy. Moreover, the output decision boundary inspection using

a classification technique automatically reaffirms the reliability and increases the trustworthiness

of any ML-Based decision support system. Unlike other defense strategies, my defense technique

does not require adversarial sample generation, and updating the decision boundary for detection

makes the defense systems robust to traditional adaptive attacks.
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Chapter 1

Introduction

Machine Learning (ML) techniques have recently attained impressive performances on diverse

and challenging problems such as malware/intrusion detection, image classification, object

detection, speech recognition, face recognition in-the-wild, self-driving vehicles, just to name a

few. In spite of their major breakthroughs in solving complex tasks, it has been lately discovered

that ML techniques (especially artificial neural networks and data-driven artificial intelligence)

are highly vulnerable to deliberately crafted samples either at training or at test time, which can

easily subvert ML techniques’ outcomes. The samples with deliberate perturbations are usually

referred as ‘adversarial examples’ (a.k.a. wild pattern or adversarial attack), i.e.,

carefully-perturbed samples aimed to mislead the ML techniques. For instance, the arbitrary

perturbations added in the benign malware binary vector/file can lead to a significant drop in

accuracy of DNNs-based malware detection systems. Similarly, for image classification ML

techniques, an adversarial example can be generated by adding some indiscernible perturbations

into a given image. The resultant adversarial image is misclassified by the well-known ML

classifiers, while a human being can still classify it correctly without spotting the deliberate added

perturbations. In case of automatic speech-to-text transcription, a small perturbation (e.g., an

arbitrary waveform) when added to the original waveform can cause it to be transcribed as any

phrase malicious adversary chooses. The audio adversarial examples that are perceived one way
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by a human but transcribed differently by a state-of-the-art speech-to-text transcription neural

network. Also, an adversary can malignly modify labels of the samples to be used for

(re-)training of ML techniques, which is known as poisoning attacks.

To safeguard ML techniques against malicious adversary, several countermeasure schemes

have been proposed, which roughly fall within two categories: adversarial defense and adversarial

detection. Frameworks in first category aim at improving the DNNs’ robustness to classify AEs

correctly, e.g., adversarial training, i.e., training the ML techniques with clean and malicious

samples. While the frameworks in second category attempt to detect malicious samples before

they are fed to ML technique’s main architecture such as augmenting the ML technique’s main

model with a small “detector” sub-ML technique trained on both adversarial and original clean

samples, which can be utilized to distinguish whether the input sample is an adversarial attack or

not. Despite the current progress on increasing robustness of ML techniques against malicious

attacks, the majority of existing countermeasures still do not scale well and have low

generalization. Namely, adversaries (adversarial samples/input) yet pose great threats to machine

learning (ML) and artificial intelligence (AI).

In figure 1.1,1.3 and 1.2, I illustrated three examples of adversarial attacks. In the first

example, one person can change just by wearing an adversarial patch printed glass, In 1.2

example, a simple change of word changing the output class of the paragraph. and in the 1.3, it is

illustrated that normal day to day speech can change by little noise.

Figure 1.1: Adversarial attack examples on face biometric. Adding a special sunglass can able to
fool the face biometric.

Modern society immensely relies on highly interconnected cyberspace, which is prone to
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Figure 1.2: Adversarial attack example on text (the green color word ’signs’ changed to ’signal’
which change the output class ’Entailment’ to ’Contradiction’

Figure 1.3: Adversarial attack example on Audio (normal audio record can be used as a voice
command to access smart home)

vulnerabilities. For instance, from daily online shopping, cloud computing platforms to remotely

controlled devices (i.e., Internet of Things) can be attacked or manipulated by adversaries. In

particular, sample manipulations (adversarial attacks) may lead societies and individuals to untold

risks with severe consequences. Sophisticated cyber adversaries are very difficult to detect and

have severe negative impact on automated ML/AI. ML/AI based systems are exponentially being

applied in diverse set of applications such as border crossing, autonomous vehicles, thus their

security is paramount.

The proposed framework will be a game-changer in developing trustworthy ML systems

and is very relevant to secure and trustworthy cyberspace programs. The successful outcome of

this research will provide an additional layer of defense shield against attacks on learning

systems. The outcome of this research will make it harder to attack any ML system without

revealing specific attack methods. It will save a biometric (face+voice) recognition-based

authentication system being attacked by hackers. ML-based applications such as intrusion

detection techniques, news classifications, search engine optimizations, email spam filtering,

video surveillance, Object detection applications are vulnerable to adversarial attacks. My

findings will able to protect these applications from being exposed to adversarial attacks.
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1.0.1 Contribution

We contributed a robust filtering schemes for machine learning systems to defend Adversarial

Attacks which provide end to end protection. Our scheme incorporated with a diversity

preserving variable-length MOGA for search set of Filters that are effective against a different

type of AAs input as input filers and devised an adaptive negative filtering methodology to detect

adversarial attacks that do not modify the ML model or information about the ML model but

consistent with ML model outputs that able to capture TROJAI or backdoor. Our strategy can be

implemented in any ML-based system without expensive retraining. Current Adaptive attacks are

ineffective in our negative filtering approach as they are regenerating for each input. To

summarize, the dissertation will address the aforementioned limitations in current state-of-the-art

adversarial defenses and make the following contributions.

• Identify natures of adversarial attacks. I will identify some natural phenomenon of

adversarial attacks and established benchmarks of adversarial attacks and defense.

• Devise a defense strategy independent of MLM knowledge I will design a defense method

which will not require any MLM knowledge.

• Explore input filters using Genetic Algorithm The primary purpose of input filters is to

prevent adversarial input data in such a way that can differentiate data manipulation from

the trained data. It will be examining the input by deploying application-specific filter

sequence. A set of filter sequences are selected (from a given library of filters) using an

efficient search and optimization algorithm, called multi-objective genetic algorithm

(MOGA). The MOGA can find a sequence of filters (where each filter can detect

adversarial traits/noises) satisfying constrains and three objectives: detection of the

maximum number of attacks with higher accuracy (above a specific threshold), with

minimum processing time, and shorter sequence of ensemble filters. By utilizing the

Pareto-set from MOGA runs, and picking a filter sequence dynamically at different times,

4



make filter selections unpredictable and use an active learning approach in order to protect

the ML from adaptive attacks.

• Output filter after MLM: Employ several class-specific latent space-based transformation

for outlier detection. After MLM provides an output class label, it is then verified if the

output falls in that class’s latent space or not. I will make an ensemble of different outlier

detection methods and sequence dynamically and also retrain the outlier methods runtime.

Publications

Publications resulted from my research as below:

• Patent: System for Dual-Filtering for Learning Systems to Prevent Adversarial Attacks.

63/022,323

• Conference:

– Gupta, Kishor Datta, Dipankar Dasgupta, and Zahid Akhtar. "Adversarial Input

Detection Using Image Processing Techniques (IPT)." In 2020 11th IEEE Annual

Ubiquitous Computing, Electronics Mobile Communication Conference

(UEMCON), pp. 0309-0315. IEEE, 2020.

https://doi.org/10.1109/UEMCON51285.2020.9298060 [75]

– Gupta, Kishor Datta, Dipankar Dasgupta, and Zahid Akhtar. "Applicability issues of

evasion-based adversarial attacks and mitigation techniques." In 2020 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 1506-1515. IEEE,

2020. https://doi.org/10.1109/SSCI47803.2020.9308589 [76]

– Gupta, Kishor Datta, and Dipankar Dasgupta. "Using Negative Detectors for

Identifying Adversarial Data Manipulation in Machine Learning" In 2021

International Joint Conference on Neural Networks (IJCNN), Shenzhen, China,

July18–22, 2021. [73]
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• Journal:

– Gupta, Kishor Datta and Dipankar Dasgupta. “Dual-Filtering (DF) Schemes for

Learning Systems to prevent Adversarial Attacks” Journal: Springer Complex

Intelligent Systems, Manuscript ID: CAIS-D-21-00347, Submission date: March

2021. (under review)

– Gupta, Kishor Datta, and Dipankar Dasgupta. “Adaptive Ensemble of Filters (AEF) to

Detect Adversarial Inputs” Journal:IEEE Transactions on Emerging Topics in

Computational Intelligence (TETCI) (under Review)

– Gupta, Kishor Datta, Dipankar Dasgupta, and Zahid Akhtar. “Determining Sequence

of Image Processing Technique (IPT) to Detect Adversarial Attacks” Journal:

Springer Nature Computer Science, Manuscript ID: SNCS-D-20-01775, Submission

date: October 2020. (Accepted) [77],

– Gupta, Kishor Datta, Dipankar Dasgupta, and Zahid Akhtar. Negative Selection

Algorithm Research and Applications in the last decade: A Review” Journal: IEEE

Transaction of Artificial Intelligence, Submission date: May 2021. (Under second

review),

Dissertation Organization

The rest of the dissertation is organized as follows: The second chapter discusses the preliminary

topics which are related to this dissertation. An extensive literature study on adversarial attack

and defenses are presented here.

In the third chapter, I detailed my goals and objectives. I also introduced the basic

structure of my proposed defense system. I also presented the data set used to conduct

experiments. I also briefly described my threat model, which I use to evaluate my defense

strategy. This section also has detailed preliminary investigations and findings of my study.

In the fourth chapter, I explained how I ensemble input filter library and what are the

6



features used for that. The Multi-objective Genetic algorithm employed to search a suitable set of

the sequence is described herein detailed. This section also discusses how outlier detection

methodology can work for adversarial input detection tasks.

Chapter five briefly detailed all our research findings and how they will be employed to

develop an end-to-end filtering scheme. I described the architecture and workflow in this section.

Also, compare with other defense methods and gave a complete result analysis.

In chapter six, I concluded my dissertation with a proof of concept application and

summary of dissertation.
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Chapter 2

Background

In this chapter, I will discuss different adversarial attacks, their properties, filter techniques,

adversarial defense techniques, and other terminology used in this proposal.

2.1 Artificial intelligence (AI)

If any machine demonstrates that it can make a decision based on its perception of its

environment, then this demonstration is known as Artificial Intelligence[135]. Machine Learning,

Natural Language Processing, Evolutionary algorithms, Search algorithm, Mathematical

Optimization all considered part of Artificial Intelligence.

2.1.1 Machine Learning (ML)

Machine Learning considered a subpart of the Artificial Intelligence domain. The difference

between machine learning and other types of artificial intelligence is that machine learning is

data-centric, not decision-based, and it focuses on accuracy rather than success. Machine

Learning is the learning in which machines can learn on their own without being explicitly

programmed. It is a form of AI that renders the device with the capability to learn and develop

from events automatically. It has a self-learning algorithm, and it has extensive relationships with
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Figure 2.1: AI classification [111]

statistics [134].

2.1.2 Neural Networks (NN)

Neural Networks is a set of the algorithm used to recognize pattern based on numerous iteration

of training data which claims to be similar to human brain function. Here initial a supervised

dataset used to train a set of nodes. Where nodes have initial weight values are random. By each

iteration from input data to output class, error differences affect the weight values after a certain

number of repetitions and backpropagation weight values are set in a way that any new input data

that weights can forward them to the right output. [89]. In the Figure 2.4, output value is male and

female based on age, height and empathy values which a neural network model is classifying the

input data. Neural networks uses some activation function which determines what a output node

will generate some examples of these functions are TANH, SOFTMAX, RELU etc.
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Figure 2.2: ML classification [187]

Figure 2.3: Neural Network example [89]
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Figure 2.4: Neural Network Classification [193]
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2.1.3 Deep Neural Networks (DNN)

Deep Neural Networks is a subset of neural network families that can use a higher level of raw

feature data from input to generate output. As an example, to detect a face in an image standard

neural network will take information such as histogram data, edge data, number of object data and

their positions, etc. etc. But deep learning neural networks can receive a full image as input and

can detect the face [115]. Four fundamental deep learning networks are:

• Unsupervised Pre-trained Networks

• Convolutional Neural Networks

• Recurrent Neural Networks

• Recursive Neural Networks

Unsupervised Pre-trained Networks instates a discriminative neural net from one which was

prepared utilizing an unaided basis, A Convolutional Neural Network (CNN) is essentially a

standard neural system that has been stretched out crosswise over space utilizing shared loads.

CNN is intended to perceive pictures by having convolutions inside, which see the edges of an

article perceived on the picture. A Recurrent Neural Network(RNN) is fundamentally a standard

neural system that has been stretched out crosswise over time by having edges which feed into

whenever step rather than into the following layer in a similar time step. RNN is intended to

perceive arrangements, for instance, a discourse signal or a content. It has cycles inside that infers

the nearness of short memory in the net. A Recursive Neural Network is progressively similar to a

various leveled arrange where there is actually no time viewpoint to the information grouping

however the info must be handled progressively in a tree design.

2.1.4 Convolutional Neural Network (CNN)

Convolutional neural network is a one type of deep neural network where a set of processing layer

added before a fully connected neural network. This convolutional network preporcess the image
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Figure 2.5: A simple convolutional neural network[170]

Figure 2.6: A simple example[170]

thus no image feature extraction needed out side this network. in the figure 2.5 we can see an

example of basic diagram of a CNN. First layer of CNN is a Convolutional layer, In convolutional

layer a matrix know as kernel or filter applied into the image and create an image, next step is

pooling step, this step reduce the size of the image, there are max pooling or average pooling and

some other types of pooling exist. After several convolutional and pooling step image features get

flatten one dimentional input and it applied to a fully connected neural network part. Sometime

with convolutional neural network several activation functions are used like Rectified linear Unit,

TanH function etc. In the example 2.6 , we can see first an image converted to differnet model

than a RELU activation functional changed that after again some pooling applied on it, after sever

of this process repetation in the end we get a feature list to give fully connected layer, and that
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Figure 2.7: A simple Lenet-5[98]

layer give ’car’ most confidence than other output class. There are different models of CNN

currenly in use, but some of the most famous models are

• LeNet-5

• AlexNet

• VGG-16

• Inception-v1

• Inception-v3

• ResNet-50

• Xception

• Inception-v4

• Inception-ResNets

• ResNeXt-50

We will describe Lenet5, ResNet and VGG-16 and as they are most widely use for adversarial

attack research.

LeNet-5

Lenet is most simple of all, it has 2 conv and 3 FC layer. In the figure 2.7 a Lenet-5 has shown.
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Figure 2.8: A simple VGG-16[98]

Figure 2.9: A simple Resnet[98]

VGG-16

Visuak Geometry Group develop VGG-16 neural network architecture which has 13 conv and 3

FC, each conv attached with a RELU layer. It use very simple size kernels suc as 3X3 oe 2X2. In

the figure 2.8 a VGG-16 has shown.

Resnet

Resnet introduces a identity block which is used with conv and max pool layer before connected

to FC layer. Most of the adversarial examlples we going to introduce in next few chapters have

been developed on Resnet architecture. . In the figure 2.9 a ResNet has shown.

2.2 Adversarial Machine Learning

Based on NIST [189] definition, adversarial machine learning is the manipulation of training data,

ML model architecture, or manipulate testing data in a way that will result in wrong output from

ML. The rationale behind AA’s success has no conclusive explanation. In 2014, [188, 74] states

the reason is non-linearity, but [65] proclaims it is for too much linearity. Another theory by
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[190], proposed a tilted boundary theory and insisted that it is never feasible to fit a model

completely, and that’s why Adversarial attacks exist. Some MIT researchers stated that all

adversarial features are not noise, rather these data cannot be properly classified because human

sensors are not sophisticated enough to associate a class for these data, however this argument is

disputed by other researchers[87].

From the NIST definition, I can define three basic types of AAs as[86]

1. Poisoning attack: In this attack, the attacker can corrupt training data and create adversarial

examples later to work on the model. It happens in training time.

2. Evasion attack: In this attack, testing inputs change in a way that they miss-classify to

another random or targeted class.

3. Trojan AI attack: In this attack, the AI model’s architecture changes in a way it

miss-classifies the input.

Generally speaking, adversarial examples are input data which get miss-classified by an AI

method but not by a human eye. In mathematical definition:

For a ML model M , if A is Non adversarial input and right class label is CR, added noise

is ε, Now,adversarial example Ax = A+ ε, Ax classify by M as class CW where (CW 6= CR), But

if in human eye Ax ≈ A and Ax classify as CR,

Poisoning Attack

In training time, the attacker can corrupt training data and create adversarial examples later to

work on the model. In figure 2.10, It is illustrated that malicious training data was given to the

model with training data until the desired outcome start to happen. Outilier detection is the most

common approach to tackle this attack.
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Evasion Attack

In this attack, testing images are change in a way that they miss-classify to another random or

targeted class. This attack is transferable to any ML model. It can observe that to classify an

object in an image; the neural network doesn’t seem able to identify the object features. Such as,

the difference between plane and car doesn’t depend on the background is sky or ground or which

one has wings and which one has large windows. It depends on color pixel values in certain

positions.

Figure 2.10: Evasion attack and poisoning attack [86]

This evasion attack can divide into two sides based on knowledge, which is also known as

the white-box-black box model as illustrated in figure 2.11. In a white-box attacker knows details

of the model in black box attacker only knows the output decision. Also, based on the

misclassification class, it can be separated into two types one is targeted, and another is

non-targeted. When anyone manipulate an image from one level to sure, another class can be said

targeted adversarial attack. And when miss-classify to any other type can be assumed

non-targeted attack.

Figure 2.11: Adversarial Attack Types [86]
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Figure 2.12: Adversarial Attack Generation methods types in whitebox model [35]

Troj AI

If a deep learning network architecture is modified by and adversarial after its training completed,

then that deep learning network has a Troj-AI[216]. In figure 2.13, illustrated how a trojan-trigger

in the network changing the output of results by manipulating the network. It first gathers

information about what should be the input data needed to be a definite class. Based on that it

changes the architectural weights. Another One of the Troj-AI examples is Backdoor system [69]

In Figure 2.14, It is illustrated how a back door can be added to generate new results.

2.2.1 Adversarial Sample Generation Methods

For a successful attack, attacker need to generate adversarial samples/inputs. Generally speaking,

Adversarial samples/Inputs are input data which get miss-classified by an Artificial Intelligence

but not by a human eye.

Rauber et al.[162] proposed three basic methods of attack they are gradient-based,

score-based, and decision based. In figure 2.15, different types based on their methods is

illustrated. In figure 2.12, it is presented that, in the white box model, an attacker can use

gradients of neural nodes. For score-based, it only has the output layer class values, and for a

decision based on it can only have the final result. In the black-box model, he doesn’t have the

target ML model to try his attack samples.
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Fast Gradient Sign Method (FGSM)[65] Ground-Truth Attack (GTA) [151]
Iterative Gradient Sign Method (IGSM) [28] Zero-Query Attacks (ZQA) [151]
Jacobian Saliency Map Attack (JSMA) [154] Natural Evolution Strategies (NES) [88]
DeepFool (DF) [143] Boundary Attack (BA) [20]
One-Step Target Class Method (OSTCM) [112] Greedy Search Algorithm (GSA) [110]
Basic Iterative Method (BIM) [112] Genetic Attack (GA) [8]
Iterative Least-Likely Class Method (ILLC) [112] Improved Genetic Algorithm (IGA) [205]
Compositional Pattern-Producing

Network-Encoded Evolutionary

Algorithm (CPPN EA) [147]

Probability Weighted Word

Saliency (PWWS) [164]

Carlini and Wagner’s Attack (C&W) [30]
Replacement, Insertion and Removal of

Words (RI&RoW) [113]
Zeroth Order Optimization (ZOO) [37] Real-World Noise (RWN) [113]

Universal Perturbation (UP) [144]
Targeted Audio Adversarial

Examples (TAAE) [29]

One Pixel Attack (OPA) [186]
Genetic Algorithms and Gradient
Estimation (GA&GE) [192]

Feature Adversary (FA) [168] HopSkipJumpAttack (HSJ) [35]

Hot/Cold method (H/C) [186]
Backward Pass Differentiable
Approximation (BPDA) [32]

Natural GAN (NGAN) [231] Adversarial Patch Attack (DPATCH)[125]

Model-based Ensembling Attack (MEA) [126]
LaVAN: Localized and Visible

Adversarial Noise [99]

Table 2.1: Some Notable Adversarial Attack methods
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Figure 2.13: Trojan AI[128]

Gradient Based Attacks

In 2014 Fast gradient Sign method was proposed by Ian Goodfellow which is most known

Gradient Based Attack [65]. This method computes an adversarial image by adding a pixel-wide

perturbation of magnitude in the direction of the gradient. This perturbation is computed with a

single step, thus is very efficient in terms of computation time. A simple formulation if Here, x′ is

the adversarial example that should look similar to x when ε is small, and y is the models output.

ε is a small constant that controls the magnitude of the perturbation, and J denotes the loss

function of the model.

x
′
= x+ ε× sign(∆xJ(x, y)) (2.1)

This attack type is white-box attack, cause attacker need to know the neural network and

the gradient value so he can perform back propagation to calculate the derivative of the entropy

w.r.t to its input.
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Figure 2.14: Backdoor attack[69]

Figure 2.15: Fast sign Gradient method [106]

In figure 2.16, it is illustrated that additive adversarial perturbations based on dL/dx and

iterative optimization based attacks. Once dL/dx is calculated (step 1), one may view the attack

process as a game where a player (the attacker) can adjust the pixel values (step 2) of the input

based on some hints, i.e. the gradient dL/dx, to fool a model (step 3). Another up-gradation of

this type is deepfool attack. DeepFool is a simple yet very effective attack [143] . In each iteration

it computes for each class l¬l0 the minimum distance d(l¬l0) that it takes to reach the class

boundary by approximating the model classifier with a linear classifier. It then makes a

corresponding step in the direction of the class with the smallest distance.

Saliency Map Attack

The Jacobian-based Saliency Map Attack is a class of adversarial attack techniques for deceiving

classification models. In the digital vision, a saliency map is an image that shows each pixel’s

21



Figure 2.16: Basic Iterative Method [106]

Figure 2.17: JSMA Attack generation [154]

unique quality. The purpose of a saliency map is to simplify and improve the representation of a

picture into something more significant and more suitable to analyze. For instance, if a pixel has a

high grey level or other unique color quality in a color image, that pixel’s class will show in the

saliency map and in an obvious way. Saliency is a kind of picture segmentation.

In the figure 2.17, first detect the saliency of image, From the saliency map of the image, it

get highest bit positions, As in pictures yellow points are highest, it now increase pixels values

arround these point until it got targeted class change.
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Figure 2.18: CW attack Examples [30]

Optimization based attack

The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is a non-linear gradient

based numerical optimization algorithm. This method extended in CW method by modifying the

loss function. The Carlini and Wagner (CW) (Carlini and Wagner, 2017) method is an iterative

attack that constructs adversarial examples by approximately solving the minimization problem

[215]. CW is a bit different from the above gradient-based methods in that it is an

optimization-based attack. This formulation of the loss function in CW attack can be stated as

f(x
′
) = max(max{Z(x

′

i) : i 6= t} − Z(x
′

t),−k) (2.2)

Here, Z(x
′
) denotes the logits (the outputs of a neural network before the softmax layer) when

passing adversarial input (x
′
) and t represents the target misclassification label (the label that

want the adversary to be misclassified as), while k is a constant that controls the desired

confidence score . The intuition for this objective function is to optimize for the distance between

the target class t and the most-likely class. If t currently has the highest logit value, then the

difference of the logits will be negative, and so the optimization will stop when the logit

difference between t and the runner-up class is at most k. In other words, k controls the desired

confidence for the adversarial example (e.g. when k is small, the adversarial example generated

will be a low confidence adversarial example). On the other hand, if t does not have the highest

logit, then minimizing f brings the gap between the highest class’ logit and the target class’ logit

closer together.In figure 2.18 some examples of CW attack presented.
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Score Based attack

Score based attack like One-pixel attack works by changing only one pixel in a image[186]. Other

usual adversarial images are constructed by perturbing all pixels with an overall constraint on the

strength of accumulated modification which they tried to make smaller as possible. But in One

pixel or few pixel attack attacker tried to change as much as possible to convert the images to an

adversarial image. Here differential evolution (DE) is used, which is a population based

optimization algorithm for solving complex multi-modal optimization problems . At first ,

Encode the perturbation into an array which is optimized (evolved) by differential evolution. One

candidate solution contains a fixed number of perturbations and each perturbation is a tuple

holding five elements: x-y coordinates and RGB value of the perturbation. One perturbation

modifies one pixel. The initial number of candidate solutions (population) is 400 and at each

iteration another 400 candidate solutions (children) will be produced by using the usual DE

formula:

xi(g + 1) = xr1(g) + F (xr2(g)− xr3(g)) (2.3)

here, r1 6= r2 6= r3, where xi is an element of the candidate solution, r1, r2, r3 are random

numbers, F is the scale parameter set to be 0.5, g is the current index of generation. Once

generated, each candidate solution compete with their corresponding parents according to the

index of the population and the winner survive for next iteration. Here fitness function is simply

the probabilistic label of the target class .

Decision Based Attack

Boundary attack is one of the decsion based adversarial attack, it initialized from a point that is

already adversarial and then performs a random walk between the adversarial and non-adversarial

region in a way that it fill up below criteria,

• (1) It stays in the adversarial region.

• (1) Distance between two image is reduced [20].
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Figure 2.19: Boundary Based Attack

In figure 2.19, it is illustrated how a targeted boundary attack generate an adversarial example

only by keep adding noise ’n’ sampled from some predefined noise to a benign example until the

image looks like another image from a different class, while still be classified as the true class of

the original image.

Other notable attacks

Universal Perturbation (UP) is a universal image-agnostic perturbation attack method that fools

classifiers by single adversarial perturbation to all images.[144]. Feature Adversary (FA) method

minimizes the distance of the representation of internal neural network layers instead of the output

layer to produce AA[168]. Hot/Cold method (H/C) method finds multiple AA for every single

image input. It first aligns the modified image with the original image (cold) and then measure the

similarity between the perturbed image (hot)[186].Targeted Audio Adversarial Examples (TAAE)

is an iterative optimization-based targeted attack to a state-of-the-art speech-to-text transcription

neural network via optimization based on the MFC pre-processing transformation[29].Zeroth

Order Optimization (ZOO) another attack that does not require gradients and utilizes hinge like

loss function and symmetric difference quotient to generate AA[37]. Natural GAN (NGAN)

utilizes generative adversarial networks (GANs) that minimizes the distance of the inner
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representations to generate AAs.[231] . Genetic Attack (GA)exploits population-based gradient

free optimization via genetic algorithms to replace words with their synonyms so as to generate

semantically and syntactically similar AAs[8] . Improved Genetic Algorithm (IGA) procedure

adopts the genetic metaheuristic for synonyms substitution to attain AAs[205]. Replacement,

Insertion and Removal of Words (RI and RoW) is an iterative method that combines three

different kinds of modifications to alter a regular input into an AA by replacement, insertion and

removal of words into the text[113]. Real-World Noise (RWN) technique adds real-world

scenario noises such as café, meeting, and station to generate AAs[113]. Genetic Algorithms and

Gradient Estimation (GA and GE)combines genetic algorithms and gradient estimation to

construct AAs. The attack is first carried out by gradient-free genetic algorithms, then gradient

estimation is utilized to determine careful noise placement[192].

2.2.2 Defense Against Adversarial Attacks

There are mainly two kinds of way when making defence against adversarial samples, one is

Proactive and another is Reactive. Reactive is detecting the adversarial example before it enter in

ML models, another is make ML model better so it can identify the right class of the adversarial

sample from targeted class[197].

Defense techniques against adversarial methods can be summarized in three types

• Denoising strategy or Gradient masking : Try to remove the distortions of the image.

• Basic adversarial training : Train the neural network with adversarial example

• Ensembling methods : Add multiple neural network with transformed dataset to combine a

majority result

Prepare training data for a machine learning model need to done using careful consideration and

examined process. As the accuracy of machine learning models depends much on the quality of

training data, It is must to train the machine learning models with filtered data. There were many

processes invented by the researcher to filter out training data before train the models. Wilson is
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Defense Method Approach/Scheme

Training

Ensemble Adversarial Training, a training methodology that incorporates perturbed
inputs transferred from other pre-trained models [196]
Extended adversarial and virtual adversarial training as a means of regularizing a
text classifier by stabilizing the classification function [138]
Training the state-of-the-art speech emotion recognition on the mixture of clean and
adversarial examples to help regularization [29]

Distillation
The main idea used is training the model twice, initially using the one-hot ground
truth labels but ultimately using the initial model’s probability as outputs to enhance
robustness [152][180]

Pre-Processing

Using PCA, low-pass filtering, JPEG compression, soft thresholding techniques as
pre-processing technique to improve robustness [176]
Use of use two randomisation operations: (1) random resizing of input images and
(2) random padding with zeros around the input images [214]

Structure modify

Synonyms encoding method that inserts an encoder before the input layer of the model
and then trains the model to eliminate adversarial perturbations [205]
An architecture using Bayesian classifiers (Gaussian processes with RBF kernels) to
build more robust neural networks [18]

Network verify

A verification algorithm for DNNs with ReLU function was proposed in [100]
verified the neural networks utilizing Satisfiability Modulo Theory (SMT) solver
The method in [100] was modified in max(x, y) = ReLU(x− y) + y and
||x|| = ReLu(2x)− x to reduce the computational time

Ensembling

The proposed strategy used an ensemble of classifiers with weighted/unweighted
average of their prediction to increase robustness against attacks [185]
A probabilistic ensemble framework against adversarial examples that capitalizes
on intrinsic depth properties (e.g., probability divergence) of DNNs [1]

Detection

First, the features are squeezed either by decreasing each pixel’s color bit depth or
smoothing the sample using a spatial filter. Then, a binary classifier that uses as
features the predictions of a target model before and after squeezing of the input
sample [215]
A framework that utilizes ten nonintrusive image quality features to distinguish
between legitimate and AA samples [5]
Multiversion Programming based an audio AE detection approach, which utilizes
multiple off-the-shelf Automatic Speech Recognition systems to determine
whether an audio input is an AE [221]

Table 2.2: Summary of countermeasures against adversarial examples[47].

first researcher, who in 1972 tried to add K-NN filtering for training data for use in neural

network training [207]. Later in 1976, Tomek [206], improved Wilson’s work when he able to

correlate K with neural network efficiency. Until 2000, most of the filter research work is to prune

the data or detect the noise. Some notable works come from Hansen and Salamon [79] in 1990
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when they used an ensemble classier which detects mislabeled instances by constructing a set of

base-level detectors (classifiers) and then using their classification errors to identify mislabeled

examples. Next year, Aha, Kibler, and Albert [166] looked at the training data and tried to

identify dominant instances to rule out noisy data. In 1992, Srinibason, Muggleton, bain tried an

information theocratic approach to differentiate noise and exception [183]. Next few years some

more technique developed by researchers, Zaho and Nishida used fuzzy logic in 1995 [227], same

year Dietterich and bakiri [52] [53] developed a method for learning classifiers for multiple

classes in which error-correcting output codes are employed as a distributed output

representation. Another notable is in 1996, Gamberger, lavarc, Dzeroski tried to detect

inconsistent example in training data using a user set threshold [61]. In 1999 Brodley and Friedl

able to Combine filtering and voting approach which provides excellent results [23].

In 2005, A Angelova, Y Abu-Mostafam used Pruning Training Sets for Learning of Object

Categories they applied to bootstrap and Naïve Bayes algorithm [9]. Michael Brückner and Tobias

Scheffer use of game theory in 2011 also shows a diverse approach in developing input filters

[25]. In 2015, Ian J Goodfellow tried to training on adversarial inputs pro-actively [65], Nicolas

Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami performed defensive

distillation [151] and T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii training the

network with enhanced training data all to create a protection against adversarial example[139].

In 2017, Grosse et el. did statistical tests using a complementary approach to identify

specific inputs, that are adversarial [68]. Wong et el. showed convex outer adversarial polytope

can be a proven defense [211]. Lu et el. (2017) checked whether the depth map is consistent or

not (only for image) to detect adversarial examples [129]. Metzen et el. implemented deep neural

networks with a small “detector” sub-network were trained on the binary classification task of

distinguishing factual data from data containing adversarial perturbations [137]. The same year,

Madry et el. (2017) published a paper on adversarial robustness of neural networks through the

lens of robust optimization [132]. Chen et al. tried to devise adversarial examples with another

guardian neural net distillation as a defense from adversarial attacks[36]. In 2018, Wu et al.
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developed Highly Confident Near Neighbor (HCNN), a framework that combines confidence

information and nearest neighbor search, to reinforce adversarial robustness of a base

model[212]. Also in 2018, Paudice et al. applied Anamoly Detection[155] and Zhang et al.

detected adversarial examples by identifying significant pixels for prediction which only work for

images [224]. Other researchers such as Wang et al. tried with mutation testing [204] and Zhao et

al. developed key-based network, a new detection-based defense mechanism to distinguish

adversarial examples from normal ones based on error correcting output codes, using the binary

code vectors produced by multiple binary classifiers applied to randomly chosen label-sets as

signatures to match standard images and reject adversarial examples [226]. Later that year Liu et

al. tried to use steganalysis[124] and Katzir et al. implemented a filter by constructing euclidean

spaces out of the activation values of each of the deep neural network layers with k-nearest

neighbor classifiers (k-NN) [101]. A different notable strategy was taken by researchers Pang et

al. They used thresholding approach as the detector to filter out adversarial examples for reliable

predictions[150]. For an image classification problem, Tian et al. did image transformation

operations such as rotation and shifting to detect adversarial examples[194] and Xu et al.[215]

simply reduced the feature space to protect against adversary. In 2019, Monteiro et al [141]

developed inputfiler which is based on Bi-model Decision Mismatch of image. Sumanth

Dathathri showed whether prediction behavior is consistent with a set of fingerprints (a data set of

NN) named NFP method [51]. Same year, Crecchi et al. used non-linear dimensionality reduction

and density estimation techniques [44] and Aigrain et al. tried to use confidence value in CNN[4].

Some other notable works in that year were meta-learning based robust detection method to

detect new adversarial attacks with limited examples developed by Ma et al. [131]. Another

important and effective work was done by Chen et al., where they tried to keep the records of

query and used KNN to co-relate that with adversarial examples [38] In some adversarial defense

techniques well-known robust recognition models are trained on adversarial inputs proactively

[65], performing defensive distillation [151], training the network with enhanced training data all

to create a protection against adversarial example [139].To detect adversarial inputs Image
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histogram-based [158] methods are also used. In 2018 Akhter et el [6] proposed an adversarial

attack detection scheme based on image quality related features to detect various adversarial

attacks. In 2017, Carlini et al. [28] tested ten defense techniques, by detailed evaluation they

showed that pre-processing techniques can be easily bypassed.

2.3 Preliminaries

2.3.1 Metrics

Signal to Noise (SNR)

SNR is frequently defined as the ratio of the signal power and the noise power [217]. For an

image calculate the φsignal as the mean of pixel values. calculate the φnoise and the standard

deviation or error value of the pixel values. from these derive the below equation for SNR.

SNR = 10log10(φsignal/φnoise) (2.4)

to express the result in decibel.

Peak Signal Noise Ratio(PSNR) and Root Mean Sqaure Error (RMSE)

Given a noise-free m× nmonochrome image I and its noisy approximation K Mean squared

error(MSE) is defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.5)

So RMSE =
√
MSE And PSNR is

PSNR = 20 · log10 (MAX I)− 10 · log10 (MSE ) (2.6)
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Here, MAXI is the maximum possible pixel value of the image. When the pixels are represented

using 8 bits per sample, this is 255. More generally, when samples are represented using linear

Mean Absolute Error (MAE)

It calculate for difference between two images with same size. For image X and Y all pixel,

Equation is

MAE =

∑n
i=1 yi − xi
n

(2.7)

Histogram

Histogram represents the distribution of each color in the image [96][34]. Histogram doesn’t

concern about shape, size or any attribute rather than color distribution of an image. Calculation

of histogram has color range from x axis and y axis has the number of pixel with that color. For a

grayscale image I with intensity values in the range I(u, v) ∈ [0, K − 1] holds exactly K entries,

where K = 28 = 256 for a typical 8-bit grayscale image. Each single histogram entry is defined

as

h(i) =the number of pixels in I with the intensity value i,

for all 0 ≤ i < K. More formally stated,

h(i) = card(u, v)|I(u, v) = i[26] (2.8)

Therefore, h(0) is the number of pixels with the value 0, h(1) the number of pixels with the value

1, and so forth. Finally, h(255) is the number of all white pixels with the maximum intensity value

255 = K-1. The result of the histogram computation is a 1D vector h of length K.

Local Binary patter(LBP)

Local binary patterns (LBP) is a type of visual descriptor[70]. LBPPu2 The subscript represents

using the operator in a (P,R) neighborhood. u2 stands for using only uniform patterns and
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Figure 2.20: Adaptive filtering

labeling all remaining patterns with a single label. After the LBP labeled image fl(x, y) has been

obtained, the LBP histogram can be defined as

Hi =
∑
x,y

I {fl(x, y) = i} , i = 0, . . . , n− 1, (2.9)

in which n is the number of different labels produced by the LBP operator, and IA is 1 if A is true

and 0 if A is false.

2.3.2 Filter Techniques

Smoothing

Smoothing is an Edge Detection Technique Using the Facet Model and Parameterized Relaxation

Labeling [233]. Figure 2.20 shows an implementation of adaptive smoothing filtering. The filter

is aimed to perform image smoothing, but keeping sharp edges. This makes it applicable to

additive noise removal and smoothing objects’ interiors, but not applicable for spikes (salt and

pepper noise) removal.

suppose a (2n+ 1)(2n+ 1) (where n is an integer) matrix, pixel point represent by i,j the
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mean color represent by c(i,J). so sliding window can be estimated as:

c(i, j) =
1

2n+ 12

i+n∑
k=i−n

j+n∑
l=j−n

c(k, l) (2.10)

for left

c(i, j) =
1

2n+ 1n+ 1

i+n∑
k=i−n

j∑
l=i−j

c(k, l) (2.11)

for right

c(i, j) =
1

2n+ 1n+ 1

i+n∑
k=i−n

j+n∑
l=j

c(k, l) (2.12)

for up

c(i, j) =
1

2n+ 1n+ 1

i∑
k=i−n

j+n∑
l=j−n

c(k, l) (2.13)

for down

c(i, j) =
1

2n+ 1n+ 1

i+n∑
k=i

j+n∑
l=j−n

c(k, l) (2.14)

The next calculations are done for each pixel:

weights are calculate for 9 pixels - pixel itself and 8 neighbors:

w(x, y) = 1− exp( (Gx2 +Gy2)

(2× factor2)
) (2.15)

Gx(x, y) =
(I(x+ 1, y)− I(x− 1, y))

2
(2.16)

Gy(x, y) =
(I(x, y + 1)− I(x, y − 1))

2
(2.17)

, where factor is a configurable value determining smoothing’s quality. sum of 9 weights is

calclated (weightTotal);

sum of 9 weighted pixel values is calculatd (total);

destination pixel is calculated as total
weight

Total.
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Figure 2.21: Additive Noise

Noise Adding filters

Additive white Gaussian noise (AWGN) is a basic noise model used in Information theory to

mimic the effect of many random processes that occur in nature [103].

More precisely, for an image adaptive noise add the extra pixel value in the position based

on the neighbor hood pixel distribution. So for a image matrix like a =


0 1 1 0 0 0 1

0 1 1 0 0 0 1

0 0 0 0 0 0 1


after added noise image matrix will be


0 1 1 0 0 0 1

0 1 1 0 1 0 1

0 0 1 0 0 0 1


In additive noise filter, added random noise in the image as an example in figure 2.21
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Thinning (TN)

"Thinning is a morphological operation that is used to remove selected foreground pixels from

binary images, somewhat like erosion or opening. It can be used for several applications, but is

particularly useful for skeletonization[201]. In this mode it is commonly used to tidy up the

output of edge detectors by reducing all lines to single pixel thickness. Thinning is normally only

applied to binary images, and produces another binary image as output."

Let E = Z2E = Z2,

and consider the eight composite structuring elements, composed by:

C1 = {(0, 0), (−1,−1), (0,−1), (1,−1)}

D1 = {(−1, 1), (0, 1), (1, 1)}

C2 = {(−1, 0), (0, 0), (−1,−1), (0,−1)}and

D2 = {(0, 1), (1, 1), (1, 0)}

and the three rotations of each by90o90o, 180o180o, and 270o270o.The corresponding

composite structuring elements are denoted B1, . . . , B8B1, . . . , B8.

For any i between 1 and 8, and any binary image X, define

X ⊗Bi = X \ (X �Bi)X ⊗Bi = X \ (X �Bi),

where \ \ denotestheset− theoreticaldifferenceand�� denotes the hit-or-miss

transform.

The thinning of an image A is obtained by cyclically iterating until convergence:

A⊗B1 ⊗B2 ⊗ . . .⊗B8 ⊗B1 ⊗B2 ⊗ . . .A⊗B1 ⊗B2 ⊗ . . .⊗B8 ⊗B1 ⊗B2 ⊗ . . ..

Sharpening

Sharpening is to enhance line structures or other details in an image[201]. here, Enhanced image

= original image + scaled version of the line structures and edges in the image. Line structures

and edges can be obtained by applying a difference operator (=high pass filter) on the image.

Combined operation is still a weighted averaging operation, but some weights can be negative,

and the sum=1. In frequency domain, the filter has the “high-emphasis” character.
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Gaussian blur (GS)

Gaussian blur or Gaussian smoothing is technique to reduce the image quality. In reduced image

quality the noise also get reduced much more than non-noise pixels. Convolving image with

Gaussian function is way to perform this operation. Gaussian blur known as low pass filter as it

reduce the images higher frequency components[203]. The Gaussian normal distribution equation

for two dimension is

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(2.18)

Acronym FullMeaning Acronym Full Meaning

BS Bilateral smoothing BPDA
BackPass Differential

Approximation

AS Adaptive Smoothing PGD
Projected Gradient

disent

AN Additive Noise BIM
Basic Iterative

method

FGSM
First Gradient Sign

Method MBIM
Momentum Basic
Iterative Method

JSMA
Jacob Saliency Map

Method SIPTS
Set of Image

Processing Technique
Sequence

DF Deep Fool method DI
Pixel Difference

between before and
after IPTS applied

HSJ HopSkipJump ED Euclidean distance

MLM
Machine Learning

Model LBP Local binary pattern

IPT
Image Processing

Techniques PDE
Probability Density

Equation

IPTS
Image Processing

Technique Sequence TN Thining

PX Pixellate GS Grey-scaled

Table 2.3: Acronym used in this proposal
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Wavelet Transform

Wavelets are data series which starts at 0 , increases and decrease to 0 again. This Data series can

be converted to square integral function. In discrete wavelet transform , wavelets are randomly

sampled[10]. For an input represented by a list of 2n numbers, the Haar wavelet transform pair up

input values, storing the difference and passing the sum. This process is repeated recursively,

pairing up the sums to prove the next scale, which leads to 2n − 1 differences and a final sum.

If a matrix A is: H4 =



1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1


Its Haar transform will be:

H4 = 1
2



1 1 1 1

1 1 −1 −1
√

2 −
√

2 0 0

0 0
√

2 −
√

2



Distance Transform

Transforming the pixel in the image according to perspective distances of the corresponding

objects in the image is distance transform[21]. Signed distance functions definitions:

If Ω is a subset of a metric space, ”X”, with metric, ”d”, then the ”signed distance

function”, ”f”, is defined by :f(x) =


d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x ∈ Ωc

where ∂Ω denotes the boundary ofΩ. For any x ∈ X ,

: d(x, ∂Ω) := infy∈∂Ω d(x, y)

where ”inf” denotes the infimum.
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Figure 2.22: Fourier transformation effect

Fourier transformation

Fourier transformation converts any signal form to sinusoidal form [159][123] . Fourier transform

denoted as :

F (s) ≡
∫ ∞
−∞

f(x) e−2πisx dx , (2.19)

log-polar Transform

The log-polar transform is performed by remapping points from the 2D Cartesian coordinate

system (x,y) to the 2D log-polar coordinate system (σ, θ)

σ = log

√
(x− xc)2 + (y − yc)2 (2.20)

θ = a tanh 2((y − yc), (x− xc)) (2.21)

where σ is the logarithm of the distance of a given point, (x,y), in the image from the centre,

(xc, yc), and θ is the angle of the line through the point and the centre[210].

Census Transform

The census transform (CT) is an image operator that associates to each pixel of a grayscale image

a binary string, encoding whether the pixel has smaller intensity than each of its neighbours, one
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Figure 2.23: Gabor transformation effect

for each bit[184].

The most common version of the census transform uses a 3x3 window, comparing each

pixel p with all its 8-connected neighbours with a function ξ defined as

ξ(p, p′) =


0 if p > p′

1 if p ≤ p′
. (2.22)

The results of these comparisons are concatenated and the value of the transform is an

8-bit value, that can be easily encoded in a byte.


124 74 32

124 64 18

157 116 84

 −→


1 1 0

1 x 0

1 1 1

 −→ 11010111 (2.23)
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Gabor/Morlet wavelet transform

Gabor weblet is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian

window[179]. Its equation

Ψσ(t) = cσπ
− 1

4 e−
1
2
t2(eiσt − κσ) (2.24)

where κσ = e−
1
2
σ2

is defined by the admissibility criterion, and the normalisation constant

cσ is:

cσ =
(

1 + e−σ
2 − 2e−

3
4
σ2
)− 1

2
(2.25)

The Fourier transform of the Morlet wavelet is:

Ψ̂σ(ω) = cσπ
− 1

4

(
e−

1
2

(σ−ω)2 − κσe−
1
2
ω2
)

(2.26)

2.3.3 Genetic Algorithm (GA)

GA is an evolutionary heuristic search algorithm. It is a population-based algorithm that helps

find the best result using biological phenomena such as reproduction, mutation, recombination,

and selection. Genetic Programming, Gene Expression Programming, and the Strength Pareto

Evolutionary Algorithm are prominent examples of GAs. Genetic programming mainly works by

encoded computer problem solutions pool known as the population to gene like structure and try

to find out the best solution by using different evolutionary techniques. At first, a set of random

solutions is generated from all possible solutions in representation space. Then an evaluation of

these solutions based on some measures is performed. Based on these measures, the best

solutions are the crossover and mutation to generate a new set of solutions. The same procedure is

iterated repeatedly until a near-optimal solution is found or the termination condition is met.

During this process, an answer with the best measures is selected as a result. The set of genes

creates individuals as their solution. The collection of individuals is known as population. When

two individuals create a new individual, it is known as a crossover operation. When a bit of an
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individual is changed, it is known as a mutation in the GA. GA has been used for Computer

Vision (regenerate images [71]), Computational AI domain (searching

recommendations[78][169],Cybersecurity Domain (smart grid management [174]),and many

other domains.

2.3.4 Negative Selection Algorithm

Immunological Computation a.k.a. Artificial Immune System (AIS) is inspired by the human

immune system (HIS) mechanism and utilizes to solve computational problems[48]. One of the

fundamental aspects of the HIS is self/non-self discrimination. The Human immune system can

identify which cells are own (self) and can differentiate foreign entities (non-self)[202].

Therefore, it can strengthen its defense versus the adversarial rather of hurting the self cell. The

most popular AIS research methods include the Negative Selection Algorithm (NSA), clonal

selection, immune network theory, danger theory, and positive selection [49]. The NSA is one of

the most studied and researched algorithms, particularly for anomaly detection[93, 72]. In 1994

[59], introduced NSA for solving computer security problems.

Figure 2.24: The basic Negative Selection Algorithm (NSA) [45] similar to any two-phase super-
vised learning algorithms. The left diagram shows detector generation in the complementary space
(training phase) and the right illustrates the use of detectors (testing phase).
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Basic concepts of NSA

Negative Selection Algorithm (NSA) uses complementary representation space of positive data

features or profile. The basic concept of NSA is illustrated in figure 2.24, where negative

detectors are generated in the complementary space. Here the positive data are the features of

training/clean/normal data which may be represented in real, binary, or strings. Given this

positive profile, an NSA can generate detectors/filters/clusters in negative or complementary

space. So, these detectors must not match any clean/self data sample, and can be used to classify

input data as adversarial or not (similar to self and non-self-discrimination). Different matching

methods were used to measure the distance between the self and non-self in binary representation

of feature space including Euclidean distance, Manhattan distance, R-bit chunk matching,

Hamming Distance, etc. Also different variants of NSA have been used many application

domains and demonstrated as advantageous in one class classification problems, outlier detection,

fault detection, intrusion/anomaly detection[3, 93], etc.

NSA Terminology

• Self: Representation of a data class. NSA will identify a given data is from self class or not.

This self data can be a set of real values or a set binary value, or a string.

• Detector: A set of data which matched with non-self data.

• Distance Measure/Matching rules: The formula/method used to measure the distance

between two data points in representation space. Commonly in the NSA, it was used to

measure the detector’s distance from a data point. It is also known as matching rules,

primarily when data is represented in string representation. Examples are Euclidean

distance, Manhattan distance, R-bit chunk matching, hamming Distance, etc.

Most of these terminology and other necessary mathematics related to distance measures have

been detailed by the [93] with a statistical explanation.
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Figure 2.25: A real-valued NSA for generating variable-size detectors (V-detector) with statistical
estimate of complementary space coverage[94]. Here N number of the detector, ’x’ is number of
positive point, ’P’ is probability and α is target coverage, n is sample size.

Based on feature value, we can have two kinds of NSA: the binary NSA (BNSA) and the

Real-Value NSA (RNSA). Real-value NSA can be variable size or constant size. The BNSA use

r-contiguous bits(rcb), r-chunks, landscape-affinity matching, Hamming distance to match the

similarity, where RNSA uses mostly derivations of Euclidean distances. One example of a

variable size detector or V-detector, V-detector’s aim, deals with constant size detectors’

drawbacks. In this algorithm, the size radius of detectors is changing from one to the others[94].

The NSA detectors can be represented by string for (binary) BNSA or by a vector in

multidimensional space for real values. Later, grid-based representations were also introduced by

Yang[218]. A variation of grid representation [232] is known as matrix representation also
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introduced as an additional approach. Detector initialization was random in most of the early

variations of NSA. Later, researchers tried some heuristic methods to use pseudo-randomness and

some evolutionary computation-based adaptiveness technique to initialize detector position.

Detector size can be fixed or can change through the generation process. Also, the different

detector can take the detector’s variable size, and these sizes can be dynamically changes

throughout the generation process.

Real-Valued NSA for generating V-detectors

One of the widely-used NSA, called variable-size detectors (V-detector) algorithm was proposed

by Ji and Dasgupta[92], which used variable-sized detector radii to cover the complementary

space. The V-detector algorithm was improved in subsequent works [95] to limit the number of

detectors and adopting boundary-aware strategy [91]. The difference between traditional

NSA[64] and V-detector NSA was in V-detector, the detector size in representation spaces are

different than each other, and they are aware of each other existence, so they don’t overlap. Figure

2.25 illustrates the NSA V-detector algorithm for generating negative detectors.

2.3.5 One class classifications (OCC)

One class classifications (OCC) solve problems where the training datasets only contain samples

of one class, and learning models have to identify new data whether belong to that class or not. it

is also known as unary classification or class-modelling problem. Most common approach for

solving one class problem is one class support vector machine (OCSVM[39]). Other similar

approaches are Minimum Co-variance Method (MCM) [85], Gaussian Mixture Model

(GMM)[165], Dirichlet Process Mixture Model (DPMM)[17], Kernel Density Estimator

(KDE)[142], Robust KDE[104]. GWR-Netwrok[133], Deep Support Vector Data Description

(SVDD), Deep Auto Encoder based Methods[84], Generative Adversarial Net Based approaches

(eg: [119, 173], etc. These OCC techniques can be classified in 6 types. Minimum Covariance

Determinant(MCD[80]), OCSVM, Deviation-based(LMDD[12]) considered as linear model
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based OCC techniques. Another type is proximity based which includes Local Outlier

Factor(LOF)[22], Connectivity-Based (COF[191]), Clustering-Based LOF(CBLOF[83]),

Histogram-based (HBOS[62]), K-Nearest Neighbors (kNN[161]), Subspace Outlier Detection(

SOD [109]).

Angle-Based (ABOD[108]) , Copula-Based (COPOD[121], Stochastic

Selection(SOS[90]) are known as probabilistic techniques used for OCC. Combining several

methods of OCC are known as ensemble techniques those include Isolation Forest (IF[195]),

Locally Selective Combination of Parallel Outlier Ensembles(LSCP [230]), Feature Bagging(FB

[114]), Extreme Boosting Based (XGBOD [228]), etc.

With the improvement of deeplearning methods, OCC problems were solved using

different neural network models such as Fully connected AutoEncoder (AE[2]), Variational

AutoEncoder(VAE[105]), Single-Objective GAN (SO-GAAL [127]), Multiple-Objective

GAN(MO-GAAL[127]), etc.
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Chapter 3

Proposed research

3.1 Goal and Objectives

Researchers have suggested several benchmarks [32, 13, 31, 28, 27, 198] and use these

benchmark to evaluate defense techniques. They also suggested guidelines on how to develop

efficient defense techniques. Most of their benchmark focused on how many attacks a defense

technique can defend. Some of them prioritized testing against adaptive attacks. As these

benchmarks were mostly dependent on dataset and attack set, how these defense techniques

compared to other techniques, such as compliance, computational cost, cybersecurity practices,

etc are mostly overlooked. Also, these evaluations did not provide a metric for measurement. I

concluded that these benchmarks are very good to evaluate defense techniques’ performances and

novelty but these benchmarks do not help a learning model developer to pick a defense technique

appropriate for specific problems. I tried to answer these limitations by My benchmarking system.

I simulated some use cases where a Machine Learning model requires a defense technique

to protect against adversarial attacks.

• First case: I considered that I will protect a Pytorch[102] Resnet model for Predicting handwriting

digit tool for android devices.

• Second case: I considered that I will protect a Pytorch Resnet model for Predicting handwriting

46



tools running on an Amazon Web service[146] using the Django framework[58].

• Third case: I considered protecting a MNIST TensorFlow project using ML.NET project[117] as a

console application.

• Fourth Case: I considered that I will employ an MNIST dataset using Deeplearning4j[107] from

java library as a desktop project.

• Fifth Case: I considered protecting Close circuit camera used in a parking lot for reading car

number-plates using deep-learning.

I tried to secure the learning model for the above-mentioned cases with standard cybersecurity

practices such as keeping data privacy, secure authentication, and access policy. I considered most

of the mentioned defense techniques discussed in section ??. I observed that many defense

techniques were not suitable for some of My cases. For example, image prepossessing based

defense is not suitable for mobile apps and adversarial training reduces the accuracy for number

plate recognition. Adversarial training based defenses were not suitable if training data is

sensitive to share. GAN based defense requires high computation cost, which seems very

unreasonable for simple AI tasks where the higher error rate is tolerable. From these case studies,

I understood which defense techniques were better suited and what factors were more important

than others. I weighted them based on My observations. These factors are:

• F1:Tested against multiple data set. W = 10

• F2:Tested against black-box -white box attack. targeted-non targeted, gradient based-non gradient

based attacks W = 5

• F3: Have low computational overhead cost.W = 5

• F4: Cross-models and multi domain applicability .W = 5

• F5: Tested against adaptive attack.W = 10

• F6: No machine learning involved in the defense technique.W = 5
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• F7: Randomness exist to answer obscurity.W = 10

• F8: No training data needed.W = 10

• F9: No Knowledge of the learning model needed to know.W = 10

• F10:No modification of the learning model needed.W = 10

• F11:No accuracy drop of learning model needed.W = 10

• F12:No adversarial knowledge needed to generate defense.W = 10

F1 is very important for understanding the effectiveness of an adversarial attack. I weighted these

by 10. Number F2 is about the diverseness of attack types. I weighted this by 5. Learning models

usually have large computational complexity; thus if the protecting tool requires higher

computational overhead it will make full system impractical to use due to both time and cost. I

weighted it by 5. Some defense techniques can only work for a specific domain; for instance My

proposed methods are only for computer vision domain, and I tested on against attack samples

from Resnet and VGG-16. As adversarial samples have transfer-ability to another learning model.

It is expected that defense methods will supports cross-models and multi-domains. I weighted this

factor only by 5 as defense techniques are easily customize-able as per requirement. Defending

against an adaptive attack is very important, as the attacker can try continuously until succeeding.

So F5 is important as F2. If there is a Machine learning involved in the defense technique than

that technique can be also susceptible to adversarial attack. So involving defending Machine

learning with another machine learning will not improve security rather it creates another door

way of the same vulnerabilities. I weighted F6 as 5. I have to assume that My defense technique

details are known to the attacker. That’s why randomness is needed which will make it hard for

predict what defense configuration will be set for each attack time. I weighted this as 10. F8, F9,

F10, and F11 are related to CIA models of information security. All information security policy

measures try to address three goals known as confidentiality (protect the confidentiality of assets),

integrity(preserve the integrity of assets), and availability (promote the availability of assets for
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authorized users). These goals form the CIA model[7] which is the basis of all security

programs[172]. Here, ML is considered as a digital asset, I ensure its confidentiality as I am not

consuming or accessing any architectural information of ML. The same way integrity is preserved

as I don’t need to modify or tune anything in ML architectures. If training data or learning models

are needed to generate defense it will violate confidentiality if modification of the learning model

is needed it will violate integrity and if the accuracy drop it will violate the availability. Because

of this dilemma, I weighted F8, F9, F10, F11 by 10. Zero-day vulnerability can also be present in

adversarial defenses if there are no safeguard against unknown adversarial attack methods. There

is high probability chance of unknown attacks that’s why I give this factor 10 weight value. I

disregarded several factors such as easy maintenance or update facility, time to implement, etc, as

they also depend on the learning model itself. The total score of a defense technique can be
Defense Techniques F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F_score

Adversarial Training [140] [197] [113] 10 5 5 5 5 10 10 10 0.6
Image Prepossessing [215] 10 5 5 10 10 10 0 0.5
Input Reconstruction[136] 10 5 5 5 10 10 0 0.45

Distillation Techniques [151],[180] 10 5 5 5 5 10 10 10 0.6
Transform Function [176] 10 5 5 10 10 10 10 0.6

Defense GAN[171] 10 5 5 5 10 5 0.4
Model Robustifying[19][185] 10 5 5 5 5 10 10 10 0.6

Table 3.1: Here, I scored based on equation of Fscore from My study of different defense tech-
niques. (Some of these scores are an approximation based My understanding) In the last column,
the overall score is presented. Based on the overall score I can see Some of the techniques have
better usability than others.

measured by below equation

Fscore =

∑
Fi=1..12

100
(3.1)

The Maximum score is possible up to 1 and the lowest score is possible as low as 0. Based on

these factors, I create a radar map as shown in figure 3.3 with 3 defense techniques. Here, the

effectiveness represents by the factor F1 and F2. Computation feasibility represents by factor F3.

F4 represents by platform-independent. Vulnerability represents factor F5,F6,F7. These factors

cover potential vulnerability such as a zero-day attack, advanced persistent attack, and insider

attacks. F8-F12 are represented by cybersecurity Compliance. I further analyzed other defense

methods and presented their benchmark result in table 3.1. I can see that none of the defense

technique have a better score than 0.6. As the max possible score is 1, there are opportunities to
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improve.

Figure 3.1: My Proposed Bench-marking Process with sample data. Here I tried to represent some
common defense techniques in a radar map.

I aim to provide an adversarial defense system which will meet the below objectives:

• Defense needs to work against a diverse set of attack types. My provided defense technique

should work against Gradient or no-gradient, white-box or black-box, targeted or no

targeted, adaptive attacks [32].

• Defense should not reduce the accuracy of ML models. The model accuracy should not get

effected after deploying My defense technique.

• Defense needs to identify threats faster. If a defense system takes sizeable computational

time and resources, it will lose the practicability. For example, if the defense is employed in

an autonomous car sensor, the input responses need to evaluate first. Otherwise, an accident

can happen.

• Defense should not modify ML architecture. Defense should work for both the white-box

and black-box models. A trained ML architectural information is usually black-box. So, it
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is expected that the defense framework will comply with that.

• Defense should be adaptive in nature and dynamic to prevent the adaptive attacks.

• Defense should not need to update if ML changes (Resnet to VGG or ANN to RNN), and it

should be cross-domain (image, audio, text) supported.

3.2 Basic Architecture

Figure 3.2: Schematic of the proposed Dual-Filtering (DF) framework.

To build a robust ML/AI-based system against malicious adversaries, I designed a dual-filtering

(i.e., commutative filtering) scheme, which employs two filtering mechanisms: one at the input

stage (before samples are fed to the core learning model) and other at the output of ML (before

the decision module). These two filters can function independently as well as dependently (i.e., in

a commutative fashion). Specifically, the input filter’s main aim is to filter misleading and out of

distribution inputs (e.g., image of animal but not human face in a face recognition system). The
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output filter’s goal is handling larger variations and restricting misclassification rates in order to

improve overall accuracy of the system. The proposed dual-filtering strategy can be used both in

training and testing phases of ML. For instance, the independent input filter may be used to detect

and deter the poising attacks in a supervised ML. Likewise, dual-commutative filters may help

addressing adversaries both in supervised and unsupervised ML. A machine learning framework

usually consists of four main modules: feature extraction, feature selection (optional),

classification/clustering, and decision. As depicted in Figure 5.3, the input filters are placed after

pre-processing of data stream/feature selection to feed to core learning model and the output

filters are placed after classification/clustering/raw decision module, respectively.

As can been seen in Figure 5.3, the raw input sample is first pre-processed and then fed to

the input filter to determine if the received feature/sample is benign or attack and reject

accordingly. The outcome (i.e., raw decision) by ML system is given to the output filter for

further scrutiny. The output filter uses context-information and/or communicates with the input

filter to make the correct final decision. An ensemble of different noise removal or detection

filters was applied to detect AAs in a recent work [47]. Other techniques focused mostly on

adding extra layer on a ML module by adversarial sample training or modification of deep

learning models. These defense methods have some constraints, and exposed ML models to new

vulnerabilities [76].

In 2019, some works reported launching adaptive attacks where they could bypass known

defenses [32]. To alleviate the situation, I consider a non-deterministic (white-box) approach

where the attackers cannot perceive My defenses to launch adaptive attacks. Accordingly, I

investigated an active learning[175] based dual-validation scheme which work as an extra security

(filtering) layer and improve the learning model’s trustworthiness.

Accordingly, My defensive measures for machine learning model (MLM) have the

following tasks:

• Input filter before MLM: The primary purpose of input filters is to prevent adversarial

input data in such a way that can differentiate data manipulation from the trained data. It
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will be examining the input by deploying application-specific filter sequence. A set of filter

sequences are selected (from a given library of filters) using an efficient search and

optimization algorithm, called multi-objective genetic algorithm (MOGA). The MOGA can

find a sequence of filters (where each filter can detect adversarial traits/noises) satisfying

constrains and three objectives: detection of the maximum number of attacks with higher

accuracy (above a specific threshold), with minimum processing time, and shorter sequence

of ensemble filters. By utilizing the Pareto-set from MOGA runs, and picking a filter

sequence dynamically at different times, make filter selections unpredictable and use an

active learning approach in order to protect the ML from adaptive attacks.

• Output filter after MLM: Employ several class-specific latent space-based transformation

for outlier detection. After MLM provides an output class label, it is then verified if the

output falls in that class’s latent space or not. I will make an ensemble of different outlier

detection methods and sequence dynamically and also retrain the outlier methods runtime.

3.3 Use Standard Data sets

3.3.1 ML Dataset

For bench-marking, MNIST and CIFAR are mostly used by academicians over the world. There

are many other datasets for neural network experiments, and I have used the below data set

• MNIST

• CIFAR-10

• ImageNet

• SVHN

• NPD
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Modified National Institute of Standards and Technology database (MNIST)

MNIST consists of 60000 training and 10000 testing data of single digits zero to nine. These are

all black background images with written numbers in white colors. Using a linear classifier, it has

83% accuracy. But with using CNN, accuracy is above 99.6%.

Canadian Institute For Advanced Research (CIFAR)

CIFAR dataset includes 60,000 32x32 color images in 10 distinct classes (6,000 images of each

class) . These classes are planes, cars, birds, deer, dogs, frogs, horses, cats, ships, and trucks. The

regular CNN has near 80% accuracy, but ResNet has accuracy near 98%, and some efficient DNN

methods reach the accuracy of 99% [208].

ImageNet Dataset (IND)

ImageNet Dataset has more than 14million images, which have been handpicked and classified. It

has more than 20000 categories, for example, ballon, strawberry, etc. Using CNN made it

possible to achieve 85% accuracy here. Due to algorithmic bias use of ImageNet is not always

applicable as a standard dataset.

Street View House Numbers (SVHN)

SVHN is a dataset for house numbers; it has ten classes, 1 for each digit. With 73257 digits for

training, 26032 digits for testing, and 531131 additional unlabeled data. Using CNN, accuracy is

over 98%.

Number Plate Dataset (NPD)

NumberPlate Dataset [181] contains 100000 number plates from the USA and Europe. Using

CNN, the accuracy of this Dataset is above 98%
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3.3.2 Generated Adversarial Dataset

I generated 60000 adversarial images from FGSM, JSMA, and CW attacks for MNIST and

CIFAR datasets. 10000from each attack type and 1000 from each class label. This dataset is the

largest adversarial dataset on MNIST and CIFAR, as best of My knowledge from My extensive

literature survey. I published these datasets in Kaggle publicly for result reproduction and further

study by other researchers.

3.4 Threat models

Threat Model

ATTACK TYPE JSMA FGSM DF HSJ BPDA

Knowledge
WhiteBox * * *
BlackBox *

Specificity
Targeted * *

Non-Targeted * *

Frequency
One time *
Iterative *

Methodology
Gradient based * * *
Gradient free *

Adaptive *

Benchmark Dataset
MNIST * * *
CIFAR * * * *

IMAGENET * *

ML Model
ResNet * *

Simple CNN * * *
VGG *

Table 3.2: Summary of Threat Models and associated manipulation strategies and dataset used for
experimentation.

3.4.1 Attack types

Yuan et al. (2018)[220] suggested making threat models consist of Adversarial Falsification

(False negative, False Positive), white-box, BlackBox, targeted, non- targeted, onetime and

iterative attacks. Carlini et al.[32], suggested that adversarial attack and defense models need to
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be tested against a diverse set of attacks. Also, they need to be evaluated against adaptive attacks.

Moreover, Tramer et al. [198] suggested different themes to evaluate a defense model. Keeping

these guidelines in mind, I developed My threat model inclusive of basic, advanced attack and

adaptive attack (against My defenses) types. Carlini et al. [28] also recommended using at least

one gradient-free and one hard-label attack. To address that concern, I evaluated My proposed

method with gradient-free attacks such as local search attack [145] and hop-skip-jump attack [35].

For testing against an adaptive attack, I used BPDA (Backward Pass Differential Approximation

[14]), which can be used to attack non-differential prepossessing-based defenses. Uesato el

al.[199] advised to consider obscurity of adversarial attack when considering the defenses. [32]

pointed out that testing a defense in one dataset is not enough, therefore I chose multiple datasets

(i.e., MNIST, CIFAR-10, and ImageNet). I considered a standard distortion ε = 0.3 for MNIST

and ε = 8/255 for CIFAR-10, as current state-of-the-art [198] recommended. Thus, My threat

model is a combination of gradient-based, gradient-free, and adaptive evasion based adversarial

attacks on multiple datasets. These attacks studied in this work are a combination of White-box,

Black-Box, targeted and non-targeted attacks. Also, the presented defense will be able to defend

against attacks that are completely unknown to the proposed defense scheme.

Table 3.2 summaries the threat models I investigated in My work. Here the second column

shows different strategies used in threat models, the third column mentions usability tactics and

the rest of the columns provide specific image manipulation techniques.

3.4.2 Attack Samples generation

My attack samples are PGD, BIM, MBIM, FGSM, JSMA, DF, HopSkipJump, Localsearch, and

CW methods. I generated a minimum of 1000 adversarial samples from each attack type to ran

My experiments. I find out a sequence of blur+AS+pixellete works for PGD, BIM, FGSM,

MBIM, which I used as a defended model in BPDA adaptive attack and generated new attack

samples. I generated FGSM, JSMA, CW, and DF using Pytorch [63]. I used BIM, MBIM, PGD,

local Search attack, and HopSkipJump using IBM-ART-Toolbox[149] and Cleverhans adversarial
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library[153]. I used modified advertorch[54] to generate BPDA attack samples. I noticed that the

destruction rate (i.e., the rate of failure of adversarial attack when it is converted to visual form)

[112] is higher in advanced attack types. I disregarded those images from attack samples. Also,

due to My restriction of ε = 8/255 for CIFAR-10 as maximum noise value, I had to discard some

samples from My dataset. I also experimented with three types of adversarial patch’s on

ImageNet dataset. I used 10-20 adversarial patches for My experiment using different adversarial

patch attack like DPATCH [125], LAVAN[99].

3.5 Preliminary Experiments

Types Normal Resize Rotate Motion Illumination
2x 0.5x 4x 5’ 15’ 45’ 15x 20x 50x 5 15 25

Dpatch [125] 10 0 5 0 0 5 5 35 35 80 0 0 5
Lavan [99] 15 0 5 0 0 5 5 35 35 85 0 0 5
Patch [24] 18 3 6 3 0 6 6 55 60 70 0 0 5
FGSM[65] 43 20 18 20 0 10 15 60 77 85 5 10 12
BIM [132] 32 28 16 28 5 12 18 66 76 86 10 15 20
JSMA [209] 28 22 10 22 0 10 25 60 75 85 15 25 30
CW [30] 61 55 75 55 60 75 90 100 100 100 70 80 100
DF [143] 85 90 95 90 72 90 95 100 100 100 85 90 100

Table 3.3: Destruction rates of various attack types under different environmental conditions. The
values in column “Normal” indicate destruction rates under raw image and following columns
represent where the successful attack types in normal conditions are experimented with other con-
ditions. In resize, I re-scaled the image and turn backward to original sizes. To simulate motion
effect I used Gaussian blur with different sigma value. For illumination effect I increased the
brightness. I can see the destruction rates gets higher when rotate and motions are higher. Adver-
sarial patch’es have lower destruction rate.

3.5.1 Applicability issue of Adversarial Attacks

To explain the applicability issues of adversarial attacks, I need first to understand the detection

and destruction rate of adversarial attacks.

• Detection Rate: Adversarial attack is possible to distinguish from the non-adversarial
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samples by different detection methods. Different techniques have different efficiency to

detect the adversarial samples. This efficiency to detect adversarial samples or adversarial

image (AI) can be measured by the detection rate. In short, My detection rate can simply

put as:

DetectionRate =

∑
AIdetected +

∑
NonAI −

∑
Falsedetected∑

AI +
∑
NonAI

% (3.2)

• Destruction Rate: Most of the adversarial attack studies ignore the destruction rate, but I

prioritize the destruction rate to evaluate practicability. There could be many reasons that an

adversarial attack sample fails to perform as adversarial samples. The rate of this failure

can be represented by the destruction rate. Kurakin and Yan Goodfellow [112] provided an

equation when adversarial images failed to identified as successful adversarial attack after

they converted to PNG or printed on a paper. I used the same equation to provide

destruction rates of attack samples. In short, My destruction rate can simply put as:

DestructionRate =

∑
FailedAdversarialImages∑

AdversarialImages
% (3.3)

Kurakin[112] represented destruction rate phenomena by the following equation

d =

∑n
k=1 C(Xk, ykTrue)C(Xk

adv, y
k
True)C(T (Xk

adv), y
k
True)∑n

k=1 C(Xk, ykTrue)C(Xk
adv, y

k
True)

(3.4)

Here, destruction rate is the fraction of adversarial images which are no longer

misclassified in real world scenario.

It is well observed, the adversarial images generated do not remain as adversarial when

converted to the visual format of images such as ’PNG’. Deep learning models typically use

floating values instead of using integer values which are present in image RGB format. This is

because it helps better convergence. Real numbers have infinite range and depend on the

precision, where as integers have finite range. The activation functions perform better in achieving

global optima, like sigmoid activation/Tanh works better with floating values. If I use integer
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values there is a chance I will miss many local optima and there is a chance I never get a global

optimum. Common hardware is equipped to run deep learning with floating-point values. This

tendency of preferring floating conversion from integer values of RGB creates the practicability

problem for adversarial images. Due to the conversion of float to integer, added noise/perturb

disappears. In the paper, Kevin Eykholt et al.[56] reported that the effect of adversarial example

get minimized due to several factors in real world scenario. They are environmental conditions,

spatial constraints, physical limits on imperceptibility and fabrication Error. They provided a

sticker based adversarial attack which works in real world from different angle and distances.

However, this attack seems easily identifiable by the human eye due to the shape and intensity of

embedded noise. Sharif et al.[177] used adversarial perturbations on the lens of eyeglasses to

attack the face recognition system. However, such attack didn’t mention destruction rates of

adversarial perturbation also their experiment was in a constrained environment. In 2019, Zeng et

al.[222] added perturb in 3D models instead of 2D images and showing successful adversarial

attacks but there was also no discussion about destruction rate, which makes it difficult to

reproduce with the same accuracy. In 2017, Kurakin et al.[112], showed that in the digital version

and printed version destruction rate exist, and for advanced attack methods the destruction rate

gets higher. They tried to justify their argument with FGSM, BIM, and least likely iterative

methods. Lu et al.[130] in their paper experimented with FGSM, BIM, and LBFGS methods and

showed the destruction rate can be achieved up of 100% based on distances that invalidating these

attacks. Pierazzi et al.[157] shows that, "it is feasible to create adversarial examples in the

problem space (realizable attacks) and that it seems there is no correlation between the ability of

the classifier to detect such attacks and the disruption of the adversarial examples”. However, the

problem with Pierazzi et al.[157]. works is that they restricted the problem space which are not

applicable for real situation when other environmental factors are present.

As an example, an image of class label ’A’, pixel values are
(

127 243 47

)
will divided

by 255(8bit range) and converted to
(

0.4980392157 0.9529411765 0.1843137255

)
.Theperturbsε are
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Destruction Rate Destruction Rate(with threshold) Destruction Rate(threshold+30)%
Dataset -> MNIST CIFAR MNIST CIFAR MNIST CIFAR
Attack types Digital Print Digital Print Digital Print Digital Print Digital Print Digital Print
FGSM [65] 43 22 53 24 2 33 6 24 1 23 3 24
BIM [132] 32 26 68 26 1 21 4 26 1 26 4 26
MBIM [55] 46 15 - - 2 12 - - 1 15 - -
JSMA [209] 28 31 76 31 2 22 11 21 1 31 10 -
CW [30] 61 25 92 32 12 29 17 27 8 25 26 -
Deepfool [143] 85 22 96 32 15 14 32 30 10 16 28 -
HSJ [35] 45 23 - - 5 12 - - 4 15 - -

Table 3.4: In first four columns under the Destruction rate without threshold, I show percentages
of adversarial samples failed to remain as adversarial. Next four columns show the adversarial
rate among the adversarial samples which satisfied My threshold value. In the last four columns I
provided the adversarial samples destruction rate when threshold value increases 30% more.

[
0.00000000007 −0.00000000004 0.000000000089

]
, which makes the image values

as
[
0.4980392164 0.9529411761 0.1843137268

]
.

Now it is an adversarial image that will classify as label B. But when I convert it by

multiplying 255 will return the
[
127 243 47

]
which has class label A. This adversarial

operation does not exist in real world due to noise value being too small. As all adversarial attack

types aim to reduce the epsilon value the practicability issue rises more in advanced attack types.

I proposed a method of minimum threshold of perturbing value which guarantees that

noises will affect when the adversarial sample is converted to any image format. However, it does

not differentiate whether the perturbed image will be an adversarial or not, it assures that this

noise will affect when the image will be an input for an ML model. I tested, attack samples with

minimum threshold value’s. I determined the destruction rate and compare the result with attacks

sample’s conventional destruction rates. Assuming, vector spaces of pixel values are converted

between 0 to 1. If the standard floor and the ceil math function are used to reconvert vector values

to the image, I can have the below formulation for the single color channel.

Let, a pixel non floating value X for a single color channel.

Image each channel are N bit. Thus perturb value ε need to bigger than a threshold value,

which can be derived from below equation.

(
x

2N − 1
+ ε)× (2N − 1) ≥ x+ 0.5 (3.5)
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From Equation 3.5, I get

ε ≥ 0.5

2N − 1
(3.6)

For, 8 bit single channel color, the minimum threshold value will be T ≈ 0.5
28−1
≈ 0.00196078431

From printed version if an average accuracy drop is δ, for a printed version the threshold

needs to increase by

Tp ≈ ε+
ε× δ
100

(3.7)

As an example, I observed 20% drop of FGSM method for 8bit MNIST grey channel adversarial,

So here the minimum threshold should be

Tp ≈ 0.00196078431 + 0.00039215686 ≈ 0.00235294117 Any noise ε need to be greater than T

to have a chance of becoming a digital adversarial image and be greater than Tp to have any

chance in becoming a printed adversarial image.

I experimented with basic attack types such as FGSM, JSMA also as and advanced attack

types such as CW, Deepfool, etc and used MNIST, CIFAR, and ImageNet data sets. At first I

converted all adversarial samples to PNG and observed destruction rates. The successful attack

PNG’s are printed and scanned as PNG again (similar as [112]. Then I cropped and resized them

as original training samples and tried again with the ML model again, I calculating which images

were correctly classified as an adversarial attack. Using equation 3.5, I calculated the destruction

rates under different environment constraints(example: Rotate, Resize, Illumination, Motion). I

simulated motion by blurring the image and I increased the brightness for illumination effect. The

results are presented in table 3.3. Here for adversarial patch attack, I used ImageNet and for other

attacks, I used average destruction rate of CIFAR and MNIST combination. In the 6th row,

FGSM has a 43% destruction rate when it converted to image format. The remaining images have

a destruction rate of 10% when their brightness increased 15%. This table shows that Adversarial

patch-based attacks have higher tolerance and CW, Deepfool has lower tolerance from the

environmental factor.

I used equation 3.5 with δ value 20% and considered image’s with at least 70% of noise
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above the calculated threshold. I converted the images in PNG and measured the destruction

rates. After that, I printed the successful PNG to print and measure the destruction rates. The

experimented results are shown in table 3.4. I used an image difference (Pixel value difference)

technique to calculate the δ value as Gupta et al.[77] shows in their paper.

From table 3.3, I can see motion and rotation has more effects. I observed that CW and

Deep-Fool attacks had a 100% destruction rate if they rotated too much. It is also observable that

patch-based attacks have good performance in real world conditions. These results proved that if I

use some reflecting technique I can avoid advanced perturb based attacks.

From table 3.4, I can see that when only considering adversarial images with noise above

My threshold, the drop of accuracy sharply declines from the previous result in the table3.3 where

all the adversarial samples destruction rate were shown. From the table, it appears destruction in

the printed version does not change much based on the attack type. Destruction rate is pretty

consistent with any normal clean image detection failure rate, as well,

3.5.2 Adversarial Input detection

I applied 4 transformation techniques such as Fourier transform [219], Census Transform[60],

Gabor Transform[182] and Wavelet Transform[156] on adversarial images and also applied them

on clean data set. I calculated average SNR value from all clean images and use that as threshold

value. I observed SNR values are higher in adversarial images and using that threshold value I

can detect basic adversarial attacks. In the image, SNR values are calculated by using the mean of

pixels as a signal (S) and std deviations of pixels as noise (N) with below equation

SNR = 10× log10

S

N
(3.8)

I presented these results in table 3.5 for MNIST data-set. I not conducted detection experiment for

adversarial patch attacks but as they are visible to human eye and the experiments of researcher

Chiang et al.[42] shows that adversarial patch attacks are also detectable, I set the detection rate
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Detection accuracy rate by SNR
value using simple transformation

Fourier Census Wavelet Gabor
FGSM 89 99 99 70
BIM 85 80 95 65

JSMA 75 70 85 55
HSJ 55 55 65 0
CW 30 10 15 0

DEEPFOOL 15 15 15 0

Table 3.5: Using four common transformation technique to distinguish between adversarial sam-
ples and common samples (From MNIST). I used 20000 clean images avg Signal to noise ra-
tio(SNR) as threshold. Attack images which have higher SNR than the threshold are identified
as adversarial images . Here I provided the detection rates. I can observe that CW and Deepfool
Detecting is harder.

higher as FGSM.

when I observed the detection rates of different attacks in table 3.5. Here in the1st row, if

FGSM samples transformed using Fourier transform and calculate its SNR value that 89% of

FGSM images are outside of Clean images SNR value range. I can see the CW, Deep-Fool

attacks are hard to detect from SNR values. From the results of the above experiments I draw the

graph in figure 6.1. Here, In the graph, I can see the destruction rate and detection rate are

co-related each other. Based on these rates I calculated feasibility scores of different attack types

for MNIST dataset.

3.5.3 Identifying Vulnerability

Based on our previous discussion, we can see evasion-based adversarial attacks are difficult to

formulate in the real world. Environmental factors can easily cancel out adversarial noises. The

noises which are not canceled out are also very easily detected by common filters. Most of the

defense technique has 99% accuracy rate of adversarial detection for high noise adversarial

attacks ( example: FGSM, JSMA, BIM). So, this question can simply arise that do we need to

care about adversarial attacks?

To answer this question, let’s observe where an adversarial attack can be formulated. In
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Figure 3.3: Generalized adversarial attack points on ML model

the figure 3.3, we illustrated general points where adversarial manipulation could happen on a

system where an ML service is deployed. We will consider the ML model as a black box. We

marked the attack points by number.

First, when the input is on the physical world, an adversary can change the input as a

famous adversarial example of changing stop sign to speed limit sign conversion. Here, we have

to note that this attack needs a higher physical degree of modification. Hence, if the noise amount

is low, there is a high chance that environmental factors will nullify the attacks based on our

literature review.

The second point is primarily I/O layers. For example, if someone changes one of the

sensors so that sensors can add adversarial noises while converting physical input data into a

digital form. One prominent example is putting an adversarial patch sticker on the CC cam lens to

manipulate ML output[li2019adversarial]. This attack can also happen when an output action

was presented or happening.

The third point is where data turned to a digital format (binary/floating/etc.) and sending

to the ML system or output receiving from ML (Assuming the ML system is on a cloud server or

some computational hardware). We can say it’s more of a communication channel. It could argue

that if adversarial can control this channel, he can modify the data going to the ML or coming

from ML. Low perturb-based attacks can occur here as no environmental factors will diminish the

64



noise. However, we can also say that if someone can control this network, he might not need to

add adversarial noises; he can directly add his desired class input for his expecting output. Also,

if he can modify the output result no need for adversarial perturb noises. Yet, this scenario should

be considered as might the attacker don’t have complete control of the communication channel

and can only add slight perturbs.

In the fourth point, the attack can also happen if the system (example: server) is

compromised. This scenario, also similar to the third point. It more of an intrusion in the system.

Low perturbs attack can happen, but we can see that if the attacker already compromised the

server, he doesn’t need to compromise the input. It is easier for him to change the output label, as

he already compromised the system. We can argue that the intruder’s ability is limited, so that he

will prefer adversarial attacks.

The fifth point is very different compare to other points, and this attack can happen before

the ML model has been set up on the server. Some Trojans or backdoor can be added in the ML

before deployment, which is only activated for specific inputs.

Additional point which is not presented in the figure was adaptive attack. An attacker can

run different test input to determine the decision boundary of ML model. Also, as adversarial

attacks are transferable attack generated in another system will work in here.

From our above discussion, it is evident that adversarial attacks can happen outside the

physical world that can make an ML model provide wrong output.

Based on our previous discussion, we can see adversarial defenses each have a different

implementation. For example, adversarial training or distillation technique requires training the

ML model, resulting in data scientist purview. A prepossessing approach such as feature

squeezing types of defense may employ by system engineering in run-time. But the limitations of

these defense techniques create a challenge for the concerned parties. Pre-processing methods can

protect most of the standard adversarial attack, and it can employ when input sensors are

converting to digital format.

Second point attack, as described in figure 3.3 may concern with knowledge concerning
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hardware security or IoT device security, or firmware security. This part interacts with humans, so

human-computer interaction-based defenses (trust models?) may fall in this area.

Pre-processing-based adversarial defense technique can be employed here before sending over the

communication channel.

Third point attacks, as described in figure 3.3 are in the communication channel, so an

attack on this channel should be concerned by network security experts. As if this channel is

compromised, an attacker can create different attacks rather than adversarial attacks. Some of

these attacks may be a more severe threat than adversarial attacks. Computer network layer

security, data layer security also concerned here. It is in question that is it possible to use any of

the adversarial defense technique can be employed in this stage or not. It should be noted that

traditional adversarial defenses, as far as our literature review, are not applicable in this area, and

here are new research opportunities for the interested cybersecurity experts as they can explore

from adversarial attack perspectives with traditional attack types.

The fourth point directly falls in Operating system security or cloud security based on ML

implementation. It could argue that prepossess-based defense technique can also be employed

here, but if there is an intrusion in here, that we have more vital concerns than adversarial attack

as the system is already compromised. The attacker is effectively controlling the system. Many

proposed adversarial defense techniques can be implemented here. Still, all of these have a

limitation: an attacker can modify data in the OS label. He can probably corrupt the employed

defense system there too.

The fifth point of attack can be defended by checking the output with other AI systems or

conducting thorough testing. Effectively as the ML model is, black box system engineers or

cybersecurity has a minimal role here. Data scientists can develop some algorithms to test the ML

model after deployment to discover this issue. We considered this to be the most concerning

attack points as it is hard to address and may need extensive regular testing.

The adaptive attack is another grave concern, which is also hard to defend as adversarial

inputs are transferable. It can tackle with dynamic ML model configuration, regular update, or
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active learning system. It can also help if employ a defense system to identify attack query

pattern, which can relate to DDoS attacks. However, one downside of adaptive attack is it is a

computationally expensive and time-consuming attack for a system that is regularly updating.

From the above discussion, we prepared the table 3.6, where we illustrated what part of defense

Attack point Defense Role
Input Modification Preprocess technique System/Software devs
Sensor,I/O device Testing and Reliability Devops /AIops
Communication Channel Network defense, Cryptography Network and IT security
Internal OS system Intrusion detection, Access control Network and IT security
Model Structure Formal methods Data/ML scientist
Adaptive attack Dynamic and active learning Data/ML scientist/Network

Table 3.6: Different attack points and relevant responsible professional

falls in which security domain. This table is an attempt to divide the roles, and we can assume

there was more intercommunication between different roles required to implement a robust

defense system.

It is evident that in the literature survey we did in previous chapter, most of the defense

strategies except prepossessing techniques are not suitable in deployed environments. Developing

an adversarial defense technique that can work deployed environment and cover all the attack

points still a challenge to researchers.
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Chapter 4

Step by Step Investigation

4.1 Input Filters (library)

4.1.1 Feature Extraction strategy

Adversarial samples are distorted versions of non-adversarial samples. This distortion can

measure in euclidean distances or pixel difference distance. However, I assume some image

processing algorithms can signify the misuse of an adversarial example in a way that significance

can be used to filter out adversarial examples. As an example, if an adversarial image has added

perturb pixel all around its main edges, an edge-preserving technique algorithm can remove these

perturb. So differences after-before image have a significant value which makes it distinguishable

than a non-adversarial picture.

Let, Adversarial image sets are As + εs, and clean image set is As, and Filter Set denoted

by FFilterSet, εs is total added perturb of all adversarial images So, after applied Filter Set on

adversarial and clean image set I will get,

FFilterSet(As + εs) ≈ As + εs +Ka

FFilterSet(As) ≈ As +K

where K,Ka is the approximate effect of Filter Set in clean and adversarial image set So
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Figure 4.1: First rows show how different types of attack change a clean image (for visual purpose,
the effects are exaggerated. This row is created from observation and not real sample). The second
rows are actual corresponding real attacks on the MNIST dataset. Where 8 recognized as a different
label.

the difference DI is

DI ≈ |(As + εs)− (As + εs +Ka))− (As − As −K)|

DI ≈ As + εs − As − εs −Ka − As + As +K|

DI ≈ |K −Ka| I can see that in the DI equation no image (A or As) is present. Here, aim is

analyze the effects not the core image/image content but pre-processing effects. Note: K,Ka is

the generalized approximate effect of Filter Set in clean and adversarial image set,

In testing time, I can calculate the ki value for the testimage i by applying FFilterSet.Here

ki is the generalize effects from applied Filter Set. Now i will be a adversarial image if

|K − ki| > |ka − ki|.

.

I developed a denoising approach to detect adversarial inputs using a sequence of image

filters. This work inspired by Prakas et al.[158]. Adversarial samples are distorted versions of

non-adversarial samples, such distortions can be measure in Euclidean distances or pixel

difference distance. My hypothesis is that, some Filters can signify the distortions of an

adversarial example in a way that significance can be used to filter out adversarial examples. For

instance, if an adversarial image has added perturbed pixels all around its main edges, an

edge-preserving technique can remove these perturbations. The differences before and after
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Figure 4.2: In the top side, Clean (class A) vs Adversarial (B which classified as other class)
images differences after Filter Set applied, Histogram calculation on the difference, In bottom,
MNIST with FGSM example has shown
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Figure 4.3: Effects of Several Filters techniques on CIFAR dataset.after applying different Filters,
DI was done from grey-scaled image

Figure 4.4: In the right side, clean (0), FGSM(1) and JSMA(2) samples were applied with AS
Filters and using KNN[225] with the Histogram average value of DI and euclidean distance
value,Similarly in the left side, clean (0), FGSM(1) and JSMA(3) and DF(2) samples were ap-
plied with AN + AS Filters s effects. I can see DF, Jsma is overlapping there.
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Data
Manipulation attack

Sequence for
Dataset (MNIST)

Sequence for Dataset
(CIFAR) Reason

FGSM BS+BS Greysale+AN+AN

perturbation which added
in image is not an
edge, so edge-preserving algorithm
remove these,
so differences of before after
adversarial image inputs are
higher than non=adverse image

JSMA TN+BS PX+grey-scale+BS
JSMA extend some edge which
reduced when I do thinning

CW
TN+TN+TN or
GS+GS+GS+TBS

GS+greyscale +GS+TBS
+TN+TN

In CW object
edge getting thinning
and blur,so applying more
blur and thinning algorithm
difference will amplify

DeepFool GS+AN+GS+AN GreySale+AN+AN+AN

Deepfool create few pixel
arround border to effect
the model,using
additive noise boost
this effect and
I can have a difference

Table 4.1: Different ilters for different adversarial attack type

Figure 4.5: 4 Filters applied to 5 types of the adversarial set with a clean sample set for the MNIST
dataset. In X-axis, no of each sample shows and Y axis, Before and after effects histogram average
has been illustrated. From this small set I can see, different Filters has different effects for different
attack types
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Figure 4.6: Effects of Several Filters techniques on MNIST dataset, after applying different Filters

processed images can be measured by different metrics (E.g: Histogram difference). These

metrics will have significantly different values from the clean dataset’s same metrics. We can

differentiate between non-adversarial and adversarial images using these metrics. It could be

possible that one unique sequence of edge-preserving and other Filters could make it more

distinguishable than other sequences, thereby providing metrics of such differences to be used as

a threshold value to classify adversarial and non-adversarial images.

4.2 Ensemble the Input Filters

There are numerous Filters that exist. Each can perform different operations in images. So, for a

specific type of attack, a specific type of Filters sequence will work better. From my empirical

observation, we can select a diverse set of unique Filters’s such as BS, thinning [66], AN, blur

[203], sharpen [67], thickening [66], and AS. These techniques and their combinations are best

suited to maximize enhancement between the difference image (DI)’s of adversarial and clean

input. It can be observed in Figure 4.1 that, for the MNIST dataset, FGSM method tends to add
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Figure 4.7: Here, the transformation of additive noise and adaptive smoothing filter and the dif-
ference between original and filtered images are illustrated. We use the histogram value from the
difference image as my feature metrics. On the right side, fourier transformation effect and SNR
values difference of adversarial and clean input value. We can also notice a pattern in the red arrow
between adversarial(FGSM) and clean images.

pixelate noise around the object in the image, while JSMA seems to add along with the object

borders, and CW tends to lose some erosion, whereas DF adds a very small amount of perturbing.

Therefore, I assumed that sharpening can help to highlight JSMA attacks, performing blur will

have more effect in CW, and AS will have a good effect on FGSM attacks. In figure 4.4, I can see

different Filter Set can work better for different attack types. So, I selected these Filter Set, and

found a combination of these Filter Set that performs better. If I consider different datasets (e.g.,

ImageNet, CFIAR), I have to consider different Filter Set, thus I select variety sets of Filter Set,

which can perform required all basic operations.

Filter techniques can be seen as input transformation/conversion techniques, which can

modify any input to another input where specific properties of the original information are

modified/transformed. We used approx 50 filters in my experiments, such as adaptive smoothing

(AS), additive noise (AN), bilateral smoothing (BS), Gaussian blur, sharpen operation, thickening

operation, Fourier transformation, Laplace transformation, log-polar conversion, wavelet

conversion, etc. In table 1, a list of filters used in my experiment for adversarial input detection

are provided. Figure ??, we presented the filtered output of the MNIST image. We can see the

difference images have distinct characteristics for adversarial and nonadversarial images. In my
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Filter Family Code Filter Name Attack Method
FGSM BIM PGD JSMA

ANALYTICAL
FT4 Distance 50 70 70 50
FT10 Morph 75 70 70 60

EDGE Base
FT5 Canny 75 75 75 70
FT11 Sobel 50 75 50 75
FT16 Gaussian edge 75 70 75 75

Noise Add

Median Blur 65 60 65 55
Average Blur 70 70 70 70

FT1 Gaussian Blur 70 65 70 60
FT7 Gaussian Noise 60 50 60 65

Dilation 70 70 70 75
opening 75 70 75 65
Closing 70 50 70 75
SaltAndPepper 75 75 75 75

FT13 SierraDithering 70 70 50 70

Noise Reduce

FT12 Erosion 75 55 75 70
FT0 Sharpen 70 70 75 50
FT6 Shrink 50 50 55 55

Texture

OilPainting 75 50 75 70
Pixellate 50 70 50 50

FT14 Wavelet 70 75 70 50
FT2 Gabor 50 70 50 50
FT8 Census 55 55 55 70

Transform

Top_Hat 70 50 70 75
BlackHat 70 50 75 55

FT9 Lapalce 70 75 60 75
FT3 Fourier 55 55 75 75

Exponential 50 50 50 75
FT15 Log-polar 50 55 75 65

Mirror 55 50 75 60
TopHat 55 50 55 75
WaterWave 75 50 75 70

Table 4.2: List of the filters and their accuracy against different attack (250 adversarial inputs for
each attack type) on MNIST dataset (ACOORD.net library used for experiment) (Note: here we
only provided successful detection rate).
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study, we extracted features from input data such as Signal to Noise (SNR), Peak Signal Noise

Ratio(PSNR), Root Mean Square Error (RMSE), Histogram[96], Local Binary Pattern(LBP).

4.3 Generation of filter Sequence

The phenomenon which we briefly described previous sections assures us it is sufficient to detect

adversarial images that have distinguishable noises because if an adversarial image doesn’t have

distinguishable noises they hardly exist in the physical domain. It also shows that filters from

different types are better for detecting all types of attacks, and we don’t need to test against all

attack types. We also need a balanced sample set of training datasets as we showed that these

filters are transferable. Based on these, we decided to select a set of filters in a specific sequence

dynamically for each input data. There will be an optimum certainty that one of the chosen filters

can detect the adversarial traits in the input data by the fastest possible feasible time and will be

independent of ML or AA types and immune to adaptive attacks. In the table 4.3, we can see the

shorter sequence of filter has the same accuracy but the lower computational time. In that table

two sequences result over different dataset and different attack type was presented. It is also

visible that the overall accuracy of detection rate and specific attack type accuracy is different.

For example, in sequence 1, total accuracy is 97%, but for FGSM, it is 100%.

Sequence 1 FT1-FT2-FT3-FT4-FT5-FT6-FT7-FT8-FT9-FT10-FT11-FT12-FT13-FT15-FT16-FT17 (time : 89s for 1000 test image)

Dataset MNIST EMNIST FMNIST CFIAR
Accuracy 98 (10 types of attack) 98 (10 types of attack) 98 (10 types of attack) 94 (6 types of attack)
Attack Types FGSM JSMA CW DF FGSM JSMA CW DF FGSM JSMA CW DF FGSM JSMA CW DF
Accuracy 100 100 90 90 100 100 94 90 100 100 90 90 98 95 80 70
Error Margin 0 0 7 5 0 0 4 9 0 1 6 5 8 5 12 10

Sequence 2 FT1-FT4-FT6-FT8-FT9-FT13-FT15 (time :70s for 1000 test image)

Dataset MNIST EMNIST FMNIST CFIAR
Accuracy 98 (10 types of attack) 98 (10 types of attack) 98 (10 types of attack) 92 (6 types of attack)
Attack Types FGSM JSMA CW DF FGSM JSMA CW DF FGSM JSMA CW DF FGSM JSMA CW DF
Accuracy 100 100 85 90 100 99 90 90 100 99 90 90 97 95 75 68
Error Margin 0 0 7 5 1 1 6 9 1 21 6 5 9 15 12 12

Table 4.3: Smaller sequences have similar performance as long sequences, but take less computa-
tional time. Here, Sequence 1 is consists of all the filters and has the same accuracy for different
AAs (here, four specific AA result from ten different filters provided) as shorter sequence (2) but
with less time.

Due to the process flow, the filter sequence with the same filters has a different
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computational time. As a better performing filter reduce the number of the image comes to the

next filter in sequence, But it is also observed that different filter has different computation time.

So it is unwise to put the best performing filter first in the sequence. There are two types of

processing time applied here: file transfer/read time and filter processing time for each input. File

read time is equal for all filter, but the different filter has different process time. Lets assume, File

transfer/read time is Tf , Filters input processing times are t1, t2...tn w.r.t to Filters

FT1, FT2...FTn. So each filter total consumes time for N number of input:

TimeFTi = N × (Tf + ti) (4.1)

here, i = 1, 23..n

In a sequence filter can be any order, and each filters are overlap their accuracy among

adversarial samples. As example, Filter A and Filter B both have 50% accuracy, but cumulatively

accuracy can still be low as 50% as they are able to detect same adversarial samples. Lets assume

in a sequence FT1− FT2− FT3...− FT9, adversarial detection probabilities are P1, P2, P3, ...Pn.

So approximate time for the sequence will depend on the following equation

Timeapprox = T1 + (1− P1)T2 + (1− P1)(1− P2)T3 + .... (4.2)

Timeapprox =
∑

Tn

n−1∏
i=1

(1− Pi) (4.3)

We need multiple solutions because we can not use the same sequence of filter for every

input. This will create an opportunity of adaptive attack. A sequence could be any length. Search

for optimal set of sequences are massive computational time, if we do exhaustive search

considering multiple objectives. That’s why we will employ a multi-objective GA to search for

the optimal set of sequences. For search filters, we need to consider different factors besides their

accuracy. Based on our objective, our filters need to be fast, that’s why filters order are important

because separate order of the filter will consume different amounts of time. It is preferable then
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our solution is time efficient. According to PH6 and PH7, we need to make sure that there is a

diverseness of filter type in our set of filters. If we have a diverse type of filter that out filter will

work against the untested attack and thus reduce the zero-day vulnerability. In our solution, we

have to deal with two kinds of diversity:

1. Insider Diversity (Diversity of filter family in a sequence): As illustrated in figure 4.13, if

only a few filter families are represented in a sequence, we will see lack of insider diversity.

It requires different filter families to be effective against a different set of attacks. It is not

possible to test all of the attacks, so for the safeguard, it is better to have a sequence from

different filter families. Also, filters from the same family work the same way, so multiple

filters present from the same family do not increase efficiency much higher.

2. Set Diversity (Diversity of the filter in the set of sequence): We will make a dynamic

selection of a sequence from a set of filter sequences. If this set of sequences were made of

the same filters that the purpose of dynamic selection will be lost. An attacker can assume

which filters have been in use and employ back pass differential attack [32], which can

bypass filter techniques. So we need to make our sequences unique. In the illustrated figure

4.13, an example of set diversity is provided.

In summary, we need a time-efficient,to produce a reliable performance and a unique set

of sequence. Our designed multi-objective GA can achieve all these criteria. The purpose of using

a genetic search is to find a diverse sequence of filters detecting AAs with maximum accuracy

while each filter is having different characteristics and capabilities when deployed such a

sequence adaptively (interchangeably) in a ML that will be unpredictable to attackers compared

to a static ensemble of well-known filters. So the GA will find not only the best filter ensemble,

but also a set of diverse filter sequences in multi-objective Pareto-front. In section 4.3.2, we

detailed how our designed GA is achieving this. In order to implement this integrated approach,

we proposed the AEF framework (illustrated in figure 5.5)) that will select a set of filters in a

specific sequence dynamically for each input data. There will be an optimum certainty that one of
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the selected filters can detect the adversarial traits in input by the fastest possible time and will be

independent of a ML and immune to adaptive attacks. Collection of these filters will be generated

using a multi-objective variable-length diversity sensitive genetic algorithm (A top-level view of

GA illustrated in the figure 4.8).

Figure 4.8: Genetic Algorithm (GA) for generating filter sequence list

If we use a random sequence selection instead of GA, we will get the low performed

sequence as presented in figure 4.11.

4.3.1 Filter Sequence Search Space

If we have N number of filter, than total possible number of sequence will be our search space.

We can formulate our search space by below equation:

Searchspace =
N∑
k=0

N !

N !− k!
(4.4)
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(a) The basic flow diagram for the filter sequence list generates pro-
cess. It is visible that we don’t need any ML information. We only
need a training dataset(or a balanced part of the training dataset).

(b) Basic flow diagram when our input fil-
ters(1) running to protect a ML(2). (Note: We
are not sending modified input to the ML, we
are sending original input to the ML if we de-
tected that as clean)

Figure 4.9: Flow chart in different stage of operation.

For 50 filter size of our search space has approx 8.26X1064 search items. If we don’t consider

time efficiency then we don’t need to order in a combination of sequence (For different order a

sequence accuracy remain static but time efficiency change). So search space will be less, since

order in a combination is not important. For single objective (Only detection rate as

F1score/accuracy) our search space will be formulated by below equation:

SearchspaceAccuracy =
N∑
k=0

N !

k!(N !− k!)
(4.5)

For 50 filter size of our search space is approx 1.126X1015.

We can optimize our search space by limiting the minimum sequence length and

maximum sequence length. Than our equation will be :

OptimizedSearchspace =
N−max∑
k=min

N !

N !− k!
(4.6)

80



Here, min and max are the minimum and maximum length of a filter sequence. In our experiment,

we have 17 filters and minimum length were 6, our optimized experimental search space has

consist of 9.6614 search item.

Figure 4.10: Both sequence has 95% accuracy(Not F1) and same size but top sequence has less
time.Steps of adversarial input, detecting sequential by each filter is presented, we can see that
reordering these sequences will change the number of undetected images for the next filter. So for
different sequence processed time varies but detection accuracy remain same. (Note: here a simple
example used for illustration, where FT1 and FT2 has no overlap detection)

4.3.2 GA Methodology

We have three steps in our experimentation process as shown in figure 4.9. First, we created the

ranges of each filter as seen in figure 1 marked (1), then we generate attack samples for our

testing purposes as marked (2). Using these test-samples we implement a GA to search for

appropriate filter sets that are suitable for different attack types. In 4.9, we illustrated our basic

flow diagram for the testing process. We first select a random sequence and used it as our input

filters (marked 1) to detect an AA from the learning model/ML (marked 2). If our filter detects it

as adversarial, we add it in our attack samples and if it is a clean image, than we send it to the ML

and also add it in our training dataset.
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Figure 4.11: Here, X-Axis is the generated sequence, and the y-axis has the detection accuracy
of the sequences. In blue, we represented the average random sequence, and in orange, we have
sequences after 20 iterations of a GA for the SHAPE dataset using 12filters. We can see that ran-
domly select a sequence has a meager chance to have good accuracy, whereas choosing a sequence
from GA results will guarantee higher accuracy.

Generate metrics ranges for each filters

Algorithm 1 Generate min,max metrics for a filter (FT)
let, min = 0, max = MAXINT , STDdev = 0,SUM = 0,SUM2 = 0

sampledataset has N number of trainingdata,

for Each trainingdata td in sampledataset do

value = metrics(td) {Metrics function for filter FT}

if min<value then

min=value

end if

if max>value then

max=value

end if

SUM = SUM + value, SUM2 = SUM2 + (value× value)

end for

STDdev =
√
(SUM2 − (SUM × SUM)/N)/(N − 1)

min = min− STDdev, max = max+ STDdev

return min,max
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Figure 4.12: Population of GA represented, Here each individuals are variable length, In crossover
and mutation duplicate occurrences were removed. Different order of sequence provide same
accuracy but different time as we can see for sequence 4 and 6. Three objectives were presented
we can see longer length does not guarantee accuracy or diversity

Figure 4.13: ’Insider Diversity’ and ’Set Diversity’ Explanation, In the Left side, we can see two
sequences where one has insider diversity one has not, and left side, we can see which set has the
set diversity.

First, we need to process the ML’s training dataset and run all the filters and calculate their

metrics value. We ran a randomly picked balanced subset of inputs from the data set and applied

each of our filters and gather their Min, Max. Using algorithm 1 for each filter.

Now, if Mean is µ̄, Standard deviation is σ, Our lower range (Lr) and upper range(Ur)

calculation denoted by equation 5.2 and 5.3

Lr = Min− σ

µ̄
(4.7)

Ur = Max+
σ

µ̄
(4.8)

Using equation 5.2,5.3 for 17 filters, we generated list of upper and lowerange. In figure 5.2 we

can observe that most of the attack samples SNR values are outside upper and lower range of

clean samples.
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Figure 4.14: Here, X-Axis is the iteration number, and Y-axis has presented the average of α(s)∀S.
We can see that some of the filters dominate at the top whenever we reach a local optimum. We save
these sequences and remove these filters from the rest of the population. The immediate effect of
the average accuracy dropped, but that picked up again. We continue to drop off dominated filters
until the x-axis is stuck in a lower optimum than the threshold.

Algorithm 2 GA algorithm for Sequence Search( filter Set :FS)
1: Minimum accuracy =Mi,

2: Get metrics set MS from all training data (Clean+Adversarial) for all filter F in FS using algorithm 1

3: Generate N random sequences from FS -> population P

4: while MAX iteration reached or global optima reached do

5: Generate fitness value FV all Sequence in P using equation 5.10

6: Run suboperation for all Sequence in P using equation 4.18

7: Sort all Sequence in P based on fitness value

8: if Local optima reached & average fitness > Mi then

9: Do dropoff using algorithm 4 dropoff(P) ->SEQPOOL, SEQ

10: P = SEQ , SEQPOOL− > Collectionseq

11: goto step 5

12: end if

13: Remove lower half of P

14: Do crossover with first half using PMX algorithm and add the children in P

15: Do a inversion mutation

16: end while

17: return Collectionseq
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We apply MOGA for searching a set of filter sequence which can detect maximum attack

samples. Our GA has the following characteristics:

1. Our MOGA has a variable-length chromosome. As the optimal filter sequences could be

any length, we need to make our GA multi-variable size supported.

2. We have 3 objectives to fill (accuracy, diversity and time) as mentioned in section ?? and

detailed in section 4.3.2.

3. Our end collection of sequences set needs to be diverse; that’s why we have a drop off

operation (described in section 4.3.2) when we reach local optima.

4. To find the best time conserving order of a sequence, we have a sub-operation.(described in

equation 4.18)

5. We prefer to have a simpler sequence. That’s why the added penalty function prioritizes the

smaller length sequence than the larger length (described in equation 5.9).

6. To faster the GA, we used adaptive weight values, prioritizing objective based on the GA

average fitness. (described in equation 5.10)

Encoding and Individuals First, we encoded all filters according to table 4.2. Here, 17

algorithms were assigned sequence number FT1, FT2...FT17. In the leftmost column, the class

type of these algorithms is mentioned. These filters are our genes. We will create our

individuals/chromosome using these genes.

Using the filters encoded in table 4.2, we generated the population by random sequence

generation. So each is consist of different length of filters. We remove multiple occurrences of

filters in a single sequence. In figure 4.12, the encoding of filters are illustrated with different

examples.

As example a random sequence FT2FT5FT11FT12 means Blur -Census - Morph -

Canny. That way, we generated multiple lengths of sequences as our initial population.

Fitness Function

85



We have three objectives. they are Accuracy (α), time to detection(β) and Insider

diverseness(γ) of filters in sequence. Accuracy is the success rate of detection by the filters.

We used F1 score as Accuracy value. We calculate F1 score using detection rates as

described in below. Here, number of filter = n and S = fi, fi, .fn is the sequence

True positive TP =
∑n

i=0 TP

False positive FP =
∑n

i=0 FP

False Negative TP =
∑n

i=0 FN

Precision =
TP

TP + FP
(4.9)

Recall =
TP

TP + FN
(4.10)

So Detection accuracy F1 score is

α(S) = F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(4.11)

For time, if each filter take ti time, then total time to detection δt can be calculated by

β(S) =
n∑
i=0

t (4.12)

For insider diverseness, for each filer fi ∈ Fi, here F is the filter family and f is the filter, S is the

sequence.

γ(S) =

∑
f ∈ F |f ∩ S| > 0∑

F
(4.13)

As example,we have total 1000 adversarial samples and 1000 Non-Adversarial Sample.

For each filter in the sequence, we see if the adversarial images metrics (ex:SNR) are outside the

range we stored for that filters lower range (Lr) and upper range(Ur). As for

S = FT2− FT5− FT11− FT12 => Blur -Census - Dither -Canny. Here n = 4 and other

metrics are
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Filter: Correctly Detected (TPi): Wrong detection(FPi): Remaining(FNi): Time (Ti)

FT2 : 220 : 05 : 1000− 200 = 780 : 0.03s

FT5 : 110 : 15 : 780− 110 = 670 : 0.02s

FT11 : 200 : 10 : 670− 200 = 470 : 0.015s

FT12 : 220 : 10 : 470− 220 = 250 : 0.01s

For the above example it is, TP = 750, FP = 40, FN = 250 so, α = 0.8380 from

equation 5.4, Time is 0.03 + 0.2 + 0.15 + 0.01 = 0.75s.

As for Blur-Census-Dither-Canny. Here, Blur and Dither are from same class, and others

are from 2 different class. So diverseness is 2+1+1=4
6

= 0.66. We Normalized all three objective

data using equation 5.7

Xsc =
X −Xmin

Xmax −Xmin

. (4.14)

We inversed the Time data, so we have to maximize all of the objectives. Our fitness function

denoted by

max(f(S)) = ((αn(S)), (βn(S)), (δn(S))) (4.15)

where, αn is normalized accuracy, βnis normalized inverse time, δn is diverseness factors.

We have penalty function to prioritize simpler solution and weight values to speed up the GA

process. Let assume, Weight Value, W0 = 0.90− 1
100−iterationnumber

and Weight Value, W1 = 1−W0

We observed that, in the beginning α is low and after a certain iteration γ gets lower. We

use W0 for α and W1 for γ.

In the figure 4.20, we visualized the effect of weight to speedup the GA process.

For penalty functions we need below parameters

Length of Best fitted individual in previous iteration |maxf(Si) ∈ ∀(S)|

Size of current Sequence = |S|

Total number of filters =
∑n

i=0 |f | ∈ ∀F
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Figure 4.15: Here X-axis has the iteration number, and the Y-axis has the average length of the
sequence. We can see with a penalty, the average size of the sequence tends to smaller. This
experiment was done with 12 filters with 4 different datasets.

Equation for penalty function value can be denoted by

pf(S) =
f(S)
100
×
|S| − |maxf(Si) ∈ ∀(S)|∑n

i=0 |f | ∈ ∀(F )
(4.16)

So from equation 5.8, fitness for S is

f(S) =
√

(αn(S)2 ×W0 + βn(S)2 + δn(S))2 ×W1 − pf(S) (4.17)

In figure 4.15, it is visible that with the penalty function, length of sequences are lower than

without penalty functions. That way, our GA prioritizes to search smaller sequences. Also, a

shorter time is co-related with sequence length. So β(s) also affects having more straightforward

sequences.

We created the 3D Pareto front using the three objectives from each individual. A

non-dominated rank is assigned to each individual using the relative distance in 3D space. In

figure 4.16 and 4.19, some individuals fitness functions are presented. For each individual, we ran

another sub-operation to find the lowest time of the sequence order. This sub operation is done by
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random search or genetic search for the fastest combination of filters in that individual/sequences.

For a Sequence ’S’, we take all filter f ∈ S and try
(
f
k

)
to create Si=0..k Sequences and return the

sequence with best β(Si). We replace current S with Si in the population. so equation for sub

operation is

Snew = min
β(Si)∈(fk)

f(S) (4.18)

As example, if our S = (FT9− FT3− FT6− FT2) we will try K number of

combination using FT9, FT3, FT6, FT2 like

S1 = (FT3− FT9− FT2− FT6),S1 = (FT2− FT9− FT3− FT6)

...SK = (FT3− FT9− FT6− FT2) and will replace the S by the Si with best βSi. If the

individual’s length is L, then the search space for sub-operation is L!. If (500 ≤ L!), than we do a

simple random search. Otherwise, we do a simple GA for finding the best time optimized filter

combination.

(a) Here, Pink is time efficiency, black is length
efficiency, and blues are each individual’s accu-
racy. Red points are 3d vectors of each individ-
ual, and greens are the Pareto front where no one
is dominate

(b) Best fitness value as GA iteration (per iteration= X-axis
value X 5) progressed for four different data-set. We can see
that for CFIAR it need more iteration to reach fitness over
90.

Figure 4.16: MOGA Pareto front and performances illustrated.

Selection, Crossover and Mutation We used elitist strategy with rank Selection. We keep

the best performing filters for next generation. We did PMX crossover as we need unique values

in a sequence. An example of PMX cross over is

Parent 1: FT8 FT4 FT7 FT3 FT6 FT2 FT5 FT1 FT9 FT0

Parent 2: FT0 FT1 FT2 FT3 FT4 FT5 FT6 FT7 FT8 FT9
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Child 1: FT0 FT7 FT4 FT3 FT6 FT2 FT5 FT1 FT8 FT9

Here, from parent one we pick a random part and test of the part we took from other two

parent using PMX crossover algorithm[41]. In PMX crossover, parent 1 gives a genetic element,

and the identical swath from the other parent is sprinkled about in the child. After that, the

surviving alleles are lifted straight from parent 2.

Algorithm 3 PMX Selection algorithm (Parent 1, Parent 2)[41]
1: Randomly select a part from parent 1 and copy them directly to the child. Note the indexes of the

segment.

2: Looking in the same segment positions in parent 2, select each value that hasn’t already been copied to

the child.

3: while For each of these values: do

4: Note the index of this value in Parent 2. Locate the value, V, from parent 1 in this same position.

5: Locate this same value in parent 2.

6: If the index of this value in Parent 2 is part of the original swath, go to step 3. using this value.

7: If the position isn’t part of the original swath, insert Step A’s value into the child in this position.

8: end while

9: Copy any remaining positions from parent 2 to the child.

10: return Child

For mutation, we did a inversion mutation,where one gene of an individual replaces by

another gene. In our method, we pick a random index and random filter from ∀(@f ∈ S). As

example, for sequence

S = FT2− FT3− FT5− FT8− FT9 ,

we pick random index 2, and random filter FT10, so new sequence

Snew = FT2− FT3− FT10− FT8− FT9.

Drop-Off Operation
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Algorithm 4 drop-off algorithm (SEQ = Seq1, Seq2, ...Seqn , Remove K item, Partition P,
SEQPOOL)

1: Sort the Sequences based on their fitness values

2: first n/P sequences -> SEQtop ->SEQPOOL

3: Itemnumber = 0

4: while Itemnumber 6= K do

5: most common item T in SEQtop

6: remove T from every Sequence in SEQtop & SEQ

7: Itemnumber = Itemnumber + 1

8: end while

9: return SEQ and SEQPOOL

Figure 4.17: Y-axis presents the diversity value, and the X-axis represents the total number of ex-
periments. The difference in diversity values from sequences generated by different GA method
is illustrated. After GA generated sequence, we randomly picked three sequences seven times
and showed their total diversity value. We can see with drop off functionality, we reach maxi-
mum diversity. Without drop off and diversity objectives, it failed to cover half of the family.This
experiment was done in MNIST dataset

To maintain the diversity, landscape aware method introduces by [122] or a noise-based

approach introduces by [11] can be used. Landscape conscious process consumes more

computational complexity, and the noise-based system would be hard to encode in our problem,

thats why we introduce a simple concept of dropoff to keep set diversity. We observed that only a

handful of filters are dominated the GA. It makes the dynamic selection pool vulnerable as all of

the sequences are made with common filters. An attacker can guess these filters in a white box
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setup and use the BPDA attack to bypass this defense technique. That way, whenever we reached

an optimum, we save the best performing Sequence as a distinguished pool and remove the most

common filters in these sequences. We provided an algorithm 4 which move the good sequence as

a pool of sequence for dynamic section and remove the dominated filter from the current

population. In figure 4.14 this is illustrated, here we can see we get three pools of sequences. In

the dynamic selection, we randomly select one sequences from each of these three pools to test an

attack is adversarial or not. We have a threshold for dropoff number (Dn), if top K number of

Sequence (Si=0..k) has more than (Dn) common filter, we save Si=0..k in a pool, and remove

common filters from all the Sequence in current population. Remove filters can be extracted from

below equation

∃fi=0..Dn = S1 ∩ S2 ∩ ........ ∩ Sk (4.19)

In the figure 4.17, the importance of dropoff is presented. In that figure, we provided a diversity

of 3 sequences each time. It seems in a single objective without dropoff, all of the sequences are

from 2-3 classes. But with dropoff and with diversity objective, the sequences generated from GA

are from 5-6 different classes.

4.3.3 Experimental Results and analysis

Figure 4.18: For N iterations best accuracy and best time-cost were plotted. Here we can see
time and accuracy were not equally progressed. But after we get a good F1 score individuals time
started to improved.

In table 4.4, we presented the first 15 individuals and their accuracy and time. The first

column has a sequence of filters. We can see that different sequence has the same accuracy, but

they have additional time cost. For example, the third row has sequences 11 and 5 with accuracy
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Figure 4.19: For N iterations, average accuracy and best accuracy was plotted. We can see that in
the initial state when the sequence was utterly random, accuracy was below 50%, but after several
iterations, it started to go higher

Figure 4.20: Here X-axis has the iteration number, and the Y-axis has fitness. We can see for
MNIST without accuracy, GA requires 63 iterations to reach a fitness over 98. Whereas with the
weight, we can get the same fitness by 40 iterations. This experiment was done with 12 filters with
MNIST, EMNIST, F-MNIST, Shape Dataset, and CFIAR dataset.

98% detection rate by taking 0.45S. Whereas 7th row 15,8,3,7 has 77% accuracy and take 0.86s

as time cost. In figure 4.16, we illustrated a chart of different dataset GA performances. Where

we can see MNIST, EMNIST and F-MNIST are faster than CFIAR. While running the GA, we

did 100 iterations, and we plotted average accuracy and best accuracy in figure 4.18. We can see

blue as the best accuracy reached about 95% after 15 iterations, but the average accuracy came

above 95% after 35 iterations. We need a set of sequences. So we need to run the iteration until at

least 40 individuals have above standard accuracy. Because if we have 40 sequences for our ML,

then the attacker probability to guess the sequence correctly will be 1
40

= 0.025. So run a

successful adaptive attack will be computationally impossible. In figure 4.19, accuracy and time

cost are plotted for all 40iterations. It is visible that the best accuracy and time cost are not

co-related. We used multi-objective functions, so lower time-cost gets prioritized in the iteration.

However, due to very small differences in the time cost between the individuals, it doesn’t

significantly impact iterations.

In table 4.6, we presented the comparison between the F1 score in test time when we use a
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individual F1 Time Diversity
8, 14, 9, 13, 6, 15 0.97880597 0.741013 5

5, 7, 15, 11, 12, 14 0.97880597 0.451521 5
11, 5 0.97880597 0.363813 2

11, 7, 6, 4, 15 0.97880597 0.481844 4
11, 5, 14, 4, 8 0.97880597 0.415009 4

3, 8, 9, 15, 11, 5 0.96880597 0.866414 5
15, 8, 3, 7 0.790522388 0.686515 2
9, 8, 13 0.768656716 0.668462 2

15, 11, 12 0.768656716 0.514135 4
10, 14, 9, 12 0.751865672 0.694747 3
7, 3, 11, 2, 9 0.751865672 0.839804 3
8, 2, 9, 12 0.748134328 0.593654 3

Table 4.4: Accuracy,Time, and diversity After applied different Series of filter for MNIST dataset

Acc Testing Time
Naive Bayes 65 0.3
Random Forest 99 0.1
Neural Net 3 78 0.3
Logistic regression 65 0.2
GA+range(Our Technique) 98 0.04-0.09
Decision tree 99 0.09

Table 4.5: Metrics of Adversarial samples and clean samples from each filter used to train different
ML and their accuracy

single objective and dual objective. Here, the sequences generated from the GA has experimented

with a random set of adversarial and non-adversarial images. The test accuracy was dropped in

both scenarios. But sequences in dual objectives (which were more diverse) have less drop than

the single objective (which were less diverse). Here, we experimented multiple times F1, and

provided the F1 mean of the results, and we also offered the standard deviation to evaluate the

confidence value of these results.

Instead of using GA, if we use a random search or brute force that will also find good filter

sequences, it would require higher search coverage. In figure 4.21, we illustrated the difference

between search coverage between GA and random search. Here we only considered the single

objective, so equation 4.5 is applied here. In our experiment, we needed a more extensive search

coverage due to other objectives.
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Dataset Sequence with single objective Sequence with Dual objective

F1 in GA Testing F1 std dev F1 in GA Testing F1 Std dev
MNIST 99 87 1 97 93 1
EMNIST 98 85 1 97 92 1
FASHION-MNIST 95 89 1 92 90 1
CFIAR 90 72 1.5 88 83 1.25

Table 4.6: A comparison between single vs. dual objective (diversity and accuracy) GA sequences
is presented. Single objective GA sequences have a larger drop in mean accuracy rate (F1-score)
than the dual objective.

Detection Method MNIST CIFAR Avg
FGSM JSMA DF CW FGSM JSMA DF CW

RF based adversarial training[81] 0.96 0.84 0.98 0.66 0.64 0.63 0.60 0.72 0.77
KNN based learning [81] 0.98 0.80 0.98 0.6 0.56 0.52 0.52 0.69 0.73
SVM based learning [81] 0.98 0.89 0.98 - 0.69 0.69 0.64 0.77 0.81
Feature Squeezing[215] 1.00 1.00 - 0.20 0.88 0.77 - 0.77
Ensemble [15] 0.99 - 0.45 - 0.99 - 0.42 - 0.71
Decision Mismatch[141] 0.93 0.93 0.91 - 0.93 0.97 0.91 - 0.93
Image quality features [6] 1.00 0.90 1.00 - 0.72 0.70 0.68 - 0.83
AEF(Our Framework) 1.00 1.00 1.00 1.00 0.94 0.95 0.96 0.94 0.99

Table 4.7: Here, we provided a comparison with other adversarial input detection techniques based
on Accuracy. On average, we outperform other methods. As examples, our methods work with
96% accuracy in the CFIAR data-set where the feature squeezing technique has 0.88% accuracy.

We also explored local search methods such as Hill climbing search. However, our

preliminary experiments on Hill climbing show evidence that it will be stuck in local maxima

after some iterations. It is possible that this problem could be solved using stochastic

hill-climbing, random walks, and simulated annealing. But implementation of those is complex

than Multi-objective GA. In GA, we have a better way to secure population diversity, which is

hard to implement in local search. Some prior literature study, as example work of [97, 213]

shows result comparison of GA vs. local search for a similar problem like our search problem,

and GA offers better performance than local search. That is the reason we opt for GA instead of

local search algorithms.

It could be argued that instead of doing a range check and GA, we can use another ML’s to

detect adversarial samples using the image metrics we generated in the first phase of our

experiments. We tested with the 5000 adversarial samples and 500 clean samples metrics dataset

(MNIST). In table 4.5, we showed the result by running different ML’s and compare with our

technique. It is visible that three-layer neural net and naive bayes perform poorly, but random
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Figure 4.21: Here, We are searching S number of sequences with accuracy over 85% only using
brute force and random forest search. For filter size 10, we weren’t able to complete the brute force
search. It is visible using GA higher accuracy filters can be found by less search from the bars.
The random search may be suitable for a lower number of filters, but the random search takes a
large coverage area than the GA search when the filter size is large.

forest and decision tree outperform us. But these techniques require more testing time, and also

this technique accuracy depends on the adversarial datasets. Another important fact is they are

also ML, so they are all vulnerable to standard AAs.

4.4 Output Filters

4.4.1 Negative Selection Based Filtering technique

We proposed a V-detector based NSA outlier detection strategy for each class label. NSA does

not require adversarial examples to classify between adversarial knowledge and clean samples.

Only a set of clean data are enough to generate a set of detectors for adversarial samples and

based on the analysis given in section 2A, which shows NSA methods are more suitable for

non-linear and limited positive samples OCC.

In the figure ??, we illustrated the process of negative detector generation. A feature

extraction technique (example : DNN based [ono2018lf] or binary feature extractions

[calonder2010brief]) will mapping feature data for each label. These features will be used as self
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data for the NSA algorithm. We will use different class labels features and each class will have

unique representation spaces as their features are different. These feature types were selected

based on which feature performs best to distinguish between one class label to other class labels.

Our experiment used a simple conv net to extract features for each class.

In the figure ??, we visualized how our NSA will interact with the ML model. ML model

will provide the output class. Using that class and the input data, the NSA will use the same

feature mapping technique for that class and try to match that class’s negative detectors.

For overall framework concept, we illustrated our proposed workflow in the figure ??. At

first, as there is no data in the clean dataset, we have to assume the first few inputs are clean input.

Based on these clean inputs and their class label, our NSA will generate the detectors for each

class; when we have enough detectors, the ML model will provide the output class for that to the

NSA when a new input comes. NSA will take the input and output class label and check that

input for that class NSA detectors set. If the input is detected as an outlier, the process will stop.

Otherwise, the information will send to a clean dataset to regenerate the detector set, and the

output class will be given as the final class output. We presented the algorithm flow chart in the

figure ??, here NSA detector re generated when a clean input is detected. This way, we

implemented relearning as new attack detectors are optimized with the new inputs and can

perform better.

One of our proposed framework’s possible limitations is that at the start, the clean data-set

is empty; thus, adequate negative detectors are not likely to generate until sufficient clean inputs

are collected. We can proceed with a sample set of clean data at the beginning to counter this

problem; otherwise, we have to assume at first system will have only clean inputs.

Attack type Step1 Step2 Step3 Step4
FGSM 0.86 0.92 0.902 0.93
BIM 0.89.0 90.0 90.0 0.90
PGD 0.92 0.94 0.95 0.95

Table 4.8: Detection of adversarial inputs which classified as MNIST class label ’0’ and with clean
input of class label ’0’ , after sample size increased 100 in each step.
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Attack type NSA OCSVM IF VAE SOGAL MOGAL
FGSM 0.93 0.99 0.93 0.65 0.5 0.5
BIM 0.90 0.98 0.91 0.66 0.5 0.5
PGD 0.95 0.99 0.92 0.50 0.5 0.5

MBIM 0.91 0.98 0.94 0.46 0.5 0.5
HSJ 0.88 0.55 0.41 0.65

JSMA 0.9 0.56 0.8 0.83
CW 0.96 0.42 0.66 0.52
DF 0.91 0.45 0.76 0.55

Table 4.9: detection of adversarial inputs which classified as MNIST class label ’0’ and with clean
input of class label ’0’

Attack type MNIST Class ’0’ MNIST ’1’ MNIST Class ’2’ MNIST Class ’3’ CIFAR ’Airplane’ CIFAR ’dog’
FGSM 0.93 0.92 0.93 0.92 0.88 0.89

Basic Iterative Method 0.90 0.90 0.91 0.91 0.83 0.82
PGD(random start) 0.95 0.92 0.92 0.90 0.73 0.72

MBIM 0.91 0.90 0.94 0.86 0.73 0.72
hopskipjump 0.84 0.65 0.80 0.65

JSMA 0.9 0.96 0.8 0.93 0.63 0.62
CW 0.96 0.89 0.86 0.62
DF 0.91 0.89 0.96 0.73

Table 4.10: adversarial attacks on MNIST class label ’0-3’ and CIFAR ’dog’ and ’airplane’ class
detection rate (each class has 200 positive and 200 adversarial samples which classifies as that
class by a CNN)

4.4.2 Feature Selection

Negative Detector generation

We experimented with MNIST digit 0,1,2,3 and CIFAR dataset ’airplane’ and ’dog’ class. For

example, We took the class label ’dog’ as a positive class. All other classes and adversarial

samples for the class dog are considered a negative class. We trained with 1000 positive data for

each class. We used a simple convolution neural network to generate a feature set for each class.

These features are used to create negative detectors for specific that class. To avoid the cold start

problem, we put 1000 positive data for each class in the clean dataset. We used the V-detector

algorithm for generating detectors.
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Detection Method MNIST CIFAR Avg
FGSM JSMA DF CW FGSM JSMA DF CW

Random Forest based adversarial training[81] 0.96 0.84 0.98 0.66 0.64 0.63 0.60 0.72 0.77
KNN based adversarial training [81] 0.98 0.80 0.98 0.6 0.56 0.52 0.52 0.69 0.73
SVM based adversarial training [81] 0.98 0.89 0.98 - 0.69 0.69 0.64 0.77 0.81
Feature Squeezing[215] 1.00 1.00 - 0.20 0.88 0.77 - 0.77
Ensemble technique[15] 0.99 - 0.45 - 0.99 - 0.42 - 0.71
Decision Mismatch[141] 0.93 0.93 0.91 - 0.93 0.97 0.91 - 0.93
Image quality features [6] 1.00 0.90 1.00 - 0.72 0.70 0.68 - 0.83
Our Proposed Method 0.92 0.90 0.96 0.82 0.94 0.85

Table 4.11: Comparison with other adversarial input detection technique based on accuracy (in
our method, for MNIST average of class 0-3 was experimented and for CIFAR only tested with
Airplane and dog class)

Defense Strategy
Attack Sample
Generation not needed

ML Model Modification
not require

No Accuracy
Reduction of ML

Not Vulnerable
to adaptive Attack

Applicable for All ML
model and dataset

Adversarial Training N Y N N Y
Ensemble Method N Y N N N/A
Pre-Processing Defense N Y Y N Y
Architecture Alteration Y N N N N
Our proposed Method Y Y Y Y Y

Table 4.12: Advantages of our proposed method than other methods in terms of applicability

Experiments

We experimented with 1000 positive inputs and 250 attack inputs from each attack type. The

V-detectors were initialize with 1000 clean input before. We used F1 score as Accuracy value. We

calculate F1 score using detection rates as described in below. Adversarial samples detected as

adversarial (True positive) TP , Clean samples detected as adversarial (False positive) FP ,

Adversarial samples detected as clean samples (False Negative) FN , We calculated

Precision =
TP

TP + FP
(4.20)

Recall =
TP

TP + FN
(4.21)
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So, Detection accuracy F1 score is:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(4.22)

We also used other OCC techniques for comparison using pyod library[229]. We regenerate the

V-detectors after every 100 clean inputs and using the randomized set for the clean and

adversarial dataset in a batch of 200 to collect the results and provided the average F1 scores as

the final result.

4.4.3 Result Analysis

In the table 5.2, we experimented the attack sample accuracy rate with V-detector generated using

different number of clean samples. It is observed that after each iteration V-detector performance

slightly increased. In the table 5.10, we presented results against different attacks types. We can

see our defense works with different types of attack, as an example (FGSM, BIM) but result

sharply decline for the CIFAR data set. We concluded that was due to not having a better feature

mapping. It is observed that for different classes, different performance from V-detector as for

JSMA MNIST class as 80% accuracy for class label 0 but same attack type class label ’1’ has

85% accuracy.

In the table 5.3, we compare V-detector NSA results with other techniques; we can see

that OCSVM and IF performs better than NSA for gradient-based attacks for low noise attacks

NSA outperform both of them. Variable Autoencoder didn’t perform well due to a low number of

samples. SOGAL and MOGAL based techniques were failed to work with low models. NSA

works faster than them based on the results from table ??.

In an adaptive attack, such as BPDA [199], attackers bypass well known pre-process

techniques by applying a differential approximation. This differential approximation process will

not work as the detector’s position and radius change after each successful non-adversarial input.

So, the defensive filters can be changing continuously, and the attacker will not have a static
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defense to bypass. However, query-based attacks need to be detected as those can bias the

defensive filters.

In table 5.11, we compared our results with other well-known defense strategies. Our

defense technique has exhibited similar performance as other techniques but our is more effective

in detecting advanced low-noise attacks such as CW and Deepfool. Moreover, existing defense

techniques have many limitations which is evident in our comparative results shown in table 4.12.

As mentioned earlier, negative filtering strategy can work without any attack sample generation

and remain robust against current state of the adaptive attack. [171] introduced a mechanism to

leverage ’Generative Adversarial Networks (GAN)’ capability to reduce adversarial perturbations’

performance. The GAN effectiveness depends on the GAN training, which is computationally

complex and needs proper understanding of the dataset. In contrast, our approach doesn’t need a

complex training method and computationally faster than GAN based defense technique.
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Chapter 5

Integrated Filtering- End-to-End

5.1 Research Findings

From our extensive literature review and empirical examination, we observed seven adversarial

phenomena. These are:

1. Advanced AAs are ineffective in the physical environment.

2. AA noises have a distinct nature that is related to the attack method.

3. Clean and adversarial inputs have identifiable noise difference.

4. Same filtering technique will work for all ML model for a specific dataset.

5. Different filters have different effectiveness to detect AA.

6. Attack methods from the same family possess weakness to the same detection filters.

7. If data-sets are similar, filter-based defenses are transferable.

8. Outlier detection methods can detect AAs as outliers.
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(a) The best performing filter from each attack method
was applied to the other attacks, and their accuracy was
presented in the heatmap (MNIST Dataset).

(b) Different filters have different effectiveness to de-
tect attack types. Here, each filter family average per-
formance was presented against different attacks. In
the green area, texture-based filters perform well in
boundary-based attack and Noise filters works better for
gradient-based attacks

Figure 5.1: Two different phenomenon PH5 and PH6 observed.

(a) Different attack type accuracy over all 3 different dataset
against using the filters range generated from Fashion-
MNIST. This proved filter based defense are transferable.

(b) All images SNR value plotted in the x-axis(0-
1 normalized) w.r.t filter-id. In the y-axis, blue are
clean inputs, and reds are adversarial images SNR
values, we can observe that most of the adversarial
inputs SNR are outside the SNR values of clean
inputs. Some of the filters there is overlap, but there
are distinct ranges present for adversarial and clean
images.

Figure 5.2: Two different phenomenon 7 and 3 observed.
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Advanced AAs are ineffective in the physical environment.

In 2017, [112] showed that in the digital version and printed version success of adversarial

methods decline. They tried to justify their argument with FGSM, BIM, and other iterative

methods.[130, 148] experimented with FGSM, BIM, and LBFGS methods and showed the

destruction rate up of 100% based on distances invalidating these attacks.

AA noises have a distinct nature that is related to the attack method.

Different attack methods try to attack an ML model differently; for example, in the JSMA attack

method, the most significant part of the input noise is added; in the FGSM attack, a gradient loss

noises are added. In score based attack, the most significant pixel value searched and changed. In

the work of [77], these behaviors have been briefly discussed.

Clean and adversarial inputs have identifiable noise difference.

Researchers ( [158][6][77] ) demonstrate adversarial and clean images have a comparable

differences in their noise value which are identifiable for attacks such as FGSM, BIM etc. In

figure 4.7, we illustrated the noise differences between clean and adversarial images SNR metrics.

In figure 4.7 and 4.7, it was also illustrated that normal filtering technique highlighted the noise

part after pixel difference method[77], and these noises could be detected using other metrics

such as the histogram average and the local binary pattern average. In the figure 5.2 we illustrated

the adversarial example metrics value normalized in 0-1 in x-axis and presented for the different

15 filters from table 4.2. We can see that clean and adversarial images overlap, but in

cumulatively, they are distinguishable.

Same filtering technique will work for all ML model for a specific dataset

From PH2 and PH3, we can see that filters can detect AAs in data preprocess stage[158] [6][77].

That means this technique will work for the black-box model, which means defense is not

required to access or modify the ML. So if the ML changes, for example, from Resnet to Vgg or

104



SVM to a Random Forest, the defense technique needs no changes. It will be completely

independent of the ML changes.

Different filters have different effectiveness to detect AAs

We have experimented with different filters, as presented in table 4.2. From this result, using filter

classification, we generated the heat-map in figure 5.1. Here, we can see that noise addition and

canceling filters are working better in the gradient-based attack, and texture-based filters are

working better for boundary-based attack types. For example, FGSM and BIM are both

gradient-based attacks, and we find out blur works against both of these attacks. This result is

expected as the second phenomenon established that AA noises have a distinct nature related to

the attack method. This phenomenon proves that picking one filter from each filter family will

have more effectiveness than selecting all the filters from the same filter family class.

Attack methods from the same family possess weakness to the same detection filters

We plotted observed average accuracy for each filter family on each attack method as illustrated

in the heatmap figure 5.1 b. It is visible that if filter works for one attack type, it will also work for

other attack types. The best performing filter for FGSM performs well in other attack-type of the

same family. That assures us that we do not need to evaluate all the attacks, but at least one from

each attack family is sufficient to assess defenses’ efficiency.

If data-sets are similar, filter-based defenses are transferable.

In figure 5.2, it is illustrated that the same filters, whose ranges are calculated using

Fashion-MNIST, is working with satisfactory results. MNIST, EMNIST, and Fashion-MNIST are

the same type of dataset.This phenomenon assures us that the AEF filter does not need the ranges

from the full dataset. A subsample min-max range will provide an efficient range to detect the

AA.
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Abbr Algorithm Accuracy
OCSVM [39] One-Class SVM 99
LMDD[12] Deviation-based 98
LOF[22] Local Outlier Factor 98
COF[191] Connectivity-Based 91
CBLOF[83] Clustering-Based 92
HBOS[62] Histogram-based 91
kNN[161] k Nearest Neighbors 91
ABOD [108] Angle-Based 62
COPOD[121] Copula-Based 75
SOS[90] Stochastic Selection 66
IF[195] Isolation Forest 99
FB [114] Feature Bagging 99
XGBOD [228] Extreme Boosting Based 26
AutoEncoder[2] Fully connected AutoEncoder 43
VAE[105] Variational AutoEncoder 41
SO_GAAL [127] Single-Objective GAN 40
MO_GAAL[127] Multiple-Objective GAN 35
Vdetector[234] Variable Size NSA 99
RNSA[50] Random real value NSA 75

Table 5.1: List of outlier detection algorithm and their accuracy to detect adversarial (FGSM) input
of class label ’O’.

Outlier detection methods can detect AAs as outliers

The work of ruff et al.[167] shows that outlier detection methods can classify class label from

outlier samples. In multi-class classification, each class separately generate their own latent space

and outlier detected there as negative class and inliers are detected as positive class and able to

achieve 95%+ accuracy for MNIST class classification. Similar approach we experimented with

adversarial samples for single class classification. We took class label ’0’ as positive class or

inlier, all other 9 classes and adversarial samples for class 0 are considered negative class or

outlier. We trained with 1000 positive class. We used [229] developed outlier library in our

experimentation. We tested with 500 positive data, and 500 adversarial sample (FGSM samples

generated using [63] and [149]) of class label 0. The accuracy was presented in the table 5.1. We

can see that one class support vector machine and V-detector based negative selection algorithm

does better than other.
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Static defenses can by-passed by adaptive attacks

Carlini el al[32] exhibited an adaptive attack where the attacker can bypass the known defenses.

So, if the defense is not changes or remain static it will be vulnerable to adaptive attacks. Also,

more recent works showed that dynamic defense mechanism which claims effectiveness against

adaptive attacks fails against gradient based adaptive attack[198].

5.2 Overall Architecture

To build a robust ML/AI-based system against malicious adversaries, we designed a dual-filtering

(i.e., commutative filtering) scheme, which employs two filtering mechanisms: one at the input

stage (before samples are fed to the core learning model) and other at the output of ML (before

the decision module). These two filters can function independently as well as dependently (i.e., in

a commutative fashion). Specifically, the input filter’s main aim is to filter misleading and out of

distribution inputs (e.g., image of animal but not human face in a face recognition system). The

output filter’s goal is handling larger variations and restricting misclassification rates in order to

improve overall accuracy of the system. The proposed dual-filtering strategy can be used both in

training and testing phases of ML. For instance, the independent input filter may be used to detect

and deter the poising attacks in a supervised ML. Likewise, dual-commutative filters may help

addressing adversaries both in supervised and unsupervised ML. A machine learning framework

usually consists of four main modules: feature extraction, feature selection (optional),

classification/clustering, and decision. As depicted in Figure 5.3, the input filters are placed after

pre-processing of data stream/feature selection to feed to core learning model and the output

filters are placed after classification/clustering/raw decision module, respectively.
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Figure 5.3: Schematic of the proposed Dual-Filtering (DF) framework.

As can been seen in Figure 5.3, the raw input sample is first pre-processed and then fed to

the input filter to determine if the received feature/sample is benign or attack and reject

accordingly. The outcome (i.e., raw decision) by ML system is given to the output filter for

further scrutiny. The output filter uses context-information and/or communicates with the input

filter to make the correct final decision. An ensemble of different noise removal or detection

filters was applied to detect AAs in a recent work [47]. Other techniques focused mostly on

adding extra layer on a ML module by adversarial sample training or modification of deep

learning models. These defense methods have some constraints, and exposed ML models to new

vulnerabilities [76].

In 2019, some works reported launching adaptive attacks where they could bypass known

defenses [32]. To alleviate the situation, we consider a non-deterministic (white-box) approach

where the attackers cannot perceive our defenses to launch adaptive attacks. Accordingly, we

investigated an active learning[175] based dual-validation scheme which work as an extra security

(filtering) layer and improve the learning model’s trustworthiness.

108



Figure 5.4: Illustration of basic flow concept for proposed Dual Inspection framework. If the input
is not adversarial, the original input (not the processed) be sent to the learning model/ML and after
ML produce class label, that labels latent space will be used in outlier method. The outlier decision
boundary and the threshold of noise will change as the dataset of adversarial and clean data set are
updated by each input.

In the figure 5.4, we illustrated the basic concept of our proposed solution. As we know

that it is possible to detect adversarial input noise using different filters, we will apply filters to

detect noise. We need to know which filter we need and the difference between the clean and

adversarial noise threshold. That’s why we first use the information from the ML model to

determine the input is an outlier for the class label the ML model is classified or not. If it is an

outlier, we will send it to the adversarial dataset. If not, we will send it to the clean dataset and

update the outlier methods decision boundary and determine the required filters and the noise

thresholds. Before update/retrain the output and input learning model, we will inspect the data for

adaptive attack patterns in the adaptive attack detection module. The figure 5.5 demonstrated our
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proposed dual inspection strategy. It is shown that the inspection before and after ML are

independent and can be deployed as a plugin. As in active learning, when the clean dataset has

some data, it will train the outlier detection techniques, and the ’inspection after ML’ module will

start to work. After the outlier finds some adversarial examples, the adversarial dataset receives

some data. When the adversarial dataset has sufficient data, our multi-objective Genetic algorithm

started the genetic search for filter sequences that are effective against the adversarial noises and

the differentiating noise thresholds for these sequences. As time progresses, MOGA will detect

more adversarial samples, and the knowledge of the outlier detection technique will transfer to

noise detection techniques. This way ML model has to process fewer adversarial examples. We

will select different filter sequences for each input and different outlier detection methods for each

input to make the defense dynamic. After each (or a specific amount of input), outlier methods

will retrain, and it will update the outlier detection decision boundary. Similarly, MOGA will

update the filters library subsequently. This way, both outlier and filter-based defense technique

will keep themselves updated as time progress. As this method can be vulnerable by adaptive

attack, we will store the data and inspect for adaptive attack pattern before update the filters and

outlier detection methods.

The basic workflows from the figure 5.4:

1. Input will be sent for filters to extract different metrics (SNR, Histogram etc). There will be

a dynamic selection of the filter set from the filter library.

2. Extracted filter metrics value will check for perturb, if it is above certain threshold switch

S1 will open or other wise switch s2 and s3 will open.

3. S1 open:

• input will be sent to adversarial dataset and the process will terminate.

• Adversarial dataset will retrain the filter sequence search for noise detection and

change the threshold value.
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4. S3 and S2 open:

• If S3 open, extracted filter metrics value will be sent to outlier detection system.

• If S2 open, input data will be sent to ML model and Switch S5.

5. ML model will deliver the output class to S4 and outlier detection system.

6. Outlier detection system will randomly pick one outlier detection method. If it detected as

outlier witch s1 will open, otherwise S4 and S5 will open.

7. S1 open:

• input will be sent to adversarial dataset and the process will terminate.

• Adversarial dataset will retrain the filter sequence search for noise detection and

change the threshold value.

8. S4 and S5 open:

• S4 will provide the final output class and S5 will send the input to clean dataset which

will trigger the retrain of outlier methods and change the outlier decision boundary.

5.3 Workflow

5.3.1 Multi-objective Genetic Search for filters

We need multiple filter sequences because we cannot use the same sequence of filter for every

input. A sequence could be any length. Search for optimal set of sequences require significant

computational time, if we do exhaustive search, considering multiple objectives. That’s why we

will employ a multi-objective GA to search for the optimal set of sequences as pareto-front

solutions. For search filters, we need to consider different factors besides their accuracy. Based on

our objective, our filters need to be fast, that’s why order of filters are important because different
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Figure 5.5: Illustration of proposed Dual Inspection framework. If the input is not adversarial, the
original input (not the processed) be sent to the learning model/ML and after ML produce class
label, that labels latent space will be used in outlier method. Selection of outlier and filer sequence
will be dynamic.
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Figure 5.6: GA to search appropriate filters.

order of filters require different amounts of processing times. It is preferable to have our solutions

time efficient. If we have N number of filters, then total possible number of sequences will be our

search space. If we do not consider time efficiency, then we do not need to order in a combination

of sequence (For different order a sequence accuracy remain static but time efficiency change).

We can optimize our search space by limiting the minimum sequence length and maximum

sequence length. So, our search space equation will be :

OptimizedSearchspace =
N−max∑
k=min

N !

N !− k!
(5.1)

Here, min and max are the minimum and maximum length of a filter sequence. Suppose, we have

17 filters and minimum length were 6, then our optimized experimental search space has consists

of 9.6614 search item. It justifies the necessity of using heuristics search method like GA. In

summary, we need a time-efficient, to produce a reliable performance and a unique set of

sequence. Our designed multi-objective GA can achieve all these criteria. The purpose of using a

genetic search is to find a diverse sequence of filters detecting AAs with maximum accuracy
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while each filter is having distinctive characteristics and capabilities when deployed such a

sequence adaptively (interchangeably) in a ML that will be unpredictable to attackers compared

to a static ensemble of well-known filters. So, the GA will find not only the best filter ensemble,

but also a set of diverse filter sequences in multi-objective Pareto-front.

Perturb Range/threshold Determination of filters

First, we need to process the clean dataset and run all the filters and calculate their metrics value

and gather their Mean,Std Dev, Max. Using algorithm for each filter. Now, if Mean is µ̄, Standard

deviation is σ, Our lower range (Lr) and upper range(Ur) calculation denoted by equation 5.2 and

5.3

Lr = Min− σ

µ̄
(5.2)

Ur = Max+
σ

µ̄
(5.3)

Using equation 5.2,5.3 for 17 filters, we generated list of upper and lowerange

Encoding

First, we encoded all filters according to table 4.2. Here, 17 algorithms were assigned sequence

number FT1, FT2...FT17. These filters are our genes. We will create our

individuals/chromosome using these genes. We generated the population by random sequence

generation using the genes. So, each sequence is consists of different length of filters. We remove

multiple occurrences of filters in a single sequence. As example a random sequence

FT2FT5FT11FT12 means Blur -Census - Morph - Canny. That way, we generated multiple

lengths of sequences as our initial population.

Fitness function

We have three objectives. they are Accuracy (α), time to detection(β) and Insider diverseness(γ)

of filters in sequence. Accuracy is the success rate of detection by the filters. The filter sequence

114



takes adversarial and clean samples from the dataset. Based on the filter sequence’s metrics value

range, we check how many adversarial samples we can detect and how many we falsely detected.

We used F1 score as Accuracy value.

α(S) = F1 (5.4)

For time, if each filter take ti time, then total time to detection δt can be calculated by

β(S) =
n∑
i=0

t (5.5)

For insider diverseness, for each filer fi ∈ Fi, here F is the filter family and f is the filter, S is the

sequence.

γ(S) =

∑
f ∈ F |f ∩ S| > 0∑

F
(5.6)

We normalized all three objective data using equation 5.7

Xsc =
X −Xmin

Xmax −Xmin

. (5.7)

We inversed the Time data, so, we have to maximize all of the objectives. Our fitness function

denoted by

max(f(S)) = ((αn(S)), (βn(S)), (δn(S))) (5.8)

where, αn is normalized accuracy, βnis normalized inverse time, δn is diverseness factors.

We have penalty function to prioritize simpler solution and weight values to speed up the

GA process. We observed that, in the beginning α is low and after a certain iteration γ gets lower.

We use W0 for α and W1 for γ as weigh value.

For penalty functions we need below parameters

Length of Best fitted individual in previous iteration |maxf(Si) ∈ ∀(S)|

Size of current Sequence = |S|

Total number of filters =
∑n

i=0 |f | ∈ ∀F
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Equation for penalty function value can be denoted by

pf(S) =
f(S)
100
×
|S| − |maxf(Si) ∈ ∀(S)|∑n

i=0 |f | ∈ ∀(F )
(5.9)

So, from equation 5.8, fitness for S is

f(S) =
√

(αn(S)2 ×W0 + βn(S)2 + δn(S))2 ×W1 − pf(S) (5.10)

Crossover, mutation and selection

We used an elitist strategy with rank Selection [46] and kept the best performing filters for the

next generation in steady-state genetic search. We used PMX crossover as the order of the filter

sequence are important optimization criteria in a sequence[200]. In the figure 5.6, We illustrated

the genetic search of near-optimal filter sequences where search terminated after specific

iterations or if the fitness values do not improve for a long period i.e. threshold number of

iterations.

5.3.2 One class classifications Outlier method

There will be different latent spaces for each class to detect that class’s outlier. In the figure 5.7,

we can see that MNIST digits have their clusters for each class label, and these are well separable.

In the figure 5.8, we can see filter-based metrics can very easily differentiate between adversarial

and clean sample. We suggest using an ensemble of different outlier detection methods—for

example, a combination of One-class SVM, Isolation forest, and Negative selection algorithm.

Our experimental results shows that negative selection algorithm is random nonlinear learning

system, which is applicable for adversarial detection and it randomness made is easy to make the

system adaptive by regular updating the learning model.

In the table 5.2, we experimented the attack sample accuracy rate with v-detector

generated using different number of clean samples. It is observed that after each iteration
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Figure 5.7: PCA based clustering for class label 0, and 1 from MNIST dataset using each class
own latent space.

Figure 5.8: FGSM based adversarial input differs from their target class using filtered metrics
presented using PCA for dimensional reduction.

Attack type Step1 Step2 Step3 Step4
FGSM 0.86 0.92 0.902 0.93
BIM 0.89.0 90.0 90.0 0.90
PGD 0.92 0.94 0.95 0.95

Table 5.2: Detection of adversarial inputs which classified as MNIST class label ’0’ and with clean
input of class label ’0’ , after sample size increased 100 in each step.
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Attack type NSA OCSVM IF VAE SOGAL MOGAL
FGSM 0.93 0.99 0.93 0.65 0.5 0.5
BIM 0.90 0.98 0.91 0.66 0.5 0.5
PGD 0.95 0.99 0.92 0.50 0.5 0.5

MBIM 0.91 0.98 0.94 0.46 0.5 0.5
HSJ 0.88 0.55 0.41 0.65

JSMA 0.9 0.56 0.8 0.83
CW 0.96 0.42 0.66 0.52
DF 0.91 0.45 0.76 0.55

Table 5.3: detection of adversarial inputs which classified as MNIST class label ’0’ and with clean
input of class label ’0’.

v-detector performance slightly increased. In the table 5.3, we compare v-detector NSA results

with other techniques; we can see that OCSVM and IF performs better than NSA for

gradient-based attacks for low noise attacks NSA outperforms both of them. Variable

Autoencoder did not perform well due to a low number of samples. SOGAL and MOGAL based

techniques were also failed to work with low models.

5.3.3 Adaptiveness and dynamic selection

We randomly choose different filter sequence and other outlier methods to keep the system

dynamic for each input. After each input, the outlier detection modules are updated by changing

their decision boundaries, making the detection filters adaptive. However, the filter sequence can

change, and the noise threshold value gets updated after each MOGA run. This makes common

adaptive attacks ineffective as each input continuously updates the defense strategy. An adaptive

attacker will first send random clean input. And started to add some noise in these inputs and send

repeatedly until the classification result changes. That way adaptive attackers will know the

decision boundary of the learning model. Then adaptive attacker will start creating input that is

close to the decision boundary in the representation space.

In our method, attackers have to bypass our dynamic and changing adversarial detection

method, which decision boundary is not affected by the actual learning model. If our filter set or

outlier detector method was static this method would work, but dynamic selection of filterset and
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outlier detection method will make it hard to formulate the adaptive attack. Additionally, after a

certain set of inputs, we will regenerate negative detector sets by considering these new inputs as

self data. So, entire outliers decision parameter would change and the adaptive attacker will not

able to establish a fixed decision boundary line for adversarial and nonadversarial input data as

adaptive attacker is looking for class classification boundary not adversarial and non-adversarial

decision boundary. This update method can also be vulnerable to adaptive attacks which aim to

bias the method accuracy, we added a adaptive attack detection module before update/retrain our

adversarial detection techniques.

In the adaptive attack detection module, we will analyze distributions of last certain

number of inputs are align with total distributions of inputs. We will use the

Kolmogorov-Smirnov Goodness of Fit Test (K-S test) compares data with a known distribution

and lets us know if they have the same distribution. This test is nonparametric as it doesn’t

assume any particular underlying distribution[16]. The Kolmogorov-Smirnov test determines a

null hypothesis, H0, that the two samples originate from the same distribution. Then we explore

for evidence that this hypothesis should be rejected and formulate this as probability ρ. If the

prospect of the samples being from different distributions tops a confidence level we reject the

original hypothesis and accept hypothesis H1, which stated that the two samples are from

different distributions. Based on the KS distribution table, if ρ < 1.22√
n

(where n= number of stored

input) than the stored input has inputs from adaptive attack. We disregarded those samples as

these may create data bias in our defense learning system.

In summary, our adaptive defense mechanism consists of the following properties

• Dynamic selection of filter set sequence which will make it harder to formulate adaptive

attack based on known filter knowledge.

• Dynamic selection of outlier detection method, it will make the adaptive attack to consider

all outlier detection method when developing attack input that will make generating input

computationally expensive.
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• Defense is always learning which will continue changing the filter sequences and decision

boundary of outlier detection models. It will make an adaptive attack difficult to search

decision boundary.

• To protect against continuous query-based attacks, we will monitor and analyze input

trends using the K-S test. The number of inputs considered for the K-S test will be

dynamic. Formulate a query-based attack on the defense system will be hard due to the

randomness of the K-S test sample number. Our input trend detection system can

effectively monitor adaptive attacks and able to take countermeasure.

Our defense properties will make the state of the art adaptive attack ineffective and it will

make computationally harder to formulate new adaptive attacks. Our proposed approach has a

cold start problem as in the beginning we have empty adversarial and clean dataset. That’s why

outlier detection or filter based inspection does not start working until significant samples in the

clean and adversarial dataset. Also, we assume that the first set of samples are clean, otherwise

outlier detection gets train with noisy data. For the MNIST dataset, we observed 250 random

samples required for each class to detect outliers using OCSVM and Isolation forest.

5.4 Experiments

5.4.1 Dataset Generation

We did a comprehensive experiment with MNIST and CFIAR-10. We did extensive testing with

the MNIST dataset for all the 10 classes and with the full dataset. We did CFIAR testing with two

classes. After that, we evaluated our method using EMNIST, Fashion-MNIST, and IMAGENET

data-set which re-validated our methodology. We generated FGSM, JSMA, and CW samples to

test the results. We generated 100,000 FGSM samples using LENET-5. LeNet-5 LeNet-5 CNN

architecture is made up of 7 layers. The layer composition consists of 3 convolutional layers, 2

subsampling layers and 2 fully connected layers. For JSMA we generated 100,000 JSMA
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((a)) All clean data projected using t-sne visualiza-
tion with class labels.

((b)) All clean and adversarial data projected t-sne
visualization with class labels.

Figure 5.9: Experimental data representation space for each class of MNIST digits.

samples using a CNN. CNN architecture is made up of 5 layers. The layer composition consists

of 3 convolutional layers, 1 flatten and 1 dense layers. All of the activation functions are using

RELU. and last we generated 100,000 CW samples using VGG-16 neural net.

To establish the ground truth for our research we used 30000 clean image samples, 10000

FGSM, 10000 JSMA and 10000 CW attack samples on MNIST dataset. For filtering operation

we picked 14 filters using python opencv library. They are medianblur, GaussianBlur,

AverageBlur, Bilateral blur, AdditivePoissonNoise, AdditiveGaussianNoise ,Erode TopHat

,Blackhat ,Morphology gradient ,Opening ,Closing, Dialte filter. We apply the filer in the image

and than extracted difference between original image and the filtered image. After that we

measure the average and standard deviation of white color histogram for the extracted image and

horizontal and vertical signal to noise ration for the extracted image.

In the figure 5.9 ’b’ we visualized how adversarial (FGSM+JSMA+CW) inputs of one

class label overlap with other class label compared with ’a’ where only clean inputs where

presented. This shows that adversarial samples are hard to distinguish between class labels. In the

figure 5.10, we represented all inputs with their adversarial attack type along side the clean input.

Here blues are the clean one. We can see here the FGSM which is visualized with red are not

overlapping with clean one or other attack type much. But JSMA and CW are highly overlapping
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((a)) All clean and adversarial data projected using
PCA reduction and t-sne conversion.

((b)) All clean and adversarial data projected using 3
PCA components.

Figure 5.10: Experimental data representation space(Here clean is green, red is FGSM, blue is
JSMA and yellow is CW).

((a)) All clean and adversarial data projected after
applied 14 filters SNR values.

((b)) All clean and adversarial data projected after
applied 14 filters average histogram values.

Figure 5.11: Experimental data representation space after filter applied with one metrics(Here
clean is green, red is FGSM, blue is JSMA and yellow is CW).
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((a)) All clean and adversarial data projected after
applied 14 filters SNR and Histogram average values
(Here clean is blue, red is FGSM, green is JSMA and
yellow is CW).

((b)) All clean and adversarial data projected after
applied 14 filters SNR and Histogram average values
(here blue is clean and red is fgsm,jsma and cw.

Figure 5.12: Experimental data representation space after filter applied with two metrics.

with each one and also partially with clean one. CW inputs are more overlapping with clean

samples.

In the figure 5.11, we represented the adversarial and clean samples after applying 14

filters. in the figure ’a’ of 5.11, we represented the SNR values of the images and it showed

FGSM (blue) samples are very easily separable but JSMA (red) and CW(yellow) are hard to

separate using SNR values only. However, JSMA are more separable but CW and clean samples

are completely overlapping. in the figure ’b’ of 5.11, we illustrated using histogram value and it

made CW more separable than the clean ones. In the figure 5.12, we applied both SNR and

histogram metrics together, and it visible that adversarial and clean samples are now more easily

separable. In the figure ’b’ of 5.12 blues are the clean samples and re are the adversarial samples.

We can see some clean samples are overlapping with adversarial samples but other way is rare. In

the figure ’a’ we presented the adversarial attack type two and we see some CW samples are also

overlapping with clean samples but it is negligible.

In the figure 5.13, we presented each class label adversarial and clean data both without

adversarial classification and with adversarial classifications. This visual presentation shows that,

when we each class as inlier and all other as outlier, than adversarial samples were more easily
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((a)) MNIST ’0’ with
FGSM, JSMA and CW sep-
arately

((b)) MNIST ’0’ with
FGSM, JSMA and CW to-
gether

((c)) MNIST ’1’ with
FGSM, JSMA and CW sep-
arately

((d)) MNIST ’1’ with
FGSM, JSMA and CW to-
gether

((e)) MNIST ’2’ with
FGSM, JSMA and CW sep-
arately

((f)) MNIST ’2’ with
FGSM, JSMA and CW to-
gether

((g)) MNIST ’3’ with
FGSM, JSMA and CW sep-
arately

((h)) MNIST ’3’ with
FGSM, JSMA and CW to-
gether

((i)) MNIST ’4’ with
FGSM, JSMA and CW sep-
arately

((j)) MNIST ’4’ with
FGSM, JSMA and CW to-
gether

((k)) MNIST ’5’ with
FGSM, JSMA and CW sep-
arately

((l)) MNIST ’5’ with
FGSM, JSMA and CW to-
gether

((m)) MNIST ’6’ with
FGSM, JSMA and CW sep-
arately

((n)) MNIST ’6’ with
FGSM, JSMA and CW to-
gether

((o)) MNIST ’7’ with
FGSM, JSMA and CW sep-
arately

((p)) MNIST ’7’ with
FGSM, JSMA and CW to-
gether

((q)) MNIST ’8’ with
FGSM, JSMA and CW sep-
arately

((r)) MNIST ’8’ with
FGSM, JSMA and CW to-
gether

((s)) MNIST ’9’ with
FGSM, JSMA and CW sep-
arately

((t)) MNIST ’9’ with
FGSM, JSMA and CW to-
gether

Figure 5.13: Experimental data representation space for each class of MNIST digits with adversar-
ial attack Here clean is blue, red is fgsma, green is JSMA and yellow is CW).
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detectable.

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 0.973 0.845 0.844 0.844 0.845 0.412 0.926

kNN 0.870 0.643 0.624 0.626 0.643 0.753 0.810

Naive Bayes 0.794 0.562 0.444 0.367 0.562 0.947 0.691

Neural Network 0.815 0.573 0.501 0.629 0.573 0.919 0.763

SVM 0.527 0.523 0.399 0.434 0.523 2.073 0.606

Logistic Regression 0.813 0.566 0.489 0.442 0.566 0.952 0.724

Table 5.4: Adversarial type classification for MNIST dataset for Clean, FGSM, JSMA, and CW.

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 0.998 0.970 0.970 0.970 0.970 0.154 0.985

kNN 0.966 0.844 0.840 0.837 0.844 0.332 0.928

Naive Bayes 0.914 0.737 0.740 0.749 0.737 0.613 0.916

Neural Network 0.951 0.816 0.810 0.807 0.816 0.420 0.919

SVM 0.860 0.302 0.208 0.681 0.302 1.598 0.853

Logistic Regression 0.937 0.790 0.783 0.778 0.790 0.473 0.910

Table 5.5: Binary classification for MNIST dataset for Clean and Adversarial ( FGSM, JSMA, and
CW).
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Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 1.000 0.999 0.999 0.999 0.999 0.007 1.000

kNN 0.999 0.984 0.984 0.984 0.984 0.038 0.995

Naive Bayes 0.999 0.983 0.983 0.984 0.983 0.203 0.994

Neural Network 1.000 0.998 0.998 0.998 0.998 0.008 0.999

SVM 0.896 0.590 0.531 0.815 0.590 1.317 0.864

Logistic Regression 0.999 0.983 0.983 0.983 0.983 0.056 0.994

Table 5.6: Adversarial type classification for MNIST dataset for Clean, FGSM, JSMA, and CW
after applied histogram and SNR based features.

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 1.000 0.999 0.999 0.999 0.999 0.002 0.998

kNN 1.000 0.998 0.998 0.998 0.998 0.005 0.995

Naive Bayes 0.998 0.999 0.999 0.999 0.999 0.042 0.997

Neural Network 1.000 0.999 0.999 0.999 0.999 0.005 0.997

SVM 0.996 0.753 0.652 0.814 0.753 0.563 0.265

Logistic Regression 0.999 0.997 0.997 0.997 0.997 0.017 0.992

Table 5.7: Binary classification for MNIST dataset for Clean and Adversarial ( FGSM, JSMA, and
CW) after apply SNR and Histogram features.

In the table 5.4, we used 6 different learning method to differentiate between clean and

adversarial attack type using image pixel information, it is evident that random forest performs

better than others and in the 5.5, we converted in as binary problem where only clean and

adversarial input was classified. SVM method performed very poorly as the representation spaces

was not linear. But random forest performs well that other methods. But when we applied SNR

and Histogram feature based classification all other method except SVM started to performs well

and neural network started to outperforms other methods as presented in table 5.6 and 5.7.

In the table 5.8, we presented the identification of different class labels correctly using
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Predicted
0 1 2 3 4 5 6 7 8 9

0 96.7 % 0.2 % 0.4 % 0.2 % 0.5 % 0.2 % 0.3 % 0.7 % 0.6 % 0.2 % 3259
1 0.2 % 97.5 % 0.3 % 0.3 % 0.3 % 0.4 % 0.2 % 0.4 % 0.4 % 0.0 % 3313
2 0.4 % 0.3 % 95.4 % 0.6 % 0.8 % 0.8 % 0.7 % 0.4 % 0.5 % 0.1 % 3254
3 0.6 % 0.3 % 0.5 % 95.4 % 0.7 % 0.6 % 0.4 % 0.5 % 0.7 % 0.2 % 3272
4 0.5 % 0.5 % 0.5 % 0.5 % 96.4 % 0.3 % 0.5 % 0.1 % 0.5 % 0.3 % 3262
5 0.6 % 0.5 % 0.7 % 0.6 % 0.7 % 95.1 % 0.6 % 0.6 % 0.6 % 0.2 % 3265
6 0.5 % 0.4 % 0.5 % 0.3 % 0.5 % 0.5 % 96.5 % 0.2 % 0.4 % 0.1 % 3263
7 0.3 % 0.5 % 0.3 % 0.3 % 0.6 % 0.4 % 0.3 % 96.8 % 0.3 % 0.2 % 3292
8 0.5 % 0.3 % 0.4 % 0.1 % 0.3 % 0.3 % 0.6 % 0.5 % 96.5 % 0.4 % 3309

Actual

9 0.1 % 0.2 % 0.2 % 0.3 % 0.2 % 0.1 % 0.2 % 0.2 % 0.2 % 98.5 % 3266
3275 3334 3224 3225 3295 3227 3271 3307 3331 3266 32755

Table 5.8: Confusion matrix of MNIST adversarial input detections using SNR and histogram
value.

SNR and histogram value-based checking. We used Random-forest learning. It is seen that some

classes are harder to identify than other class labels. As an example, class 2 and 3 is harder than

identify adversarial class for input label 9.
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5.4.2 Result Analysis

Models Used
MNIST CFIAR

FGSM JSMA CW FGSM JSMA CW

MCD 0.9846 0.99 0.9101 0.8616 0.864 0.7871

OCSVM 0.6851 0.697 0.5421 0.8731 0.535 0.5417

LMDD 0.6673 0.601 0.553 0.5752 0.561 0.5965

LOF 0.997 0.912 0.93 0.8963 0.832 0.8096

COF 0.3991 0.37 0.3568

CBLOF 0.9866 0.959 0.9

HBOS 0.9865 0.915 0.9 0.8354 0.859 0.0016

KNN 0.9993 0.909 0.9628 0.9957 0.925 0.0682

SOD 0.3842 0.461 0.3831

ABOD 0.9994 0.999 0.9776 0.9982 0.922 0.8881

COPD 0.9273 0.996 0.8105 0.8255 0.803 0.7099

SOS 0.4551 0.37

FB 0.9942 0.99 0.9692 0.8863 0.839 0.7716

IF 0.9933 0.97 0.89 0.8444 0.834 0.6339

LSCP 0.9992 0.9 0.9832 0.8982 0.827 0.78

XGBOD 0.5 0.5 0.59

LODA 0.9703 0.99 0.91 0.7766 0.661 0.6286

AE 0.6738 0.73 0.62

VAE 0.8833 0.78 0.7

SOGAL 0.4 0.3 0.3

MOGAL 0.2 0.374 0.34

V-Detector 0.98 0.99 0.94 0.99 0.86 0.78

Table 5.9: Comparison of results with different outlier detection models to compare V-detector
NSA performance with other OCC methods.
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In the table 5.9, we compared v-detector performance on MNIST digits (0-9) as illustrated in

figure 5.13 and 4 class’s of CFIAR-10 dataset. Our result shows that v-detector outperforms other

out-lire detector consistently for all attack type and dataset.

Attack CFIAR ’CAT’ CFIAR ’Truck’ CFIAR ’DOG’ CFIAR ’Ship’ Imagenet ’gorilla’ Imagenet ’hyena’
FGSM 0.93 0.92 0.93 0.92 0.68 0.87
BIM 0.90 0.90 0.91 0.71 0.83 0.82
PGD 0.95 0.92 0.92 0.90 0.73 0.72

MBIM 0.91 0.90 0.94 0.96 0.73 0.72
HSJ 0.84 0.65 0.80 0.65

JSMA 0.7 0.76 0.7 0.73 0.63 0.62
CW 0.76 0.67 0.66 0.62

Table 5.10: adversarial attacks on CFIAR and Imagenet detection rate (each class has 200 positive
and 200 adversarial samples which classifies as that class by a Alexnet for imagenet and VGG-16
for CFIAR).

In the table 5.10, we presented results using similar experiments we used for ground truth

experiments. Our performance of CFIAR and IMAGENET is very good compare to the

state-of-the-art attack. Also, a good portion of false positives was failed adversarial examples due

to perturbation loss while converting physical form. This result verifies that the same filters and

histogram, SNR-based methods are applicable for all datasets of the same domain. We also tried

to formulate BPDA attack against our defense but failed to formulate the attack.

When we were evaluating our defense against an advanced attack (with very low

noises/perturbs) we observed that as all adversarial attack types aim to reduce the perturbation in

advanced attack types, the magnitude of perturbation gets so small that they get vanished in

rounded values when converting to visual form. Kurkin and Yan Goodfellow in their paper

describe this phenomenon of destruction rate by the below equation [112]. Our results in

imagenet dataset also effected by this phenomenon.
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5.5 Comparison

In table 5.11, we compared our results with other techniques; it is exhibited that our defense’s

performance is similar to other defense techniques, but our defense technique has some

advantages over those like our model does not modify the ML model, it is impossible to have an

adaptive attack on our defense. ML model efficiency does not reduce; instead, results get

re-verified thus improve trustworthiness. However, the efficiency of our approach largely depends

on the individual accuracy of outlier detection methods and noise detection filter sequences.

AML Detection Method MNIST CIFAR Avg
FGSM JSMA HSJ CW FGSM JSMA HSJ CW

RF[81] 0.96 0.84 0.98 0.66 0.64 0.63 0.60 0.72 0.77
KNN [81] 0.98 0.80 0.98 0.6 0.56 0.52 0.52 0.69 0.73
SVM [81] 0.98 0.89 0.98 - 0.69 0.69 0.64 0.77 0.81
Feature Squeezing[215] 1.00 1.00 - 0.20 0.88 0.77 - 0.77
Ensemble [15] 0.99 - 0.45 - 0.99 - 0.42 - 0.71
Decision Mismatch[141] 0.93 0.93 0.91 - 0.93 0.97 0.91 - 0.93
Image quality features [6] 1.00 0.90 1.00 - 0.72 0.70 0.68 - 0.83
(Our Framework) 1.00 1.00 1.00 1.00 0.98 0.98 0.99 0.94 0.99

Table 5.11: Here, we provided a comparison with other adversarial input detection techniques
based on Accuracy. On average, we outperforms other methods. As examples, our methods work
with 99% accuracy in the CFIAR data-set where the feature squeezing technique has 0.88% accu-
racy.

Adversarial training diminishes the ML model’s accuracy and can make the ML model

more exposed to generalization [160]. Another disadvantage of Adversarial training based

defense techniques is that we need to retrain the model whenever some new attack samples are

discovered. It will be hard to update all deployed ML models. Our strategy does not require any

dataset not it changes ML anyway, thus no effect on ML model performance. Most

pre-processing techniques reduce the adversarial effect before sending it to the ML model. The

major drawback of these techniques is that their processing techniques are static; they do not

evolve alongside the attack. Our strategy updates itself, it is not vulnerable to this type of adaptive

attack. We also have a detection technique module which can detect adaptive attack query.
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Distillation techniques work by combining the double model, and the second model uses the first

model knowledge to improve accuracy. The black-box attack’s recent improvement makes this

out-of-date defense [33]. The strong transfer-potential of adversarial samples across neural

network models [151] is the main reason for this method’s collapse. It is not robust as simplistic

variation in a neural network can make the system exposed to attacks [30]. The advantage of our

approach over defense distillation is we do not need to modify the neural network. Our proposed

approach does not need to know or change any ML model layer. So, our model remains the same

for both black box and white box attack methods. [82] concluded that combining/ensemble weak

defenses does not automatically improve a system’s robustness. Also, the ensemble technique

remains static and vulnerable to a new attack. Our proposed solution selects defense technique

(filer method and outlier detection method) dynamically, thus it is robust and auto-updating

decision boundaries also defend against query-based attacks. Feature squeezing [215] method

reduces the data, and it reduces the accuracy of the ML model. There is no such reduction in

actual model accuracy in our proposed solution. [171] proposed a mechanism to leverage the

power of Generative Adversarial Networks to decrease adversarial perturbations’ efficiency. The

GAN efficiency depends on the GAN training, which is computationally complicated and needs

proper datasets, whereas our system does not need a complicated training method.

5.6 Robustness Evaluation

Many adversarial defenses are often empirically shown to be robust against the existing attacks,

however new stronger attacks are later found to break such defense. For instance, defensive

distillation and adversarial training against the FGSM) were shown to be useless against more

potent attacks, for example, Carlini-wagner attack. So, we need to develop successful defenses

against all attacks within a particular class. But compute this is computationally expensive due to

the nature of model complexity and the existence of vastly different types of machine learning

models.
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According to the literature[178], We can define Robustness Verification as a process that

certifies the lower bound of a learning model strength against adversarial attacks in varying

constrained conditions. An well-known example is L∞-bounded attack[47]. There are two

primary categories of robustness verification methods. These are deterministic and probabilistic

verification. Deterministic verification approaches able to identify strength of input against

adversarial attacks. But the probabilistic verification methods only work with a specific

probability (e.g. 99.9%).

Li et al.[120] stated that "An algorithm A is certified as a robustness verification approach,

if for any (x0, y0), as long as there exists x ∈ Bp(x0) with Fθ(x) 6= y0 (adversarial example),

A(fθ, x0, y0, ε) = false(deterministic verification) or Pr[A(fθ, x0, y0, ε) = false] ≥ 1− α

(probabilistic verification), where α is a pre-defined small threshold. By definition, a robustness

verification approach A provides a sufficient condition for model robustness. If A also provides a

necessary condition for model robustness, A is said to be complete, otherwise incomplete."

The robust training approaches are usually extended from adversarial training. Adversarial

training[47] is a powerful defense which approximately solves the min-max problem where we

need reduce the regular loss function such as cross entropy. In ML, we have an estimator δ that is

used to estimate a θ ∈ Θ We also assume a risk function R(θ, δ), usually specified as the integral

of a loss function. In this framework, δ̃ is called minmax problem if it satisfies

θR(θ, δ̃) =∞δθR(θ, δ)[]

The inner maximization of Minmax problem is hard to solve due to nonconvexity, and is

usually approximated by empirical attacks such as basic iterative attack methods. In the figure

5.14 we describes several methods to determine robustness of adversarial training process

however as these are only work for whitebox models. Our defense model works on only input

data and and we consider learning models as a blackbox which are not comparable to existing

defense model robustness lower bound. In the table 5.12, different probabilistic method was

presented which used to evaulate robustness in adversarial training. As our method is not

adversarial training we can not use these either.
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Figure 5.14: Different robustness verification techniques [120]

Robustness Verification Approaches Adversaries in Evaluation

Verification

Differential Privacy Based [116] L1,L2
Neyman-Pearson Based [43] L1, L2, L∞
f -Divergence [40] L1
Re´nyi divergence Based [118] L2

Robust Training

Data Augmentation[163] L1, L2, L∞
Adversarial Training citesilva2020opportunities,li2020sok L2
Adversarial + Pretraining[178, 120] L2
MACER [223] L2
ADRE [57] L2

Table 5.12: Different probabilistic method for adversarial robustness

Carlini mentioned [carlinini2019evaulating], evaluating adversarial defense robustness

should be measure by following a collection of recommendations that they identified as common

flaws in adversarial example defense evaluations. In our machine learning adversarial threat

model we consider all of these flaws.

Further study is possible to explore measurement of robustness lower bound for input

inspection based strategy, We hope this would be a research opportunities for future researchers in

this field.

5.7 Summary

In summary, any commercial product that is using advanced machine/deep/reinforcement

learning can benefit from our innovative DF technique.

• Use of commutative dual filtering technique in any AI/ML–based utility applications.
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• Use of negative filtering will prevent Trojan AI to change decision resulting in robust

AI/ML systems.

• Easy to incorporate in existing and future ML systems will increase adoption and deploy

ability.

• Enhanced performance/accuracy and robustness of ML products and online services will

increase in diverse applications.

• Improved security will result in quality of experience of users.
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Chapter 6

Real-World Application

Figure 6.1: Medical Imaging Dataset
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6.1 Proof-of-the-Concept Prototype

I developed a Django web service which can evaluate medical image if they are adversarial or not.

This dataset is a simple MNIST-style medical images in 64x64 dimension; There were originally

taken from other datasets and processed into such style. There are 58954 medical images

belonging to 6 classes. They are:

• AbdomenCT

• BreastMRI

• CXR

• ChestCT

• Hand

• HeadCT

6.2 Experiments

We experiment with FGSM, CW and JSMA dataset, and the accuracy of detection rate is 98% by

input filters and 100% by the output filter.

6.3 Scope and Limitations

This service provide a Rest API which can be use by any medical ML model to check the input

and the output. The work of output filter is limited here as output filters work only based on

medical image class not the diagnosis result class.
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6.4 Lessons Learned

I have designed an adaptive filtering methodology that does not require any modification to the

ML model or information inside the ML model. Our strategy can implement in any ML-based

system without costly pre-training. It is to be noted that current adaptive attacks are ineffective in

our defense. As our method verify the input and the ML model output with non-obvious diverse

inspection and secondary (outlier) detection, the results exhibited that it could increase the

trustworthiness of the ML model applications. I focused our experiments on the computer vision

domain, but our techniques are suitable for other domains (audio, text, time series). I am planning

to expand our test in different domains and enrich our filter collection for better performance. I

plan to deploy this as a library so any ML model developer can use our framework as an extension

for his ML for security purposes. Our technique can be tuned between speed and accuracy; also,

as it is independent of the ML, making the framework suitable for privacy.
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