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Abstract 

The goal of this thesis is to evaluate the answers that students give to questions asked by an 

intelligent tutoring system (ITS) on electronics, called ElectronixTutor. One learning resource of 

ElectronixTutor is AutoTutor, an instructional module that helps students learn by holding a 

conversation in natural language. The semantic relatedness between a student’s verbal input and an 

ideal answer is a salient feature for assessing performance of the student in AutoTutor. Inaccurate 

assessment of the verbal contributions will create problems in AutoTutor’s adaptation to the 

student. Therefore, this thesis evaluated the quality of semantic matches between student input and 

the expected responses in AutoTutor. AutoTutor evaluates semantic matches with a combination of 

Latent Semantic Analysis (LSA) and Regular Expressions (RegEx) when assessing student verbal 

input. Analyzing response-expectation pairings and comparing computer scoring with judge ratings 

allowed us to look at the agreement between humans and computers overall as well as on an item 

basis. Aggregate analyses on these data allowed us to observe the overall relative agreement 

between subject-matter experts and the AutoTutor system. Item analyses allowed us to observe 

variation between items and interactions between human and computer assessment conditions on 

various threshold levels (i.e. stringent, intermediate, lenient). As expected, RegEx and LSA showed 

a positive relationship ρ (5202) = .471. Additionally, F1 measure agreement (the harmonic mean of 

precision and recall) between the computer and humans was similar to agreement between humans. 

In some cases, computer-human F1 measure agreement compared to between-humans was as close 

as F1 = .006. 
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Preface 

The first two installments of this body of research have been submitted and published as 

short papers by Educational Data Mining Society and Learning at Scale. The installments were 

published in the proceedings of Educational Data Mining in 2018, and the proceedings of the Sixth 

ACM Conference on Learning @ Scale ‘19. The citations for the published work are as follows: 

Carmon, C.M., Hampton, A.J., Morgan, B., Cai, Z., Wang, L., & Graesser, A.C. (2019). 

Semantic matching evaluation of user responses to electronics questions in 

AutoTutor. In Sixth (2019) ACM Conference on Learning @ Scale (4 pages). 

Chicago, IL: ACM. . https://doi.org/10.1145/3330430.3333649 

Carmon, C., Morgan, B., Hampton, A.J., Cai, Z., & Graesser, A.C. (2018). Semantic 

matching evaluation in ElectronixTutor. In K. E. Boyer, & M. Yudelson (Eds.), 

Proceedings of the 11th International Conference on Educational Data Mining (pp. 

580–583). Buffalo, NY: EDM Society. 

These publications describe data collected that asked students electronics questions. The 

questions were rated by subject-matter experts and these judge ratings were compared to the 

computer scoring of the same answers to questions. Optimizing these observations can reveal the 

degree to which a student response is semantically related to the good answer for any given 

question. The purpose of this body of work is to highlight the degree to which human judgement 

and computer scoring may be similar on a task such as automatic short essay grading. 

The content published in Educational Data Mining covers the pilot stage of the research 

where the data set was relatively small (n = 2000). In this paper, we randomly selected 200 student 

responses out of the 2000 and compared computer scoring to judge ratings. The analysis only 
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considered judge ratings of 6 as ideal/complete answers and there was a fixed threshold for 

computer scoring (Regular Expressions and Latent Semantic Analysis). 

In the content published in Learning at Scale, two additional thresholds for both judges and 

computer scoring were considered in the model. Additionally, precision and recall, as well as signal 

detection theory were included in the analyses to explain the results for researchers in 

computational linguistics and psychology rather than only reporting results in terms of inter-rater 

agreement (Cohen’s kappa). 
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Chapter 1 

Introduction 

Effective learning strategies in traditional face-to-face environments have long been studied, 

especially in interactions between tutors and individuals or small groups. The literature on 

traditional learning environments discusses effective learning strategies in classroom contexts as 

well as in one-on-one interactions (Bloom, 1984). Classroom contexts typically have somewhere 

around 30 students for every instructor. Students greatly outnumber teachers in traditional 

classroom environments and students often rely on individual attention from the teacher in order to 

succeed and meet learning goals.  

Research in the field highlights instructional benefits that students receive through traditional 

tutoring rather than traditional classroom interaction (Cohen, Kulik, & Kulik, 1982). Tutoring 

occurs in face-to-face interactions where a teacher provides individual attention to a single student 

or a small group of students. Graesser, Person, & Magliano (1995) documents the pedagogical 

patterns of tutor-tutee interactions. Tutors and tutees work collaboratively to improve the initial 

answer to the question, and this is what sets tutoring apart from classroom instruction. Traditional 

classroom and tutoring approaches each have advantages and disadvantages, but here we focus 

solely on tutoring approaches in educational software such as an Intelligent Tutoring System. The 

next section discusses tutoring in computerized systems in greater detail.  

Intelligent Tutoring Systems 

Though traditional learning has been well-documented and researched, education in practice 
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constantly shifts to mirror contemporary advances in culture, technology, and ever-evolving best 

practices. Perhaps one of the most noteworthy trends in modern education is an exponential 

increase in computer usage. The prevalence of computer usage in education can be observed in 

applications such as online access to class materials, digital discourse spaces, and new learner 

technologies. Here, we focus on new learner technologies. Intelligent Tutoring Systems (ITSs), 

online courses, and easy access to educational tools/software are just a few examples of learner 

technologies we can expect to see in contemporary educational settings. This thesis focuses on 

automatic assessment of user input in an ITS that implements conversational agents in a turn-based 

dialogue to teach electronics. 

ITSs provide immediate, individualized instruction and feedback to students without 

intervention from a human tutor. Some ITSs incorporate natural language communication with the 

students and have been observed to provide instruction and feedback (hints, prompts, tutoring 

questions, etc.) to the student without much variation from human tutoring (Graesser, 2016; Olney 

et al., 2012; VanLehn et al., 2007). Additionally, ITSs can cover a wide range of domains, 

including physics (AutoTutor, Graesser et al., 2004; Nye, Graesser, & Hu, 2014), scientific 

reasoning (Operation: ARIES, Cai et al., 2011; Operation: ARA, Halpern et al., 2012), biology 

(GuruTutor, Olney et al., 2012), and electronics (SHERLOCK, BEETLE-II; Lesgold, Lajoie, 

Bunzo, & Eggan, 1992; Dzikovska, Steinhauser, Farrow, Moore, & Campbell, 2014; 

ElectronixTutor, Graesser et al., 2018).  

ITSs offer convenient benefits in a number of contexts, such as those where students greatly 

outnumber instructors and therefore may not be able to receive individual attention in a timely 
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manner as needed. ITSs may also interest students who want to learn but are not as comfortable 

engaging with material in classroom settings. This is not to say that the purpose of ITSs is to 

reassign the role of a teacher, but rather such ITSs may be used to supplement the student in 

addition to classroom learning. The instructional efficacy of modern ITSs is comparable to that of 

human tutors where large effect sizes on learning gains have been observed (human average d = 

.79, computer average d = .78; VanLehn, 2011).  

In addition to immediate, automatic feedback and individualized engagement, ITSs are free 

of common grading and consistency errors that humans make. Unlike ITSs, humans are prone to 

making errors resulting from fatigue, bias, and ordering (Haley, Thomas, Roeck, & Petre, 2007). 

ITSs are potentially less costly than human tutors in terms of time invested (Dorça, 2015), and, 

depending on the knowledge domain or task, may combat a shortage of available human tutors. 

Furthermore, ITSs employ pedagogical strategies and various methods of assessment including but 

not limited to multiple-choice questions. These systems may contain adaptive mechanisms, such as 

a recommender system that adapts to the student by suggesting topics to cover based on student 

performance and engagement. 

 ITSs that incorporate natural language processing aim to accomplish human-like language 

understanding in order to properly evaluate user verbal contributions and respond in an appropriate 

manner. While the concept of multiple-choice may not need additional explanation, conversational 

ITSs typically operate by means of automatic grading. Automatic grading in natural language can 

be broken down according to question types. The three question types that are observed in 

automatic grading are fill in the blank, short answer, and essay.  
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Fill in the blanks are specific questions that have one or few words in correct the answer. 

Short answers may be one sentence to one paragraph with the focus being on semantic content 

rather than precise wording. In automatic essay grading, responses may be two paragraphs to two 

pages. Automatic essay grading considers both style and semantic content, with a balanced 

integration of these two fundamental dimensions (Li, Gobert, Graesser, & Dickler, 2018). 

Conversational ITSs can be viewed as an interactive form of automatic short answer grading 

(Burrows, Gurevych, & Stein, 2015). Aside from AutoTutor, other early conversational ITSs that 

incorporate automatic short answer grading are CIRCSIM-Tutor (Evens et al., 2001) and Why2-

Atlas (VanLehn et al., 2002). 

Although ITSs can be costly and time-consuming to develop, one recent approach is to 

broaden the coverage of topics with existing learning resources that have been already developed. 

A prime example of this is ElectronixTutor (Graesser et al., 2018), an ITS that integrates multiple 

ITSs and other conventional learning resources to teach a curriculum of electrical engineering to 

students. The integration of multiple ITSs and conventional learning resources empowers 

ElectronixTutor to have multiple pedagogical strategies to teach students. These learning resources 

include AutoTutor, Dragoon (VanLehn, Wetzel, Grover, & van de Sande, 2016), Learnform 

developed by BBN/Raytheon, and questions adopted from BEETLE-II (Dzikovska et al., 2014). 

Additionally, ElectronixTutor offers topic summaries and the Navy Electronics and Electricity 

Training Series that electronics trainees read in the Navy.  

This thesis focused on assessment of students’ verbal input to electronics questions asked in 

the AutoTutor learning resource. For AutoTutor to properly respond to students in an intelligent 
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manner, it must evaluate student input with sufficient accuracy. AutoTutor’s assessment of student 

input is based on semantic matching, which compares student responses to one or more expected 

answers. This thesis analyzed a sample of responses (n = 5202) that were crowd sourced from 

Amazon Mechanical Turk (AMT) workers. Crowd sourcing participants offers convenience when 

collecting large data samples and/or searching for participants in a target population that is small, 

scattered, or difficult to assemble physically based on location. 

In summary, there was an assessment of the computational linguistics algorithms used to 

automatically compute semantic matches in student responses to questions. Student responses were 

paired with the ideal answer to the main question as well as to each of the expectations (i.e., correct 

sentence-like parts of an ideal answer) to the question. For example, a response to a question with 

three expectations is broken down into four response pairs. One pair for the ideal answer, and there 

is an additional one for each expectation. In addition, we compared the system’s evaluations to 

those of subject matter experts. 

Conversations in the AutoTutor Resource in ElectronixTutor 

AutoTutor teaches by holding a conversation with the student in natural language (Graesser, 

2016; Graesser, 2020). AutoTutor asks students questions and guides them to an expected answer 

through conversations with the goal of probing students for concepts and ideas that they may know, 

but do not initially articulate in their answers to questions. AutoTutor helps the student actively 

construct an answer to the question by collaboratively improving on the answer in a turn-based 

conversation similar to human tutors (Graesser et al., 2012). When human tutors ask a question to 

students, they anticipate and monitor expectations and misconceptions (common incorrect answers) 
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associated with the question.  

AutoTutor’s Expectation and Misconception Tailored (EMT) Dialogue models the 

knowledge of the student. AutoTutor matches the student responses to a pre-defined list of 

expectations using RegEx and LSA (as defined later). The student response is compared to the 

ideal answer for the question, or to each expectation in the question. In this data set, we can 

observe questions with as little as one expectation, or as many as five expectations. The following 

is an example of a question in ElectronixTutor, the ideal answer, and a breakdown of the ideal 

answer into expectations. The following example contains four expectations:  

Main Question: What are the I-V characteristics related to the threshold and 

breakdown voltage of a real diode compared to an ideal diode? 

Ideal Answer: An ideal diode has a threshold voltage of zero. An ideal diode has no 

breakdown voltage. A real diode has a threshold voltage greater than zero. A real 

diode has a breakdown voltage less than zero.  

Expectation One: An ideal diode has a threshold voltage of zero. 

Expectation Two: An ideal diode has no breakdown voltage. 

Expectation Three: A real diode has a threshold voltage greater than zero. 

Expectation Four: A real diode has a breakdown voltage less than zero. 

Typically, as the dialogue progresses, the tutor provides more and more hints and other dialogue 

moves to help the learner until the expectation is covered. Feedback is provided to the learner after 
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each dialogue turn. Once an expectation has been covered, the system moves to another uncovered 

expectation, or, if all other expectations have been covered, to a summary of the entire answer. 

Table 1 provides an example of hints and prompts used in ElectronixTutor. Figure 1 provides the 

image that matches with the problem observed in Table 1. 

Table 1. Hints and prompts for the expectation “An ideal diode has a threshold voltage of zero.” 

Question Type Question Correct Answer 

Hint Consider the I-V voltage 

parameters. Why does the ideal 

diode conduct current 

immediately after the forward 

voltage is applied to it? 

Because it has a 

threshold voltage of 

zero. 

Hint Look at the figure on the left. 

What specific voltage cut-off 

point does the origin represent for 

the forward bias voltage? 

The threshold 

voltage of the ideal 

diode. 

Prompt An ideal diode starts conducting 

immediately when the applied 

forward voltage crosses which 

zero-valued voltage of the diode? 

The threshold. 

Prompt Which diode has a threshold 

voltage of zero? 

The ideal. 

Prompt The threshold voltage for an ideal 

diode is equal to what? 

Zero. 
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Figure 1. Pictured above are the I-V characteristics of an ideal and real diode. 

In this thesis, the sole focus is on the assessment of user responses paired to the ideal answer of the 

main question and each of the expectations in the question. 

Assessment of User Input 

AutoTutor’s dialogue is driven by semantic matching. In order for AutoTutor to properly 

respond in conversation, it must be able to meaningfully assess student verbal contributions. 

AutoTutor assesses student contributions using two matching algorithms, Latent Semantic Analysis 

(LSA) and Regular Expressions (RegEx). LSA is a natural language processing application used in 

information retrieval and information extraction. LSA finds relationships between a set of 

documents and the relevant terms contained in the set of documents. LSA in AutoTutor can be 

thought of as an assessment of how on topic a student response is. RegExes in AutoTutor are text 

strings that represent content words we expect to see in student responses. These strings were 

written at a symbolic level with options to account for synonyms, misspellings, and word ordering 

as they relate to the expected content words 
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Regular Expressions 

AutoTutor’s semantic matching evaluations incorporates regular expressions (Jurafsky & 

Martin, 2008). Regular expressions are text strings which define expectations represented in 

AutoTutor. These text strings are used to calculate semantic matches between a student response 

and an expectation. A RegEx string is a symbolic representation that specifies a set of content 

words in a text description that may or may not have ordered elements and that may or may not be 

structured compositionally (i.e., one structure embedded in another structure).  

In the ElectronixTutor application the RegEx expressions were a set of content words in an 

expectation, as specified shortly. One RegEx score for semantic matches was obtained by 

calculating the proportion of word expressions in the RegEx for an expectation that is matched to 

the words in the student’s verbal contribution. For example, if a RegEx string for an expectation 

represents 4 word expressions and a student only provides 3 in the body text of their answer, then 

the RegEx score would be computed as ¾, or .75. The efficacy of RegEx in applications such as 

these is heavily contingent on the robustness of the RegEx expression used. That is, the quality of a 

RegEx depends on how explicitly and thoroughly the expressions are written.  

RegEx allows for increased flexibility in recognizing student input in three ways. First, they 

can account for common misspellings (e.g., “sou?r[cs]\w*” would capture “source”, “sourse” 

“sorce”, etc). Second, regular expressions can account for anticipated synonyms (e.g., “X will 

decrease”, while the content word is “decrease” can effectively be captured using synonyms 

“drop”, “lower”, “smaller”, etc.). Third, they also can handle complex student responses. For 

example, “X will increase, and Y will decrease” can be expressed by the combination of “X.*Y, 
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increase.*decrease” and “Y.*X, decrease.*increase”. This also captures “Y will decrease and X 

will increase”, but does not necessarily capture “X will decrease and Y will increase.” Thus, 

regular expressions capture keywords, synonyms, and complex structures, and common 

misspellings. In contrast, LSA compares the semantic similarity of the student’s answer to the good 

answer in a very different way, which is especially helpful in recognizing how related user 

responses are to a given topic based on content word relevance. 

Latent Semantic Analysis 

LSA (Landauer, McNamara, Dennis, & Kintsch, 2007) is distributional semantics technique 

for assessing the similarity of pairs of texts expressed in natural language. “Chair” and “table”, for 

example, often appear in the same documents and, as such, have high semantic similarity. The LSA 

algorithm measures the similarity between a students’ input and a good answer (expectation) in the 

form of a match score from 0 to 1. The good answer for any given question is identified by subject 

matter experts in the knowledge domain.  

LSA spaces are made by combining a classical vector space model with a two-mode factor 

analysis, Singular Value Decomposition (SVD). SVD is a linear algebraic concept that factors a 

real (complete) matrix. A bag-of-words (BOW) representation forms a set of texts. BOW models 

are simplified models of text documents represented as multisets of the words contained in the text.  

After parsing text and performing the SVD, the BOW representation can be modified with a Term 

Frequency-Inverse Document Frequency (TF-IDF) matrix and fit into a vector space which 

represents the semantic field or semantic space. TF-IDF is intended to indicate the relevance of a 

word to a document within a corpus. Term frequency can be computed as: 
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𝒕𝒇𝒕,𝒅 =  
𝒏𝒕,𝒅

# 𝒕𝒆𝒓𝒎𝒔 𝒊𝒏 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕
 

where n is the number of times a term (t) occurs in the document (d). So, each individual term and 

each document would have its own term frequency. Inverse document frequency can be computed 

as:  

𝒊𝒅𝒇𝒕 =  𝐥𝐨𝐠
# 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒄𝒐𝒓𝒑𝒖𝒔

# 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒕
 

From here we can compute the TF-IDF for all words contained in the corpus where words with 

higher scores are more important than words with lower scores. So, TF-IDF can be computed as: 

(𝒕𝒇_𝒊𝒅𝒇)𝒕,𝒅 = 𝒕𝒇𝒕,𝒅 ∗  𝒊𝒅𝒇𝒕 

Semantic fields in this context mirror the semantic structure extracted from the original corpus of 

text documents. Once the semantic field representation is obtained, vectors can be constructed in 

order to compute similarities between text samples of interest such as an ideal answer and a student 

response.  

Such LSA spaces can be utilized to compute semantic similarity, in our case the semantic 

similarity between the student’s response to an ideal answer or expectation. The metric of 

similarity is a cosine match score from -1 to 1, with 0 representing no semantic similarity and 1 

representing a perfect similarity between the student response and the ideal answer or expectation 

by virtue of the constructed LSA space. Given two vectors (X and Y), we can compute the cosine 

similarity: 
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𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =  𝐜𝐨𝐬(𝜽) =  
𝑿 ∗ 𝒀

‖𝑿‖‖𝒀‖
=   

∑ 𝑿𝒊 𝒀𝒊
𝒏
𝒊=𝟏

√∑ 𝑿𝒊
𝟐𝒏

𝒊=𝟏  √∑ 𝒀𝒊
𝟐𝒏

𝒊=𝟏

 

Cosines range from -1 (opposite) to 1 (exact or same). However, the cosine similarity or match 

score between two bodies of text (i.e. an ideal answer and a student response)  in this context 

functionally ranges from 0 to 1 as a result of  TF-IDF weighting where TF-IDF matrix term 

frequencies will never be negative. A student response to a question in AutoTutor that yields an 

LSA score of .9 has high semantic similarity and is therefore considered to be highly related to the 

topic, whereas a student response to a question in AutoTutor that yields an LSA score of .1 or .2 

has a low degree of semantic similarity and is considered off topic. A 0 score indicates total 

dissimilarity according to the model and negative match values will not occur.  

 The most commonly used LSA space, the TASA LSA space (Touchstone Applied Science 

Associates, Inc.; Ivens & Koslin, 1991; Landauer et al., 2007) uses a variety of news articles, 

novels, and other texts to create a corpus of relevant words and documents. The TASA space is 

regarded as a general English language LSA space. For the purpose of this research, rather than 

using the popular TASA LSA space, an Electronics LSA space was developed by creating a corpus 

of texts from electronics manuals and relevant curriculum materials. An LSA space trained on a 

specific subject (i.e. LSA spaces trained on electronics for the purpose of grading student quiz 

answers in an electronics class) is expected to assess student input more accurately and minimize 

false alarms attributable to the use of general English language terms. In the following section, we 

discuss the most current version of the customized electronics corpus and LSA space that are used 

in this research. 
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Optimization of Computer Combination Model 

 One goal of using computer models to assess student input is to identify and utilize a model 

that assesses student verbal contributions (e.g. grading an open-ended student response to a quiz 

question) similarly to human subject-matter experts. In this context, we can assume that higher 

agreement between human subject-matter experts and similar agreement between subject-matter 

experts and the computer indicates a properly functioning model for the assessment of verbal 

contributions. By computing the agreement between human judges and the computer, we can 

compare it to agreement between human judges for a relative understanding of the performance of 

the computer model. We view these agreement observations relative to previous versions of the 

computer model (Carmon et al., 2019) or similar computer models used in similar contexts. In 

order to optimize the computer model and improve the agreement between humans and the 

computer, we should modify the build of the LSA space whose output represents the semantic field 

of the topic (i.e. electronics). Further, we should consider all possible values of the discrimination 

threshold.  

LSA Model Specification 

 In order to optimize the computer combination model for semantic matching in the grading 

of student responses, we need to address the LSA space used in the combination. LSA is the one 

semantic component of the model, and RegEx being the other. RegEx can be written manually by 

experts to accommodate misspellings and also semantic variation (e.g. synonyms, functionally 

comparable words in a given context), but to a lesser extent than LSA. In this context, RegEx 

expressions can be viewed primarily as a lexical component where words in the student response 
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are being matched to the content words that define the RegEx for each ideal answer. Any synonym 

that is recognized by a RegEx string is considered a semantic extension of a lexical item.  

A statement can sometimes be semantically true even though it has no match to semantic 

extensions of a lexical item (as defined by a RegEx). Assessing these types of statements for 

relevance to an ideal answer is appropriately handled by LSA. For example, imagine a photograph 

of an exceptionally tall man and being given the instructions to talk about the man’s stature. Let us 

assume that the ideal answer is “The man is tall.” Regular expressions may offer expected semantic 

extensions (i.e. synonyms) of “tall” such as big, large, long, lengthy, etc. So, a student could say 

“The man is large”, which would still satisfy the lexical item “tall” for RegEx. However, if the 

student responded, “You could tell by his stature that he was a natural-born basketball player”, then 

RegEx would not satisfy the lexical item in the context.   

The student is clearly suggesting that the man is tall and therefore, the student’s statement is 

semantically like the ideal answer. However, the language contained unforeseen or unaccounted for 

semantic extensions of the lexical item “tall”. Running the student basketball answer against the 

ideal answer and computing the cosine similarity between those two bodies of text using an 

appropriately trained LSA space (e.g. LSA trained on sports texts with documents about typical 

physical characteristics of basketball players) is much more likely to return a helpful match value. 

For this reason, it is important to modify the build of the LSA space as to increase the 

appropriateness of LSA’s semantic field representation for a given topic. 

In this context, we can modify the LSA space in ways to increase the appropriateness of the 

LSA space for a given topic (i.e. electronics). Topic appropriateness for an LSA space can be 
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encouraged through proper selection and structuring of corpus materials as well as modification of 

topic/dimension frequency and content. An LSA space that is appropriate for a topic such as 

electronics in this context should yield more precise agreement with subject-matter expert ratings 

than an off-topic LSA space (e.g. sports LSA space). 

 When creating a corpus to train an LSA space, it is necessary to select relevant corpus 

documents as to create a semantic representation that is appropriate for the target application and 

topic. For example, for an electronics LSA space trained to grade student short answers in a 

beginners’ electronics class, it may be appropriate to create a corpus made from beginner-level 

electronics texts such as introduction/fundamentals electronics textbooks or electronics manuals. In 

contrast, training an LSA space entirely on fashion magazine articles is less likely to yield as 

meaningful a semantic representation as it relates to subject-matter in an electronics class. Apart 

from selecting the proper documents to feed into the corpus is the issue of chunk size or relevance. 

For any given document (e.g. introductory electronics textbook), the body text is essentially 

stripped out and broken down into smaller document sizes, or what will be called  chunks, that are 

fed into the corpus to train the text model. In this electronics corpus, we typically group chunks by 

the paragraph level. This follows the basic assumption that within the body text of these electronics 

documents, each paragraph break indicates the end of one topic and beginning of a new topic or 

sub-topic. For this reason, each chunk in the electronics corpus ranges from one to three 

paragraphs. 

Customized Corpora for Training Subject-specific LSA Spaces 

Previously, Carmon et al. (2018; 2019) used an LSA space trained on a corpus of 
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indeterminate electronics documents to examine the agreement between human judges and the 

computer. In the current study, computer judgement is still represented by a model that combines 

RegEx and LSA, however, we combined the same RegEx with a new LSA space trained on a 

carefully selected corpus comprised of electronics and physics documents.  Physics texts were 

added to the model as some believe that physics and electrical engineering may share some overlap 

in subject-matter and application. In fact, certain subfields of physics interface with subfields of 

engineering (e.g. relationship between optics/photonics and electrical engineering). The physics 

texts also appear to slightly improve model performance regarding F1 and Cohen’s Kappa metrics. 

In addition to 32,000 text chunks (roughly one to three paragraphs per text chunk) worth of 

physics materials, the Carmon Electronics corpus includes 24 volumes of Navy Electrical 

Engineering Training Series (NEETS) manuals, three introduction to electronics text books, two 

electrical engineering handbooks, three sets of course notes from introductory electrical 

engineering courses, three electronics fundamentals manuals, one AC-DC power supplies manual, 

and five circuitry textbooks of varying degrees of complexity (i.e. ranging from beginner’s level 

circuitry to more advanced circuitry). After raw texts were extracted from the documents and 

chunked, the corpus contains roughly 80,000 chunks and over 12 million words. Additionally, the 

current study assumed 310 topics or dimensions from the corpus of 12 million words. This 12 

million word corpus satisfies the criterion laid out by Landauer, McNamara, Dennis, & Kintsch 

(2007) which suggests as a rule of thumb that LSA spaces used in tasks such as automatic grading 

should be trained on a corpus of no less than 10 million words. The new corpus and LSA space 

were created in order to optimize model performance, and indeed, the combination model 

containing the newer LSA space used in the current study ended up agreeing more with human 
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subject-matter experts than did the combination model containing the previously used LSA space 

from Carmon et al. (2018; 2019). 

Model Simulation for Optimizing Agreement 

After the RegEx threshold was set and the LSA space had been modified and trained on the 

customized electronics corpus, we made a simulation in Python. To obtain performance metrics for 

model performance, raw scores from LSA and RegEx were coded into 1’s and 0’s in comparisons 

to human judge ratings. When analyzing human and computer decisions, we computed confusion 

matrices that also yielded precision, recall, F1 measure, Cohen’s kappa, and d’. Each observed 

performance metric was computed based on a single discrimination threshold decided upon for 

each RegEx and LSA. 

In the simulation, we produced one analysis nested within a for-loop that simulates each 

value of LSA’s discrimination threshold from 0 to 1 in thousandths (i.e. .001, .002, .003; all the 

way to .999) and outputs each set of performance metrics. So, by simulating a thousand values of 

the LSA discrimination threshold, we get a look at a thousand different sets of performance 

metrics. By doing this, we can search the highest performance metric value represented for any 

target statistic according to stringent, intermediate, and lenient thresholds. In this study we 

optimize thresholds for the highest possible F1 measure values, but the simulation can also be 

modified to identify highest measures of Cohen’s kappa, or d’ assuming any given set of answer 

data with human judgements. Annotated Python code for the simulation can be found in the 

Appendix section of the paper. 
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Current Study 

This thesis assessed the quality of the semantic matches between student input and expected 

responses in AutoTutor. Previously, there was a higher degree of agreement between human judges 

(κ = .699, n = 194) than between AutoTutor’s semantic match scores and humans (κ = .493, n = 

194) (Carmon, Morgan, Hampton, Cai, & Graesser, 2018) when only stringent thresholds of 

matching were considered, and when standard computational linguistics metrics (i.e., precision, 

recall, F-measures) were not calculated. However, models in the current study included these 

standard computational linguistics metrics. Also, the current study observed AutoTutor semantic 

matching scores across two additional thresholds rather than observing the stringent threshold only. 

The three thresholds were considered for assessing user input in the current study: Stringent (S), 

Intermediate (I), and Lenient (L). These categories of threshold will be explained more in the 

Method section.  

Ideally, the ranges of agreement would conform to similar studies that used natural language 

processing methods to assess user input or classify response ratings in different knowledge 

domains (e.g., Gautam, Swiecki, Shaffer, Graesser, & Rus, 2017), where precision reached 96%, 

and recall 78%. Precision is the proportion of computer responses that that signify a correct match 

(between the student response and the expectation) that are also deemed as a correct match 

according to human judgments.  In contrast, recall, or sensitivity, is the proportion of human 

judgments of correct matches that are also computed as correct matches by the computer. Precision 

and recall are explained and contextualized more in the Analysis section. 

One plausible hypothesis is that RegEx and LSA should yield a positive correlational 
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relationship. Although regular expressions and LSA both share the goal of assessing user 

responses, they do so differently. That is, RegEx matches keywords (flexibly specified) from the 

student response to keywords in the expected answer while accounting for common misspellings, 

synonyms, and word order. In contrast, LSA detects semantic similarity of all of the words between 

two texts, based on the higher dimensional semantic space. A second plausible prediction is that 

analyses would show an agreement between the human judges that is equal to or higher than 

between judges and AutoTutor’s semantic match scores.  

The judges that were used are both qualified subject-matter experts in electronics and 

expected to reliably distinguish between various categorizations of response pairings. Although 

automatic assessment of student input in these systems has substantially improved over the years, 

human judges are still regarded as the gold standard. The third prediction is that the semantic 

match scores of AutoTutor should be similar to agreements between human experts. Available 

studies have analyzed LSA and RegEx match scores in other subject matters such as scientific 

reasoning. In Cai et al., (2011), models combining LSA and RegEx were found to be as reliable as 

human tutors. One day the automated systems will hopefully show the same level or higher degrees 

of agreement between computer and human than can be observed between two or more humans. 

The fourth prediction is that semantic matching scores would reflect higher overall agreement with 

humans in lenient threshold categories. The assumption behind this prediction is that agreement 

increases from vague to precise specifications of meaning.    
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Chapter 2 

Method 

Materials 

This analysis was conducted on student responses to electronics questions that were 

developed in ElectronixTutor. The responses analyzed in this work were drawn from the verbal 

reasoning learning resource in the system called AutoTutor. The electronics questions were 

developed, modified, and eventually approved by two subject matter experts in the knowledge 

domain of electronics. Each of the subject matter experts were qualified as experts on the basis that 

they held a master’s degree in the given knowledge domain. The items created and used in the 

verbal reasoning component of the system were typically adapted from an electronics curriculum 

(e.g. class lectures, exercises, textbooks, etc.) and manuals. 

Answers to the electronics questions were collected from users on Amazon Mechanical Turk 

(AMT). Each of the 219 AMT users that participated in the data collection was pre-screened. In the 

pre-screen, there was a short electronics questionnaire to establish that the AMT user attempting to 

participate in the study possessed at least a baseline ability to answer simple questions about 

electronics basics. The pre-screen consisted of 5 multiple-choice electronics questions that tested 

the AMT users’ ability to perform calculations and demonstrate knowledge on basic electronics 

concepts such as Ohm’s law. The questions in the pre-screen were selected based on topics covered 

in the AutoTutor resource in ElectronixTutor. The questions in the pre-screen were of similar 

difficulty to the questions used in data collection.  
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The purpose of the pre-screen was simply to distinguish between AMT users who could 

answer basic electronics questions and those that cannot. This pre-screen process attempted to 

avoid the issue of AMT users who are not qualified to answer electronics questions signing up to 

receive pay. Additionally, AMT users were asked to describe their background in electronics. 

Before answering questions, AMT users received the instructions: “Please tell us about your 

background in electronics. For example, how many courses have you taken, high school or college, 

etc.” The following example displays one of the problems used in the pre-screen process: 

Problem: Calculate the Resistance value in a closed circuit supplied with 110V 

and power consumed in the circuit is 100 watts. 

A: 1.1 ohms 

B: 11 ohms 

C: 121 ohms (correct) 

D: 60.5 ohms 

AMT users only had one attempt to complete the pre-screen. Only those who correctly 

answered 3/5 of the pre-screen problems were permitted to take part in the study. After the pre-

screen approval, AMT users filled out an AMT Human Intelligence Task (HIT) and submitted it 

for financial compensation. A HIT represents a task that a user can work on, submit an answer, and 

collect a reward for completing.  

Each AMT HIT was presented in the form of questionnaire made up of electrical engineering 

questions of varying topics and difficulty that were borrowed from the verbal reasoning component 
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of the AutoTutor system. Each HIT contained 6 questions except for the last HIT which was 

created using the remaining 4 questions in the set of 118. Each question presented in a HIT was 

matched with an image or figure that provides valuable context for the electronics question that the 

student reads. For each figure and question, a blank text box was displayed which allowed the 

AMT user to respond to the question in an open-ended fashion however they saw fit. The 

questionnaires were written in HTML format and created in such a way that the answers collected 

from questionnaire text boxes were directly stored in a CSV file. Once answers were collected 

from all 219 participants, the CSV output of answers to questions collected on AMT were 

transformed to columns that specifies user ID, question ID, and answer. 

Additional experts on electronics received a training session on evaluating semantic 

similarity between expectations and student responses. Judges were trained on a few of the 

responses to questions and asked to share ratings. The judges then justified to each other their 

ratings for the training items with the goal of developing a standard when rating test items 

independently. The response rating procedure included a judge rating tool to simplify the rating 

process, save time, and reduce cognitive load taken on by the judges. The rating tool displayed the 

question or part of the question applicable, the user response, the expectation, and a field for 

specifying a 1–6 rating.  

The 6 ratings are defined according to specific criteria:   

o A judge rating of 1 indicates no attempt to answer the question. 
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o A rating of 2 indicates that the answer is not on topic or contains metacognitive 

language. 

o A rating of 3 indicates that the answer is on topic, but completely incorrect. 

o A rating of 4 indicates that the answer is mostly incorrect but contains a small 

degree of truth value. 

o A rating of 5 indicates that the answer is mostly correct. 

o A rating of 6 indicates that the answer seems ideal. 

  All user responses in the rating tool were sorted into tabs according to item. The tool was 

designed to simplify and speed up the process of rating for judges as opposed to judges interacting 

with the raw data in CSV or XLS format. The procedure section offers a detailed table about the 

scoring definitions that the judges used in rating student responses. 

LSA and RegEx scores of user responses were computed for comparison to judge ratings. To 

compare the judge ratings to the computer, we observed three thresholds for humans’ ratings. The 

three thresholds to observe are stringent, intermediate, and lenient. We selected each threshold 

value based on the simulation program written in Python that considered every possible value of 

the LSA discrimination threshold to identify the optimal threshold value where highest F1 measure 

is observed in stringent, intermediate, and lenient threshold categories.  

For the stringent human thresholds, human judgment between 1 and 5 was coded as a 0 and 
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a score of 6 as a 1. The stringent threshold for humans considers student responses that the judges 

consider to be correct and complete (i.e. a rating of 6). The stringent threshold for computers 

consists of raw scores at or above the .75 threshold for RegEx, or .892 for LSA and was be coded 

as a 1, whereas below was coded as a 0. These stringent computer thresholds apply to RegEx only, 

LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA threshold is met).  

For the intermediate human thresholds, human judgment between 1 and 4 was coded as a 0, 

and 5 or 6’s as 1. The intermediate threshold for computer scoring considers a RegEx threshold 

that is placed at .5, and one for LSA at .769. These intermediate computer thresholds apply to 

RegEx only, LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA 

threshold is met).  

In the lenient human threshold, human judgment between 1 and 3 was coded as a 0 and 4–6 

as 1. The lenient threshold for humans considers any student responses with varying degrees of 

truth value as 1. The lenient threshold in computer scoring considered a RegEx threshold that is 

placed at .33, and one for LSA at .494. These lenient computer thresholds apply to RegEx only, 

LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA threshold is met). 

So, analyzing agreement between human judgement and the computer (RegEx only) across 3 

thresholds yielded a 3 x 3, or 9 statistical observations. Another 9 observations occurred between 

human judgement and computers with the only comparison being that the computer threshold 

observed the LSA only condition instead of RegEx only. A third analysis repeated this 3 x 3 design 

where the computer observed RegEx and LSA combination thresholds rather than RegEx only and 

LSA only. A final analysis repeated the 3 x 3 design for Judge 1 and Judge 2. 
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A RegEx bank of relevant electronics terms created by a team of university researchers 

provided easier RegEx application to each of the 118 items in the system. The bank contains the 

semantic field of content words associated with all items in the system. When creating AutoTutor 

items in ElectronixTutor, researchers may refer to the bank for word expressions that have been 

created, as they may be represented in ideal answers and expectations for multiple items in the 

system. The RegEx bank for the electronics items allowed for word expression matches of 

relevant terms in the body text of the user’s response when compared to the ideal answer or 

expectation.  

A RegEx expression is written so that it allows for flexible user response comprehension in a 

few ways. The RegEx written for these items allows for common misspellings, complex student 

responses (word ordering), and commonly recognized synonyms. Additionally, this research used 

an electronics LSA space rather than the TASA LSA space, the most popular LSA space for 

general English language. LSA and RegEx can be computed using a custom-made tool where the 

input is a user response and the outputs are computed scores for RegEx and LSA. These scores 

represent the semantic matching capabilities of AutoTutor, and by using these computed semantic 

matching scores, we compared AutoTutor’s performance to that of a human judge. 

Procedure 

The data had 219 unique AMT workers who answered 118 questions asked by AutoTutor in 

ElectronixTutor. An AMT worker answered only a subset of the 118 questions, thus many 

responses from different items were collected from repeat AMT workers. AMT workers responded 

to these questions in an open-ended fashion, saying as much or as little as needed in order to 
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answer the questions asked. Each question received up to 20 user responses for a corpus of roughly 

2350 responses to the main questions. Of the 2350 collected responses to the main question, each 

response was paired with the main question and each expectation to the main question, resulting in 

5202 (n=5202) total pairings that were used as the sample units for the analyses. Two subject-

matter experts independently rated the user responses on a scale ranging from 1–6. See Table 2 for 

a description of the scoring values used by judges. 

Table 2. Scoring values used by human judges rating student responses to electronics questions. 

 

In selecting participants for the data collection process, AMT workers were asked to describe 

their background in electronics and answer questions to the best of their ability without any help 

(e.g. internet searches, reading materials, asking other individuals). Workers were also required to 

complete the pre-screen (described in the Materials section) to qualify as eligible. Workers were 

compensated $1 for each question answered. Compensating $1 per question typically pays a user 

$6 per HIT with the exception of the one HIT that only contained 4 questions. 
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Chapter 3 

Analysis 

The analyses computed LSA and RegEx scores for student responses, whereas two subject-

matter experts also judged each response. These analyses aimed to explore the relationship between 

regular expressions and LSA, interrater agreement between the two judges, and agreement between 

responses in human judgment and AutoTutor semantic match scores.  

This thesis observed agreement by calculating Cohen’s kappa, precision and recall scores, 

and d’ (“d prime”) scores from signal detection theory. The scores for each metric were calculated 

between human judges, and between human judges and AutoTutor’s semantic matches according 

to LSA, RegEx, and both. These analyses explain the data using this variety of metrics in order to 

appeal to multiple audiences. In this thesis, the concept of explaining the data for multiple 

audiences was informed by Graesser, Wiemer-Hastings, Kreuz, Wiemer-Hastings, and Marquis 

(2000). Explaining the results for researchers in computational linguistics and psychology rather 

than only reporting results in terms of inter-rater agreement (Cohen’s kappa) offers the benefit of 

reaching a broader audience. 

The first performance metric observed in analyses is Cohen’s kappa (κ). Cohen’s kappa 

measures inter-rater reliability for categorical items. Cohen’s kappa is regarded as a more robust 

measure than a simple percent agreement as it considers the possibility of observations that may 

have occurred by chance. Cohen’s kappa is a popular metric in social sciences research. Cohen’s 
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kappa can be calculated as: 

𝜿 ≡
𝒑𝒐 − 𝒑𝒆

𝟏 − 𝒑𝒆
= 𝟏 −

𝟏 −  𝒑𝒐

𝟏 −  𝒑𝒆
 

Where 𝑝𝑜 is accuracy and 𝑝𝑒 is the probability of chance. The analyses calculate κ between human 

judges, and between human judges and AutoTutor’s semantic matching mechanism. 

Next, the analyses calculate metrics for precision and recall. The metrics for this portion of 

the analysis include precision, recall, and F1. Precision and recall are common measurements for 

assessing accuracy of information retrieval, classification, and identification tasks in computers. As 

stated previously, precision is the proportion of computer responses that that signify a correct 

match (between the student response and the expectation) that were also deemed as a correct match 

according to human judgments.  In contrast, recall is the proportion of human judgments of correct 

matches that were also computed as correct matches by the computer.  

Precision and recall were calculated in this context using a 2 x 2 matrix where AutoTutor 

semantic match represents the predicted condition, and where human judgement represents the true 

or observed condition. Each condition contains 2 levels, positive or negative. The matrix only 

contains 4 possible outcomes that were factored into precision and recall calculations. These 4 

possible outcomes are true positives (TP, alternatively called hits), true negatives (TN, i.e., correct 

rejections), false positives (FP, i.e., false alarms), and false negatives (FN, i.e., misses). So, 

precision is calculated as: 
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𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Recall is calculated as: 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

F1 scores are calculated as the weighted average (or harmonic mean) between precision and recall 

where: 

𝑭𝟏 =
𝟐 ∗ 𝑻𝑷

(𝟐 ∗ 𝑻𝑷) + 𝑭𝑷 + 𝑭𝑵
 

The last metric that the analyses observed comes from signal detection theory. The metric d’ (“d 

prime”), also referred to as the sensitivity index, separates the means of the signal and the noise 

distributions, in comparison to the standard deviation of the signal or noise distribution. The metric 

d’ can be calculated as: 

𝒅′ =
𝝁𝑺𝑰 −  𝝁𝑵

√𝟏
𝟐

(𝝈𝑺𝑰
𝟐 + 𝝈𝑵

𝟐 )  

  

Where (SI) represents signal and (N) is noise. These analyses calculate d’ between human, and 

between human judges and AutoTutor’s semantic matching mechanism. 
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As previously stated, analyzing agreement between human judgement and the computer 

(RegEx only) across 3 thresholds yielded a 3 x 3, or 9 statistical observations. An additional 9 

observations were made for LSA only versus human. A third 3 x 3 observation was made for 

RegEx and LSA combination versus human, and a final observation was made for Judge 1 versus 

Judge 2. The thresholds observed for humans and computers are stringent (S), intermediate (I), and 

lenient (L). The following describes stringent thresholds in the RegEx and LSA combination model 

for computer (c) and human (h), respectively, where T is threshold, LSA is LSA, and RegEx is RE: 

𝑻𝑺𝒄 = 𝟏, 𝑻𝑺𝑳𝑺𝑨 ≥. 𝟖𝟗𝟐 ∨  𝑻𝑺𝑹𝑬 ≥. 𝟕𝟓 

𝒆𝒍𝒔𝒆;  𝑻𝑺𝒄 = 0 

𝑻𝑺𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 > 𝟓 

𝒆𝒍𝒔𝒆; 𝑻𝑺𝒉 = 𝟎 

The next expression describes intermediate thresholds for computer (c) and human (h), 

respectively: 

𝑻𝑰𝒄 = 𝟏, 𝑻𝑰𝑳𝑺𝑨 ≥. 𝟕𝟔𝟗 ∨  𝑻𝑰𝑹𝑬 ≥. 𝟓 

𝒆𝒍𝒔𝒆;  𝑻𝑰𝒄 = 0 
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𝑻𝑰𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 ≥ 𝟓 

𝒆𝒍𝒔𝒆; 𝑻𝑰𝒉 = 𝟎 

The last expression describes lenient thresholds for computer (c) and human (h), respectively: 

𝑻𝑳𝒄 = 𝟏,  𝑻𝑳𝑳𝑺𝑨 ≥. 𝟒𝟗𝟒 ∨  𝑻𝑳𝑹𝑬 ≥. 𝟑𝟑 

𝒆𝒍𝒔𝒆;  𝑻𝑳𝒄 = 0 

𝑻𝑳𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 ≥ 𝟒 

𝒆𝒍𝒔𝒆; 𝑻𝑳𝒉 = 𝟎 

Additionally, a secondary analysis repeated this 3 x 3 design twice more where  there was a 

focus on RegEx and LSA models independently, rather than a combination of the two. Further, this 

thesis included two more 3 x 3 observations. One where agreement between humans and the 

computer (RegEx and LSA combination) was calculated and one where the same was done 

between judges. By completing these analyses, we can interpret the statistics to determine whether 

or not any agreement observations significantly differed between human judges or between humans 

and the computer. The differences will be observed across the three thresholds mentioned, and 

human judgement will be compared against RegEx and LSA combination, RegEx only, and LSA 



32 

 

only, respectively. 

For interpreting differences between observed agreements (human versus RegEx and LSA 

combination) we refer to a simple difference in scores for Cohen’s kappa. Cohen’s kappa is 

calculated from 0 to 1, where 1 is equal to perfect agreement observed. When interpreting 

Cohen’s kappa,  𝜿 values are sometimes classified into five somewhat arbitrary categories that 

Cohen identified: poor (low) value being less than 0.20, fair between 0.20 and 0.30, moderate 

between 0.30 and 0.40, substantial (good) between 0.40 and 0.70, and outstanding agreement 

values observed between 0.70 and 1.00. 

By adhering to these interpretations of κ values and using them as guidelines, we assume 

that any two single κ values with an observed difference of .15 or greater can be considered to have 

notable differences, as they have at least differed by roughly 1 Cohen’s kappa agreement category 

defined above.  

Chapter 4 

Results 

We began by examining the non-parametric relationship between RegEx and LSA using a 

Spearman’s correlation. As expected, we observed a moderate, positive relationship between the 

two, ρ (5202) = .471. To compare human judges to the computer, all ratings were coded as either a 

1 (positive) or a 0 (negative), and were compared across stringent, intermediate, and lenient 

thresholds. Before addressing the data below, refer to Table 3. Table 3 lists all F1 measure scores at 

the aggregate level between judges and between the judges and the computer.    
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Table 3. A breakdown F1 measure agreement between the computer and human judges, and 

between human judges according to stringent (S), intermediate (I), and lenient (L) threshold 

conditions. 

F1 Measure Agreement Between Computer and Human Judges 

Condition F1 Measure 

 Judge 1 Judge 2 

S: LSA .368 .300 

I: LSA .466 .470 

L: LSA .555 .561 

S: RegEx .444 .509 

I: RegEx .520 .542 

L: RegEx .6 .579 

S: RegEx-LSA Combination .526 .462 

I: RegEx-LSA Combination .548 .524 

L: RegEx-LSA Combination .589 .620 

S: Between Judges .532 

I: Between Judges .599 

L: Between Judges .653 

Note. At the aggregate level, F1 measure values in the combination model match the values 

between humans more closely than either of the stand-alone models. 

Aggregate Data Analyses 

Aggregate: Between Judges 

We analyzed agreement of the human judge ratings on responses from AMT users using 

Cohen’s kappa, precision and recall measures, and d’ from signal detection theory. The interrater 

reliability between judges in the stringent threshold (S) was good, κ = .456, n = 5202, while 

precision reached .467 and recall .618, with F1 = .532, d’ = 1.593. According to intermediate (I) 

thresholds, the interrater reliability between judges was good and slightly higher than judge 

agreement for stringent thresholds, κ = .466, n = 5202. In the intermediate threshold between 
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judges, precision reached .636 and recall .565, with F1 = .599, d’ = 1.36. The interrater reliability 

between judges in lenient (L) thresholds was similar, κ = .460, n = 5202, while precision reached 

.710 and recall .604, with F1 = .653, d’ = 1.274.  

Aggregate: LSA Versus Judges 

For the stringent (S) human threshold, human judgment between 1 and 5 was coded as a 0 

and a score of 6 as a 1. For stringent computer thresholds in LSA, a raw score at or above the .495 

threshold was coded as a 1, whereas below was coded as a 0. All optimal thresholds for the LSA 

model were revealed through the program which simulates a thousand values of the discrimination 

threshold and compares it to human judge ratings. The reliability between LSA and the first judge 

was low, κ = .195, n = 5202, whereas the reliability between LSA and the second judge was even 

lower, κ = .150, n = 5202. When the model was compared with the first judge, precision reached 

.547, and recall .277, F1 = .368, d’ = .649. For the second judge, precision reached .542, and recall 

.207, F1 = .300, d’ = .575. 

For the intermediate (I) human threshold, human judgment between 1 and 4 was coded as a 0 

and 5 or 6’s as 1. For intermediate computer thresholds in LSA, the threshold was placed at .423. 

The reliability between LSA and the first judge was fair, κ = .241, n = 5202, whereas the reliability 

with the second judge was similar, but slightly lower, κ = .223, n = 5202. When the model was 

compared with the first judge, precision reached. 631, and recall .369, F1 = .466, d’ = .762. For the 

second judge, precision reached .592, and recall .390, F1 = .470, d’ = .636. 

For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0 

and 4–6 as 1. For lenient computer thresholds in LSA, the threshold was placed at = .362. The 
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reliability between LSA and the first judge was fair, κ = .272, n = 5202, whereas the reliability 

between LSA and the second judge was again similar, but lower, κ = .236, n = 5202. When the 

model was compared with the first judge, precision was .673, while recall reached .472, F1 = .555, 

d’ = .755. For the second judge, precision was .621, while recall reached .511, F1 = .561, d’ = .618. 

Aggregate: RegEx Versus Judges 

For the stringent (S) human thresholds, human judgment between 1 and 5 was coded as a 0 

and a score of 6 as a 1. For stringent computer thresholds in RegEx, a raw score at or above the .75 

threshold was coded as a 1, whereas below .75 was coded as a 0. We examined agreement between 

human judge ratings and RegEx. The reliability between RegEx and the first judge was moderate, κ 

= .366, n = 5202, whereas the reliability between RegEx and the second judge was good, κ = .428, 

n = 5202. When the model was compared with the first judge, precision reached .448, and recall 

.440, F1 = .444, d’ = 1.487. For the second judge, precision reached .450, and recall .585, F1 = 

.509, d’ = 1.275.  

For the intermediate (I) human thresholds, human judgment between 1 and 4 was coded as a 

0 and 5 or 6’s as 1. For intermediate computer thresholds in RegEx, the threshold was placed at .5. 

The reliability between RegEx and the first judge was fair, κ = .313, n = 5202, whereas the 

reliability with the second judge was similar but higher, κ = .362, n = 5202. When the model was 

compared with the first judge, precision reached .607, and recall .455, F1 = .520, d’ = 1.07. For the 

second judge, precision reached .677, and recall .452, F1 = .542, d’ = .882. 

For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0 

and 4–6 as 1. For lenient computer thresholds in RegEx, the threshold was placed at = .33. The 
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reliability between RegEx and the first judge was fair, κ = .306, n = 5202, whereas the reliability 

with the second judge was again similar, κ = .307, n = 5202. When the model was compared with 

the first judge, precision was .679, while recall reached .545, F1 = .600, d’ = .870. For the second 

judge, precision was .713, while recall reached .487, F1 = .579, d’ = .815.  

Aggregate: RegEx/LSA Combination Versus Judges 

For the stringent (S) human thresholds, human judgment between 1 and 5 was coded as a 0 

and a score of 6 as a 1. For stringent computer thresholds in RegEx and LSA, a RegEx score at or 

above the .75 threshold or LSA at or above .892 was coded as a 1, whereas below was coded as a 

0. We examined agreement between human judges and RegEx/LSA Combination. The reliability 

between RegEx/LSA Combination and the first judge was good, κ = .446, n = 5202, whereas the 

reliability between RegEx/LSA Combination and the second judge was moderate and lower, κ = 

.384, n = 5202. When the model was compared with the first judge, precision reached .479, and 

recall .584, F1 = .526, d’ = 1.508. For the second judge, precision reached .482, and recall .444, F1 

= .462, d’ = 1.312.  

For the intermediate (I) human thresholds, human judgment between 1 and 4 was coded as a 

0 and 5 or 6’s as 1. For intermediate computer thresholds in RegEx, the threshold was placed at .5, 

and for LSA, .769. The reliability between RegEx/LSA Combination and the first judge was 

moderate, κ = .365, n = 5202, whereas the reliability with the second judge was similar, but slightly 

lower, κ = .311, n = 5202. When the model was compared with the first judge, precision reached 

.710, and recall .446, F1 = .548, d’ = 1.096. For the second judge, precision reached .633, and 

recall .448, F1 = .524, d’ = .883.  
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For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0 

and 4–6 as 1. For lenient computer thresholds in RegEx, the threshold was placed at .33, and for 

LSA, .494. The reliability between RegEx/LSA Combination and the first judge was fair, κ = .291, 

n = 5202, whereas the reliability with the second judge was again similar, κ = .292, n = 5202. 

When the model was compared with the first judge, precision was .809, while recall reached .463, 

F1 = .589, d’ = .939. For the second judge, precision was .772, while recall reached .519, F1 = 

.620, d’ = .850. At the aggregate level, F1 and d’ for combination models reached values closest to 

those between judges in all three threshold conditions. Agreement values between the combination 

model and judges were higher than between either the LSA only model versus judges or the RegEx 

only model versus judges. While RegEx alone agrees with humans more than LSA alone, the 

combination model agrees more with humans than both stand-alone models. This suggests that by 

pairing RegEx and LSA, there is added benefit in a combination model compared to using each 

model separately. 

Repeated Measures ANOVAs 

Repeated Measures: Between Judges 

Figure 2 shows the cell means of a 3 x 3 repeated measures design conducted to compare 

Judge 1 and. Judge 2 on F1 measure agreement in stringent (S), intermediate (I), and lenient (L) 

threshold conditions. A repeated measures analysis of variance (ANOVA) was conducted on the F1 

agreement scores where the unit of analysis was the item (n = 118). There was a significant main 

effect of Judge 1, F (2, 234) = 27.12 p = .001, η2 = .188, and of Judge 2, F (2, 234) = 30.617, p = 

.001, η2 = .207, with a significant interaction between human judges, F (2, 234) = 46.96, p = .001, 
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η2 = .286. Here, F1 agreement on stringent items (items rated 6 by judges) was lowest, and lenient 

agreement was highest. Agreement on the stringent threshold is practically indistinguishable from 

agreement between Judge 1 stringent, and Judge 2 intermediate. Judges agreements in intermediate 

and lenient thresholds appear to show more distinct categorization. 

 

Figure 2. Mean F1 measure as a function of the thresholds of Judge 1 and Judge 2 where S is 

stringent, I is intermediate, and L is lenient. 

Repeated Measures: LSA Versus Judges 

Figure 3 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient 

(L) thresholds of LSA versus Judge 1 in a 3 x 3 repeated measures design. An ANOVA was 

conducted on the F1 agreement scores where the unit of analysis was the item (question) in 
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AutoTutor (n = 118), as opposed to the expectation unit in an ideal answer, noting that some 

questions had multiple expectations. There was a significant main effect of Judge 1, F (2, 234) = 

4.352, p = .026, η2 = .036, and a a significant main effect of LSA, F (2, 234) = 42.438, p = .001, η2 

= .266, with a significant interaction between LSA and Judge 1, F (2, 234) = 6.11, p = .001, η2 = 

.05. F1 measure agreement was highest for LSA lenient in every human judge threshold condition. 

 

Figure 3. Mean F1 measure as a function of the thresholds of Judge 1 and LSA where S is stringent, 

I is intermediate, and L is lenient. 

Additionally, Figure 4 shows mean F1 scores as a function of stringent (S), intermediate (I), 

and lenient (L) thresholds of LSA versus Judge 2 in a 3 x 3 repeated measures design. An ANOVA 
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was conducted on the F1 agreement scores where the unit of analysis was the item (question) in 

AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2, 234) = 3.800, p = .042, 

η2 = .032, and a significant main effect of LSA, F (2, 234) = 62.360, p = .001, η2 = .348, with 

significant interaction between LSA and Judge 2, F (2, 234) = 13.950, p = .001, η2 = .107. Again. 

F1 measure agreement was highest for LSA lenient in every human judge threshold condition. By 

itself, LSA performs reasonably well in lenient, but not in stringent or intermediate threshold 

categories. 

Figure 4. Mean F1 measure as a function of the thresholds of Judge 2 and LSA where S is stringent, 

I is intermediate, and L is lenient.  

Repeated Measures: RegEx Versus Judges 

Figure 5 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient (L) 
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thresholds of RegEx versus Judge 1 in a 3 x 3 repeated measures design. An ANOVA was conducted 

on the F1 agreement scores where the unit of analysis was the item (question) in AutoTutor (n = 

118). There was a significant main effect of Judge 1, F (2, 234) = 25.530, p = .001, η2 = .181, and a 

significant main effect of RegEx, F (2, 234) = 26.390, p = .001, η2 = .184, with a significant 

interaction between RegEx and Judge 1, F (2, 234) = 41.010, p = .001, η2 = .260. Here, we continue 

to see a trend where lenient F1 value observations are the highest, and stringent and lenient conditions 

appear to be more distinct than intermediate conditions. 

 

Figure 5. Mean F1 measure as a function of the thresholds of Judge 1 and RegEx where S is 

stringent, I is intermediate, and L is lenient. 
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Additionally, Figure 6 shows mean F1 scores as a function of stringent (S), intermediate (I), 

and lenient (L) thresholds of RegEx versus Judge 2 in a 3 x 3 repeated measures design. An ANOVA 

was conducted on the F1 agreement scores where the unit of analysis was the item (question) in 

AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2, 234) = 10.460, p = .001, 

η2 = .082, and a significant main effect of RegEx, F (2, 234) = 59, p = .001, η2 = .335, with a 

significant interaction between RegEx and Judge 2, F (2, 234) = 43.55, p = .001, η2 = .271. 

Agreement between Judge 2 and RegEx is similar to agreement between Judge 1 and RegEx, 

however, agreement on a stringent threshold is less distinct for Judge 2 and RegEx. 

 

Figure 6. Mean F1 measure as a function of the thresholds of Judge 2 and RegEx where S is stringent, 

I is intermediate, and L is lenient. 
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Repeated Measures: RegEx/LSA Combination Versus Judges 

Figure 7 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient (L) 

thresholds of the RegEx-LSA combination model versus Judge 1 in a 3 x 3 repeated measures design. 

An ANOVA was conducted on the F1 agreement scores where the unit of analysis was the item 

(question) in AutoTutor (n = 118). There was a significant main effect of Judge 1, F (2, 234) = 18.440 

p = .001, η2 = .136, and a significant main effect of Combo, F (2, 234) = 38.500, p = .001, η2 = .248, 

with a significant interaction between Combo and Judge 1, F (2, 234) = 48.380, p = .001, η2 = .293. 

Here, we see F1 measure agreement values are most comparable in the study to values between 

humans. While intermediate thresholds are less distinct, we see distinction in stringent and lenient 

threshold agreements. This follows the same trend in all observations where F1 measure agreement 

is highest in lenient thresholds and overall lowest in stringent thresholds. 
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Figure 7. Mean F1 measure as a function of the thresholds of Judge 1 and RegEx-LSA combination 

where S is stringent, I is intermediate, and L is lenient. 

Additionally, Figure 8 shows mean F1 scores as a function of stringent (S), intermediate (I), 

and lenient (L) thresholds of the RegEx-LSA combination model versus Judge 2 in a 3 x 3 repeated 

measures design. An ANOVA was conducted on the F1 agreement scores where the unit of analysis 

was the item (question) in AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2, 

234) = 23.500, p = .001, η2 = .167, and a significant main effect of Combo, F (2, 234) = 85.640, p = 

.001, η2 = .423, with a significant interaction between Combo and Judge 2, F (2, 234) 4= 62.120, p 

= .001, η2 = .347. Here, we follow the same trend as we have seen previously where F1 measure 

agreement is highest in lenient and overall lowest in stringent. We see the highest overall F1 measure 
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agreements in the study (aside from between humans) in the lenient computer by lenient judge 

threshold observation. 

 

Figure 7. Mean F1 measure as a function of the thresholds of Judge 2 and RegEx-LSA 

combination where S is stringent, I is intermediate, and L is lenient. 

Chapter 5 

Discussion 

The first analysis examined the non-parametric relationship between two automated 

methods, LSA and RegEx, which provide complementary evaluations using different text features 

to assess response relevance. As a result, we expected to see a moderate, positive relationship 

between LSA and RegEx which was indeed the case. We expected a moderate, positive 
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relationship because RegEx and LSA share the same purpose of producing match values for user 

responses based on response relevance, but they each do so by considering different features in the 

text. Thus, a higher correlation of .9 (or closer to 1) would indicate that the use of both methods 

together may be redundant, and a much lower correlation would indicate that both are not 

measuring the same variable. 

Although statistics for Cohen’s kappa were not impressively high, we expected to see a trend 

based on results from previous analyses in Carmon et al. (2018; 2019) where agreement between 

human judges was consistently higher than between human judges and the computer. In this study, 

we observed that trend across all 3 categories of threshold (stringent, intermediate, and lenient). 

However, the RegEx/LSA combination model agreed more closely with human judges than either 

the RegEx only or LSA only model, or to any other model previously fit to the dataset (Carmon et 

al., 2018, Carmon et al., 2019). This is true across multiple performance metrics (F1, ‘d, and 

Kappa) reported for the models at the aggregate level Additionally, the same simulation developed 

for finding all values of the discrimination threshold can be easily modified to optimize for kappa, 

‘d, precision, or recall. In this study, we optimize discrimination thresholds of the combination 

model to optimize for F1 measure agreement. 

These findings suggest that there may be benefits to human-computer agreement in 

automatic short answer grading (ASAG) contexts by using a combination model in rather than 

solely relying on RegEx only or LSA only models individually. Also suggested by the findings is 

the notion that models can be custom-trained and simulated to optimize relative agreement between 

the computer and categorized judge ratings. 
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Based on previous analyses, we expected to see higher agreement in lenient thresholds than 

in stringent thresholds. This is generally true apart from Cohen’s kappa. Cohen’s kappa adjusts for 

agreement by chance, so in this context, we may expect more lenient thresholds to yield higher F1 

agreement, and similar but slightly lower kappa than one would observe in stringent thresholds. 

This is rather intuitive, because the more leniency you lend to response appropriateness, the more 

likely it is that two or more assessors may display overlapping agreement. For example, in 

stringent thresholds, only ratings of 6 (out of 6) displayed by both judges may be considered 

agreement, whereas in lenient thresholds, a judge rating of 4 paired with another judge rating of 5 

would be considered an agreement. Precision reached .809 in lenient thresholds for response 

assessment, but at the expense of yielding lower recall (.463).  

In the combination model, we observe F1 measure agreement between humans and the 

computer similar to the F1 measure agreements observed between humans. This is true in all three 

threshold categories. These F1 measure agreements between humans and the computer are more 

similar than any previous model used to assess this response data to date (Carmon et al., 2018, 

Carmon et al., 2019). In stringent thresholds, between-human F1 measure agreement was .532, and 

human-computer F1 measure agreement reached .526. In intermediate thresholds, between-human 

F1 measure agreement was .599, and human-computer F1 measure agreement reached .548. In 

lenient thresholds, between-human F1 measure agreement was .653, and human-computer F1 

measure agreement reached .620. 

As demonstrated in this study, semantic text models for ASAG can be modified in various 

ways to optimize agreement. Relevant literature in semantic matching for student response grading 
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typically trains computational models based on 5 holistic response categories (Crossley et al., 

2014), whereas this study details 6 response categories for human raters. For this reason, one 

alternative may recode the response data on a categorization scale using judgements of 1–5 in the 

future. Using a 5-category scale, the data can be used in preexisting models. However, simulations 

for discrimination threshold values show promise in fitting match values in the response data to 

atypical response categorization scales for holistic human judge ratings such as 6-category scales 

like the one used in this study.  

Moving forward, it may be of interest to weight the ratings of first human judge as more 

consistent. Although the difference was slight, the first judge (Judge 1) consistently agreed more 

closely with the computer than did the second human judge. The agreement between the first 

human judge and the computer was generally higher and closer to agreement between-humans in 

all three threshold categories observed in analyses.  

Ideally, agreement between three or more subject-matter experts (as opposed to two) should 

be observed to identify potentially poor or inconsistent human judgement. If agreement between 

two judges is consistently high while a third judge has exceedingly low agreement with each other 

judge, then it is likely that the third judge is not as reliable which can have negative consequences 

for the internal validity of the study. Though agreement is relative in the context, these findings 

identify a trend where judges consistently agree more than AutoTutor versus judges across 

different levels of thresholds In this case, F1 measure agreement between the computer and 

humans is substantially similar to agreement between humans. This offers a valuable framework 

for future tests observing new AutoTutor models and the degree to which they may improve. New 
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semantic combination models are not necessarily limited to including LSA and RegEx.  

Due to the nature of open-ended responses collected, it is appropriate to analyze main 

question and expectations. However, deciding on a length cap for these open-ended responses may 

help to avoid false positives in LSA which may be attributed to lengthy responses increasing the 

likelihood that relevant terms are used which increase the LSA score while they are not satisfying 

the expected answer.  

In future studies we may also want to collect similar data on participants that appear in 

person and interact with these questions through the AutoTutor system rather than collecting on 

AutoTutor materials through AMT. We may sacrifice some sample size, but it is critically 

important to see how users interact with the system in an AutoTutor trialogue with hints, pumps, 

prompts, conversational agents, and dialogue turns as opposed to assessment of an open-ended user 

response made in attempt to only the main question. We may also want to rerun similar analyses on 

the data where we modify the length or content of the corpus used to train the LSA space (e.g. 

removing physics texts), or the features of RegEx (e.g., removing anticipated synonyms versus 

complex student answers, etc.). 

A future analysis may use the response data to look at ratings of 1 and 2 to identify whether 

the system correctly detects metacognitive language in responses. Successfully distinguishing 

partial answers from complete answers and recognizing certain response features such as meta-

cognitive language (represented by a response rating of 2) is necessary in helping the system select 

the most appropriate hint or prompt. It is of critical importance that the system correctly and 

consistently recognizes these response categories. Additionally, two future analyses, an error 
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analysis and item difficulty analysis, are of immediate interest and show promise in acquiring 

necessary and relevant information for this body of research. 

An error analysis would explore whether the system is better at detecting correct answers or 

incorrect answers in accordance with judge response ratings.  In human-computer interaction 

contexts, and especially in automatic answer grading, it is important to consider the types of errors 

that the system is committing while scoring student answers. The ElectronixTutor system may 

commit two types of error, misses or false alarms. In these contexts, we would rather have the 

system minimize false alarms or misses? It is not ideal to pass a student answer that should not 

have been counted as correct (i.e., a false alarm), but it is also problematic to miss a student answer 

when it should have been detected as correct. Rejecting correct student answers may frustrate or 

discourage students and cause dropout (Graesser, 2016). Depending on whether correct or incorrect 

answers are detected more consistently by the system, it may be justifiable to weight the priority of 

either precision or recall on the data.  

In the item difficulty analysis, we could explore whether item or question difficulty affects 

the degree of agreement between humans or between the computer and humans. We currently are 

interested in two approaches in this effort. One can be thought of as a top-down approach, and the 

other can be thought of as a bottom-up approach. In the top-down approach, we use an existing 

scaling of electronics topics conducted by experts to analyze item difficulty based on knowledge 

components in the ElectronixTutor system (Graesser et al., 2018). Using this expert model, we can 

observe the relationship between item difficulty and agreement between humans as well as 

agreement between the computer and humans. Similarly, we can compare question items that 
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require lengthier answers and reasoning (2-5 expectations) versus knowledge-check questions that 

focus on only 1 or 2 expectations.  In the bottom-up approach we would observe the relationship 

between agreement and item difficulty where item difficulty is informed by average score on each 

item within the dataset. This normative definition of item difficulty would consider how learners 

perform and vary in answering each individual question.   
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Appendix: A 

Table 4 

Agreement Measures Between Humans and between Computer and Humans 

Condition k Precision Recall F1 d’ 

S: Judge 1 x Judge 2 .456 .467 .618 .532 1.593 

I: Judge 1 x Judge 2 .466 .636 .565 .599 1.360 

L: Judge 1 x Judge 2 .460 .710 .604 .653 1.274 

S: LSA x Judge 1 .195 .547 .277 .368 .649 

I: LSA x Judge 1 .241 .631 .369 .466 .762 

L: LSA x Judge 1 .272 .673 .472 .555 .755 

S: LSA x Judge 2 .150 .542 .207 .300 .575 

I: LSA x Judge 2 .223 .592 .390 .47 .636 

L: LSA x Judge 2 .236 .621 .511 .561 .618 

S: RegEx x Judge 1 .366 .448 .440 .444 1.487 

I: RegEx x Judge 1 .313 .607 .455 .52 1.07 

L: RegEx x Judge 1 .306 .679 .545 .600 .870 

S: RegEx x Judge 2 .428 .450 .585 .509 1.275 

I: RegEx x Judge 2 .362 .677 .452 .542 .882 

L: RegEx x Judge 2 .307 .713 .487 .579 .815 

S: Combo x Judge 1 .466 .479 .584 .526 1.508 

I: Combo x Judge 1 .365 .710 .446 .548 1.096 

L: Combo x Judge 1 .291 .809 .463 .589 .939 

S: Combo x Judge 2 .384 .482 .444 .462 1.312 
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I: Combo x Judge 2 .311 .633 .448 .524 .883 

L: Combo x Judge 2 .292 .772 .519 .620 .850 

Note. At the aggregate level, overall agreement values in the combination model match the values 

between humans more closely than either of the stand-alone models. 

 

Figure 8. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA in stringent thresholds. 
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Figure 9. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA in stringent thresholds. 
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Figure 10. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA in intermediate thresholds. 

 

 

 

 

 

Simulated Threshold Values for Optimizing F1: Judge 1 vs. LSA (I) 

F
1
 M

ea
su

re
 A

g
re

em
en

t 

Threshold Value 



62 

 

 

Figure 11. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA in intermediate thresholds. 
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Figure 12. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA in lenient thresholds. 

 

 

 

Simulated Threshold Values for Optimizing F1: Judge 1 vs. LSA (L) 

F
1
 M

ea
su

re
 A

g
re

em
en

t 

Threshold Value 



64 

 

 

Figure 13. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA in lenient thresholds. 
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Figure 14. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA/RegEx combination model in stringent thresholds. 
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Figure 15. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA/RegEx combination model in stringent thresholds. 
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Figure 16. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA/RegEx combination model in intermediate thresholds. 
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Figure 17. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA/RegEx combination model in intermediate thresholds. 
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Figure 18. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 1 and LSA/RegEx combination model in lenient thresholds. 
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Figure 19. F1 measure agreement simulated for a thousand values of the discrimination threshold 

between Judge 2 and LSA/RegEx combination model in lenient thresholds. 
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Appendix: B 

Annotated Python Code 

Codec-to-txt PDF Version/ Text Chunker/Corpus Writing Tool 

from urllib import request 

from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter 

from pdfminer.converter import TextConverter 

from pdfminer.layout import LAParams 

from pdfminer.pdfpage import PDFPage 

import re 

import urllib 

from bs4 import BeautifulSoup 

# the line below is for pulling a pdf from a link and downloading it to 

your python path folder. the pdf will be later converted to text and then 

modified and written to a text corpus. 

request.urlretrieve("http://www.rollanet.org/~n0klu/Ham_Radio/(eBook)%20Ele

ctronics%20-%20The%20Electrical%20Engineering%20Handbook.pdf", 

"download.pdf") 

## the 2 arguments given are ("direct link to pdf", "what you want to name 

the download (e.g. "download.pdf", "download13.pdf", "Fundamentals-of-

Electronics.pdf", etc.)") 

 

# this step is not necessary if you download a pdf manually and put it in 

the python path folder 

def pdf_to_txt(path): 
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    rsrcmgr = PDFResourceManager() 

    retstr = io.StringIO() 

    codec = 'utf-8' 

    laparams = LAParams() 

    device = TextConverter(rsrcmgr, retstr, laparams=laparams, 

imagewriter=None) 

    fp = open(path, 'rb') 

    interpreter = PDFPageInterpreter(rsrcmgr, device) 

    password = "" 

    maxpages = 0 

    caching = True 

    pagenos=set() 

    for page in PDFPage.get_pages(fp, pagenos, 

maxpages=maxpages,password=password,caching=caching, 

check_extractable=True): 

        interpreter.process_page(page) 

 

    text = retstr.getvalue() 

 

    fp.close() 

    device.close() 

    retstr.close() 

    return text 

text = pdf_to_txt("war-and-peace.pdf") # again, the name of the pdf that 

you want to convert to text 

print(text[:100]) 
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#text = convert_pdf_to_txt("war-and-peace.pdf")     

 

listt = [] 

for i in text.split('\n\n'): 

    listt.append(i) 

listylistt = [] 

listylisttlen = [] 

for i in listt: 

    listylisttlen.append(i) 

    listylistt.append([i]) 

 

listycleaned = [] 

for i in range(len(listylistt)):                   #getting rid of unwanted 

short paragraphs 

    if len(listylisttlen[i]) > 50: 

        listycleaned.append(listylistt[i]) 

#where i is the beginning of the body text, and where range is end of body 

text minus i:  

#                                here we say i=25(beginning of body text), 

and range(x)= 10779 (10804-25)         

i = 25        

for j in range(10779): 

    for value in listycleaned[i]: 

        i += 1 
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        f = io.open("foldy/TestCorpusWriter/snippet01_%s.txt" % i, 'w', 

encoding="utf-8")       ## change chunk name ('snippet01_01' becomes 

'snippet01_02') 

        f.write(value) 

        f.close() 

 

Codec-to-txt HTML Version/ Text Chunker/Corpus Writing Tool 

url = "https://olney.ai/neets-web/Mod01%20-%20Matter%20Energy%20and%20DC.pd

f-extracted/Mod01%20-%20Matter%20Energy%20and%20DC.pdf.xhtml-pretty.html" 

html = request.urlopen(url).read().decode('utf8') 

response = request.urlopen(url) 

raw = response.read().decode('utf8') 

splits = BeautifulSoup(html, 'html.parser').find_all('p') 

len(raw) 

listy= [] 

with open("paragraphsplit.txt","wb") as outfile: 

    for i in splits: 

        outfile.write(bytes(i.text+'\n', 'UTF-8')) 

        listy.append(i.text) 

         

listycleaned = [] 

for i in range(len(listy)):                   #getting rid of unwanted shor

t paragraphs 

    if len(listy[i]) > 140: 

        listycleaned.append(listy[i]) 
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print(listycleaned[90]) 

print(len(listycleaned)) 

for j in range(len([listycleaned])): 

    i = 0 

    for value in listycleaned: 

        i += 1 

        f = io.open("foldy/TestCorpusWriter/mod01_%s.txt" % i, 'w', encodin

g="utf-8")       ## change volume name ('mod01' becomes 'mod02'), chunk nam

e is 'mod01_01', 'mod01_02', etc. 

        f.write(value) 

        f.close() 

 

LSA Model Builder with Performance Metrics 

import sklearn.datasets as datasets            ##all imports used in the co

de 

import gensim.utils as gensimUtils 

import nltk  

from gensim import corpora 

from gensim import models 

import pandas as pd 

import scipy.spatial.distance as scipyDistance 

from gensim.test.utils import common_texts, get_tmpfile 

from gensim.models import Word2Vec 

import gensim.parsing.preprocessing as preprocessing 

from gensim.models import Phrases 
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import numpy as np 

from nltk.corpus import stopwords 

import re 

from gensim.models.doc2vec import TaggedDocument 

from gensim.models import Doc2Vec 

from sklearn.metrics.pairwise import cosine_similarity 

from sklearn.metrics import accuracy_score 

 

from nltk.tokenize import word_tokenize,sent_tokenize 

from nltk.stem import SnowballStemmer 

from gensim.models.doc2vec import LabeledSentence 

from nltk.metrics import scores 

from sklearn.metrics import confusion_matrix 

from nltk.tokenize import word_tokenize,sent_tokenize 

from sklearn.metrics import cohen_kappa_score 

from easy_table import EasyTable 

import sys 

 

sys.argv = [""] 

textCorpus = (datasets.load_files('NEETS-Electronics Corpus+Physics32k', sh

uffle=False)) #upload text corpus (46k total texts) best so far has been at 

46k texts 

 

ET=pd.read_csv('ETrespclean2.csv', encoding='latin1') #get data from studen

t responses set 

df = pd.DataFrame(ET)    #set ET as dataframe 
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dfIdeal = pd.DataFrame({'Gsentences': ET.GA}) #define ideal answers for tok

enization (good answers/Gans). 

dfIdeal['tokenized_sents'] = dfIdeal.apply(lambda row: nltk.word_tokenize(r

ow['Gsentences']), axis=1) 

dfStudent = pd.DataFrame({'Ssentences': ET.SA}) #define student answers for 

tokenization. 

dfStudent['tokenized_sents'] = dfStudent.apply(lambda row: nltk.word_tokeni

ze(row['Ssentences']), axis=1) 

Gans = dfIdeal['tokenized_sents'] ##renaming the 2 tokenized sent sets for 

ease. 

Sans = dfStudent['tokenized_sents'] 

GansDict = (dfIdeal['tokenized_sents'].to_dict)  #dictionary for tokenized 

sents 

SansDict = (dfStudent['tokenized_sents'].to_dict) 

 

tokenizedSentences = [(gensimUtils.simple_preprocess(i, deacc=True, min_len

=2, max_len=18)) for i in textCorpus.data] #tokenize text corpus to build/t

rain models on 

tokenizedGans = [(gensimUtils.simple_preprocess(i, deacc=True, min_len=1, m

ax_len=14)) for i in ET.GA] #tokenize Gans and Sans for use in w2v, w2vB, a

nd D2V models matching(LSA allows for unknown terms in tokenized strings. t

hese other models do not.) 

tokenizedSans = [(gensimUtils.simple_preprocess(i, deacc=True, min_len=1, m

ax_len=14)) for i in ET.SA] 
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tokenizedGansclean = []   #this is done for Gans only to remove answer labe

ls in the text (Gans:). labels like E1:, E2:, E3: etc. are removed in prepr

ocesssing 

for i in range(5166): 

    hehe = [] 

    for haha in tokenizedGans[i]: 

        if haha != 'gans': 

            hehe.append(haha) 

    tokenizedGansclean.append(hehe) 

 

englishStop = set(stopwords.words("english")) 

 

frequency = nltk.FreqDist(nltk.flatten(tokenizedSentences)) #frequency dist

ribution 

 

processedCorpus = [[i for i in j if frequency[i] > 1 and i not in englishSt

op] for j in tokenizedSentences]  

 

dictionary = corpora.Dictionary(processedCorpus) # building inverse documen

t frequency matrix to be used by the LSA model 

termdocMatrix = [dictionary.doc2bow(i) for i in processedCorpus] 

tfidf = models.TfidfModel(termdocMatrix) 

tfidfMatrix = tfidf[termdocMatrix] 

lsaPhys = models.LsiModel(tfidfMatrix, id2word=dictionary, num_topics=310) 

#LSA physics model with 200 topics/dimensions 

lsaSpacePhys = lsaPhys[tfidfMatrix] 
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lsaPhys.save("NEETS-ELECTRONICS+PHYSICS-LSAmodelv1.2-310") 

 

 

length = len(ET.GA)  

i = 0 

LSAlistylist = [] 

while i < length:                                                             

##cosine similarity for ideal answer and student response LSA model 

    try: 

        GansBow = dictionary.doc2bow(tokenizedGansclean[i]) 

        SansBow = dictionary.doc2bow(tokenizedSans[i]) 

        GansVector = pd.DataFrame(lsaPhys[GansBow], columns=['dim','val']) 

        SansVector = pd.DataFrame(lsaPhys[SansBow], columns=['dim','val']) 

        matchscore = scipyDistance.cosine(SansVector['val'], GansVector['va

l']) 

        j = (1 - matchscore) 

        LSAlistylist.append(j) 

        i += 1 

    except (ValueError, ZeroDivisionError): 

        b = 0 

        LSAlistylist.append(b) # do nothing!   

        i += 1 

        if RuntimeWarning:                      # these bad boys can surviv

e for miles without water. 

            pass 
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        for value in LSAlistylist:              # recodes string n/a into f

loat = 0 for missing values in LSA match scores 

            if value == 'n/a': 

                LSAistylist.append(value) 

LSAnum = [i for i in LSAlistylist]      #update entire set of cosine simila

rity scores for LSA model as a new column in dataframe  

LSAse = pd.Series(LSAnum)  

df['LSAp'] = LSAse.values 

 

LSA Model Loader 

lsaPhys = models.LsiModel.load("NEETS-ELECTRONICS+PHYSICS-LSAmodelv1.2-500"

) 

 

 

 

length = len(ET.GA)  

i = 0 

LSAlistylist = [] 

while i < length:                                                             

##cosine similarity for ideal answer and student response LSA model 

    try: 

        GansBow = dictionary.doc2bow(tokenizedGansclean[i]) 

        SansBow = dictionary.doc2bow(tokenizedSans[i]) 

        GansVector = pd.DataFrame(lsaPhys[GansBow], columns=['dim','val']) 

        SansVector = pd.DataFrame(lsaPhys[SansBow], columns=['dim','val']) 
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        matchscore = scipyDistance.cosine(SansVector['val'], GansVector['va

l']) 

        j = (1 - matchscore) 

        LSAlistylist.append(j) 

        i += 1 

    except (ValueError, ZeroDivisionError): 

        b = 0 

        LSAlistylist.append(b) # do nothing!   

        i += 1 

        if RuntimeWarning:                      # these bad boys can surviv

e for miles without water. 

            pass 

        for value in LSAlistylist:              # recodes string n/a into f

loat = 0 for missing values in LSA match scores 

            if value == 'n/a': 

                LSAistylist.append(value) 

LSAnum = [i for i in LSAlistylist]      #update entire set of cosine simila

rity scores for LSA model as a new column in dataframe  

LSAse = pd.Series(LSAnum)  

df['LSAp'] = LSAse.values 

 

Automated Model Simulation with Full Performance Metrics 

listStringentJudge1 = [] 

listStringentJudge1P = [] 

listStringentJudge1R = [] 
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ClistStringentJudge1 = [] 

ClistStringentJudge1P = [] 

ClistStringentJudge1R = [] 

i = 0 

for value in range(1000): 

    i += .001 

    Jthresh = []                        ##the next 8 for loops are about co

ding match values for human judges and computer models(LSA, LSA/RegEx Combo

) 

    for value in ET.J1:  

        if value == Jthreshv:  

            Jthresh.append(1)   

        else:  

            Jthresh.append(0)   

    LSAthresh = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthresh.append(1) 

        else:  

            LSAthresh.append(0) 

    RegExLSA = merge(RegExthresh, LSAthresh)           ##Very important. Us

ed for Judges either/or as well as LSA/RegEx combination thresholds. 

    Combothresh = [] 

    for value in RegExLSA: 

        if value[0] or value[1] == 1: 

            Combothresh.append(1) 
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        else: 

            Combothresh.append(0) 

 

  

    LSAcm = confusion_matrix(Jthresh, LSAthresh)  #confusion matrix to plug 

into precision and recall tool 

    tp = LSAcm[1,1] 

    tn = LSAcm[0,0] 

    p = (LSAcm[1,0] + LSAcm[1,1])                    ##LSA vs Judge 1 

    n = (LSAcm[0,0] + LSAcm[0,1]) 

    fp = LSAcm[1,0] 

    fn = LSAcm[0,1] 

# accuracy: (tp + tn) / (p + n) 

    accuracy = (tp + tn) / (p + n) 

# precision tp / (tp + fp) 

    precision = tp / (tp + fp) 

    # recall: tp / (tp + fn) 

    recall = tp / (tp + fn) 

# f1: 2 tp / (2 tp + fp + fn) 

    f1 = 2*tp / (2*tp + fp + fn) 

    listStringentJudge1.append((f1, i)) 

    listStringentJudge1P.append((precision, i)) 

    listStringentJudge1R.append((recall, i)) 

     

    Combocm = confusion_matrix(Jthresh, Combothresh)  #confusion matrix to 

plug into precision and recall tool 
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    Ctp = Combocm[1,1] 

    Ctn = Combocm[0,0] 

    Cp = (Combocm[1,0] + Combocm[1,1])                    ##Combo vs Judge 

1 

    Cn = (Combocm[0,0] + Combocm[0,1]) 

    Cfp = Combocm[1,0] 

    Cfn = Combocm[0,1] 

# accuracy: (tp + tn) / (p + n) 

    Caccuracy = (Ctp + Ctn) / (Cp + Cn) 

# precision tp / (tp + fp) 

    Cprecision = Ctp / (Ctp + Cfp) 

    # recall: tp / (tp + fn) 

    Crecall = Ctp / (Ctp + Cfn) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf1 = 2*Ctp / (2*Ctp + Cfp + Cfn) 

    ClistStringentJudge1.append((Cf1, i)) 

    ClistStringentJudge1P.append((Cprecision, i)) 

    ClistStringentJudge1R.append((Crecall, i)) 

     

listLenientJudge2P = [] 

listLenientJudge2R = [] 

listLenientJudge2 = [] 

ClistLenientJudge2P = [] 

ClistLenientJudge2R = [] 

ClistLenientJudge2 = [] 

i = 0 
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for value in range(1000): 

    i += .001 

    J2threshL = []  

    for value in ET.J2:  

        if value >= J2threshLv:  

            J2threshL.append(1)   

        else:  

            J2threshL.append(0)      

    LSAthreshL = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthreshL.append(1) 

        else:  

            LSAthreshL.append(0) 

    RegExLSAL = merge(RegExthreshL, LSAthreshL)           ##Very important. 

Used for Judges either/or as well as LSA/RegEx combination thresholds. 

    CombothreshL = [] 

    for value in RegExLSAL: 

        if value[0] or value[1] == 1: 

            CombothreshL.append(1) 

        else: 

            CombothreshL.append(0) 

         

 

    LSAcmL2 = confusion_matrix(J2threshL, LSAthreshL)  #confusion matrix to 

plug into precision and recall tool 



86 

 

    tpL2 = LSAcmL2[1,1] 

    tnL2 = LSAcmL2[0,0] 

    pL2 = (LSAcmL2[1,0] + LSAcmL2[1,1]) 

    nL2 = (LSAcmL2[0,0] + LSAcmL2[0,1]) 

    fpL2 = LSAcmL2[1,0] 

    fnL2 = LSAcmL2[0,1] 

# accuracy: (tp + tn) / (p + n) 

    accuracyL2 = (tpL2 + tnL2) / (pL2 + nL2) 

# precision tp / (tp + fp) 

    precisionL2 = tpL2 / (tpL2 + fpL2) 

    recallL2 = tpL2 / (tpL2 + fnL2) 

# f1: 2 tp / (2 tp + fp + fn) 

    f1L2 = 2*tpL2 / (2*tpL2 + fpL2 + fnL2) 

    listLenientJudge2.append((f1L2, i)) 

    listLenientJudge2P.append((precisionL2, i)) 

    listLenientJudge2R.append((recallL2, i)) 

     

    CombocmL2 = confusion_matrix(J2threshL, CombothreshL)  #confusion matri

x to plug into precision and recall tool 

    CtpL2 = CombocmL2[1,1] 

    CtnL2 = CombocmL2[0,0] 

    CpL2 = (CombocmL2[1,0] + CombocmL2[1,1]) 

    CnL2 = (CombocmL2[0,0] + CombocmL2[0,1]) 

    CfpL2 = CombocmL2[1,0] 

    CfnL2 = CombocmL2[0,1] 

# accuracy: (tp + tn) / (p + n) 
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    CaccuracyL2 = (CtpL2 + CtnL2) / (CpL2 + CnL2) 

# precision tp / (tp + fp) 

    CprecisionL2 = CtpL2 / (CtpL2 + CfpL2) 

    CrecallL2 = CtpL2 / (CtpL2 + CfnL2) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf1L2 = 2*CtpL2 / (2*CtpL2 + CfpL2 + CfnL2) 

    ClistLenientJudge2.append((Cf1L2, i)) 

    ClistLenientJudge2P.append((CprecisionL2, i)) 

    ClistLenientJudge2R.append((CrecallL2, i)) 

     

listLenientJudge1P = [] 

listLenientJudge1R = [] 

listLenientJudge1 = [] 

ClistLenientJudge1P = [] 

ClistLenientJudge1R = [] 

ClistLenientJudge1 = [] 

i = 0 

for value in range(1000): 

    i += .001 

    JthreshL = []                        ##the next 8 for loops are about c

oding match values for human judges and computer models in lenient threshol

ds. 

    for value in ET.J1:  

        if value >= JthreshLv:  

            JthreshL.append(1)   

        else:  
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            JthreshL.append(0)    

    LSAthreshL = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthreshL.append(1) 

        else:  

            LSAthreshL.append(0) 

    RegExLSAL = merge(RegExthreshL, LSAthreshL)           ##Very important. 

Used for Judges either/or as well as LSA/RegEx combination thresholds. 

    CombothreshL = [] 

    for value in RegExLSAL: 

        if value[0] or value[1] == 1: 

            CombothreshL.append(1) 

        else: 

            CombothreshL.append(0) 

 

    LSAcmL = confusion_matrix(JthreshL, LSAthreshL)  #confusion matrix to p

lug into precision and recall tool 

    tpL = LSAcmL[1,1] 

    tnL = LSAcmL[0,0] 

    pL = (LSAcmL[1,0] + LSAcmL[1,1]) 

    nL = (LSAcmL[0,0] + LSAcmL[0,1]) 

    fpL = LSAcmL[1,0] 

    fnL = LSAcmL[0,1] 

# accuracy: (tp + tn) / (p + n) 

    accuracyL = (tpL + tnL) / (pL + nL) 
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# precision tp / (tp + fp) 

    precisionL = tpL / (tpL + fpL) 

    recallL = tpL / (tpL + fnL) 

# f1: 2 tp / (2 tp + fp + fn) 

    f1L = 2*tpL / (2*tpL + fpL + fnL) 

    listLenientJudge1.append((f1L, i)) 

    listLenientJudge1P.append((precisionL, i)) 

    listLenientJudge1R.append((recallL, i)) 

    CombocmL = confusion_matrix(JthreshL, CombothreshL)  #confusion matrix 

to plug into precision and recall tool 

    CtpL = CombocmL[1,1] 

    CtnL = CombocmL[0,0] 

    CpL = (CombocmL[1,0] + CombocmL[1,1]) 

    CnL = (CombocmL[0,0] + CombocmL[0,1]) 

    CfpL = CombocmL[1,0] 

    CfnL = CombocmL[0,1] 

# accuracy: (tp + tn) / (p + n) 

    CaccuracyL = (CtpL + CtnL) / (CpL + CnL) 

# precision tp / (tp + fp) 

    CprecisionL = CtpL / (CtpL + CfpL) 

    CrecallL = CtpL / (CtpL + CfnL) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf1L = 2*CtpL / (2*CtpL + CfpL + CfnL) 

    ClistLenientJudge1.append((Cf1L, i)) 

    ClistLenientJudge1P.append((CprecisionL, i)) 

    ClistLenientJudge1R.append((CrecallL, i)) 
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listIntermediateJudge2 = [] 

listIntermediateJudge2P = [] 

listIntermediateJudge2R = [] 

ClistIntermediateJudge2 = [] 

ClistIntermediateJudge2P = [] 

ClistIntermediateJudge2R = [] 

i = 0 

for value in range(1000): 

    i += .001      

    J2threshI = []  

    for value in ET.J2:  

        if value >= J2threshIv:  

            J2threshI.append(1)   

        else:  

            J2threshI.append(0) 

    LSAthreshI = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthreshI.append(1) 

        else:  

            LSAthreshI.append(0) 

    RegExLSAI = merge(RegExthreshI, LSAthreshI)           ##Very important. 

Used for Judges either/or as well as LSA/RegEx combination thresholds. 

    CombothreshI = [] 
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    for value in RegExLSAI: 

        if value[0] or value[1] == 1: 

            CombothreshI.append(1) 

        else: 

            CombothreshI.append(0) 

 

    LSAcmI2 = confusion_matrix(J2threshI, LSAthreshI)  #confusion matrix to 

plug into precision and recall tool 

    tpI2 = LSAcmI2[1,1] 

    tnI2 = LSAcmI2[0,0] 

    pI2 = (LSAcmI2[1,0] + LSAcmI2[1,1]) 

    nI2 = (LSAcmI2[0,0] + LSAcmI2[0,1]) 

    fpI2 = LSAcmI2[1,0] 

    fnI2 = LSAcmI2[0,1] 

# accuracy: (tp + tn) / (p + n) 

    accuracyI2 = (tpI2 + tnI2) / (pI2 + nI2) 

# precision tp / (tp + fp) 

    precisionI2 = tpI2 / (tpI2 + fpI2) 

# recall: tp / (tp + fn) 

    recallI2 = tpI2 / (tpI2 + fnI2) 

# f1: 2 tp / (2 tp + fp + fn) 

    f1I2 = 2*tpI2 / (2*tpI2 + fpI2 + fnI2) 

    listIntermediateJudge2.append((f1I2, i)) 

    listIntermediateJudge2P.append((precisionI2, i)) 

    listIntermediateJudge2R.append((recallI2, i)) 
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    CombocmI2 = confusion_matrix(J2threshI, CombothreshI)  #confusion matri

x to plug into precision and recall tool 

    CtpI2 = CombocmI2[1,1] 

    CtnI2 = CombocmI2[0,0] 

    CpI2 = (CombocmI2[1,0] + CombocmI2[1,1]) 

    CnI2 = (CombocmI2[0,0] + CombocmI2[0,1]) 

    CfpI2 = CombocmI2[1,0] 

    CfnI2 = CombocmI2[0,1] 

# accuracy: (tp + tn) / (p + n) 

    CaccuracyI2 = (CtpI2 + CtnI2) / (CpI2 + CnI2) 

# precision tp / (tp + fp) 

    CprecisionI2 = CtpI2 / (CtpI2 + CfpI2) 

    CrecallI2 = CtpI2 / (CtpI2 + CfnI2) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf1I2 = 2*CtpI2 / (2*CtpI2 + CfpI2 + CfnI2) 

    ClistIntermediateJudge2.append((Cf1I2, i)) 

    ClistIntermediateJudge2P.append((CprecisionI2, i)) 

    ClistIntermediateJudge2R.append((CrecallI2, i)) 

 

 

listIntermediateJudge1 = [] 

listIntermediateJudge1P = [] 

listIntermediateJudge1R = [] 

ClistIntermediateJudge1 = [] 

ClistIntermediateJudge1P = [] 

ClistIntermediateJudge1R = [] 
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i = 0 

for value in range(1000): 

    i += .001      

    JthreshI = []                        ##the next 8 for loops are about c

oding match values for human judges and computer models in intermediate thr

esholds. 

    for value in ET.J1:  

        if value >= JthreshIv:  

            JthreshI.append(1)   

        else:  

            JthreshI.append(0)  

    LSAthreshI = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthreshI.append(1) 

        else:  

            LSAthreshI.append(0)  

    RegExLSAI = merge(RegExthreshI, LSAthreshI)           ##Very important. 

Used for Judges either/or as well as LSA/RegEx combination thresholds. 

    CombothreshI = [] 

    for value in RegExLSAI: 

        if value[0] or value[1] == 1: 

            CombothreshI.append(1) 

        else: 

            CombothreshI.append(0) 
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    LSAcmI = confusion_matrix(JthreshI, LSAthreshI)  #confusion matrix to p

lug into precision and recall tool 

    tpI = LSAcmI[1,1] 

    tnI = LSAcmI[0,0] 

    pI = (LSAcmI[1,0] + LSAcmI[1,1]) 

    nI = (LSAcmI[0,0] + LSAcmI[0,1]) 

    fpI = LSAcmI[1,0] 

    fnI = LSAcmI[0,1] 

# accuracy: (tp + tn) / (p + n) 

    accuracyI = (tpI + tnI) / (pI + nI) 

# precision tp / (tp + fp) 

    precisionI = tpI / (tpI + fpI) 

# recall: tp / (tp + fn) 

    recallI = tpI / (tpI + fnI) 

    # f1: 2 tp / (2 tp + fp + fn) 

    f1I = 2*tpI / (2*tpI + fpI + fnI) 

    listIntermediateJudge1.append((f1I, i)) 

    listIntermediateJudge1R.append((recallI, i)) 

    listIntermediateJudge1P.append((precisionI, i)) 

     

    CombocmI = confusion_matrix(JthreshI, CombothreshI)  #confusion matrix 

to plug into precision and recall tool 

    CtpI = CombocmI[1,1] 

    CtnI = CombocmI[0,0] 

    CpI = (CombocmI[1,0] + CombocmI[1,1]) 

    CnI = (CombocmI[0,0] + CombocmI[0,1]) 
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    CfpI = CombocmI[1,0] 

    CfnI = CombocmI[0,1] 

# accuracy: (tp + tn) / (p + n) 

    CaccuracyI = (CtpI + CtnI) / (CpI + CnI) 

# precision tp / (tp + fp) 

    CprecisionI = CtpI / (CtpI + CfpI) 

    CrecallI = CtpI / (CtpI + CfnI) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf1I = 2*CtpI / (2*CtpI + CfpI + CfnI) 

    ClistIntermediateJudge1.append((Cf1I, i)) 

    ClistIntermediateJudge1P.append((CprecisionI, i)) 

    ClistIntermediateJudge1R.append((CrecallI, i)) 

     

     

listStringentJudge2R = [] 

listStringentJudge2P = [] 

listStringentJudge2 = [] 

ClistStringentJudge2R = [] 

ClistStringentJudge2P = [] 

ClistStringentJudge2 = [] 

i = 0 

for value in range(1000): 

    i += .001 

    J2thresh = []  

    for value in ET.J2:  

        if value == J2threshv:  
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            J2thresh.append(1)   

        else:  

            J2thresh.append(0)     

    LSAthresh = []  

    for value in df['LSAp']:  

        if value >= i:  

            LSAthresh.append(1) 

        else:  

            LSAthresh.append(0) 

    RegExLSA = merge(RegExthresh, LSAthresh)           ##Very important. Us

ed for Judges either/or as well as LSA/RegEx combination thresholds. 

    Combothresh = [] 

    for value in RegExLSA: 

        if value[0] or value[1] == 1: 

            Combothresh.append(1) 

        else: 

            Combothresh.append(0) 

 

    LSAcm2 = confusion_matrix(J2thresh, LSAthresh)  #confusion matrix to pl

ug into precision and recall tool 

    tp2 = LSAcm2[1,1] 

    tn2 = LSAcm2[0,0] 

    p2 = (LSAcm2[1,0] + LSAcm2[1,1])                    ##LSA vs Judge 2 

    n2 = (LSAcm2[0,0] + LSAcm2[0,1]) 

    fp2 = LSAcm2[1,0] 

    fn2 = LSAcm2[0,1] 
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# accuracy: (tp + tn) / (p + n) 

    accuracy2 = (tp2 + tn2) / (p2 + n2) 

# precision tp / (tp + fp) 

    precision2 = tp2 / (tp2 + fp2) 

# recall: tp / (tp + fn) 

    recall2 = tp2 / (tp2 + fn2) 

# f1: 2 tp / (2 tp + fp + fn) 

    f12 = 2*tp2 / (2*tp2 + fp2 + fn2) 

    listStringentJudge2.append((f12, i)) 

    listStringentJudge2R.append((recall2, i)) 

    listStringentJudge2P.append((precision2, i)) 

 

    Combocm2 = confusion_matrix(J2thresh, Combothresh)  #confusion matrix t

o plug into precision and recall tool 

    Ctp2 = Combocm2[1,1] 

    Ctn2 = Combocm2[0,0] 

    Cp2 = (Combocm2[1,0] + Combocm2[1,1])                    ##Combo vs Jud

ge 1 

    Cn2 = (Combocm2[0,0] + Combocm2[0,1]) 

    Cfp2 = Combocm2[1,0] 

    Cfn2 = Combocm2[0,1] 

# accuracy: (tp + tn) / (p + n) 

    Caccuracy2 = (Ctp2 + Ctn2) / (Cp2 + Cn2) 

# precision tp / (tp + fp) 

    Cprecision2 = Ctp2 / (Ctp2 + Cfp2) 

    # recall: tp / (tp + fn) 
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    Crecall2 = Ctp2 / (Ctp2 + Cfn2) 

# f1: 2 tp / (2 tp + fp + fn) 

    Cf12 = 2*Ctp2 / (2*Ctp2 + Cfp2 + Cfn2) 

    ClistStringentJudge2.append((Cf12, i)) 

    ClistStringentJudge2P.append((Cprecision2, i)) 

    ClistStringentJudge2R.append((Crecall2, i)) 
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