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PREFACE 

 This chapter has been formatted in the style of the Journal of the American Water 

Resources Association (JAWRA), to which the present work will be submitted for 

publication. 
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ABSTRACT 

 Inter-aquifer exchanges due to breaches in the confining clay layer can potentially 

contaminate the Memphis aquifer, as lesser-quality waters permeate from the unconfined 

aquifer. Losing river reaches could indicate breach locations, as these should depress water-

table levels locally, resulting in downward vertical exchange fluxes (VEFs) along nearby 

streambeds. A spatial analysis of seepage meter measurements performed along the Wolf 

River identified three potentially losing sub-reaches, where VEFs were studied at a finer 

scale, using multiple point-scale methods. Results were mixed, displaying large spatial 

variability, possibly due to mismatches between the process and observation scales. 

Differential stream gaging was conducted to assess losses integrally over sub-reaches, 

confirming one losing location; however, comparing groundwater river stages suggested 

gaining conditions at this location. Pinpointing losing reaches using point-scale methods is 

difficult due to the disparity of scales. Effective methodologies are needed that comply with 

the scale of the problem. 
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INTRODUCTION 

Groundwater is a major source of water for domestic, municipal and industrial use in 

the United States, with an estimated use of 311.5 billion liters per day of fresh groundwater in 

2015 (Dieter et al., 2018). The growing use of groundwater has increased the vulnerability of 

aquifers to contamination, raising concerns about the need to protect groundwater from 

potential pollution sources, as is the case in Shelby County, Tennessee. The Memphis aquifer 

(the confined unit) is the primary source of drinking water for the Memphis metropolitan 

area, providing about 95% of the water used in the city (Graham and Parks, 1986; Parks and 

Carmichael, 1990). The Memphis aquifer is confined by the protective Upper Claiborne 

confining unit (UCCU), an extensive, thick clay layer that separates it from the overlying 

unconfined aquifer. An important issue is that there are discontinuities or breaches in the 

UCCU that allow for water exchange with the unconfined aquifer (Graham and Parks, 1986; 

Parks, 1990; Larsen et al., 2003). This could potentially threaten the water quality of the 

Memphis aquifer due to downward migration of water from contaminated sites in Shelby 

County. 

The Memphis aquifer, referred to as the “500-foot sand” in earlier studies (e.g., 

Nyman 1965), is a semi-confined aquifer which covers approximately 19166 km2 in the Gulf 

Coastal Plain of western Tennessee (Parks and Carmichael, 1990). It is part of the Mississippi 

Embayment aquifer system which consists of very fine to very coarse sand of Cretaceous, 

Tertiary, and Quaternary ages, with individual aquifers ranging from 0 to 274 m in thickness 

(Graham and Parks, 1986; Parks, 1990). As described in Parks (1990) and many other works, 

the UCCU separates the Memphis aquifer from the overlying unconfined aquifer, whereas the 

Flour Island formation lies deeper, between the Memphis and the Fort Pillow aquifers, as 

shown in Figure 1. 
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In the Memphis area, the unconfined aquifer predominantly consists of alluvium and 

fluvial deposits (Graham and Parks, 1986). It used to be a source of water for many domestic, 

farm, and irrigation wells in the Memphis area, but due to the poor water quality, it is not in 

use as a major water source (Graham and Parks, 1986). The unconfined aquifer is recharged 

from infiltration and subsequent percolation of rainwater. It is hydrologically connected to 

the local streams and also gets some recharge from these watercourses during floods or high 

stage periods (Brahana and Broshears, 2001; Graham and Parks, 1986). The unconfined 

aquifer contributes a significant amount of water to streams in Shelby County, during low 

flow periods. 

 

Figure 1. Cross-section of the Mississippi embayment stratigraphy (Source: Carmichael et al., 
2018) 

The UCCU consists of clay, silt, fine sand, and lignite. It has a significantly low 

hydraulic conductivity, that restricts inter-aquifer water exchange (Graham and Parks, 1986). 

Historically,  the UCCU has been assumed to be of sufficiently thickness and impermeability 
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so as to protect the Memphis aquifer from contamination (Parks, 1990). But various studies 

since the 1960s suggest that there is exchange of water between the unconfined aquifer and 

the Memphis aquifer, due to discontinuities in this confining layer. The investigation of 

Graham and Parks (1986) indicates the presence of relatively recent water in the upper part of 

the Memphis aquifer, as well as recent precipitation water in the Memphis aquifer near the 

Sheahan well field, located in the Normal Station neighborhood of Memphis. Larsen et al. 

(2013) investigated the flow paths from Nonconnah Creek, a stream which flows through 

Memphis, to the Sheahan well field, through the study of stream discharge and hydraulic 

head data, tracer studies, and geochemical modeling. They concluded that some water flows 

from Nonconnah Creek to the unconfined aquifer, and ultimately to the Memphis aquifer in 

the Sheahan well field area. Larsen et al. (2016) also found the presence of relatively younger 

water (< 60 years) in the upper part of the Memphis aquifer, from age-dating of local 

production wells. 

According to Criner et al. (1964), the upper confining unit is thin or absent in some 

places in the Memphis area, allowing for inter-aquifer exchange of water; this is also 

supported by more recent studies (Graham and Parks, 1986; Parks, 1990; Gentry et al., 2006; 

Waldron et al., 2009). Graham and Parks (1986) compiled and investigated isotope and 

geothermal data, water levels in the unconfined aquifer, as well as information from 

geophysical well logs. They concluded that there are at least four locations where the 

confining layer is thin or absent, providing their coordinates. Parks (1990) presents a map of 

the approximate distribution of breaches in the UCCU (Figure 2), obtained by investigating 

the thickness of the UCCU, anomalous depressions in the water table, tracer concentrations in 

water obtained from the Memphis aquifer, and series of discharge measurements in local 

streams during low flow conditions. Larsen (personal comm.) updated the map provided by 

Parks (1990) with information obtained from more recent studies. They classify breaches in 
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three categories: confirmed windows (breaches), probable windows, and potential windows, 

based on the amount of known information for each breach. Moreover, many other studies 

give information about anomalous depressions in the water table, which could signal the 

location of potential breaches (e.g., Narsimha, 2007; Bradshaw, 2011; Ogletree, 2016; Smith, 

2018). 

 

Figure 2. Map of the study area in Memphis (Shelby Co., Tennessee) highlighting rivers, 
wellfields, and showing breaches in the UCCU, and the unconfined zone of the Memphis 

aquifer as mapped by Parks (1990). 

Depressions in the water table, as seen in water table maps of the unconfined aquifer, 

could correspond to probable breach locations, unless there are nearby high capacity 

production wells screened in the unconfined aquifer (Graham and Parks, 1986; Parks, 1990; 

Narsimha, 2007; Bradshaw, 2011; Gallo, 2015). Many such previous studies provide maps 

showing the probable location of the breaches. Most probably, previous studies do not 

provide enough information about all existing breaches in Shelby County, so that there are 

likely more breaches than those that have been mapped (Waldron et al., 2009). There is a 
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need to locate these breaches for the sustainable management and protection of the Memphis 

aquifer including future land-use decisions, selection of sites for new well fields or landfills, 

and monitoring existing contaminated sites. 

To locate breaches, it would be expensive and not very pragmatic to drill a large 

number of observation wells covering the whole county. Comparatively less expensive than 

drilling many exploratory holes, geophysical methods have been used in Shelby County to 

map breaches (Waldron et al., 2009).  However, a limiting factor for using these geophysical 

methods more throughout Shelby County is the density of urbanization that restricts access 

and produce significant background noise. It is thus necessary to develop additional 

methodologies to locate any unknown breaches and better characterize those that are already 

known or suspected.  This research uses groundwater-surface water interactions to identify 

the potential location of breaches located in the proximity of the Wolf River.  

During high flow conditions, streams contribute directly to an underlying unconfined 

aquifer (Brunke and Gonser, 1997). In contrast, groundwater is the primary source of river 

discharge in low flow conditions (Brunke and Gonser, 1997; Sophocleous, 2002). When the 

river stage is lower than the groundwater table, as is typical during the low-flow season, 

water will flow from the aquifer to the stream. However, the presence of a cone of depression 

in the water table near a stream could cause a decreased contribution from the aquifer or 

could even result in water flowing in the opposite direction, therefore, from stream to the 

aquifer (Brunke and Gonser, 1997; Sophocleous, 2002). For this reason, detecting reaches 

where a stream loses water during the low-flow period could help in identifying locations 

where the water table is locally depressed. In the case of Shelby County, cones in the water 

table should only occur either due to the presence of high capacity production wells or else to 

breaches that allow water to flow towards the deeper aquifer. Therefore, our research 

hypothesis is that locating losing reaches along a stream, under low-flow conditions, at 
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locations that are far from the influence of any pumping station, can help inform the probable 

location of nearby confining unit breaches. 

The objectives of this research are: 

1. To locate losing reaches along the Wolf River during low-flow condition at a 

coarse scale. 

2. To investigate spatial patterns of vertical exchange flux to locate potential nearby 

breaches in the UCCU. 

3. To compare the location(s) of any breach(es) located along the Wolf River with 

those described in the literature (Graham and Parks 1986; Parks 1990). 

4. To better understand the variability of groundwater-surface water interactions 

over different spatial scales. 

5. To compare different techniques (seepage meters, temperature sensors, 

piezometer, and differential stream gaging) for investigating groundwater-surface 

water interactions. 

QUANTIFYING GROUNDWATER-SURFACE WATER INTERACTIONS 

Historically, people considered groundwater (GW) and surface-water (SW) bodies to 

be different entities, and many GW-SW investigations were conducted assuming such 

condition. However, GW and SW bodies are hydrologically connected and act as a single 

resource (Winter et al., 1998), so that changes in groundwater quantity and quality affect 

surface waters, and vice versa. Because the sustainability and protection of both types of 

water bodies requires understanding such reciprocal effects, the topic of GW-SW interactions 

is gaining much attention. 

To successfully understand the interaction between GW and SW, one needs to 

quantify the direction and magnitude of the vertical exchange fluxes through streambeds. 
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However, such fluxes display a large temporal and spatial variability (Krause and Bronstert, 

2007; Wang et al., 2017), so that their characterization is challenging (Kalbus et al., 2006). 

Various well-known techniques can be used for estimating the fluxes between groundwater 

and surface water, such as Darcy flux calculations, vertical temperature gradients, stream 

tracer experiments, differential stream gaging, seepage meters, and numerical modeling. 

Kalbus et al. (2006) stress that these have different resolutions, uncertainties, and limitations, 

so that the choice of an appropriate method depends entirely on the purpose of the 

investigation. Kalbus et al. (2006) and Rosenberry and LaBaugh (2008) discuss various field 

techniques to quantify GW-SW interactions, describing their advantages and issues. 

For this research, seepage meters were initially used to get the general direction of the 

vertical exchange flux in the streambed, due to their simplicity and cost-effectiveness. Kalbus 

et al. (2006) suggest the use of multiple techniques at a single study area to give a better 

picture of the actual scenario. However, because it was not feasible to use multiple point-

scale methods over the whole study reach, different techniques were compared only for those 

sub-reaches identified as losing in the preliminary screening. At the losing sub-reaches, 

piezometers were installed to calculate vertical hydraulic gradients and temperature sensors 

(iButtons) were deployed to measure temperature within the streambed, while simultaneously 

collecting data with seepage meters. Later, differential stream gaging was conducted to obtain 

integral assessments of stream discharge at the sub-reach scale, which were then compared to 

results from point-scale methods. 

Seepage Meters 

Seepage meters are a simple, direct, and cost-effective method to quantify GW-SW 

exchanges at the GW-SW interface (Rosenberry, 2008), and many studies of groundwater 

interaction with streams have been conducted with them (Lee and Hynes, 1978; Libelo and 

MacIntyre, 1994; Blanchfield and Ridgway, 1996; Cey et al., 1998; Landon et al., 2001). The 
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idea behind seepage meters was initially developed in the 1940s to quantify water loss from 

unlined irrigation canals (Israelsen and Reeve, 1944). Lee (1977) designed a seepage meter 

with a cylinder vented to a plastic bag and tested it in the laboratory. He observed a linear 

relationship between the measured seepage flux and an experimentally controlled hydraulic 

gradient. Lee’s (1977) seepage meter can be used to measure the seepage flux in the bed of 

lakes and estuaries. Since then, seepage meters have been used in many studies to estimate 

vertical fluxes in beds of wetlands, lakes, ponds, estuaries, and oceans (Fellows and 

Brezonik, 1980; Lewis, 1987; Shaw and Prepas, 1990; Murdoch and Kelly, 2003). 

Conventional seepage meters can give erroneous result when used in streambeds, due 

to the velocity head of the flowing water, seepage bag conductance, and effects caused by the 

geometry of the seepage bucket (Murdoch and Kelly, 2003). Rosenberry (2008) adjusted the 

traditional seepage meter design for application in running waters. He tested his device, 

concluding that seepage meters can still give erroneous values if not positioned correctly, due 

to current velocity. Thus, seepage meter measurements are less accurate in flowing water 

than in non-flowing conditions. Furthermore, they only provide a point-scale measurement, 

which can be difficult to upscale due to the large spatial variability of streambed properties 

(Calver, 2001; Kennedy et al., 2010). 

Differential Stream Gaging   

Differential stream gaging is a widely used larger-scale technique to quantify net 

exchanges between groundwater and surface water (Cey et al., 1998). The difference in 

discharge measured at two locations along the stream provides the net groundwater inflow or 

outflow, as long as contributions from surface runoff and tributaries are negligible between 

the points (McCallum et al., 2012). According to McCallum et al. (2012), this method is 

feasible when the potential error in the discharge measurement is significantly lower than the 

discharge in the stream. Cey et al. (1998) used detailed streamflow measurements to estimate 
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vertical fluxes in the streambed during a baseflow period. They pointed out that even if the 

discharge is significantly higher than the error, it is difficult to quantify the net vertical flux 

over short distances, where the measured differences in streamflow will often be smaller than 

the error in measuring the flow. 

One way of solving this issue is to adjust the distance so that the measured difference 

is higher than the error; another is to measure the discharge as accurately as possible, to 

minimize the error. The most reliable instrument to measure point velocities over a cross-

section is the individually-calibrated mechanical current meter. Under wadable, low-flow and 

steady-state conditions, the accuracy of a discharge measurement performed with a current-

meter depends on the performance of the instrument and the number and quality of 

observations of depth and velocity made at the given cross-section (Carter and Anderson, 

1963). According to Carter and Anderson (1963), all errors, except instrumental ones, can be 

reduced by increasing the number of observation points in the section, but it is difficult to 

justify the added costs. Discharge is computed using the velocity-area method, as a linear 

sum of flow velocity over the channel cross-section (Le Coz et al., 2012). 

Mini Piezometers 

Mini-piezometers are easy-to-construct, cost-effective, small-dimension observation 

wells, often used to measure the vertical hydraulic gradient between groundwater and a 

surface-water body such as a stream or lake. The observed groundwater piezometric head 

from the mini-piezometer is compared with the surface-water level to obtain direction and 

hydraulic gradient of water flow near the GW-SW interface. There are various types of 

piezometers made with a solid pipe or flexible tube, but all are functionally the same. The 

choice of material depends on the situation in the field, the scale of the measurement, and 

cost aspects. 
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The main drawback of using mini-piezometers relates to the inherent difficulties in 

measuring a small hydraulic head difference. Thus, mini-piezometers are often combined 

with manometers to increase measuring accuracy (Lee and Cherry, 1979; Winter et al., 1988; 

Baxter et al., 2003) but it can still be difficult to resolve the minute hydraulic head 

differences that often occur in fine streambeds (Kennedy et al., 2007). In addition, the 

manometer adds more complications and problems due to leaks between connections and gas 

bubbles from groundwater (Kennedy et al., 2007). Kennedy et al. (2007) designed mini-

piezometers with an oil-water manometer to solve some of the issues with conventional 

manometers, but these are expensive to use on a large scale. 

Temperature Sensors 

When water is exchanged between ground and surface waters, there is also a flux of heat 

between these water bodies (Bouyoucos, 1915). Many studies (Silliman and Booth, 1993; 

Silliman et al., 1995; Anderson, 2005; Constantz and Stonestrom, 2003) have used heat as a 

tracer for estimating GW-SW exchange. Usually, the groundwater temperature does not 

fluctuate much but the surface water temperature has both diel and seasonal cycles. 

Measuring temperature at different depths, in order to obtain the vertical temperature profile 

in the streambed, can give an indication of the nature of the flux (Becker et al., 2004; Essaid 

et al., 2008). In a gaining stream, the temperature profile of the streambed is more influenced 

by the temperature of the groundwater, whereas in a losing stream, the temperature along the 

profile will be more similar to that of surface water (Essaid et al., 2008) as shown in Figure 3. 

Hence, one should expect that the temperature at depth fluctuates less in gaining conditions, 

and more in losing conditions. In this research, temperature sensors (iButtons) were used to 

measure the temperature at different depths in the streambed, in order to identify the direction 

of the vertical streambed flux. 
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Figure 3. Expected streambed temperature profile for (A) a neutral stream, (B) a gaining 
stream, and (C) a losing stream (Source: Essaid et al. 2008) 

SITE DESCRIPTION 

Our study reach covers 49 km of the lower Wolf River, which is a tributary of the 

Mississippi River that flows westward through Shelby County, Tennessee. The spring-fed 

Wolf River has its headwater in Holly Springs National Forest, Mississippi, and is 169 km 

long. The 2110 km2 watershed of the Wolf River lies in west Tennessee with a sizeable 

portion in north Mississippi (Figure 4). The channel of the Wolf River consists of loose 

unconsolidated alluvium, whereas its flood plain is composed of Holocene, saturated, 

unconsolidated sand overlain by clayey silt (Broughton et al., 2001). The Wolf River 

watershed is within a humid-temperate climate, with a rainy season occurring from October 

to March and a dry season from April to September. 



12 
 

 

Figure 4. Map of the study area in Shelby Co., Tennessee, highlighting the research reach on the Wolf River, and depicting its watershed 
and the Mississippi Embayment.
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The 50 years of daily discharge records at gage “USGS 07031650 Wolf River at 

Germantown, TN,” located at the Germantown Parkway bridge, show a typical low-flow 

season discharge of around 6 m3/s, while the highest peak flow recorded was 946 m3/s. The 

Wolf River stage changes dramatically during and immediately following rainfall event, as 

shown in Figure 5. The data were collected during the dry season (July 2019 to October 

2019). The minimum stage was 0.83 m, whereas the maximum reached a value of 5.10 m. 

 

Figure 5. Stage height at gage “USGS 07031650 Wolf River at Germantown, TN” (July 2019 
to October 2019) during the study period 

Since 1964, the lowest 35.4 km of the Wolf River have been channelized to decrease 

flooding, and the floodplain breadth has been reduced by about 50% due to filling and land 

development (Van Arsdale et al., 2003; Yates et al., 2003). These changes in the dimension 

of the channel and floodplain have increased the water velocity, cross-sectional area, and 

conveyance capacity (Van Arsdale et al., 2003). Yates et al. (2003) mention that the 

entrenchment of the Wolf River and its flood plain may have enhanced the connectivity 

between Wolf River surface water and the underlying aquifer, which increases the potential 

for its contamination.
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APPROACH AND METHODS 

This study of GW-SW interactions to identify breach locations comprised three 

phases. As the first phase was expected to cover the full 49 km reach of the Wolf River 

within Shelby County, we focused on a cost- and time-effective methodology. Further 

resources then went into the more robust methods (Ott current meters and drilling) used in the 

second and third phases, at finer scales. The first phase sampled the full 49 km reach along 

the lower Wolf River using cost-effective seepage meters at a spacing of 100 m. Its results 

offered a better idea of those sub-reaches where the Wolf River could potentially be losing 

water. In the second phase, losing areas identified in the first phase were examined at a finer 

scale using multiple techniques such as seepage meters, piezometers, temperature sensors and 

differential stream gaging. In the final third phase, water levels of the Wolf River, the 

unconfined aquifer, and the confined Memphis aquifer in those losing areas were monitored 

to confirm the potential presence of a breach nearby. 

First Phase: Full Reach Scale 

Identifying the best method for investigating GW-SW interactions along a 49 km-long 

river reach is challenging. Seepage meters and piezometers were chosen as the best 

candidates for this first phase, due to their simplicity, directness, cost-effectiveness, and the 

fact that they are easier to construct and deploy in the field. However, seepage meters 

measure the cumulative flux of water over a sampling duration, which makes it easier to infer 

losing or gaining conditions, as compared with piezometers. The expected head differences 

are very small in sand-bed streams such as the Wolf River, so it can be challenging to 

discriminate them from the velocity-head effects around the pipe. This was the case in a 

previous local study by Pickett (2012), who found that head differences were so minute that a 

laser with 0.1 mm accuracy was required to measure them. For this reason, seepage meters 
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were selected for the study’s first phase, in an attempt to obtain a broader scale evaluation of 

losing segments along the Wolf River. 

Seepage meters measure vertical exchange fluxes near the GW-SW interface 

(Rosenberry, 2008). The direction and magnitude of the vertical exchange flux at the riverbed 

are obtained by comparing the amount (weight) of water gained or lost by the seepage bag 

between the times of deployment and pickup. A positive difference (seepage bag gains 

weight) reflects a gaining condition, whereas a negative difference (seepage bag loses 

weight) indicates a losing condition. 

Design. The cost-effective seepage meter design included a seepage bucket, a seepage 

bag (catheter bag) with a valve, and a housing or shelter for the bag (Figure 6). A 5-gallon 

bottom-cut bucket was used as a seepage bucket; its top was sealed with a lid, while the 

bottom remained open. The lid had a hole with a tightly closing rubber seal to facilitate 

passage of the seepage bag tube, which in turn lead to a 2000 ml catheter bag. The tip of the 

catheter bag tube was fitted with a barb-ball valve to start or close the flow. The catheter bag 

was initially filled with a known starting mass (about 1000 g) of water, to eliminate any 

anomalous initial gain while connecting the catheter bag to the seepage bucket ( Shaw and 

Prepas, 1989; Blanchfield and Ridgway, 1996; Rosenberry, 2008).  The catheter bags were 

checked for any possible leak by comparing their weights before and after a 12-hour interval, 

and any identified punctures were fully sealed. Another 5-gallon bucket was used as a shelter 

for the seepage bag; it contained a few holes so that water could freely enter or leave, without 

changes in pressure, in response to the changing volume of the bag. This shelter was used to 

eliminate velocity impacts of the stream on the bag (Rosenberry, 2008). A total of 90 seepage 

meters were constructed for this study.  

General Seepage Meter Installation Process. First, the open-bottom seepage bucket 

was pushed about 10 in (25 cm) into the riverbed, ensuring that there was no air trapped 
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inside. Care was taken to ensure a good seal between bucket and lid, and bucket and 

sediment. Some riverbed material was placed inside the shelter bucket, so that it could not get 

dislodged by the impinging flow, and it was then placed in the lee of the seepage bucket. The 

catheter bag was placed inside the shelter bucket, and its lid was closed so that the bag could 

not float away. The shelter bucket was placed immediately downstream of the seepage 

bucket. Then, the green tip of the catheter bag tube was connected to the seepage bucket 

through the rubber seal in its lid, and the valve was opened. The seepage bag was sampling 

from that moment on.  

 

Figure 6. Seepage meter design and installation. 

Data Collection. All known access points to the Wolf River were identified during 

preliminarily and field visits were performed to collect information about their condition for 

safe and easy access. Considering all available access points as well as number of 

deployment sites, the full 49 km-long reach of the Wolf River within Shelby County was 

mapped and divided into a series of sub-reaches, each with defined entry and exit points, so 

that each one could be covered in one day. The seepage meter deployment was performed 
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using three teams – reconnaissance team, deployment team, and pick-up team - with two 

canoes per team. 

Before deployment, all individualized catheter bags were filled with an initial weight 

of water (about 1000 g) and their valve was closed, ensuring there was no air trapped inside 

the bag or its tube. The first, “recon” team, located each deployment point (at 100 m spacing) 

using ESRI’s collector mobile app which was preloaded with the coordinates of each point. 

They installed pre-flagged, and pre-taped bamboo poles as visual markers, and then recorded 

the geomorphic setting, such as type of riverbed material, river morphology, water depth, 

etc., of the river at each position. The deployment team started floating downriver after the 

recon team, carrying the pre-filled and pre-weighed catheter bags, seepage buckets, shelter 

buckets, and all required equipment. No farther than a few feet from each flagged bamboo 

pole, they installed a seepage meter at a location where the flow depth was sufficient to fully 

submerge all of its parts, recording installation time, bag number, and location number. The 

pick-up team started floating down one hour after deployment, to allow for the seepage 

measurement time to be at least one hour. Before checking the status of the seepage meter, 

the valve was closed, then the team removed everything from the deployment location, 

documenting the time of recovery, the bag number, and the location number in their 

observation sheet. 

Once on land, all recovered bags were immediately weighed. The difference in water 

content before and after the installation was then used to calculate the gain or loss at each 

location, which was mapped in ArcGIS. It took 12 full days of fieldwork to complete the first 

phase of this research. 

Second Phase: Sub-Reach Scale 

After conducting the first phase, gain or loss were mapped at every 100 m, along the 

full 49 km of the lower Wolf River. The map was compared and analyzed in light of available 
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information from the literature (Parks 1990; Narsimha 2007; Ogletree 2016). Sample 

statistics were computed, and the gain/loss data were plotted on maps to check for any 

obvious spatial patterns. In order to account for the possible influence of background overall 

gaining conditions along the reach, which would result in a prevalence of gaining points,  the 

data were also replotted after splitting the sample in “larger gain” and “lower gain and loss” 

groups, using different thresholds (e.g., 2 g/min, 5 g/min, 8 g/min, etc.).  

Because the presence of breaches should affect the gain/loss patterns at a relatively 

large spatial scale, a series of analyses were performed using ArcGIS for Desktop to try to 

understand the spatial structure of the seepage meter data. First, the “Spatial Autocorrelation 

(Global Moran’s I)” tool was used to check for randomness or the possible presence of 

clusters. This tool measures spatial autocorrelation for a variable along a line, based on its 

location and value simultaneously, by calculating a z-score, which is a measure of the 

intensity of clustering. Having found strong clustering in the seepage meter data, the 

“Incremental Spatial Autocorrelation” tool was then used to obtain a typical reach length at 

which the clustering is most significant. This tool measures the intensity of spatial clustering 

by calculating the z-score for a series of increasing distances. The z-score usually increases 

with increasing distance, peaking at some particular value (or multiple values), which 

corresponds to that length scale at which the spatial process promoting clustering is most 

noticeable. This resulting length was selected as the threshold distance to subsequently 

perform hotspot analysis, to detect spatial patterns in the data. The ArcGIS hotspot analysis 

tool compares each value with its neighboring values within the given threshold distance, 

identifying hotspot areas where high values are surrounded by other high values, and cold 

areas where low values are surrounded by other low values. 

These analyses helped identify the location of potential losing sub-reaches along the 

Wolf River, for further investigation at a finer scale. For the second phase of data collection, 
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three such locations were identified and investigated, using multiple point-scale methods as 

well as a reach-scale, integrative method to better understand the spatial variability of GW-

SW interactions over a range of scales. 

Point-Scale Methods. Multiple point-scale methods such as seepage meters, 

piezometers, and temperature sensors (iButtons) were applied over closely spaced grids 

covering sub-reaches of about 600 m in length, as shown in Figure 7. In addition to indicating 

the direction of the vertical flux, the seepage meters give a cumulative measurement of gain 

or loss over time, whereas piezometers readings allow computation of the vertical hydraulic 

gradients between different depths. Recording temperature at different depths provides a 

vertical temperature profile in the streambed that should indicate the direction of the vertical 

exchange flux, as surface water is warmer than groundwater in summer. This approach 

enables comparison of data obtained with three different point-scale methods, minimizing the 

limitations of using any single, specific method; thereby, allowing better understanding of the 

spatial variability of vertical streambed fluxes at the smaller scale.  

Each grid had three or five rows (Figure 7), depending on location. A 50-m spacing 

was chosen between the grid columns, adding additional measurement transects around the 

point where results from the first phase indicated losing conditions, to investigate the sub-

reach at a finer spatial scale. The size of the grid and the number of grid points were selected 

in a way that data collection at each one of the three sub-reaches could be completed in one 

day, to avoid possible temporal variations in the measurements. Spatial autocorrelation 

analyses were performed on the seepage rates obtained at this finer scale, to better understand 

and describe the spatial structure of the data.  
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Figure 7. Typical grid setup used at the finer scale, in this case with three rows, to 
apply multiple methods 

 Vertical Hydraulic Gradient. To compute the vertical hydraulic gradient, mini-

piezometers were constructed using 1.5 m-long, 1.9 cm (0.75”) diameter, Schedule 40 PVC 

pipe. Multiple holes were drilled in the bottom 10 cm of the pipe, as a screen, which was then 

wrapped with filter (screen) fabric to prevent clogging by fine sediment. A driving point was 

glued to the bottom of the pipe to facilitate inserting it into the sediment. The pipe was 

marked every 10 cm from the middle of the screen, to facilitate installation of the piezometers 

at the required depths. 

The groundwater piezometric head, i.e., the water level inside the mini-piezometer, 

and the surface water head (water level outside the mini piezometer), were measured using a 

metric steel tape. The backside of the tape was roughened, so that chalk could stick to it. 

Before each single measurement, the tape was dried and cleaned, before applying colored 

chalk. This allowed us to measure the depth of water from the top of the piezometer. It was 

challenging to measure the surface water head outside the piezometer, due to the fluctuating 

effect of velocity head on the outer surface of the pipe. A hollow bucket was placed around 

the pipe in an attempt at reducing the disturbance, so that we could accurately measure the 

depth to the surface water with the steel tape. After driving each mini-piezometer, we 
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provided at least 20 minutes of stabilization time before measuring outside and inside depths. 

The vertical hydraulic gradient was then computed as the difference in measured depths 

divided by distance from the streambed surface to the depth of the middle of the screen. 

Vertical Temperature Profile. All iButtons were programmed before going to the field 

so they would measure temperature every 1 minute. Temperature data were collected at two 

of the sub-reaches, using slightly different approaches. In the first, the same mini piezometers 

used to measure piezometric heads housed an iButton centered at the mid-depth of the 

piezometer screen, which logged temperature (see Figure 8). The piezometer screen was first 

driven to a depth of about 30 cm below the riverbed. After allowing 20 minutes of 

stabilization time, it was further driven to a depth of 80 cm, allowing for 40 minutes of 

stabilization time before removing it. During this time, the iButton recorded the temperature 

within the streambed at 30 cm depth (for 20 minutes) and at 80 cm depth (for another 40 

minutes). The temperature readings logged just before pushing to further depth and just 

before retrieving the piezometer were taken as the instantaneous temperatures at depths of 30 

cm and 80 cm from the streambed, respectively. 

In the second approach, we used a 1.9 cm (0.75”) diameter, Schedule 40 PVC pipe 

equipped with four iButtons to simultaneously measure water temperature under the 

streambed at different depths. A piece of pipe was divided into three disconnected, 40 cm-

long compartments. At the bottom 10 cm of each compartment, holes were drilled to form a 

screen which was wrapped with filter fabric to prevent clogging, and an iButton was then 

placed in the compartment. A fourth iButton was placed outside of the pipe, further up, to 

measure the water column temperature. The pipe was driven into the streambed, with 

iButtons logging at depths of 20 cm, 60 cm, and 100 cm below the streambed, as shown in 

Figure 8 (right). The pipe assembly was left for 25 minutes at each sampled location. The 
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values logged just before retrieving were taken as the temperature at each given depth, and 

for the surface water. 

 

 

Figure 8. Two slightly different approaches used to measure the instantaneous temperature 
profile 

 The average water temperature of the unconfined aquifer in Shelby County during the 

low-flow period (summer) is about 18-20 °C, while that of surface water is about 25 °C, 

fluctuating along a diel cycle (U.S. Geological Survey, National Water Information System: 

mapper. Accessed August, 2020, https://maps.waterdata.usgs.gov/mapper.). At gaining 

locations, we would expect to observe a difference in temperature between the shallow and 

the deeper measurements, as shown in Figure 3, with no diel fluctuation in temperatures at 

depths due to surface water effects. Conversely, at losing locations the difference in 

temperatures between different depths should be very small, and the diel fluctuations in 

surface water temperature should propagate deeper into the streambed. 

Differential Stream Gaging at Reach-Scale. To estimate whether our study reaches 

are losing or gaining and to corroborate the results obtained at the point-scale, differential 

https://maps.waterdata.usgs.gov/mapper
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stream gaging was conducted during low-flow, near steady-state conditions. We used Ott C2 

current meters with individually-calibrated propellers (see Figure 9); these are highly precise 

small current meters for discharge measurement in small rivers, with an accuracy of ±1%.  

 

Figure 9. Ott C2 current meter body, rod, and propeller 

For this study, each measurement cross-section was divided into approximately 40 

verticals, choosing these with the intention that discharge between any two verticals be less 

than 5% of the total discharge (EN ISO 748:2007). The six-point method was used to 

calculate average velocity over each vertical. The depth at each vertical and at the midpoint 

between two verticals (termed bathymetric verticals hereafter) were measured to obtain the 

cross-section profile (Figure 10). The velocity at each of the six points per vertical was 

calculated using the individually-calibrated equation provided for each combination of 

current-meter body and propeller. Each point velocity was obtained as an average over a 60-

second sampling time. To shorten gaging times, we took simultaneous readings at three 

depths by mounting three current meters on the same rod. Then, the average velocity at each   

vertical was calculated using the six-point equation provided by EN ISO 748:2007: 

           𝑉𝑉 = 0.1 ∗ � 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  2 ∗ 𝑣𝑣0.2 + 2 ∗ 𝑣𝑣0.4 + 2 ∗ 𝑣𝑣0.6 + 2 ∗ 𝑣𝑣0.8 + 𝑣𝑣𝑏𝑏𝑠𝑠𝑏𝑏�                   (1)   
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To better estimate the total discharge, velocities at the bathymetric verticals (Fulford 

and Sauer, 1986) were estimated using an interpolation based on the Froude number (see 

Figure 11) as proposed by several references ( Fulford and Sauer, 1986; Boiten and IHE 

Hydrometry, 2000; Le Coz et al., 2012, 2014). 

The Froude number was calculated at conventional (measured) verticals using the equation: 

             𝐹𝐹𝐹𝐹𝑖𝑖−1 =
𝑉𝑉𝑖𝑖−1

�𝑔𝑔 ∗ ℎ𝑖𝑖−1
                                                                                                                    (2) 

While the Froude number at each bathymetric vertical was then estimated by interpolation: 

             𝐹𝐹𝐹𝐹𝑖𝑖 =
[(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖).𝐹𝐹𝐹𝐹𝑖𝑖−1 + (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1).𝐹𝐹𝐹𝐹𝑖𝑖+1]

𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖−1
                                                                (3) 

Finally, the average velocity at bathymetric verticals was then computed as: 

             𝑉𝑉𝑖𝑖 =  𝐹𝐹𝐹𝐹𝑖𝑖 .�𝑔𝑔 ∗ ℎ𝑖𝑖                                                                                                                       (4) 

 In this fashion, the vertically-averaged velocity were calculated in both conventional 

(measured) and bathymetric (estimated) verticals. With these, total discharge at the cross-

section was calculated using the velocity-area method. 

Figure 10. Additional bathymetric verticals between the velocity measurement verticals 
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Figure 11. Average velocity associated with bathymetric vertical (vi) by interpolation of the 
Froude number from adjacent verticals along a cross-section. 

The discharge measurements at the two cross-sections were performed over the same 

time window by two different teams using the same techniques and equipment, so that any 

minor change in discharge during the gaging periods should have affected both sections 

equally. The discharge values obtained at two cross-sections were compared to each other to 

determine whether there is a significant net difference, considering their uncertainty. A 

significantly lower discharge at the downstream section indicates that the reach is losing 

water, whereas a higher discharge at the downstream section indicates the opposite. The 

uncertainty in discharge measurements were calculated using EN ISO 748:2007. For this 

determination, at 95% confidence level the calculated expanded uncertainty (two standard 

deviations) is 3%, considering a standard normal distribution. The overlapping area (see 

Figure 12) between two normal distributions (probability density functions) was computed as 

a way to check whether the discharges at the two cross-sections are significantly different. 
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Figure 12: Typical comparison of two normal distributions centered about the gaged 
discharges at two cross-sections A and B, showing the overlapping area between them. 

Third Phase: Monitoring River Stage and Groundwater Levels 

Based on the results of the first and second phases, continuous monitoring of the 

changes in river stage and head in the unconfined aquifer water table and underlying confined 

aquifer was examined at one specific reach near Lansdowne Park in Germantown. A stilling 

well in the river and two monitoring wells – one screened in the unconfined aquifer and the 

other in the confined aquifer – were installed close to each other in the riparian zone. Solinst 

Levelogger transducers were installed in each well to continuously record absolute pressure 

and water temperature every 15 minutes, whereas a Solinst Barologger was installed to log 

atmospheric pressure. Water stages were calculated by barometric compensation of the 

absolute pressures obtained from the transducers. The dynamics of the river stage were then 

compared with the levels of the water table of the unconfined aquifer and the potentiometric 

levels of the confined aquifer to investigate the connection between the river and neighboring 

aquifers. 
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RESULTS AND DISCUSSION 

First Phase: Full Reach Scale 

Originally, the first phase of seepage meter deployment included 489 locations along 

the Wolf River, of which 89 were found to be unsuitable because water was either too deep or 

access was unsafe. Seepage bags were weighed in the field immediately before and after 

deployment. The difference in weight was computed over the deployment duration, known as 

the “seepage weight”. A positive seepage difference (before – after) in weight indicates 

gaining, while a negative difference reflects losing conditions. Seepage rates (g/min) were 

calculated for each location by dividing the seepage weight (gram) by the total time of 

deployment (minute). These results are summarized in Table 1 and shown in Figure 13. It 

should be noted that in the case of positive values, the term “higher seepage rate” refers to a 

location where the river gains water at a higher rate, while “lower seepage rate” indicates a 

smaller flux, but still under gaining conditions.  

Table 1: Statistics of seepage rates obtained from installing seepage meters every 100 m 
along a 49 km reach of the Wolf River  

Total 
data 

points 

Minimum 
Rate 

(g/min) 

Mean 
Rate 

(g/min) 

Median 
Rate 

(g/min) 

Maximum 
Rate 

(g/min) 

Standard 
Deviation 
(g/min) 

No. of 
losing 
points 

No of 
gaining 
points 

400 -6.2 11.4 10.2 30.0 9.0 14 386 

The statistics in Table 1 indicate that there is a huge range of variation in seepage 

rates, suggesting high spatial variability in the vertical exchange fluxes at this scale. This 

spatial variation is due to the heterogeneity of the hydraulic conductivity of the streambed 

material, the differences in vertical hydraulic gradients, possible effects of hyporheic 

exchange, and errors related to measurement instrument and application techniques. The data 

show that most sampled points along the Wolf River are gaining water, which should be 

expected in Shelby County during a low-flow period (Villalpando-Vizcaíno 2019). 
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Figure 13. Calculated seepage rate and direction for seepage meter measurements (100 m spacing) conducted in the lower 49 km reach of the 
Wolf River within Shelby County, Tennessee. Two areas have been enlarged to clearly show the rates and direction. 
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It is important to mention that the full 49 km reach includes two very different sub-

reaches, in terms of channel type. The upper 14 km of the reach, above the break point shown 

in Figure 13, are meandering, whereas the lower 35 km are channelized. The average seepage 

rate for the first 14 km reach is 4.7 g/min, whereas it is 13.2 g/min for the channelized reach, 

a significantly different value according to a t test (p value < 0.0001). This higher seepage 

rate in the lower reach might be due to augmented connectivity between the Wolf River and 

the underlying aquifer after the channelization process, as suggested by Yates et al. (2003). 

The lower seepage rates in the meandering reach might also be related to the occurrence of 

hyporheic exchange flow, which is enhanced at bends (Winter et al. 1998). Also, the upper 14 

km reach lies within the unconfined portion of the Memphis aquifer (Parks, 1990), where one 

should expect losing conditions, or at least lower seepage (gaining) rates. 

The map (Figure 13) shows that only 14 of the 400 measured points are in a losing 

condition. In most cases, the losing points are not clustered but are separated by several 

gaining points. At first glance, looking only at losing versus gaining conditions, there is no 

obvious pattern suggesting predominantly losing areas. This could be simply due to the fact 

that our measurements do not allow us to discriminate losing patterns if an expected 

depression in the shallow water table, as related to a possible breach in the confining layer, is 

not substantive. The single area along the study reach where previous studies strongly suggest 

the presence of a breach (Graham and Parks, 1986; Parks, 1990; Gentry et al., 2006; Waldron 

et al., 2009; Schoefernacker, 2018) and a downstream decrease in the discharge was 

documented (Bradley, 1991), near a Closed landfill in Shelby Farms Park, does not 

conclusively reflect a losing pattern; however, it does contain a single losing point. 

There is an underlying issue related to a mismatch in scale between what we are 

trying to detect and the observation scale of the measurement method. Seepage meters 

integrate over a spatial scale the size of a 5-gallon bucket (30.2 cm diameter), and there could 
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be a range of factors, e.g., hyporheic exchange fluxes, that could inordinately influence the 

measurement. Basically, it is possible that this small-scale noise is not allowing us to detect 

overall patterns of losing/gaining conditions. 

In the simplified model mentioned in the introduction, the presence of a breach in the 

periphery of the river is assumed to result in losing conditions under low-flow conditions. But 

it might well be the case that the presence of a breach only affects the overall GW-SW flow 

patterns, without causing extensive losing conditions. In such a case, one may still observe 

gaining conditions overall, but seepage rates would be smaller than those found at locations 

without a breach. To analyze this possibility, the data was scrutinized in relative terms by 

splitting the sample in “larger gain” and “lower gain or loss” groups, according to different 

threshold values, before plotting. A clear spatial pattern appeared for seepage rates below 

threshold values of 2 g/min, 5 g/min, and 8 g/min. This spatial clustering, as observed for a 

threshold of 5 g/min, is shown in Figure 14-I.   

In general, movement of water at the GW-SW interface (or hyporheic zone) occurs 

mainly due to GW-SW interactions and local hyporheic exchange (Woessner, 2000). Because 

of this, there is a need to use methods that are able to separate those two effects, as GW-SW 

interactions at the larger scale are of specific interest. Local hyporheic exchange occurs at 

relatively small spatial scales, whereas GW-SW interactions are larger-scale phenomena, as 

explained by Boano et al. (2014). Boano et al. (2014) showed how hyporheic flow occurs at 

scales ranging from centimeters to tens of meters governed by channel landforms such as 

submerged bedforms, bars, cascades, riffles, and meanders. The vertical motion of water due 

to hyporheic exchange is most likely random at a larger scale, such as our study reach. On the 

other hand, the overall movement due to GW-SW interactions depends on the level of the 

water table with respect to river stage, which is a phenomenon at a much larger spatial scale,  

so that it should be reflected at the reach scale. To check for spatial patterns at this large scale 
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Figure 14. Map of the lower 49 km reach of the Wolf River showing locations with seepage rates below a threshold value of 5 g/min (I) 
and results from ArcGIS “Hotspot Analysis” tool (II), highlighting areas of interest A, B, and C.
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we conducted a randomness analysis with the data, using the “spatial auto-correlation” tool in 

ArcGIS. This calculates a z-score, which is a measure of the intensity of spatial clustering. 

The results of this analysis are presented in Figure 15 The p-value of less than 0.01 (for z-

score of 8.34) shows that the seepage rates are significantly clustered. 

  

Figure 15. Results from using the “spatial auto-correlation” tool (left) and “incremental 
spatial correlation” tool (right) in ArcGIS with seepage rates at 100 m spacing along a 49 km 

reach of the Wolf River. 

The “Incremental spatial correlation” tool was then used with an increment of 50 m to 

find that distance at which clustering is most profound. The result (Figure 15-right) shows 

that clustering is slightly more significant at 1000 m (first peak). Physically, the distance over 

which clustering is more pronounced should also represent the spatial extent of depressions in 

the shallow water table, caused by a breach. The influence of a breach on the water table 

depends on its properties; however, the properties of the breaches and their impact to the 

water table are not fully known. The shallow groundwater maps provided by Narsimha 

(2007) and Ogletree (2016) show that the radius of the water table depression near a known 

breach area (closed landfill, Shelby Farms Park) is approximately 1000 to 1500 m. Based on 

existing water table maps and the incremental spatial correlation analyses, a distance of 1000 

m was then assumed as that length scale at which spatial clustering should be significant, and 

subsequently used to map clusters with hotspot analysis in ArcGIS. The result is shown in 
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Figure 14-II, where hot spots are the area where higher seepage values are surrounded by 

other larger values as well, while cold spots are those areas where lower values are 

surrounded by other low values. It is important to mention that the cold spots are those areas 

where the Wolf River is gaining less water, in relative terms. 

Comparing this latter result with the original “threshold” map, as shown in Figure 14, 

similar spatial patterns are observed. Cold spots contain clusters of points with seepage rates 

below a given threshold value. Three sub-reaches: A, B, and C as shown in Figure 14, were 

chosen as close to potential breach locations for further, detailed study, based on the 

aforementioned analyses and site accessibility. 

Second Phase: Sub-Reach Scale 

Seepage Meters Deployment over a Closely Spaced Grid and Differential Stream 

Gaging 

Area Downstream of Austin Peay Highway (Sub-reach A). Seepage meter data were 

collected on September 20, 2019. The mean river discharge and stage on that day were 7.76 

m3/s and 0.88 m, respectively, at the “USGS 07031650 Wolf River at Germantown, TN” 

gage (located 16 km upstream), while they were 8.5 m3/s and 4.08 m, respectively, at the 

“USGS 07031740 Wolf River at Hollywood St at Memphis, TN” gage (located 6 km 

downstream of the sub-reach). Seepage meters (see Table 2), piezometers, and temperature 

sensors were installed at 36 points.

 A spatial autocorrelation analysis shows that seepage rates are clustered with p-value 

0.04 (for a z-score of 2.05) which means there is less than 5% likelihood that this clustering 

could be the result of random chance. The average seepage rates are 2.6 g/min at the left, 7.6 

g/min at the center and 9.4 g/min at the right bank of the sub-reach. This implies that lower 

seepage rates are clustered on the left bank (Figure 16). The topography of right bank is 

steeper. It might be possible that the vertical hydraulic gradient between the river and the 
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unconfined aquifer is lower at the left bank in comparison to the center and the right bank, or 

even directed downwards. 

Table 2: Statistics of seepage rates obtained from installing seepage meters at the finer scale 
along Sub-reach A, Wolf River  

Number 
of Data 

Minimum 
Rate 

(g/min) 

Maximum 
Rate 

(g/min) 

Mean 
Rate 

(g/min) 

Median 
Rate 

(g/min) 

Standard 
Deviation 
(g/min) 

No. of 
losing 
points 

No of points 
below 5 
g/min 

36 -10.5 19.4 6.0 2.9 7.6 7 20 
  

 
Figure 16. Spatial distribution of seepage rates obtained from installing seepage meters at the 

finer scale along Sub-reach A, Wolf River.

 Differential stream gaging was conducted at this location on 8/10/2020, over a 930 m- 

long reach that incorporates the seepage grid. Performing this nearly a year later was due to a 

pause in research by the contracting sponsor followed by wet-weather stream conditions. The 

upstream discharge was 8.59 m3/s and the downstream discharge was 8.61 m3/s. Given the 

measurement uncertainty of 3% in flows, this difference is negligible; thereby, indicating no 

determinable gain or loss. There is a 96% overlap between the two normal distributions 

centered about each measured flow rate which indicates that these two discharges are not 

significantly different. This might be due to presence of both losing and gaining areas within 



35 
 

the study reach, as suggested by the seepage meter grid data, or else the reach length is too 

short to capture any losing/gaining signal. It might also be the case that this area is gaining 

less than it would from the local water table due to the influence of a local water table 

depression as discussed in the first phase, but data over more sub-reaches would be needed to 

ascertain this hypothesis.  

Area Near the Closed Landfill in Shelby Farms (Sub-reach B). This location lies near 

the landfill in Shelby Farms Park, where previous studies have identified and examined a 

breach in the confining layer (Graham and Parks, 1986; Parks, 1990; Waldron et al., 2009; 

Schoefernacker, 2018). The water table maps for the unconfined aquifer (Narsimha, 2007; 

Ogletree, 2016; Schoefernacker, 2018) as well as the potentiometric map for the confined 

aquifer show depressions immediately north of this sub-reach. Waldron et al. (2009) 

conducted an S-wave reflection seismic survey in this area, verifying the presence of a 

breach. Bradley (1991) observed a downstream decrease in the discharge of the Wolf River in 

this area while conducting series of discharge measurements, but it was within 

instrumentation error. 

The finer-scale seepage meter data were collected at this location on October 4, 2019. 

The mean river discharge and stage on that day were 6.57 m3/s and 0.83 m, respectively, at 

the “USGS 07031650 Wolf River at Germantown, TN” gage (located 4 km upstream), while 

they were 8.12 m3/s and 4.07 m, respectively, at the “USGS 07031740 Wolf River at 

Hollywood St at Memphis, TN” gage (locate 18.5 km downstream). The grid in this area 

consists of five rows to better understand the spatial variability of measurements across the 

transects. Seepage meters (Table 3) and piezometers were installed at 42 points. 

The spatial autocorrelation analysis shows that seepage rates are randomly distributed 

with p-value 0.69 (for a z-score of 0.39). The average seepage rates are 13.2 g/min, 17.1 

g/min, 17.7 g/min, 15.1 g/min, and 6.62 g/min from the left to the right bank of the sub-reach. 
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The right bank seems to be gaining less, which might be due to the presence of a depression 

in the unconfined water table on that side; hence, reflecting the effects of the known breach 

as shown in Figure 17. 

Table 3: Statistics of seepage rates obtained from installing seepage meters at the finer scale 
along Sub-reach B, Wolf River. 

Number 
of Data 

Minimum 
(g/min) 

Maximum 
(g/min) 

Mean 
(g/min) 

Median 
(g/min) 

Standard 
Deviation 
(g/min) 

No. of 
losing 
points 

No of points 
less than 5 

g/min 
45 -0.8 27.6 13.7 16.1 7.6 2 9 

 
Figure 17. Spatial distribution of seepage rates obtained from installing seepage meters at the 

finer scale along Sub-reach B, Wolf River. 

Differential stream gaging was conducted at this location on 8/11/2020, over a 970 m-

long reach which includes the above seepage grid. The upstream discharge was 8.36 m3/s and 

the downstream discharge was 8.55 m3/s. The difference of 0.19 m3/s in discharge lies within 

the measurement uncertainty of 3%, with a 45% overlap between the normal distributions, 

which suggest that the two discharges are not significantly different. Thus, it can be 

concluded that this reach is also neither gaining nor losing. The existing, known breach near 
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the right bank might influence this reach minimally, or else the reach is losing to the breach, 

while at the same time gaining on its left bank such that there exists no overall net gain. 

Area near Lansdowne Park at Germantown (Sub-reach C). Seepage meter data were 

collected on September 27, 2019. The mean river discharge and stage on that day were 7.41 

m3/s and 0.86 m, respectively, at the “USGS 07031650 Wolf River at Germantown, TN” 

gage (3.8 km downstream). This area is an outcrop zone (recharge zone) for the Memphis 

aquifer  according to Larsen (personal comm.) and Parks (1990), and thus conditions should 

be losing. Seepage meters (Table 4), piezometers, and temperature sensors were installed at 

42 points. 

Table 4: Statistics of seepage rates obtained from installing seepage meters at the finer scale 
along sub-reach C, Wolf River. 

Number 
of Data 

Minimum 
(g/min) 

Maximum 
(g/min) 

Mean 
(g/min) 

Median 
(g/min) 

Standard 
Deviation 
(g/min) 

No. of 
losing 
points 

No of points 
less than 5 

g/min 
42 -17.6 22.0 9.7 11.7 10.5 6 12 

 
Figure 18. Spatial distribution of seepage rates obtained from installing seepage meters at the 

finer scale along Sub-reach C, Wolf River. 
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The spatial autocorrelation analysis shows that seepage rates are randomly distributed 

with p-value 0.35 (for a z-score of -0.92). The average seepage rate is 5.0 g/min at the left, 

14.9 g/min on center, and 9.0 g/min on the right bank of the sub-reach (Figure 18).  

 

Figure 19. Location of well cluster, seepage meter grid, and stream gaging transects along the 
reach near Lansdowne Park in Germantown (Sub-reach C). 

 
Differential stream gaging was conducted at this location on 8/6/2020, in a reach of 

length 820 m between Transects 1 and 2 in Figure 19. The upstream discharge was 9.74 m3/s 

and the downstream discharge was 9.31 m3/s. Even though the difference of 0.43 m3/s lies 

within the measurement uncertainty of 3%, these two discharges are significantly different 

with only a 14% overlap in area between the two normal distributions. Another differential 

stream gaging was also conducted on 8/5/2020, over a reach of length 890 m, located 

immediately below, between Transects 3 and 4 in Figure 19. The upstream discharge was 

9.94 m3/s and the downstream discharge was 9.85 m3/s. With 75% overlapping area, these 

two discharges are not significantly different. 

The discharges observed at these four transects were compared with that recorded at 

the gage ‘USGS 07031650 Wolf River at Germantown, TN’ which lies about 3.8 kilometers 

downstream from Transect 1 (Table 5). Analysis of 52 USGS stream gage records conducted 
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over the last 15 years at the USGS gaging station during low flow conditions (Q < 14 m3/s) 

shows that the discharge estimated from the rating curve tends to slightly overestimate the 

true discharge. All four measurements in the vicinity of this gage show discharges that are 

quite larger than those reported at the gage (3.8 to 7.8 % larger), even though the surface 

water tributaries between the transects and the gage were all dry during the measurement 

windows. These observations suggest that the Wolf River is most likely losing water between 

Lansdowne Park and the USGS gaging station. Comparing with our First Phase analyses, this 

portion of the river also displays lower seepage rates, corresponding to a cold spot area 

(Figure 13).  

Table 5: Discharge obtained from precision stream gaging using Ott current meters, and 
discharge recorded simultaneously at ‘USGS 07031650 Wolf River at Germantown, TN’. 

Date   Gaged (m3/s) USGS (m3/s) Relative difference (%) 

08.06.2020 
Transect 1: 9.74 8.98 7.8 
Transect 2: 9.31 8.97 3.6 

08.05.2020 
Transect 3: 9.94 9.44 5.1 
Transect 4: 9.85 9.43 4.3 

Discussion. A high spatial variation in vertical exchange fluxes is observed at the 

finer spatial measurement scale (Figures 16, 17, and 18). Gaining and losing water conditions 

are found simultaneously at each sub-reach. Again, this large spatial variability might be due 

to heterogeneity in hydraulic conductivity or vertical hydraulic gradient, local hyporheic 

exchange (that usually occurs in upper layers of unconsolidated streambeds), and the fact that 

the seepage measurements are at a very small spatial scale. Still, the seepage rate 

measurements at the finer scale do show a smaller dispersion as compared to those over the 

full reach, which suggests that there is some spatial structure at the sub-reach scale. The data 

collected with seepage meters do not give us enough confidence to state that any sub-reach is 

predominantly losing.  
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Seepage rates at Sub-reach A show strong patterns on the left bank, whereas in sub-

reaches B and C the seepage rates are randomly distributed. Murdoch and Kelly (2003) 

installed seepage meters in a sandy channel streambed and found that seepage fluxes were 

highest at the center of the stream, decreasing towards the banks. A similar pattern was 

observed in most of the cases, with seepage rates that are relatively lower near the banks than 

at the center of the stream. 

The differential stream gaging data only show small differences between the upstream 

and downstream cross-sections, in most of the cases.  This might be due to simultaneous gain 

of water from one bank and loss to the other bank where there exists a breach, or else the 

reach lengths are too short to capture any losing/gaining signal. Due to the fact that the Wolf 

River in Shelby County area is a gaining system overall, it is also possible that there are 

indeed breaches near the sub-reaches A and B, that cause those locations to be gaining less 

water, as compared to fully gaining areas. Demonstrating this would require applying the 

differential stream gaging technique over the whole 49-km reach, though. Doing so using 

current meters is not pragmatic though, as it takes a full day to complete a single cross-

section. It is recommended to gage with an Acoustic Doppler current profiler (ADCP) for 

future research, using multiple passes at each transect. Even though it is less accurate that a 

current meter, for a single measurement, an ADCP can minimize the total time needed to 

complete this effort, while performing multiple passes helps increase accuracy. 

Comparison with Other Techniques 

Mini Piezometers. At Sub-reach A, mini-piezometer readings were used to compute 

two vertical hydraulic gradients (VHGs) at each location, between the streambed, and 30 cm 

and 80 cm depths below it. There was no correlation between two VHG (r = -0.015). This 

might be because the impact of local hyporheic flow is higher near the surface or is just due 

to errors and inconsistencies in measurement. The correlation between these two VHGs (at 30 
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cm and 80 cm depths) and seepage rates are 0.20 and 0.053, respectively. The VHG was 

computed between the streambed and a depth of 100 cm in Sub-reaches B and C, and 

correlation with the seepage rate was 0.27 and 0.22, respectively. These results imply that 

there is no correlation between seepage meter and mini-piezometer measurements. 

Temperature Sensors. In Sub-reach A, temperatures were recorded at depths of 30 cm 

and 80 cm below the streambed (Figure 20), using iButtons, at the same locations where 

seepage meters were also installed. There was no correlation between the seepage rates and 

the instantaneous temperatures or the temperature difference between the two depths. There 

is a convincing correlation between the temperature recorded at the two depths, with a 

Pearson correlation coefficient (r) value of 0.83. In most of the cases, the temperature at a 

depth of 30 cm is higher than that at 80 cm, which is expected during summertime. Still, 

because we do not know a priori how temperature would behave at 30 cm and 80 cm depths 

under clear gaining and losing conditions, we were not able to discriminate with these 

temperature data. Moreover, the observed differences in temperature are less than 1° C, 

which lies within the measurement accuracy of the iButtons that were used (± 1° C). 

 

Figure 20. Temperatures measurements at two different depths in Sub-reach A, Wolf River
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 In Sub-reach C, temperatures were recorded at depths of 20 cm, 60 cm, 100 cm below 

the streambed, as well as in the mid-section of the water column, during daytime (between 8 

a.m. and 3 p.m.). The surface water temperatures measured during the morning are lower 

than those during midday and the afternoon, as is implicit in Figure 21 (we started measuring 

temperature at Site 1 in the morning, and finished at Site 45 in the afternoon). Nonetheless, 

the patterns in temperature at depths of 20, 60 and 100 cm remain similar throughout the day. 

This means that the increase in surface water temperature is not affecting the temperature at 

any depth, indicating gaining conditions. When comparing surface water temperature with 

temperature at 100 cm depth, the difference is less than 1° C for the first ~10 sites, sampled in 

the morning, but then increases to an average of about 2° C, at locations where measurements 

were conducted later. 

 

Figure 21. Temperature profile obtained by installing temperature sensors at three different 
depths below the streambed and in the surface water column in Sub-reach C, Wolf River 

In both sub-reaches, the temperature recorded at the shallow depth is almost always 

higher than the deeper temperature, which would be expected under gaining conditions 
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during summertime. Like seepage rates, temperature is a small-scale, near-surface 

measurement, which can be unduly influenced by other small-scale factors. 

Potential Errors/Issues with the Methodology 

Seepage Meters. Seepage meters can measure the seepage rate well in static water. In 

the case of flowing conditions though, especially in rivers with moving sandy bottoms, there 

are a lot of variables that can affect the observed seepage rate. Most potential errors were 

minimized during design of the seepage meter, such as: using a shelter bucket with hole, 

selecting a barb bell valve, minimizing connections, constrictions, and bends to lessen 

friction losses, etc. Some other issues such as scouring around the seepage bucket (a few 

inches from the top), influence of human movement around the measurement area, etc. were 

observed or suspected during data collection. The seepage meters were deployed at 523 data 

points (including first and second phases) and for about 40% of the measurements, the bags 

gained more than 1000 g of water. Flow into the bag decreases sharply when it is nearly full 

(Murdoch and Kelly, 2003).  Therefore, there is a possibility that total possible flux was 

underestimated in some of the cases. The impacts of these possible/suspected errors and 

biases are unknown and difficult to quantify. 

Temperature Sensors. The iButtons used to measure temperature in this study have an 

accuracy of ±1° C. The measured temperature differences were low (Figure 20 and 21), and 

some of them could be due to measurement accuracy of the iButtons. Due to hyporheic 

mixing of surface water and groundwater in unconsolidated sediments like those composing 

the Wolf River riverbed, temperatures at shallow depths are influenced by surface 

temperature. Also, the fact that surface water can enter the streambed earlier during 

hyporheic exchange might also affect the temperature profile, due to the expected diel 

changes in surface water temperature. The temperatures recorded in this study were basically 



44 
 

instantaneous; continuous measurements of temperature (over at least 24 hours) would be 

required to distinguish losing/gaining conditions, due to above mentioned issues. 

Mini Piezometers. Even though mini-piezometers are the most direct method to 

physically measure the direction of vertical exchange flux, they could introduce rather large 

errors due to inconsistencies in tape reading, effects of water velocity, etc. Placing a hollow 

bucket around the pipe when measuring the surface water head outside the piezometer and 

using steel tape with chalk did help in minimizing some of the possible errors. But still, there 

were difficulties and inconsistencies with the tape readings. As head differences were very 

low at most locations (only a few millimeters at most), it is clear from the above issues that 

the data obtained with mini-piezometers are not good enough to draw conclusions regarding 

vertical water flux. 

Third Phase: Monitoring River Stage and Groundwater Levels 

The stilling well in the river, and two groundwater monitoring wells – one screened 

into the unconfined aquifer, the other in the confined aquifer - were installed in an area near 

Lansdowne Park in Germantown (Figure 19). The borehole log shows a 55 ft (17 m) thick 

clay layer (UCCU) at this location starting at a depth of 50 ft (15 m). At least at this specific 

point, this evidence disagrees with the notion that this river segment lies in an outcrop zone, 

as suggested by Parks (1990) and Larsen (personal comm.). However, this does not discard 

the potential existence of a breach or an outcrop zone somewhere nearby, due to the high 

spatial heterogenity in clay thickness as evident, for example, in the area near the Closed 

Landfill in Shelby Farms (Parks and Mirecki, 1994; Gentry et al., 2006). The well data for 

this research were collected between May and August 2020 and are shown in Figure 22.  
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Figure 22. Comparison of time series for the Wolf River stage, the elevation of the water 
table in the unconfined aquifer, and the potentiometric surface of the confined aquifer, from 
wells located near Lansdowne Park in Germantown. Note: water levels are measured in feet. 

 A small-scale fluctuation at the diel time scale can be observed in all of the water 

levels (Figure 22). We hypothesized that this is due to the process of barometric 

compensation that is applied to obtain the water levels inside the wells. This is performed by 

subtracting atmospheric pressure, as recorded by a pressure sensor (Solinst Barologger) 

located outside the well, from the total pressure logged by the transducers inside the wells. As 

the wells have an airtight lid which does not allow the inside pressure to equilibrate quickly, 

it will be slightly different and fluctuate less than atmospheric pressure. To validate this 

point, barometric compensation was conducted using atmospheric pressure as recorded both 

inside and outside a well (Figure 23). The resulting water levels are slightly different (up to 

0.2 ft, or 6 cm). Therefore, the small fluctuations seen in Figure 22 are indeed an artifact of 

the barometric compensation process. For future studies, it would be better to record air 

pressure inside the wells with Barologgers, if the well is airtight, along with total pressure 

with a transducer, to compute water levels more accurately, or use a vented transducer.  
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The water levels obtained with a Barologger inside the well still display small diel 

fluctuations (dark curve in Figure 22), though with smaller undulations than the ones in 

Figure 22. These might be due to some unknown error in barometric compensation, or might 

be actual water level fluctuations, e.g., due to evapotranspiration. These cycles need more 

detailed investigation for further analysis. 

 

Figure 23. Comparison of water levels obtained from barometric compensation using the 
Barologger inside the well versus outside the well. Note: water levels are measured in feet. 

Along the reach near Lansdowne Park, the river should be gaining from the 

unconfined aquifer during base flow conditions, as seen in Figure 22. During the larger flood 

events captured in our data, the river stage increases abruptly, an effect that can be also 

noticed in the unconfined aquifer water level, but with a delayed and smoothed response. The 

confined aquifer did not show any significant response to such larger events, during which 

the river temporarily converts into a losing system. There is no response in any of the 

aquifers to the smaller, shorter flood events. There might be a case that the unconfined 

aquifer is only influenced from such larger flooding events which can temporarily convert the 

river into a losing system. Therefore, it is recommended that the connection between the 

aquifers and the river be investigated over a longer period, including the high flow period 
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(during winter) when the river should be mostly losing. There is also a possibility that the 

river could be gaining from one bank while simultaneously losing on the other bank. It is 

clear that well data for a single point, on only one side of the river are not sufficient; 

consequently, further investigation is required at more cross-sections, with more observation 

wells along both banks of the river. It would be better to install multiple wells in a transect 

covering both banks; however, this is not pragmatic due to expensive nature of well drilling. 

 

A 

Clipped from Kingsbury (2018) 

 

B 

Created using Ogletree (2016) data 

Figure 24. Comparison of potentiometric surface map and water table map for the confined 
aquifer (A) and the unconfined aquifer (B), showing the area of interest. Note: contours are 

measured in feet. 

Kingsbury (2018) and Ogletree (2016) created maps of the potentiometric surface of 

the confined aquifer and water levels of the unconfined aquifer, respectively, using water 

levels collected between September and November 2015 (Figure 24). They found 

potentiometric water level elevations of 240 ft (approx., or 73 m) and unconfined aquifer 

water elevations of 260 ft (approx., or 79 m) in the area near Lansdowne Park in 

Germantown. The water table map created by Narsimha (2007) also gives elevation similar to 

those of Ogletree (2016). Comparing these levels, it could be concluded that there is a 
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vertical downward gradient between the two aquifers with a head difference of about 6 m (20 

ft) in this vicinity. It should be noted though that both Kingsbury (2018) and Ogletree (2016) 

created these water level contour maps with limited data, using interpolation methods. 

However, the observed water levels at Lansdowne Park indicate a head difference of about 

0.9 m (3 ft). The unconfined water levels are about 15 ft below the interpolated data obtained 

from the Ogletree (2016) water level map, which is a significant difference. Ogletree (2016) 

compared his water table map to previous historical maps, concluding that they are similar 

except in those areas where well control changed. The observed differences between present 

water levels, as observed in this study, and those from historical map is possibly due to the 

addition of new data points as discussed by Ogletree (2016). However, it should be noted that 

this is a comparison of data measured locally, with historical regional contours at a broader 

scale. 

CONCLUSIONS 

The Memphis aquifer is a major source of water in Shelby County, which needs to be 

protected from contamination due to inter-aquifer water exchange through naturally occurring 

breaches in the intervening aquitard. The number, size, and locations of these breaches is not 

well known, and a better description would help protect the Memphis aquifer. This research 

was carried out along one of the rivers in Shelby County, the Wolf River, in an attempt to 

locate unknown breaches in located near the river by investigating GW-SW interactions 

under the assumption that the presence of a nearby breach should affect the vertical exchange 

flux in the streambed.  

First, seepage meters were used to measure vertical flux every 100 m along the 49 

km-long lower reach of the Wolf River. Initial results show a few losing points separated by 

gaining points, but did not depict obvious losing patterns. Spatial analyses of the data 

indicated spatial patterns in the data. Based on the results three sub-reaches were chosen for 
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in-depth study at a finer spatial scale using a suite of methods: comparing seepage meters, 

differential stream gaging, piezometers, and temperature sensors. The finer scale observation 

of seepage rates shows that gaining and losing points occurs simultaneously within a sub-

reach, which makes it difficult to confirm losing conditions. 

The seepage meter data display a high spatial variation of vertical exchange flow at 

both studied spatial scales (full reach and sub-reaches). Comparing seepage rates with 

piezometer and temperature profile data yields low correlation values, which could be due to 

the issues associated with each individual method and its application. The temperature at 

shallow depths was almost always higher than the deep temperature, which is expected in 

summertime; however, the range of variation of the expected temperature profile in gaining 

and losing conditions is unknown, as compared to the accuracy of the temperature sensors 

used (iButtons) such that it is difficult to draw firm conclusions. 

Approaching problem at the reach scale, the data from differential stream gaging at 

different locations provide better understanding of net, integrated loss or gain. The 

differences in discharge for the sub-reaches downstream of Austin Peay Highway and near 

the Closed Landfill in Shelby Farms were small against the uncertainty in discharge 

measurement, while we measured a statistically significant difference in the reach near the 

Lansdowne Park. There might be several reasons that explain why for these reaches the 

difference of discharge is small such as, decreased influence of the unconfined aquifer, losing 

from one bank while gaining from other, short reach length to capture losing/gaining signal, 

etc. When comparing the discharge near Lansdowne Park to the continuous measurement at 

the USGS gage (1.7 km to 3.8 km downstream), it was observed that the gaged discharges 

were significantly higher (3.6 to 7.8 % higher) than the discharge recorded by USGS gage, 

which suggests that the Wolf River is mostly losing along these reaches. 
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Data collected from monitoring wells along the reach near Lansdowne Park in 

Germantown (over a limited timeframe, though) show a different picture: that the river gains 

during base flow condition and temporarily converts into a losing system during large 

flooding events. The confined aquifer did not show any significant response to the flooding 

events during the study period. The response of the confined aquifer needs further 

investigation using data over a longer duration. When comparing the water levels observed in 

the well cluster with the water table maps in the literature, significant differences in the 

unconfined aquifer water levels were found. Other sub-reaches need to be further investigated 

using additional and improved methodologies to confirm losing conditions, before drilling 

observation wells. Given that different lines of evidence suggest the possibility of gain in one 

bank, but loss in the other, it would be better to have well transects covering both banks of 

the river. 

The main objective of this research was to locate losing areas along an extensive 

reach of the Wolf River so that these can be further investigated to confirm or discard the 

presence of any nearby breach. Even though installing seepage meters, a point-scale 

measurement, every 100 m over such a long reach undoubtedly raises issues related to the 

observation scale, indirect spatial patterns were observed that helped us select areas to focus 

the study. The simultaneous application of multiple methods at the sub-reach scale did not 

reach conclusions; however, it provides a basis for future application of these methods in 

unconsolidated sediment streambeds, such as the Wolf River. 

In the end, the idea of identifying potential aquitard breach locations near the river 

through investigation of GW-SW interactions remains promising, but there is a clear need for 

finding new techniques or refining the ones used in this study in order to better predict GW-

SW exchange at varying scales while accounting for other factors that can impact the results. 

Some of the methods with a larger resolution that can be used for future research are thermal 
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profiling, aerial infrared photography, and differential discharge runs using ADCP with 

multiple passes. 

RECOMMENDATIONS FOR FUTURE WORK 

Seepage meters 

The seepage meter can still be a good option for quantifying GW-SW interactions at 

the point scale, notwithstanding the issues related to its installation and data measurement 

technique. According to the issues identified during fieldwork, the following 

recommendations can be drawn for future application of seepage meters in conditions such as 

those found in the Wolf River: 

1. In unconsolidated sediments, it is difficult to get a complete seal of the seepage 

bucket due to scouring around the container. Fellows & Brezonik (1980) suggested 

using taller seepage meters to reduce this error. In our research, 30 cm tall buckets 

were used, but we observed slight scouring at the top of the bucket in some cases. 

Thus, it is recommended to use larger buckets in future studies, realizing that it might 

be challenging to drive them into the riverbed. 

2. Seepage bags were installed and allowed to sample for one hour, over which many of 

them ended up filling, so that total possible flow was not obtained in some cases. 

Flow into the bag decreases sharply when it is nearly full (Murdoch and Kelly, 2003). 

Thus, using shorter installation times (e.g., only 30 minutes) can minimize this issue 

in future work. 

3. If the purpose of the study is to quantify actual seepage rates precisely, then it is 

recommended to obtain the calibration coefficient for the catheter bags (Rosenberry 

and LaBaugh, 2008), as they have a fairly thick wall, that could restrict the flow, 

leading to underestimation of the seepage rate. 
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4. Using a larger diameter pipe to connect the seepage bag to the bucket, and use of the 

seepage bag with walls as thin as possible can minimize resistance due to friction and 

wall effects, respectively (Rosenberry and LaBaugh, 2008). 

Temperature Sensors 

The instantaneous temperature data collected in this study were not conclusive. As it 

is not pragmatic to continuously measure temperature at a large number of sampling points, 

its behavior should be first studied in detail at a few gaining and losing locations, so that 

instantaneous temperature data can then be related to the direction of vertical flow. Hence, for 

future work it is recommended to measure the vertical temperature profile over a longer 

duration (at least 24 hours), to understand the patterns of the temperature profile for different 

scenarios, which could then be correlated with instantaneous temperature profiles to obtain 

the direction of vertical exchange flux. It is also recommended to measure the temperature 

profile to deeper depths to observe clear differences to help in minimizing effects of 

hyporheic exchange flow, which is stronger at the near surface. 

Mini Piezometers 

A reliable technique is needed to minimize the errors generated due to inconsistencies 

in tape readings.  Use of an oil water manometer (Kennedy et al., 2007) with mini 

piezometers can resolve this issue, even though this device is a much more expensive to set-

up. 
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