
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

12-10-2020 

NDNSD: Service Publishing and Discovery in NDN NDNSD: Service Publishing and Discovery in NDN 

Saurab Dulal 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Dulal, Saurab, "NDNSD: Service Publishing and Discovery in NDN" (2020). Electronic Theses and 
Dissertations. 2140. 
https://digitalcommons.memphis.edu/etd/2140 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2140?utm_source=digitalcommons.memphis.edu%2Fetd%2F2140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


NDNSD: SERVICE PUBLISHING AND DISCOVERY IN NDN

by

Saurab Dulal

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Computer Science

The University of Memphis

December 2020



Copyright© 2020 Saurab Dulal

All rights reserved

ii



Abstract

Service discovery is one of the crucial components of modern applications. With the

advent of several new systems such as IoT, edge, cloud, etc the world is connected

more than ever and smart devices are creeping towards every nook and corner of our

surroundings. Not only the new systems are emerging but also the communication

pattern is evolving i.e. from one-to-one (host-host) to many-to-many (distributed

application, IoT). The definition of service has also changed over time. Unlike their

meaning in the past as programs running on some machines, services today can be

sensor devices collecting data, mobile devices offering computing service, or it can

even be a piece of data generated by some system. To satisfy the changing dynamics

and heterogeneity of the services and the demand of these evolving architectures

several new protocols are developed on top of the TCP/IP stack. Nonetheless, the

fundamental weakness of host-centric TCP/IP to support the need for distributed

application (IoT, edge) and many-to-many communication (e.g.

publisher-subscriber) have induced several weaknesses in the system and have made

it more fragile. Named Data Networking (NDN) is an information-centric

networking architecture that does the communication over signed, named content

objects. Its pub-sub style of communication, data-centric security at the network

layer, in-network caching, etc provides numerous benefits to modern systems and

tries to overcome the shortcoming of TCP/IP.

In this thesis, we propose NDNSD – a fully distributed, scalable, and

general-purpose, service discovery protocol for information-centric

architecture/NDN. It is developed on top of the synchronization protocol (sync) and

offers publisher-subscriber API for service publishing and discovery. We present

several design features of NDNSD and also establish how it is best suited for

iii



modern systems. We also introduce the concept of service-info and how it can be

combined with sync and NDN hierarchical names to make service discovery generic.

Finally, To substantiate our argument, we design, implement, and evaluate our

protocol, and also provide some use-cases (e.g. Building Management System) to

show how service discovery can be beneficial.

iv



TABLE OF CONTENTS

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Limitations of TCP/IP in Service Discovery 2
1.2 Problem Statement 5
1.3 Thesis Contributions 5

2 Background and Related Work 7
2.0.1 NDN Forwarder 7
2.0.2 Data Synchronization In NDN 9
2.0.3 Related Works 11

3 Design Overview 14
3.1 Introduction 14
3.2 Hierarchical Namespace 16

3.2.1 Discovery Prefix 17
3.2.2 Application Service Prefix 18

Example NDNSD Namespace 20
3.3 Protocol Overview 20

3.3.1 Service Publisher 20
3.3.2 Service Finder 21

3.4 Design Features 24
3.4.1 Service Info 24
3.4.2 Measurement Information 25
3.4.3 Service-info Accessibility 26

3.5 Use Case 27
3.5.1 Service Directory 28
3.5.2 Building Management System 29

4 Implementation 32
4.1 Chronosync 32
4.2 PSync 33
4.3 NDNSD Implementation 35

4.3.1 Interfaces 35
4.3.2 Service Info Representation 35
4.3.3 State Representation 37
4.3.4 Data Packet Specification 37

5 Evaluation 38
5.1 Evaluation Terms and Metrics 38

Metrics 38
Terms 38

iv



5.2 Real world Experiments 38
5.2.1 Distance experiment 40
5.2.2 Congestion experiment 40

5.3 Emulation Experiments 41
5.3.1 Loss and Partition Experiment 42
5.3.2 Scaling Experiment 44

6 Conclusion and Future Works 47

References 49

v



LIST OF FIGURES
Figure Page

1 NDN Narrow Waist 7

2 Interest and Data packet in NDN 8

3 NDN Forwarding Pipeline Overview 9

4 NDN Synchronization Overview. “I” and “D” represents sync interest
and data respectively 10

5 NDNSD Discovery Namespace Design 17

6 NDNSD Application Service Namespace Design 19

7 Flow diagram showing interaction between several components 21

8 NDNSD Sequence diagram, publishing service and fetching names and
service-info 23

9 Sample service publisher configuration file 24

10 Use of Name Based Access control to prevent service-info accessibility
from unauthorized users 26

11 Simple Building Management System (BMS) architecture highlighting
the use of discovery service 29

12 State Representation in Chronosync 32

13 State Representation in PSync 33

14 Psync Sequence Diagram 34

15 Raspberry Pi distribution across Dunn Hall, the University of Memphis
for distance experiment. Here, C represents service finder and the
number on the right side of C, after “–”, is a successive experiment
number 39

16 Device distribution for the congestion experiment. All the devices were
placed in the same room and were connected to the access point AP 39

17 Aggregate percentile and average delay distribution obtained from dis-
tance experiment 40

vi



18 Aggregate delay percentile distribution obtained from congestion ex-
periment 41

19 10 node Mini-NDN topology with 5 service finders, 2 service publisher
and 3 routers 42

20 Sync, service-info and aggregated delay percentile distribution for dif-
ferent per-link loss rates in 1-hop and 4-hop nodes 43

21 Average aggregate delay for all-hops with various per-link loss rate 44

22 Fig (a) is a generic topology that shows how service publisher (P)
and service finder (C) are connected with the routers (R). “x” and
“y” represents number of C and P respectively. Figure (b) is a case
when 16P and 84C are connected with the routers to form a 64-node
topology. Here, x = 4 and y = 12, meaning, 4 service publisher and
12 service finders are connected with each router (R). 45

vii



LIST OF TABLES
Table Page

1 NDNSD prefixes and data names example 20

2 NDNSD Implementation of Pub-Sub Interfaces 36

3 Aggregate delay in multi-hop environment 42

4 Typologies used in scaling experiments 45

5 Average number of packets received by service publisher in scaling
experiment. IPC = Interest Packet Count, DPC = Data Packet Count 46

viii



Chapter 1

Introduction

The world of networks and communications is rapidly changing. It has been

projected [1] that by 2023 network devices will inflate to about 29.3 billion,

Machine-to-Machine (M2M) connections will reach about 14.7 billion shared among

moving cars and IoT applications, there will be enormous growth in mobility, and

5G will have its fair share [1]. These devices will comprise IoT devices such as

wireless sensors, actuators, smart home applications, edge computing applications,

autonomous systems, and so on, and will exist in almost every nook and corner of

our surroundings. So far, TCP/IP has done a wonderful job of maintaining these

connections and have kept things moving. But several questions are raised [2]

whether the architecture that was envisioned for point-to-point communication will

be capable of handling stringent new requirements posed by this plethora of

connectivity or not. Nonetheless, the Internet is evolving. It has pushed itself

beyond the traditional point-to-point communication mode and has allowed people

(researchers, industry, and service providers) to explore several new dimensions of

the Internet such as CDN, ICN, and so on. Named data networking (NDN) [3][4], a

flavor of Information-Centric Networking (ICN), envisioned as the future of Internet

architecture is evolving rapidly and has brought several promises for the present and

futuristic Internet. Naming the content rather than the host, securing packets right

at the origin, intrinsic mobility support, pervasive caching, publisher-subscriber

style of communication, direct use of application-layer names into the network layer

are some of the much-needed flavors offered by NDN to support the next billions of

devices envisioned above. More about NDN is presented in the section 2.0.1 below.

Service discovery (SD) is a fundamental requirement of contemporary

networking systems. Modern web, IoT application, building management, smart

device, LAN, WAN, mobile application, etc depends on SD in a way or another.

1



Furthermore, the proliferation of the applications towards the edge, rapid expansion

and advancement of IoT and sensor networks, and cloud computing have pushed the

service discovery to the next level of importance. It is also changing the dynamics of

how the services and resources were discovered and used in the past. Additionally,

the pervasive nature of wireless networks and mobile devices has underscored its

importance and is expected to be even more in the future. The most common use of

SD can be seen in local area networks such as discovering printers, bluetooth

devices, network computers, gateways, access points, service objects, and so on.

Plenty of research has been done in this area and several solutions are

proposed for IP and non-IP based i.e. Peer-to-Peer (P2P), data-centric systems.

Meshkova, Elena, et al [5] have categories service/resource discovery based on the

scale – local, enterprise, Internet, type – wireless, IoT, edge, architecture –

client-server, P2P, data-centric, centralized, decentralized, etc. based on the network

and platform they are used. However, we found several limitations in these solutions

such as requirement for a centralized or cloud servers, IP to name mapping systems

etc. In the following sections we will discuss more about the limitations and our

proposed solution.

1.1 Limitations of TCP/IP in Service Discovery

The Internet is constantly evolving along with its original point-to-point

client/server style of communication. Modern distributed systems such as IoT,

cloud computing, CDNs are inherently data-centric and the communication pattern

is more complex and diverse (one-to-many, any-to-any). These data-centric systems

often require a service/resource discovery mechanism to invoke services offered by

the applications. Protocols such as UPnP [6], Bonjour [7], Link Layer Service

Discovery (LLSD) [8], Service Location Protocol (SLP) [9], Jini [10], Service

Discovery Protocol (SDP) [11], etc exist in different layers of TCP/IP stack that

facilitates the discovery process. Most of these solutions depend on DNS [12],

2



multicast-DNS (mDNS) [13] or DNS-based Service Discovery (DNS-SD) [13].

However, these protocols have several limitations. Shang, Wentao, et al. have

discussed them in detail in their papers [14][15]. Regardless of the limitations in

these protocols, the most important one comes from the network layer failing to

directly identify names injected by the application layer. For example, a printer

application cannot just advertise itself as ”PrinterA” to the network but rather its

identification is tied with IP address and port number, because that’s what the

network layer recognizes. This creates a semantic mismatch between the network

layer and application layer, and to resolve it (name to IP address mapping), we need

resolution service such as DNS. And this is how most of the discovery is working for

decades.

With the advent of modern systems such as IoT and Edge, the service

discover has reached to a new horizon. For example, DNS-SD based discover

mechanism usually identifies service by its name and port number – defined in SRV

records, and mostly assumes the service as a running process in some machine.

However, the meaning of services in IoT is can be different. It can be a sensor

collecting the data or data itself. This heterogeneity in service needs to be dealt

with more general discovery approach. Some protocols such as Constrained

Application Protocol (CoAP) [16] identify services by their names instead of DNS

records. It uses a dedicated server, resource directory (RD), to store meta info such

as name, IP, port, and other details of the services running elsewhere. CoRE-RD

[17] is one such protocol that uses RD and is based on CoAP. Nonetheless,

infrastructure, as well as a centralized server (RD), is required for the protocol to

work and this can be cumbersome for inherently decentralized applications. Oh the

other hand, mDNS offers a decentralized solution for service discovery and works

without infrastructure support. It is widely adopted by several existing discovery

protocols and provides a basis for Zero Configuration Networking [18] in the local

3



subnet. With mDNS, Devices register themselves with a link-local IP Address

(self-assign an address and proves using ARP [19] request to check uniqueness) and

a name (e.g. device-info. tcp.local).“.local” is a top-level domain (TLD) attached

to the hostnames that are supposed to work locally. All the mDNS queries (for

names ending with ”.local”) are sent to a reserved multicast address and

devices/resources discovery withing the subnet becomes very easy. However, it only

works with link-local addresses and thus won’t be very useful for IoT mesh or

multi-hop environment. Similarly, edge applications such as Smart Things [20],

AWS IoT [21], Google Chromecast [22], Azure Sphere [23] mostly depend on cloud

for service registration and discovery. This dependency incurs few notable problems

i) the resources that are purely used in the local environment have to rely on the

cloud for service registration ii) extra round-trip overhead even for the devices

residing in close vicinity and iii) disruption in the infrastructure connectivity will

disrupt the whole service.

Hence, taking into consideration of evolving data-centric system and their

demand for efficient, seamless, and scalable discovery mechanism, we believe, the

core functionalities needed for the discovery should be embedded in the architecture

itself. They should be exposed to application developers to implement their custom

logic on top of it rather than depending on external protocols or components. The

capability of NDN to use semantically meaningful application names in the network

layer simplifies most of these problems. Addressing information-centric services by

names and supporting multi-party communication on top makes the discovery

process even simpler. Thus, we choose NDN for this project. And in the rest of the

sections, we will only present NDN specific discussion.

4



1.2 Problem Statement

Service Discovery (SD) can be defined as a process of identifying distinct content or

services that are offered by applications or by some well-defined network services in

the desired network. It should be capable of i) advertising and revoking services ii)

discover services offered by other applications and iii) optionally select and invoke

desired services.

During our past projects on building management systems [24], sensor

networks, and work from our colleagues on distributed mobile applications [25], we

realised the need for a better service discovery mechanism and actively looked into

some of the existing works (section 2.0.3). We mostly relied on manual

configuration but the complexity grow significantly as the network size grows.

Looking into the existing work, we found several limitations and issues. Major of

which are listed below:

• Limited to a specific environment or domain e.g. IoT, edge, etc.

• Either centralized or non-scalable solution

• Applications forced to deal with lower-level network primitives

Note: More on these problems are explained in the related work (section 2).

1.3 Thesis Contributions

This thesis design and develops a fully distributed, general-purpose, salable service

discovery protocol for NDN by leveraging the publisher-subscriber feature offered by

the NDN Synchronization protocol. The protocol is developed on top of current

NDN stack and sync protocols (PSync [26], ChronoSync [27]) and offers several

features such as high-level API for service publishing and discovery, hierarchical

namespace, measurement information, and so on. The thesis also presents a strong

use-case of service discovery in the Building Management System and its

5



implementation in Mini-NDN [28]. Finally, it also provides several evaluations that

were performed in the real-world and emulation environments.

The rest of the thesis is organized as follows. In Chapter 2, we provide a

background of NDN Forwarder, Data Synchronization Protocols, and discuss some

of the works related to our project. NDNSD protocol overview, design feature, and

the use-cases are discussed in Chapter 3. In Chapter 4, first, we provide a brief

description of Chronosync and PSync. Next, we discuss the implementation details

of NDNSD. We also discuss several components of NDNSD such as State,

Service-Info Representation, Data Packet Specification, and more. In Chapter 5, we

evaluate the protocol using real-world and emulation experiments. And finally, we

conclude our work in Chapter 6 and also discuss possible future directions.

6



Chapter 2

Background and Related Work

In this section we will talk about the NDN Forwarder, sync and some of the service

discovery mechanisms in NDN related to our work.

2.0.1 NDN Forwarder

Figure 1 NDN Narrow Waist

Named data networking is an evolving data-centric internet architecture that

fundamentally differs with TCP/IP in terms of communication model. Every single

piece of content in NDN is named, and networking is done over this named content

chunks by using interest and data packets. It completely eliminates the

host-destination style of communication by decoupling the packets from the

producers location. Once decoupled, they can be served by any intermediate nodes

whole stores a copy of it. Authenticity of a packet is ensured by signing it at the

time of creation. Signing is done by producer using NDN security schemes. A

simple NDN hour-glass model is shown in the right side of figure 1 Forwarder

(NFD) is a core module of NDN and implements major Named Data Networking

protocol stack needed for named based communication. Network interfaces and

application end points as are abstracted as a Face on top of several lower-level

transport services. NFD uses these Faces to receive and forward interests and data

7



packets. Figure 2 shows the latest version – at the time of this thesis – of NDN

Packet Format Specification version 0.3 [29]

Figure 2 Interest and Data packets in NDN

An overview of the packet forwarding pipeline in the NFD is shown in Figure

3 First, when the interest arrives at the forwarder, it is checked whether it’s a

looped interest or not and is dropped if found duplicate. Next, an entry is created

in the Pending Interest Table (PIT), the interface from where the interest is

received is recorded, and the expiry time is set, which is equivalent to interest

lifetime. After creating the PIT entry, the content store (CS) is checked to see if the

data corresponding to the interest is already available there. CS caches every valid

data packet received by the forwarder based on CS policy. If found in CS (cache

hit), data is sent back via the same interface the interest was received, else (cache

miss) the interest is handed to the strategy which consults Forwarding Information

Base (FIB) to figure out appropriate face to the forward the interest. Meanwhile, if

another interest arrives for the same data before satisfying the previous one, or if

the PIT entry already exists for the interest, the incoming interface is recorded and

the lifetime is reset to the new value. This process is called interest aggregation and

is a very powerful in-build mechanism for congestion control and loop detection in

NDN. Finally, once the data comes back to the forwarder, it is sent to all the

recorded interfaces and the PIT is consumed.

8



Figure 3 NDN Forwarding Pipeline Overview.

IP forwarding is done solely based on FIB, and since the data packet can

follow any path back to the client, the forwarding module has asymmetric view of

the network. Thus, the it cannot record packet performance through the network.

NDN forwarding is stateful, every router maintains the state of the forwarding

process in the network. The data packet in NDN follows the reverse path as that of

interest, so the routers can compute packet processing performances such as RTT,

throughput, etc. These measurements can be used by forwarding strategies [30] to

make an adaptive decision. Thus, interest received by forwarder is handed to the

strategy rather than forwarding it solely based on FIB. The strategy can decide

appropriate action for the interest received based on the previous measurement and

the FIB.

2.0.2 Data Synchronization In NDN

Communication patterns in modern distributed applications such as IoT, edge and

cloud computing, vehicular network, monitoring system, social media, etc are much

more sophisticated than just a two-party source-destination model. It can be

one-to-many, many-to-many, and any-to-any. These applications are essentially

data-enteric but the way it works in today’s IP-based system is through some

centralized mechanism because of IP’s structural limitation to handle any to any

9



(a) Nodes in Same State (b) Nodes updates to new
state with publication at A

Figure 4 NDN Synchronization Overview. “I” and “D” represents sync interest and
sync data respectively

communication style. NDN communicating style at the network layer is inherently

distributed. The data are not coupled with a host but rather can reside anywhere in

the network. Its provenience can be ensured anytime anywhere – thanks to NDN

in-build security. NDN synchronization – sync in short – provides a powerful

abstraction above the interest-data exchange to facilitate multi-party

communication by synchronizing the state or data among the participating nodes

(sync nodes). An application implementing the sync will not have to worry about

how the data or state gets to another node. Once the data is published to the sync,

it will take care of synchronization by maintaining a shared distributed dataset

containing the latest info, and by propagating the updates to other nodes.

Additionally, NDN’s special feature of securely binding names with the content

makes things, even more, simpler with sync. Dataset maintained by sync contains

names and their latest state, and the applications, upon requirement, can fetch the

corresponding data using names delivered to it by the sync. Several NDN

synchronization protocols such as ChronoSync[27], RoundSync[31], VectorSync[32],

NDN Sync[33], iSync[34], PSync[26], etc are proposed so far and they provide

10



several unique techniques for data-set synchronization. For our work, we choose

PSync and Chronosync as they are openly available as a library, actively

maintained, and also are currently used in the NDN testbed. We have presented

more details on PSync and Chronosync in section 4.

Figure 4 shows a naive syncronization process in NDN. Figure 4a shows that

first, all the applications are at the same state i.e. stateX and there is a sync

interest from each application to another in the network. These sync interest are

long-lived interests and resides in the network PIT. It’s primary purpose is to fetch

sync data when published by any node in the network. Next, in figure 4b, AppA

publishes new data to the sync and updates its sync state to stateY. All the pending

sync interest (from AppC and AppB) at A gets answered, and the new state i.e.

stateY is delivered to AppC and AppB. Once they receive the data packet, they will

perform set reconciliation and will update their state to the latest i.e. stateY.

Thus, to design a distributed service discovery protocol where metadata data

(service-info) synchronization is one of the core requirement, sync makes everything

much simpler by offering both multi-party communication and dataset

synchronization.

2.0.3 Related Works

An early attempt to use sync protocol for service discovery was proposed by Mark

Mosko for CCNx 1.0 [35]. Devices use a well-defined namespace such as

“/parc/printers/” to advertise the manifest of service details which include TTL as

a lifetime. Ravindran, Ravishankar, et al [36] proposed two different service

discovery protocols, neighbor discovery protocol (NDP) for locally reachable CCNx

nodes neighbors and Service Publish and Discovery (SPDP) for publishing local

services and discovering remote services. SPDP used a recursive query that

propagates hop-by-hop among the reachable adjacencies running SPDP instances.

The data containing the service list is aggregated by the respective instances and is

11



sent back to the original requestor. The solution is very similar to brute-force,

services are searched in every hop successively, thus scalability will be a concern in a

larger network. Also, if services are very far (multiple-hops away) the discovery

process may take a longer time and can be infeasible for frequently updating

services e.g. computing services. [37] [38] uses broadcast mechanisms for the service

discovery in IoT and edge environments respectively. In [38] utilizes expanded ring

search technique along with the broadcast for service discovery. Consumer requests

for desired services with attributes such as position, speed, direction, content to be

processed, etc. The request is first broadcast to a 1-hop neighbor, if no reply is

received within the pre-defined timeout, the request is again sent to 2-hop

neighbors, TTL is used for hop count. The process repeats until the service is found

or the consumer gives up. However, the solution is proposed for edge application

only, also expanded ring search can be expensive and might not scale if there are

huge numbers of consumers. Mtibaa, Abderrahmen, et al [39] identified a

combination of three mechanisms: proactive, reactive, and passive resources

discovery in the edge. Edge compute nodes (ENs) will proactively advertise their

resources in the proactive mode which creates FIB entry for others to query the

resource. Mobile devices looking for services can query ENs. The reply will update

the FIB entry of nodes in the reverse path. And in passive mode, NACK is sent if in

case ENs are overloaded to restrict downstream and send more requests. A very

close approach to our work is presented in [40][41]. Authors use a similar concept of

synchronization meta-info of services, using sync protocol, among multiple edge

computing servers (ECS) to facilitate service discovery. ECS are special nodes in

the network that synchronize and maintains service information available from the

provides. A discovery interest (e.g. /discovery/ecs/ ) from an application is replied

with a suitable service by the closes ECS. Nevertheless, Maintaining ECS can be an

12



extra infrastructure for service discovery. This can be relevant for a particular edge

computing application but not in general.

13



Chapter 3

Design Overview

In this chapter, first, we introduce the rationale of sync for service discovery. Next,

we provide details of NDNSD protocol (Section 3.1). Then, we discuss namespace

design for NDNSD (Section 3.2) and several other design features. Finally, we

discuss a strong case for the use of NDNSD in the modern Building Management

System (BMS).

3.1 Introduction

Synchronization protocol plays a crucial role in NDN. The original NDN

architecture [42] envisioned combining sync protocol with application accessible

libraries to provide transport functionalities to the applications. The application

accessible libraries should hide the core network functionalities and primitives such

as interest and data from the applications and the sync should help the transfer

data from one application to another. The Internet protocol stack [43] is a

well-known example of such a model, best known as the hourglass model. Hundreds

of new protocols and several changes are introduced in the top and bottom layers,

but the core is kept simple and intact. The success of such models has been argued

by the pioneers [44][45] time again. Remaining in the realm of the internet

hourglass model and as envisioned by original NDN architecture, we have developed

NDNSD, a fully distributed general purpose1 service discovery protocol for NDN, as

well as an application accessible reusable component that uses synchronization

protocol for service announcement and discovery.

We view service discovery problems as data synchronization problems, some

applications actively look to discover services while others are trying to advertise

the services. If we further think about it, the whole process boils down to a pub-sub

system, i.e. publishing and subscribing services. At a high level, this can be

1Covering a wide range of environments e.g., LAN, WAN, IoT, edge, mobile, etc.

14



compared with topic-based communication in MQTT [46]. Communication models

for SD in this pub-sub system can be of three types i) nodes advertising services via

publishing, e.g., printers ii) nodes only discovering services via subscribing, e.g.,

sensors and devices ii) and nodes doing both, e.g., mobile phones [e.g., nPchat] and

laptops. There are several benefits of using sync for SD, such as i) no external

dependencies or demanding change in network layer – sync comes with NDN

natively, ii) it inherently supports multi-way communications, iii) flexibility to

implement application semantic. Two or more parties can agree on a common sync

group. This is applicable to local as well as global applications or devices. A mobile

application can agree on a sync group “/letschat”, whereas printer services can

agree on “/printers”. Similarly, IoT and edge applications can have their own sync

group. Unlike the limitation of TCP/IP, i.e. the required for name resolution

services such as DNS or mDNS as discussed above, these names (sync group),

injected by the application layer, can be directly used in the network layer. This

gives huge flexibility to applications to implement their own semantics and reflective

names that can identify their services. Thus, the core concept of NDNSD is to

group the services by their service-type and synchronize the metadata (section

3.4.1) of the services using sync protocol. Let us first define some of the terms that

will be frequently used in the coming sections.

• Service Type Unique identifier for the type of service offered by an

application. This can be existing standard services, e.g., printers or an entirely

new one. It is like DNS Service Type [47].

• Service Name Application name used by the service provider to advertise

their service information, e.g., /uofm/printer1/NDNSD/service-info. These

names should be routable in the network. Here, printer1 is a unique identifier

associated with the service and is also known as a service identifier.

15



• Service Details Metadata that contains specific details about the service

(more on section 3.4.1) .

• Publish Advertising service to the network.

• Update Receiving service updates published by others in the network. Note:

The term ”publish” and ”update” in a sync level means publishing data to the

sync and receiving updates via sync.

In the next sections, we go into detail of namespace design, NDNSD protocol

overview, and design specifications.

3.2 Hierarchical Namespace

One of the major motivations for choosing NDN instead of TCP/IP for service

discovery is because of its strength to process application names directly at the

network layer, i.e., the packet level. As discussed in the limitation of TCP/IP

(section 1.1), TCP/IP not being able to do so forces it to depend on mapping

services such as DNS and mDNS for the name resolution. This creates an extra

burden and incurs several security challenges [14].

Naming is one of the core benefits of NDN. Application data objects are

represented using immutable names, and more importantly, these names are directly

used at the network layer. An application can say, ”I am printer” instead of saying

”I am 192.168.0.71” to the network layer. This provides huge flexibility to the

applications in choosing semantically meaningful names. Once these names are

received by the other applications, 2 it will be very simple to identify the type of

service associated with the name. However, the namespace needs to be designed

carefully because they are directly used for routing and forwarding; and a bad

design can lead to bad performance and scalability issues.

2Most of the communication in today’s world is application-driven i.e. application to appli-
cation

16



NDNSD offers hierarchical namespace design (figure 3.2) for discovery and

application data prefixes which we call “discovery” and “application service” prefix,

respectively.

3.2.1 Discovery Prefix

Figure 5 NDNSD Discovery Namespace Design

Discovery prefix, also known as service-group, is constructed in a way to reflect the

semantics of the services it groups. It has a root on the top, which is also a trust

anchor [48]. Next, the service granularity is added as per the need to make the

service type more meaningful. For example, the prefix can be /uofm/image-proc or

/uofm/image-proc/rccn. The first one contains all the image processing services

available to this group regardless of the type of algorithm used, but the second one

contains specifically those who run RCNN (Regions with Convolution Neural

Networks). Similarly, logical grouping of people (e.g., net-lab) or location-based

(e.g., printer) information can also be added to the prefix to make it more sensible.

Finally, two extra components, “NDNSD” and “discovery”, are added by NDNSD.

17



The first component is to distinguish the packet generated by NDNSD, and the

second one is to recognize it as a discovery packet. One of the examples in the figure

5 has a root, /uofm, a trust anchor, , and an organization name in this context, as

well as service-type, image-proc, specifically RCNN. So, the final discovery-prefix

will be /uofm/discovery/image-proc/rccn/ whereas the discovery data name (a.k.a

sync prefix) will be /uofm/discovery/image-proc/rccn/NDNSD/discovery.

The discovery prefix design is very flexible because it has no strict limitation

on the levels of hierarchy and service-type name, meaning applications can decide

how many components to attach to the prefix. The only strict requirement is that

the application should have a valid certificate for the prefix it wants to use to

advertise the service. NDN requires every data packet to be signed by the certificate

issued for the name.

Additionally, publishers can also join the existing pool of service-type

(already known) or create a new one on the fly. For example, a gaming application

can create a new group of service-type /memphis/cs/gamer-001 or even choose a

longer semantically meaning full name and let others join the group. Note: NDNSD

assumes that the service-type is known to the locator application before evoking the

discovery request.

3.2.2 Application Service Prefix

Application service prefix is constructed by adding a service-identifier (service-id) to

the discovery prefix. For example, with a discovery prefix /<root>/printers and

service identifier printer1, the application prefix will be /<root>/printers/printer1.

Similar to discovery names, “NDNSD” and “service-info” are added to the

application prefix to obtain the service-info data name. These components help

avoid name collision and make it easier to identify and authenticate data generated

by NDNSD. Figure 6 shows an example of a basic application prefix hierarchy. It

can be coarse such as /uofm/printers/printer1 or more granular (e.g., containing

18



Figure 6 NDNSD Application Service Namespace Desing

location information) such as /uofm/net-lab/servers/cygnux or any other relevant

names.

As shown in the figure 6, sometimes there can be multiple discovery prefixes

(/uofm/printers, /uofm/library/printers) for the same type of service. What prefix

should an application choose if it is authorized to advertise its service under more

than one? In this case, it is up to the applications to decide under which domain

they advertise the service. One obvious factor could be the semantics of the service.

If a printer is in the library, /uofm/library/printers can be a meaningful choice.

One important thing to note is that NDNSD doesn’t have any strict requirements

for application service names, meaning, NDNSD can work with any other names;

“discovery prefix + service-id (/<discovery-prefix>/<service-id>)” is not a strict

requirement because these names are carried by sync and are handed to the service

finder upon request. The finder does not need to know anything about them, but

19



the names should be valid and routable. Thus, it is entirely a developer’s choice of

how they want to implement the protocol.

Example NDNSD Namespace

Table 1 NDNSD prefixes and data names example

Organization prefix: /uofm
Discovery Prefix: /uofm/netlab/servers
Discovery Data Name (sync prefix): /uofm/netlab/servers/NDNSD/discovery
Service identifier: cygnx
Application Service Prefix: /<discovery-prefix>/<service-id>

e.g., /uofm/netlab/servers/cygnux — this should
be routable

Service-info data name: /uofm/netlab/servers/cygnux/NDNSD/service-info
— also known as application service data name

To advertise a service, a user just needs to supply a discovery prefix (eg

/uofm/netlab/servers) and the service identifier (eg cygnux), along with other

service details. To find the service, the user needs to supply a discovery prefix.

3.3 Protocol Overview

NDNSD provides two higher-level interfaces, i.e. Service Publisher (SP) and Service

Finder (SF) to facilitate the publishing, updating, and discovery processes. Let us

now go into the detail of each of these interfaces.

3.3.1 Service Publisher

• Receive and store service advertisement and updates from the user. Each

advertisement (service info, section 3.4.1) must contain a type (e.g.,

/<prefix>/printers, /<prefix>/sensors), name, and details of a service.

• Construct an appropriate sync group prefix using the service-type received

from the service publisher and join the corresponding sync group if it already

exists (or is known) or create a new one if it’s not. For example, the sync

group name will be “/<prefix>/printers/NDNSD/discovery” for the service

type “/<prefix>/printers”.

20



Figure 7 Flow diagram showing interaction between several components

• Serve service-info data (3.4.1) under the application service data name. The

name can be “/<prefix>/printers/printer1/NDNSD/service-info”, and the

corresponding data can be key-value pairs containing service details and other

information.

3.3.2 Service Finder

• Receive discovery request from the user. Requests must contain a service type,

e.g., /<prefix>/printers.

• Construct an appropriate sync group prefix using the service type received

from the user and fetch all the service names (i.e. application names)

belonging to the group via sync. e.g., service name:

“/<root-prefix>/printers/printer1/NDNSD/service-info”

• For each service name, send an interest to fetch the corresponding service-info.

NDNSD assumes that there is at least one service provider serving data for a

given service name.

21



• Parse data packet to obtain service information and send it back to the user.

• Provide several pieces of measurement information, such as round-trip time,

link-stability, re-transmission count, etc. via finder interface upon the request

of the client.

Looking at some of the existing designs, we found a few tradeoffs in two

functionalities offered by the discovery protocol. The first is proactively fetching

and storing service-info from other producers and the second is parsing services on

the behalf of a client to choose an appropriate one based on their need. Proactive

fetching and storing can speed up the discovery process in some cases, but it also

has a few notable downsides. For frequently updating services, pre-fetching can be a

huge work catch up and storing can be a concern for devices with lower memory.

Thus, to achieve our goal of making a general-purpose discovery protocol, we

decided not to do proactive fetching because applications always remain up-to-date

about the services, thanks to the sync protocol, and can fetch fresh service-info

instantly if needed. However, service-info that are already fetched (upon request)

are stored. Nonetheless, the service finder can also enforce NDNSD to fetch fresh

info and not serve it from the storage or network cache.

Parsing services to choose an appropriate one based on the client’s needs

certainly benefits them in terms of processing and possible overhead. On the other

hand, there are a few downsides to this approach. First, it weakens the purpose of

making a general-purpose discovery by limiting its scope. Second, it forces clients to

rely on the results provided by the NDNSD, causing inflexibility to implement their

own logic. Finally, incurring changes directly needs to be implemented on the

library. Thus, NDNSD does not parse the results on behalf of the client but

provides flexibility to the developers to implement their logic and parse the results

(list of services) to figure out the appropriate one based on the needs. This

strengthens our goal of making the discovery process more generic. It also allows

22



applications to model service details based on their need. For example, edge

computing applications can have details such as computing power, CPU, Memory,

availability, and so on for IoT, wireless, etc. Note: Standard formats such as JSON,

XML, etc. can be used for the service-info.

Figure 8 NDNSD Sequence diagram, publishing service and fetching names and
service-info

Flow Diagram (figure 7) and Sequence Diagram (figure 8) shows NDNSD in

action. The following paragraph describes the process in brief.

First, a AppB advertises a service using a publisher application. It provides

service-info that is composed of service-type: printers, service name (or service

identifier): /printer1, and service details to the publisher. It then constructs an

23



application service data name (/printers/printer1/NDNSD/service-info) using

service-type and service-name and publishes it to sync group:

/printers/NDNSD/discovery, the name of which is constructed using the

service-type. Thanks to sync, this publication is multi-casted to other nodes of the

same sync group, meaning they get notified about the latest updates in within the

group. Finally, the publisher will start listening on the application name

(/printer1/NDNSD/service-info) for incoming interests. It will also send a callback

to the AppB notifying whether the service registration succeeded or failed. There

can be many other publisher applications (e.g., printer2) publishing to the same

sync group. On the locator side, AppA requests for the service ”printer”. This

means AppA is interested in discovering printers available in the network. When the

locator receives the request, it first fetches all the application names (

/printer1/NDNSD/service-info, /printer1/NDNSD/service-info) using sync. Next,

it sends interests to each of these names and fetches the corresponding service info.

Finally, the service-info received from the network is sent back to the AppA.

Additionally, the locator also records the round-trip time (RTT), re-transmission

count, and other measurement information that occurs while fetching the

service-info. This information is provided to the users on demand.

3.4 Design Features

3.4.1 Service Info

Figure 9 Sample service publisher
configuration

Service info is a collection of information used

by a service provider to advertise its service

and is a crucial component of NDNSD. It

is composed of required and optional fields. As

shown in figure 9, the current design identifies

service-type and serviceID as required filed.

Service-type is used to construct the discovery

24



name (sync prefix), and the serviceID is used to

construct the application prefix. Both prefixes

are used to advertise and serve the discovery data (section 3.2). Even though the

required fields are a must, the actual meat of the service-info lies in the optional

field, i.e. service-details. A service provider can choose details specific to its service,

information they think might be useful to others. They can have as many key-value

pairs as needed. For example, an image-processing service at the edge can provide

details about models used to process the image, its released version, lifetime (how

long the service is available), and so on. Constraint IoT applications can provide

details about sensors (e.g., humidity, temperature), its location, memory, sleep time,

processing capabilities, etc. Similarly, other applications can have details as per

their need. This feature provides great flexibility to the application developers, and

also underscores the purpose of making the protocol a general-purpose.

3.4.2 Measurement Information

Sometimes, service-info alone can be insufficient for a client to make a better

judgment when choosing a service provider. For example, let’s assume “A” and “B”

are the providers of the same type of service, i.e storage. However, if A is far and

the link between the client and A is unstable, it would be better for the client to

avoid A and choose B. Measurement information such as round-trip time (RTT),

re-transmission count, timeouts, link stability, etc, will come in handy while making

such decisions. The NDNSD locator computes these parameters while fetching the

service info or by periodically probing the service provider. The computation is not

enabled by default for all the prefixes but the one’s client request. However,

sometimes the measurements can be misleading. For example, if the service-info

data is served from the cache and not from the actual service-provider, the RTT can

be significantly low. To mitigate this problem, we compute the parameters over a

period to obtain a cumulative value. Also, NDN supports fetching fresh data from

25



the publisher by setting the MustBeFresh flag with the interest. Thus, interest sent

to fetch service info can use this feature to fetch data directly from the publisher

and get better measurements.

3.4.3 Service-info Accessibility

Figure 10 Use of Name Based Access control to prevent service-info accessibility from
unauthorized users

The NDN data-centric security model helps to secure the data packet during its

creation. However, most of the distributed application requires some form of access

control scheme such that only authorized uses will be able to access the actual

content. This is true for NDNSD as well. There can be several services advertised in

the network of which service-info should be accessible to the authorized members

only. For example, a printer from the manager’s office might want to restrict public

use. Some service-info might as well contain specific details on how to use the

service and thus, may possess risk revealing it to the public. We use Name-Based

Access Control (NAC) [49] to achieve this. NAC is an access control scheme that

utilizes names and data-centric features of NDN to provide access control and data

confidentiality. It is based on asymmetric and symmetric encryption algorithms. In

the following paragraph, we will describe how it works with NDNSD.

26



The overall design of the scheme is shown in figure 10. It consists of three

major components: access manager, publisher, and locator. Publishers and locators

are also known as encryptors and decryptors based on their tasks. The access

manager is responsible for managing the access policies and publishing them as

named Key Encryption Key (KEK, public key) and Key Decryption Key (KDK,

private key). The service locator receives KEK from the access manager, uses it to

encrypt a Content Key (CK, a symmetric key), and finally, encrypts the content

(service-info) using CK. Both the service-info data packet and CK are published in

the network. Once the locator receives the packet and the respective content keys, it

extracts the key names from the encoded data packet and obtains KDK. Using the

KDK, first, it decrypts the CK, and next, the data packet using CK. Thus, only

authorized locators can obtain KDK and access the service-info.

NDNSD doesn’t use NAC by default for all the advertised services. It is up

to the application to decide whether to use it or not based on the sensitivity of the

service they offer and the content of their service-info. For example, public room

switches and printers might not need access control. Additionally, the access control

scheme does not apply to the discovery prefix or sync group. Everyone in the

network (with a valid certificate) can query the group and obtain a list of

service-names it carries. We do not protect this information because service-names

are used to construct service-info interest names that are transparent to the

network. Thus, we believe protecting the discovery prefix doesn’t servers any useful

purpose to our current design. However, we perform an in-depth analysis of its

importance and use-cases in our future work.

3.5 Use Case

This section demonstrates the usability of the proposed protocol.

27



3.5.1 Service Directory

Knowing the service type prior (a.k.a sync group or discovery prefix) can be

challenging for both Service Publisher and Service Locator applications. The

Service Publisher needs to know the appropriate service type before joining and

publishing its service. Similarly, the locator needs to know the service type before

querying for services. The simplest approach can be to define and maintain a list of

standard service-types similar to the DNS-SD. However, this still requires users to

know the service-type beforehand. Additionally, NDNSD provides flexibility to the

applications to create a new service type. Thus, for the service types that are

created ad-hoc, the standard list will not be very helpful. To solve this problem, we

propose a distributed Service Directory (SD)3. In a simplistic term, SD is just

another sync group or service-type that is used to list all other service-types

available in the network. A publisher application can opt to join the SD group and

announce the specific service-type it is using to advertising the service. We assume

the SD group prefix (e.g., /<prefix>/service-directory) is known to all the

applications. For example, if a service publisher is offering a gaming service

(/<prefix>/gamers-001/fifa20 ) and is advertising its service to the group

(/<prefix>/gamers-001/ ), it can simultaneously join SD group, and let know SD

about /<prefix>/memphis-gamers-001/. Similarly, other applications can do the

same. Now, if a user trying to discover gaming services but doesn’t know the actual

name (service-type) of the gamer group, it can simply use the locator application,

which, in turn, will join SD and discover the name /<prefix>/gamers-001/. Next,

the user can join /<prefix>/gamers-001/ and discover the actual services listed

under this group. One of the services is /<prefix>/gamers-001/fifa20. The process

is not automated and requires judgment from the user to select an appropriated

service-type returned by the SD group.

3Service Directory is an experimental idea and still in discussion phase

28



Importantly, give the enormous number of services that can exist today,

currently, we image SD for the local environment only. However, SD can be

extended beyond local hop but requires a deeper analysis, a better design, and

implementation. Hence, we leave this for future work.

3.5.2 Building Management System

Figure 11 Simple Building Management System (BMS) [24] architecture highlighting
the use of discovery service. R1, R2 and R3 are NDN repository (repos in short)

Building Management System (BMS) is an IoT application composed of

hundreds of sensors, actuators, storage units, and services. It is used by enterprises

as a cost-effective measure to monitor temperature, humidity, electricity, lighting,

etc, across the buildings. Figure 11 shows a basic type of BMS architecture for an

NDN enabled environment. It is a network of sensors, gateways, ndn repository

(”repos” for short), and users. The sensors periodically produce the data and insert

it into one of the repos. Once the data is received by a repo, it is replicated across

multiple repos and made available to the uses to fetch it. The overall process looks

very simple, but it poses enormous complexity in terms of management if the

network size starts getting bigger. Where does the complexity come from? The first

complexity is the on-boarding of the devices, i.e. plugging the devices into the

29



network. This was not particularly the problem for us because we found some solid

work in this area and our work assumes the devices are already on board with the

network. The second and more significant problem we faced was the discovery of

devices and services. It includes i) sensors discovering appropriate repos for the

communication and vice-versa if repos want to discover sensors, ii) users discovering

repos and the prefixes they serve the data for, ii) repos advertising services, and so

on. In the absence of a discovery mechanism, all these setups need to be done

manually, which is complex, time-consuming, and even impossible for bigger

typologies consisting of hundreds of sensors and repos. We faced this problem while

setting up an IoT testbed for BMS at the University of Memphis. This became a

major motivation for this work.

Now, with the discovery protocol in action, the whole process becomes much

more simplified and almost removes the manual configuration portion. Let us take

figure 11 as an example and explain how it works.

• First, repos use NDNSD publisher to publish their service. The Service-type

/<prefix>/repo, and the discovery data name is

/<prefix>/repo/NDNSD/discovery.

• Next, sensor s1 uses NDNSD service finder application to discover all the

potential repos {/<prefix>/repo/R1, /<prefix>/repo/R2,

/<prefix>/repo/R3} it can insert data to.

• Next, it chooses one of the repos from the list, and the Sensor s1 uses repo

insertion protocol to insert the data into the repo.

• On the user’s side, like the sensor’s, it uses NDNSD finder application to

discover the repos and all the corresponding prefixes. e.g., /<prefix>/sensor1,

/<prefix>/sensor2 they serve the data for.

• Finally, the user will fetch the desired data from the repo.

30



We have implemented and tested the BMS use-case in Mini-NDN. Please refer to

the link4 for more details.

4https://github.com/dulalsaurab/NDNSD/tree/master/experiments/bms-usecase

31



Chapter 4

Implementation

In this section, first, we will introduce some of the libraries (Chronosync,

PSync) that are used to develop NDNSD. Subsequently, we will discuss the

implementation detail NDNSD.

4.1 Chronosync

Chronosync [27] tries to improve the performance of dataset representation and

synchronization by using a two-level Merkel[50] tree as shown in (figure 12). This

tree is maintained locally and is constructed based on the updates they receive for

each prefix belonging to the sync group. The level-one child in the tree contains the

digest of the leaf knows as the node digest. The level-two child or the leaf node is

assigned a unique name prefix (e.g., /a) that represents the node and a sequence

number. Collectively they represent the state of the node. Each node uses its prefix

to publish the data which is associated with a chronologically increasing sequence

number that starts from zero at the beginning. Note that, as shown in the figure,

lexicographical ordering of the node’s name in the tree is important to compute the

same root digest.

Figure 12 State Representation in Chronosync

Chronosync uses a long-lived sync interest, also known as pending interest,

32



to fetch updates from the other nodes in the network. These interests always reside

on the forwarder’s PIT and get renewed if expired or satisfied by the sync data. The

name (e.g. /<sync-prefix>/root-digest) consists of sync prefix and the state or root

digest. Pending interest serves two important purposes, i) it helps to migrate the

latest publish happening in the sync group from one node to another, and ii) since

it carries the sender’s digest, the receiver can compute inconsistencies between itself

and the sender.

The dataset synchronization process is very similar to the one shown in

figure 4. Once the new data is published by an application, the sync tree gets

updated by updating the node and root digest. The publish will reply to the

pending interest with its newly computed digest and the content (prefix + latest seq

number e.g., /a/2). It will also renew its pending interest. Other nodes receiving

the sync data will update their state accordingly and will also renew the sync

interest with the latest digest.

4.2 PSync

Figure 13 State Representation in PSync

PSync uses the Invertible Bloom Filter (IBF) to represent the shared dataset

or state. Originally, PSync was designed to synchronize a subset of a dataset

containing a larger number of prefixes, i.e., to satisfy the need of the consumer

interested in a few prefixes only rather than the whole dataset, also known as

33



PartialSync. However, the specification supports both partial and full

synchronization as full sync is only being a special case of partial sync where a

consumer is interested in all the prefixes. Similar to Chronosync, the name prefix is

attached with the latest sequence number. Thus, the IBF will only store a

fixed-length hash of the latest names (figure 13) from the continuous streams. This

significantly reduces the size of IBF and improves performance (lookup,

reconciliation, insertion, etc.).

Figure 14 Psync Sequence Diagram

A simple PSync state synchronization1 is shown in figure 14. First, “NodeA”

and “NodeB” join the sync group, construct an empty IBF, and exchange the sync

interest containing an empty IBF. After a while, “NodeA” publishes data for the

prefix “/a” with sequence number 1, computes the hash of the data name (i.e. /a/1)

and inserts it into the initial empty IBF to obtain IBF1. Thereafter, NodeA replies

to the pending sync interest from NodeB, with a sync data

(/<sync-prefx>/<empty-IBF>/has(IBF1)) that contains the latest published prefix

and its sequence number (/a/1). NodeB, upon receiving the sync data, performs a

1The diagram is based on the current release version 0.2.0 of PSync library

34



lookup and figures out the missing sequence number, i.e., 1 for /a in this case.

Finally, NodeB updates it’s IBF to IBF1 and renews its sync interest.

Both the protocols are implemented in C++ and provide a well-defined

full-synchronization pub-sub API.

4.3 NDNSD Implementation

We have implemented2 NDNSD protocol, explained in section 3.3 in C++, as a

higher-level pub-sub library on top of some of the existing synchronization

protocols. Several NDN synchronization protocols [51] exist today. As discussed

earlier, we chose PSync and Chronosync for our implementation because of their

availability and maintenance. Our implementation is adaptive to both libraries, and

the protocol choice is exposed via the API for the application developers, meaning

the application can decide what synchronization protocol to use for the discovery

process. It is very important that both publisher and locator applications need to

choose the same sync as they have their own data encoding scheme and mixing the

protocol choice would result in data decoding failure. Our implementation also

provides flexibility to incorporate more synchronization protocols, if needed in the

future should they provide consumer-producer API similar to PSync and

Chronosync. We have also designed a simple data publisher and locator application

for testing and evaluation.

4.3.1 Interfaces

NDNSD library provides two high-level APIs for service publishing and discovery.

The details of the APIs are shown in table 2

4.3.2 Service Info Representation

We use the Boost INFO format to represent service-info. The main rationale for

using an info formatted file is because of its simplicity, standard key-value

representation such as JSON, XML, etc., which are commonly used in NDN conf

2Some of the features such as measurement info are still in development phase

35



Table 2 NDNSD Implementation of Pub-Sub Interfaces

Publisher API
servicePublisher(File&& serviceInfo, List&
pFlags, PublishCb cb)

Subscriber API
serviceFinder(Name&& serviceName,
List&pFlags, DiscoveryCb cb)

Update/Reload
setUpdateProducerState(prodObject* obj, Pub-
lishCb cb)

Publisher/Subscriber uses sync protocol to announce and discover services.
pFlags is used to pass protocol choice, enable measurement information, etc.
serviceInfo file (3.4.1) is used to load the details into the publisher’s state.

DisocveryCb will deliver list of services discovered to the client.
PublisherCb notifies client about service registration success or failure

files (NFD, NLSR etc), and an already available tool 3 to edit the file. Following is

an example of a service-info file.

1 required ;

2 {

3 serviceType printer

4 serviceID /printer2 ;service identifier

5 }

6 details ;user can have as many key-value as needed

7 {

8 description "Hp Ledger Jet super xxx"

9 make "2016"

10 lifetime 1 ; in seconds

11 }

Listing 1. Sample Example of a Service-Info file in a Boost INFO format

As mentioned earlier in section 3.4.1), the service-info file is read by the publisher

application to create its state and advertise the service. Any change in the service is

made via this file and is re-loaded/re-advertised by the application using

setUpdateProducerState() function.

3https://github.com/NDN-Routing/infoedit

36



4.3.3 State Representation

The latest information about the service is stored in the dataset called publisher’s

state or just State. It is constructed using the service information (obtained from

service-info) and a service publication timestamp. State is a core data structure of

the publisher application and is used in all the important operations, such as

creating sync-group or discovery data-name, advertise the service, serving interest

that comes in to fetch service-info, reloading the state via comparison, and so on.

4.3.4 Data Packet Specification

NDNSD data packet is constructed using NDN Packet Format Specification version

0.3 [29]. The packet is encoded using three different Type-length-value (TLV). The

first TLV helps to identify whether the packet is from NDNSD or not, the second

contains encoded service information in key-value pairs, and the last one is reserved

for publication timestamp, which is used to compute service status (active or

expired)

Status = current time - publish time > lifetime ? EXPIRED : ACTIVE.

If the lifetime is not provided in the service-info data packet, the service will be

assumed to be ACTIVE.

37



Chapter 5

Evaluation

We performed both real-world and emulation experiments to evaluate NDNSD. We

use PSync for all of the experiments because of its better performance [52] than

Chronosync. In this section, we will discuss both types of experiments, our findings,

and some of the challenges faced during the experiments.

5.1 Evaluation Terms and Metrics

Metrics

• Sync Delay: Time between a new data published by the producer and its

update received by the consumer, also known as data synchronization delay.

• Service-info Delay: Time spent in fetching the service-info once the update

is received from the sync.

• Success Ratio (SR): The percentage of interest that have received

corresponding replies.

• Aggregate Delay: Overall service-info retrieval time after it’s published.

This is also a service discovery time and is equivalent to Sync delay + Service

info delay.

Terms

• Publish Interval: Time between each successive publish, i.e., updating

service-info or state by the Publisher.

5.2 Real world Experiments

For this experiment, Raspberry PI’s (model 3b+) were distributed across Dunn Hall,

University of Memphis, and were connected via an Access Point (AP). An example

of the distribution along with the dimension of the room is shown in figure 15.

Time synchronization is very important for real-world experiments, especially

when measuring delays and throughput. Thus, we use a Pi Zero as an NTP server

38



Figure 15 Raspberry Pi distribution across Dunn Hall, the University of Memphis for
distance experiment. Here C represents service finder, and the number on the right
side of C after ”–”, is a successive experiment count

for time synchronization among the devices. We perform two different types of

experiments with this setup to measure delay distribution based on i) Distance and

ii) Congestion. The main goal of both the experiments is to see how the protocol

performs in a realistic environment and, more importantly, how it recovers the losses

caused by congestion and low signal strength, a scenario for IoT.

Figure 16 Device distribution for the congestion experiment. All the devices were
placed in the same room and were connected to the access point AP

39



5.2.1 Distance experiment

In the distance experiment, the service publisher is kept at a constant distance from

AP (in Room 1), while the service finder is at an increasing distance for each

iteration (figure 15). Publisher reloads its state 300 times every 500ms. For each

Figure 17 Aggregate percentile and average delay distribution of distance experiment

iteration, the experiment is repeated three times, and the average value is computed.

The result of the experiment is shown in figure 17. We can see that the aggregate

delay increases linearly as the distance between Locator and AP increases. We also

observed <1% loss when the distance reached beyond 13m, but it was gained back

by locator’s re-transmission. The re-transmission count is configurable, meaning the

Locator App can decide how many times it wants to try before giving up.

5.2.2 Congestion experiment

For the congestion experiment, all the devices are kept in the same room (Room 1),

but the number of devices is increased with each pass, starting from one Publisher

and one Finder all the way until there are two SP and six SF. Publish interval is set

to 150ms (aggressive to increase congestion) and its service is updated 300 times.

The result of the experiment is shown in figure 18. Like the distance experiment,

40



the resultant percentile distribution increases with the increase in the number of

devices connected with AP.

Figure 18 Aggregate delay percentile distribution obtained from congestion experi-
ment

5.3 Emulation Experiments

We performed wired and wireless experiments using Mini-NDN[28] – a lightweight

network emulator tool that runs real instances of NLSR and NFD. It virtualizes the

whole environment by creating a node-specific container; all the processes are run

within the container. Inter-node networking is achieved via virtual ethernet pairs

(a.k.a. links).

First, we repeated the wireless congestion experiment (section 5.2.2) using

Wifi module of Mini-NDN. Results obtained were very similar to the ones presented

in figure 18, thus, they are not presented here. Next, we designed a multi-hop wired

topology (figure 21) to verify the benefit of in-network caching of NDN and

multi-cast efficiency of sync to NDNSD. Topology contains two Service Publisher

(SP) and five Service Finder (SF) distributed with a minimum of one and maximum

of four hops between SP and SF, e.g., C1 is four hops away from P2. The delay

between each link is set to 10ms. In the experiment, SP publishes 300 times at an

interval of 1000ms each.

41



Figure 19 10 node Mini-NDN topology with 5 service finders, 2 service publisher and
3 routers

Table 3 Overall Service Info retrieval time in a multi-hop environment. Expected
Minimum Link Cost (EMLC) = total assigned link cost for sync and service-info.,
e.g., consider 1-hop nodes C3 & P1: EMLC = 1 C3P1 (for sync) + 2C3P1 (for
service-info) = 3*10 = 30. EMLC is without processing delay.

Expected Minimum Obtained Delays (RTT + processing delay)
Hops Link Cost (ms) Median (ms) 75th Percentile (ms) 95th Percentile (ms)
1-hop 30 38.10 41.22 52.85
2-hop 60 73.38 81.93 128.93
3-hop 90 87.37 101.93 147.20
4-hop 120 100.07 119.77 161.78

The result of the experiment, i.e., Aggregate Delays (5.1) is presented in table 3. For

1 and 2 hops, the obtained median delay is comparable to the expected minimum

link cost. For 3-hops though, the value is about 3ms, and for 4-hops, it is almost

20ms below the actual expected minimum. This is, in fact, a significant gain and is

achieved because of the in-network caching of NDN. For example, when C2 fetches

data from P1 or P2, it also caches a copy of it in its content store. So, when C1 tries

to fetch the same data, the interest will likely hit and get served from the CS of C1.

5.3.1 Loss and Partition Experiment

In this experiment, we took the topology 21 and assigned a certain constant

percentage of loss across all the links. The loss rate was set to 1% at the beginning

and was increased chronologically in each successive experiment up to 10%. The

42



published frequency was set to 300, service publisher published new data 300 times

at an interval of 1s each.

(a) Sync delay (b) Service-info delay

(c) Aggregate delay

Figure 20 Sync, service-info, and aggregated delay percentile distribution for different
per-link loss rates for 1-hops and 4-hops nodes. Note: we do not included results for
3 and 4 hops because they were identical with 1 and 4 hops results

Figure 20a and 20b shows an expected small increase in median and 75th

percentile delay with the increases in loss percentage for the both 1-hop and 4-hop

nodes. However, the 95th percentile sync delay increases quite significantly. In the

extreme case i.e., 4-hop and 10% loss rate, the delay reaches almost 3000ms. The

aggregate delay (figure 20c) follows the same pattern as that of sync delay because

it is dominated by the sync delay numbers. At this moment, we don’t have a better

explanation of what is causing these extreme sync delays. We are still investigative

the problem and will include the finding in our future work. It is important to note

that the higher delay has nothing to do with the NDNSD protocol. It is very

43



specific to the sync protocol that we have used to develop and experiment NDNSD.

As the sync gets better with time, the performance will automatically improve.

Figure 21 Average aggregate delay for all-hops with various per-link loss rate

5.3.2 Scaling Experiment

We design typologies of various sizes, listed in table 4, for the scaling experiment.

The number of service publishers and service finders is doubled successively, starting

from 1 SP, 3 SF until 16 SP and 48 SF, whereas the number of routers is kept

constant. The SF and SP are connected evenly to the routers to distribute the

packets fairly among the nodes. A general pattern for the creation of typologies of

different sizes, mentioned in table 4, is shown in figure 22. However, the diagram

(figure 22 (a)) doesn’t hold for the two condition, i.e., 1SP and 3SF and 2SP and

6SF. For 1SP and 3SF, SF is connected with R1, and SP’s with the rest of the

routers, one at each. Similarly, for 2SP and 6SF, one pair of SP and SF are

connected with R1, the next pair with R2, and the remaining 4SF are connected

with R3 and R4, two in each of them. The typologies are designed considering the

wireless scenario where there can be a few service publishers and a large number of

service finder.

We used Tshark [53] to collect the data and processed it using ndndump [54].

To avoid the unreliable and tedious de-fragmentation work, we increase the MTU

44



size to 9000 from its default size of 1500 and prevented the UDP packet (sync

packet) fragmentation.

(a) (b)

Figure 22 : Fig (a) is a generic topology that shows how service publisher (P) and
service finder (C) are connected with the routers (R). “x” and “y” represents number
of C and P respectively. Figure (b) is a case when 16P and 84C are connected with
the routers to form a 64-node topology. Here, x = 4 and y = 12, meaning, 4 service
publisher and 12 service finders are connected with each router (R).
Note: SF = C, SP = P are used interchangeably.

Table 4 Typologies used in scaling experiments. SP = Service Publisher and SF =
Service Finder, R = Router

Nodes Links Descriptions
8 8 1 SP, 3 SF, 4 R
12 12 2 SP, 6 SF, 4 R
20 20 4 SP, 12 SF, 4 R
38 36 8 SP, 24 SF, 4 R
68 68 16 SP, 48 SF, 4 R

The table 5 presents an average number of packets received by each publisher.

It shows that the publishers aren’t much overloaded even if the number of finders

grows significantly. For example, in the case of 68 node topology (16 SP, 48 SF),

altogether 48*300 (number of SF * publication count) = 14400 service-info interests

ae sent by all the SFs towards each SP. However, on average, each SP only receives

45



Table 5 Average number of packets per service publisher in scaling experiment. IPC
= Interest Packet Count, DPC = Data Packet Count

Topology Service Info IPC Service Info DPC Sync IPC Sync DPC
8 302 302 3096 320
12 608 608 13142 1513
20 1219 1219 34822 7070
38 2444 2444 105866 30324
68 4954 4952 364966 146643

4954 service-info interests, almost 66% less than the actual number of interests sent

towards it. The performance gain is because of the interest aggregation and

data-caching that took place at each router. Say, if multiple interests arrived at the

router “R1” for the same piece of data, all of them will get aggregated and only one

will be sent out towards the producer. Interests are also served from the router’s

cache if the corresponding data is already available there. Thus, the router can act

as a proxy and help reduce the upstream traffic significantly.

The number of sync packets is significantly higher compared to service-info.

This is because sync operates on multicast, every single packet generated or received

by sync are multicasted throughout the network. The number of sync interest

packets is even higher compared to the data packets because PSync uses long-lived

sync interest. These interests always reside on the router’s PIT and immediately get

renewed if satisfied by the sync data or timeout. We used the available multicast

strategy for our experiment. It helped to reduce the number of interest packets by

dropping the duplicate ones but is still insufficient. We believe a better interest and

data suppression mechanism at the NFD’s face level can improve multicast

communication, and finally, the performance of the application using it.

46



Chapter 6

Conclusion and Future Works

In this thesis, we first discussed the requirement of service discovery in the

modern application and provide rationales for choosing NDN for service discovery

instead of TCP/IP. We presented NDNSD, a fully distributed, general-purpose

service publishing, and discovery protocol for NDN. We realized a few key

requirements such as multi-party communications and data synchronization of

modern discovery protocols to operate in a distributed environment. We discovered

that these needs are mostly satisfied with NDN synchronization. Thus, we decided

to design NDNSD on top of the sync protocol. We extended the pub-sub feature

offered by sync and made it, even more, simpler high-level API for the application

to publish and find services. The hierarchical namespace design of NDNSD prefixes

provides the applications a fine-grained control and freedom to choose the domain

where they want to publish their service, and under the desired name. We

introduced the concept of service-info, service-specific information. We showed how

service-info is be combined with sync and hierarchical names to achieve our goal of

designing a general-purpose service discovery protocol. Network measurement

information (RRT to service, link-stability) is crucial for applications to determine

the Quality of Service. Higher-level applications are opaque to the network layer

and are clueless about lower-level performance. Thus, to help the finder application

make a better decision in selecting service providers, NDNSD exposes network

metrics via the API to it. Sometimes service-info being public can cause problems.

It can give service accessibility to an unauthorized user and possibly can reveal

information intended for specific users to the public. We use Name-Based Access

Control (NAC) to control the visibility of service-info. NAC encrypts the service-info

and enables only those who have the appropriate keys to decrypt the packet and

view the service info. However, NDNSD doesn’t obfuscate the application service

47



prefix. Meaning, every user can see the names belonging to a service group. At this

moment, we consider exposing the names as harmless because even obscuring

cannot protect its visibility. Because, these names are used to construct interests,

and interest names are easily visible throughout the network. However, this still

requires a more detailed discussion and analysis and will be our future work.

Knowing service-type or sync groups before advertising or discovering the

service can be difficult. We provide a use-case (distributed Service Directory (SD))

that explains how NDNSD itself can be used to list service-type available in the

network. While SD may need a detailed feasibility study to employ it on a larger

scale give a huge amount of service that possibly can exist, it can be easy to deploy

and used in the local environment. Large scale use also relates to another problem.

NDNSD assumes every single node participating in the sync group responds to sync

interest. Sync prefixes are set to multicast strategy, the synchronization process

generates an enormous amount of multicast packets. Even though interest

aggregation, duplicate suppression (by the multicast strategy), and in-network

caching can help to reduce the traffic to some extent, this may still cause significant

scalability issues, especially in a constraint environment. One possible solution can

be role assignments: different nodes in a sync group have different roles. Some

nodes are designated as responders, only reply to sync interest. While others are

designated as receivers, only received sync data but never reply to the sync interest.

We will explore the possibility of role assignment in our future work. Due to the

lack of multicast suppression in the current version of NFD (0.7.1) [55], we observed

an enormous amount of unsolicited data and interest packets, and a significant

increase in network congestion. It was practically impossible to scale beyond 10

nodes with a high publication frequency i.e., < 100ms. Thus, we will also

investigate face level multicast suppression in our future work.

48



REFERENCES

[1] Cisco, “Cisco annual internet report (2018–2023) white paper,” 2020, accessed:
2020-04-22. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[2] V. Jacobson, M. Mosko, D. Smetters, and J. Garcia-Luna-Aceves, “Content-centric
networking,” Whitepaper, Palo Alto Research Center, pp. 2–4, 2007.

[3] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al., “Named data networking
(ndn) project,” Relatório Técnico NDN-0001, Xerox Palo Alto Research
Center-PARC, vol. 157, p. 158, 2010.

[4] X. Zhang, B. Zhao, A. Chakraborti, R. Ravindran, and G.-Q. Wang, “Name-based
neighbor discovery and multi-hop service discovery in information-centric networks,”
Dec. 6 2016, uS Patent 9,515,920.

[5] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen, “A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks,” Computer
networks, vol. 52, no. 11, pp. 2097–2128, 2008.

[6] M. Jeronimo and J. Weast, UPnP design by example: a software developer’s guide to
universal plug and play. Intel Press, 2003.

[7] M. Boucadair, R. Penno, and D. Wing, “Universal plug and play (upnp) internet
gateway device-port control protocol interworking function (igd-pcp iwf),” RFC
6970, 2013.

[8] “Ieee standard for local and metropolitan area networks – station and media access
control connectivity discovery,” IEEE Std 802.1AB-2005, pp. 1–176, 2005.

[9] E. Guttman, “Service location protocol: Automatic discovery of ip network services,”
IEEE Internet Computing, vol. 3, no. 4, pp. 71–80, 1999.

[10] L. Smith, C. Roe, and K. S. Knudsen, “A jini/sup tm/ lookup service for
resource-constrained devices,” in Proceedings 2002 IEEE 4th International Workshop
on Networked Appliances (Cat. No.02EX525), 2002, pp. 135–144.

[11] E. A. Gryazin, “Service discovery in bluetooth,” Group for Robotics and Virtual
Reality. Department of Computer Science. Helsinki University of Technology,
Helsinki, Finland. Published at NEC CiteSeer, Scientific Literature Digital Library,
2006.

[12] P. Mockapetris et al., “Domain names-implementation and specification,” 1987.

[13] S. Cheshire and M. Krochmal, “Dns-based service discovery,” RFC 6763, February,
Tech. Rep., 2013.

[14] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in iot networking via tcp/ip
architecture,” Technical Report NDN-0038. NDN Project, 2016.

49

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


[15] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thompson,
J. Burke, B. Zhang, and L. Zhang, “Named data networking of things,” in 2016 IEEE
first international conference on internet-of-things design and implementation
(IoTDI). IEEE, 2016, pp. 117–128.

[16] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol
(coap),” 2014.

[17] Z. Shelby, “Core resource directory; draft-ietf-core-resource-directory-02.”

[18] D. H. Steinberg and S. Cheshire, Zero Configuration Networking: The Definitive
Guide: The Definitive Guide. ” O’Reilly Media, Inc.”, 2005.

[19] D. C. Plummer et al., “Ethernet address resolution protocol: Or converting network
protocol addresses to 48. bit ethernet address for transmission on ethernet hardware.”
RFC, vol. 826, pp. 1–10, 1982.

[20] SmartThings Inc., “Smartthings,” https://www.smartthings.com/., (Accessed on
10/21/2020).

[21] Amazon Inc., “AWS IoT,” https://aws.amazon.com/iot/solutions/connected-home/.,
(Accessed on 10/21/2020).

[22] S. Weber, Chromecast Users Manual: Stream Video, Music, and Everything Else You
Love to Your TV. USA: Weber Systems Inc., 2014.

[23] Mircosoft Inc., “Azure iot edge, 2020,”
https://azure.microsoft.com/en-us/services/iot-edge/., (Accessed on 10/21/2020).

[24] W. Shang, A. Gawande, M. Zhang, A. Afanasyev, J. Burke, L. Wang, and L. Zhang,
“Publish-subscribe communication in building management systems over named data
networking,” in 2019 28th International Conference on Computer Communication
and Networks (ICCCN). IEEE, 2019, pp. 1–10.

[25] A. Gawande, J. Clark, D. Coomes, and L. Wang, “Decentralized and secure
multimedia sharing application over named data networking,” in Proceedings of the
6th ACM Conference on Information-Centric Networking, 2019, pp. 19–29.

[26] M. Zhang, V. Lehman, and L. Wang, “Scalable name-based data synchronization for
named data networking,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[27] Z. Zhu and A. Afanasyev, “Let’s chronosync: Decentralized dataset state
synchronization in named data networking,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP). IEEE, 2013, pp. 1–10.

[28] Mini-NDN, “Mini-ndn – a light weight ndn emulator tool,” 2020, accessed:
2020-04-22. [Online]. Available: http://minindn.memphis.edu/

[29] “Ndn packet format specification 0.3 documentation,”
https://named-data.net/doc/NDN-packet-spec/current/index.html, (Accessed on
10/27/2019).

50

https://www.smartthings.com/.
https://aws.amazon.com/iot/solutions/connected-home/.
https://azure.microsoft.com/en-us/services/iot-edge/.
http://minindn.memphis.edu/
https://named-data.net/doc/NDN-packet-spec/current/index.html


[30] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for
stateful forwarding plane,” Computer Communications, vol. 36, no. 7, pp. 779–791,
2013.

[31] P. de-las Heras-Quirós, E. M. Castro, W. Shang, Y. Yu, S. Mastorakis, A. Afanasyev,
and L. Zhang, “The design of roundsync protocol,” Technical Report NDN-0048,
NDN, Tech. Rep., 2017.

[32] W. Shang, A. Afanasyev, and L. Zhang, “Vectorsync: distributed dataset
synchronization over named data networking,” in Proceedings of the 4th ACM
Conference on Information-Centric Networking, 2017, pp. 192–193.

[33] T. Li, W. Shang, A. Afanasyev, L. Wang, and L. Zhang, “A brief introduction to ndn
dataset synchronization (ndn sync),” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018, pp. 612–618.

[34] W. Fu, H. Ben Abraham, and P. Crowley, “isync: a high performance and scalable
data synchronization protocol for named data networking,” in Proceedings of the 1st
ACM Conference on Information-Centric Networking, 2014, pp. 181–182.

[35] M. Mosko, “Ccnx 1.0 collection synchronization,” in Technical Report. Palo Alto
Research Center, Inc., 2014.

[36] R. Ravindran, T. Biswas, X. Zhang, A. Chakraborti, and G. Wang,
“Information-centric networking based homenet,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013). IEEE, 2013, pp.
1102–1108.

[37] ndn lite, “Ndn-lite service discovery,” 2018, accessed: 2020-04-22. [Online]. Available:
https://github.com/named-data-iot/ndn-lite/wiki/Service-Discovery

[38] M. Amadeo, C. Campolo, and A. Molinaro, “Ndne: Enhancing named data
networking to support cloudification at the edge,” IEEE Communications Letters,
vol. 20, no. 11, pp. 2264–2267, 2016.

[39] A. Mtibaa, R. Tourani, S. Misra, J. Burke, and L. Zhang, “Towards edge computing
over named data networking,” in 2018 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2018, pp. 117–120.

[40] S. Mastorakis and A. Mtibaa, “Towards service discovery and invocation in
data-centric edge networks,” in 2019 IEEE 27th International Conference on Network
Protocols (ICNP). IEEE, 2019, pp. 1–6.

[41] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “Icedge: When edge computing
meets information-centric networking,” IEEE Internet of Things Journal, 2020.

[42] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[43] B. A. Forouzan, TCP/IP protocol suite. McGraw-Hill, Inc., 2002.

51

https://github.com/named-data-iot/ndn-lite/wiki/Service-Discovery


[44] V. Jacobson, “Watching ndn’s waist: How simplicity creates innovation and
opportunity,” 2019, accessed: 2020-04-22. [Online]. Available:
https://pollere.net/Pdfdocs/ICN-WEN-190715.pdf

[45] S. Deering, “Watching the waist of the protocol hourglass,” 2001, accessed:
2020-04-22. [Online]. Available:
https://www.iab.org/wp-content/IAB-uploads/2010/11/hourglass-london-ietf.pdf

[46] MQTT Org., “MQ Telemetry Transport, 2020,” http://mqtt.org/, (Accessed on
10/21/2020).

[47] DNS-SD Org., “DNS SRV (RFC 2782) Service Types, 2020,”
http://www.dns-sd.org/ServiceTypes.html, (Accessed on 10/21/2020).

[48] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyev, and
L. Zhang, “An overview of security support in named data networking,” IEEE
Communications Magazine, vol. 56, no. 11, pp. 62–68, 2018.

[49] Z. Zhang, Y. Yu, S. K. Ramani, A. Afanasyev, and L. Zhang, “Nac: Automating
access control via named data,” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018, pp. 626–633.

[50] R. C. Merkle, “Protocols for public key cryptosystems,” in 1980 IEEE Symposium on
Security and Privacy. IEEE, 1980, pp. 122–122.

[51] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A survey of distributed
dataset synchronization in named data networking,” NDN, Technical Report
NDN-0053, 2017.

[52] A. Gawande, “Improvements to psync: Distributed full dataset synchronization in
named-data networking,” Ph.D. dissertation, University of Memphis, 2019.

[53] G. Combs, “Tshark—dump and analyze network traffic,” Wireshark, 2012.

[54] NDN Project Team, “NDN Essential Tools,”
https://github.com/named-data/ndn-tools, (Accessed on 10/29/2019).

[55] The NDN Team, “Named Data Networking Forwarding Daemon,”
https://github.com/named-data/NFD, (Accessed on 11/28/2020).

52

https://pollere.net/Pdfdocs/ICN-WEN-190715.pdf
https://www.iab.org/wp-content/IAB-uploads/2010/11/hourglass-london-ietf.pdf
http://mqtt.org/
http://www.dns-sd.org/ServiceTypes.html
https://github.com/named-data/ndn-tools
https://github.com/named-data/NFD

	NDNSD: Service Publishing and Discovery in NDN
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Limitations of TCP/IP in Service Discovery
	Problem Statement
	Thesis Contributions

	Background and Related Work
	NDN Forwarder
	Data Synchronization In NDN
	Related Works


	Design Overview
	Introduction
	Hierarchical Namespace
	Discovery Prefix
	Application Service Prefix
	Example NDNSD Namespace 


	Protocol Overview
	Service Publisher
	Service Finder

	Design Features
	Service Info
	Measurement Information
	Service-info Accessibility

	Use Case
	Service Directory
	Building Management System


	Implementation
	Chronosync
	PSync
	NDNSD Implementation
	Interfaces
	Service Info Representation
	State Representation
	Data Packet Specification 


	Evaluation
	Evaluation Terms and Metrics
	Metrics
	Terms


	Real world Experiments
	Distance experiment
	Congestion experiment

	Emulation Experiments
	Loss and Partition Experiment
	Scaling Experiment


	Conclusion and Future Works
	References

