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Abstract

Wind turbine wakes are dominated by several energetic turbulent coherent structures that

oscillate at specific Strouhal numbers. Implications on wind power harvesting of these dy-

namic, induced features require accurate unsteady modeling. Dynamic mode decomposition

(DMD), a data-driven modal analysis, has demonstrated the ability to identify flow features

based on specific frequencies. In this work, the selection of modes and data-driven DMD

models pertaining to wakes with constant Strouhal number coherent structures are inves-

tigated using physically-informed criteria and sparse sampling. Both criteria are validated

with a low Reynolds number flow behind a square cylinder. Next, the techniques are applied

to data derived from the large-eddy simulation of a wind turbine wake. Modes related to tip

vortices and hub vortex system are identified. Sparse identification shows remarkable ability

to select the optimal modes for reduced-order modeling. Error becomes nearly independent

of the number of modes when using fewer than 10% of the modes.
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CHAPTER 1

Introduction

Renewable energy plays an important role in electricity production. For example, the United

States plans to add 72 gigawatts (GW) of new wind and solar photovoltaic capacity between

2018 and 2021. It is expected that wind energy will have a more significant role in total

capacity and account for 20% of the additional energy production (50 GW to 128 GW by

2021) (U.S. Energy Information Administration, 2019). Most of that electricity is expected

to be generated by large wind farms, which consist of an array of wind turbines, which

have diameter on the order of 100 m. High turbulence kinetic energy produced in the

wake of wind turbines has a significant impact on the energy production, energy production

variability, and wind turbine maintenance costs due to high dynamic loading. Understanding

the fundamental features of turbulence towards reduced-order modeling can enable accurate

energy production predictions for wind farms, which will increase the viability of wind energy.

A computationally expedient approach for modeling wind farms is to employ a theoretical

model. Theoretical models, surveyed in Crespo et al. (1999) and Stevens and Meneveau

(2017), for wind farms classified as either a bottom-up approach built on individual wind

turbine wake structures (Jensen, 1983, Bastankhah and Porté-Agel, 2014, Lissaman, 1979)

or the top-down approach based on the atmospheric boundary layer structure (Frandsen,

1992, Frandsen et al., 2006, Calaf et al., 2010). The former is based on jet mixing theory,

is designed based on a single wind turbine, and referred to as kinematic models. In order

to model a wind farm, superposition of the temporally averaged velocity deficit at the hub

height of the wind turbine, treated as a passive scalar, is assumed (Lissaman, 1979). The

superposition procedure can lead to nonphysical wake velocities as more wind turbines are

included in the farm (Katic et al., 1986, Crespo et al., 1999). Another drawback is that the

kinematic do not include effects from the atmospheric boundary layer. The latter top-down

approach, often referred to as a distributed roughness model, is based an equilibrium between

the wind turbine wakes and the atmospheric boundary layer. The distributed roughness

model assumes the interaction is that of a fully-developed wind farm. The vertical velocity

1



profile is modeled based the present of two logarithmic layers, one below and one above

the wind turbine in a temporally and horizontally-averaged streamwise velocity profile. The

spacing between wind turbines is a free parameter that can be adjusted similar to kinematic

models (Calaf et al., 2010, Yang et al., 2012). Both types of modeling approaches produce

mean velocity distributions by assuming a steady-state conditions and captures mean power

production.

A dynamic wake meandering model (Larsen et al., 2008, Madsen et al., 2010) considers

downstream wake meandering phenomenon and stochastic turbulence but assumes a steady

wake velocity deficit is transported as a passive scalar. The unsteadiness in the wake model

is driven by assumptions based on the wake meandering phenomenon, which a large-scale

oscillation of the wind turbine wake (Medici and Alfredsson, 2006, 2008). Wake meandering

is a dominate far wake feature that is found to have a regular Strouhal number (Okulov

et al., 2014), the non-dimensional frequency based on the diameter and hub height velocity.

The dynamic wake meandering model considers that large eddies convecting in the atmo-

spheric boundary layer displace the velocity deficit while downwind variations in the wake

are assumed to be negligible due to Taylor’s frozen hypothesis (Larsen et al., 2008). How-

ever, wake meandering is also affected by bluff-body vortex shedding (Foti et al., 2016, Yang

and Sotiropoulos, 2019). Furthermore, the interactions between wind turbines in a wind

farm are not fully understood and have complex dynamics that play an important role in

power production and its variablility (Foti et al., 2019), which can lead to inaccuracies when

employing theoretical models.

A complex system of helical vortices that dominates the flow behind the wind turbine.

The system is comprised of N tip vortices for an N -bladed wind turbine and a center

hub vortex (Joukowski, 1912). Tip vortices have been characterized by several experimen-

tal (Chamorro and Porté-Agel, 2009, Hu et al., 2012) and computational studies (Ivanell

et al., 2009, Troldborg et al., 2007). These studies showed that the tip vortices convect

downstream due to the relatively high-speed flow near the blade tip and eventually break

down, a process which depends on many factors, such as the turbulence in the incoming flow,

rotational speed, geometry of the turbine blade, and the interactions of helical vortices (Wid-

nall, 1972). The center hub vortex has recently received more attention. Felli et al. (2011)
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experimentally visualized the hub vortex of a propeller in a water tank and observed that it

also undergoes instabilities and breaks down. Kang et al. (2014) showed that the hub vortex

of a hydrokinetic turbine augments the far wake meandering. The hub vortex for a model

wind turbine was also shown to impact wake meandering (Foti et al., 2016). The interaction

of the hub vortex with the outer wake (the wake formed by the rotor blades) occurs several

diameters down wind of the rotor and is a function of the operating condition of the wind

turbine (Foti et al., 2018a). The unstable hub vortex oscillates at a frequency related to the

rotation of the rotor (Iungo et al., 2013). While the Strouhal number of the tip vortices is

directly related to the turbine rotor angular velocity, the hub vortex has been shown to have

a regular Strouhal number of approximately 0.7 (Iungo et al., 2013, Viola et al., 2014, Foti

et al., 2016). These coherent structure with two distinct frequency convect and breakdown

into the onset of wake meandering in the far wake. The frequency of wake meandering has

been measured both experimentally and computationally to be about 0.1 < St < 0.3 (Foti

et al., 2016, 2018a,b, Okulov et al., 2014, Chamorro et al., 2013, Medici and Alfredsson,

2008).

With the rise of data from high-fidelity simulation and observation, data-driven ap-

proaches have been introduced to capture the complex spatio-temporal dynamics. In partic-

ular, modal decompositions, such as proper orthogonal decomposition (Holmes et al., 2012)

and dynamic mode decomposition (Schmid, 2010) (DMD) provide an approach for identi-

fying and modeling complex dynamics. Due to the presences of a few dominant frequencies

in the wake of a wind turbines, DMD, where modes are based on specific frequencies, is

particularly appealing. Furthermore, an efficient reduced-order model based on selection of

certain DMD modes can be used to account for the dominant features in the flow field with-

out over-simplification of the wake physics (Kutz et al., 2016). The selection of dominant

modes remains a difficult task. In order to reduce arbitrary selection and provide a measure

of optimality, sparse sensing, a data-driven technique that employs optimal locations based

on compressive sampling (Manohar et al., 2018), is sought for DMD. Compressive sampling

theory leverages low-dimensional sub-spaces induced by the data rather than directly mea-

suring the high-dimensional signal (Donoho, 2006, Fowler, 2009, Baraniuk et al., 2010). In

fluid dynamics, sparse sensing has been used to reconstruct flows from relatively few data
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points (Bright et al., 2013), reduce dimensionality in Galerkin projection reduced-order mod-

els (Drmac and Gugercin, 2016), and enhance adaptive mesh refinement algorithms Foti et al.

(2020). Complex wind turbine flows are characterized by coherent structures, which can be

described on a low-dimensional manifold. Compressive sampling paired with dynamic mode

decomposition has been shown to select sparse modes with optimal amplitudes (Jovanović

et al., 2014). In this work, we will assess this behavior for wind turbine wakes to ascertain

if a sparse selection of the modes correspond the dominant coherent structures in the wake.

DMD of the wake of wind turbine has recently been used to analyze the turbulence

coherent structures present in the wake. The mutual induction of tip vortices was studied

and low-fidelity vortex model was developed from the findings (Sarmast et al., 2014). Wake

meandering, a large-scale oscillation of the wake, and unstable hub vortex were investigated

in two different operating conditions of a model wind turbine (Foti et al., 2018a) with DMD.

Because both wake meandering and the hub vortex are dominant coherent structures with

periodic oscillations, the frequencies remain constant and can be easily isolated using DMD.

The reconstruction of wake meandering amplitudes and wavelengths (Foti et al., 2016) with

DMD was shown need relatively few DMD modes.

In this work, we use DMD to develop an efficient reduced-order model (ROM) for wind

turbine wake that can capture the unsteady dynamics of wake meandering. We hypothe-

size that by selecting a few appropriate DMD modes, the flow field can be reconstructed

accurately and can lead to predictions. It was shown that different levels of accuracy can

be achieved by selecting different number of modes for the reduced order model (Debnath

et al., 2017). Here, we develop a DMD-based framework for wind turbine wakes using data

derived from large-eddy simulation (LES). First, The DMD are applied on a square cylinder

for validation. After that, the DMD-based ROM will be developed for a wind turbine wake

based on LES simulation. The intended outcome of the ROM will be extend the modelling

to wind farms.

Need for further research

A major effort in wind turbine research involves the investigation of a model of the wakes

behind the wind turbines. It is important to be able to understand and adequately model
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the wake to be able to predict wind plant performance and optimize the turbine placement

and controls. The complexity of the physics of wake is increased with the recent findings of

the role of the unstable hub vortex (Kang et al., 2014, Iungo et al., 2013). This work seeks

to capture the essential features in the wake. Wind turbine models do not take into account

all the unsteady and dynamic effects of the wind turbine especially wake effects caused by

the nacelle that could affect the intensity of far wake meandering. The inability of models to

capture all the complex physics in the far wake can have significant implications for creating

models for wind plant design and performance.

Research Objectives

The objectives of this research are to develop a data-driven modeling framework for a wind

turbine wake. Below are specific objectives for this work:

1. Development, verification and validation of computational tools including dynamic

mode decomposition and large-eddy simulation using a simplified flow over a square

cylinder:

• Compare the value of Strouhal number with the experimental values.

2. Establish flow characteristic and identify dominant features in a wind turbine wake

using high-fidelity large-eddy simulation:

• Develop high-fidelity large-eddy simulation for a flow behind the wind turbine.

• Use DMD to capture the highest amplitudes.

• Capture the frequencies that have these highest amplitudes.

3. Development a reduced-order model of a wind turbine wake based on dynamic mode

decomposition:

• Use the data of highest amplitudes and their frequencies to build a model that

predicts the behavior of flow field behind the wind turbine.

The thesis is organized as follows:
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• Chapter 2 reports the governing equations for three-dimensional, incompressible flow

to perform large-eddy simulations for square cylinder and wind turbine applications,

comprehensive explanation for mode decompositions, dynamic mode decomposition

and sparsity-promoting DMD.

• Chapter 3 details a preliminary study of flow over a square cylinder.

• Chapter 4 provides details of the study of DMD and reduced order modeling of a wind

turbine wake.

• Chapter 5 provides the summary of the results and conclusions for the thesis.
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CHAPTER 2

Governing Equations and Numerical Methods

In this chapter, the governing equations for three-dimensional, incompressible flow will be

presented, followed by brief explanation about mode decomposition techniques and com-

prehensive explanation about DMD and sparsity-promoting DMD. The numerical methods

presented are developed for high-performance computing using a distributed memory scheme.

Large-eddy simulations

The LES is carried by solving the three dimensional, incompressible, filtered continuity

and momentum conservation equations in three dimensional generalized curvilinear coordi-

nates (Ge and Sotiropoulos, 2007) with a hybrid staggered/non-staggered grid formulation

(Gilmanov and Sotiropoulos, 2005), which in curvilinear coordinates in compact tensor no-

tation (repeated indices imply summation) are as follows (i, j = 1, 2, 3):

J
∂U i

∂ξi
= 0, (1)

1

J

∂U i

∂t
=
ξil
J

(
− ∂

∂ξj
(U jul) +

µ

ρ

∂

∂ξj

(
gjk

J

∂ul
∂ξk

)
− 1

ρ

∂

∂ξj

(
ξjl p

J

)
− 1

ρ

∂τlj
∂ξj

)
, (2)

where ξil = ∂ξi/∂xl are the transformation metrics, J is the Jacobian of the geometric

transformation, ui is the ith component of the velocity vector in Cartesian coordinates,

U i=(ξim/J)um is the contravariant volume flux, gjk = ξjl ξ
k
l are the components of the con-

travariant metric tensor, ρ is the density, µ is the dynamic viscosity, p is the pressure, and

τij represents the anisotropic part of the subgrid-scale stress tensor. The closure for τij is

provided by a dynamic Smagorinsky model (Smagorinsky, 1963) developed by (Germano

et al., 1991).

τij −
1

3
τkkδij = −2µtS̃ij, (3)

where the .̃ denotes the grid filtering operation, and S̃ij is the filtered strain-rate tensor. The

eddy viscosity µt is given by

µt = ρCs∆
2|S̃|, (4)
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where Cs is the dynamically calculated Smagorinsky constant (Germano et al., 1991), ∆ is

the filter size taken as the cubic root of the cell volume, and |S̃| = (2S̃ij S̃ij)
1
2 . A wall model

is used to reconstruct boundary conditions at the immersed boundary nodes (Kang et al.,

2012). The governing equations are discretized with three-point central finite differencing on

a hybrid staggered/non-staggered grid and integrating in time using an efficient fractional

step method (Kang et al., 2012, 2014).

Mode Decomposition Techniques

In this part, we will discus the two mode decomposition techniques that have a strong direct

relation with DMD:

1. Singular value decomposition (SVD).

2. Proper orthogonal decomposition (POD).

Singular Value Decomposition

First we start with SVD; since it is the first step in the POD and DMD algorithm. The

importance of SVD is that it is considered as a dimensional data reduction tool, so with SVD,

we can build low-dimensional models that present the original high-dimensional model.

The SVD of a matrix X is:

X = UΣV ∗, (5)

Or:

X=


| | ... |

u1 u2 ... um

| | ... |


︸ ︷︷ ︸

U∈Rn×m


σ1

. . .

σm


︸ ︷︷ ︸

Σ∈Rm×m


− v1 −

− v2 −
...

...
...

− vm −



∗

︸ ︷︷ ︸
V ∈Rm×m
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Where * denotes the conjugate transpose, and the matrix U ∈ Rn×m are the left singular

vectors and has the same size as matrixX, Σ ∈ Rm×m are the singular values, and V ∈ Rm×m

are the right singular vectors.

Also, the columns of the matrix U are orthonormal vectors. U and V are unitary which

means UU∗ = U∗U = I, and V V ∗ = V ∗V = I.

Σ is a diagonal matrix, and its elements are real positive numbers and they are hierarchically

arranged so; σ1 > σ2 > ... > σm. The important fact about SVD is that the space and time

correlations between U and V . So, U has the spatial modes or POD modes in its vectors,

while V describes the evolution of these modes in time.

The procedure to find Σ, V and U is by multiply (5) by XT to get:

XTX = (UΣV ∗)T (UΣV ∗)

= V ΣU∗UΣV ∗

= V Σ2V ∗,

Then multiply the above equation by V:

XTXV = V Σ2V ∗V

XTXV = V Σ2,

Assuming that XTX = G and Σ2 = B you get the eigenvalue problem, then solve for V and

B:

GV = BV (6)

After computing V and Σ, flowing the same approach, it is possible to compute U or POD

modes:

XXT = (UΣV ∗)(UΣV ∗)T

= UΣV ∗V ΣU∗

= UΣ2U∗,
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Then multiply the above equation by U:

XXTU = UΣ2U∗U

XXTU = UΣ2,

Assuming that XXT = T but Σ2 = B you get the eigenvalue problem, then solve for V and

B:

TU = BU (7)

We have T and B, so we can find U . Or, we can reconstruct U form matrix X after computing

V and Σ from (6) by:

U = XV Σ−1 (8)

Dynamic Mode Decomposition

Snapshot-based method

Snapshot-based method is used to collect the data of velocity measurements of the flow field,

the collected data is organized into columns (Kutz et al., 2016):

x(c, ti) =


x(c1,1, ti) x(c1,2, ti) ... x(c1,y, ti)

x(c2,1, ti) x(c2,2, ti) ... x(c2,y, ti)

| | | |

x(cz,1, ti) x(c1,2, ti) ... x(cz,y, ti)

 ,

xi =



x(c1,1, ti)

x(c1,2, ti)

|

x(c2,1, ti)

|

(cz,y, ti)


,

where, x is the flow variable (velocity measurements); so xi is the snapshot at time ti,

where i represents the ith time step. After that, we organize these columns of snapshots into

matrix X and matrix X ′ (Kutz et al., 2016):
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X =


| | ... |

x1 x2 ... xm

| | ... |

 , X ′ =


| | ... |

x2 x3 ... xm+1

| | ... |

 .
DMD Algorithm

DMD is a promising technique used to capture the dominant spatiotemporal coherent struc-

tures that govern a flow fluid. The DMD method decomposes the flow variable that is

collected from snapshots of measurements or simulations into the sum of its spatio-temporal

components (Kutz et al., 2016).

X =


| | ... |

x1 x2 ... xm

| | ... |

 , X ′ =


| | ... |

x2 x3 ... xm+1

| | ... |


where, X,X ′ ∈ Rn×m, where n is the number of degrees of freedom in a snapshot and m

is the number of snapshots. Each snapshot is uniformly sampled in time separated by ∆t.

DMD is an operator-theoretic spectral analysis related the linear mapping A associated with

the full non-linear system (Rowley et al., 2009). The linear mapping relates the vector-valued

observable x between two consecutive snapshots as follows:

X
′
= AX (9)

In this analysis, we used the DMD algorithm derived in Ref. (Schmid, 2010), which uses

singular value decomposition regularization.

The SVD of X is computed as:

X = UΣV ∗ (10)

where * denotes the conjugate transpose, U ∈ Rn×r are the left singular vectors, Σ ∈ Rr×r

are the singular values, and V ∈ Rm×r are the right singular vectors. The rank r is the

reduced SVD. The snapshot matrix A may be obtained by using the pseudoinverse of X:

A = X
′
V Σ−1U∗ (11)
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However introduced in Ref. (Schmid, 2010), a reduced linear operator Ã ∈ Rr×r can more

efficiently obtained by projecting A with the orthogonal left singular vectors as follows:

Ã = U∗AU = U∗X
′
V Σ−1 (12)

The matrix Ã is the reduced mapping of the dynamical system.

Spectral information of the Ã, which has been shown to be the same at A are obtained

through an eigendecomposition as follows:

ÃW = WΛ (13)

where, columns of W are eigenvectors and Λ is a diagonal matrix containing the correspond-

ing eigenvalues λi. The eigenvalues λr are complex conjugates which all lie on the complex

unit circle, |λr| = 1. To obtain the more familiar complex frequency ıωr = log(λr)/∆t. The

real part is the temporal frequency, and the imaginary part is an exponential growth rate of

the dynamic mode. The spatial dynamic modes Φ are recovered with

Φ = X
′
V Σ−1W (14)

The reduced system xr using r modes can be constructed with the following linear summa-

tion:

xr = Φ exp(Ωt)b (15)

where b is the amplitude vector. The amplitudes b are computed based on the initial snapshot

(Kutz et al., 2016):

b = Φ†x1 (16)

where, † is the Moore–Penrose pseudoinverse. And b is the best-fit solution that has the

least-squares sense (Kutz et al., 2016). However, in high dimensional cases, we first calculate

the amplitudes then we construct the reduced system.

Sparsity-promoting DMD

With this technique, we are trying to compute the optimal amplitudes of modes that are

used in the reduced order models (ROMs) using sparse sensing (Jovanović et al., 2014).

These amplitudes are the amplitudes that capture the most important dynamics of the flow
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field. The algorithm used here has been developed by (Jovanović et al., 2014). Also, the

sparsity- DMD will be introduced as it is presented in Ref. (Jovanović et al., 2014). So, first,

the optimization problem is presented in the next subsubsection, then the sparsity will be

introduced followed by the steps of solving the optimization problem using the Alternating

Direct Method of Multiplies (ADMM).

Optimal amplitudes of DMD modes

It is difficult to select the appropriate number of DMD modes for a ROM using Eqn. (16).

Also, the optimal amplitudes of the DMD modes computed by Eqn. (16) are based on the

first velocity snapshot. Sparsity- DMD computes the optimal amplitudes of the DMD modes,

b = [b1, . . . , br]
T using information from all snapshots and enables us to select the number of

modes that will be used to build the ROM. After computing the SVD of the snapshot matrix

X, and matrix Ã and using Vand matrix to present the time evolution of the flow field, the

flow variable can be presented as:

xr =
r∑
i=1

φiλ
t
ibi, t ∈ {0, ..., N − 1} (17)

where again, bi is an element in vector b and it represents the amplitude of the ith DMD

mode computed in Φ. So, Eqn. (17) is written as follows:

[
x0, x1, ..., xN−1

]
︸ ︷︷ ︸

x0

=
[
φ0, φ1, ..., φr

]
︸ ︷︷ ︸

Φ0


b1

b2

. . .

br


︸ ︷︷ ︸
Db = diag(b)


1 λ1 . . . λN−1

1

1 λ2 . . . λN−1
2

...
...

. . .
...

1 λr . . . λN−1
r


︸ ︷︷ ︸

Vand

where again, λr are the eigenvalues of Ã. We solve for b by solving this optimization problem

(Jovanović et al., 2014):

minimize
b

J(b) = ‖X − ΦDbVand‖2
F

Function J(b) has the sense of least square between the actual flow field and the ROM.

The goal is to find the vector b such that, J(b) has the minimum value. Jovanović et al.

(2014) shows that the objective function J(b) can be represented as :
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J(b) = b∗Pb− q∗b− b∗q + s (18)

where, P = WW ∗ · (VandV ∗and), q = diag(VandV Σ∗W ), s =trace(ΣV ∗). And again, * denotes

the conjugate transpose, while the complex conjugate represented by the overline. The diag of

a vector produces a diagonal matrix of the components of that vector, while the diag of a ma-

trix is a vector contains the components of the main diagonal of that matrix. The · is the ele-

mentwise multiplication. And finally, bdmd = P−1q = (WW ∗ · (VandV ∗and))−1diag(VandV Σ∗W )

(Jovanović et al., 2014).

Sparse solution

The sparse solution is induced by adding the cardinality of vector b; card(b), to the original

optimization problem (Jovanović et al., 2014):

minimize
b

J(b) + γcard(b) (19)

For high dimensional problem like fluid mechanics, the card(b) is replaced by the l1-norm,

minimize
b

J(b) + γ
r∑
i=1

|bi| (20)

γ is a positive parameter that controls the sparse sensing of the vector b. So, the sparsity

of the DMD modes is controlled by γ.

After introducing the sparsity, b is computed by solving Eqn. (21):

minimize
b

J(b)

subject to ET b = 0

(21)

where, matrix E ∈ Rr×e, and e is the number of zero elements in b. The columns of

E are unit vectors such that the non-zero elements are corresponding to zero components

of b (Jovanović et al., 2014). The algorithm to solve Eqn. (21) is provided in Appendix B

(Jovanović et al., 2014).

Alternating direction method of multipliers

The Alternating direction method of multipliers for solving Eqn. (20) consists of two steps

as it is shown in (Jovanović et al., 2014).
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Step 1: Decouple g from J using a new variable β:

minimize
b,β

J(b) + γg(β)

subject to b− β = 0

(22)

where, g(b) =
∑r

i=1 |bi|.

Step 2: Use the augmented Lagrangian:

Lρ(b, β, µ) = J(b) + γg(β) +
1

2
(µ∗(b− β) + (b− β)∗µ+ ρ‖b− β‖2

2

Where, µ is the Lagrange multipliers vector , ρ is a positive parameter, and for our case,

ρ = 1. The three steps of ADMM algorithm are; b-minimization step, β-minimization step,

and µ update step:

bk+1 = arg
b

min Lρ(b, βk, µk+1) (23)

βk+1 = arg
β

min Lρ(bk+1, β, µk) (24)

µk+1 = µ+ ρ(bk+1 − βk+1) (25)

Appendix A shows the algorithm of solving Eqn. (20) (Jovanović et al., 2014). To

summarize the approach, the sparse solution is introduced by the l1-norm in Eqn. (20), then

Eqn. (21) solves for the vector b. By using sparsity- DMD, we can find or compute the most

important modes that will be used to build the ROM.
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CHAPTER 3

Low Reynolds Number Verification and Validation Case

In a preliminary study, the flow around a square cylinder with Re. = U∞D/ν = 175, where

U∞ = 1, is the incoming velocity, D = 1 is the diameter, and ν is the kinematic viscosity. The

flow is simulated within a quasi-two-dimensional computational domain in the vertical and

streamwise directions (Ly×Lz) = (12D×18D), with periodic boundaries in the spanwise x-

direction. A negligible thickness in the Lx direction is included because the CURVIB method

is implemented in three dimensions. The computational domain is discretized with (Nx ×

Ny×Nz) = (6×201×351) grid points with uniform spacing within D of the square cylinder

and stretching in the vertical and streamwise directions towards all of the boundaries. Slip-

wall boundary conditions are used on the upper and lower walls with an impose incoming

volumetric flux in the inlet boundary and a convection outflow.

The simulation is run until the flow has converged and has become statistical steady.

Then, m = 2000 instantaneous snapshots of the three velocity components are obtained

with a uniform sampling of ∆t = 0.02, and use for the DMD algorithm.

Dynamic mode decomposition-based reduced order model

In this section, DMD is employed to create a reduced-order model (ROM) of the flow around

the square cylinder. The ROM is developed based on both modes amplitudes and eigenvalues.

In order to accomplish this task, the dynamic modes and their associated eigenvalues are

assessed. Eigenvalues that fall inside the unit circle are strongly damped and their effects

are dissipated (Schmid, 2010, Jovanović et al., 2014). The modes that are associated with

these are not considered.

The first step of developing the ROM is to pick the modes that have the highest am-

plitudes that are also associated with undamped eigenvalues. Using this criteria the 2000

modes are reduced to 975 modes. Figure 1 shows the relative amplitudes and frequencies of

some select modes. These 15 modes have the highest amplitudes that are associated with

relatively undamped eigenvalues. Two frequencies obtained from DMD based on the non-

dimensional Strouhal number St = fD/U∞ are St = 0.159 and and its harmonic multiple
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0.318. These frequencies are consistent with the periodic von-Kármán vortex shedding and

have been captured in previous experimental studies and simulations (Sharma and Eswaran,

2004, Sohankar et al., 1999).

Although, these two frequencies are not associated with the highest amplitude, they

are still in the highest 0.75% amplitudes and their eigenvalues lie on the unit circle, which

indicates that the effects of these modes will not dissipate with time.

Figure 1: Relative amplitudes of most important 15 modes with their corresponding Strouhal

number St. The red makers are the eigenvalues for frequencies St = 0.159 and St = 0.318.

The main goal of DMD is to develop the ROM based on the most important modes

and their frequencies. The power spectral density (PSD) of velocity time series at particular

locations in the flow is used to identify frequencies associated with high energy contributions.

The PSD shows the energy distribution in the flow field.

Figure 2 shows the PSD as a function of Strouhal number at two locations downstream

after the square cylinder along the centerline: x/D = 1 and x/D = 3. Figure 2 indicated that

there are two frequencies close to St = 0.159 and 0.318 associated with high energy modes.
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These frequencies agrees with those identified with DMD and prior investigations (Sharma

and Eswaran, 2004, Sohankar et al., 1999).

Figure 2: PSD as a function of St for (a) x/D = 1 (b) x/D = 3 downwind the cylinder.

The eigenvalues of the 2000 DMD modes on the real-complex plane are show in Fig. 3.

The eigenvalues associated with the top 15 amplitudes are identified on the figure.

Figure 4 shows the dynamic models of four selected modes of the ROM. Figure 4(a)

shows the mode with frequency St = 0.03, which is the highest amplitude. Figure 4(b)

shows the mode associated with the time averaged flow and a frequency, St = 0, Figure 4(c)

and 4(d) show the two modes that are associated with the vortex shedding, St = 0.159 and

St = 0.318, respectively.

An initial case of a ROM with 975 modes is built based on Eqn. (15). Figure 5(a) and

(b) show contours of the streamwise velocity of the simulation and the DMD-based ROM

of the undamped 975 modes at the initial time, respectively. This suggests that the ROM

can recover the many of the conditions. However, further work and insights are necessary to

ascertain a fewer number of modes that can be used to accurately reconstruct the flow field.

Sparsity-promoting DMD-based reduced order model

The main goal of sparsity-promoting DMD is to reconstruct the flow field with less number

of modes R that are used in the ROM to represent a given field.

Different ROMs are created with different R (12, 42 and 1879) to present the flow fields.

The relation between R and the quality of our approximation is studied. Quantitative
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Figure 3: (a) Eigenvalues for the all 2000 modes and their location relative to unit circle

and (b) eigenvalues that are associated with the selected 15 modes. Eigenvalues that are

associated with the selected 15 modes in color: red are the eigenvalues associated with the

vortex shedding with frequencies; St = 0.159 and its integer multiple frequency St = 0.32,

and yellow are the other selected 13 modes with the high amplitudes.
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Figure 4: Contours of dynamic modes of the flow over a square cylinder for some selected

modes: (a) St = 0.03, (b) St = 0, (c) St = 0.159, and (d) St = 0.318.
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Figure 5: Contours of initial streamwise velocity from (a) the simulation and (b) the DMD-

based ROM. 21



Table 1: Number of modes R and log10(γ) value for each ROM.

log10(γ) Number of Modes (R)

5 12

4 42

1.2 1879

standards are used to test the ROMs: the performance parameter (%loss) and reconstruction

error RE. The performance parameter is given by

%loss = 100
‖X − ΦDαVand‖F

‖X‖F
.

The performance parameters (%loss) is the residual ‖X − ΦDαVand‖F between the actual

flow field and the ROM, normalized by ‖X‖F , while the reconstruction error RE is calculated

by the following:

RE =
‖Xi −XROM,i‖

‖Xi‖
,

where Xi is the column of the original matrix X at time i, And XROM,i is the column of the

reduced order model XROM at that time. It is worth note to say that, each column of both;

Xi and XROM,i represents the velocity at that time. Each ROM is related to certain γ value

as shown in Table 1.

Figure 6(a) shows the relation between γ and the %loss, while Figure 6(b) shows the

general relation between γ and R of the ROM. From Figure 6(b), we see that small γ values

are associated with big number of modes that are used in the ROM which leads to less values

of %loss as shown in Fig. 6(a) and Table 1. As γ increases, we promote the sparse solution

by using less number of non-zero modes in the ROM.

We search for the frequencies that have the highest amplitudes. Figure 7 shows the

relative amplitudes and frequencies of some selected modes. From the this figure, we see

that St = 0.15 has the highest amplitude in the three different ROMs. Frequencies St = 0.15

and St = 0.32 are colored in blue. These frequencies correspond to St = 0.159 and St = 0.318
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Figure 6: (a) The relation between γ and the %loss, (b) the general relation between γ and

the number of modes R of the ROM.

of the vortex shedding. This suggests that the sparsity-promoting DMD is able to identify

the optimal modes that has the most dominant effects on the flow and eliminates the less

important ones. The first ROM in Figure 7(a) shows the most dominant modes while

the second ROM in Figure 7(b) contain the most 42 modes. Final Figure 7(c) shows the

amplitude when selecting 1879 modes.

Figure 8 shows the eigenvalues for the all 2000 modes calculated by the sparsity-promoting

DMD and their location relative to unit circle. Eigenvalues that are associated with the

selected ROM modes are mauve ones and the blue ones are the eigenvalues of St = 0.15 and

St = 0.32. Figure 8 shows that both St = 0.15 and St = 0.32 are undamped.

The reconstruction error, RE, is used to test the accuracy of ROM with evolution of

time. Figure 9 is a plot of the RE values for the three ROMs. t is the time interval for which

t = [0, K] and T = 1/0.159 where St = 0.159 is the frequency of the periodic von-Kármán

vortex shedding. The figure shows an acceptable value of RE with the maximum value less
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Figure 7: Relative amplitudes of three ROM(s) with the associated frequencies.(a) 12 modes,

(b) 42 modes, (c) 1879 modes. The blue markers are the eigenvalues for frequencies St = 0.15

and St = 0.32.

that 30% in the prediction region. The more number of modes used in the ROM the lower

RE, which is expected and also agrees with the %loss results.

It is also worth noting that we are trying to find a model that represents the flow field

with optimal number of modes R such that acceptable values of RE are achieved. Finally,

we can say that successful models have been built using 12 and 42 modes, which is less than

the ROM of DMD.

Figure 10 shows the general trend between average value of reconstruction error REavg

for different 8 ROMs with R, as the number of ROM modes increase the reconstruction error

decreases which is expected.

To complete the picture, the streamwise velocity of the actual field and the three ROMs
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Figure 8: (a) Eigenvalues that are associated with the 12 modes ROM. (b) and (c) eigenvalues

that are associated with the ROM of 42 and 1879 modes, respectively. (d) Eigenvalues

associated with the ROM of 100 modes.

at different times are shown in Figs. 11 to 13. These figures give us a qualitative view about

the ability of ROMs to represent the actual flow field.
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Figure 9: Reconstruction Error RE for the four ROMs.

Figure 10: Average Value of Reconstruction Error REavg and the Number of ROM Modes

R.
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Figure 11: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 12 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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Figure 12: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 42 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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Figure 13: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 1879 modes at different times. The top plot is the streamwise velocity

of the actual flow, while the bottom is the streamwise velocity of the ROM.
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CHAPTER 4

Wind Turbine

In order to validate the framework for LES of a wind turbines, we begin by simulating a

single wind turbine in a domain far from wall boundaries with a uniform velocity incoming

wind around the rotor. In particular, we choose the rotor to resemble the Clipper Liberty

C96 2.5 MW turbine deployed at the University of Minnesota Eolos Wind Energy Research

Field Station in Rosemount, MN, USA (Yang et al., 2016, Foti et al., 2018b). The tip-speed

ratio, λ = ωR/U∞ = 8.0, where ω is the angular velocity, R is the turbine radius and U∞ is

the hub height velocity, and the diameter D and U∞ are normalized such that the Reynolds

number Re = U∞D/ν, is based on the kinematic viscosity ν = 2× 10−5 m2/s.

The computational domain is (Lx×Ly×  Lz) = (5D×4D×4D) discretized in a Cartesian

stretch grid (Nx ×Ny ×Nz) = (336× 251× 251) where a uniform grid with space of D/50

is located in a 2D cubic box around the turbine blades. With this discretization, we employ

LES for turbulence modeling. Instead of using the curvilinear immersed boundary method

to describe the movement of the blades, an actuator line method (Sorensen and Shen, 2002)

as implemented in the Virtual Wind Simulator (Yang et al., 2015). The DMD was only

performed on a subset of the entire computational domain. A uniform incoming velocity

is chosen as a first step for DMD-based ROM. The tip vortices are well defined with this

discretization. This work will involve using snapshots to decompose the flow field using

DMD in order to study its behavior to implement with the DMD-based ROM.

We investigate the spatial distribution of the mean flow field. Figure 14(a) shows the

mean streamwise of the flow field U/U∞. Figure 14(a) shows as expected reduction in the

velocity after the interaction between the incoming flow and the wind turbine rotor. Figure

14(b) shows turbulence kinetic energy k/U∞ (TKE), this figure shows that, the intense

turbulence regions start directly after the rotor hub. The interaction of the hub vortex with

the outer wake (the wake formed by the rotor blades) occurs about 2 diameters down wind

of the rotor is observed. Near this intersection, there is a marked increase in TKE. Figure

14(c) shows streamwise-vertical Reynolds shear stress u′v′/U∞, this figure shows that vertical
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Reynolds shear stress is high near the hub due to the high rotation in that region. It is clear

form Figure 14(d) that the mean spanwise vorticity ωzD/U∞ is higher along the tip and hub

level and that is due to the existence of hub and tip vortices.

Dynamic mode decomposition-based reduced order model

Before the applying the DMD to analyze the flow of the wind turbine, a parametric study was

done to test the effect of changing the matrix size on the Residual = ‖X ′ −XA‖/‖X ′‖‖A‖,

where X and X
′

are the two snapshot matrices, and A is the linear operator. The results of

this study shows the Residual are converging with increasing the snapshot matrix size, as it

is shown in Fig. 15.

As a first step, the PSD analysis of some points of the flow has been used to show the

energy distribution of the flow field. PSD gives us information about the frequencies that

have the highest energy. Figure 16 is PSD plot of some locations of the flow field. Figure

16 shows that St = 7.62 is one of the frequencies that have highest energy for the all points.

This value is same as blade-passing frequency StBPf = 3 × fr = 7.6 that is related to the

tip vortices (Iungo et al., 2013). The rotor frequency Strotor = 2.54.

The DMD is applied to a matrix of size m = 400 instantaneous snapshots with a

uniform sampling of ∆t = 0.0157. Figure 17 shows the relative amplitudes and frequen-

cies of some selected modes. These 25 modes have the highest amplitudes and are as-

sociated with undamped eigenvalues. The frequency that is related to the hub vortex is

Sthub ' 0.34 × fr (Iungo et al., 2013). We expect that the hub vortex is associated with

St = 0.79 shown in Fig. 17. Although StBPf = 7.62 is the frequency that related are not

associated with the highest amplitude, it still within the top 6% of amplitudes.

The eigenvalues that are associated with 25 modes lie on the unit circle, which indicates

that the effect of these frequencies will not dissipate with the evolution of time as it is shown

in Fig. 18. Both, PSD analysis and DMD show that StBPf = 7.62 has an important role in

the dynamic of the flow field.

Figure 19 shows the normalized streamwise and vertical velocities, u/U∞ and v/U∞.

Figure 19(c) shows the spanwise vorticity ωzD/U∞, while Fig. 19(d) steamwise vorticity

ωxD/U∞, respectively. The contour plots show clearly the tip vortices and hub vortex.
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Figure 14: (a) The mean streamwise velocity U/U∞, (b) turbulence kinetic energy k/U∞,

(c) vertical Reynolds shear stress u′v′/U∞, and (d) mean spanwise vorticity ωxD/U∞, re-

spectively.
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Figure 15: DMD residuals as a function of the number of snapshots.

Figure 16: PSD as a function of St for (a) axial locations along the wind turbine centerline,

(b) axial locations at y/D = 0.25, and (c) axial locations at y/D = 0.55
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Figure 17: Relative amplitudes of most important 25 modes with their corresponding

Strouhal number St. The red markers are the eigenvalues for frequencies Sthub = 0.79

and StBPf = 7.62.
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Figure 18: (a) Eigenvalues for the all 400 modes and their location relative to unit circle

and (b) eigenvalues that are associated with the selected 25 modes. Eigenvalues that are

associated with the selected 25 modes are in color. Red markers are the eigenvalues associated

with frequencies; Sthub = 0.79 and StBPf = 7.62, and yellow markers are the other selected

23 modes with the high amplitudes.
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Table 2: Number of modes R and log10(γ) value for each ROM.

log10(γ) Number of Modes (R)

3.8 12

3.4 49

3.0 161

2.5 372

These are the coherent structures that govern the flow field, and they will be used to create

the ROM.

To make the picture clear, Fig. 20 and Fig. 21 are contour plots of DMD modes that

are related to StBPf = 7.62, while Fig. 22 and Fig. 23 show the mode of Sthub = 0.79. In

Figs. 21 and 23, frames (a),(b),(c) and (d) are cross-sections of the modes in yz-plane alone

center plane after x/D = 0.25, 0.5, 1 and 2, respectively.

Sparsity-promoting DMD-based reduced order model

In this section, we apply the same approach for designing as ROM as used for the square

cylinder case; different ROMs are created with different number of modes R = 12, 49, 161

and 372 to represent the flow field. Also, for these different ROMs, we analyze the relation

between the R and the accuracy of our approximation. The relationship is studied by the

performance parameters: reconstruction error RE and %loss. The number of modes R in

each ROM and the corresponding γ value are shown in Table 2.

Figure 24(a) shows the relation between γ and the %loss, (b) shows the general relation

between γ and R of each ROM. These shows slight fluctuation between γ values and both

%loss and R, but it shows the same expected trend. Also, for the wind turbine wake the

range of gamma values that give us an acceptable range of error is small 2.5 ≤ log10(γ) ≤ 3.5.

Table 2 is built based on this range.

First, to study each ROM, we search for the frequencies that have the highest amplitudes.

Figure 25 shows the relative amplitudes and frequencies of some selected modes. From the

this figure, we see that frequency StBPf = 7.62 has the highest amplitude in the four different
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Figure 19: (a) The instantaneous streamwise velocity u/U∞, (b) the vertical velocity v/U∞,

(c) the instantaneous spanwise vorticity ωzD/U∞, and (d) the instantaneous spanwise vor-

ticity ωxD/U∞, respectively.
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Figure 20: DMD mode related to StBPf = 7.62 along the center plane.
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Figure 21: (a),(b),(c) and (d) are cross-sections of the mode related to StBPf = 7.62 of

yz-plane alone center plane after (0.25D), (0.5D), (1D) and (2D), respectively.

ROMs. StBPf = 7.62 and Sthub = 0.79 are colored in blue.

Figure 26 shows the eigenvalues for the all 400 modes and their location relative to unit

circle. Eigenvalues that are associated with the selected ROM modes are identified. Figure

26 shows that these two frequencies are undamped.

Reconstruction error RE is calculated to test the quality of ROM with evolution of time.

Figure 27 shows the RE for the four ROMs. The horizontal axes is the time over the period

of the wind turbine rotor T = 2pi/ω, where ω is the angular velocity. The RE decreases with

increasing the the number of modes in the ROM. In general, all the ROM(s) show acceptable

reconstruction error. They are expected increase in the reconstruction error after t/T = 16,

where new times not used in the DMD begins. Figure 28 shows the relation between average

value of reconstruction error REavg for different ROMs and the number modes R in the

ROM.

Figures 29 to 32 show that the flow field is reconstructed. These figures show that the

flow field is successfully reconstructed by the ROMs.
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Figure 22: DMD mode related to Sthub = 0.79 along the center plane.
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Figure 23: (a),(b),(c) and (d) are cross-sections of the mode related to Sthub = 0.79 of

yz-plane alone center plane after (0.25D), (0.5D), (1D) and (2D), respectively.

Figure 24: (a) The relation between γ and the %loss, (b) the general relation between γ and

the number of modes R of the ROM.
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Figure 25: Relative amplitudes of three ROM(s) with the associated frequencies.(a) 12

modes, (b) 49 modes, (c) 161, and (d) 372 modes. The blue ones are the eigenvalues for

frequencies; StBPF = 7.62 and Sthub = 0.79.
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Figure 26: (a) Eigenvalues that are associated with the 12 modes ROM. (b), (c) and (d)

eigenvalues that are associated with the ROM of ; 49, 161 and 372 modes, respectively.
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Figure 27: Reconstruction Error RE for the four ROM(s).
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Figure 28: Average Value of Reconstruction Error REavg and the Number of ROM Modes

R.
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Figure 29: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 12 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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Figure 30: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 49 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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Figure 31: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 132 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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Figure 32: Contour of streamwise velocity of the wake for the actual flow and the recon-

struction wake with 372 modes at different times. The top plot is the streamwise velocity of

the actual flow, while the bottom is the streamwise velocity of the ROM.
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CHAPTER 5

Summary and Conclusions

A model for wind turbine wakes is developed using DMD by reduction and careful selection

of the spatial modes. Several methods are considered for mode selection: a user-intuition

based on the amplitude value of modes and a sparse sensing. The former method has been

demonstrated in Iungo et al. (2015), but the number of modes employed can be considerable

high. DMD is able to capture modes that are directly related to the wake instabilities and

maintain frequencies similar to those found in simulations and experimental measurements.

In the user-intuition based method a DMD-based ROM designed with carefully selected 975

modes with high amplitudes and undamped effects. Sparsity-promoting DMD algorithm

employing sparse sensing is demonstrated to select a significant subset of the DMD modes

to build accurate ROMs. The error of the ROM is shown to be linearly dependent on the

number of modes selected.

A large-eddy simulation of a wind turbine with a uniform inflow is performed and used to

build a DMD-based model. Physical key features of the flow field including the tip vortices

and hub vortex are identified with DMD. These two coherent structures have relatively

the highest amplitudes compared to all modes. Sparse sampling of the the DMD modes,

reveals that modes related to these coherent structures are always selected even with the

number of modes is less than 10 out of a maximum of 400 modes. Models designed with the

optimal amplitudes using the sparsity-promoting DMD algorithm are shown to be nearly

independent of the number of modes when less than 10% of the modes are selected. The

maximum reconstruction error is less than 10% compared with the simulation results. The

dynamic model is able to capture the unsteady motions of the tip vortices and hub vortex.

Furthermore, in the prediction phase, where the time is incremented past the last data point

used to create the model, the error is shown to exponentially decrease. This is due to the

periodic nature of the wind turbine wake.

In future work, more complex cases will be considered. Large-eddy simulation of non-

uniform incoming velocity, such as an atmospheric boundary layer, will be performed as well
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as higher fidelity modeling of the wind turbine including the nacelle geometry. Using the

DMD-based, a model of an entire wind farm can be sought. This comprehensive model will

be able to predicted the total power output and its variability of a wind farm. This will

allow for optimization and uncertainty quantification of a wind farm power output, which

can lead to enhance design criteria and improved levelized cost of energy for wind farms.
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APPENDIX A

b- AND β-Minimization Steps

• b-MINIMIZATION STEP: Jovanović et al. (2014) shows that the b-minimization step

in Eqn. (23) can be presented as:

minimize
b

J(b) +
ρ

2
‖b− uk‖2

F

where,

uk = βk − 1

ρ
µk

Using Eqn. (18):

minimize
b

b∗(P + (
ρ

2
)I)b− (q + (

ρ

2
)uk)∗b− b∗(q + (

ρ

2
)uk + s+ ‖uk‖2

2,

So, the b-minimization:

bk+1 = (P + (
ρ

2
)I)−1(q + (

ρ

2
)uk)

• β-MINIMIZATION STEP: Jovanović et al. (2014) shows that the β-minimization step

in Eqn. (24) can be presented as:

minimize
β

γg(b) +
ρ

2
‖β − νk‖2

F
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where,

νk = bk+1 +
1

ρ
µk

So, the β-minimization:

βk+1
i = SK(vki ) +

1

ρ
µk, K = γ/ρ

where, SK(.) is the soft thresholding operator:

SK(vki ) =


νki −K, νki > K,

0, νki ∈ [−K,K],

νki +K, νki < −K
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APPENDIX B

The Algorithm for Solving Eqn. (21)

Jovanović et al. (2014) shows that the Eqn. (21) can be presented as:

 P E

ET 0

b
ν

 =

q
0


So that, the optimal amplitudes vector bsp can be computed by:

bsp =
[
I 0

] P E

ET 0

−1 q
0



60


	Reduced-order Model Predictions of Wind Turbines via Mode Decomposition and Sparse Sampling
	Recommended Citation

	tmp.1633545004.pdf.eNbaH

