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Abstract 

Shrestha, Utsav M.S. The University of Memphis. August 2020. Quantitative Analysis and 

Monte Carlo Modeling of Fat-Mediated MRI Relaxation. Major Professor: Dr. Nirman Kumar. 

Hepatic steatosis is the accumulation of fat in the liver, affecting about 25% of the world 

population. Steatosis can cause lipo-toxicity and eventually lead to fibrosis, cirrhosis and 

ultimately liver failure if timely interventions are not provided. So, early diagnosis and disease 

monitoring of steatosis is crucial to reduce morbidity and mortality. Chemical shift based 

Magnetic Resonance Imaging (MRI) techniques using single and dual 𝑅2
∗ (transverse relaxation 

rate) models have been reported to quantify fat fraction (FF) for assessment of steatosis. 

However, there is no common consensus between these two models and current data is limited 

for which model is accurate to quantify FF. Fully characterizing the behavior of the models over 

the entire clinical range of hepatic steatosis is essential to determine the limits of each of the 

models. However, performing a systematic investigation of the 𝑅2
∗ models in patient population 

is infeasible. This thesis presents a computational approach by building a Monte Carlo based 

model as an alternative way to examine the 𝑅2
∗-MRI models. 

A 3D liver volume with impenetrable fat spheres was simulated to mimic hepatic steatosis. 

The simulation of steatosis was done using realistic data obtained from automatic segmentation 

and characterization of fat droplets using liver biopsy images. MRI signals were synthesized in 

the virtual liver volume using Monte Carlo modeling approach. Finally, the 𝑅2
∗ behavior was 

analyzed using both the single and dual 𝑅2
∗ models and they were compared against in-vivo 

calibration to determine their accuracy. Predicted 𝑅2
∗ values were within confidence bounds of 

the published in vivo calibration and single 𝑅2
∗ model showed higher accuracy than dual 𝑅2

∗ 

model to estimate FF.  
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In conclusion, this research developed a computational framework for creating realistic 

hepatic steatosis model and synthesizing MRI signal and analyzing 𝑅2
∗ behavior in the presence 

of fat. The developed computational methods will also be generalizable to create other tissue-

specific models and study 𝑅2
∗ behavior at higher field strengths, for testing new MRI pulse 

sequences and in presence of other co-existing pathologies such as hepatic iron overload.  
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Chapter 1  Introduction 

Overview 

Hepatic steatosis is the accumulation of fat in the liver, affecting about 25% of the world 

population 1. Steatosis can cause lipo-toxicity and eventually lead to fibrosis, cirrhosis and 

ultimately liver failure. As steatosis is reversible condition, early diagnosis and disease 

monitoring is crucial to reduce morbidity and mortality. Liver biopsy is the current gold standard 

for the assessment of steatosis. However, biopsy is invasive, painful and suffers from sampling 

error 2. In recent years, Magnetic Resonance Imaging (MRI) has evolved as a noninvasive 

alternative to biopsy for diagnosis of hepatic steatosis 3-5. Chemical shift-based MRI techniques 

that incorporate MRI transverse relaxivity (𝑅2
∗) have been reported to quantify Fat Fraction (FF) 

for assessment of steatosis. 6-8. There are two 𝑅2
∗ models based on this technique: single 𝑅2

∗ 

model which considers common 𝑅2
∗ for fat and water and dual 𝑅2

∗ model which uses different 𝑅2
∗ 

for fat and water. There is no common consensus between these two models and current data is 

limited for which model is accurate to quantify FF. It may not be feasible and can be expensive 

as well as time-consuming to analyze these models over entire clinical range of FF using patient 

cohort.  

This thesis investigates a computational approach as an alternative way to simulate hepatic 

steatosis, synthesize MRI signal and analyze MRI relaxivities for determining an accurate model 

for the quantification of steatosis. An outline of this study is shown in Figure 1. The main 

components of this research are: 

1. To design an algorithm for automatic segmentation of Fat Droplets (FDs) and quantification 

of FF from liver histology images. 
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2. To statistically model distributions for the properties of FDs (radius, nearest neighbor (NN) 

distance and regional anisotropy) from the segmented images for building a virtual steatosis 

model.  

3. Finally, to synthesize MRI signal in the simulated hepatic steatosis volume using Monte 

Carlo modeling and analyze the 𝑅2
∗ behavior using both 𝑅2

∗ models to determine their 

accuracy. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. An overview of the project 
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Monte Carlo modeling 

Monte Carlo modeling is a computerized mathematical method that applies repeated random 

sampling rather than using single average value to produce an outcome. It works by constructing 

a mathematical model of the problem under consideration then runs the simulation for any 

uncertain aspects of the model. The simulation of MRI signal depends upon water proton’s 

mobility in liver, magnetic field inhomogeneities and the effects of radiofrequency pulses. These 

form the building blocks of Monte Carlo simulation. Particle size and distribution of FDs 

extracted from liver biopsy images can be incorporated into the Monte Carlo model to produce 

realistic magnetic field inhomogeneities. To simulate the diffusion of water protons, the model 

can use statistical descriptions of proton movement (such as diffusion tensor) or simply assume 

isotropic diffusion in 3D. The phase accumulated by different proton paths while moving freely 

in the tissue environment can be used to mimic the MRI signal. Hence, Monte Carlo modeling 

breaks down complicated physical systems into many smaller sub problems and has been 

beneficial in simulating and studying various MRI experiments 9-12. 

Specific aim and Significance 

 The primary aim of this project is to understand the underlying mechanisms of fat-water 

proton interactions in hepatic steatosis by using Monte Carlo modeling. For this, we aim to 

create a computer program for automatic segmentation and characterization of FDs from liver 

histology images and build a steatosis model using the characteristics of FDs. The secondary aim 

of this research is to simulate MRI signal using Monte Carlo modeling and test the robustness of 

this model by comparing the model predicted relaxivities with the in-vivo calibration. 

The success of this project will help build realistic tissue specific steatosis model. Moreover, 

it will aid to understand the fat-mediated relaxivity in tissues and determine an accurate model to 
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quantify FF for non-invasive assessment of steatosis. The developed computational methods will 

also be generalizable to create other tissue-specific models and study 𝑅2
∗ behavior at higher field 

strengths, for testing new MRI pulse sequences and in presence of other co-existing pathologies 

such as hepatic iron overload.  

Working Hypothesis 

Given the size and distribution of FDs, Monte Carlo modeling will be able to simulate MRI 

signal in presence of fat and 𝑅2
∗ behavior can be investigated using multi-spectral fat-water 𝑅2

∗ 

signal models.   

Outline 

Chapter 2 discusses about fat metabolism in human body, how excess fat gets stored in liver 

leading to hepatic steatosis and then explains the causes, effects, diagnosis and treatment of 

hepatic steatosis. In addition, it introduces MRI principles and describes about how the presence 

of fat affects the MRI signal and the limitations of current signal models. 

Chapter 3 describes the image acquisition from liver histology slides and the development 

and implementation of an algorithm for automatic segmentation and characterization of FDs.  

Chapter 4 derives statistical models for describing the size and distribution of FDs with 

respect to FFs and builds a virtual hepatic steatosis model.   

 Chapter 5 describes the generation of MRI signal from the virtual steatosis model using 

Monte Carlo modeling, analyzes the 𝑅2
∗ models and compares the predicted 𝑅2

∗ behavior to in 

vivo 𝑅2
∗-FF calibration.   

Chapter 6 concludes the thesis by discussing the contributions and findings of this project 

and presents some future prospects. 
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Chapter 2 Hepatic Steatosis and MRI 

Fat Homeostasis  

This section discusses about the fat cycle in human body and is intended to discuss how 

excess fat gets accumulated in liver. Fat is a major source of energy in the human body. 

Triglyceride is the main type of fat acquired from food sources and fat can store more than 

double the energy content of carbohydrates or proteins 13. Triglycerides are also synthesized by 

adipocytes or hepatocytes. Fat in the form of phospholipids, triglycerides and cholesterol is a 

major constituent of cell membrane. Omega-(n)3 and docosahexaenoic acid (DHA) are major 

forms of fatty acid found in the membrane of brain and retina 14. Also, fat is a transporter of fat-

soluble vitamins A, D, E and K to the intestine where they are absorbed. Fat deposits help to 

insulate the human body and shield vital organs.   

According to U.S. Department of Agriculture 2015-2020 dietary guidelines, daily diet for an 

adult can contain up to 35% of total calories from fat per day which is about 77 grams of fat per 

day. Blood glucose level rises after eating which triggers pancreas to produce insulin. Insulin is 

the hormone that regulates the operation of liver. After the production of insulin, body starts to 

absorb glucose from the blood. In response to increase in insulin, the liver starts absorbing 

glucose and packages them into bundles to form glycogen. As the glucose level drops, pancreas 

stops producing insulin. This signals the liver to decompose its stored glucose and send it back to 

the blood. This helps the body to maintain energy between meals and overnight. 

If the liver is full of glycogen, the absorbed glucose is converted to fatty acids by the liver 

which acts as a long-term storage of energy. The fatty acids are transported around the body via 

blood which are absorbed by fat tissues. Sometimes, the liver ends up accumulating fat while 
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producing and storing the extra fat instead of sending it to fat cells. This condition is known as 

Non-Alcoholic Fatty Liver Disease (NAFLD).  

When excess fats are produced or ingested and stored in fat cells then people become obese. 

According to study, 51% of the population will suffer from obesity by 2030 15. Obesity can 

trigger bone-thinning osteoporosis and heart disease risk. Moreover, it can lead to insulin 

resistance and type 2 diabetes 16.  

Hepatic Steatosis 

This section discusses about the causes, effects as well as diagnosis and treatment techniques 

of hepatic steatosis. Its main purpose is to understand the severity of the disease and why a 

proper diagnosing method is required for the disease. 

Causes and Prevalence 

Hepatic Steatosis is the accumulation of fat in liver where at least 5% of the hepatocytes 

contain fat vacuoles. It is mainly associated with insulin resistance, obesity and high levels of fat 

(triglycerides) and sugar in blood. In addition, fatty liver is also seen in Drug-Induced Liver 

Injury (DILI) 17 and is also confirmed as a side-effect of cancer chemotherapy 18,19. Based on the 

cause, it can be divided into: Alcoholic Fatty Liver Disease (AFLD) and NAFLD. 

Approximately 25% of the world population is being affected by NAFLD (1 .  

Types of Steatosis 

Morphologically, steatosis can be categorized into two major groups: 

1. Macrovesicular steatosis 

Macrovesicular steatosis (a.k.a. macrosteatosis) is when Fat Droplets (FDs) are large enough 

to be able to displace the nucleus and organelles of hepatocytes to the cell periphery. There is 
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only one FD per hepatocyte. It primarily occurs in NAFLD. In addition, macrovesicular steatosis 

is a primary source of MRI signal in patients with steatosis 20. 

2. Microvesicular steatosis 

Microvesicular steatosis (a.k.a. microsteatosis) occurs when FDs are tiny, and they 

accumulate to provide a foamy appearance to the cytoplasm without shifting the nucleus. It is 

mainly associated with AFLD 21. In later stage, the tiny FDs of microsteatosis combine with each 

other to form larger FDs resulting in macrosteatosis.  

Effects 

Hepatic Steatosis, if not treated on time, can cause liver scarring which is known as liver 

fibrosis. With time, liver fibrosis will develop into cirrhosis which is life threatening and 

irreversible. Cirrhosis related to NAFLD is predicted to be the top sign for liver transplantation 

in the USA in next two decades 22. If NAFLD is accompanied by liver inflammation, then it is 

known as nonalcoholic steatohepatitis (NASH), which can lead to cirrhosis and liver failure. 

About 50% of patients have NASH and 19% have cirrhosis along with NAFLD at the time of 

diagnosis 23.  

Treatment 

Although hepatic steatosis is the most common liver disease in the US, no FDA guidelines or 

approved pharmacologic agents are available yet. There is active research going on in this field 

and some of them are: 

1. Weight loss: It is a natural way to counter hepatic steatosis. It helps to lower insulin level in 

blood 24. Several studies have been conducted reporting decrease in hepatic steatosis by 

weight loss 24-26. 
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2. Bariatric surgery: Bariatric surgery 27 has proved to be successful in the treatment of hepatic 

steatosis by multiple research studies 28-30 but its durability is yet to be determined. 

3. Orlistat: It is a technique for weight loss by reducing fat absorption. Successful reversal of 

fatty liver using orlistat has been documented in multiple studies 31,32. The major side effects 

of this procedure are gas and bloating. 

4. Sibutramine: Like orlistat, it helps in weight loss by decreasing appetite. Experiments have 

been conducted using this method and decreased evidence of hepatic steatosis has been found 

31. It has similar side effect to orlistat. 

5. Pharmacological therapy: There are several pharmacological therapies available to cure 

hepatic steatosis. Some of them are: Thiazolidinediones, rosiglitazone, Metformin, Statins, 

fibric acid derivatives (such as Gemfibrozil), etc. Currently, statins are used for the treatment 

of NAFLD 23. 

Diagnosis 

The major methods to diagnose hepatic steatosis are: 

1. Liver Biopsy: It is the process of extracting sample of liver tissue by inserting a needle into 

the liver. It is the current gold standard to access hepatic steatosis. In liver biopsy, FDs have a 

distinct characteristic of white round structure. However, it is invasive and suffers from 

sampling error as well as interobserver variability. 

2. Ultrasound: Liver ultrasound is a non-invasive technique to detect hepatic steatosis. It is 

currently the most accessible and inexpensive method for the purpose. In the presence of 

hepatic steatosis, liver appears brighter than the surrounding organs (renal cortex and spleen). 

It also causes attenuation of ultrasound waves 33. However, the accuracy of ultrasound 

depends upon operation parameters and is less sensitive if steatosis is less than 30% 34. In 
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addition, the quantification of steatosis can be affected by the heterogeneity in NAFLD 

patients. 

3. Computerized Tomography (CT): Among the CT techniques, contrast unenhanced CT is the 

most accurate to detect and quantify hepatic steatosis 35. For identifying steatosis, the 

difference in attenuation of liver and spleen play an important role. In normal liver, the 

average attenuation value for liver is at least 4 Hounsfield Unit (HU) higher than that for 

spleen 36. In contrast, the attenuation value for fatty liver is at least 10 HU lower than that of 

the spleen 34. This results in darker appearance of liver rather than brighter. However, CT 

scans are not sensitive to detect hepatic steatosis less than 30% 37. Also, studies have shown 

that unenhanced CT for quantification of macrosteatosis is not clinically acceptable 38. 

Moreover, CT uses ionizing radiation to image internal organs which is harmful and is less 

suitable for follow-up of patients. 

4. Magnetic Resonance Imaging (MRI): MRI is non-invasive as well as it does not use any 

radiation for imaging. MRI can detect hepatic steatosis and is reported to be the most 

sensitive technique 37,39,40. MRI can quantify steatosis in terms of Fat Fraction (FF) by 

acquiring images throughout the liver volume. High accuracy of MRI-FF has been 

documented by several studies 39,41,42.  

MRI for diagnosis of hepatic steatosis 

As we aim to simulate MRI signal, this topic provides an insight of what happens when a 

patient undergoes MRI scanning which helps to figure out minute details (such as magnetic field-

spin excess relationship, phase of protons and relaxivity) required for the simulation. 
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MRI mechanism 

Human body comprises of about 70% water by weight. The hydrogen nucleus in water is 

composed of a single proton which makes it suitable for MRI imaging. The hydrogen has one 

proton and one electron and both spin around their own axis (Figure 1). Since proton is 

positively charged and electron is negatively charged, they form a tiny current loop when they 

spin. This current loop produces magnetic field. However, proton is much larger than electron so 

the magnetic dipole produced by the proton will dominate over electron. 

 

 

 

 

Although the hydrogen atoms possess the property of magnetic dipole, there is no net 

magnetization in our body because the hydrogen protons are randomly oriented. When an 

external magnetic field (B0) is applied to the human body, some of the magnetic dipoles of 

hydrogen protons align in the direction of B0 while others align anti-parallel to B0. At any 

temperature above absolute zero, at least few of the protons align more in one direction than the 

other. So, there exists a net magnetization from the protons. The difference in the number of 

protons in either of the direction is known as ‘spin excess’. Although spin excess is small, there 

are a huge number (Avogadro number) of molecules in each mole of water (i.e. 6.023 x 1023 

molecules/mole) and the resulting MRI signal is measurable. After the alignment of protons due 

to B0, the spinning protons precess about the axis of B0 (Figure 2) with frequency ω0 given by, 

𝜔0 = 𝛾 ∗ 𝐵0 

where, 𝛾 is the gyromagnetic ratio which is approximately 42.58 MHz/T for protons. 

Figure 2-1. Proton and electron spin in Hydrogen atom. 
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Let M0 be the magnetization of excess spins that is aligned parallel towards B0. The 

components of M0 (blue arrow) are MZ (red arrow) and MXY (green arrow) in Z-axis and XY-

planes respectively (Figure 3). Even if the number of excess spins is large, the magnitude of M0 

will still be small in comparison to B0. Hence, to detect signal from the protons, M0 should be 

tipped onto XY plane (i.e. perpendicular to B0) which is done by applying a Radio Frequency 

(RF) pulse whose frequency is same as 𝜔0 and is oriented in the transverse plane. When the RF 

pulse is turned off, the M0 vector starts uncoiling back to its equilibrium position. The phase 

coherence between all the spinning protons starts to get out of phase. 

Figure 2-2. Proton spins in the (a) absence and (b) presence of external magnetic field B0 

Figure 2-3. Magnetic moment vector of proton 
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The increase in magnetization in longitudinal direction is caused by the release of absorbed 

energy from the protons back to the surrounding environment (lattice). This process is known as 

spin-lattice relaxation and the time taken to restore MZ is called T1 relaxation, which is 

represented by, 

𝑀𝑍(𝑡) = 𝑀0(1 − 𝑒−
𝑡

𝑇1) 

As the magnetization starts to be restored in the Z direction, signal decay occurs in transverse 

plane due to the dephasing of proton spins with respect to each other. This phenomenon is 

known as T2 relaxation. Generally, T2 is less than T1 of the order of 5-10 times. The T2 

relaxation is given by, 

𝑀𝑋𝑌(𝑡) = 𝑀𝑋𝑌(0) ∗ 𝑒−
𝑡

𝑡2 

where, 𝑀𝑋𝑌(0) is the initial transverse component of M0 when it is tipped onto the XY-plane. 

T2 relaxation is intrinsic and irreversible which occurs by natural interaction among spins. 

However, the B0 is not uniform which causes magnetic field inhomogeneity and the T2 value 

decreases further. In this case, T2 is known as T2* which represents the effective transverse 

relaxation. The T1, T2 and T2* are constant for specific tissue and they are known as relaxation 

times. The inverse of relaxation times are known as relaxivities (aka, relaxation rates) denoted by 

R1, R2 and 𝑅2
∗ respectively. 

Fat induced effects in MRI 

Hydrogen protons resonate at a constant but unique frequency depending on the molecular 

structure of compounds. This phenomenon is known as chemical shift which is caused because 

hydrogen protons experience different magnetic field strength depending upon the chemical 

environment. The hydrogen protons are provided with intrinsic shielding from surrounding 

electrons that alters the strength of external magnetic field acting on it. For example, the 
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hydrogen proton in water (O-H bond) will experience slightly stronger magnetic field as 

compared to the hydrogen proton in fat (C-H bond) because hydrogen will have less nearby 

electrons in O-H bond. So, the hydrogen proton in water resonate at a slightly higher frequency. 

These differences are small and measured in parts per million (ppm) 43. Due to the difference in 

resonance frequency, the signals of water and fat will become in-phase and out-of-phase at 

different time points and introduce oscillations in the MRI signal. Hence, in patients with hepatic 

steatosis, there arises intensity difference between in-phase and out-of-phase images whereas the 

intensity of these two images for a normal liver will be same. This principle has been used to 

detect hepatic steatosis by Dixon 44. Multiple studies have been conducted using this method 

describing it as a clinically useful technique to identify and quantify steatosis 45,46. However, this 

method is time-consuming, and the images are affected by motion artifacts and magnetic field 

inhomogeneities and more importantly, Dixon methods do not consider T2* decay and can 

corrupt fat estimates 47
. This is because for fat quantification, signal is collected over multiple 

echo times during which T2* decay occurs. Recent studies corrected for the confounding effect 

of T2* decay by incorporating 𝑅2
∗ (1000/T2*) into the signal model and simultaneously 

estimated 𝑅2
∗ and Fat Fraction (FF) 3,4,48. 

Existing issues with signal models 

Most of the studies that use 𝑅2
∗ correction assume the 𝑅2

∗ decay rate of fat and water to be 

same (single 𝑅2
∗) for simplicity. This technique has been reported to be successful for accurate 

FF quantification 6,49. However, if the 𝑅2
∗ decay rate of fat and water are not similar then single 

𝑅2
∗ model may not be accurate. So, dual 𝑅2

∗ model which considers independent 𝑅2
∗ decay rates 

for fat and water has been proposed and it has been shown that this method improves the 

accuracy of FF estimation using phantom experiments 50. However, dual 𝑅2
∗ is mathematically 
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complicated and does not perform well with noise which hampers the FF quantification accuracy 

51. Single 𝑅2
∗ has been demonstrated to be more accurate than dual 𝑅2

∗ using simulation and 

phantom studies 51 and patient cohort 52. There is no common consensus between these two 

models and current data is limited for which model is accurate to simultaneously quantify FF and 

𝑅2
∗. 

 Hence, there is a need to compare the impact of single 𝑅2
∗ and dual 𝑅2

∗ correction for 

estimation of FF. To evaluate the models over entire clinical range of hepatic steatosis, a 

systematic investigation over a patient population would be necessary but this is not practically 

feasible. Alternatively, a model-based approach such as Monte Carlo modeling where the 

simulation of steatosis is done using realistic data from liver biopsy can be useful to reduce or 

eliminate the need of patient cohorts. 
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Chapter 3  Automatic Segmentation of Fat Droplets in Hepatic Steatosis using Histology 

Introduction 

Liver biopsy, the current gold standard to diagnose hepatic steatosis, when imaged under 

microscope shows FDs as white circular blobs. Analyzing the FF in a biopsy image by a 

pathologist is time consuming and subjective. So, an accurate and automatic fat quantification 

method would help to detect NAFLD at an early stage. 

Multiple techniques have been used to automate the analysis of quantifying steatosis using 

liver histological slides 53-57 Some studies used commercial software that quantified steatosis by 

morphometric analysis. 53,54 More recent studies trained a supervised machine learning model 

based on annotated images provided by pathologists to identify macrosteatosis regions and 

calculate its percentage. 55,56 Unsupervised clustering such as k-means has also been implemented 

for segmentation of FDs. 57 Other approaches used morphological process such as erosion and 

dilation along with shape features like eccentricity and roundness 58-60. This study uses 

thresholding, morphological operation and shape measurements along with a new approach of 

analyzing the change in area brought by morphological operators to successfully segment the 

FDs and compute its FF.   

Materials and Methods 

Sixteen liver biopsy specimens from mice fed for 7 weeks with rich high fat diets were 

collected. Mice age was 10 weeks and they were all male. The histological slides had 4 μm thick 

liver tissue with hematoxylin and eosin (H&E) staining. An inverted fluorescence microscope 

(Nikon Eclipse), equipped with a digital camera was used to capture images. The images were 

acquired at 4X, 10X and 20X-magnification using Bioquant Osteo software. The total size of an 

image was 1280X960 pixels. The images were captured such that they cover complete liver 
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sample under observation. The slide was placed on the stage of the microscope and the stage was 

shifted first horizontally and then vertically to capture all the regions of the sample. While 

moving the stage, special attention was provided to the X and Y coordinates of the corner edges 

of the previous position. 

 

 

 

 

Generally, lipid droplets appear as white circular blobs with sharp edges on digital images but 

all the pixels might not be completely white; some being pink in color (similar to background due 

to staining) while other being grey (due to reflection, refraction or inadequate light of microscope 

while imaging). In addition, there are other structures that are circular or appear white such as 

sinusoids, portal veins, centrilobular veins or tissue cracks. Different structures present in liver 

biopsy images that can confound the segmentation of FDs are shown in figure 2. These other 

structures need to be discarded while segmenting the FDs. Moreover, the close-by FDs can 

sometimes attach with each other and lose their circular shape as shown in Figure 2. A pseudo 

code to segment FDs is presented in Figure 3. 

Figure 3-1. Liver histology images with different magnifications: (a) 4X, (b) 10X and (c) 20X 

for a mice-fed with a high-fat diet. 

a b c 
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Thresholding and small objects removal 

As the fat vacuoles appear white, they have high intensity value and can be segmented out 

from other regions by using thresholding. The images had different brightness conditions so 

manually picking a value did not work. Otsu’s method 61 which works by minimizing the intra-

class variance of black and white pixels, was implemented (function threshold_otsu() in Figure 

3) to automatically fix the threshold based on the characteristics of the image using skimage 

library in Python (Python Software Foundation). The tiny circular white droplets, which occur as 

a residual of thresholding operation could be falsely considered as lipid droplets and were 

discarded by removing objects smaller than a threshold value (function small_objects_removed() 

in Figure 3). 

Figure 3-2.  Image at 10x magnification showing different regions in liver histology. The 

yellow boxes are non-fat white regions. The green boxes show attached FDs that do not 

appear circular. The red box represents large white region which cannot be discarded by 

thresholding and size constraint is imposed for not considering it during segmentation. 
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Morphological Operation 

The images were then processed using morphological erosion and dilation operation 

(function morphological_erosion() and morphological_dilation() in Figure 3). The operation was 

applied iteratively until all the droplets were segmented. In each iteration following values were 

modified: 

 

 

Figure 3-3. Pseudocode for segmentation of FD 
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1. Structure disk size was increased. 

2. Minimum object size to be discarded and maximum object size to be considered was 

reduced. 

3. The maximum eccentricity value was decreased, and the minimum roundness value was 

increased. 

To extract FDs that coalesce into single blobs and does not appear circular, morphological 

operation with structure size=n-1 for dilation and structure size=n for erosion was used as shown 

by dilate <- morphological_dilation(erode, disk_size-1) in pseudocode (Figure 3). Later while 

segmenting FDs, the eroded image was dilated with structure size=n. 

Segmenting Lipid Droplets 

After each iteration of morphological operation, all the regions were checked against their 

eccentricity, roundness value and area change after morphological operation. Eccentricity shows 

how uncircular an object is, so region with eccentricity value less than a threshold value (te) was 

preferred while objects with roundness value greater than a specific value (tr) was chosen. The te 

and tr depended upon the magnification of image. With later iterations, structure disk size for 

morphological operation increased. The higher disk size can produce circular objects from non-

circular ones by removing long elongated portion of it. To account for this, its change in area 

after the operation was computed and it was rejected if the change was higher than expected 

(differed with magnification of image). All of these details has been represented abstractly by 

round() function in the pseudocode (Figure 3). Finally, the regions that passed all these tests 

were considered as FDs. In the pseudocode shown in Figure 3, the selected_objects list 

represents a list of objects/regions selected as FDs. 
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Results 

By using the thresholding and morphological operation to the H&E stained liver histology 

images, segmented image along with the number of FDs and FF were obtained in an automated 

manner. Otsu’s method for thresholding was tested on grayscale image as well as red, green and 

blue channels individually and was found that thresholding worked better on grayscale images. 

The results obtained from the automated segmentation indicated that FF of the mice liver 

specimens ranged from 0.05 to 11.5% with a mean of 5.37±2.79%. The segmented images were 

verified qualitatively by pathologist but in the absence of ground truth segmentation result no 

numeric value for the accuracy of the segmentation could be computed.  

Figure 4 shows the segmentation result for 4X, 10X and 20X images. The 4X images 

provided wide field of view but the FDs were tiny and difficult to be picked by the segmentation 

algorithm as shown in Figure 4a where there are unpicked FDs. In contrary, for 20X images the 

FDs were big, and a clear boundary of FD helped to improve the accuracy of algorithm (Figure 

4c). The 10X images had a balance of area coverage and FD details as demonstrated by Figure 

4b. 
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Discussion and Limitations 

 Quantification of hepatic steatosis is a difficult task. Our visual system is well suited in 

analyzing structure and distinguishing them but designing computerized technique to do so is 

challenging. Our technique was able to segment FDs with qualitative validation from pathologist. 

Figure 3-4. Segmented Images. The yellow region represents the discarded region and grey 

circular objects represent FDs. (a) 4X with 699 FDs and 5.74% FF. (b) 10X with 167 FDs and 

4.87% FF. (c) 20X with 66 FDs and 8.78% FF. 

b 

c 
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In our method, thresholding played an important preliminary role by eliminating the background 

pixels as well as disjoining close FDs. Morphological operation polished the process by enabling 

the detection of coalesced FDs that were weakly connected. When the disk size was increased, 

its degree of disconnection increased and it separated FDs that were joined along a larger arc that 

led to the loss of their circularity and hence, allowed choosing them as separate fat bubbles. 

However, this process could produce circular structure from elongated sinusoids or tissue cracks. 

This was partially resolved by analyzing the area change after the operation. 

 The implementation was able to exclude larger white regions as well as white circular non-fat 

objects. It also succeeded in capturing the joint FDs that do not appear as circle. To separate 

connected lipid vacuoles, different structure size for opening and dilation was used. This well 

suited the purpose, but it generated minor deviations from original size of the droplets. The 

combination of roundness and eccentricity increased true positive. Sinusoids that are U-shaped 

can have less eccentricity, but they get rejected by the roundness threshold. 

 Proper analysis of the segmentation of FDs can be useful to understand the pattern and 

characteristics of them which will help to estimate the morphology of lipid droplets in different 

pathologies.  

 There are some limitations in this study. Firstly, the maximum FF that could be obtained 

from the liver samples were less than 15% which is not sufficient to cover the entire clinical 

range of hepatic steatosis. Secondly, this segmentation method needs to be tested with higher 

FFs. In addition, this segmentation technique was not cross validated with more rigorous manual 

segmentation by pathologists such as manual point counting. 
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Chapter 4 Characterization of Hepatic Steatosis – Gamma Distribution Function 

Introduction 

Several studies have been conducted to study the properties of FDs with an objective to 

detect FDs and quantify FF as well as number of FDs in liver. Characteristics of FDs is important 

to mimic realistic hepatic steatosis that can serve as an alternative technique to analyze MRI 

relaxivity. However, as per our knowledge, no study has used the properties of FDs to simulate 

hepatic steatosis. Some studies have analyzed the circular morphology and smooth edge contour 

of fat globules 57 while others have compared the shape of clustered and separate FDs with other 

empty spaces 62 to identify FDs. Moreover, area and diameter of FDs has previously been 

quantified to distinguish them from other white regions 53 Also, a strategy to lay a square tile 

over liver biopsy image has been previously implemented to evaluate the regional inflammation 

accumulation 63 

Prior work has been successful to quantify FF with high accuracy and distinguish different 

structures present in liver 53,57,62. They have analyzed the shape and eccentricity of FDs and 

classified them based on their organization. However, they have mostly been qualitative analysis 

because of limited number of clinical specimens. Hence, the objective of this research was to 

quantify the size of FDs and position of FDs with respect to each other and perform statistical 

modeling of those quantities to build a virtual model of hepatic steatosis mimicking true 

histology that can serve as an alternative platform for further experiments related to steatosis. 

Materials and Methods 

Histological analysis 

The segmented images in Chapter 2 were used to analyze the morphology and clustering 

behavior of FDs by calculating their radius, inter-particle distance and inter-regional variation 
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(regional anisotropy) in a liver specimen. The “skimage” library’s measure.regionprops function 

was used to get those values. The pixels whose value differs by ~1 and are connected are 

considered as a single region by the function. It provides the minor axis as well as the major axis 

of the region; the length of the minor axis was considered as the radius of the region.  

To estimate the inter-particle distance, nearest neighbor (NN) distance was considered. The 

NN distance shows how the droplets are present with respect to each other that indicates the 

separation between them as well as their tendency to arrange in group. In actual liver, FDs are 

distributed by 3D NN distance but as we had 2D images of liver biopsy 2D NN distance was 

computed by first tracking the centroids of each FDs, then calculating the distance between the 

centroid of each FD with that of other FDs and finally evaluating the shortest distance between 

them.  

For analyzing the accumulation of FDs within certain region (regional anisotropy), 120 μm 

side square grid, roughly six times the mean hepatocyte dimension, was laid over the segmented 

image. Then the amount of FF within each region was calculated and normalized to the 

maximum value for each image, i.e. the scale of histogram in X direction was set in the range [0, 

1]. 

Statistical Description 

To examine the relationship between FF and the characteristics of the FDs, a generalized 

Gamma Distribution Function (GDF) was selected because it is flexible such that Chi-square, 

exponential, Erlang and Weibull distributions are special case of it, obtained by different 

combination of the parameters. A GDF has two parameters: shape (𝛾) and scale (β). Generally, 

the 𝛾 parameter defines the height of the distribution and β parameter is related to its width 

(Figure 1). The GDF can be expressed as, 
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𝐺𝐷𝐹(𝑥) =
1

𝛽∗Γ(𝛾)
∗ ((

𝑥−𝜇

𝛽
)

𝛾−1

∗ exp (
𝑥−𝜇

𝛽
))              (1) 

where, 𝜇 is the location parameter. 𝛽 > 0, 𝛾 > 0, 𝑥 ∈ [0;∞), 𝑥 ≥  𝜇 and Γ(𝛾) is the Gamma 

function evaluated at 𝛾 given by, 

Γ(𝛾) = ∫ 𝑡𝛾−1𝑒−𝑡𝑑𝑡
∞

0
                   (2) 

The gamma function in Eq. 2 is generally used as an extension of the factorial function to 

real and complex numbers. The GDF in Eq. 1 was used to model the properties (radius, NN 

distance and regional anisotropy) of lipid droplets at different fat concentrations. For this 

purpose, the location parameter 𝜇 was considered to be 0, i.e., standard gamma distribution. 

 

 

 

 

 

 

 

 

 

 

 

After representing each properties of FDs with their respective GDF, the gamma parameters 

of each distribution were generalized with respect to FFs using regression analysis. 

Figure 4-1. Gamma Distribution Function (GDF) with different shape and scale parameter 
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Model Generation 

To simulate a liver volume, a cuboid of 600X600X120 μm3 dimension was designed. The fat 

vacuoles were placed as a spherical impenetrable ball in the simulated environment until the 

desired FF was reached. No other anatomical structures such as sinusoids were considered for 

the simulation. To generate a sphere, its size was estimated from lipid droplet size histograms. 

The spheres were distributed in two different ways: 

1. Random Distribution 

Pseudocode to simulate random distribution of FDs is shown in Figure2. The generated fat 

spheres were placed in the virtual environment using Gaussian random distribution. They were 

not allowed to overlap with each other and if a collision was detected (function collision() in 

figure 2) then the FD was placed on the boundary of the colliding FD (function 

surface_colliding_fd() in figure 2) and the collision test was repeated until the collision was 

resolved or a specified number of attempts were made. A new random position for the FD was 

generated (function random_location() in figure 2) if the collision was still present after the 

specified attempts and the process was repeated. 

2. Distribution based on regional anisotropy with NN distance 

The virtual environment was like (a), but the FDs were placed according to the GDF of the 

NN distance with respect to each other within the 120 μm region. The FF in each region 120 μm 

was determined using the GDF of the regional anisotropy. First FD was placed randomly then 

every next FD was placed at NN distance, provided by the inter-particle histogram, from the 

previous FD. Collision was checked like (a) with additional resolving measures. If collision 

could not be resolved within specified attempts, then a new NN distance was generated, and the 

sphere was placed without changing the reference sphere. If the collision still existed after 
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certain iterations, then a new reference sphere was chosen, and the process was repeated. Finally, 

to avoid infinite attempts, if collision was still present then the sphere was positioned in a new 

random location.  

The simulation model was shown as a three-dimensional liver volume using the best GDF 

parameters. To validate the distribution of FDs using the model, virtual 4 μm thick 2D cross-

sections were visually compared with the corresponding true histology tissue images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Pseudocode to simulate hepatic steatosis using random distribution of FDs 
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Results 

Microscopy Analysis 

The size and distribution of lipid droplets were examined from sixteen segmented images. 

Figure 3(a) is an image collected from the microscope at 10X of a liver biopsy specimen with FF 

9.48%. The magnification helped to capture the variations in FDs. Figure 3(b) shows regions in 

original image selected as FDs. The images were segmented as described in Chapter 2 using 

thresholding and iterative morphological operation. The information extracted from these images 

are listed below. 
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(a)  Cellular lipid droplets size distribution 

The radii of the lipid droplets for different FFs were extracted from the segmented masks and 

their histogram was plotted with the fitting of corresponding GDF. Figure 4a represents the 

histogram for three representative liver samples with different FFs. As FF increases the peak of 

the histogram moves towards right indicating increase in number of FDs with larger size. 

The shape (γ) and scale (β) parameter of GDF were fitted by doing regression analysis with 

respect to FF. β showed a linear trend and moderate correlation with FF, β = 0.0809*FF+0.3188 

(R² = 0.490) as shown in Figure 4b. The γ parameter showed a strong linear relationship with the 

β parameter of GDF, allowing to accurately estimate its value using the equation γ = -13.254* 

β+23.144 (R2=0.819), which is shown in Figure 4c.  

b 

Figure 4-3. Histology image collected from the microscope at 10X magnification of a liver 

biopsy specimen with FF of 9.48% (a), and segmentation mask of FDs laid over the original 

image (b). The FDs are depicted as white circular objects 
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(b) Inter-particle distance 

 NN distance was calculated as shown by yellow lines in Figure 5a. After analyzing the 

distance between all FDs, the shortest distance was chosen. The NN distances between the FDs 

were calculated and their histogram was plotted as shown in Figure 5b. The plot shows that as 

the FF increases the FDs are more tightly packed. Figure 5c demonstrates that the β parameter of 

the NN GDF is moderately corelated to the FF (R² = 0.5241) for linear regression and is 

represented by β = -0.7777*FF+10.259. The γ parameter had a similar linear relationship with 

FF, given by γ = 0.7535*FF + 3.8343 (R2=0.4845) as shown in Figure 5d. However, it had 

comparatively strong relationship (R² = 0.7254) with β parameter of the GDF, shown by Figure 

5e, which enabled more accurate computation using the relationship 𝛾 = -0.8583*β + 13.116.  

c 

Figure 4-4. Lipid droplet size distribution: (a) The graph demonstrates the relative frequency 

of lipid droplets as a function of their radii for three different FFs of liver sample. It shows that 

the size gets bigger with increase in FF. Linear regression plots show the relationships between 

β and FF (b) and γ and β (c). 
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(c) Regional Anisotropy 

Regional anisotropy is the difference in deposition of FDs among regions in liver biopsy 

image. For regional anisotropy, the distribution followed an exponential curve for low FF due to 

the absence of fat deposition in most of the regions. With increase in FF, the distribution shifts 

towards right showing more regions with higher FF (Figure 6a). The β parameter is weakly 

correlated to the FF (R² = 0.27) showing a linear relationship represented by 𝛽 = 0.009 ∗ 𝐹𝐹 −

0.0049 (Figure 6b). The γ parameter demonstrated a moderately correlated exponential 

relationship (R² = 0.56) with the β parameter of the GDF given by 𝛾 = 3.5949 ∗ 𝑒−18.98∗𝛽 

(Figure 6c). 

e 

Figure 4-5. Inter-particle distance: (a) Image showing NN distance estimation between FDs 

after automatic segmentation. (b) The graph demonstrates the NN distance histogram for three 

different FFs of liver specimens. It indicates that as the FF increases the distance between FDs 

decreases. (c) The plot shows the relationship between β and FF. (d) The graph shows how γ is 

correlated with FF. (e) The plot shows how γ varied with β. 
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Simulated Liver Model 

 A comparison of model generated fat morphology and actual histological sample using two 

different distributions of FDs for FF of 8% is shown in Figure 7. The 3D cuboid represents a 

600X600X120 simulated liver geometry with FDs shown as white spheres (Figure 7a and 7b). A 

random 4μm thick cross-sectional view of the corresponding volume is represented in Figure 7c 

and Figure 7d along with histology specimen in Figure 7e. Random Distribution of FDs does not 

show realistic accumulation of FDs. Implementation of nearest neighbor statistics helps to mimic 

the grouping characteristic of FDs and regional anisotropy distributes the accumulated FDs 

among different regions. Note that all the regions of predicted morphology for regional 

c 

Figure 4-6. Regional Anisotropy. (a) The graph demonstrates the regional anisotropy histogram 

for three representative FFs of liver specimens. It indicates that as the FF increases the number 

of regions with the absence of fat deposition decreases. (b) The plot shows the relationship 

between β and FF. (c) The graph shows how γ is correlated with β. 
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anisotropy with NN does not have equal volume of FDs and demonstrate in-vivo clustering 

behavior of FDs. 

 

Figure 4-7. Model predicted fat morphology with 8% FF in a 600X600X120 liver volume. 

Random (a) and regional anisotropy with nearest neighbor (b) distribution of FDs (depicted as 

white spheres) in 3D liver geometry and corresponding 4μm thick random sections of the 3D 

models (c, d), and actual histological section with 8.16% FF (e). Note the similarity between (d) 

and (e). The FDs in (e) are seen around a large white vacuole. Similar clustering behavior is 

shown by FDs in top left quarter of (d) (large white vacuole not shown). 
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Discussion and Limitations 

 The main aim of this study was to create a statistical model to describe the size and 

morphology of FDs in tissue. Accurate simulation of morphology of FDs will help to mimic 

synthetic MRI signals in the presence of fat and analyze the 𝑅2
∗ decay curves for different FFs. In 

this research, the method of statistical modeling was experimented with low FF and data from 

mice with hepatic steatosis. But this technique can be generalized to higher FF and be applied to 

other diseases associated with fat accumulation such as fibrosis and cirrhosis. 

 The size, inter-particle distance and inter-region variation of FDs could be well characterized 

by GDF but it failed while modeling regional anisotropy for FF less than 5%. It is because of low 

FF that most of the FDs were accumulated in certain regions of liver sample leaving large 

portions of it with no fat. This caused the distribution data to be mostly zero. The GDF for low 

FFs using 120X120 square grid showed that almost 65% of the region had no fat accumulation. 

It also demonstrated that such region is decreasing with increase in FF which is a positive sign 

that regions with no FF are encountered less at higher FFs. This suggests that more robust 

relation between regional anisotropy and FF can be generated with wide FF range.  

This work assumes 2D distance between FDs for measuring inter-particle distance but in reality, 

the FDs are in 3D space and for more accurate estimation of NN distance, 3D environment 

should be considered. Nevertheless, this approach successfully simulated hepatic steatosis to any 

given FF within the range 0%-13% that showed resemblance to actual histology. The range of 

simulation is limited by the regression equations estimated for size and NN analysis at only low 

FFs. We believe that the simulation can be expanded to create steatosis models with wide clinical 

FF ranges by performing this experiment with variety of samples including low to high FFs. 
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Chapter 5  Relaxivity-Fat Calibration in Hepatic Steatosis: Design of a Monte Carlo Model 

Introduction 

 Recent development in MRI has increased its clinical acceptance as a non-invasive technique 

to assess hepatic steatosis. Further, single and dual 𝑅2
∗ MRI models have been proposed for 

quantification of FF but there is no common consensus between these two models and current 

data is limited for which model is accurate to quantify FF. 

 To understand the relationship between relaxivity and FF and determine a signal model for 

accurate estimation of FF and 𝑅2
∗, we use a computational procedure to produce a realistic liver 

volume with hepatic steatosis. The liver geometry was used to mimic desired FF (as discussed in 

Chapter 4) and MRI signal is simulated at field strengths of 1.5T and 3.0T using Monte Carlo 

modeling. Competency of such model to predict 𝑅2
∗-iron relationship has previously been 

demonstrated 64. In this research, we have modified the model and simulated steatosis to explore 

𝑅2
∗-FF relationship as well as prediction of FF and 𝑅2

∗ at different field strengths using multi-

spectral fat-water models.  

Monte Carlo simulation is employed by modeling possible magnetic field inhomogeneities 

and mobility of water protons in liver. Water proton’s mobility is considered as free random 

isotropic movement across the simulated geometry which causes change in angle to the magnetic 

axis and distance from the surrounding FDs resulting in random effect of magnetic field from 

FDs. To mimic realistic magnetic field inhomogeneities, spheres representing FDs are placed as 

described in Chapter 4. Rather than choosing average radius for the spheres, radii are chosen 

from a distribution representing the size of FDs extracted from liver biopsy images. All of these 

affects the total accumulated phase and consequently helps in simulating realistic MRI signal. 
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Materials and Methods 

Virtual liver environment was created using the relationships generated in Chapter 4. FDs 

were placed in the liver volume using random and regional anisotropy with NN analysis-based 

distributions. The following were the relationships between GDF parameters and FFs derived in 

Chapter 4.  

Table 1. Equations representing FD morphology 

A total of 10,000 water protons were distributed randomly in the generated liver volume. The 

protons were allowed to perform three-dimensional Brownian motion but they were restricted to 

pass through the FDs. As the protons moved freely, they accumulated phase depending on their 

movement because their phase would be affected by their position relative to FDs. Water and fat 

signals were calculated separately, and total signal was computed by the superposition of signals 

from all the protons. The computerized mathematical model to simulate MRI signal has been 

discussed below. 

Monte Carlo Model for MRI Signal Synthesis and 𝑅2
∗ Analysis 

The magnetic dipole field equation for each FD is calculated using, 

∆𝐵(𝑟, 𝜃) =
𝐵0

3
 𝜒 (

𝑅

𝑟
)

3
(3 cos2 𝜃 − 1)          (1) 

where B0 is the applied magnetic field, 𝜒 is the FD susceptibility, R is the sphere radius, r is the 

radial distance between the center and the observation point and θ is the azimuthal angle to the 

FD Features Equation m c R2 

Radius 𝛽 = 𝑚 ∗ 𝐹𝐹 + 𝑐 

𝛾 = 𝑚 ∗ 𝛽 + 𝑐 

0.0809 

-13.254 

0.3188 

23.144 

0.49 

0.82 

NN Distance 𝛽 = 𝑚 ∗ 𝐹𝐹 + 𝑐 

𝛾 = 𝑚 ∗ 𝛽 + 𝑐 

-0.7777 

-0.8583 

10.259 

13.116 

0.52 

0.73 

Regional Anisotropy 𝛽 = 𝑚 ∗ 𝐹𝐹 + 𝑐 

𝛾 = 𝑚 ∗ 𝑒𝛽∗𝑐 

0.009 

3.5949 

-0.0049 

-18.98 

0.27 

0.56 
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magnetic axis. A total of 10,000 water protons were distributed randomly in the liver volume and 

their mobility was characterized by Brownian motion with mean displacement given by, 

𝜎 = √2𝐷𝛿               (2) 

where D is the diffusion coefficient (D=0 for FD/iron and 0.76 µm2/ms for water protons in 

human liver (65) and 𝛿 is the time-step, which was taken as 0.5µs. The simulation was continued 

for 15ms and total phase accrual, for each proton, at time step t was given by, 

∅(𝑡) = 𝛾𝛿 ∑ (𝐵0 + ∆𝐵(𝑝(𝑖))) 𝑡
𝑖=1            (3) 

where 𝛾 =2.675*108 rads-1T-1 is the gyromagnetic ratio and 𝑝(𝑖)  is the proton’s position at ith 

time-step. The phase was assumed same for fat and water protons and the complex signal for a 

single proton was computed as, 

𝑆𝑊(𝑡) = 𝑆(0)𝑒−𝑡𝑅20+𝑗∅(𝑡)            (4) 

𝑆𝐹(𝑡) = 𝑆(0)(∑ 𝛼𝑝𝑒𝑗2𝜋𝑓𝐹,𝑝𝑡𝑃
𝑝=1 )𝑒−𝑡𝑅20+𝑗∅(𝑡)             (5) 

where R20 is the relaxation in normal liver and was empirically assumed to be 20s-1 at 1.5T and 

35s-1 at 3.0T, 𝑓𝐹,𝑝 are the frequencies for the multi-peak fat spectra relative to water peak and 𝛼𝑝 

are the relative amplitudes of the fat signal. The total synthesized signal was obtained by the 

superposition of signals from all protons, 

𝑆(𝑡) = 𝑆𝑤(𝑡) + 𝑆𝐹(𝑡)                  (6) 

The MRI signal relaxation and FF for different steatosis ranges was calculated using multi-

spectral fat-water techniques by implementing it on the complex total synthesized signal. The 

NLSQ model was implemented from the ISMRM Fat-Water Toolbox (FWT) that estimates the 

B0 field map with the application of the graph cut algorithm. It assumes a single 𝑅2
∗ for water 

and fat peaks and uses published values for the relative frequencies of both the peaks, and for the 

relative amplitudes of the lipid peaks 66. The Auto Regressive Moving Average Model (ARMA) 
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was implemented as an iterative approach, similar to 67, starting with the maximum number of fat 

peaks (6 peaks) plus a water peak (i.e. 7 peaks) and reducing the number of peaks iteratively 

until the frequencies of the detected lipid peaks fell within the range of the reported relative 

frequencies (± 0.5 ppm) 66. 

Comparison with true relaxivity 

 The 𝑅2
∗ value predicted by the simulation using different 𝑅2

∗ models at different FFs were 

compared against the in vivo 𝑅2
∗-FF calibration curve at 3.0T  68 using Bland Altman plot to 

determine the effect of fat on 𝑅2
∗.  

Results 

Magnitude Signal 

 Figure 1 shows the difference in synthesized signals generated at 1.5T and 3.0T for 12% FF 

and 𝜒 = 0.3 ppm where the FDs were placed based on regional anisotropy with NN distribution 

of FDs. The signals had steeper decay at 3.0T compared to 1.5T because of increase in magnetic 

field strength. The plot of the total signal showed that fat and water were in phase for every 

4.6ms at 1.5T and 2.3ms at 3.0T (i.e. 4.6ms, 9.2ms, 13.4ms, etc. at 1.5T and 2.3ms, 4.6ms, 

6.9ms, etc. at 3.0T). Also, it depicted that the signals had opposed phase starting at 2.3ms and 

1.15ms at 1.5T and 3.0T respectively. These Echo Time (TE) values match the known values for 

corresponding field strengths.  

Figure 2 compares the total synthesized signal (magnitude only) between random distribution 

and regional anisotropy with inter-particle distance-based distribution for 12% FF, 𝜒=0.3ppm at 

1.5T and 3.0T. The signal showed similar pattern for both the distribution at 1.5T throughout the 

simulation time whereas the signal at 3.0T demonstrated steeper slope for regional anisotropy 

with NN distribution compared to random distribution in the later time-steps. Figure 3 plots total 
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synthesized signal at 1.5T and 3.0T for both types of distribution of FDs to differentiate the 

signal at various FF (5%, 8% and 12%). As FFs increased, the amplitude of fat-water oscillations 

increased as predicted.  

 

 

 

Figure 5-1. Water, fat, and total synthesized magnitude signals for FF = 12% and 𝜒 = 0.3 ppm. 

a-c represents 1.5T and d-f represents 3.0T. The TE values matched that of published results. 
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Figure 5-3. Total synthesized signal for different FFs (5%, 8% and 12%), 𝜒 = 0.3ppm and both 

FD distributions at 1.5T and 3T. (a) Random Distribution at 1.5T, (b) RA+NN based distribution 

at 1.5T, (c) Random Distribution at 3.0T and (d) RA+NN based distribution at 3.0T. 

 

Figure 5-2. Random Distribution vs RA+NN based distribution of FDs using total synthesized 

magnitude signal for 12% FF and 𝜒 =0.3 ppm at 1.5T (a), and 3T (b). The signal decays are 

similar for both distributions at 1.5T but RA+NN distribution is slightly faster at 3 T. 
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MRI Relaxivity analysis 

 The relaxivity depends upon the susceptibility of fat. BA analysis for water 𝑅2
∗ predictions at 

different susceptibility ranged from -0.3 to 1.4 ppm with respect to in vivo calibration obtained 

from patients with the absence of iron overload at 3.0T 68is summarized in Table 2. Overall, the 

analysis showed that the predictions were evenly distributed around the bias (the mean difference) 

for the models regardless of the distribution. Both models have bias closest to 0 and thin width of 

limits of agreement (LOA) for 𝜒 = 0.4ppm for random distribution. Among them FWT showed 

excellent prediction with mean difference of 1.0s-1 (SD=0.9s-1) between reference and predicted 

𝑅2
∗ value. For regional anisotropy with NN based distribution, ARMA model produced best 

outcome with bias = 0.2s-1 (SD=0.5s-1) for 𝜒 = 0.3ppm. The predicted susceptibility of 0.3ppm is 

within the 95% CI of the in-vivo susceptibility value 0.10 ± 0.14ppm 69. So, for rest of the paper 

susceptibility of FD is considered as 0.3ppm.  

Figure 4 plots the water relaxivity estimated by ARMA and FWT model for different FF at 

1.5T and 3.0T for random and regional anisotropy with NN based placement of FDs. The plot 

depicts that the 𝑅2
∗ of water increases linearly with FF. For 3.0T, the predicted relaxivity values 

were within 95% CI and regional anisotropy with NN based distribution of FDs agreed more with 

the in-vivo calibration as shown by BA analysis (Table 2). Generally, ARMA predicted higher 𝑅2
∗ 

value as compared to FWT. Similarly, water 𝑅2
∗ value predicted for regional anisotropy with NN 

based distribution is higher than that for random distribution of FDs which brings it to only 0.2s-1 

below the in-vivo calibration from 1.5s-1, according to BA analysis. 

Figure 5 shows fat-𝑅2
∗ estimated by ARMA model for both distribution of FDs at 1.5T and 

3.0T. FWT did not predict 𝑅2
∗ value for fat because it assumes single relaxation for both fat and 

water. At lower field strength, the relaxivity of fat did not show any pattern but at 3.0T linear 
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trend was observed similar to water-𝑅2
∗. The fat relaxivity also demonstrated pattern similar to 𝑅2

∗ 

of water for regional anisotropy with NN based distribution where fat-𝑅2
∗ is generally higher than 

that for random distribution of FDs. 

Table 2. Bland-Altman analysis between 𝑅2
∗ values predicted using both models at different 

susceptibilities versus 𝑅2
∗ values obtained from the in vivo calibration at 3T.  

 

𝝌 (ppm) 𝑹𝟐
∗  Models 

Random distribution RA+NN based distribution 

Bias (s-1) SD (s-1) Bias (s-1) SD (s-1) 

-0.3 
ARMA 1.4 0.8 0.3 0.5 

FWT 2.1 1.2 0.7 0.7 

-0.2 
ARMA 3.6 2.0 2.8 1.3 

FWT 3.8 2.3 3.2 1.8 

-0.1 
ARMA 5.1 2.8 4.9 2.6 

FWT 4.6 3.0 4.6 3.0 

0.1 
ARMA 5.0 2.7 4.9 2.6 

FWT 4.6 3.0 4.6 3.0 

0.2 
ARMA 3.5 1.9 2.9 1.4 

FWT 3.8 2.3 3.2 1.8 

0.3 
ARMA 1.5 0.8 0.2 0.5 

FWT 2.1 1.2 0.7 0.7 

0.4 
ARMA -1.2 0.7 -3.3 2.5 

FWT -1.0 0.9 -3.0 2.4 

0.5 
ARMA -1.4 2.4 -7.1 4.8 

FWT -4.0 2.0 -6.8 4.7 

1 
ARMA -22.2 12.0 -26.2 15.8 

FWT -21.9 12.1 -26.2 15.7 

1.4 
ARMA -35.9 19.7 -38.4 22.1 

FWT -35.9 19.5 -38.2 22.3 
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Figure 5-4. Predicted water relaxivities for different 𝑅2
∗ models for 0-13% FF and 𝜒 = 0.3ppm at 

1.5T and 3.0T. Overall, 𝑅2
∗ showed linear increment with FF. Regional Anisotropy with NN 

distribution showed higher degree of agreement with in-vivo calibration. 

 

Figure 5-5. Different 𝑅2
∗ models predicted fat relaxivities at 0-13% FF and 𝜒 = 0.3ppm at 1.5T 

and 3.0T. No pattern was seen at 1.5T but linear trend could be seen at 3.0T. 

FF analysis 

Figure 6 demonstrates a comparison of FF predicted from 𝑅2
∗ models with simulated FF for 

both distributions of FDs at 1.5T and 3.0T. The dotted line shows the line of agreement between 

them. ARMA model underestimated the FF values at 1.5T and overestimated it at 3.0T. 

Comparatively, FWT showed greater agreement with the simulated FF for all analyzed cases. 

This plot shows that both the relaxivity models predict FF with high degree of accuracy. 
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Figure 5-6. Comparison of predicted FF with simulated FF for both distributions and 𝜒 = 0.3ppm 

at 1.5T and 3.0T. The dotted line is the line of unity which shows the point where the two values 

will be equal. FWT predicted excellent FF result for both distribution of FDs. ARMA seem to 

estimate lower FF values at 1.5T and higher FF values at 3.0T. 

Discussion and Limitations 

 In this work, we used a Monte Carlo model to synthesize MRI signal and analyze the FF as 

well as relaxivity of fat and water at different field strengths using FWT and ARMA models. The 

presence of lipid droplets impacts 𝑅2
∗ of MRI signal. Although the magnetic susceptibility of fat is 

relatively small in comparison with iron, it can generate small field inhomogeneity which can 

increase the signal decay rate resulting to higher 𝑅2
∗ 70. Our work demonstrates that there was 

increase in decay rate of MRI signal with increase in FF which suggests that fat produces field 

inhomogeneity. 

There is a strong cooccurrence of NAFLD along with hyperferritinemia and mild iron overload 

71. The susceptibility of iron is very high compared to that of fat. So, quantifying fat susceptibility 

in the presence of iron is difficult and proper analysis of fat susceptibility has not been done yet. 
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For estimating the susceptibility of fat, we analyzed the relaxivity of fat and water as well as FF at 

different fat susceptibilities -0.1 to 0.5 ppm and 1 ppm. Then, evaluated i) 𝑅2,𝑊
∗  with in vivo 

calibration and ii) predicted FF with true simulated FF at those susceptibilities. The BA analysis 

and line of unity analysis produced excellent result for 𝜒 = 0.3ppm which is within 95% CI of the 

in-vivo calibration (0.10±0.14ppm) 69. Hence, this method was able to estimate the susceptibility 

of fat with acceptable accuracy. Susceptibility of 0.5ppm predicted by Monte Carlo modeling is 

reported in 72. The difference might be because they have simulated FDs with constant radius using 

random distribution. 

The 𝑅2
∗ values of water predicted by ARMA and FWT model were within the 95% confidence 

bound for both distributions of FDs but the values for regional anisotropy with nearest neighbor 

distribution of FDs were comparatively closer to the in-vivo calibration at 3.0T for 𝜒 = 0.3 ppm. 

Also, this result was validated by BA analysis. This shows that both the distributions of FDs were 

able to simulate hepatic steatosis and mimic MRI signal with acceptable accuracy (BA analysis, 

random distribution: 1.5±0.8 and regional anisotropy with NN distribution: 0.2±0.5) but the 

distribution with regional anisotropy and nearest neighbor was superior by being able to simulate 

in-vivo characteristic of FDs. 

The ARMA models consider different 𝑅2
∗ for fat and water and should be able to estimate the 

FF with higher accuracy as compared to FWT (single 𝑅2
∗) but it is not stable at low FF and FF 

quantification accuracy decreases 52. This work supports the result published in  52,73 and shows 

that single 𝑅2
∗ model is better for quantifying FF. However, our findings related to different 

relaxivity of fat and water (29.97±0.63 s-1) for ARMA model contradicts the result reported in 52. 

They observed that both relaxivities were very similar with mean difference of 0.95±8.28 s-1. We 

found similar 𝑅2,𝐹
∗  and 𝑅2,𝑊

∗  (0.46±0.88) for 𝜒 = ±0.1 ppm where ARMA peak model was able to 
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identify all 6 peaks of lipid but 𝑅2,𝑊
∗  predicted at 𝜒 = ±0.1 was not within 95% CI of in-vivo 

𝑅2,𝑊
∗  calibration. The difference for 𝜒 = 0.3ppm might be because ARMA model was able to 

identify only 2 fat peaks. 

 In the absence of high FF, the simulation could not mimic severe hepatic steatosis but this 

study showed that the information of size of FDs, inter-particle distance and regional anisotropy 

was useful to mimic steatosis and analyze 𝑅2
∗ within 95% CI of the in vivo calibration. This 

showed the feasibility of Monte Carlo modeling to mimic fat accumulation in liver. Simulation 

of fat deposition in other organs could be achieved by using similar data about them. In addition, 

it can be used to mimic steatosis of organs where liver biopsy is not possible by gathering that 

information from autopsy specimens.  

In summary, complete knowledge of size and location of FDs is required to mimic steatosis. 

We were able to predict in vivo human water relaxivity within 95% CI using the radius and 

distance between closest FD neighbor from mice liver sample. In addition, we used it to estimate 

the susceptibility of fat in liver. The result can further be improved by conducting the experiment 

with human liver sample that covers entire clinical range of FF and improving the ARMA 7 peak 

model to identify all 6 lipid peaks.  
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Chapter 6 Conclusion 

MRI provides a non-invasive tool to monitor hepatic steatosis 3,4,48 but it is still under 

research. Studies have used single and dual 𝑅2
∗ to quantify FF but there is no common agreement 

about which 𝑅2
∗ model is superior to other. 𝑅2

∗-FF relationship must be analyzed further to 

increase the clinical acceptance of MRI. It is difficult, tedious and expensive to recalibrate the 𝑅2
∗ 

estimates in large patient population representing entire FF clinical range. 

The primary objective of our study was to develop an alternative approach to recalibrate the 

FF-𝑅2
∗ relationship and to determine the accuracy of single and dual 𝑅2

∗ models. Our hypothesis 

states that the in vivo FF-relaxivity relationship can be estimated using Monte Carlo modeling 

provided the morphology, location and susceptibility of FDs, water proton mobility in tissue and 

𝑅2
∗ model. This approach can reduce or eliminate the need of patient population for recalibration. 

In addition, it can be used to study other phenomenon related to steatosis. 

Original Contributions 

 The innovations of this study are: 

1. Automatic segmentation of FDs has been done previously 55-57 but the morphology and 

distribution pattern of FDs based on FF have never been quantified. This study has analyzed 

those characteristics of FDs and developed a statistical model to represent them. This led a 

foundation to simulate hepatic steatosis with desired FF. Also, it provided information about 

the size and distribution of FDs in liver. 

2. Monte Carlo modeling for mimicking steatosis with properties of FDs extracted from liver 

biopsy samples is used for the first time. In this work, we used the simulation to study the 

effect of fat deposition on MRI relaxivity for different field strengths and 𝑅2
∗ models. Fat 
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deposition differs with tissue so we believe that tissue specific statistical models can be 

generated and this approach can be used to build tissue specific simulations.  

Findings 

 Our work has demonstrated the potential of using computerized technique to examine the FF-

𝑅2
∗ calibration. The size and inter-particle distance of lipid droplets for different FF was obtained 

from liver biopsy specimens of mice. Gamma Distribution Function was used to represent those 

characteristics. GDF proved to be a suitable fit for modeling them by showing expected 

variations corresponding to the features of FDs. For example: GDF showed increment in size of 

FDs as we move to higher FF which is a well implied result. The larger volume of the droplets 

contributed to increase in FF. In addition, the shape and scale parameters of GDF showed good 

correlation with FF. Hence, we can conclude that GDF was able to characterize the FDs 

appropriately and demonstrated to be a good choice. 

 With the simulation of hepatic steatosis using statistical models, Monte Carlo modeling was 

used to generate MRI signal in the virtual environment. We were able to generate realistic MRI 

signals and analyze the effect of FDs on the MRI relaxivity. We used single as well as dual 𝑅2
∗ 

models for the analysis. The 𝑅2
∗ of both fat and water was found to increase linearly with FF 

which agreed with published result 70. The in-phase and opposed-phase cycle of the simulated 

signals matched that of known values. Also, the relaxivity values of water at 3.0T field strength 

were within 95% confidence bound of in-vivo calibration and had mean offset of -1.5±0.8 and 

0.2±0.5 from true values for random and regional anisotropy with NN distribution respectively. 

This showed that Monte Carlo modeling successfully simulated the MRI signal in fatty liver. 

This helped us to examine the susceptibility of fat in liver which is generally convoluted in the 

presence of iron in human liver. Our experiment estimated the susceptibility of fat as 0.3 ppm. 
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Also, our research showed that single 𝑅2
∗ model is more accurate than dual 𝑅2

∗ model for 

quantifying FF. The steatosis simulation as well as Monte Carlo modeling can be used for other 

similar examinations and analysis.  

Future Works 

We have successfully built a realistic hepatic steatosis 3D model and used it to estimate 

single and dual 𝑅2
∗-FF relationship with acceptable accuracy but there are areas that still need 

more attention. Some of them are discussed below. 

1. The automatic segmentation of FDs from liver biopsy was validated qualitatively but was not 

cross validated with more rigorous manual segmentation by pathologists such as manual 

point counting. The cross validation can be used to test the accuracy of the segmentation. 

2. The FFs in our liver samples do not cover the entire clinical range 0-50% 74. This study has 

shown that realistic liver model can be generated for 0-13% FF. The techniques developed in 

this study can be used to simulate steatosis for entire clinical range. 

3. The relaxivities estimated by the Monte Carlo model are based on the true diffusion 

coefficient (D) of water in tissues. The value of D depends upon tissue organization and fat-

proton interaction. The only published value of D for normal liver is 0.76±0.27 µm2/ms 65. 

The value of D in the presence of fat is not known. The true value of D in fatty tissues can 

help in accurate calibration of 𝑅2
∗ values. 

4. In this study, we have used mice liver samples and compared the predicted relaxivities with 

human in vivo calibrations. The prediction of this method can be improved by performing 

this experiment with human liver specimens. Also, the predicted relaxivities needs to be 

compared with in vivo calibration at 1.5T. 
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5. A strong co-occurrence of NAFLD along with hyperferritinemia and mild iron overload has 

been reported 71. So, designing models simulating both steatosis and iron-overload can be 

helpful to study the combined effect of iron and fat on MRI signal. 
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