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Calculations of Vacancy Diffusivity in WO3 

by Juan Chen 

The memristor is viewed as a promising material to store digital information and 

has analog applications that drew researchers’ attention. Researchers explored the 

possibilities of using memristors to simulate synapses in the human brain. WO3 is one of 

the materials that can make memristors. Based on the mechanism of memristors, we 

know the motion of defects in WO3 changes the Schottky barrier and the current; thus, it 

can make the switch between high resistance state, HRS, and low resistance state, LRS. 

This paper will explore vacancy diffusivity in WO3. In this research, we concentrate on 

the cubic and monoclinic structure of WO3. We use the first principle density functional 

theory or DFT, and hybrid DFT to calculate the formation energy of different charge 

states of oxygen vacancies in WO3 and plot the graph of Fermi level to find the charge 

state with the lowest formation energy conditions. We use the nudged elastic band 

method to get the energy barrier for the vacancies to travel inside the structure. 
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Chapter 1  

Introduction  

As computers have become more prominent in our daily life, human demand for 

computers has become higher and higher. All computers use the Von Neumann structure [1], the 

arithmetic unit and the storage unit are separate, resulting in the transfer of a large amount of 

information between the processor and the memory which consumes a lot of energy. In contrast, 

the human brain has the advantages of parallel computing and relatively low energy 

consumption. Therefore, researchers have explored a new type of computing method, brain-like 

computing [2]. It aims to achieve low-power computing power the brain by simulating the 

interaction between neurons [3]. In the beginning, the traditional silicon-based complementary 

metal-oxide semiconductor, or CMOS [4], was popularly used to process devices. However, the 

current random neurons with excitation and suppression connections based on traditional CMOS 

require at least twice the extremely high hardware overhead of the excitation neurons, which is 

not conducive to high-density, large-scale impulsive neural network integration. Researchers 

turned their attention to a kind of new material—memristor. 

The memristor concept was proposed by Leon Chua in 1971[5], [6], [7]. Resistance (R), 

capacitor (C), and inductor (L) already connected four basic physics variables, including voltage 

(v), current (i),

 

charge (q), and magnetic flux (φ) [8], but the relationship network is not 

complete. Leon Chua proposed that there should be a circuit element memristance (M) in nature, 

which represents the relationship between magnetic flux (φ) and electric charge (q) (Figure 1.1).  
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Figure 1.1  Relationship between four basic components of a circuit.[9] 

 

Memristor is the combination of the word memory and resistor [6], [9]. Memristors can 

generate and maintain a safe current through a device just like resistors. The difference between 

memristor and resistor is that memristors can memorize the amount of charge that goes through 

it even after the power is turned off [10]. Many memristors have a metal/insulator/metal (MIM) 

sandwich structure [11]. The insulator is usually a metal oxide such as NiO, Cu2O [12], TiO2 

[13], WO3 [14], ZnO [15], [16], which has a high concentration of vacancies.                                        
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Chapter 2 

Literature Review 

2.1 Characteristic of memristor 

Memristors exhibit non-linear conductive behavior [17] which is due to the coupled 

electronic and ionic conduction mediated by defects. It can switch between high resistance state, 

or HRS, and low resistance state, or LRS [18], [19]. Memristors are materials that have a 

nonlinear characteristic in their I-V curves. Some memristors [20] have an abrupt change in their 

I-V curves (like Figure 2.1 (a)), while other memristors’ [21] I-V curves look like figure “8” 

(like Figure 2.1(b)). 

    

(a)                                                                               (b) 

Figure 2.1 The I-V curve of memristors. (a) Switching in a Pt/NiO/Pt sandwich structure in the 

condition of HRS and LRS [22]. (b) Switching in a Pd/WOx/W sandwich structure. The arrows 

show a directional sweep [23]. 

 

Figure 2.1 (a) shows that after an application of an external voltage on the sandwich 

structure, the resistance keeps increasing, noted by the HRS trend. When the external voltage 
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reaches a certain value, it triggers the set process. The resistance changes from 100 kΩ to 200 Ω 

[16]. As the voltage increases, the resistance increases as well, shown in the LRS trend. The reset 

process will be suddenly triggered when the current reaches the threshold level, noted by an 

abrupt change in resistance. In Figure 2.1 (b), the resistance of WO3 gradually changes until it 

reaches the threshold and switches from a high resistance state (the black trendline in the graph) 

to a low resistance state (the red trendline). The graph is a loop. These two memristors have very 

different I-V curves because they have different mechanisms in their systems which we will 

discuss later. 

2.2 Mechanism  

The I-V curve of memristors can exhibit two types of switching behavior: one is an 

abrupt change in resistance (such as NiO), the other one is gradual change (such as WO3). Thus, 

there are two kinds of mechanisms in memristor: filamentary switching and interface-type 

switching. 

2.2.1 Filamentary switching   

Some memristors have filamentary switching mechanism [24], [12]. It starts with a metal 

oxide that has a high concentration of oxygen vacancies between two electrodes [25], and the 

resistance is high. As the oxygen vacancies accumulate, there is a filament that starts to form 

which connects the positive and negative terminal of the electrodes, shown in Figure 2.2 (a). At 

this point, resistance changes from HRS to LRS. Since the continuous high current generates 

heat, the vacancies start to migrate and cause the rupture of the filament and connection, shown 

in Figure 2.2 (b). Thus, the condition switches back from LRS to HRS after cycling. 
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a.                                                                              b.

   

 

         

Figure 2.2 Filamentary conducting path. (a) formation of filament [26]. (b) filament 

ruptured after cycling [26].  

 

2.2.2 Interfacial switching  

Some memristors have interfacial switching mechanism [27]. There are two types of 

contact between semiconductor and metal: Schottky contact [28] and ohmic contact [29]. Just 

like the PN junction, Schottky contact has the rectification characteristics which are decided by 

the bandgap, doping type, and concentration of the semiconductor and the work function of the 

metal [30]. When metals have contact with n-type semiconductors, the band of the 

semiconductor near the interface has a bending, leading to the Schottky barrier.  

Figure 2.3 is an illustration of the Schottky barrier. ɸm is the work function which is the 

minimum energy needed for electrons to escape into the vacuum level. χ is the electron affinity, 

which is the energy released when electrons drop from the vacuum level to the bottom of the 

conduction band. The ɸB is the height of the Schottky barrier and ɸB= ɸm-χ. The EC is the 

conduction band minimum energy; EV is the valance band maximum energy, and EF is the Fermi 

level. We do not want the Schottky barrier to exist in most situations. There are two ways to 
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reduce the Schottky barrier. One is to lower the height of the barrier ɸB, so the electrons do not 

need such high energy to jump the barrier. The other one is to narrow the width of the barrier, 

making the electrons tunnel through it easier. WO3 uses the second way to reduce the Schottky 

barrier (Figure 2.4). 

 

Figure 2.3 Illustration of Schottky barrier [31] 

 

In Figure 2.4 (a), Schottky barrier width WD is big in metal-WO3-metal cases. In Figure 

2.4 (b), the accumulation of vacancies narrows the Schottky barrier width and allows electrons 

tunnel through it, resulting in alters of current. That is the reason why resistance can change from 

HRS to LRS. Therefore, we need to understand the motion of the defects in WO3. 
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Figure 2.4 The interface mechanism for switching in WO3 [32]. (A) The band diagram for HRS. 

(B) The band diagram for LRS. 

 

2.3 Application  

After discussing the mechanism of the memristors, we would like to talk about the 

application of memristors. 

2.3.1 Memory application  

Nowadays, there are two types of random-access memory, RAM: volatile and non-volatile 

[33]. The volatile memory includes dynamic random-access memory, DRAM, and static random-

access memory, SRAM [34]. DRAM loses data when the power is suddenly turned off and SRAM 

is physically bulky which would require a lot of space to create a large capacity memory storage. 

Therefore, neither are ideal memory types to store information. 

The classical example of non-volatile memory is flash memory [35]. It is made of metal-

oxide-semiconductor and filed-effect-transistor [36]. The flash memory has some disadvantages, 

including low operation speed [37], limited write/erase cycles [38], and high voltage requirement 

[39]. A lot of research has been done on applying memristors in the memory storage field.  
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HP company creates TiO2 memristor [40] devices which can be explained by Chua’s 

model in 2008, hence proved the existence of memristors. It was a milestone on the way of 

developing a new type of computer memory. 

2.3.2 Analog application  

Another application of memristor is in the analog field. Researchers are working on using 

memristors to mimic the behaviors of synapses, such as parallel computing. A synapse is a place 

where two neurons contact each other and transmit information [41]. For most neurons in the 

central nervous system, synapses are the only input channels for their neural signals. The neurons 

in the central nervous system are interconnected in the form of synapses [42], which in turn form 

a complex network of neurons.   

Synaptic plasticity [43] is a characteristic or phenomenon in which the shape, function, 

strength, and efficiency of synapses undergo a series of permanent changes. The reason we can 

use memristors to simulate synapses is that memristors have the same kind of plasticity. Besides, 

its specifications are nanoscale, which makes it possible to use it to build a brain-like computing 

device in the future. Figure 2.5 illustrates the analogy between a memristor and a synapse. The 

electrodes in the memristor can be viewed as a neuron pair, and the semiconductor in the middle 

works as a synapse. Oxygen vacancies or charge carrier transition resembles neurotransmitters 

going through the synapse. 
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a. 

b.                                                                

       

  

Figure 2.5 (a) Illustrations of a synapse (left) and neurotransmitters transition (right) [44]. (b) 

Sketch of MIM sandwich structure (left) and atomic version of vacancy transition [12]. 

 

"Synaptic weight" determines the number and size of neurotransmitter vesicles released 

by nerve stimulation signals during signal transmission between neurons [45]. It is sometimes 

interpreted as the strength of the connection between synapses. The conductive state of the 
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memristor represents the change of the synaptic weight [46] (the increase/ decrease of 

conductivity correspond to the increase/ decrease of the synaptic weight, respectively). By 

changing the pulse voltage shape [47], frequency [48], duration [49], and other parameters we 

can simulate characteristics of different nerve stimulation signals, and obtain the corresponding 

change of the conductive state. The change of the conductive state is electrostatic [50]. In 2019, 

Dr. Lu’s group made 6 hybrid neuromorphic memristor chips (Figure 2.6). 

 

Figure 2.6 Hybrid neuromorphic memristor chip made by Dr. Lu’s group at the 

University of Michigan [51]. 

 

2.4 WOX 

Metal-WOX-Metal sandwich structure can be used to mimic synapse behavior. WOX is 

WO3 with vacancies inside it. The concentration of oxygen depends on the value of X, and the 

structure of WO3 depends on temperature. It can be cubic, monoclinic, triclinic, orthorhombic, or 

tetragonal under different temperatures. Monoclinic is the most common one. 

WOX is an n-type semiconductor and its electrical resistivity depends on x. WO3 is an 

insulator. When there are oxygen vacancies in the WO3 structure, the deficiency of oxygen will 
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make WOX become a semiconductor. For WOX memristor, electrodes of the MIM sandwich 

structure usually can be Pd, Pt, or Au [52].  

The interaction between oxygen vacancies inside WO3 will affect the diffusivity. To 

accurately model switching behavior, we need to determine the motion of vacancies. We need to 

understand the process of induvial oxygen vacancy diffusion, then observe what will happen if 

they react with each other. 

2.5 Status and prospects 

Nowadays, there are some engineering models of memristors. But they are all 

phenomenological models. They can only be used for fitting data, not for further understanding 

of memristors. A physical model not only can help us understand the plasticity (adjustable 

properties of synaptic connection strength) in memristive synapses but also is useful for 

designing and operating memristive synapses. That is the reason we do this research. 

Since we want to know the diffusivity of vacancies in WOX and the diffusivity depends 

on the charge state of the vacancy, we need to obtain the most stable charge state first. Plotting 

the defect formation energy graph will be helpful. Meanwhile, the nudged elastic band (NEB) 

method can find the minimum energy path for vacancies migrating from one position to another. 

Since the total energies are involved in NEB and defect formation energy, we need to use density 

functional theory (DFT) or hybrid DFT to calculate them. All the methods we used here will be 

discussed in the next chapter.
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Chapter 3  

Method  

3.1 Determine the most stable charge state from DFT results 

In our flow chart of research, the first step is using the defect formation energy graph to 

obtain the most stable charge state for WOX. Here, we start from formation energy first.  

The flowing formula shows how to get formation energy. 

𝐸(𝑥𝑞)
𝑓

= 𝐸𝑡𝑜𝑡𝑎𝑙[𝑥
𝑞] − 𝐸𝑡𝑜𝑡𝑎𝑙[𝑏𝑢𝑙𝑘] − 𝛴𝑛𝑖𝜇𝑖 + 𝑞𝐸𝐹 + 𝐸𝑟𝑟𝑜𝑟                    (1) 

𝐸𝑡𝑜𝑡𝑎𝑙[𝑥𝑞] is the total energy of the supercell which has vacancies, 𝐸𝑡𝑜𝑡𝑎𝑙[𝑏𝑢𝑙𝑘] is the total 

energy of the non-defect supercell. These two total energies need to use DFT or hybrid DFT to 

calculate. 𝛴𝑛𝑖𝜇𝑖: ni is the change of the number of the atoms, if there is one vacancy, the value 

will be −1; if one atom is added in, the value will be +1.  𝜇𝑖 is the chemical potential, q is the 

charge state, and EF is the sum of valence band maximum and change in chemical potential. The 

correction value Error depends on the charge state. 
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Figure 3.1 Formation energy of different charge states in Silicon [53]. 

Once we finish calculating the formation energy of each charge state, we can plot the 

Fermi level graph. For Figure 3.1 the left side of the graph should be the valence band maximum 

and the right side is the conduction band minimum. The x-axis is the change in the chemical 

potential. For the same Δ𝜇𝑒, if the formation energy is lower, it consumes less energy to form the 

vacancy, so that charge state will be the most stable charge state at that time. For example, for 

Δ𝜇𝑒 from 0 to 0.09 eV, the 2+ charge state will be the most stable one.  

3.2 Nudged elastic band method (NEB) 

After we achieve the most stable charge state, we can work on the diffusion of vacancies 

in these charge states conditions. Using the nudged elastic band method is a good way to find the 

minimum energy consumption path for the vacancies’ diffusion. Figure 3.2 illustrates the process 

of the NEB method. For example, we have the initial position A and final position B, and we 

want to know the path between A and B. Firstly, we need to use the density of functional theory 

to get the minimum energy of initial state and final state, which will be discussed later. 

         a.                                                                 b.  

       

Figure 3.2 Illustration of NEB method process 
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Set several imaginary images between the initial and final states, and all these states are 

constrained by the spring interactions like small balls connected with a rubber band. The force 

each of them gets is 

 

The nudged elastic band method makes these “balls” that vibrate on the energy landscape 

adjust their positions. Finally, the force formula becomes easier. 

 

The component of the spring force parallel to the path is completely retained, and the 

component of the force from potential perpendicular to the path will guide the structure to move 

correctly. This is how the NEB will help numerical converge. Here, we use density functional 

theory to obtain the value of the spring force parallel to the path. 

 

3.3 Density Functional Theory (DFT) and Hybrid DFT  

In quantum mechanics, the Schrödinger equation we usually see is a single electron 

equation. However, the materials we are interested in have a lot of electrons. The Schrödinger 

equation becomes a many-body equation that cannot be solved systematically due to the 

interaction between the electrons. Density functional theory is one of the solutions to this 

problem. 

Before we move to DFT, we need to know Born Oppenheimer approximation [54]. The 

general idea is that the mass of the nuclei is much bigger than electrons; therefore, the dynamics 

of the nuclei and electrons can be decoupled. Then we can concentrate on solving the ground 

𝐹𝑖
⃗⃗ =  −∇⃗⃗ 𝑉 (𝑅𝑖

⃗⃗  ⃗)  + K (R
i+1 

–R
i
)-K (R

i
 – R

i-1
)                                   (2) 

                  𝐹𝑖 = 𝐹𝑖
𝑠||| − ∇𝐸(𝑅𝑖)| ⊥                                                      (3)
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state of electrons. The Hamiltonian can be the summation of kinetic energy, potential energy, 

and electron-electron Coulomb interaction. The formula can be written as: 

 

DFT is based on the Hohenberg-Kohn theorem [55] and Kohn-Sham ansatz [56]. The 

Hohenberg-Kohn theorem was promoted in 1964, and it has two main ideas: The energy of the 

ground state in the Schrödinger equation is a function of electron density; the electron density 

with the lowest energy is the solution to the Schrodinger equation [57], [58]. Making the whole 

problem based on electron density causes the degree of freedom of the Schrödinger equation has 

dropped from 3N to 3. 

In the Hohenberg-Kohn theorem, they promoted using electron density instead of wave 

function without providing the method to obtain ground state electron density [59]. One year 

later, Kohn and Sham solved this problem. They consider the whole system as a non-interaction 

system. At the same time, use the single electron wave function. The following eigenvalue 

equation is the famous Kohn-Sham equation. 

  

Then they had a self-consistency scheme: guess a density of electron ρ(r) first, then use it 

to solve the Kohn-Sham equation to get φi (r). Afterall, recalculate the electron density by using 

the following formula: 

 

If the ρ(r) we get from the calculation is the same as the one we guessed at the beginning, 

this is the perfect ground state electron density we want. Otherwise, start the guessing ρ(r) 

�̂� = −
ℏ2

2𝑚𝑒
∑ 𝛻𝑖

2𝑁

𝑖
+ ∑ 𝑉𝑒𝑥𝑡(𝑟𝑖)

𝑁
𝑖 + ∑ 𝑈(𝑟𝑖,𝑟𝑗)

𝑁

𝑖<𝑗
                           (4) 

    (−
ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝑟))𝜑𝑖(𝑟) = 𝜀𝑖𝜑𝑖(𝑟)                             (5) 

𝜌(𝑟) = ∑ |𝜑𝑖(𝑟)|
2𝑁

𝑖
                                            (6) 
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->getting φi(r) ->recalculating ρ(r) loop again and again until getting the right answer. Hybrid 

DFT is the mixture of the standard DFT and the Hartree-Fock exchange [60]. 

3.4 Problem setup  

After learning the basic knowledge of WO3 and all the methods, let me sort out what we 

need to do. In our cases, we focus on the monoclinic and cubic structure of WO3. To make the 

defect-to-defect interaction to be small enough that we can neglect it, we need to make a 

supercell of WO3. Too many atoms in the structure make a complete DFT calculation, here we 

need to use the special k-point (1/4,1/4,1/4) to accelerate the calculation. We set cut-off energy at 

400V. 

The hybrid DFT can get a more accurate value of the total energy and bandgap. 

Therefore, we use this method to calculate the formation energy of one vacancy and two 

vacancies to get the most stable charge states for these two conditions.  

For the one vacancy, we will consider the condition of 2+, 1+, 2-, 1- and neutral for the 

monoclinic structure. For the two vacancies, we will try 1+, 2+, 3+, 4+, 1-, 2-, 3-, 4- and neutral 

settings. After we achieve the most stable charge states, we will calculate the energy barrier of 

these charge states. Also, we need to research how two vacancies react with each other by 

calculating the diffusion energy barrier near another vacancy. For example, we have two 

vacancies here initially, they are on the position A1 and A2 (Figure 3.3). The vacancy on A2 

position does not move, while the vacancy on A1 position migrates to C position. During the 

whole process, there is an interaction between these two vacancies; what we want to see is how 

the vacancy on A2 position affects the other vacancy’s migration. 
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Figure 3.3 Illustration of two vacancies migration process. The black dots represent 

vacancies.
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Chapter 4  

Results and Discussion  

4.1 Cubic phase 

WO3 can be cubic, monoclinic, triclinic, orthorhombic, or tetragonal phase under 

different temperatures. Here, we did calculations on the cubic and monoclinic phases.  

The first part of this research is based on the cubic phase. Since oxygen vacancy is a 

shallow donor, in other words, it is most stable in the 2+ charge state (Vo2+) [61] and does not 

introduce deep levels in the bandgap, we set two valence electrons less than it should be in this 

case.  

The cubic bulk is shown in Figure 4.1 (a). After relaxing the bulk structure, the lattice 

parameter we get from the hybrid DFT calculation is 3.77 Å, which is the same as the 

experimental value. To reduce the interaction between periodic images of vacancy, we make a 

108-atom supercell (Figure 4.1(b)). Firstly, we remove one oxygen atom from the supercell to 

make a vacancy defect (Figure 4.1(c)). Then, we relax the atomic coordinates by fixing lattice 

parameters to get the initial vacancy position state. Next, we look for the nearest oxygen atom 

and modify its coordinates to make it switch position with the vacancy (Figure 4.1(e)). Relax the 

structure to get the minimum final state energy as well. Finally, we use the NEB method to track 

the oxygen vacancy migration to the nearest spot and find the state of the highest energy in the 

whole process which is called transition state (Figure 4.1 (d)). The motion of a vacancy is the 

same as an atom moving in the opposite direction. For example, the vacancy migration from A to 
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B is equivalent to the migration from B to A. Therefore, we can track vacancies by tracking 

atoms that switch positions with those vacancies. 

                       

(a)                                                (b)                                                (c) 

           

      (d)                                                (e) 

Figure 4.1 The migration of oxygen vacancy in WO3. (a) cubic bulk of WO3. (b)WO3 

supercell. (c) the initial state. (d) the transition states. (e) the final state. 

 

For oxygen diffusion, we use hybrid functional calculation and DFT at the same time to 

check the accuracy of the DFT method. Here, we use the NEB method to generate 11 

intermediate structures to observe the migration. Figure 4.2 shows energy barrier graphs are 

symmetric, and it consists of the fact that the cubic phase WO3 is symmetric. The energy barrier 

from the hybrid functional calculation is 0.51 eV, and the energy barrier from the DFT 

calculation is 0.50 eV, so DFT calculation has similar energy barrier to hybrid DFT.  Hybrid 
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DFT can obtain very accurate total energies but it is too expensive on calculation. Therefore， 

we use DFT for further monoclinic WO3 energy barrier calculations. 

                      

                           (a)                                                                    (b) 

Figure 4.2 Energy barrier graph. (a) results from DFT calculation. (b) results from Hybrid 

DFT calculation. 

4.2 Monoclinic phase 

The rest part of this research is based on the monoclinic phase. The monoclinic bulk is 

shown in Figure 4.3. Since the monoclinic phase is not symmetric, the single oxygen vacancy 

will have three non-equivalent positions to migrate, which are parallel to the lattice vectors. Here 

we label them as positions A, B and C. Parameter of the bulk is in Table 1. We use Hybrid DFT 

to relax the bulk, then we get a reasonable band gap value and lattice parameters. 

Table 1 Lattice parameter and band gap for WO3 monoclinic phase. 

 a (Å) b(Å) c (Å) β (°) Eg (eV） 

Exp.[62] 7.31 7.54 7.69 90.88   2.6-2.8 [63] 

      This work (HSE) 7.41 7.63 7.79 90.08 2.62 

B3LYP[64] 7.44 7.73 7.91 90.20 3.13 

PW91[62] 7.50 7.73 7.80 90.30 1.19 
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Figure 4.3 Three non-equivalent positions A, B, and C.  The red atoms are oxygen and sliver 

atoms are tungsten. A, B, and C are along the y, z, and x vectors, respectively. 

 

The method of finding the energy barrier is the same as the process described in the cubic 

phase, while the supercell for monoclinic is 256 atoms.   We use the special k-point (1/4, 1/4, 

1/4) for these big supercells. We use hybrid DFT to calculate formation energies because 

formation energies may affect the determination of the most stable charge state and hybrid DFT 

can obtain more accurate total energies. However, hybrid DFT is less efficient than DFT, and we 

can still get reliable results from DFT. Therefore, we use DFT for the diffusion barriers for the 

256 atoms supercell. We separate the monoclinic phase calculation into two parts: one vacancy 

and two vacancies in the supercell. We start from one vacancy. 
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4.2.1 One vacancy 

 

Figure 4.4 Formation energy of the different charge states of the vacancy as a function of 

the electron chemical potential in monoclinic WO3. 

 

Figure 4.4 shows the formation energy of one vacancy with possible charge states 2+, 1+, 

neutral, 1-, 2- in WO3 supercell. The crossing point of the 2+ plot and neutral plot is x=2.576 

eV, while the band gap here is 2.62 eV. So neutral is the most stable charge state within the 

range from 2.576 to 2.62 eV. Hence, the most stable charge state is 2+ and neutral from this 

graph. Therefore, we will focus on these two charge states for further calculations on one 

vacancy migration. 
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(a)                                                                    (b) 

 

                                                                      (c) 

Figure 4.5 Energy barrier of neutral 255-atoms monoclinic WO3 supercell. (a)vacancy move 

from A to B. (b)vacancy move from A to C. (c)vacancy move from B to C. 

 

Figure 4.5 shows the energy barriers of the neutral charge state with one vacancy. In 

Figure 4.5 (a), the initial state is position A in the monoclinic cell and the final state is position 

B; The energy barrier from B to A is 0.67 eV and from A to B is 0.23 eV.  In Figure 4.5(b), the 

initial state is A; The final state is C; The energy barrier from C to A is 0.77 eV and from A to C 

is 0.33 eV. In Figure 4.5(c), the initial state is B; The final state is C; The energy barrier from C 

to B is 0.68 eV and from B to C is 0.67 eV. Figure 4.5 (c) also illustrates that the total energy of 

vacancy on position B is approximately equal to the total energy of vacancy on position C. After 

we check the neutral charge state, we move to the 2+ charge state. 
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(a)                                                                            (b) 

 

(c) 

Figure 4.6 Energy barrier of 2+ charge 255-atoms monoclinic WO3 supercell. (a)vacancy move 

from A to B. (b)vacancy move from A to C. (c)vacancy move from B to C. 

 

Figure 4.6 illustrates energy barriers of the 2+ charge state with one vacancy. In Figure 

4.6(a), the initial state is A; The final state is B; The energy barrier from B to A is 2.25 eV and 

from A to B is 1.85 eV. In Figure 4.6(b), The initial state is A; The final state is C; The energy 

barrier from C to A is 2.88 eV and from A to C is 2.26 eV. In Figure 4.6(c), the initial state is B; 

The final state is C; The energy barrier from C to B is 2.50 eV and from B to C is 2.28 eV.   
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4.2.2 Two vacancies  

 

Figure 4.7 Formation energy of all possible charge states of two vacancies as a function 

of the electron chemical potential in monoclinic WO3. 

 

Compared to one vacancy, two vacancies situation is more complicated because there are 

9 possible charge states. Figure 4.7 is the formation energy of two vacancies. The black dotted line 

represents the most stable charge state. This graph shows that the most stable charge state is 4+ 

and 4-. The most stable charge states are 2+ and neutral when there is one vacancy in the structure. 

The 4+ charge state can be formed by two 2+ divacancies. The 4- is another stable charge state for 

two vacancies. However, because only neutral and 2+ charge states are stable for a single vacancy, 

the 4- state of a divacancy can only be formed through the 4+ or neutral di-vacancies capturing 

electrons. Next, we focus on the interaction between two 2+ or neutral vacancies. 
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a.                                                                                       b. 

             

c.                                                                                                                                                     

 

Figure 4.8 The interaction between two vacancies under different charge states. 

(a) Vacancies move between A1A2 to CA2 and the charge state is neutral. 

(b)Vacancies move between B1B2 to CB2 and the charge state is neutral. 

(c) Vacancies move between B1B2 to CB2 and the charge state is +4. 

 

Figure 4.8 shows the interaction between two vacancies under +4 or neutral charge states. 

Here, we just let one vacancy to move from one position to another and one vacancy not moving 

at all. For example, in (a), there are two vacancies on position A1 and A2 respectively, we let the 

vacancy on position A1 move position C, and another one still stays on position A2 without any 

motion. We can observe the interaction between these two vacancies via comparing it to the 

condition that just one vacancy in supercell and it moves from A1 to A2. To be more detailed, in 
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Figure 4.8(a), the energy barrier for vacancies move from positions A1A2 to CA2 is 1.43 eV; 

from CA2to A1A2 is 1.95 eV. In Figure 4.8(b), the energy barrier from B1B2 to CB2 is 1.53 eV; 

from CB2 to B1B2 is 2.13 eV. In Figure 4.8(c), the energy barrier from B1B2 to CB2 is 0.64 eV, 

from CB2 to B1B2 is 0.43 eV. 

To describe the motion clearly, we introduce the definition of diffusion limit and reaction 

limit here. In a chemical reaction A+B→C, it can always be separated into two steps. Step 1,

 

(A+B→AB), material A and B diffuse respectively, and contact with each other. Step 2, 

(AB→C), the A and B react to form final product C. We can distinguish these two terms by 

comparing the time of diffusion and reaction. If the diffusion time is much longer than reaction 

time, in other words, the reactants quickly react right after they finish long-time migration, then 

the whole procedure is diffusion controlled, and limitation depends on the diffusion limit [65]. 

On the contrary, if the diffusion process takes a shorter time than the reaction process, then it is 

reaction controlled, and the reaction limit [66] decides the highest energy the system needs. In 

this kind of condition, we can add catalysts to cut down reaction time. 

If we compare Figure 4.8 graphs with the one vacancy migration energy barrier graphs, 

we know that (1) it is easier for two vacancies to migrate in 4+ charge state (less than 1 eV) than 

one vacancy migrates in 2+ charge state (more than 2 eV). It has a large diffusion barrier and 

small reaction barrier, so it is diffusion limited. (2) Two 2+ vacancies significantly reduce the 

energy barrier value, so they have a high possibility of getting close to each other. (3) It is harder 

for two vacancies (more than 1 eV) than one vacancy (less than 1 eV) to migrate in neutral 

charge state. It has a small diffusion barrier and large reaction barrier, so it is reaction limited.  

(4) Two neutral vacancies increase the value of energy barriers; it means they are hard to 
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combine. (5) Since the energy barriers for divacancies have a larger difference than the energy 

barrier of one vacancy, we cannot use one vacancy as a model when the concentration of 

vacancies is high. 

In Figure 4.8, the total energy of structure with two vacancies on positions A1 and A2 is 

higher than the structure with two vacancies on positions C and A2. In other words, for the 

diffusion from A1A2 to CA2, the initial energy is lower than the final energy which causes 

instability of the final product. The reverse reaction occurs, so there will not be a lot of final 

products.  
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Chapter 5  

Conclusions and Future Work  

In summary, we looked at the diffusivity of the vacancies in WO3. We determined that 

the most stable charge state for one vacancy in monoclinic WO3 is 2+ and neutral. The most 

stable charge state for two vacancies in monoclinic WO3 is 4+ and 4-. The 4+ state is formed by 

2+ charge divacancies. The 4- state of a divacancy can only be formed through the 4+ or neutral 

divacancies capturing electrons. The formation of divacancy in the neutral charge state is 

reaction limited, and the formation of deviancies in 4+ charge state is diffusion limited. It is easy 

for two 2+ charge vacancies to attract each other, while it is difficult for neutral divacancies to 

combine. we cannot just use one vacancy case to make models when the concentration of 

vacancies is high. 

Base on the results, we can model how the distribution of vacancies change in WOx as a 

function of time. After we know the distribution of vacancies, it is possible to predict the width 

of the Schottky barrier.  Since the Schottky barrier is related to the value of current, so we can 

model current changes and resistance changes. Finally, we can get an accurate model for the 

switching of WOx memristors. 
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