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ABSTRACT 

 

A shake table is a device used to simulate the seismic waves during an earthquake event 

and test the stability of the structure after an event. This table can be helpful in testing structural 

components or models. The primary objective of this study is to operate and verify the functional-

ity of the shake table present at the Department of Civil Engineering’s structure research lab. The 

System Communication Software (SCSW), present at the University of Memphis’s Department of 

Civil Engineering lab, operates the shake table unidirectionally and requires ground motions to be 

uploaded to the software. Pacific Earthquake Engineering Research (PEER) provides strong 

ground motion data that was used to extract several ground motions for selection and scaling pur-

poses for the study. As per ASCE 7-16, Chapter 16.2, non-linear response history analysis is ap-

plied to select and scale the motions. In addition to the ASCE provisions, the Spectral-Matching 

procedure in the frequency domain is practiced in scaling or matching of the ground motions for 

this study. 

The ground motions to be uploaded needs to be either load or displacement controlled. The 

extracted scaled ground motions as acceleration time histories are converted into displacement 

time histories and are uploaded to the SCSW software to control the shake table to displace. The 

scaled models are mounted on the shake table using bolted connections. Accelerometers are 

clamped on every story of the scaled model to measure the acceleration while being subjected to 

scaled ground motion. The data acquired from the accelerometers are raw, unprocessed, and thus 

need to be filtered for unwanted components or noise. The final processed and corrected acceler-

ations are then compared with the output response at every story of all the scaled models from the 

2D SAP2000 model for validation of the functionality of the shake table. 
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Chapter 1. Introduction 

 

Shake tables can be extremely helpful in testing structural components or models to the 

point of failure of the structural system. A shake table is a device used to simulate the seismic 

waves during an earthquake event and test the stability and functionality of the structure after an 

event. Shake tables are typically driven by a series of hydraulic actuators to recreate motions in 

one, two, or three dimensions. A model of the structure is placed on a shake table capable of 

simulating seismic loads in order to record and analyze the structure’s response to those loads. The 

simulated shake table ground motions must be selected considering site soil characteristics, fault 

type, earthquake magnitude, and rupture distance. 

Following the scaling of the ground motion and the application of the motion to the speci-

men, the structural dynamic behavior can be studied. A data acquisition system capable of record-

ing the response in terms of acceleration is utilized to record the structural response. The data 

recorded during a shake table simulation are not free of unwanted noise, and hence, measures are 

taken to filter unwanted features. 

The Department of Civil Engineering at the University of Memphis recently constructed a 

1D shake table. The capabilities and performance of the shake table have not been verified. In this 

study, three-, four- and five-story scaled aluminum models are subjected to 1D ground motions 

using a shake table, and the performance and the seismic response of the specimen under such 

loading are recorded. The experimental results are compared to numerical simulations using 

SAP2000 to verify the operational performance of the shake table system. A set of scaled ground 
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motions are applied to structural models on the shake table and to SAP2000 two-dimensional mod-

els. The SAP2000 model allows one degree of freedom in the direction of the lateral force of the 

shake table.  

           The objective of the study is to operate and verify the functionality of the shake table at the 

Department of Civil Engineering’s structure research lab. The following steps were taken to ac-

complish these objectives. 

 Set up a structural system at the structure research lab and document the progressions 

and findings, which could be used for further research and experiment purposes.  

 Develop and assemble 3D multi-story scaled moment frame models on a 1D shake 

table. 

 Select and scale a suitable suite of ground motions.  

 Baseline correct and filter the accelerations acquired from the data acquisition system. 

 Validate the structural response of the scaled models with the 2D SAP2000 model. 
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1.2 Literature Review 

Any structure to be constructed in a high seismic zone needs to be designed in accordance 

with seismic design codes. The design of such structures as a normal load-bearing structure leaves 

it vulnerable to collapse during strong ground motions. Earthquakes are unpredictable, and it takes 

special measures to design a structure that will reside in a high seismic zone. Seismic design codes 

such as the American Society of Civil Engineers (ASCE) 7-16 incorporate specifications and 

guidelines to account for linear as well as nonlinear behavior of the structure and allows for the 

design of buildings to withstand ground motions. 

The seismic response of a structure can be determined by performing linear static, non-

linear static, linear dynamic, and nonlinear dynamic analyses. Linear static analysis, also known 

as the equivalent static method, is useful in the case of regular structures undergoing regular load-

ing conditions. Nonlinear static analysis considers the inelastic behavior of the structure, which is 

an improvement over linear static analysis. In the past, seismic design of structures was performed 

assuming linear behavior of the structure, which is not the case. Under seismic loadings, a structure 

is expected to show nonlinear behavior that is not considered while performing simple linear static 

analysis.  

A nonlinear response history analysis considers the force redistribution and the dissipation 

of energy among the structural members when it comes under lateral forces (Riddell et al. 1996). 

Nonlinear response history analysis, also known as nonlinear modal time history analysis, esti-

mates the seismic response of a structure for several modes as a function of modal load vectors 

(Tokoro et al. 2004). 
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A time history analysis approach is used for the evaluation of the response of a structure 

under dynamic loading according to a specific time function whereas response spectrum analysis 

is a dynamic statistical approach that indicates the maximum response of a structure to seismic 

loads by estimating the pseudo acceleration, velocity, and displacement as a function of the fun-

damental period of the structure.   

It is highly unlikely to have recorded ground motions for every site under various condi-

tions. Also, the specific seismic design parameters do not necessarily have to be constant within 

the same region. Ground motion selection and scaling play a vital role in designing a structure at 

a site where there are limited ground motions available. Over 40 methods are described in the 

literature for the selection and scaling of earthquake ground motions. The ASCE 7-16 seismic 

design code has a provision to select and scale ground motions based on site characteristics, earth-

quake magnitude, rupture distance, and the target spectrum for a specific site considering a specific 

range of periods.  

ASCE 7-16 allows for the selection of a series of ground motions based on amplitude scal-

ing or spectral matching. For scaling purposes, a target response spectrum is developed using one 

of the following methods: Method 1 deals with the development of a single response spectrum; 

Method 2 deals with the generation of two or more site-specific target response spectra (ASCE 7-

16). 

In addition to the ASCE 7-16 provisions, spectral matching in the frequency domain can 

also be applied to scale or match the response spectrum of a suite of ground motions to a predefined 

target spectrum. The spectral matching process can either be done by ground motion modification 

itself in the time domain as suggested in the RspMatch2005 program, or in the frequency domain 

using the computer code: Response Spectra and Acceleration Scaling (RASCAL). This computer 
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code generates the Fourier amplitude spectrum of the accelerogram and scales it by the ratio of the 

target spectrum to the response spectrum at the natural frequency of the structure. The scaling is 

done iteratively by the code until the response and target spectra overlap each other. (Shahbazian 

and Pezeshk, 2010).     

It is of utmost importance to understand the effects of earthquakes on structures in order to 

refine seismic design codes. The cost of repairing the damage done by strong ground motions 

greatly exceeds the cost of erecting a structure capable of withstanding such strong motions. In 

order to study and analyze the dynamic behavior of a structure or its components, an earthquake 

simulator or a shake table can be used to simulate earthquake ground motions (Wang 2002).  

The selection of a suitable set of ground motions is a prerequisite for performing a reliable 

structural analysis during the application of strong ground motions (Sextos 2014). The selection 

and scaling of ground motions have a key role in seismic load definition and serve as an interface 

between seismology and engineering (Baker 2007). The purpose of the selection and scaling is to 

realistically represent aspects of the nonlinear response during the design phase. It is highly un-

likely to have ground motions for every site and condition (Thrainsson et al. 2000). So, the selec-

tion and scaling of ground motions from other sites sharing similar attributes and characteristics 

are used.  

The Ground Motion Selection and Modification (GMSM) Program from the Pacific Earth-

quake Engineering Research (PEER) has categorized the methods for selecting and scaling ground 

motions (Haselton 2009). Over 40 methods exist for selection, modification, and scaling of the 

ground motions in the published literature. One of these methods is described in ASCE 7-16 Chap-

ter 16 (Sextos 2014).  
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Seismic provisions for selection and scaling per ASCE 7-16 include guidelines for design-

ing structures using nonlinear response history analysis. The structural response to a set of ground 

motions is evaluated through numerical integration of equations of motion in the response history 

analysis (Mulchandani 2018). Seismic design codes define shaking of the ground in the form of a 

response spectrum given in terms of accelerations and allow spectrally matched ground motions 

for linear as well as nonlinear time-domain analysis. The ground motions must be organized in 

such a way that they match the design response spectrum for all or a portion of a specified range 

of time of interest. Amplitude scaling can be done in either time or frequency domain. (Fahjan 

2008). 

Matching a single ground motion to the design response spectrum does not adequately 

represent the actual movement, which is a drawback of using only one ground motion for design 

purposes (Naeim and Kelly, 1999). A strong global ground motion database and records have made 

it possible to select and scale the motions for many, if not all, conditions (Bommer et al. 2003). 

The records having similar earthquake parameters such as magnitude, rupture distance, and site 

classification can be used for design or test purposes. ASCE 7-16 requires eleven ground motions 

sharing similar earthquake parameters to be selected and then scaled to meet the target response 

spectrum. 

Another method for selecting and scaling ground motions is spectral-matching, performed 

in the frequency domain. In order to get some degree of agreement between target and response 

spectrum of any ground motion, the response spectrum of the motion must be reformed (Shahba-

zian and Pezeshk, 2010). The RASCAL computer code uses the approach of scaling the modulus 

of the Fourier spectral density by the ratio of target to response spectrum until the spectrum of 
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scaled ground motion is close to the target response spectrum. RASCAL follows the iterative scal-

ing of the Fourier Amplitude Spectrum by the ratio at the fundamental frequency such that a degree 

of agreement is reached between the target spectrum and response spectrum.     

The ground motions extracted from the PEER database are reviewed and processed in a 

consistent manner and require no additional processing after extraction (Darragh et al. 2013). The 

ground motions processed by PEER have two major objectives: reducing the random noise in the 

signals and correcting for the instrument measuring the motion. 

Prior to filtering, a length of zeroes needs to be added before and after the ground motion 

(zero-padding) to prevent unwanted deviations or distortions in the displacement time history 

(Boore 2005). Not implementing zero-padding results in unreasonable and inappropriate ground 

motions. In addition, zero-padding expands the time history so that the total number of points in 

the record is an integer power of two. The Fast Fourier Transform (FFT) algorithm used to convert 

time into the frequency domain, works best if the number of points is an integer power of two. 

Ground motion observations are of great importance in earthquake engineering. Obtaining 

a credible ground motion record and processing those motions is an important task. The velocity 

and displacement time history obtained as a result of the integration of acceleration often exhibits 

baseline drift (Tao 2015). Baseline drift is a linear or nonlinear addition to the spectrum that causes 

expected zero measurements to gain some positive value. Although modern digital instruments 

have a higher dynamic range, wider frequency bandwidth, and lower noise level, baseline drift 

cannot be completely removed. Data acquired from the accelerometers are highly influenced by 

the proximity of electric generators or any vibratory machines. Instrument noise and background 

noise in the surrounding environment are other factors that require correction of the drift error. 
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Baseline correction and filtering are required for the generated acceleration time histories 

as the scaled motion might have very high energy content, and an excessive number of cycles 

(Abrahamson 1992). Other sources of baseline error include instrument errors, background noise, 

initial value error, and manipulation errors. Baseline initialization, also known as baseline adjust-

ment, suggests subtracting the mean value of the prior ground motion application part for 20 sec-

onds (Boore 1999). It is one of several methods for applying baseline correction. Low-frequency 

noise also causes baseline drift. A high-cut filtering method is effective in eliminating the impacts 

of low-frequency noise (Trifunac 1971).  

Accelerograms obtained from accelerometers are not absolute replicas of a seismic signal 

and contain a fair amount of noise (Boore et al. 2004). Given the arbitrary nature of the noise, 

obtaining an uncontaminated and actual signal is next to impossible (Athanasiou et al. 2017). Sig-

nal processing or filtering is an essential step that aims to remove the effects of noise in strong 

ground motions. Low-frequency noise is a trait of background noise, instrument errors, and drifts 

(Chiu 1997), and their effects can be minimized using low-cut filters or high-pass filters. The au-

tomated digitization of the records may lead to erroneous spikes throughout the acquired data (Al-

exander 2013). The effects of low-frequency noise can be more critical than high-frequency noise 

as they impact the response quantities such as velocity and displacement (Athanasiou et al. 2017). 

The main purpose of processing ground motions is to optimize the signal-to-noise ratio, which is 

the comparison between the desired signal and unwanted background noise (Boore et al. 2004). 
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Chapter 2. Experimental Setup 

 

This chapter deals with the assembly of the multi-story structures, the setup of the experi-

ments, and the components used in performing the test. Also, this chapter describes the system and 

software environment used to acquire the data.  

Several different components were assembled to form a shake table system to perform a 

dynamic test: 

1) Shore Western 92E Series single-ended actuator, 

2) Shake table testbed, 

3) Multi-story structural models, and 

4) Data acquisition system. 

2.1 Shore Western 92E Series Single-Ended Actuator 

Figure 2 shows a Shore Western 92E Series single-ended actuator is used to apply a unidi-

rectional load. The compact-sized single series actuator is best suited for static low-cycle structural 

and component testing and is sized for a 10 in stroke and a force rating of 10 kips. The actuator is 

connected to the shake table at one end, enabling the table to move as per the loading cycles applied 

to the actuator. The actuator is connected to the shake table and is equipped with a linear variable 

differential transducer (LVDT) and a load cell and can be displacement or load controlled. In this 

study, the acceleration-based ground motions extracted from the PEER are integrated into the dis-

placement domain to drive a displacement-controlled test. 
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Figure 1. 92E series single-ended Shore Western actuator 

 

2.2 Shake Table 

The shake table used in this study has an aluminum rectangular base plate measuring 48.5 

in. x 40 in  x 4 in., that moves in one direction and is capable of displacing  5 in from the mean 

position. The table is driven by the Shore Western 92E hydraulic actuator, which is connected to 

one end of the base plate, providing the means to simulate ground motions. The base of the shake 

table rests on a set of linear roller bearings that support the loads and allow the table to move 

unidirectionally upon the application of the desired load.  

2.3 Multi-story Structural Models 

 A scaled structural model is expected to show scaled dynamic properties and behavior of 

an actual structure. For this study, three-story, four-story, and five-story structures were assembled 

using essential structural components and connections. Figure 2 shows the three structural models. 

The three-story model consists of four aluminum slabs, each measuring 18 in. x 18 in. x 1 in., that 

are assembled with four aluminum columns, each measuring 36 in. x 2 in. x 0.125 in. The four-

story model consists of five aluminum slabs with the same dimensions, that are assembled with 

four aluminum columns, each measuring 48 in. x 2 in. x 0.125 in. The five-story model consists 

of six aluminum slabs that are assembled with four aluminum columns, each measuring 60 in. x 2 

in. x 0.125 in. The models are positioned on the shake table such that the load is applied in the 
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weak direction of the columns. Two 0.25 in. diameter bolts were used at every slab-column con-

nection with the help of a 2 in. x 1 in. x 0.5 in. washer block and lock washers. The columns are 

attached to the slabs such that the structure is subjected to in-plane loading via scaled ground 

motions, and out-of-plane motion is almost negligible. The base slab is linked with the shake table 

itself using four 1 in. diameter cap head bolts and washer blocks to ensure rigid connections be-

tween the columns and the floor slabs. Lock washers are placed under the head of the 0.25 in. bolts 

to maintain a preload and prevents loosening and crushing of the bolt. The total self-weights of the 

three-story, four-story, and five-story structures are approximately 133.2 lb., 166.8 lb., and 200.4 

lb., respectively.  

 
(a) (b) 

 
(c) 

Figure 2. Aluminum structural model (a) three-story, (b) four-story,  and (c) five-story 
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2.4 Data Acquisition System 

Data acquisition systems typically measure real-world information and record data capable 

of being manipulated by a computer. Data acquisition devices, application software, sensors, and 

filters are the main components of a data acquisition system. Upon application of the scaled ground 

motion to the scaled structures, it is expected that the models will respond to the dynamic loads. 

A data acquisition system is essential to acquire those responses. Data in the form of acceleration 

will be acquired for further analysis and study. Two-dimensional SAP2000 models will be devel-

oped and analyzed considering nonlinear time history analysis and compared to the recorded struc-

tural responses of the models on the shake table.  

Figure 3 shows an ultra-low frequency, high sensitivity seismic accelerometer made by 

Wilcoxon (Model 731A). These are clamped on every story of the scaled model to record the 

accelerations during the application of simulated ground motions. These seismic accelerometers 

have a maximum peak amplitude of 0.5g and a sensitivity of 10 V/g and are connected by 16-ft 

cables to a battery-powered power unit/amplifier with a switchable low-pass filter of 450 Hz or 

100 Hz frequency and a switchable output system for recording acceleration or velocity. The power 

unit/amplifier further enhances the capabilities of the seismic accelerometers by providing signal 

amplification, filtering, and signal integration.  
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Figure 3.  Wilcoxon (Model 731A) seismic accelerometer with cable and power unit 

A measurement and automation explorer (MAX) is required in order to configure and cus-

tomize the number of channels for this data acquisition system, to provide access to these compo-

nents, and to run test panels. National Instrument’s MAX can be used to customize the configura-

tion and run the VXI system. Figure 4 shows the VXI Mainframe with controllers (CT-100C) and 

is used as a modular instrument having enhanced monitoring capabilities equipped to shelter a 

number of channels as required. These interconnected components, which perform the analog op-

eration, require a programming software development environment to produce and store the output 

in the desired format. 

Figure 5 shows the user interface of the Keysight VEE Pro 9.33 (Visual Engineering En-

vironment) graphical dataflow programming development environment that enables users to meas-

ure, analyze, and report outputs generated using seismic accelerometers. The software develop-

ment environment is optimized in the automation of measurement devices such as data acquisition 

equipment and source devices. The VEE Pro 9.33 identifies the instrument managers, creates a 
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sequence with input and output parameters, generates waveforms in time or frequency domain, 

and stores the data for the desired time range and block size in text format.  

 

Figure 4. VXI Mainframe (CT-100C) 

 

 

Figure 5. VEE Pro command window with a programming flowchart 
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Chapter 3. Methodology 

 

3.1 Generating 2D SAP2000 models 

SAP2000 is a powerful finite element (FE) analysis program that can be used to model, 

analyze, and design structures.  In addition, SAP2000 can analyze and evaluate the dynamic struc-

tural response to various time-dependent loadings. In this study, SAP2000 models will provide 

insights on how the scaled structures behave under the application of scaled ground motions and 

are used to verify the recorded behavior of the models on the shake table.  

Two-dimensional SAP2000 models were generated to visualize and estimate the funda-

mental period and mode shapes of the scaled aluminum structures. Figure 6 shows a drawing of 

the three-story scaled model, which is composed of four 18 in. x 18 in. x 1 in. slabs and four 36 in. 

x 2 in. x 0.125 in. columns assembled using bolt connection. The 2D SAP2000 model represents 

just half of the structure with 9 in.. x 1 in. beams instead of slabs. Figure 7 shows the 2D SAP2000 

topology of the scaled model. Figures 8-10 show the first three mode shapes of the three-story 

model determined from the SAP2000 analysis. Similarly, Figure 11 shows a drawing of the four-

story scaled aluminum structure. Figure 12 shows the 2D SAP2000 topology of the four-story 

scaled model. Figures 13-15 show the first three mode shapes of the four-story model determined 

from the SAP2000 analysis. Figure 16 shows a drawing of the five-story scaled aluminum struc-

ture. Figure 17 shows the 2D SAP2000 topology of the five-story scaled model. Figures 18-20 

show the first three mode shapes of the five-story model determined from the SAP2000 analysis.  
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          Figure 6. Elevation (top) and plan (bottom) and views of the three-story scaled structure 
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Figure 7. 2D SAP2000 model of the three-story structure 

 

 
  

Figure 8. First mode  
(T1= 0.429 sec, f1= 2.327 Hz) 

Figure 9. Second mode  
(T2= 0.153 sec f2= 6.511 Hz) 

Figure 10. Third mode  
(T3= 0.106 sec, f3= 9.389 Hz)                    
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             Figure 11. Elevation (top) and plan (bottom) and views of the four-story scaled structure 
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             Figure 12. 2D SAP2000 model of the four-story structure 

 

 

                          

Figure 13. First mode  
(T1= 0.551 sec, f1= 1.814 Hz) 

Figure 14. Second mode  
(T2= 0.1915 sec f2= 5.22 Hz) 

Figure 15. Third mode  
(T3= 0.125 sec, f3= 7.988 Hz)                    
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              Figure 16. Elevation (top) and plan (bottom) and views of the five-story scaled structure 
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  Figure 17. 2D SAP2000 model of the five-story structure 

 

 

                    

Figure 18. First mode  
(T1= 0.672 sec, f1= 1.486 Hz) 

Figure 19. Second mode  
(T2= 0.230 sec f2= 4.336 Hz) 

Figure 20. Third mode  
(T3= 0.146 sec, f3= 6.830 Hz)                    
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3.2 Selecting and Scaling of Ground Motions 

Nonlinear response history analysis is performed to get the response of the scaled structure 

while applying a dynamic load. Acceleration histories (accelerograms) are selected to satisfy de-

sign code requirements and soil conditions at a specific site. Due to the increase of available strong 

ground motion databases, selecting and scaling recorded accelerograms can be performed in vari-

ous ways. In this study, measures provided in Chapter 16.2 of ASCE 7-16 are employed for se-

lecting and then scaling the ground motions. The best-fitted ground motion time histories are se-

lected and classified by considering the earthquake magnitude, site-to-source distance, and site soil 

conditions. The code considers the similarity in magnitude and rupture distance and mechanism 

for selecting eleven ground motions. A period range of 0.2T to 2T, where T is the fundamental 

period of the structure, is considered ideal to scale the ground motion. The selected eleven ground 

motions are scaled in such a way that the average spectrum does not fall below 90% of the target 

spectrum for any period within the period range of interest. 

3.2.1 Selection of Ground Motions 

Table 1 lists the eleven ground motions that were extracted from the PEER Ground Motion 

Database. These ground motions are selected such that they are consistent with the magnitudes, 

source characteristics, fault distances, and site conditions controlling the target spectrum. In prior 

versions of the code, ASCE 7-05 suggests selecting three ground motions for analysis purposes, 

whereas ASCE 7-10 suggests selecting seven ground motions for analysis purposes. If three 

ground motions are selected, the maximum value of the peak response is used for analysis and 

design purposes. The average value of seven or eleven motions, as suggested by ASCE 7-16, is 

used for analysis purposes. The New Madrid fault system consists of two types of faults: A strike-

slip fault oriented to the northeast and a reverse fault oriented to the northwest. This study consid-

ers the strike-slip mechanism. 
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Table 1. Select ground motions for the PEER database 

 

SN Event Magnitude Rupture Distance (km) Mechanism 

1 North California 6.5 27.02 Strike-slip 

2 Imperial Valley 6.53 31.92 Strike-slip 

3 Superstition Hills 6.54 27 Strike-slip 

4 Landers 7.28 26.96 Strike-slip 

5 Kobe 6.9 28.08 Strike-slip 

6 Irpinia 6.9 29.8 Strike-slip 

7 Hector 7.13 31.06 Strike-slip 

8 Cape Mendocino 7.01 31.46 Strike-slip 

9 Tottori 6.6 28.82 Strike-slip 

10 El Mayor 7.2 26.55 Strike-slip 

11 Darfield 7 31.41 Strike-slip 

 

 

3.2.2 Scaling of the Ground Motions: 

A response spectrum can be defined as a plot of responses such as displacement, velocity, 

and acceleration versus the natural vibration period of the system. A response spectrum plots the 

maximum response of a series of oscillators allowing only a single-degree-of-freedom at a certain 

level of damping with respect to time or frequency. These spectra are considered to be a valuable 

tool in earthquake engineering. ASCE 7-16 allows the generation of a target spectrum by multi-

plying the design response spectrum by 1.5 as per Chapter 11.4.7. Figure 21 shows the design 

response spectrum with defining parameters. 
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Figure 21. Design response spectrum with generating parameters (ASCE 7-16)  

 

The parameters listed in Figure 21 are defined as: 

Fa =  short-period site coefficient (at 0.2-s period)  

Fv =  long-period site coefficient (at 1.0-s period) 

SS =  mapped Maximum Considered Earthquake Response (MCER), 5% damped, spec-

tral response acceleration parameter at short periods  

S1 =  mapped MCER spectral response acceleration parameter at a period of 1 s 

SD1 =  design, 5% damped, spectral response acceleration parameter at a period of 1 sec 

SDS =  design, 5% damped, spectral response acceleration parameter at short periods  
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SM1 = MCER, 5% damped, spectral response acceleration parameter at a period of 1 s 

adjusted for site class effects  

SMS = MCER, 5% damped, spectral response acceleration parameter at short periods ad-

justed for site class effects.  

United States Geological Survey (USGS) generates the Maximum Considered Earthquake 

(MCE), also known as the target spectrum, based on different parameters. Site class, mapped ac-

celeration parameters, and site coefficients are used to generate the design response spectrum. 

Figure 22 shows a summary of the USGS Report with the Target and Design Response Spectrum 

generated using ASCE 7-16 recommended seismic provisions with the help of Office of Statewide 

Health Planning and Development (OSHPD) Seismic Design Maps Tool. 

As per ASCE 7-16 Chapter 16.2.3.1, the period range for scaling or matching lies between 

0.2T to 2T. In this study, the fundamental period was 0.429 sec, which makes the period 0.0858 

sec to 0.6435 sec, our range of interest. 

Figure 23 shows the Target Response Spectrum of a specific site in Memphis, which is the 

Design Response Spectrum multiplied by a factor of safety of 1.5. Figure 24 shows the 5% Damped 

Response Spectra of eleven selected ground motions for the period range of interest. 
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Figure 22. USGS Design Response Spectrum generated using OSHPD 
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Figure 23. Target response spectrum generated using Excel 

 

 

Figure 24. Response spectrum of eleven ground motions for a specific time range 
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Chapter 4. Data Acquisition 

 

           After selecting and scaling a suite of ground motions, the scaled motion is applied to the 

structure using the shake table and 92E series single-ended actuator. ASCE 7-16 suggests selecting 

eleven ground motions for scaling purposes based on several characteristics, but only one ground 

motion is necessary to study, analyze, and design a structure on a specific site condition. Generally, 

the average value of the eleven selected motions is considered for analysis purposes. Keeping in 

mind several constraints, such as the limits of the shake table displacement and the maximum 

amplitude range of the accelerometers used, the ground motion experienced in the Imperial Valley 

(1979) is selected to be applied in this study.  

The total time of Imperial Valley Ground motion was observed to be 116.385 seconds, and 

the peak ground acceleration after the scaling of the motion was 0.372g, and it occurred at 24.28 

seconds. The maximum displacement was found to be 10.352 cm at 24.235 seconds. The time 

interval between the records is 0.005 sec.  

The actuator connected to the table, which is equipped with an LVDT and a load cell, can 

either be displacement or load controlled. In this study, the scaled ground motions in the acceler-

ation domain, extracted from PEER, are integrated twice to convert them into the displacement 

domain. Figures 25 and 26 show the unscaled and scaled ground motions for acceleration and 

displacement, respectively, experienced at a station in the Imperial valley extracted from the PEER 

database. 
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Figure 25. Imperial Valley ground motion (acceleration) 

 

Figure 26. Imperial Valley ground motion (displacement) 
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After the application of the motion to the structure, it is expected to displace in the direction 

of application of the load. As explained earlier, the Wilcoxon accelerometers mounted on every 

story of the structure provide raw, unfiltered acceleration measurements that need to be processed 

for unwanted components. 

Figure 27 shows the raw acceleration record on the application of the ground motion as 

recorded by the accelerometer clamped at the base of the shake table without any structure or 

additional mass mounted on the table. 

 

Figure 27. Unprocessed acceleration record at the base of the shake table 
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4.1 Baseline Correction and Filtering of the Acquired Data 

It is assumed that the initial values of displacement and velocity are generally zero so as to 

attain the displacement and velocity-time histories; however, this might not be the case. Baseline 

drift occurs in a time history due to this assumption. The displacement history obtained by inte-

grating the acceleration twice generally shifts from the actual baseline resulting in inconsistency 

and unreliability of the data acquired. Baseline drift is a linear or nonlinear addition to the spectra, 

which causes the expected zero measurements to gain some positive values. Baseline correction 

can be applied to ground motions in several ways. The method adopted in this study subtracts the 

mean value of the prior ground motion application part for 20 seconds, as suggested by Boore 

(2005). The method is commonly known as baseline initialization or adjustment. 

The data acquired from the data acquisition system also contains unwanted components or 

features that need to be filtered. The processing of the motion is done to eliminate random noise 

that is generated with the recorded data. Some frequencies that are either too low or too high 

makeup for the unwanted feature in the acquired data. 

A linear continuous-time filter removes frequencies that do not contribute to the data and 

allows other frequencies to pass into the data. Several filters based on polynomial functions are 

used to filter the response. The Chebyshev filter is commonly used in signal processing of the 

ground motions. The steepness of the transfer function and increase in passband or stopband ripple 

is an advantage of this filter over others. Although the Butterworth filter has less steepness and 

maximally flat frequency response in comparison to the Chebyshev filter, it is considered to have 

greater phase response than the Chebyshev filter. The maximally flat magnitude filter is designed 

in such a way that they form no ripples in the passband (“Filter (signal processing”),” Wikipedia). 

Both types of filters are used in this study to process retrieved acceleration records. 
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The drifts associated with integrating the acceleration twice to get displacement appears as 

a low-frequency noise in the data. A high pass filter can remove such low-frequency noise; how-

ever, there remains the difficulty in getting the peak displacement. Zero padding can be used to 

add zeros before and after the ground motions of interest, generally in the frequency domain, to 

address the drifts. 

Below are the steps for filtering ground motions. 

1. The desired ground motion is zero-padded using the following relationship 

TZpad = 1.5n/fc 

where TZpad is the length of zeros to be added, n is the order of the Butterworth filter, 

and fc is the filter corner frequency               

2. The time history in the time domain is converted into the frequency domain using a 

Fast Fourier Transform (FFT). 

3. Displacements are obtained by integrating the accelerations twice. 

4. The third-order polynomial trend is removed from the displacement. 

5. With the help of a half-cosine function, the start, as well as the end of the displacement 

history, is tapered. 

6. Baseline correction is applied if necessary. 

7. The Butterworth filter is applied with the required filter order. 

8. Accelerations are obtained by differentiating the displacements twice. 

9. The padding is removed to generate final processed ground motions. 
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These steps are performed using MATLAB scripts, presented in the Appendix. An FFT is 

required to decompose any data recorded originally as a function of time into a function of fre-

quency. A Fourier series gives information on how the amplitude of any ground motion is distrib-

uted with respect to frequency. Using FFT, a built-in MATLAB function, the acceleration records 

are converted into the frequency domain. A Fourier amplitude spectrum, which deals with the 

amplitude and frequency content of the time history, is generated using a sampling frequency of 

200 Hz, i.e. t = 0.005 sec, and Nyquist frequency of 100 Hz.  

Figure 28 shows the Fourier amplitude spectrum of the base of the shake table and indicates 

that the frequencies below 0.1 Hz are too low, whereas the frequencies above 10 Hz are too high. 

These frequencies act as corner frequencies in the application of a suitable filter to the records. 

The bandpass filter allows only the records within these frequencies to pass and rejects the records 

above or below the designated frequencies. Figure 29 shows the original scaled Imperial Valley 

ground motion and the corrected and processed, recorded ground motion at the table without any 

models mounted.  
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Figure 28. Fourier amplitude spectrum of the base of the shake table 

 

 

Figure 29. Original and scaled Imperial Valley ground motion 
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Chapter 5. Analysis and Results 

 

The study and analysis of structural responses such as acceleration, velocity, and displace-

ment are of great importance to the earthquake and structural engineering communities. These 

responses determine the sustainability, strength, reliability, and safety of the occupants in events 

of various hazards. The characteristics of a structure, such as its configuration, height, and weight, 

affect its seismic performance.  

Newton’s second law of motion states that force (inertial) equals mass times acceleration. 

The forces on a structure are reduced as the mass/self-weight of the structure is reduced. The three-

story model is expected to perform better on the application of ground motion than the four and 

five-story models as the self-weight of the three-story model is less than the others. With an in-

crease in the height and mass of the building, the fundamental or natural period of the building 

increases and as well as the responses of the building under seismic forces. The purpose of this 

study is to extract such responses from every story of the structural models simultaneously, analyze 

and compare the responses acquired from the data acquisition system at the structure’s research 

lab to the SAP2000 non-linear time history analysis responses and validate the functionality of the 

shake table.  

 Upon application of the scaled Imperial Valley ground motion to the multi-story structures 

mounted on the shake table, structural responses such as acceleration are recorded at every story 

simultaneously. This chapter illustrates the raw, unprocessed as well as final and processed records 

and acceleration obtained from non-linear time history analysis using SAP2000, for every story of 

all the structural models.  
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5.1 Three-Story Structural Responses 

After assembling the three-story model and clamping the accelerometers at every story, 

the scaled Imperial Valley motion is applied to the structure. Figure 30 shows the experimental 

setup of the three-story model and the data acquisition system. An accelerometer is clamped to 

the shake table to account for the records on the ground floor. The raw acceleration data recorded 

with this system is presented in further chapter sections. 

 

Figure 30. Experimental setup for three-story model 
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5.1.1 Ground Floor 

Figure 31 shows the raw and unrefined acceleration as a function of time on the ground 

floor of the model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 

0.362g and occurs at 24.275 sec.  The unusual spikes that occur throughout the graph are due to 

the unwanted low and high-frequency noise in the recorded accelerogram. These spikes corrupt 

the record and need to be filtered out.  

 

Figure 31. Raw accelerogram recorded at the ground floor 

Figure 32 shows the processed record after application of baseline correction and filtering 

and the actual ground motion as extracted from the PEER database that is applied to the structural 

model. The PGA of the processed motion is 0.368g, occurring at 23.98 seconds, whereas the PGA 

of the actual motion is 0.37g, occurring at 24.27 seconds. Although the PGA of the processed 

motion is very close to the actual motion, there seems to be a discrepancy in the time of occurrence, 
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which can be attributed to the slight delay in the startup time of the data acquisition system. Figure 

33 shows the Energy flux plots, which is a build-up of Specific Energy Density( SED) of the actual 

and recorded motion. Energy density can be defined as the amount of energy stored in any system. 

Specific Energy Density, one of the ground motion parameters, is the square of velocity at a time-

integrated over a certain range. The SED of the actual motion is observed to be 5115.145 cm2/sec, 

and the SED of the recorded motion is observed to be 5012.842 cm2/sec.    

 

Figure 32. Actual and Final processed accelerogram recorded at the ground floor 
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Figure 33. Actual and Recorded Energy Flux Plot at the ground floor 

 

The Wilcoxon seismic accelerometers used for this study have built-in low-pass filtering 

that eliminates high frequencies. The Imperial Valley motion has high-frequency content in the 

earlier part of the time history in comparison to the later part. As seen in Figure 32, the processed 

motion keeps up with the actual ground motion in the latter part of the time history but does not 

match as well in the earlier part of the motion.   

5.1.2 First Floor 

Figure 34 shows the raw and unprocessed acceleration history on the first floor of the 

model. The PGA of this unprocessed accelerogram is 0.381g and occurs at 28.485 sec.   
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Figure 34. Raw accelerogram recorded at the first floor 

 

Figure 35 shows the processed record after application of baseline correction and filtering 

and the accelerogram at the first story predicted by a 2D three-story, SAP2000 model. The PGA 

of the processed motion is 0.376g and occurs at 28.6 seconds; whereas, the PGA of the SAP2000 

model is 0.38g and occurs at 29.12 seconds. Although close, the SAP2000 model seems to have 

overestimated the peak acceleration by 0.004g. Figure 36 shows the energy flux plots of the 

SAP2000 model and the recorded motion of the first floor. The SED of the recorded motion is 

observed to be 6649.689 cm2/sec, and the SED of the SAP2000 model is observed to be 6516.695 

cm2/sec.    
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     Figure 35. Final processed and SAP2000 accelerogram on the first floor 

 

Figure 36. Recorded and SAP2000 model energy flux plot on the first floor 
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5.1.3 Second Floor 

Figure 37 shows the raw and unprocessed acceleration history on the second floor of the 

model. The PGA of this unprocessed accelerogram is 0.42g and occurs at 28.485 sec. Figure 38 

shows the processed record after application of baseline correction and filtering and the accelero-

gram on the second story predicted by the 2D three-story SAP2000 model. The PGA of the pro-

cessed motion is 0.432g and occurs at 28.49 seconds; whereas; the PGA of the SAP2000 model is 

0.44g and occurs at 28.495 seconds. With a further increase in floor number, SAP2000 seems to 

have overestimated the peak acceleration by 0.008g. Figure 39 shows the energy flux plots of the 

SAP2000 model and the recorded motion of the second floor. The SED of the recorded motion is 

observed to be 9565.315 cm2/sec, and the SED of the SAP2000 model is observed to be 9374.015 

cm2/sec.    

 

 

Figure 37. Raw accelerogram recorded on the second floor 
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Figure 38. Final processed and recorded SAP2000 accelerogram on the second floor 

 

Figure 39. Recorded and SAP2000 model energy flux plot on the second floor 
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5.1.4 Top Floor 

Figure 40 shows the raw and unprocessed acceleration history at the top/third floor of the 

model. The PGA of this unprocessed accelerogram is 0.485g and occurs at 29.335 sec.   

 

Figure 40. Raw accelerogram recorded at the top floor 

 

Figure 41 shows the processed record after application of baseline correction and filtering 

and the accelerogram at the top story predicted by the 2D three-story, SAP2000 model. The PGA 

of the processed motion is 0.473g and occurs at 29.33 seconds; whereas, the PGA of the SAP2000 

model is 0.482g and occurs at 29.335 seconds. A further increase in the discrepancy of 0.009g can 

be observed on the top floor of the three-story model. Figure 42 shows the energy flux plots of the 

SAP2000 model and the recorded motion of the top floor. The SED of the recorded motion is 
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observed to be 11764.4 cm2/sec, and the SED of the SAP2000 model is observed to be 11294.17 

cm2/sec.    

 

Figure 41. Final processed and SAP2000 accelerogram at the top floor 

 

Figure 42. Recorded and SAP2000 Model Energy Flux Plot at the top floor 
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Table 2 lists the PGA values of the unprocessed, processed, and SAP2000 motions for 

every story of the three-story structure. Also, the table presents the percent variation in the PGAs 

of the processed data and the SAP2000 model. From the table, it can be interpreted that, with the 

increase in the floor height of the structure, the variation between the processed and SAP2000 

results increases. The SAP2000 model slightly overestimates the peak motion in higher stories. 

 

Table 2. PGAs from Unprocessed, Processed, and SAP2000 results 

PGA (g) Unprocessed Processed SAP2000 Variation (%) 

Top 0.485g 0.473g 0.482g 1.902 

Second 0.420g 0.432g 0.440g 1.851 

First 0.381g 0.376g 0.380g 1.063 

Ground 0.362g 0.368g 0.370g 0.543 

 

 

 

5.2 Four-Story Structural Responses 

5.2.1 Ground Floor 

Figure 43 shows the raw and unprocessed acceleration history on the ground floor of the 

model. The PGA of this unprocessed accelerogram is 0.11g and occurs at 26.06 sec.  Figure 44 

shows the processed record after application of baseline correction and filtering and the actual 

ground motion as extracted from the PEER database.  The PGA of the processed motion is 0.125g 

and occurs at 23.98 seconds. The PGA of the actual motion is 0.126g and occurs at 24.17 seconds. 
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Figure 43. Raw accelerogram recorded at the ground floor 

Figure 45 shows the energy flux plots of the actual and recorded motion. The SED of the 

recorded motion is observed to be 3580.602 cm2/sec, and the SED of the actual motion is observed 

to be 3478.299 cm2/sec.    

 

Figure 44. Final processed and actual accelerogram at the ground floor 
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Figure 45. Recorded and Actual Energy Flux Plot at the ground floor 

 

5.2.2 First Floor 

Figure 46 shows the raw and unprocessed acceleration history on the first floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.141g and oc-

curs at 27.915 sec. Figure 47 shows the processed record after application of baseline correction 

and filtering and the accelerogram at the first story as predicted by the 2D four-story SAP2000 

model. The PGA of the processed motion is 0.142g, occurring at 27.92 seconds, and the PGA of 

the SAP2000 model is 0.144g, occurring at 27.96 seconds. Figure 48  shows the energy flux plots 

of the SAP2000 model and the recorded motion of the first floor. The SED of the recorded motion 

is observed to be 4552.479 cm2/sec, and the SED of the SAP2000 model is observed to be 4734.578 

cm2/sec.    
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        Figure 46. Raw accelerogram recorded at the first floor 

           

        Figure 47. Final processed and SAP2000 accelerogram on the first floor 
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Figure 48. Recorded and SAP2000 model energy flux plot on the first floor 

 

5.2.3 Second Floor 

Figure 49 shows the raw and unprocessed acceleration history on the second floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.176g and oc-

curs at 29.68 sec. Figure 50 shows the processed record after application of baseline correction 

and filtering and the accelerogram at the second story as predicted by the 2D four-story SAP2000 

model. The PGA of the processed motion is 0.176g, occurring at 29.685 seconds, and the PGA of 

the SAP2000 model is 0.179g, occurring at 29.67 seconds. Figure 51 shows the energy flux plots 

of the SAP2000 model and the recorded motion of the second floor. The SED of the recorded 

motion is observed to be 6649.689 cm2/sec, and the SED of the SAP2000 model is observed to be 

6516.6949 cm2/sec.    
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Figure 49. Raw accelerogram recorded on the second floor 

 

Figure 50. Final processed and SAP2000 accelerogram on the second floor 
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Figure 51. Recorded and SAP2000 model energy flux plot on the second floor 

 

5.2.4 Third Floor 

Figure 52 shows the raw and unprocessed acceleration history on the third floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.308g and oc-

curs at 29.2 sec. Figure 53 shows the processed record after application of baseline correction and 

filtering approach and the accelerogram at the third story as predicted by the 2D four-story 

SAP2000 model. The PGA of the processed motion is 0.333g, occurring at 30.005 seconds, and 

the PGA of the SAP2000 model is 0.34g, occurring at 29.855 seconds. Figure 54 shows the energy 

flux plots of the SAP2000 model and the recorded motion of the third floor. The SED of the rec-

orded motion is observed to be 8184.232 cm2/sec, and the SED of the SAP2000 model is observed 

to be 8347.913 cm2/sec.    
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Figure 52. Raw accelerogram recorded on the third floor 

 

Figure 53. Final processed and SAP2000 accelerogram on the third floor 
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Figure 54. Recorded and SAP2000 model energy flux plot on the third floor 

 

5.2.5 Top Floor 

Figure 55 shows the raw and unprocessed acceleration history on the top floor of the model. 

The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.37g and occurs at 

30.045 sec. Figure 56 shows the processed record after application of baseline correction and fil-

tering and the accelerogram at the top story as predicted by the 2D four-story SAP2000 model. 

The PGA of the processed motion is 0.385g, occurring at 30.055 seconds, and the PGA of the 

SAP2000 model is 0.41g, occurring at 30.255 seconds. Figure 57 shows the energy flux plots of 

the SAP2000 model and the recorded motion of the top floor. The SED of the recorded motion is 

observed to be 9974.533 cm2/sec, and the SED of the SAP2000 model is observed to be 10423.39 

cm2/sec.    
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Figure 55. Raw accelerogram recorded at the top floor 

 

 

Figure 56. Final processed and SAP2000 accelerogram at the top floor 
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Figure 57. Recorded and SAP2000 Model Energy Flux Plot at the top floor 

 

Table 3 lists the PGA values of the unprocessed, processed, and SAP2000 motions, and 

the percent variation in the PGAs of the processed data and the SAP2000 model, for every story 

of the four-story model.  

Table 3. PGAs of Unprocessed, Processed, and SAP2000 recordings 

PGA (g) Unprocessed Processed SAP2000 Variation (%) 
Top 0.37g 0.385g 0.41g 3.896 

Third 0.308g 0.333g 0.34g 2.102 

Second 0.176g 0.176g 0.179g 1.704 

First 0.141g 0.142g 0.144g 1.408 

Ground 0.11g 0.125g 0.126g 0.8 
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5.3 Five-Story Structural Responses 

5.3.1 Ground Floor 

Figure 58 shows the raw and unprocessed acceleration history on the ground floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.083g and oc-

curs at 26.06 sec. Figure 59 shows the processed record after application of baseline correction 

and filtering and the actual ground motion as extracted from the PEER database that is applied to 

the five-story structural model. The PGA of the processed motion is 0.082g, occurring at 23.98 

seconds. The PGA of the actual motion is 0.09g, occurring at 24.17 seconds. Figure 60 shows the 

energy flux plots of the actual and recorded motion. The SED of the recorded motion is observed 

to be 5012.842 cm2/sec, and the SED of the actual motion is observed to be 5115.07 cm2/sec.    

 

 

Figure 58. Raw accelerogram recorded at the ground floor 
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Figure 59. Final processed and actual accelerogram at the ground floor 

 

Figure 60. Recorded and Actual Energy Flux Plot at the ground floor 
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5.3.2 First Floor 

Figure 61 shows the raw and unprocessed acceleration history on the first floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.106g and oc-

curs at 24.20 sec. Figure 62 shows the processed record after application of baseline correction 

and filtering and the accelerogram at the first story as predicted by the 2D five-story SAP2000 

model. The PGA of the processed motion is 0.106g, occurring at 24.21 seconds, and the PGA of 

the SAP2000 model is 0.108g, occurring at 25.2 seconds. Figure 63 shows the energy flux plots 

of the SAP2000 model and the recorded motion of the first floor. The SED of the recorded motion 

is observed to be 6138.172 cm2/sec, and the SED of the SAP2000 model is observed to be 6445.083 

cm2/sec.    

 

        Figure 61. Raw accelerogram recorded at the first floor 
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                Figure 62. Final processed and SAP2000 accelerogram on the first floor 

 

Figure 63. Recorded and SAP2000 model energy flux plot on the first floor 
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5.3.3 Second Floor 

Figure 64 shows the raw and unprocessed acceleration history on the second floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.11g and occurs 

at 27.33 sec. Figure 65 shows the processed record after application of baseline correction and 

filtering and the accelerogram at the second story as predicted by the 2D five-story SAP2000 

model. The PGA of the processed motion is 0.113g, occurring at 27.35 seconds, and the PGA of 

the SAP2000 model is 0.116g, occurring at 27.48 seconds. Figure 66 shows the energy flux plots 

of the SAP2000 model and the recorded motion of the second floor. The SED of the recorded 

motion is observed to be 7672.587 cm2/sec, and the SED of the SAP2000 model is observed to be 

7097.259 cm2/sec.    

 

 

Figure 64. Raw accelerogram recorded on the second floor 



62 
 

 

Figure 65. Final processed and SAP2000 accelerogram on the second floor 

 

Figure 66. Recorded and SAP2000 model energy flux plot on the second floor 
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5.3.4 Third Floor 

Figure 67 shows the raw and unprocessed acceleration history on the third floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.256g and oc-

curs at 26.83 sec. Figure 68 shows the processed record after application of baseline correction 

and filtering and the accelerogram at the third story as predicted by the 2D five-story SAP2000 

model. The PGA of the processed motion is 0.242g, occurring at 25.75 seconds, and the PGA of 

the SAP2000 model is 0.249g, occurring at 25.85 seconds. Figure 69 shows the energy flux plots 

of the SAP2000 model and the recorded motion of the third floor. The SED of the recorded motion 

is observed to be 8695.747 cm2/sec, and the SED of the SAP2000 model is observed to be 9202.273 

cm2/sec.    

 

 

Figure 67. Raw accelerogram recorded on the third floor 
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Figure 68. Final processed and SAP2000 accelerogram on the third floor 

 

Figure 69. Recorded and SAP2000 model energy flux plot on the third floor 
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5.3.5 Fourth Floor 

Figure 70 shows the raw and unprocessed acceleration history on the fourth floor of the 

model. The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.268g and oc-

curs at 30.4 sec. Figure 71 shows the processed record after application of baseline correction and 

filtering and the accelerogram at the fourth story as predicted by the 2D five-story SAP2000 model. 

The PGA of the processed motion is 0.268g, occurring at 30.45 seconds, and the PGA of the 

SAP2000 model is 0.277g, occurring at 30.445 seconds. Figure 72 shows the energy flux plots of 

the SAP2000 model and the recorded motion of the first floor. The SED of the recorded motion is 

observed to be 9718.776 cm2/sec, and the SED of the SAP2000 model is observed to be 10287.894 

cm2/sec.    

 

 

Figure 70. Raw accelerogram recorded on the fourth floor 
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Figure 71. Final processed and recorded SAP2000 accelerogram on the fourth floor 

 

Figure 72. Recorded and SAP2000 model energy flux plot on the fourth floor 
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5.3.6 Top Floor 

Figure 73 shows the raw and unprocessed acceleration history on the top floor of the model. 

The peak ground acceleration (PGA) of this unprocessed accelerogram is 0.355g and occurs at 

33.2 sec. Figure 74 shows the processed record after application of baseline correction and filtering 

and the accelerogram at the top story as predicted by the 2D five-story SAP2000 model. The PGA 

of the processed motion is 0.351g, occurring at 33.255 seconds, and the PGA of the SAP2000 

model is 0.37g, occurring at 32.8 seconds. Table 4 lists the PGA values of the unprocessed, pro-

cessed, and SAP2000 motions, and the percent variation in the PGAs of the processed and 

SAP2000 model, for every story of the five-story model. Figure 75 shows the energy flux plots of 

the SAP2000 model and the recorded motion of the top floor. The SED of the recorded motion is 

observed to be 11654.86 cm2/sec, and the SED of the SAP2000 model is observed to be 12532.11 

cm2/sec.    

 

                          Figure 73. Raw accelerogram recorded at the top floor 
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              Figure 74. Final processed and recorded SAP2000 accelerogram at the top floor 

 

Figure 75. Recorded and SAP2000 model energy flux plot on the top floor 
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Table 4. PGAs of Unprocessed, Processed, and SAP2000 recordings 

PGA (g) Unprocessed Processed SAP2000 Variation (%) 

Top 0.355g 0.351g 0.37g 5.413 

Fourth 0.268g 0.268g 0.277g 3.335 

Third 0.256g 0.242g 0.249g 2.892 

Second 0.11g 0.113g 0.116g 2.654 

First 0.106g 0.106g 0.108g 1.886 

Ground 0.083g 0.082g 0.083g 1.219 
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Chapter 6. Summary 

 

Three, four, and five-story scaled structural models were constructed, and an experimental 

setup with the necessary data acquisition system was assembled. Shake table experiments were 

performed on the scaled structural models using scaled ground motions. The purpose of this study 

was to measure structural responses such as acceleration at every story during a simulated earth-

quake event. 2D SAP2000 models were developed and used to predicted structural response and 

then compared with the actual processed motion. Although the PGAs recorded by the data acqui-

sition system and those predicted by the SAP2000 models are comparable, an increase in the per-

centage of variation was observed in all the models with an increase in the number of stories. Also, 

there is an increase in percent variation between the structural models. SAP2000 model results 

slightly overestimated the response, especially at higher levels. The PGA at the ground floor of 

the three, four, and five-story models obtained using SAP2000 are 0.543%, 0.8%, and 1.219% 

higher, respectively than the response recorded by the data acquisition system. SAP2000 values 

for the PGA at the top floor of the three-story model are 1.902% higher than the response recorded 

by the data acquisition system. In the case of the four-story model, the response predicted by 

SAP2000 is 3.896% higher, and it is 5.413% higher for the five-story model. The results from the 

processed motions and SAP2000 models validate the functionality of the shake table used to per-

form this study.      
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Appendix 

The following MATLAB scripts were used in order to perform baseline correction and filtering of 

the raw and unprocessed data. A Chebyshev filter of second order was used for filtering purposes. 

A subroutine to clear unwanted spikes from the accelerograms, developed by Aida Azari Sisi, was 

also used for this study. 

clear all 

clc 

set (gca, 'FontName', 'Times New Roman') 

acc=xlsread('filter','First','C3:C24002'); 

dt=0.005; 

order=3; 

L = length(acc); 

t = linspace(0, L, L)*dt; 

acc = fft(acc)/L; 

 

vel=cumtrapz(t,acc);                % Obtaining Velocity and Displacement                             

dis=cumtrapz(t,vel); 

 

dis_new=dis;                        % Applying Zero-padding  

for i=length(dis)+1:length(dis)+0.1*length(dis) 

    dis_new(i)=dis_new(length(dis)); 

end 

t1=0:dt:(length(dis_new)-1)*dt; 

 

 

P = polyfit(t,dis,3);                    %  Baseline Correction 

po_va = polyval(P,t1);  

dis = dis -po_va;  

 

tb=20;                                   % Tapering 

te=20; 

n1 = (length(dis)*tb)/100; 

 for i=1:n1 

arg = pi*(i-1)/n1 + pi; 

dis(i) = dis(i)*(1+cos(arg))/2; 

end 

n1 = (length(dis)*te)/100;      

for i=1:n1 

arg = pi*(i-1)/n1 + pi; 

dis(length(dis)-i+1) = acc(length(dis)-i+1)*(1+cos(arg))/2; 

end                                                                        

Fs = 200;                                  % Filtering                                                     

Fn = Fs/2;                                                       

Ts = 1/Fs; 

L = length(dis); 

t = linspace(0, L, L)*Ts; 

t=t'; 

figure(1) 

plot(t, dis) 
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grid 

Fdis = fft(dis)/L; 

Fv = linspace(0, 1, fix(L/2)+1)*Fn; 

Iv = 1:length(Fv); 

figure(2) 

semilogx(Fv, abs(Fdis(Iv))*2) 

grid 

xlabel('Frequency (Hz)') 

ylabel('Fourier Amplitude') 

Wp=0.01; 

Ws=0.1; 

Rp=0.25;                                                          

Rs =1;                                                              

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);                 

[z,p,k] = cheby2(n,Rp,Wp);                             

[sosbp,gbp] = zp2sos(z,p,k);                             

figure(3) 

freqz(sosbp, 2^16, Fs)                                       

s_filt = filtfilt(sosbp,gbp, Fdis);       

dis=s_filt:                  

t1=0:0.005:116.39; 

plot(t1, dis, '-b') 

hold on 

plot(t, s_filt, '-r', 'LineWidth',1.5) 

xlabel('Time(sec)') 

ylabel('Displacement') 

legend('Original', 'Filtered') 

hold off 

vel=diff(t,dis);                   % Obtaining Velocity and Acceleration                        

acc=diff(t,vel); 
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A subroutine to clear unusual spikes by Aida Azari Sisi: 

clear all 

clc 

TimeData=xlsread('filter,'First','A3:A24002'); 

TimeData=TimeData'; 

AccelData_comp=xlsread('filter,'First','C3:C24002'); 

AccelData_comp=AccelData_comp'; 

plot(TimeData,AccelData_comp);ylabel('Acceleration,cm/s^2','FontSize',8); 

xlabel('Time (s)','FontSize',8); 

hold on; 

disp('> Accelerogram of the record is ploted.'); 

disp(' '); 

SampleInt=0.005; 

comp_spike_index=input('- Does the record include any Spikes? (Y,N): ','s'); 

if length(comp_spike_index)<1 

while upper(comp_spike_index)=='Y' | upper(comp_spike_index)=='N' 

comp_spike_index=input('- Does the record include any Spikes? (Please 

enter Y or N): ','s'); 

     end 

end 

disp(' '); 

comp_spike_index=upper(comp_spike_index); 

if comp_spike_index=='Y' 

        while comp_spike_index=='Y' 

        %start_time=input('- Enter the starting time of the spike. t_start= '); 

        %end_time=input('- Enter the ending time of the spike. t_end= '); 

          

        start_index=start_time/SampleInt+1; 

        end_index=end_time/SampleInt+1; 

         

        max_acc=max(AccelData_comp(1,start_index:end_index)); 

        max_index=find(AccelData_comp(1,start_index:end_index)==max_acc); 

         

        min_acc=min(AccelData_comp(1,start_index:end_index)); 

        min_index=find(AccelData_comp(1,start_index:end_index)==min_acc); 

         

        if abs(max_acc)>abs(min_acc) 

            pga_range=max_acc; 

            s_index=max_index+start_index-1; 

        else 

            pga_range=min_acc; 

            s_index=min_index+start_index-1; 

        end 

        t_spike=(s_index-1)*SampleInt; 

         

 confirm_index=input(['> Spike: ',num2str(pga_range),'cm/sec^2 @ 

   t=',num2str(t_spike),'sec. Do you want to delete? (Y/N): '],'s'); 

        if length(confirm_index)<1 

            while upper(confirm_index)=='Y' | upper(confirm_index)=='N' 

                confirm_index=input(['> Spike: ',num2str(pga_range),'cm/sec^2 @ 

    t=',num2str(t_spike),'sec. Do you want to delete?  

    (Please enter Y or N): '],'s'); 

            end 

        end 

        disp(' '); 

        confirm_index=upper(confirm_index);  

        if confirm_index=='Y' 

            mean_acc=(AccelData_comp(1,(s_index-1))+AccelData_comp(1,(s_index+1)))/2; 

            AccelData_comp=[AccelData_comp(1,1:(s_index-1)),mean_acc, 

     AccelData_comp(1,(s_index+1):end)]; 
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            plot(TimeData,AccelData_comp);ylabel('Acceleration,cm/s^2','FontSize',8); 

     xlabel('Time (s)','FontSize',8); 

            disp('> Accelerogram of the record is updated.'); 

            disp(' '); 

             

            comp_spike_index= 

    input('- Does the record include any Spikes? (Y,N): ','s'); 

            if length(comp_spike_index)<1 

                while upper(comp_spike_index)=='Y' | upper(comp_spike_index)=='N' 

                    comp_spike_index=input('- Does the record include any Spikes?  

     (Please enter Y or N): ','s'); 

                end 

            end 

            disp(' '); 

            comp_spike_index=upper(comp_spike_index); 

        end 

        end     

end 

close all; 

AccelData_comp_spike_cleared_1=AccelData_comp; 

AccelData_comp_spike_cleared=AccelData_comp_spike_cleared_1'; 

plot(TimeData,AccelData_comp) 

hold off; 
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Manual 

 

Start the SCSW Software: 

1) Run “Startup NEW” From the desktop. 

2) Make sure to turn on the tap water. 

3) Check whether the E-stop button is glowing green before performing the experiment. 

4) Also, make sure the system indicator button glows green. 

5) Turn on the pump by clicking on HPS low, then HPS high. 

6) Under Group 1, click on the “Start DAS.” 

7) Click on the “ACT 3 Startup”. 

8) Under logger, click on Setup then click on start to turn the A3 continuous logger. 

 

Import Time history file to the SCSW Software: 

1) Open “Startup NEW” From the desktop. 

2) Under Function Generator, Type Time history. 

3) Click on the “c” next to the function generator. 

4) Click on Create Waveform. 

5) Expand x(A3). 

6) Right-click on the SWAF file. 

7) Click on the properties. 

8) Click on the “Convert ASCII FILE.” 

9) Click on the “Set Source File” to import the desired time history. 
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10) Click on the “Set Target File” to create a converted ASCII file. 

11) Make sure the units of time and displacements are as desired. 

12) Enter the fixed sample interval in seconds. 

13) If importing from a text file, make sure the Time column ignored is set to True, whereas 

Displacement Column ignored is set as False. 

14) After the conversion, select the SWAF file to be loaded into the software. 

15) Perform the soft start/ soft stop as necessary. 

16) Click on ok and Run the test. 

 

 

Figure: Working space of the SCSW Software        
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Figure: SCSW Software Logger Panel 

 

Data Acquisition System: 

1) Open Measurement and Automation (MAX). 

2) Under Devices and interfaces, Open tree. 

3) Right-click on VXI Slot 0. 

4) Run the VXI Resource Manager. 

5) Do not close but minimize the application. 

6) Open the VEE Pro application. 

7) Open SCSW file then “Biraj1”. 

8) The main interface shows a block diagram with six channels. 

9) The number of channels can be customized as desired. 
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10) In order to change the Time and Block size or the frequency of the data set, click on the 

Channel group block. 

11) Right-click on the Channel group. 

12) Click on the Edit user interface to customize time and frequency. 

13) Double click on “Setup E1432”. 

14) Here you can change the time and block size for your desired data collection range. 

15)  Click on Start to get on with the data collection process. 

16) The status shows running while the data acquisition process is in progress. 

17) Once the status shows ready, the data can be viewed. 

18) Click on the Channel 1 Time to see the output at Channel 1. 

19) The output gets stored in a default file or directory. 

20) To change the destination file, Double click on the file and change the destination file or 

folder. 
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Figure: Data Acquisition System Assembly Setup 

 

Figure: VEE Pro User interface with six channels 
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