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Abstract

We investigate the phenomenon of divergent series of positive terms having convergent
minimum. As entry into this topic, we look at Exercise twenty-three from chapter two of Karl
R. Stromberg’s ”Introduction to Classical Real Analysis”, which addresses this very case.
The exercise calls for the construction of two infinite divergent series,

∑
an and

∑
bn, having

strictly positive, non-increasing terms, such that the series
∑
cn, the nth term of which is

the minimum of the nth terms of the original two series, converges. We then establish that it
is not possible that one of the original two series in such a construction can be the harmonic
series. Along the way, we consider Exercise forty-seven, part b from chapter two of the same
text, which asks: if we have an infinite, divergent series

∑
dn, then what can be said of the

infinite series dn
1+ndn

? We also utilize the properties of upper and lower density in formulating
the final proof.
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Exercise 23 from chapter 2 of Karl R. Stromberg’s An Introduction to Classical Real Analysis
(Stromberg 2015) reads:

“There exists two divergent series
∑
an and

∑
bn of positive terms with a1 ≥ a2 ≥ a3 ≥ ...

and b1 ≥ b2 ≥ b3 ≥ ... such that if cn = min{an, bn}, then
∑
cn converges.”

Proof. Put N0 = 0 and Nk = 2k2 , k ≥ 1. That is, put N0 = 0, N1 = 2, N2 = 16, N3 = 512,
N4 = 65536,... If i = 2k and Ni + 1 ≤ n ≤ Ni+1, set:

an =
1

2k+1(N2k+1 −N2k)

and

bn =
1

N2k+1 −N2k

.

Example 1. Consider the case i = 2 (that is k = 1). If 17 = N2 + 1 ≤ n ≤ N3 = 512, then
an = 1

22(512−16) = 1
4(496)

= 1
1984

and bn = 1
512−16 = 1

496
. I.e.:

a17 = a18 = · · · = a512 =
1

1984

and

b17 = b18 = · · · = b512 =
1

496
.

If i = 2k − 1, and Ni + 1 ≤ n ≤ Ni+1, set:

an =
1

N2k −N2k−1

and

bn =
1

2k+1(N2k −N2k−1)
.

Example 2. Consider the case i = 3 (that is k = 2). If 513 = N3 + 1 ≤ n ≤ N4 = 65536,
Then an = 1

65536−512 = 1
65024

and bn = 1
23(65024)

= 1
520192

I.e.:

a513 = a514 = · · · = a65536 =
1

65024

and

b513 = b514 = · · · = b65536 =
1

8(65536)
=

1

524288
.
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Then an+1 ≤ an for all n. This is clear when n 6= N2k+1.

When n = N2k+1,

an+1 =
1

N2k+2 −N2k+1

=
1

2(2k+2)2 − 2(2k+1)2

≤ 1

2(2k+2)2−1 =
1

24k2+8k+3
<

1

2k+124k2+4k+1

=
1

2k+1[N2k+1]
≤ 1

2k+1[N2k+1 −N2k]
= an.

Similarly, one may show that bn+1 ≤ bn for all n.

We now show that
∑
an =∞:

∞∑
n=1

an =
∞∑
i=1

Ni+1∑
n=Ni+1

an

≥
∞∑
k=1

N2k∑
n=N2k−1+1

an

=
∞∑
k=1

N2k∑
n=N2k−1+1

1

N2k −N2k−1

=
∞∑
k=1

(N2k −N2k−1)
1

N2k −N2k−1
=∞.

We next show that
∑
bn =∞:

∞∑
n=1

bn =
∞∑
i=1

Ni+1∑
n=Ni+1

bn

≥
∞∑
k=1

N2k+1∑
n=N2k+1

bn

=
∞∑
k=1

N2k+1∑
n=N2k+1

1

N2k+1 −N2k

=
∞∑
k=1

(N2k+1 −N2k)
1

N2k+1 −N2k

=∞.
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Finally, we show that
∑
cn =

∑
min{an, bn} <∞:

∞∑
n=1

cn =
∞∑
i=1

Ni+1∑
n=Ni+1

cn

=
∞∑
k=1

N2k∑
n=N2k−1+1

cn +
∞∑
k=1

N2k+1∑
n=N2k+1

cn

≤
∞∑
k=1

N2k∑
n=N2k−1+1

bn +
∞∑
k=1

N2k+1∑
n=N2k+1

an

=
∞∑
k=1

(N2k −N2k−1)
1

2k+1(N2k −N2k−1)

+
∞∑
k=1

(N2k+1 −N2k)
1

2k+1(N2k+1 −N2k)
= 1 <∞.

In this thesis, we will consider the question of when, given a single series
∑
an consistent

with the hypotheses of the previous exercise, there exists a second series
∑
bn, also consis-

tent with the hypotheses, such that the conclusion holds as well. Exercise 47b. from Karl
R. Stromberg’s An Introduction to Classical Real Analysis appears to be relevant to this
question:

“Suppose that dn > 0 for all n ∈ N and
∑
dn =∞. What can be said of the series:

∞∑
n=1

dn
1 + ndn

?”

The following claim makes a connection between this exercise and the foregoing one.

Claim 1:∑∞
n=1

dn
1+ndn

<∞ if and only if
∑∞

n=1 min{dn, 1
n
} <∞.

Proof of Claim 1. “⇐” Suppose that
∑∞

n=1 min{dn, 1
n
} <∞.

Then we have
dn

1 + ndn
≤ dn

(since 1 + ndn ≥ 1) and
dn

1 + ndn
≤ dn
ndn

=
1

n
.
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Hence
dn

1 + ndn
≤ min

{
dn,

1

n

}
.

So
∑∞

n=1
dn

1+ndn
<∞ by the comparison test.

“⇒” Suppose that
∑∞

n=1
dn

1+ndn
<∞.

Fact: For all n, either 1
n
≤ 10 dn

1+ndn
or dn ≤ 10 dn

1+ndn
.

Suppose that Fact is false. Then there exists an n such that:

1

n
> 10

dn
1 + ndn

and

dn > 10
dn

1 + ndn
.

Therefore:
1 + ndn > 10ndn

and
dn + nd2n > 10dn.

So
1 > 9ndn

and
nd2n > 9dn.

Thus,
1

9
> ndn

and
ndn > 9.

⇒⇐

This contradiction establishes Fact.

Therefore (by Fact), 10 dn
1+ndn

≥ min{dn, 1
n
}, so

∑
min

{
dn,

1
n

}
< ∞ by the comparison

test.
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One may wonder whether it is possible to satisfy
∑

min{ 1
n
, dn} <∞ jointly with

∑
dn =∞

for strictly positive dn; it is.

Consider the following example: Let

dn =

{
1
2n

if n is not a perfect square,

1 if n is a perfect square.

Then
∑
dn =∞, since dn = 1 for infinitely many n. Moreover,∑

min{ 1

n
, dn}

≤
∞∑
k=1

1

k2
+
∞∑
n=1

1

2n

=
π2

6
+ 1.

One may notice, however, that the previous example is not monotone, whereas {an} and
{bn} from Exercise 23 are monotone. Therefore, it is natural to ask the following question:

Main Question:
Is there a sequence {dn}, with

∑
dn =∞, dn > 0, and d1 ≥ d2 ≥ d3 ≥ ... such that∑

min{ 1
n
, dn} <∞?

In order to address the Main Question, it will be helpful to introduce some notions of
“largeness” for sets of natural numbers.

Definition:
Let A ⊆ N = {1, 2, 3, 4, · · · }. The upper density of A is defined by:

d(A) = lim sup
N→∞

|A ∩ {1, · · · , N}|
N

.

The lower density of A is defined by:

d(A) = lim inf
N→∞

|A ∩ {1, · · · , N}|
N

.

If d(A) = d(A), then we can denote this value as d(A) and call it the density of A.

The following proposition (see for example McCutcheon 1999) establishes basic properties
of densities that will be used later.

Proposition. Let E,F ⊂ Z. Then:

1. d(E) ≤ d(E).

2. d(E ∪ F ) ≤ d(E) + d(F ).
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3. d(E) = 1− d(Ec).

4. If d(E), d(F ) exist, E ∩ F = ∅. Then d(E ∪ F ) = d(E) + d(F ).

5. ∃E ⊂ N with d(E) = 1, d(E) = 0.

Proof of Proposition.

1. d(E) ≤ d(E).

This is trivial given the definitions of supremum and infimum.

2. d(E ∪ F ) ≤ d(E) + d(F ).

d(E ∪ F ) = lim sup
N→∞

|(E ∪ F ) ∩ {1, ..., N}|
N

≤ lim sup
N→∞

|E ∩ {1, ..., N}|+ |F ∩ {1, ..., N}|
N

≤ lim sup
N→∞

|E ∩ {1, ..., N}|
N

+ lim sup
N→∞

|F ∩ {1, ..., N}|
N

=d(E) + d(F ),

since (E ∪ F ) ∩ {1, ..., N} = (E ∩ {1, ..., N}) ∪ (F ∩ {1, ..., N}).

3. d(E) = 1− d(Ec).

d(E) = lim sup
N→∞

|E ∩ {1, ..., N}|
N

= lim sup
N→∞

N − |Ec ∩ {1, ..., N}|
N

=1 + lim sup
N→∞

−|Ec ∩ {1, ..., N}|
N

=1− lim inf
N→∞

|Ec ∩ {1, ..., N}|
N

=1− d(Ec),

since lim supN(−xn) = − lim inf xn for any real-valued sequence (xn).

4. If d(E), d(F ) exist and E ∩ F = ∅, then d(E ∪ F ) = d(E) + d(F ).
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d(E ∪ F ) = lim
N→∞

|(E ∪ F ) ∩ {1, . . . , N}|
N

= lim
N→∞

[ |E ∩ {1, . . . , N}|
N

+
|F ∩ {1, . . . , N}|

N

]
= lim

N→∞

|E ∩ {1, . . . , N}|
N

+ lim
N→∞

|F ∩ {1, . . . , N}|
N

=d(E) + d(F ).

5. ∃E ⊂ N with d(E) = 1, d(E) = 0.

Define E as follows:

1 ∈ Ec and

{
k ∈ E if 22n ≤ k < 22n+1

for some n even,

k ∈ Ec if 22n ≤ k < 22n+1
for some n odd.

Then

d(E) = lim sup
N→∞

|E ∩ {1, . . . , N}|
N

≥ lim sup
n→∞, n is even

|E ∩ {1, 2, . . . , 22n+1}|
22n+1

≥ lim sup
n→∞, n is even

22n+1 − 22n

22n+1 = 1

and

d(E) = lim inf
N→∞

|E ∩ {1, . . . , N}|
N

≤ lim inf
n→∞, n is odd

|E ∩ {1, 2, . . . , 22n+1}|
22n+1

≤ lim inf
n→∞, n is odd

22n

22n+1 = 0.

Theorem 1. Let {dn} be a non-increasing sequence of positive reals satisfying
∑
dn =∞.

Then the following are equivalent:

1. There exists a non-increasing sequence of positive reals {cn} with
∑
cn = ∞ and∑

min{dn, cn} <∞.

2. There is a set E ⊂ N with d(E) = 1 such that
∑

n∈E dn <∞.
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Proof. (1) =⇒ (2). Assume that there is a non-increasing sequence {cn} such that∑
cn =∞

and
∞∑
n=1

min{dn, cn} <∞.

Let
E = {n : min{dn, cn} = dn}.

Then clearly ∑
n∈E

dn =
∑
n∈E

min{dn, cn} <∞.

We need to show that d(E) = 1. Equivalently, we need to show that d(Ec) = 0. We know
that ∑

n∈Ec

cn =
∑
n∈Ec

min{dn, cn} <∞.

Suppose that
d(Ec) > 0.

We will obtain a contradiction: Choose k ∈ N such that

d(Ec) >
1

k
.

Write
E = {a1, a2, . . .} with a1 < a2 < a3 < · · ·

and
Ec = {b1, b2, . . .} with b1 < b2 < b3 < · · · .

Claim 2. The set S = {n : bn > akn} is finite.

Proof of Claim 2: Suppose S is infinite. Then for any n ∈ S,

|Ec ∩ {1, 2, . . . , bn}|
bn

≤ 1

k + 1
.

This is because
{b1, . . . , bn} ∪̇ {1, . . . , akn} ⊂ {1, 2, . . . , bn},

which implies that bn ≥ kn+ n = (k + 1)n, whereas

|Ec ∩ {1, 2, . . . , bn}| = n.

So, since S is infinite,

d(Ec) ≤ 1

k + 1
,

which is a contradiction. This proves Claim 2.

8



By Claim 2, then, there is some M ∈ N such that for all n ≥M , bn < akn. This implies that

cbn ≥ cakn ≥ cakn+1
≥ · · · ≥ cakn+k−1

,

which in turn implies that

cbn ≥
1

k
(cakn + cakn+1

+ · · ·+ cakn+k−1
).

Therefore,

∞∑
n=M

cbn ≥
1

k

∞∑
n=M

[cakn + cakn+1
+ · · ·+ cakn+k−1

] ≥ 1

k

∞∑
i=kM

cai =∞.

⇒⇐

(2) =⇒ (1). Assume that there is a set E ⊂ N with d(E) = 1 such that∑
n∈E

dn <∞.

We will construct a sequence
c1 ≥ c2 ≥ c3 ≥ · · ·

such that ∑
n∈E

cn =∞

and ∑
n∈Ec

cn <∞,

thus satisfying (1).

Put N0 = 0 Since d(E) = 1, one can find

N1 < N2 < N3 < · · ·

such that Nk+1 > 2Nk, k = 1, 2, . . .,

|E ∩ {1, 2, . . . , N1}| > (1− 1

2
)N1,

|E ∩ {N1 + 1, N1 + 2, . . . , N2}| > (1− 1

3
)(N2 −N1),

and, more generally,

|E ∩ {Nk + 1, Nk + 2, . . . , Nk+1}| > (1− 1

k + 2
)(Nk+1 −Nk)

for k > 1. For k = 0, 1, . . ., let

cn =
1

(k + 1)(Nk+1 −Nk)
for Nk < n ≤ Nk+1.
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Then

∞∑
n=1

cn =
∞∑
k=0

Nk+1∑
n=Nk+1

cn

≥
∞∑
k=0

1

(k + 1)(Nk+1 −Nk)
(Nk+1 −Nk) =

∞∑
k=0

1

k + 1
=∞.

Meanwhile,

∑
n∈Ec

cn =
∞∑
k=0

∑
Nk<n≤Nk+1,n∈Ec

cn

=
∞∑
k=0

1

(k + 1)(Nk+1 −Nk)
|Ec ∩ {Nk + 1, . . . , Nk+1}|

≤
∞∑
k=0

1

(k + 1)(Nk+1 −Nk)
· (Nk+1 −Nk)

(k + 2)
=
∞∑
k=0

1

(k + 1)(k + 2)
= 1 <∞.

Theorem 2. If E ⊂ N and
∑

n∈E
1
n
<∞, then d(E) = 0.

Proof. Suppose that d(E) > 0. We will obtain a contradiction.

Choose k ∈ N such that d(E) > 1
k
. Choose next N > 0 such that∑

n>N,n∈E

1

n
< − log(1− 1

k
).

Now choose M to be a multiple of k large enough that

|E ∩ {N + 1, . . . ,M}|
M

>
1

k
.

Then

∑
n>N,n∈E

1

n
≥

M∑
n=M(1− 1

k
)

1

n
>

∫ M

M(1− 1
k
)

1

x
dx

= logM − logM(1− 1

k
) = − log(1− 1

k
)

⇒⇐
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We can now answer our Main Question, in the negative. That is, we can show that there is
no sequence {dn}, with ∑

dn =∞,

dn > 0,

and
d1 ≥ d2 ≥ d3 ≥ · · ·

such that
∑

min{ 1
n
, dn} <∞. For if there were, then Theorem 1 would imply the existence

of E ⊂ N with d(E) = 1 such that ∑
n∈E

1

n
<∞.

But this violates Theorem 2. Hence, there exists no such sequence.

We also remark, in conclusion, that we can now say something substantive about Exercise
47b as well. (See above.) Namely, our results establish that if dn > 0 for all n,

∑
dn =∞

and (dn) is non-increasing, then
∑∞

n=1
dn

1+ndn
=∞. (This follows immediately from Claim 1

and the negative result we obtained for our Main Question.)
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